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Abstract

Solar energy is one of the most promising environmentally-friendly energy sources. Its

market share is increasing rapidly due to advances in PhotoVoltaic (PV) technologies,

which have led to the development of more efficient PV solar panels and the significant

reduction of their cost. However, the generated solar energy is influenced by meteo-

rological factors such as solar radiation, cloud cover, rainfall and temperature. This

variability affects negatively the large scale integration of solar energy into the elec-

tricity grid. Accurate forecasting of the power generated by PV systems is therefore

needed for the successful integration of solar power into the electricity grid. The ob-

jective of this thesis is to explore the possibility of using machine learning methods to

accurately predict the generated solar power so that this sustainable energy source can

be better utilized. We consider the task of predicting the PV power for the next day at

half-hourly intervals.

At first, we explored the potential of instance-based methods and propose two new

methods: the data source weighted nearest neighbor DWkNN and the extended Pat-

tern Sequence Forecasting (PSF) algorithms. DWkNN is an extension of the standard

nearest neighbour algorithm; it uses multiple data sources (historical PV power data,

historical weather data and weather forecasts) and considers the importance of these

data sources in the final prediction by learning the best weights for them based on pre-

vious data. PSF1 and PSF2 are extensions of the standard PSF algorithm which is only

applicable to a single data source (historical PV data) to deal with data from multiple

related time series. Our evaluation using Australian data showed that the proposed

extensions were more accurate than the methods they extend.

Then, we proposed two clustering-based methods for PV power prediction: di-

rect and pair patterns. Many recent algorithms create a single prediction model for all

weather types. In contrast, we used clustering to partition the days into groups with

similar weather characteristics and then created a separate PV power prediction model
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for each group. The direct clustering groups the days based on their weather profiles,

while the pair patterns considers the weather type transition between two consecu-

tive days. The proposed methods were evaluated and compared with methods without

clustering using Australian data. The results showed that clustering-based models out-

performed the other models used for comparison.

We also investigated ensemble methods and proposed static and dynamic ensem-

bles of neural networks. We proposed three strategies for creating static ensembles

based on random example and feature sampling, as well as four strategies for creat-

ing dynamic ensembles by adaptively updating the weights of the ensemble members

based on past performance. Our results showed that all static ensembles were more ac-

curate than the single prediction models and classical ensembles used for comparison,

and that the dynamic ensemble further improved the accuracy. We then explored the

use of meta-learning to improve the performance of the dynamic ensembles. Instead

of calculating the weights of the ensemble members based on their past performance,

meta-learners were trained to predict the performance of the ensemble members for

the new day and calculate the weights accordingly. The results showed that the use of

meta-learning further improved the accuracy of dynamic ensemble.

The methods proposed in this thesis can be used by PV plant and electricity market

operators for decision making, improving the utilisation of the generated PV power,

avoiding waste, planning maintenance and reducing costs, and also facilitating the

large-scale integration of PV power in the electricity grid.
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Chapter 1

Introduction

Solar energy is an important source of renewable energy. It is clean, abundant and

easily accessible. Solar energy can be easily collected by using Photo Voltaic (PV)

panels, either small-scale roof-top installations or large-scale solar farms. The solar

energy can be transformed into electricity and used to supply the electricity in the

building or integrated into the electricity grid. In recent years, the PV technology has

developed rapidly and is now one of the most promising technologies for producing

solar power. The increased efficiency and affordability of PV solar panels has led to

the rapid growth of installed PV solar panels around the world, both stand-alone and

grid-connected.

Since solar power is environmentally-friendly, many governments are encouraging

its use by providing incentives. Due to all these reasons, solar power is expected to

contribute significantly to the future global energy supply. For example, it is predicted

that the next four years would witness a triple increase in the capacity of the installed

PV power systems worldwide, reaching 540GW [1], and that by 2050, about 30% of

Australian energy supply will come from PV systems [2].

Even though solar energy has many advantages compared to other traditional en-

ergy sources such as coal and natural gas, the produced PV power output is highly

variable as it depends on the solar irradiance and other meteorological factors such as

solar angle, solar hours, cloud cover, rainfall and temperature. Solar energy is also an

intermittent energy source as it is only available during the day time. This variability

and intermittence of solar power makes its large-scale integration into the power grid

challenging. Unexpected changes in the solar power often happen, negatively affecting

1



CHAPTER 1. INTRODUCTION 2

the grid balance and increasing the operational costs. To minimize the possible nega-

tive consequences and ensure a larger penetration of PV power in to the energy mix,

there is a need for accurate forecasting of the electricity generated by PV systems.

The solar power forecasting methods can be divided into two groups: indirect and

direct. The indirect methods firstly predict the solar irradiance and then convert this

prediction into solar power output based on the characteristics of the PV plant and

other domain knowledge. Technologies such as NWP and satellite image processing

are used together to analyze complex meteorological data such as cloud cover move-

ment and solar angle changes in order to predict the solar irradiance and make the final

prediction [3, 4, 5, 6]. The accuracy of indirect models to a large extent depends on the

accuracy of individual components and the availability of weather information. How-

ever, the meteorological information required for making accurate indirect forecasts is

not always available for the the location of the PV plants. The application of indirect

methods also heavily relies on domain knowledge of power engineering. These factors

limit the applicability of the indirect methods.

In contrast, the direct group of methods directly predict the output of the PV power

systems, without the need to firstly predict the solar irradiance. The main data source is

the previous PV power data which is readily available, and the additional data sources

include historical weather data and weather forecasts for the new days. This weather

information is less complex and easily available for the location of the PV plant than

the information required by the indirect methods. Also, the additional data sources

can be used to improve the accuracy compared to only using the historical PV power

data, but they are no longer indispensable. This enables the wider application of di-

rect approaches, compared to the direct ones. The direct approaches can be further

divided into two groups, namely statistical and machine learning methods. The former

are based on statistical models such as Autoregressive Moving Average (ARMA), Au-

toregressive Integrated Moving Average (ARIMA) and Exponential Smoothing (ES)

[7, 8, 9, 10, 11]. The latter group applies machine learning algorithms such as Neural

Networks(NN)[12, 13, 14], Support Vector Regression (SVR)[15], k Nearest Neigh-

bors (k-NN) [16, 7].

This thesis is concerned with developing methods for predicting the power output

of solar PV systems. In particular, we focus on directly and simultaneously predict-

ing the 24h-ahead solar power output at 30-min intervals. This forecasting horizon

is frequently used and allows sufficient time for the PV plant and electricity market
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operators to evaluate the situation and make decisions. All case studies in this thesis

consider this prediction task. We utilise different data sources, e.g. historical PV power

data, historical weather data and weather forecasts. The specific data sources used in

different case studies are described in the relevant chapters. The aim of this thesis is to

investigate the performance of existing state-of-the-art machine learning methods for

solar power forecasting and develop novel methods with improved performance.

1.1 Main Contributions

This thesis focuses on using machine learning approaches to directly and simultane-

ously predict the PV power output for the next day at 30-min intervals. We analyze the

limitations of the state-of-the-art methods in this area and and propose new methods

to address these limitations and improve the accuracy. The main contributions of this

thesis can be summarized as follows:

1. Instance-based methods. We propose two new instance-based methods for so-

lar power forecasting, namely DWkNN and extended PSF. DWkNN is an exten-

sion of k-NN, which considers the importance of different data sources (histori-

cal PV power data, historical weather data and weather forecasts) and learns the

best weights for them based on previous data. PSF1 and PSF2 are extensions

of the standard PSF algorithm which is only applicable to a single data source

(historical PV data) to deal with time series from more than one data source. Our

evaluation using Australian data showed that the proposed extensions were more

accurate than the original methods they extend.

2. Clustering-based methods. We propose two novel clustering-based methods

for solar power forecasting that partition the days into groups with similar weather

characteristics and then build a separate prediction model for each group. The

first method, direct clustering-based method, groups the days into clusters based

on their weather profiles and then trains a separate model for each cluster. The

second method, weather pair patterns clustering-based method, considers the

weather type transition between two consecutive days and then builds a separate

prediction model for each type of cluster transition. We evaluated the perfor-

mance of the two clustering-based methods and compared them with methods
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without clustering. The results showed that the clustering was beneficial for so-

lar power forecasting, resulting in higher accuracy.

3. Ensemble methods. In addition to building single prediction models, we also

investigated ensembles of prediction models to improve the forecasting accu-

racy. In particular, we investigated ensembles of NNs that use only PV power

data since weather data may not always be available for the location of the PV

plant. We propose three strategies for creating static ensembles based on ran-

dom example and feature sampling, and several strategies for creating dynamic

ensembles by adaptively weighting the contribution of the ensemble members

based on their recent performance. We also proposed another version of the

dynamic ensemble called EN-meta which uses meta-learning and predicted per-

formance for the new day instead of actual performance on previous days to

calculate the weights of the ensemble members. Our evaluation results showed

that proposed ensembles outperformed the single models and classical ensem-

bles used for comparison. The dynamic ensembles were more accurate than the

static ensembles, with EN-meta being the most accurate prediction model.

1.2 Publications Associated with the Thesis

The following publications are associated with this thesis:

1. Zheng Wang, Irena Koprinska and Mashud Rana (2016). Clustering Based

Methods for Solar Power Forecasting, in Proceedings of the International Joint

Conference on Neural Networks (IJCNN), Vancouver, Canada, July 2016, IEEE

press. CORE ranking: A

2. Zheng Wang, Irena Koprinska and Mashud Rana (2017). Solar Power Predic-

tion Using Weather Type Pair Patterns, in Proceedings of the International Joint

Conference on Neural Networks (IJCNN), Anchorage, May 2017, IEEE press.

CORE ranking: A

3. Zheng Wang and Irena Koprinska (2017). Solar Power Prediction with Data

Source Weighted Nearest Neighbors, in Proceedings of the International Joint

Conference on Neural Networks (IJCNN), Anchorage, USA, May 2017, IEEE

press. CORE ranking: A
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4. Zheng Wang, Irena Koprinska and Mashud Rana (2017). Solar power fore-

casting using pattern sequences, in Proceedings of the International Conference

on Artificial Neural Networks, ICANN 2017, Alghero, Italy, September 2017,

Springer LNCS. CORE ranking: B

5. Zheng Wang, Irena Koprinska, Alicia Troncoso and Francisco Martinez-Alvarez

(2018). Static and Dynamic Ensembles of Neural Networks for Solar Power

Forecasting, in Proceedings of the International Joint Conference on Neural Net-

works (IJCNN), Rio de Janeiro, Brazil, July 2018, IEEE press. CORE ranking:
A

6. Zheng Wang and Irena Koprinska (2018). Solar Power Forecasting Using Dy-

namic and Meta-Learning Ensemble of Neural Networks, in Proceedings of

the International Conference on Artificial Neural Networks (ICANN), Rhodes,

Greece, October 2018, Springer LNCS. CORE ranking: B

1.3 Thesis Structure

The rest of the thesis is organized as follows:

Chapter 2 provides a comprehensive review of the previous research work on solar

power forecasting. Section 2.1 summarizes meteorological models which use NWP

and satellite image processing techniques to make indirect predictions for the PV

power output. Section 2.2 reviews statistical models using ARMA, ARIMA and ES.

Section 2.3 provides an overview of the state-of-the-art machine learning methods used

in this area including single models, clustering-based models and ensembles of predic-

tion models. Section 2.4 reviews hybrid systems for solar power forecasting.

Chapter 3 investigates instance-based methods for solar power forecasting and

proposes two novel method: DWkNN and extended PSF. Section 3.1 introduces the

DWkNN model, which extends the standard k-NN method. Section 3.2 proposes two

extended PSF models. Both DWkNN and the extended PSF models are evaluated us-

ing Australian data in sections 3.1.2 and 3.2.2 respectively. The publications related to

this chapter are publication 3 and 4 from Section 1.2.

Chapter 4 is concerned with clustering-based methods for solar power forecasting.

Section 4.1 proposes a new approach based on direct clustering, while Section 4.2
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introduces the weather type pair pattern clustering-based methods. The performance

of the proposed methods is evaluated and discussed in sections 4.1.2 and 4.2.2 re-

spectively. The publications associated with this chapter are publication 1 and 2 from

Section 1.2.

Chapter 5 focuses on exploring the potential of ensembles of prediction models

for PV power forecasting. Section 5.1 introduces strategies for creating static and

dynamic ensembles based on previous performance. Section 5.2 introduces a dynamic

ensemble based on predicted performance for the new day which uses meta-learners.

The performance of the proposed methods is evaluated and discussed in sections 5.1.3

and 5.2.2 respectively. The publications related to this chapter are publication 5 and 6

from Section 1.2.



Chapter 2

Literature Review

As described in Chapter 1, our main research task is to employ machine learning meth-

ods to make direct forecasts for the PV power output for the next day. The methods

used for solar power forecasting can be generally classified into four categories:

1. Meteorological models - These methods ate typically indirect. They use Numer-

ical Weather Prediction(NWP) techniques and satellite image processing to first

forecast the solar radiation intensity and then convert it into PV output data.

2. Statistical models - These methods usually use statistical methods such as Auto-

Regressive Moving Average (ARMA), Auto-Regressive Intergrated Moving Av-

erage (ARIMA) as well as Exponensial Smoothing (ES). These models can be

used to make direct forecasts for the PV power outputs, without the need to

firstly forecast the solar irradiance.

3. Machine learning models - These methods use machine learning algorithms such

as k-NN, Neural Networks (NN), Support Vector Regression (SVR) and Pattern

Sequence-based Forecasting (PSF), to directly forecast the PV power output.

There are generally two ways to utilize machine learning techniques: by building

a single prediction model or grouping several prediction models together to form

an ensemble of prediction models.

4. Hybrid models - These methods combine models or different components from

the previous three categories. Slightly different from the ensembles which typ-

ically combine machine learning models, the hybrid models usually combine

7
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meteorological models with machine learning and statistical models or compo-

nents together.

In the next sections (Section 2.1-2.4), we review the related work in these four

categories. The limitations of the current methods and the motivation for our work is

discussed in Section 2.5.

2.1 Meteorological Models

A traditional way for forecasting the solar irradiance is to construct physical satel-

lite model by measuring local and global meteorological data, and then modeling the

relationship between solar irradiance and other factors such as temperature, humid-

ity, rainfall values, etc. This process typically needs to convert digital counts from

the satellite-based radiometers into flux density, which requires appropriate calibration

[17].

2.1.1 Numerical Weather Prediction

The NWP models are usually built on numerical integration equations which require

domain knowledge to explain the radiation mechanism and the variations in the atmo-

sphere.

In [18] Cornaro et al. pointed out that the key advantage of NWP is that it is

a deterministic physical model. However, the authors also indicated that the NWP

model is limited by the non-linearity of the domain equations as well as the insufficient

spatial resolution of the integration grid, from 100km to a few km, which is too wide

compared to the PV plant size. In [19, 20, 21], the spatial resolution of NWP models

is discussed. NWP models can be classified into global and mesoscale models. Due

to the coarse resolutions, NWP models do not allow the detailed mapping of small-

scale features. Although the NWP resolution is improved in recent years, the range

of resolutions still lies in 16-50 km depending on the models, which undermines the

accuracy of forecasting.

In terms of the temporal scales, Lorenz and Heinemann [22] indicated that NWP

models are widely used to predict atmospheric states up to 15 days ahead and this

shows the limitation of using NWP models for longer-term forecasts. In summary, the
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accuracy of NWP models depends on the availability of meteorological records and

NWP models perform better when applied to short-term prediction tasks.

2.1.2 Satellite Image Processing

Another type of meteorological models used to forecast solar power is based on analysing

images captured by digital cameras or satellites [23].

Most existing models which use digital cameras were designed to take images of

the hemispheric view of the sky and capture the cloud movement. The movement is

then vectorised and used to predict the short-term cloud cover, irradiance and solar

power. The efficiency of the cloud tracking and detection techniques is significantly

influenced by the ways the cameras are set up [24].

Chow et al. [25], proposed a method for intra-hour, sub-kilometer cloud irradiance

forcasting using a ground-based sky imager at the University of California, San Diego.

They took sky images every 30s and processed the images to determine the sky cover

using a clear sky library and sunshine parameters. They generated a two-dimensional

cloud map from coordinate-transformed sky cover to estimate cloud shadows at the

surface, which is further used to make the forecasts. The accuracy of the forecasts

was mainly influenced by two factors: cloud speed and forecast horizon. The results

showed that in the 30s forecasts, the forecasting error was reduced to 50%-60% of the

error of the persistence models.

Peng et al. [26] developed a short-term solar irradiance estimation for novel 3D

cloud detection and tracking system based on multiple sky imagers. They trained a

classifier to recognize clouds at a pixel level as well as the output cloud mask. Then,

they measured the block-wise base height and the motion of every cloud layer based on

the images captured from the multiple sky imagers, ready to be combined together into

larger views for solar prediction. Compared with the persistence model, the proposed

model achieved a minimum 36% improvement for all irradiance predictions between

1 min and 15 min intervals.

In addition to images captured by digital cameras from the ground, images captured

by satelites were also utilized. The use of satellite images is similar to the use of images

captured by cameras on the ground. The cloud pattern is captured and deduced from

both the visible and infrared images taken by the satellite sensors flying overhead.
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In [27], Marquez et al. developed the Global Horizontal Irradiance (GHI) pre-

dictions at temporal horizons of 30, 60, 90 and 120-min using a hybrid technique of

satellite image analysis and NNs. The cloud fraction parameters were collected and

used as the NN inputs. The proposed method outperformed the persistence model by

5-19% for 1 time-step forecasts and by about 10-25% for multi-step forecasts. Similar

findings can also be found in [28].

Aguiar et al. [29] proposed a satellite-derived ground data model using solar radia-

tion and total cloud cover forecasted by European Center for Medium-Range Weather

Forecasts (ECMWF) to improve the intra-day solar prediction. They used a clear sky

index as a solar radiation parameter with statistical models. A NN was trained with

ground and exogenous data as inputs such as history GHI, air temperature and ground

relative humidity.

The results showed the combination of NN and ECMWF was beneficial, compared

to using NN alone. It improved the RMSE with 15.47%-22.17% for the Co-Pozo

Izquierdo station and 25.15%-34.09% for the C1-Las Palmas station.

2.2 Statistical Models

Another important group of methods used to predict the PV power output or solar irra-

diance includes statistical models such as Autoregressive Moving Average (ARMA),

its extension, Autoregressive Integrated Moving Average (ARIMA), and Exponential

Smoothing (ES). These statistical models are usually applied to short-term (within a

day) solar power forecasting tasks. Compared to the meteorological forecasting mod-

els, statistical models can be directly used to forecast the PV power outputs. This

reduces the reliance on domain knowledge about power engineering and PV systems.

2.2.1 ARMA and ARIMA

The general procedure of using ARMA for time series forecasting tasks is as follows

[30]:

1. The input data is collected. If the data is non-stationary, then a transformation is

conducted to make the data stationary.
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2. The model order (p, d, q) is identified, estimated and fitted. If the model is not

adequate, the model order is modified until it becomes adequate.

3. The model is used to forecast as per the desired horizon.

Pedro and Coimbra [7] evaluated five forecasting models with non-exogenous in-

puts. They compared ARIMA with a persistent model, standard k-NN, standard NN

and a NN optimized by Genetic Algorithms (GA-NN) and tested the accuracy of these

models using the data for eight months. Even though the results showed that GA-NN

outperformed the other methods used for comparison, ARIMA also showed satisfac-

tory accuracy.

Agoua et al. [31] constructed a statistical spatio-temporal method to forecast the

power output from several minutes ahead up to 6h ahead. They introduced a new sta-

tionarization process to overcome the issue of non-stationarity of the time series. The

results show that this pre-processing was beneficial, resulting in better performance

compared to using the raw data. They also indicated that including meteorological

variables such as wind power contributes to the improvement of the spatio-temporal

model. Compared with a persistence model, random forest and AR, the proposed

model achieved a 20% higher accuracy.

Yang et al. [32] proposed three forecasting methods to predict the next hour solar

irradiance values and the cloud cover effects. The proposed three methods take differ-

ent types of meteorological data as input. The first method takes in global horizontal

irradiance (GHI) values and directly uses it to forecast the GHI values at 1-hour in-

tervals through additive seasonal decomposition, followed by an ARIMA model. The

second method forecasts disffuse horizontal irradiance (DHI) and direct normal irradi-

ance (DNI) separately using additive seasonal decomposition, followed by an ARIMA

model. The results of the two forecasts are then combined to predict GHI using an

atmospheric model. The third method considers cloud cover effects and uses ARIMA

to predict cloud transients. The final forecasts is made by non-linear regression tech-

niques which uses GHI at different zenith angles and under different cloud cover con-

ditions. Their results showed that the third method outperformed the other two, leading

to MRE = 0.39 and 0.27, RMSE = 29.73 and 32.80 for the Miami and Orland test sets

respectively. The results showed that the use of cloud cover techniques improves the

performance of the forecasting models.
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Yang et al. [33] proposed AR with eXogenous Input based Statistical model (ARX-

ST) to improve the accuracy of PV power forecasting models. The model takes local

PV data as well as geographically correlated information of solar PV production from

other sites as inputs and can be applied to forecasting tasks for multiple horizons. The

results showed that the proposed model was the most accurate for 1-h and 2-h ahead

forecasting. For 1-h ahead, MAE of the ARX-ST model was 50.79%, 41.8% and

5.15% lower than the persistence, backpropagation NN, and the AR model, respec-

tively. For 2-h ahead, the results were 60.2%, 47.27% and 8.09% ,respectively.

Li et al. [11] pointed out that the standard ARIMA for solar power forecasting con-

siders only the solar power data and fails to take into account the weather information.

Hence, they proposed a generalized model, ARIMAX, which allows for exogenous

inputs for forecasting power output. The exogeneous inputs of the model are tem-

perature, precipitation amount, insolation duration and humidity, which can be easily

accessed. They also indicated that the proposed model is more general and flexible

for practical use than the standard ARIMA and improves the performance of the lat-

ter based on the experiment results. Their results showed a 36.46% improvement in

RMSE, showing that weather information can be used to enhance the performance of

ARIMA for solar power forecasting.

2.2.2 Exponential Smoothing

Exponential Smoothing (ES) is a very popular and successful statistical method for

forecasting energy time series data such as electricity demand and wind power fore-

casting [34, 35, 36, 37]. It computes the prediction as a weighed combination of the

previous values, where the more recent values are weighed higher than the older. The

Holt-Winters ES is an extension of the standard ES for data with seasonality. This

method has also been applied for solar power forecasting.

Yang et al. [10] proposed three time series decomposition based models to forecast

the hourly global horizontal irradiance (GHI) values. The first model implemented an

additive seasonal-trend decomposition as a pre-processing technique before ES was

used, which reduces the state space and hence improves the computational efficiency.

The second model decomposed the GHI time series into a direct component and a dif-

fuse component. Both components were used to make forecasts and their results were

combined using the closure equation, forming the final forecasts for GHI. The third
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method considered also the cloud cover index and applied ES to the cloud cover time

series to obtain the cloud cover forecasts. Then, the GHI was forecast through poly-

nomial regressions. The results showed that all models outperformed the persistence

models.

Dong et al. [9] proposed a Exponential Smoothing State Space (ESSS) model to

forecast high-resolution solar irradiance time series. They first built a Fourier trend

model to stationarize the irradiance data. This was compared with other state-of-

the-arts trend methods using residual analysis and Kwiatkowski-Phillips-Schmidt-Shin

(KPSS) stationarity test. Then an ESSS model was implemented to forecast the station-

ary residual series of the testing data. They compared the performance with ARIMA,

linear exponential smoothing, simple exponential smoothing and random walk mod-

els.Their results showed that ESSS generally outperformed the methods used for com-

parison.

2.3 Machine Learning Models

The third group of models used for solar power forecasting are based on machine

learning and artificial intelligence technique. Most of the state-of-the-arts forecasting

models use Neural Networks (NNs), k-Nearest Neighbors (k-NN) and Support Vec-

tor Machines (SVM). These models are data-driven and do not require strong domain

knowledge of power engineering as required by the meteorological models. Machine

learning forecasting models can be used for directly forecasting the PV power, with-

out the need to first forecast the solar irradiance and then convert it to power output.

Another benefit of this group of methods is the flexible forecasting horizon. Most of

the meteorological and statistical models introduced in Section 2.1 and Section 2.2 are

suitable for short-term or very short-term forecasts, which are usually intra-day fore-

casts [38, ?, 10, 33], while the forecasting horizon of the machine models can be more

flexible, ranging from intra-hours forecasts[39, 40] to next day forecasts [41, 42].

2.3.1 k-NN

k-NN is a popular instance-based method, that has been successfully used for solar

power prediction tasks [43, 44, 45].
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Pedro and Coimbra [7] implemented a k-NN model and showed that it outper-

formed the persistence model used for comparison. In [16] they also proposed a new

k-NN based methodology to forecast intra-hour GHI and DNI, as well as the corre-

sponding uncertainty prediction intervals. The forecasting horizon ranged from 5 min

up to 30 min, and the parameters were determined based on an optimization algorithm.

The results showed that the proposed model achieved 10% - 25% improvement over

the persistence model. The authors also indicated that including sky images in the

optimization can lead to a small improvement of about 5%. In [46], they studied the

influence of different types of climates into the forecasting perforamnce and proposed

k-NN and NN based models to forecast the global irradiance. The two models were op-

timized by using feature extraction methods and the results showed that the proposed

models significantly improved the persistence models.

In [47] Chu et al. extended a k-NN model using NN-optimized re-forecasting

method. This model was evaluated using the data from a 48MW PV plant and their

results showed that the reforecasting method could significantly improve the perfor-

mance of k-NN for time horizons of 5, 10 and 15 min.

Chu and Coimbra [48] proposed k-NN ensemble models using lagged irradiance

and image data to generate probability density function forecasts for intra-hour Di-

rect Normal Irradiance (DNI). The model took diffuse irradiance measurements and

cloud cover information as exogenous feature inputs and was evaluated using data

from different locations (continental, coastal and island) by metrics such as Prediction

Interval Coverage Probability (PICP), Prediction Interval Normalized Averaged Width

(PINAW) and other standard error metrics. As baselines they implemented a persis-

tence ensemble probabilistic forecasting model and a Gaussian probabilistic forecast-

ing model. Their results showed that the proposed k-NN ensembles outperformed both

reference models in terms of all evaluation metrics for all locations when the forecast-

ing horizon was longer than 5 mins.

In [49] Chen et al. proposed a methodology to forecast hourly GSI values. More

specifically, they trained a k-NN model to preprocess the data prior to training a NN to

forecast the 1 hour ahead GSI value for the target PV station. The k-NN model uses

meteorological data from 8 adjacent PV stations and generates the inputs for the NN

model, which is used to make the forecasts. The results showed that the hybrid model

achieved Mean Absolute Bias Error (MABE) of 42 W/m2 and RMSE of 242 W/m2.

Martinez et al. [50] proposed the Pattern Sequence similarity Forecasting (PSF)
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method to predicting energy-related time series. PSF first clusters the historical data

into several groups and labels the days with their cluster label. The days prior to the

target day form a pattern sequence of cluster labels. PSF then searches the historical

data for nearest neighbours of these pattern sequences, and uses the days immediately

after the neighbor sequences to compute the forecast for the new days by taking the

average of their values. The results showed that PSF was successful and efficient

method for making forecasts.

2.3.2 NNs

NNs are the more frequently used methods for solar power forecasting tasks [13, 51,

52, 53]. NNs can be used to solve complex non-linear problems but they require careful

parameter selection, including NN structure and training algorithm [54, 55].

Pedro and Coimbra [7] compared k-NN, NN, ARIMA and a persistence model

and showed that NN can provide more accurate forecasts for solar power data. They

also indicated that the NN can be optimized by Genetic Algorithms, forming GA-NN,

which further improves the performance of NN. Izgi et al. [12] proposed an NN model

to predict the solar power output of a 750W solar PV panel and compared different

forecasting horizons. Their results showed that the best forecasts for short-term and

middle-term forecasting horizons were for 5 min and 35 min respectively in April, and

for 3 min and 40 min respectively in August.

Chen et al. [56] proposed a forecasting model based on fuzzy logic and NN. It

takes as an imput the historical hourly solar irradiation, sky conditions and average

hourly temperature, and predicts the solar irradiation values for the next month. Fuzzy

logic was used to classify temperature and sky conditions before using them in the NN.

An evaluation under different sky conditions was conducted, achieving Mean Absolute

Percentage Error (MAPE) ranging from 6.03% to 9.65% for the different cases.

Kardakos et al. [57] compared seasonal ARIMA implemented with solar predic-

tion derived from an NWP model and NN with multiple inputs to predict the PV power

for both intraday and day-ahead horizons at 1 hour intervals. Their findings showed

that the Normalized Root Mean Square Error (NRMSE) of NN model was lower than

that of the ARIMA and the persistence model.

Mellit et al. [58] proposed two models based on NNs to forecast solar power gen-

erated by 50 Wp Si-Polycrystalline PV modules. The inputs of the models were solar
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irradiance and air temperature. The first NN based model was trained to predict solar

PV power in cloudy cases with an average daily solar irradiance less or equal to 400

Wm−2/day, and the second model was trained to predict sunny days with the average

solar irradiance exceeding 400 Wm−2. The second NN model showed better perfor-

mance, achieving MBE = 0.94% - 0.98% and RMSE less than 0.2%. The work showed

that the performance of NN models may vary under different weather conditions and

explored the possibility of training separate classifiers for different weather conditions.

The same inputs (solar irradiance and temperature) were used in [59], where Al-

monacid et al. proposed a NN model to predict the 1-h ahead PV power output. The

model was evaluated using linear regression analysis, which compares the actual val-

ues with the forecast values. The results showed that the proposed model achieved

correlation coefficient values close to 1 and RMSE of 3.38%. Similarly, Mellit and

Pavan [60] applied NNs to predict the daily solar irradiance at 60-min intervals. In

addition to the average daily solar irradiance and temperature, the NN models also

take as input information about the day of the month. To predict the PV power out-

put, the predicted solar irradiance is multiplied with coefficients based on the PV panel

characteristics such as area, efficiency and balance.

Dahmani et al. [61] implemented a NN model to forecast the tilted global solar

irradiation derived form the horizontal data gathered from Algeira. The model uses

as inputs the horizontal global extra-terrestrial irradiation at 5-min intervals, the dec-

lination, zenith angle and azimuth angle. It was was evaluated using data for 2 years

showing promising results - the best relative RMSE achieved was 8.82%.

In [62] Teo et al. proposed a NN model based on extreme learning machine algo-

rithms to directly forecast the PV power output. They used three data sets to evaluate

the performance of the model. They indicated that modifying input variables and in-

creasing the size of training samples can significantly improve the performance. This

conclusion was also made in [63], where Giorgi et al. compared statistical methods

based on multi-regression and Elman NN for 1 to 24h ahead PV power prediction.

They pointed out that including all weather parameters as input vector provided the

best prediction for PV power. However, in [64], a different conclusion was made by

Notton et al. who proposed three NN models, evaluated using the data for 5 years

at 10 min intervals from a PV plant in France. The first two NN models used decli-

nation, time, zenith angle, 10-min extra-terrestrial horizontal irradiation and 10-min

extra-terrestrial horizontal global irradiation as inputs. The third NN model included
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the inclination angle as the additional input. The results showed that the elimination

of one of the input variables improved the RMSE and Relative Mean Absolute Error

(RMAE) by 9% and 5.5% respectively.

Amrouche et al. [65] utilized NN and spatial modelling methods to provide daily

forecasts for the local GHI values. The models takes the weather forecasts provided

by the US National Ocean and Atmospheric Administration for four adjacent sites as

inputs. They compared the proposed model with geometric and statistical models. The

results showed that the NN-based models outperformed the geometric and statistical

models used for comparison, achieving the lowest MSE and RSME.

Yona et al. [66] implemented a Recurrent Neural Network (RNN) with fuzzy logic

to predict the PV power output for the next day. They used fuzzy model functions

to generate insolation forecast data so that the RNN can be trained smoothly. The

proposed model was shown to be more accurate than other models used for comparison

(a persistence model, a model using fuzzy logic only and a feedforward NN), achieving

a best MAE = 0.1327kW.

In [67] Long et al. compared four different methods: NNs, SVR, k-NN and Linear

Regression (LR). They studied two groups of inputs: (i) historical PV data only and (ii)

a combination of historical PV data and weather information. The evaluation was done

on data from a PV plant in Macau, for forecasting horizons up to 3 days ahead. Their

results showed that there was no single best performing algorithm for all scenarios, but

overall NNs were the most successful.

Azimi et al. [68] proposed a system which combines a clustering algorithm with

NNs to predict solar radiation. Firstly, they implemented the transformation based

k-means algorithm to classify the time series solar power data into various sets to de-

termine irregular patterns and outliers. Then the clustered data was used to train NNs,

which were used to make the final predictions. They compared the proposed hybrid

system with several statistical models including ES and ARIMA and a persistence

model, showing that the proposed hybrid system was the most accurate.

In [13] Chen et al. proposed an approach which firstly uses Self-Organizing Map

(SOM) to group data into three clusters using the daily solar irradiance and cloud cover

information collected from NWP predictions and then train a Radial Basis Function

Neural Network (RBFNN) for each cluster. RBFNN uses as input the average PV

power output for the previous day and the weather forecast for the next day average

daily temperature, solar irradiance, wind speed and humidity. They achieved MAPE =
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9.45% for sunny days and MAPE= 38.12% for rainy days. A similar idea was followed

in [69, 70], where the historical data was partitioned into several groups and then a

separate model was trained for each group. The rationale behind this idea is that days

with similar weather profiles may have similar PV output characteristics and therefore

building separate models for different groups may improve the accuracy.

2.3.3 SVR

Apart from NNs, SVM [71] is another state-of-the-art machine learning algorithm that

has been widely used for solar power forecasting. When applied to forecasting tasks,

the SVM version for regression tasks, Support Vector Regression (SVR), is used. The

SVR prediction models are usually compared with NN prediction models [41, 72, 73,

74].

Shi at al. [69] labelled the days as sunny, foggy, cloudy and rainy based on the

weather report from a meteorological station and then trained a separate SVR model

for each type of day, that predicts the PV power for the next day. As input they used the

PV power output of the nearest day in the training data with the same label, and also the

average daily temperature forecast for the next day. The highest accuracy was achieved

for sunny days (RMSE = 1.57MW) and the lowest for foggy days (RMSE=2.52MW).

In [41] Rana et al. proposed a 2D-interval forecasting model using SVR, which

directly forecasts the 2D-interval PV power output from historical solar power and

meteorological data. The model was evaluated using Australian PV data for two years.

Their results showed that SVR2D provided the most accurate forecasts compared with

a number of baselines and other methods used for comparison including NN2D and

two persistence models.

Mellit et al. [72] proposed a LS-SVM model to make short-term forecasts for me-

teorological time series. As input variables they used the wind speed, wind direction,

air temperature, relative humidity, atmospheric pressure and solar irradiance. The SVR

model was compared with several NN models (MLP, RBF, RNN and PNN), and the

results showed that the LS-SVM model provided more accurate forecasts than the NN

models.

Ramli et al. [73] compared SVM and NN for solar irradiance forecasts using data

from Jeddah and Qassim in Saudi Aribia. They used direct diffuse and global solar

irradiation on the horizontal surface as input data, and evaluated the models in terms of
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RMSE, MRE, correlation coefficient and computation speed. The results showed that

the SVM models provided higher accuracy and more robust computation, achieving

MRE = 0.33 and 0.51 for the two cities, and faster forecasting speed of 2.15s.

Chen et al. [75], proposed seven SVM models with various inputs, to forecast the

daily solar irradiation values. They compared the proposed models with five empirical

sunshine-based models (linear, exponential, linear exponential, quadratic and cubic)

which use data gathered from three Chinese stations. The SVM models produced 10%

lower RMSE compared to the empirical models, showing the promise of SVM models.

In [76] Wolff et al. developed SVR models to forecast the PV power data for

15-min and 5-h ahead horizons. The model was developed as an alternative to predic-

tion models such as NWP. Their results showed that SVR provided good results for 1-h

ahead predictions, while the NWP-based models produced better period forecasts start-

ing at 3-h ahead, with the cloud motion vector model being the most accurate model

among them. They authors suggested that combining the results made by different

prediction models could further improve the accuracy.

Ekici [77] proposed a LS-SVM model using RBF kernel to forecast the solar

radiation values for the next day. The model used as inputs daily mean and maximum

temperature, sunshine duration, and historical solar radiation of the day. The results

showed that the proposed model was effective and feasible for the task.

In [74] Mohammadi et al. integrated SVM with a wavelet transform and pro-

posed SVM-WT model to forecast horizontal global radiation for an Iranian coastal

city. They combined different input parameters such as daily global radiation on a

horizontal surface, relative sunshine duration, minimum ambient temperature, relative

humidity, water vapour pressure and extra-terrestrial global solar radiation on a hor-

izontal surface. The performance was compared with ARMA, NN and Genetic Pro-

gramming (GP) models. The results showed that the proposed model outperformed the

other models used for comparison.

Olatomiwa et al. [78] proposed the Support Vector Machine Firefly Algorithm

(SVM-FFA) to forecast the mean horizontal global solar radiation values. They used

sunshine duration, maximum temperature and minimum temperature as inputs. The

proposed model was compared with GP and NN models, and the results showed that

the proposed model achieved the best RMSE, MAPE, r and R2.

In [79] Yang et al. integrated weather-based hybrid technique with SOM, SVR,

Fuzzy Inference and Learning Vector Quantization (LVQ) approaches. The model
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uses SOM and LVQ to categroize historical data based on the PV profile and then

trains SVRs using historical solar irradiance, temperature and precipitation probability

to make forecasts. The fuzzy inference approach is applied during the forecasting

to choose an appropriate trained model based on weather information provided by

the Taiwan Central Weather Bureau. The results showed that the proposed method

outperformed the NN and SVR approaches.

2.3.4 Ensembles

Instead of training one single model, another idea is to utilize ensembles of prediction

models which combine the predictions of several models. The idea behind this is to

utilize the diversity among the ensemble members - different ensemble members may

be more suitable for different situations. The diversity can be generated by varying

the input data used for training, the structure of the prediction models and the types of

prediction models used in the ensemble.

In [48] Chu and Coimbra proposed k-NN ensemble model using lagged solar irra-

diance and image data to generate probabilistic forecasts for intra-hour Direct Normal

Irradiance (DNI). The model took diffuse irradiance and cloud cover information as

exogenous feature inputs and was evaluated using data from different locations (con-

tinental, coastal and island) using standard error measures and also PICP and PINAW.

A persistence ensemble probabilistic model and a Gaussian probabilistic model were

used for comparison. The results showed that the proposed k-NN ensemble outper-

formed the reference models in terms of all evaluation metrics for all locations when

the forecasting horizon was longer than 5-min.

Rana et al. [80] proposed two non-iterative and one iterative ensembles of NNs

for forecasting the PV power output of the next day at 30-min intervals. The NN

ensemble members differed in the number of hidden nodes and weight initialisation.

The individual predictions were combined by taking the predicted median value for

each half-hour. The evaluation using Australian data for one year, showed the the

iterative ensemble was the most accurate, outperforming an SVR-based method and

two persistence baselines.

Another NN-based ensemble method to directly and simultaneously forecast the

PV power output for the next day was proposed in [81].
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They first clustered the days based on the weather information and then built a sep-

arate NN-based ensemble prediction model for each cluster. The ensemble members

were trained to predict the PV power based on the weather data as an input. The eval-

uation using Australian data for two years showed that the ensemble method achieved

MAE=83.90 kW and MRE=6.88%, outperformed the other models used for compari-

son. The use of ensemble was also compared with using a single NN and shown to be

beneficial.

Raza et al. [82] proposed an ensemble of NNs to forecast the one-day ahead PV

power output. They created 6 ensembles, each combining 15 NNs. The final predic-

tion was produced using a Bayesian model averaging. The single NNs belonged to

three different NN types: feedforward, Elman and cascade-forward backpropagation

networks, had different number of hidden neurons and used difefrent versions of the

backpropagation training algorithm. The performance was evaluated using two years

of Australian data, and the results showed that the use of ensembles was beneficial.

In [83] Li et al. proposed an ensemble method that builds a separate prediction

model at a micro level (for each inverter) and then sums the predictions together to

produce the final prediction (at a macro level). The individual ensemble members

were trained using PV data only; both NN and SVR prediction models were evaluated

as ensemble members. The results showed that the ensemble combining the micro

forecasts was more accurate than a single macro level prediction model.

2.4 Hybrid Models

The previous sections discussed the three main groups of solar power forecasting meth-

ods - meteorological, statistical and machine learning. There is also some research

work on combining methods from these three groups to build hybrid prediction mod-

els. We distinguish between ensembles and hybrid models: ensembles combine the

predictions of machine learning models only while hybrid models combine the predic-

tions of any type of models.

In [84] Bouzerdoum et al. proposed a hybrid model combining seasonal ARIMA

and SVM to make short-term PV power forecasts. They evaluated the proposed model

using data collected from a 20 kW PV plant and compared the proposed model with

single seasonal ARIMA and SVM based models. The results showed that the proposed
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hybrid model outperformed the single models.

Wu et al. [85] implemented a hybrid system which integrated NN, SVM, ARIMA

and ANFIS using GA. They collected historical solar power, solar irradiance and tem-

perature data, and forecasted the solar power data for three PV plants. Their results

showed that the proposed hybrid system was more accurate than the single prediction

models which comprised the hybrid system, achieving NRMSE = 5.64%, 3.43% and

6.57% for the three sites respectively.

Dong et al. [86] combined satellite image analysis, ES state space and NN methods

in a hybrid system. The satellite image technique was primarily used to detect the cloud

movements, while ES was utilized to forecast the cloud cover index. Then a NN was

trained using the predicted cloud cover index values to forecast the solar irradiance.

The results showed that the proposed hybrid model was more accurate than ARIMA,

linear ES, simple ES and random walk.

In [47] Chu et al. proposed a re-forecasting method to forecast the intra-hour power

output of a PV plant. The first step of the method was to train baseline models, includ-

ing a physical deterministic model based on cloud tracking, ARMA and a k-NN model.

Then, a NN was employed to optimize the performance of the baseline models. The

results showed that the proposed method was effective, significantly improving the

performance of the baseline methods for time horizons of 5, 10, and 15 min.

Dolara et al. [87] proposed a hybrid system, called Physical Hybridized Artificial

Neural Network (PHANN), that combines NN with an analytical physical model - the

Clear Sky solar Radiation Model (CSRM). CSRM was used to determine the time span

between the sunrise and the sunset of each day, while the NN was trained to make 24-

72 h ahead forecasts of PV power based on the output of the CSRM model. The results

showed that PHANN outperformed the NN model without the CSRM components. A

similar PHANN model was also proposed in [88] and shown to achieve most accurate

results during sunny days compared to weather day types.

In [89] Filipe et al. combined statistical and meteorological methods and proposed

a hybrid system to forecast the 48 h ahead solar power output of a PV plant. They

first combined an electrical model of the PV system and a gradient boosting statistical

model. The statistical model was used to convert NWP into solar power for short-term

time horizons. Then, they employed different NWP models and combined these mod-

els with information from past PV observations. The results showed that the hybrid

system outperformed two naive models (persistence model and diurnal), showing a
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57.3% and 34.06% improvement, respectively.

Voyant et al. [90] proposed a hybrid model combining ARMA, NN and data from

NWP to predict the hourly mean GHI. The NN uses the NWP data as an input and

predicts the clear sky index for the next day. A regression-based variable selection is

applied to select the inputs of the NN. The trained NN model is combined with an

ARMA model to form the final prediction. The results showed that the hybrid system

outperformed a single NN and a persistence model for all five tested locations in the

Mediterranean area, e.g. the NRMSE of the hybrid model was 14.9% compared to

18.4% for the NN and 26.2% for the persistent model.

Marquez and Coimbra [91] developed and validated a medium-term solar irradi-

ance forecasting method for both GHI and DNI based on stochastic learning, ground

experiments and the US National Weather Services (NWS) database. They used GA

to select the most relevant input variables for the NN. The results showed that the de-

veloped forecasting models improved the RMSE for GHI by 10-15% compared with

the reference model.

2.5 Discussion

The previous sections introduced the state-of-the-art methods used for solar power

forecasting. These methods have been classified into four groups: meteorological, sta-

tistical, machine learning and hybrid. Each group has its own strengths and weaknesses

that have to be taken into consideration when applying these models in practice.

The meteorological methods for solar power forecasting are indirect methods which

heavily rely on forecasts of meteorological variables such as temperature, solar irradi-

ance, humidity, solar angle, wind speed and cloud cover index The ability to predict

weather variables and weather changes is useful for solar power forecasting, e.g. the

movement of clouds directly affects the output of PV panels and the air temperature

influences the conversion rate of PV panels. Due to this reason, meteorological models

based on NWP data and satellite images have been widely used. The former integrate

global or local meteorological information which can influence the fluctuation of PV

power output, while the latter can be more effective for predicting the movement of

clouds.
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However, the limitations of the meteorological models for solar power forecast-

ing should not be underestimated. As discussed before, their success depends on the

availability of accurate weather forecasts which may not be available for the location

of the PV plants. The absence of recording of variables such as wind speed and cloud

cover index or the insufficient accuracy of the forecasts for those variables may lead to

significant decrease in the forecasting accuracy. This limits the practical application of

meteorological models for solar power forecasting.

Another limitation of these methods is that the application and modification of

meteorological models requires strong domain knowledge of meteorology and power

engineering. For instance, modifications in the NWP models cannot be successfully

implemented by forecasting engineers without a clear understanding of the complex

meteorological data models. This limits the ability of forecasting engineers to fully

utilize these models. Instead, they can only assume that the forecasts made by NWP

are sufficiently accurate and use the results to make the next-step indirect forecasts

for the PV power output. Finally, many meteorological models can only perform well

for short or very short time horizons [25, 27, 29]. This is due to the fact that the

fundamental techniques for such models, e.g. NWP or satellite image processing, are

more accurate for intra-hours and intra-day tasks. Forecasts for several hours ahead

forecasts may not be accurate when clouds are quickly forming and dissipating. This

short forecasting horizon limits the applicability of meteorological models and makes

them less suitable for tasks with longer forecasting horizons such as 24, 48 and 72-

hours ahead. However, 1-day ahead forecasts are common in industry as they allow

the PV plants sufficient time to make operational and maintenance decisions.

The statistical group of methods employs algorithms such as AR, MA, ARMA,

ARIMA, seasonal ARIMA and ES, and can be directly used to forecast the PV power

output. Compared with the meteorological models, they do not heavily rely on the

availability of accurate weather forecasts, meteorological or power engineering knowl-

edge. As a result, data scientists often employ these models and tune them to improve

the prediction. Another benefit of statistical models over meteorological models is that

they can be used to make direct predictions for the PV power instead of being used to

first predict the solar irradiance and then convert it into power output. This simplifies

the forecasting process and typically improves the accuracy since the conversion rate

of PV panels is not invariable and can be influenced by other factors such as temper-

ature. However, similar to the meteorological methods, most statistical methods are
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more suitable for short-term forecasts [31, 32, 33] such as intra-day, and when the

horizons are extended to a day ahead level, their accuracy decreases. This also restricts

the practical application of statistical models.

Another point to notice is that statistical models usually focus on the target time se-

ries, namely the PV power output data, and are not well suited to deal with unexpected

changes in the weather conditions especially over a very short period, which is the ad-

vantage of meteorological models. Finally, statistical models as well as meteorological

models have been widely used for one-step ahead forecasts. However, these models

are not suitable for making simultaneous forecasts for more than one time stamp, e.g.

for all half-hours of the next day.

Machine learning methods are also widely used for making forecasts for the PV

power output. Their use also do not require strong domain knowledge of meteorology

and power engineering, and this means that more data scientists can use them. Another

benefit of the machining learning models over the meteorological and statistical ones

is the flexible forecasting horizon. Machine learning models are able to deal with both

intra-hour, day-ahead and even month-ahead forecasts [7, 57, 56], which offers more

flexibility for the PV plants to arrange operations. Also, machine learning models can

be trained to forecast the PV power output at a certain time stamp in the future or pro-

vide forecasts for the values of certain intervals of the next day simultaneously, which

is also very useful for supporting operational decisions at PV plants and electricity

markets.

Machine learning methods are also flexible and can be used for both direct and

indirect prediction of the PV power output. Similar to statistical models, they can

make predictions using only the target PV power time series when weather information

is not available. This extends their applicability as reliable weather data is not always

available for the location of the PV plant. Machine learning models can also easily

integrate more input features and this may help to improve the the performance of the

models [61, 64].

However, there are several areas of the previous applications of machine learn-

ing methods to solar power forecasting that can be further investigated and improved.

Firstly, most of the previous work using instance-based methods such as k-NN and PSF

either failed to utilize all data sources or just treated them as equally important. There

is a need to extend these instance-based methods to use more than one data source and

consider the importance of the data sources. Secondly, although some of the previous
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work has used clustering methods to group the days based on their weather and build

a separate prediction PV power model for each cluster [69, 13, 79], there is still scope

to improve these methods. For example, the previous work focused on single days

and did not consider the continuity between days. Thirdly, most of the previous work

used single machine learning methods. There is a need to investigate ensembles of

prediction models, both static and dynamic.

In this thesis, we investigate the use of using machine learning techniques to di-

rectly and simultaneously predict the PV power output for the next day. More specif-

ically, we focus on three main aspects which were not fully addressed by previous

work.

1. Investigating instance-based methods. Previous work either failed to take ad-

vantage of multiple data sources or consider the importance of different data

sources. We aim to extend the k-NN and PSF instance-based machine learning

models to address this. This work is discussed in Chapter 3.

2. Investigating clustering-based methods. Previous work did not fully utilize

clustering techniques for solar power forecasting tasks and did not consider the

continuity between days. We aim to fully investigate these limitations. This

work is discussed in Chapter 4.

3. Investigating ensembles. We propose, evaluate and compare a number of strate-

gies for constructing static and dynamic ensembles. Dynamic ensembles for so-

lar power forecasting, in particular, haven’t received enough attention in previous

research. This work is discussed in Chapter 5.



Chapter 3

Instance-based Methods

This chapter introduces two instance-based methods for solar power prediction, namely

Data Source Weighted k Nearest Neighbors and Extended Pattern Sequence Forecast-

ing. These methods extend the standard k-Nearest Neighbor (k-NN) and Pattern Se-

quence Forecasting (PSF) algorithms, respectively, in order to utilize data from multi-

ple sources.

3.1 Data Source Weighted k Nearest Neighbors

K-NN is an instance-based prediction algorithm that can be applied to both classi-

fication and regression tasks. It has been applied to various time series prediction

tasks, including energy related tasks such as electricity load and solar energy predic-

tion [44, 45, 16, 46]. These approaches focused on a single data source, the target

time series. Other approaches [13, 92] considered more than one data source to make

forecasts, but treated these data sources as equally important.

Our aim is to develop a nearest neighbor method that: 1) uses multiple data sources

and 2) assigns weights to them based on their importance for the prediction.

For solar power forecasting, there are three main data sources: historical PV data

(PV), historical weather data (W) and weather forecast for the new day (WF). They can

be used to represent a single day and find neighbors. For example, below we describe

how the k-NN algorithm can be adapted and used in three scenarios - with WF, PV+W

and PV+WF as feature vectors:

27
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1. k-NN using weather forecast (WF) as a feature vector:

When the weather forecast for the new day d+1 is available, the features from

the weather forecast can be used in a feature vector representing this day. Then,

this feature vector is compared with the weather vectors in the historical data to

find the neighbours. The PV vectors of the neighbours are averaged to form the

PV prediction for day d+1.

2. k-NN using historical data (PV+W) as a feature vector:

In this case, the PV and weather vector of the previous day can be used to find

neighbours. For example, to predict P̂ Vd+1, the PV data of day d+1, the the

weather data Wd and PV data PVd of the previous day d can be collected as

a feature vector and used to find neighbours in the historical data. Then, the

PV data of the days immediately after the neighbours are averaged to form the

prediction.

3. Using both historical data and weather forecast (PV+W+WF) as a feature
vector: Another way to represent the new day is by forming a feature vector

that combines the PV, W and WF vectors. Specifically, to predict P̂ Vd+1, the

historical data for the previous day d, including both the weather Wd and PV

PVd data, and the weather forecast data for the new day WFd+1 are collected

in a vector, which is used to find neighbours. Then, the PV vectors of the days

immediately after the neighbours are averaged to form the prediction.

To better utilize the three data sources and evaluate their importance for solar power

forecasting tasks, we propose an extension of the standard kNN, called Data Source

Weighted k Nearest Neighbors (DWkNN), as described below.

3.1.1 Methodology

DWkNN extends the traditional kNN algorithm by assigning weights to the different

data sources based on the importance of these sources for the prediction. These weights

are learned from previous data. In contrast to the traditional weighted neareast neigh-

bor algorithms, DWkNN assigns weights to the features from the different sources, not

to the nearest neighbours when combining their predictions.
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Figure 3.1: The DWkNN algorithm

DWkNN addresses the limitation of the traditional k-NN which doesn’t consider

the importance of different data sources. In this study, we focus on three data sources

that are most commonly used for PV power output prediction tasks: historical PV data

(PV), historical weather data (W) and weather forecast (WF).

The algorithm is summarized in Fig. 3.1 and consists of two main steps:

1. Finding the best weights for the features of the data sources and the best number

of neighbors by using the historical data and applying a grid search method, and

2. Predicting the PV power output for the new day using the selected parameters

from the previous step.

3.1.1.1 Finding the Weights

The parameters that are optimized in the first step are the weights w1, w2 and w3,

reflecting the importance of each of the three data sources and the number of neighbors
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k. To find the best parameters, a grid search method is first applied. The value of

k is varied from 1 to 10 with an increment of 1, and the values of the weights are

varied from 1 to 100%, with an increment of 1%. For each set of weights, the training

and validation sets are transformed by multiplying the values of these sets with the

corresponding weights:

new dataset = [w1PV,w2W,w3WF ]

Then kNN, trained on the training data, is applied to predict all instances from the

validation set and the accuracy is calculated. The parameters resulting in the highest

accuracy on the validation set are selected.

3.1.1.2 Predicting the New Day

In the second step, the PV power output for the next day d+1 is predicted. To do

this, firstly the k nearest neighbors of the previous day (day d) are selected using the

chosen data weights and the number of neighbours k from the previous step. Then the

PV power data of the days following the nearest neighbors is averaged to generate the

prediction for the next day. Specifically, if S = {s1, s2, ..., sk} is the set of selected k

days, then the prediction for PV d+1 is given by:

P̂ V d+1 =
1

k

∑
PV Si+1

where each PV i∈S is the 20-dimensional vector of half-hourly power outputs for day

i.

To find the nearest neighbors for day d, four different representations of day d are

used, depending on the data sources used, as shown in Fig. 3.2 - 3.5:

1. As shown in Fig. 3.2, when only the PV and W data sources are used (PV +

W ), day d is represented as a feature vector consisting of its PV power and

weather data [PV d,W d] and it is compared with the previous days i represented

as [PV i,W i].

2. As shown in Fig. 3.3, when only the PV and WF data sources are used (PV +

WF ), day d is represented as a feature vector including the PV power data for
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Figure 3.2: Representing days using historical PV and weather data
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Figure 3.3: Representing days using historical PV data and weather forecast

day d and also the weather forecast for the next day d+1 [PV d,WF d+1], and is

compared with the previous days i represented as [PV i,WF i+1].
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Figure 3.4: Representing days using historical weather data and weather forecast
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Figure 3.5: Representing days using historical PV and weather data, and weather fore-
cast
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3. As shown in Fig. 3.4, when only the W and WF data sources are used (W+WF ),

day d is represented as a feature vector including the weather data for day d and

also the weather forecast for the next day d+1 [W d,WF d+1], and is compared

with the previous days i represented as [W i,WF i+1].

4. As shown in Fig. 3.5, when all three data sources are used (PV +W+WF ), day

d is represented as a feature vector including the PV power and weather data for

day d and also the weather forecast for the next day d+1 [PV d,W d,WF d+1],

and is compared with the previous days i represented as [PV i,W i,WF i+1].

The nearest neighbours are found by using a suitable distance measure.

3.1.2 Case Study

To evaluate the performance of DWkNN, a case study is conducted using Australian

PV and weather data for two years. The performance is compared with several other

state-of-the-art methods including standard k-NN, Neural Networks (NN), Support

Vector Regression (SVR), clustering based SVR, seasonal ARIMA and ES, as well

as a persistence model as the baseline.

3.1.2.1 Experimental Setup

The goal for this study is to make half-hourly PV power output prediction for the next

day, given historical PV power data, weather data and weather forecasts.

More specifically, given: (i) a time series of historical PV power outputs up to the

day d: [p1, p2, p3, ..., pd], where pi = [pi1, p
i
2, p

i
3, ..., p

i
20] is a vector of 20 half- hourly

power outputs for the day i, (ii) a time series of weather vectors for the same days:

[W 1,W 2,W 3, ...,W d], and (iii) the weather forecast for day d+1 : WF d+1, our goal

is to forecast PV d+1, the half-hourly power output for the next day d+1.

A. Data Sources
The data from the three different sources that we used is summarized in Table 3.1.

The PV power data is collected from one of the largest roof-top flat-panel PV plants

in Australia, located at the University of Queensland, Brisbane. It has over 5000 poly-

crystalline silicon solar panels across four buildings and produces up to 1.22MW elec-

tricity.
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Table 3.1: Data sources and feature sets for DWkNN study
Data source Feature

set
Num.
features

Description

PV data for the current
day d and previous days

PV 20 Half-hourly PV values be-
tween 7am and 5pm

Weather data for the cur-
rent day d and previous
days

W 14

(1-6) Daily: min temperature,
max temperature, rainfall, sun
hours, max wind gust and av-
erage solar irradiance;
(7-14) At 9 am and 3 pm: tem-
perature, relative humidity,
cloudiness and wind speed.

Weather forecast for the
next day d+1

WF 3 Daily: min temperature, max
temperature and rainfall
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Figure 3.6: PV power data from Jan 2015 to Dec 2016

PV data for two years was collected: from 1 January 2015 to 31 December 2016 (as

shown in Fig. 3.6). As expected, we can see that the PV solar power is highest for the

summer months (from December to February in Australia) and lowest for the winter

months (from June to August), consistent with the amount of solar irradiation. Further,

only the data for a 10-hour interval during the day, from 7am to 5pm, is collected.

Outside this time interval the PV power data is zero or close to zero due to the absent

or very low solar irradiation, or was not available for all days. The PV power data was

obtained from [93].

Weather data for these two years was also collected from the Australian Bureau

of Meteorology. For each day, we collected 14 meteorological variables, as shown in

Table 3.1. They include six daily measurements (minimum and maximum temperature,
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rainfall, sunshine hours, maximum wind gust and average solar irradiance) and also

eight measurements taken at two times during the day (9am and 3pm) - temperature,

relative humidity, cloudiness and wind speed. The weather data is available from [94].

The third information source includes weather forecast data for the future days that

are predicted. The weather forecast feature set WF shown in Table 3.1 includes three

variables: the daily minimum temperature, the daily maximum temperature and the

daily rainfall. All these are core measurements, widely available and included even in

the most basic weather forecasts.

Since the weather forecasts were not available retrospectively for 2015 and 2016,

we used the actual weather data with added 10% noise.

B. Data Pre-processing
The PV data was measured at 1-min intervals. As we predict at 30-min intervals, the 1-

min data was aggregated into 30-min data by taking the average of the interval. It was

then normalized to [0, 1]. In total there are 14,620 measurements (= (365+366)×20)

for the PV data.

The weather data consists of 14 daily measurements, thus there are (365 + 366)×
14 = 10, 234 measurements. It was also normalized to the range [0,1].

There was a small number of missing values (0.02% in the PV data and 0.82%

in the weather data). To replace the missing values, the following method is applied,

firstly to the weather data and then to the PV data. For missing values in the weather

profile vector for day d, day s is found, the nearest neighbor of d, which does not have

missing values. The similarity is calculated using the Euclidean distance and only the

available weather features in W d. We then replace the missing values in W d with the

corresponding values in W s.

A similar approach is followed for the missing values in the PV data. If day d has

missing values in its PV vector, we firstly find day s, the most similar day to d in terms

of weather by using the weather vectors and then replace the missing values in PV d

with the corresponding values of PV s.

C. Training, Validation and Testing Sets
The solar data and the corresponding weather data are divided into three non-overlapping

subsets: training - the first 70% of the 2015 data, validation - the remaining 30% of
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the 2015 data and testing - the 2016 data. The training dataset is used to build the pre-

diction models; the validation dataset is used for parameter selection, and the testing

dataset is used to evaluate the performance of the proposed method and other methods

used for comparison.

D. Performance Measures
To evaluate the performance, we used two standard performance measures: Mean Ab-

solute Error (MAE) and Root Mean Squared Error (RMSE), defined as follows:

MAE =
1

D × n

∑n

i=1

∣∣∣P i − P̂ i
∣∣∣

RMSE =

√∑n
i=1(P

i − P̂ i)2

D × n

where P i and P̂ i are the actual and forecast half-hourly PV power outputs for day

i, D is the number of days in the testing set and n is the number of predicted daily

values (n=20).

These performance measures were used in all case studies in the thesis.

E. Distance Measure
To find the nearest neighbors, we evaluated the performance of two distance mea-

sures on the validation set: Euclidean and Manhatten. The results showed that the

Euclidean distance performed better. Therefore, this case study uses Euclidean dis-

tance.

3.1.2.2 Methods for Comparison

We compare the performance of the proposed nearest neighbor algorithm DWkNN

with the standard kNN, and also with: three machine learning methods using NNs and

SVR, two statistical methods (ARIMA and exponential smoothing) and a persistence

model used as the baseline.

A. kNN
To predict the power output for the next day d+1, kNN firstly selects the k neighbors
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from the historical dataset whose data profiles are most similar to day d. It then com-

putes the forecasts for PV d+1 by taking the average of the PV data of the subsequent

day for each of the k selected similar neighbors. To find the neighbours, it uses the

same day representation as DWkNN as shown in Fig. 3.2 - Fig. 3.5.

B. NN
The NN based prediction model is multi-layer perceptron with one hidden layer, trained

with the the Levenberg-Marquardt version of the backpropagation algorithm. It has 20

output nodes corresponding to the half-hourly power outputs of the next day, and thus

produces the 20 prediction values simultaneously. We trained two versions, each using

different input data: NN (PV+W+WF) that has 37 input nodes, corresponding to the

PV and weather data for the previous day, and the weather forecast for the next day,

and NN (PV+W) which has 34 input nodes corresponding to the PV and weather data

for the previous day.

C. SVR
Similarly to the NN prediction model, we developed a model based on SVR that uses

the same input as NN - SVR (PV+W+WF) and SVR (PV+W). However, in contrast to

NN which predicts all 20 outputs simultaneously, since SVR has one output, the SVR

model consists of 20 separate SVRs, each predicting one half-hourly PV value for the

next day.

D. Clustering Based SVR
This method groups the days into several clusters based on the weather data and then

builds a separate SVR prediction model for each cluster. The rationale is that days

with similar weather characteristics have similar PV power output, and by using this

similarity and we can create specialized prediction models that are more accurate than a

single model for all type of days. Clustering based methods have been used in [95, 70]

showing good results.

We applied the k-means clustering algorithm to group the days based on their

weather profile. The number of clusters was selected using clustering evaluation mea-

sures (Calinski-Harabasz, Silhouette coefficient and Davies-Bouldin). We found that

the best number of clusters was two. Upon examination of the characteristics of the

days in each cluster, we found that the first cluster contained clear sunny days, while
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the other days (cloudy, rainy, etc.) were grouped in the second cluster.

To make a prediction for a new day, the new day is firstly mapped to the clos-

est cluster based on its weather forecast features. This requires that the weather fea-

tures used for the clustering are consistent with the available weather forecast features.

Hence, for the clustering we also used the three WF features (daily minimum and max-

imum temperature, and daily rainfall). Then the trained SVR prediction model for the

selected cluster is used to generate the prediction; it takes as an input the PV power for

the previous day and outputs the PV power for the next day.

E. Exponential Smoothing
Exponential Smoothing (ES) is a very popular statistical method for time series

forecasting. The predictions for future values are weighed combination of the previous

values, where the more recent values are weighed higher than the older. We imple-

mented the Holt-Winters ES, which is an extension of the standard ES. It decomposes

the data into a trend and a seasonal component. We implemented seasonal ES with ad-

ditive daily cycle since the seasonal variation for the PV power data is approximately

constant. The parameters of the ES model were computed using an optimization pro-

cedure which minimizes the mean squared error for the training data.

F. Seasonal ARIMA
ARIMA is a well-established and widely used method for time series forecasting. It

combines differencing with an Autoregressive (AR) and Moving Average (MA) com-

ponents. Again, as the PV power data shows strong daily seasonality, we implemented

the seasonal ARIMA, which is an extension of the standard ARIMA for modelling

seasonal components. The seasonal ARIMA model can be written as: ARIMA (p, d,

q) (P, D, Q) m, where p is the order of the AR lag, q is the order of the MA lag and d is

the order of differencing; m is the length of the daily cycle (m=20 in our case), P and

Q are the daily seasonal AR and MA lags, and D is the order of seasonal differencing.

To select the parameters (p, q, d, P, Q and D) of the ARIMA model for our solar

power data, we experiment with different combinations of values. The best parameters

were then selected by comparing the corrected Akaike Information Criterion (AICc)

of the different ARIMA models.

G. Baseline Model
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Table 3.2: Accuracy of kNN
Feature set Best k MAE (kW) RMSE (kW)

PV (20) 7 127.64 166.15
W (14) 7 125.66 166.78
WF (3) 5 119.64 158.69
PV+W (34) 7 130.33 175.32
W+WF (17) 5 120.45 157.41
PV+WF (23) 7 126.20 164.12
PV+W+WF (37) 8 117.21 158.10
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Figure 3.7: kNN performance (MAE) using different feature sets

As a baseline we use a persistencet model that considers the half-hourly PV power

outputs from the previous day d as the prediction for the next day d+1. This means that

the prediction for P̂ V d+1 = [pvd+1
1 , pvd+1

2 , ..., pvd+1
20 ] is given by PV d = [pvd1 , pv

d
2 , ..., pv

d
20].

3.1.2.3 Results and Discussion

A. Performance of kNN
Table 3.2 shows the accuracy results for kNN using the single and combined feature

sets from the three different sources. Fig. 3.7 shows the MAE results from Table 3.2 in

sorted order for visual comparison. As in DWkNN, the value of k for kNN was varied

from 1 to 10 and the best k was selected based on the accuracy of the validation set.

The best results were achieved when all three data sources were combined (PV +

W + WF), followed by the single WF and the combined weather and weather forecast
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Table 3.3: Accuracy of DWkNN
Feature set Num.

features
Best weights and k MAE

(kW)
RMSE
(kW)

PV+W 34 PV=23%, W=77%, k=9 121.75 158.21
W+WF 17 W=11%, WF=89%, k=9 119.12 148.21
PV+WF 23 PV=13%, WF=87%, k=9 115.64 149.10
PV+W+WF 37 PV=7.36%,W=24.64%,

WF=68%, k=8
111.78 143.99

(W+WF).

The addition of WF features to any of the single and combined sets improves the

accuracy (e.g. W+WF is better than W, PV+WF is better than PV and PV+W+WF is

better than PV+W). On the other hand, the combination of PV and weather data is the

least accurate dataset, followed by PV and PV+ WF. Just adding PV or W does not im-

prove the accuracy, except when all three sources are combined (e.g.adding PV: W+PV

is not better than W and WF+PV is not better than WF; adding W: PV+W is not better

than PV and WF+W is not better than WF). Hence, the most useful data source for

predicting the PV power output for the next day with kNN is WF, the weather forecast

for the next day. However, the best performed combination uses the information from

all three data sets (PV+W+WF), achieving MAE = 117.21 kW and RMSE = 158.10

kW.

B. Performance of DWkNN
Table 3.3 presents the accuracy results of DWkNN and also shows the weighting for

each component learned by the algorithm when different sources of information were

used. Fig. 3.8 shows the MAE values in sorted order for visual comparison. Note

that there are no results in Table 3.3 for single PV, W, WF as DWkNN combines and

weights different data sources, and hence it is not applicable to single sources.

The best accuracy is achieved by the full feature set using all data sources (PV +

W + WF), followed by the other two feature sets that include the weather forecast,

PV+WF and W+WF, and finally by PV+W. The weighting of the weather forecast fea-

tures is the highest for all cases involving WF (from 68% for PV+W+WF to 89% for

W+WF). The second highest weighting is for the weather features and the PV features

have the lowest weighting in all cases involving PV. These results are consistent with
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Figure 3.8: DWkNN performance (MAE) using different feature sets
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Figure 3.9: Comparison between DWkNN and kNN (MAE)

the kNN results and show again that the most important data source is the weather

forecast for the next day. The results also show that when DWkNN is applied, the his-

torical weather features are more important than the historical PV data - the weighting

of W is always higher than the weighting of PV.

C. Comparison between DWkNN and kNN
We also investigated whether DWkNN improves the performance of Fig. 3.9 compares

the two algorithms in terms of MAE. We can see that DWkNN improves the accuracy
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Table 3.4: Statistical Significance Comparison Between kNN and DWkNN for MAE
(Wilcoxon Rank Sum Test): -**-Stat. Sign. at p 6 0.001, -*-Stat. Sign. at p 6 0.05,
-x-No Stat. Sign. Difference

Feature set p value Statistical difference

PV+W 0.0023 *
W+WF 0.1425 x
PV+WF 0.0051 *
PV+W+WF 0.000072 **

in all cases. The biggest improvement is achieved when historical PV data and weather

forecasts are used (PV+WF), an improvement of 9.13% in terms of MAE and the

smallest improvement is for W+WF. Both DWkNN and kNN perform the best when

all three data sources are used and worst when only historical data (PV+W) is used.

The second best data source is different - PV+WF for DWkNN and W+WF for kNN.

Table 3.4 shows the results of Wilcoxon rank sum statistical test, comparing DWkNN

and the standard kNN. It can be seen that the differences in accuracy are statistically

significant for all combinations of data sources except for PV+W.

D. Comparison with Other Methods
Table 3.5 shows the results of the methods used for comparison. The best perform-

ing model is SVR using all features (PV+W+WF), followed by NN with all features

and SVR using the historical PV and weather features (PV+W). The addition of the

weather forecast WF information improves the accuracy of both SVR and NN. The

clustering based SVR is less accurate than the two non-clustering based SVR methods

and performs similarly to the baseline. All methods outperform the baseline (persistent

model) except ARIMA and ES.

Fig. 3.10 compares the accuracy (MAE) of the best DWkNN and kNN models with

all methods from Table 3.5. We can see that the proposed DWkNN is the most ac-

curate method, followed by kNN. The two nearest neighbor methods outperform the

more sophisticated NN and SVR methods, the statistical methods and also the baseline.

E. Comparison between WF and WF2
The previous results (Tables 3.2, 3.3 and 3.5) showed that the addition of weather fore-

cast information improves the results for all methods. The weather features selected for
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Figure 3.10: Comparison of all prediction methods (MAE)

Table 3.5: Accuracy of the Methods Used for Comparison
Data source MAE (kW) RMSE (kW)

SVR (PV+W+WF) 117.65 145.20
NN (PV+W+WF) 118.98 142.87
SVR (PV+W) 120.15 147.49
NN (PV+W) 122.12 146.85
Clustering+SVR 123.57 147.62
ARIMA 130.65 157.73
ES 129.08 158.26
Baseline 124.80 184.29

WF in this study are the daily minimum temperature, daily maximum temperature and

daily rainfall (See Table 3.1). Apart from these three most commonly used features

in weather forecasts, we also investigate if further improvements can be achieved by

extending the WF feature set with one more feature - the daily average solar irradiance.

Although weather forecasts for solar irradiance are frequently used in research pa-

pers, they are not always available from meteorological bureaus. Our goal is to assess

the usefulness of a solar irradiance forecast, for the cases when this information is

easily available. In particular we consider a single value - the daily average solar ir-

radiance; such single forecast value can be expected to be more easily available than
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Figure 3.11: Comparision between DWkNN-WF and DWkNN-WF2

Table 3.6: Feature Set WF2
Data source Feature

set
Num.
features

Description

Weather forecast for
the next day d+1

WF2 4 Daily: min temperature, max
temperature, rainfall and aver-
age solar irradiance

hourly forecasts. Table 3.6 describes the new feature set WF2, which is WF with the

addition of the average daily Solar Irradiance (SI) forecast: WF2=WF+SI.

Table 3.7 shows the performance of DWkNN with WF2, together with the param-

eters learned by the algorithm (data source weights and k). We can see that SI has

the highest weighting in all cases (around 70%) which shows the importance of the SI

forecast feature for the PV power prediction. All three feature sets perform well but

the best results are achieved when all three data sources are used PV+W+WF2.

To assess the impact of the SI forecast feature, Fig. 3.11 compares the performance

of WF and WF2. We can see that there is a considerable improvement (15.82% -

16.78%) in all cases. Hence, the addition of the SI forecast to the temperature and rain

forecasts for the next day improves the performance and the SI forecast should be used

when it is available.

F. Computational Time
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Table 3.7: Performance of DWkNN with WF2
Feature set Num.

features
Best weights and k MAE

(kW)
RMSE
(kW)

W+WF2 18 W=9%, WF=20.03%,
SI=70.97%, k=8

102.30 129.87

PV+WF2 24 PV=11%, WF=30.55%,
SI= 58.45%, k=8

99.02 129.01

PV+W+WF2 38 PV=2.53%, W=8.47%,
WF=19.59%,
SI=69.41%, k=9

96.51 126.47

Apart from the prediction accuracy, another aspect of the model performance, the com-

putational time is also evaluated in this study. As described in the previous sections,

applying DWkNN includes two stages. The first stage involves parameter optimization

and selection, taking about 10 minutes. The second stage involves finding the nearest

neighbors and generating the prediction, taking only several seconds. As the parameter

selection process is done off-line, the computational time for DWkNN is appropriate

for both off-line and on-line PV power output prediction tasks.

3.1.2.4 Conclusion

In this case study, we evaluated the performance of the proposed DWkNN algorithm

on Australian data for two years. DWkNN considers the importance of the different

data sources and learns the best weights for them from previous data. The goal was

to directly and simultaneously predict the PV power output for the next day at 30-min

intervals, using historical PV power data, historical weather data and weather forecasts

for the next day.

The results show that DWkNN outperforms the standard kNN algorithm for all

data source combinations considered. DWkNN is most accurate when using together

the three data sources, and in this case in addition to kNN it also outperforms a number

of other methods used for comparison - NN, SVR, clustering based SVR, ARIMA, ES

and a persistence model used as a baseline.

The assessment of the importance of the three data sources shows that the weather

forecast for the next day, which includes only three easily available features (the daily

minimum and maximum temperatures and the daily rainfall), is the most useful data
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source, followed by the previous weather data and the previous PV data. The addition

of the weather forecast information to the other data sources improves the accuracy in

all cases.

The results also show that further improvements can be achieved by extending the

weather forecast feature set by adding the average solar irradiance forecast for the

next day. This single additional feature improves the accuracy of DWkNN with ap-

proximately 16% and should be used when it is available. The overall best performing

algorithm was DWkNN using the PV+W+WF2 feature set and achieving MAE = 96.51

kW and RMSE = 126.47 kW.

Overall, the results show that extending the standard kNN to consider the impor-

tance of the different data sources and learn the best weights for them is beneficial.

3.2 Extended Pattern Sequence-based Forecasting

Pattern Sequence-based Forecasting (PSF) [50] is another instance-based algorithm

that has been successfully applied for time series forecasting. In particular, it has

been applied for predicting electricity demand and electricity prices. In this chapter

we describe our extension of the PSF algorithm and its application for solar power

forecasting.

The standard PSF algorithm combines clustering with sequence matching. Fig. 3.12

shows how PSF works on a time series prediction task where the given data represents

a sequence of days, each day represented as a feature vector. The prediction process

consists of three main steps: (1) clustering and labelling; (2) searching for matching

pattern sequences; (3) making the final prediction.

1. Clustering and labelling: PSF first uses a clustering technique to group the

historical data (the vectors for each day) and labels them with the cluster number,

e.g. C1, C2, etc.

2. Searching for matched pattern sequences: PSF then extracts the sequence of

consecutive days with length w, from the day to be predicted backwards (exclud-

ing this day). It then searches the previous data to find the same sequence and

forms a set of matched sequences.

3. Making final prediction: Once all matched sequences are collected, immediate
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Figure 3.12: PSF for time series prediction

post-sequence days for each of them are extracted, and their vectors are averaged

to form the final prediction for the new day.

Hence, PSF utilizes cluster labels rather than real values to find the matched se-

quences; the values are not used until the last step to make the final prediction. Also,

similarly to DWkNN, PSF generates the prediction for all time points of the new day

simultaneously, which is an advantage.

Even though PSF has been shown to be successful for predicting energy related

time series, it has not been applied to solar power prediction. The solar data shows

different patterns than electricity loads and electricity prices so it is worth to investigate

the performance of PSF on solar data. Importantly, solar power generation depends on

other data sources such as weather data, but the standard PSF is only applicable to a

single time series. Therefore, there is a need to extend the traditional PSF algorithm to

take advantage of information from more than one data source when it is available.

Section 3.2.1 describes how the standard PSF algorithm can be used for solar power

prediction tasks and proposes two extensions which include other data sources - his-

torical weather data and weather forecast data. Section 3.2.2 describes a case study

to evaluate the performance of the proposed extensions and compares the stndard PSF
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Figure 3.13: PSF for daily PV power output prediction

and the proposed extensions with other popular algorithms for PV power prediction.

3.2.1 Methodology

As before, we consider again the task of predicting the half-hourly PV power power

output for the next day. As mentioned before, PSF is able to simultaneously predict all

half-hourly PV values for the new day.

3.2.1.1 PSF for PV Power Prediction

PSF firstly groups PV vectors for each day into several clusters using a clustering

method such as K-means and labels the day with the cluster ID. More specifically, let

P i be the 20-dimensional vector of the half-hourly PV power output for day i. PSF

firstly clusters all vectors P i from the training data into k1 clusters and labels them

with the cluster number, e.g. C1, C2, etc. as shown in Fig. 3.13.

Then, when a new day d+1 to predict comes, PSF extracts a sequence of consec-

utive days with length w, starting from the previous day d and going backwards, and

matches the cluster labels of this sequence against the previous days to find a set of
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Figure 3.14: The proposed extension PSF1

equal sequences ESd. It then follows a nearest neighbor approach - finds the post-

sequence day for each sequence in ESd and averages the PV vectors for these days, to

produce the final half-hourly PV predictions for day d+1. One thing to notice is that

when searching for the equal sequences, only the cluster label sequences are used. The

real PV profile of each day is not used until all the matched sequences are found and

this helps to reduce the computational time.

3.2.1.2 Extended Pattern Sequence-based Forecasting

This section introduces two extensions of the standard PSF algorithm, PSF1 and PSF2,

which extend the standard algorithm by considering other data sources. PSF1 utilises

the weather forecast, in addition to the historical PV data; Section 3.1 has shown the

importance of the weather forecast. PSF2 uses a two-tier approach and utilises all three

data sources: historical PV data, historical weather data and weather forecasts.

A. PSF1
The first extension of the standard PSF is PSF1, shown in Fig. 3.14. In contrast to the

standard PSF, where the clustering and sequence matching are done using the PV data
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only, in PSF1 this is done using the historical weather data for the previous days and the

weather forecast WF for the new day. As mentioned before, the features available in

the weather forecasts are typically fewer than those included in the historical weather

data. To differentiate these two sets of weather features, in this study, W1 is referred

as a full set of weather features typically available for historical weather data. W2

refers to a subset of W1 and W2 contains the features which are usually contained in

the weather forecasts, such as the daily minimum and maximum temperature and daily

rainfall.

The first step of PSF1 is also clustering. The days in the training data set are

clustered using the weather data, W2 data into k2 clusters and then labelled using the

cluster ID. To make a prediction for a new day d+1, PSF1 firstly uses the weather

forecast for d+1 (a vector containing the same features as W2, which facilitates the

comparison) to find the cluster label for d+1 by comparing it with the cluster centroids

of the existing clusters, and assigning it to the cluster of the closest centroid. It then

extracts a sequence of consecutive days with length w, from day d+1 backwards (in-

cluding d+1), and matches the cluster labels of this sequence against the previous days

to find a set of equal sequences. It then obtains the PV power vector for the last day of

each equal sequence and averages these vectors, to produce the prediction for d+1.

The main differences between PSF1 and the standard PSF are as follows:

1. Data sources

PSF uses only historical PV data, for both the clustering of days and generating

the prediction. It is limited to using a single data source.

PSF1 uses data from three data sources: PV, weather (W2) and weather forecast

(WF). W2 is used for the clustering of the previous days, WF is used to determine

the cluster label of the new day and it is also included in the pattern sequence

that is being matched. The PV data is used after the matched sequences have

been collected, to generate the PV power prediction for the new day.

2. Target sequences

Another difference between PSF and PSF1 is in the way the target sequences are

formed.

The target sequence in PSF (see Fig. 3.13) is a cluster label sequence of length

w, starting from the day before the new day. More specifically, if the day to
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predict is day d+1, the target sequence is formed using the cluster labels of days

[d-w+1,..., d]. The label for day d+1 is not available and cannot be used to

form the target sequence. This means that no information about the new day is

considered, which may weaken the performance of PSF.

On the other hand, in PSF1, the cluster label of the new day is determined and

included in the target sequence. It is calculated by comparing the WF vector of

the new day with the centroids of the W2 clusters, and is then used to form the

target sequence (see Fig. 3.14). This means that information about the day that

is being predicted contributes to the prediction. Specifically, to predict the new

day d+1, the target sequence will use the cluster labels of days [d-w+2,..., d+1].

3. Computation time

The computation time of the PSF algorithms mainly depends on two steps: clus-

tering and searching for matching sequences. The later is similar as the se-

quences contain cluster labels and the search method is the same. However,

since PSF1 uses the W2 weather data for the clustering, which usually contains

much smaller number of features than the daily PV power output vectors (e.g. a

vector of 20 half-hourly PV power output data or 600 PV power output data at

1-min intervals compared to 4 features in W2), PSF1 takes much less time for

clustering than PSF; this means that PSF1 is faster to train than PSF.

B. PSF2
The previous section has discussed the advantages of PSF1 over PSF. However, PSF1

only utilizes a subset (W2) of all weather features (W1) as it needs to determine the

cluster label of the new day based on the weather forecast features which are a subset

of W1. To fully utilize the available weather features (W1), a second extension PSF2

is proposed and shown in Fig. 3.15. It involves a two-tier clustering approach, where

the days are clustered in two different ways: based on the W1 and W2 weather data.

PSF2 involves the following steps:

• Firstly, the training data is clustered using the W1 data (the full weather data,

containing more features than W2) into k1 clusters. The days are labelled with

the cluster ID, e.g. C1, C2, etc. as shown in Fig. 3.15. A sequence of consec-

utive days with length w, from day d backwards (including d), is formed as the

first tier target sequence.
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Figure 3.15: The proposed extension PSF2

• Secondly, the training data is clustered using the shorter weather vector W2 into

k2 clusters, denoted with K1, K2, etc. The cluster label Kx for the new day d+1

is found by obtaining the weather forecast for d+1 and comparing it with the

cluster centroids, forming the second tier of cluster labels. This process similar

with the labeling process of PSF1.

• Thirdly, the cluster label of the post-sequence days for the equal sequences from

the first clustering is checked, and if it is not Kx, the equal sequence is not

included in obtaining the prediction for d+1. For the example from Fig. 3.15,

the second left most equal sequence is not included as the cluster of the post-

sequence day is K3 which is different from K2, the cluster for the new day.

• Finally, PSF2 averages the PV power vectors of the selected post-sequence days,

to produce the prediction for day d+1.

In summary, PSF2 is an extension of PSF1. It makes a better use of the available
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weather data than PSF1 by using the full weather vector W1 for the initial cluster-

ing (available for the previous days) and the shorter weather vector W2 to match the

weather forecast for the new day, and refine the equal sequence selection from the pre-

vious step.

C. Parameter selection
For both PSF1 and PSF2, the number of clusters (k1 and k2) and the sequence

length w are parameters that need to be determined.

A possible way to determine them is to follow the procedure proposed for the

standard PSF algorithm [50]. It uses 12-fold cross validation on the training data (one

year of data, where each fold is one month) to evaluate the performance of several

clustering quality measures and sequence lengths, and to select the best parameters.

Specifically, for the number of clusters it calculates the the Silhouette, Calinski-

Harabasz and Davies-Bouldin clustering quality measures and determines the best

number of clusters for each of them. Then, it takes a majority vote over the three

results to determine the final number of clusters; if necessary it uses the second best

number of clusters.

To determine the sequence length w, different values of w are evaluated (e.g. from

1 to 10) and the one that minimizes the average error over the 12 folds is selected.

To select the sequence length w, different values are evaluated (from 1 to 10) using

12-fold cross validation, where one fold corresponds to one month. The best w is the

one that minimizes the average error for the 12 folds.

3.2.2 Case Study

In the previous section, two extensions of PSF have been proposed. In this section, a

case study is conducted to evaluate the performance of the proposed extensions. Sim-

ilar to the case study in Section 3.2.3, the performance is evaluated using Australian

data for two whole years (2015-2016).

The performance of the proposed extensions are also compared with other meth-

ods. As the models based on Neural Networks (NN) are the most popular for solar

power prediction tasks and have shown good performance in the previous study, this

section mainly chooses NN as the model for comparison with the proposed PSF ex-

tensions. The NNs used for comparison is extended by including more data sources as
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inputs, which is consistent the proposed PSF extensions. The details of the NNs will

be disused in Section 3.2.2.2. A persistent model is also used in this section as the

baseline, which is exactly the same with the baseline model in Section 3.1.2.1.

Another target of this study is to evaluate the performance of models under differ-

ent forecast noise levels. The results of the DWkNN case study has shown the impor-

tance of weather forecast for solar power prediction tasks. However, reliable weather

forecast is not always available for the PV plants and for most cases the accuracy of

weather forecasts is uncertain. Therefore, there is a need to evaluate the robustness

of predicting models given the weather forecasts under different accuracy levels. This

will be achieved by manually adding different levels of noise to the whether data.

3.2.2.1 Experimental Setup

We consider the task of directly and simultaneously predicting the PV power output

for the next day at 30-min intervals, given historical weather data, historical PV data

and weather forecasts.

More specifically, given: (i) a time series of historical PV power outputs up to the

day d: [p1, p2, p3, ..., pd], where pi = [pi1, p
i
2, p

i
3, ..., p

i
20] is a vector of 20 half- hourly

power outputs for the day i, (ii) a time series of weather vectors for the same days:

[W 1,W 2,W 3, ...,W d], and (iii) the weather forecast for day d+1 : WF d+1, our goal

is to forecast PV d+1, the half-hourly power output for the next day d+1.

A. Data Sources
We use PV power and weather data for two years - from 1 January 2015 to 31 Decem-

ber 2016. The data sources and feature sets are described in Table. 3.8.

The PV data and W1 weather features are the same as in the previous case study for

DWkNN algorithm (see Table. 3.1). In short, the half-hourly PV data of the daylight

period from 7 am to 5 pm was collected for two years, so in total there are 14,600

measurements ((366 + 365)× 20) for the PV data. The corresponding weather data is

also collected and each day is represented as a 14-feature vector W1. Hence, there are

in total 10,234 measurements for the W1 data (= (365 + 366)× 14).

W2 is a subset of W1, and it includes only four features, the ones that are typi-

cally used in weather forecasts: the daily minimum temperature, the daily maximum

temperature, the daily rainfall and the daily average solar irradiance.
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Table 3.8: Data sources and feature sets for PSF study
Data source Feature

set
Num.
features

Description

PV data for the current
day d and previous days

PV 20 Half-hourly PV values be-
tween 7am and 5pm

Weather data for the cur-
rent day d and previous
days

W1 14

(1-6) Daily: min temperature,
max temperature, rainfall, sun
hours, max wind gust and av-
erage solar irradiance;
(7-14) At 9 am and 3 pm: tem-
perature, relative humidity,
cloudiness and wind speed.

Weather data for the cur-
rent day d and previous
days

W2 4 Daily: min and max tempera-
ture, rainfall and solar irradi-
ance. W2 is a subset of W1.

Weather forecast for the
next day d+1

WF 4 Daily: min temperature, max
temperature, rainfall and aver-
age solar irradiance

The weather forecast feature set WF includes the same four features as the weather

set W2. Since the weather forecasts were not available retrospectively for 2015 and

2016, we used the actual weather data with added noise. We considered three different

noise levels: 10%, 20% and 30%, to better evaluate the robustness of the prediction

models.

B. Data Pre-processing
The small percentage of missing values (0.82% for the weather data and 0.02% for the

PV data) were replaced using the same nearest neighbor-based method as discussed in

Section 3.2.3.2. Then both the PV data and weather data were normalized to [0,1].

C. Training, Validation and Testing Sets
To evaluate the PSF algorithms, the data is divided into two sets: year 2015 for

training and validation, and year 2016 for testing. As mentioned in the parameter

selection section, the best number of clusters and sequence length is selected using a

12-fold cross validation and for this study we use the data of the first year (2015) to

determine the parameters. Then, the second year (2016) is used to test the performance

of the PSF based methods.
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For the NNs used for comparison, the data for the fisrt year (2015) is further divided

into two non-overlapping subsets: training the first 70% and validation: the remaining

30%. The training data was used to build the model, the validation set - to select the

number of hidden neurons and other parameters. For consistent comparison with the

PSF models, the data for the second year (2016) is used to evaluate the performance.

3.2.2.2 Methods for Comparison

We compare the PSF methods with three NN methods and a persistence model com-

monly used as a baseline.

More specifically, the NN prediction models are multi-layer NNs with one hidden

layer, trained with the Levenberg-Marquardt version of the backpropagation algorithm.

The three NN models correspond to the three PSF models in terms of data source used,

e.g. NN and standard PSF use only PV data while NN2 and PSF2 use data from

all three data sources. The inputs and outputs for each model and their number are

shown in Table 3.9. For example, NN2 uses as inputs the PV power for the previous

day, the weather data for the previous day and the weather forecast for the next day

and predicts the PV power for the next day; it has 20+14+4=38 input neurons and 20

output neurons.

The number of hidden neurons h was selected experimentally by varying it from

5 to 30, with an increment of 5, evaluating the performance on the validation set and

selecting the best NN.

A persistence model (Bper) is used as a baseline . It considers the half-hourly PV

power output from the previous day d as the prediction for the next day d+1. This

means that the prediction for P̂ V d+1 = [pvd+1
1 , pvd+1

2 , ..., pvd+1
20 ] is given by PV d =

[pvd1 , pv
d
2 , ..., pv

d
20].

Table 3.9: Input and output of the neural models used for comparison
NN model Input Output

NN PV d(20) PV d+1(20)
NN1 PV d(20), WF d+1(4) PV d+1(20)
NN2 PV d(20), W d(14), WF d+1(4) PV d+1(20)
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3.2.2.3 Results and Discussion

A. Selected parameters for PSF and NN Models
As discussed in the previous section, the parameters of the three PSF methods (number

of clusters and window size) are determined by using 12-fold cross validation, where

each fold corersponds to one month, on the data for the first year. This is consistent

with the procedure used in the standard PSF method [50].

More specifically, to select the best number of clusters k, k1 and k2, the cluster-

ing algorithm (k-means) is run and the quality of the clustering results is evaluated by

computing the Silhouette, Calinski-Harabasz and Davies-Bouldin indexes and deter-

mine the best number of clusters based on each index. A majority vote is then across

the three indexes to determine the final best number of clusters.

The clustering evaluation results are summarized in Table 3.10. As can be seen,

k =2 is selected for the standard PSF (it was voted as the best number by the three

indexes). Recall that PSF uses only the PV data. This result is consistent with the

PV data profiles of Australian data shown in Fig. 3.16 where we notice two distinct

PV power profiles: 1) a smooth curve with highest values at noon and lowest at the

beginning and end of the day and 2) a a flatter graph, highly variable during the day,

without extreme peaks or lows. The former usually refers to a sunny day, while the

latter usually refers to rainy or cloudy days.

For PSF1, the best number of clusters k2 was 2; for PSF2, the best number of

clusters for the first tier clustering (using all weather features) was k1 =2 and for the

second tier (using the subset of weather features) was k2 =2.

The best window size w was also determined using 12-fold cross validation on the

data for the first year. Different values of w are evaluated (from 1 to 10); the best w is

the one that minimizes the average error on the 12 folds. Table 3.11 shows the selected

values of w - w = 2 for PSF and PSF2 and w=4 for PSF1. As w reflects the length of

pattern sequences to search for in the training data, the results indicate that relatively

short sequences are more important than longer.

For the NN models, the number of hidden neurons was also selected using a val-

idation set. The best performance on the validation set was achieved for h = 15, 20

and 30, for NN, NN1 and NN2, respectively, and these values were used for the NN

architectures to obtain the results on the testing set.
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Table 3.10: Clustering evaluation results
Index PSF

Davies-Bouldin Best k = 2, Second best k =3
Calinski-Harabasz Best k = 2, Second best k =3
Silhouette Best k = 2, Second best k =3

Selected k = 2

Index PSF1

Davies-Bouldin Best k2 = 2, Second best k2 =4
Calinski Harabasz Best k2 = 3, Second best k2 =4
Silhouette Best k2 = 2, Second best k2 =3

Selected k = 2

Index PSF2

Davies-Bouldin Best k1 = 2, Second best k1 =4;
Best k2 = 2, Second best k2 =4

Calinski-Harabasz Best k1 = 2, Second best k1 =4;
Best k2 = 3, Second best k2 =4

Silhouette Best k1 = 2, Second best k1 =4;
Best k2 = 2, Second best k2 =3
Selected k1= 2, k2= 2

Table 3.11: Best w for PSF, PSF1 and PSF2
Methods Best w

PSF 2
PSF1 4
PSF2 2

B. Performance of All Methods
Table 3.12 shows the performance of all methods. Fig. 3.17 - Fig. 3.19 present graph-

ically the MAE results in sorted order for visual comparison. The main results can be

summarized as follows:

• Among the PSF methods, PSF2 is the most accurate for all three noise levels.

PSF2 outperforms PSF in all cases. Thus, the extensions introduced in PSF2

the use of weather and weather forecast data and 2-tier clustering and sequence

matching were beneficial. This shows that the limitation of standard PSF can

be addressed by taking more data sources into consideration and using them to

form a different tier of pattern sequences.
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Figure 3.16: Two typical daily PV output profiles

• PSF2 outperforms PSF1 in all cases. It uses a more refined sequence matching

and an additional data source the full weather vector W1. This result proves that

with more features available in the weather features, the accuracy of prediction

can be further improved.

• PSF1 performs similarly to PSF. PSF1 uses the weather forecast for sequence

matching, while PSF uses the PV data. When the weather forecast is more ac-

curate (10% noise), PSF1 performs slightly better than PSF, but as the accuracy

of the weather forecast decreases (20% and 30% noise), PSF performs better.

However, the differences are statistically significant only for 20% noise, hence

overall the two methods perform similarly. One thing to notice is that PSF1 is the

faster for training and making prediction as it uses a feature vector with smaller

dimensionality (4 vs 20 features). Therefore, it can be seen that PSF1 has its

own benefits for the PV output prediction tasks.

• In all cases NN2 is the most accurate model. It uses all data sources directly as

inputs PV data, weather and weather forecast. The second best model PSF2 also

uses all data sources but in a different way. The core part, sequence matching,

is done using the weather and weather forecast data only, while the PV data is
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Table 3.12: Accuracy of all methods
Methods 10% noise in WF 20% noise in WF 30% noise in WF

MAE
(kW)

RMSE
(kW)

MAE
(kW)

RMSE
(kW)

MAE
(kW)

RMSE
(kW)

PSF 119.17 149.52 119.17 149.52 119.17 149.52
PSF1 118.12 151.52 120.05 156.61 123.04 154.10
PSF2 109.19 139.75 109.63 140.79 112.17 142.70
NN 116.64 154.16 116.64 154.16 116.64 154.16
NN1 111.16 149.33 117.47 158.86 126.14 173.85
NN2 94.75 133.65 95.76 134.62 96.89 135.69
Bper 124.80 184.29 124.80 184.29 124.80 184.29
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Figure 3.17: Performance of all methods under 10% noise level

used only in the last step. PSF2, however, is faster to train than NN2.

• All prediction models outperform the persistence baseline in all cases, except

one (NN1 for 30% WF noise) but the difference in this case is not statistically

significant.

C. Influence of Noise
As can be seen from Table 3.12 and Fig. 3.20, the performance of the PSF and NN

methods using the weather forecasts (PSF1, PSF2, NN1 and NN2) is sensitive to the

noise level. More specifically, the prediction error of these models increases in tandem

with increasing the noise level. This result once again shows the importance of reliable

weather forecasts for predicting the PV power.
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Figure 3.18: Performance of all methods under 20% noise level

0

50

100

150

NN2 PSF2 NN PSF PSF1 Bper NN1

M
A

E
 (k

W
)

prediction model

30% noise in WF

Figure 3.19: Performance of all methods under 30% noise level
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For 10% noise in WF, PSF1 outperforms PSF; however, when the noise level in-

creases to 20% and above, the accuracy of PSF1 decreases and becomes even lower

than the accuracy of the standard PSF which doesn’t use WF. Hence, when no accurate

forecasts are available, it is better to use PSF instead of PSF1. Similarly, NN1 outper-

forms NN for noise level of 10%, but for noise levels of 20% and higher its accuracy

decreases and becomes lower than NN’s.

The accuracy of PSF2 and NN2 also decreases with the increase in noise, but only

slightly. Compared to PSF1 and NN1, PSF2 and NN2 are less reliant on the WF

features as they also use the W feature set, which may explain their better robustness

to noise in WF.

In summary, PSF2 and NN2, which use the three features sets (PV, W and WF) are

more robust to increasing the noise level in WF. On the other hand, PSF1 and NN1,

which use only two feature sets (PV and WF), are more dependent on WF and the

increased levels of noise in WF, and their accuracy drops below the accuracy of the

standard PSF and NN for noise levels of 20% or higher.

3.2.2.4 Conclusion

In this case study, we evaluated the performance of standard PSF method and the pro-

posed extension, using Australian PV power and weather data for two years. We

considered the task of predicting the next day PV power output at 30-min intervals,

directly and simultaneously for all time points. The performance of the PSF methods

was compared with three corresponding NN methods, and a baseline model.

The results show that the PSF extensions were beneficial - PSF2, which uses a 2-

tier clustering and sequence matching, was more accurate than PSF in all cases. PSF1

performed similarly to PSF but was faster due to its smaller feature vector. Overall

PSF2 was the second most accurate method, after NN2 - a neural network that uses

directly the data from the three sources as inputs. However, PSF2 was faster to train

than NN2. PSF2 and NN2 were also the most robust methods to higher levels of noise

in the weather forecasts. Hence, we conclude that both PSF2 and NN2 are promising

methods for solar power forecasting.
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3.3 Summary

Chapter 3 explored the potential of instance-based methods for solar power prediction

tasks and proposed two methods: DWkDD and extended PSF.

Section 3.1 introduced the DWkNN algorithm, which is an extension of kNN. It

considers the importance of the different data sources and learns the best weights for

them from previous data. The results of the case study using Australian data showed

that DWkNN was more accurate than kNN and the other state-of-the-art methods and

baselines.

Section 3.2 discussed the limitations of the PSF algorithm and proposed two ex-

tensions - PSF1 and PSF2, to deal with data from more than one data source. A case

study using Australian data for two years from three sources (PV, weather and weather

forecast) was conducted to evaluate the performance of the proposed extensions, and

compare them with three corresponding NN models and a baseline. The results showed

that the PSF extensions improved the accuracy compared to the standard PSF algo-

rithm. Overall, PSF2 was the second most accurate method after NN2 but was faster

to train.

Hence, based on the results, we can conclude that the proposed DWkNN and PSF

extensions are promising methods for solar power forecasting, allowing to integrate

data from multiple data sources.



Chapter 4

Clustering-based Methods

This chapter introduces two clustering-based methods for solar power prediction tasks:

direct clustering-based and pair pattern-based.

Using machine learning methods such as NN and SVR and statistical methods such

as ARIMA and ES is popular for building prediction models for solar power forecast-

ing. However, most of these methods build a single prediction model for all weather

types and their corresponding daily PV profiles. The main idea of the clustering-based

methods is to group the days based on their weather characteristics and build a sepa-

rate model for each cluster or pair of clusters. The motivation is that days with similar

weather characteristics have similar PV power profiles; by considering this similarity

we can build specilized prediction models that may be more accurate than a single

general prediction model for all type of days.

For example, we can train separate models for different types of days: sunny, rainy

cloudy, etc. Each model works as a independent prediction model which is able to

capture the characteristics of the particular weather type. Fig. 4.1 shows the typical

daily PV profiles of three different weather types from the same week. We can see

that the power output is the highest for the sunny days and the lowest for the rainy

days. The power output for the sunny days follows a smooth daily pattern, while it

shows high variability for rainy and cloudy days depending on the weather conditions.

This motivates us to group the days with similar weather conditions by using clustering

technique and build prediction model for each group separately.

To make a prediction for a new day, we firstly obtain its weather forecast, determine

the type of the day, and then select the corresponding trained prediction model for this

type of day to make the PV power prediction. So the final prediction can be treated as

64
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a collaborative work of prediction models for all different weather types. We call this

method a direct clustering method and have published it in [95]. It will be discussed

in Chapter 4.1.

However, the direct clustering-based method does not consider the relationship be-

tween two consecutive days. In particular, it only focuses on modelling the similarity

of the PV data between the days in the same weather type cluster, and does not con-

sider the relationship between two consecutive days in terms of weather and PV data.

In order to address this limitation, we propose a new clustering-based approach that

considers such relationships by extracting patterns for pairs of consecutive days. We

have published this method in [42] and the details will be discussed in Chapter 4.2.

4.1 Direct Clustering-based Method

As described above, a single prediction model trained for all weather types fails to take

advantage of the similarity of PV power profiles among the days with similar weather

characteristics. Instead, we propose to train separate models for the days with different

weather types and investigate if this can improve the prediction accuracy. In summary,

the direct clustering-based methods include the following steps. Firstly, the days need

to be partitioned into different groups based on their weather characteristics. To do this,
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Figure 4.1: PV power outputs under different weather conditions
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Figure 4.2: Main steps of the proposed clustering based forecasting approaches

after collecting the weather features of the days, clustering methods such as k-means

can be used to group the days. Secondly, a separate machine learning model (e.g. NN

and SVR) can be trained for this weather type. Finally, when a new day comes, the

weather forecast report of this day is obtained and used to determine its weather type.

Then, the trained model for this weather type is used to make the prediction for the

new day.

4.1.1 Methodology

4.1.1.1 Main Steps

The proposed approach for solar power forecasting combines clustering and machine

learning prediction algorithms. The key idea is to group the days into clusters based

on their similarity in weather conditions and then develop a separate prediction model

for each cluster. Fig. 4.2 shows the general structure of our approach. There are three

main steps: clustering, training of prediction models, and generating predictions for
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new days.

1. Clustering

The first step is to partition the days into groups with similar weather using clus-

tering methods. In this study, we consider two weather variables to represent the

weather features for clustering, namely temperature and solar irradiance, which

are easy to measure and available at PV stations. To find the most appropriate

weather representation, we constructed five different weather vectors and evalu-

ated their performances:

• W d = SIdavg - mean solar irradiance for day d

• W d = [SId1 , SI
d
2 , ..., SI

d
n] - a vector of the half-hourly solar irradiance for

day d

• W d = T d
avg - mean temperature for day d

• W d = [T d
avg, T

d
max, T

d
min] - mean, maximum, and minimum temperature for

day d

• W d = [T d
1 , T

d
2 , ..., T

d
n ] - a vector of the half-hourly temperature for day d

To group the days into different clusters based on their similarity in weather con-

ditions, we apply the k-means algorithm which was previously shown to be very

effective for clustering of solar power data [6]. To select the number of clus-

ters k, we calculate the Davies-Bouldin index, Calinski-Harabasz and Silhouette

indexes and use majority voting to select the best k (k=4 for this study).

Thus, five different groupings of the days from the training data into k clusters

are obtained, each using a different weather representation.

2. Model Training

The second step is to train a separate prediction model for each cluster. After the

historical wether data is clustered and labelled, the days with the same cluster la-

bel are used to train a prediction model for this cluster. We used three prediction

algorithms: k-NN, NNs, and SVR.

3. Predicting New Data
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Figure 4.3: Forecasting using the clustering-based k-NN

To make a prediction for a new day, the weather forecast report of this day is

firstly compared with the centroids of each cluster to determine the cluster label

of the new day. Then, the trained prediction model for this cluster is selected to

generate forecast for the day.

4.1.1.2 Training of Prediction Models

In this study, we apply three prediction algorithms representing different machine

learning paradigms: k-NN, NNs, and SVR.

A. Using k-NN
k-NN a is an instance based prediction algorithm. Given a new instance, it finds the

k instances from the training set that are nearest to it and uses them to generate the

prediction.

Fig. 4.3 shows the forecasting process for k-NN. To forecast the power output for

the next day d+1, we firstly obtain the weather vector W d+1 for this day from the
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weather forecast report. k-NN then determines the cluster label Ck for day d+1 is

determined by comparing the distance between W d+1 and the centroids of all clusters

based on a distance measure and selecting the cluster with smallest distance. k-NN

then selects the k nearest neighbours for day d+1 from cluster Ck these are the days

with the most similar weather vectors (smallest distance) to W d+1. In our experiments,

we used Euclidian distance and empirically set k = 5.

To generate the prediction (the half-hourly PV power output for day d+1), k-NN

takes the average of the half-hourly PV output of the k neighbors: pd+1
t = 1

k

∑k
j=1 p

j
t ,

where pd+1
t is the power output at time t for day d+1, k is the number of nearest neigh-

bour of the day d+1, pjt is the power output of the neighbor j; t=1,...,20 and j=1,...,k.

B. Using NNs
To develop prediction models using NNs, we use multi-layer perceptron NNs with one

hidden layer, 20 input and 20 output nodes. The 20 output nodes correspond to the half-

hourly power outputs for the next day d+1, and produce the forecast simultaneously.

The 20 input nodes correspond to the power outputs for day S, which is the closest in

time day to d+1 from the same cluster.

We train four different NNs, one for each cluster. The NN parameters (such as

number of nodes in the hidden layer, transfer functions, learning rate and momentum)

are determined experimentally. We train several NNs with different combinations of

these parameters using the training dataset, and evaluate their performance on the vali-

dation dataset. The best performing NN for each cluster was then selected and used to

predict the data from the testing dataset.

The forecasting steps of NNs are shown in Fig. 4.5. To predict the power outputs

for day d+1, we firstly identify the cluster Ck for d+1 using the weather vector for

d+1. The predictions for d+1 are then computed by the trained NN for Ck, using as

inputs the power outputs for the most recent day S from Ck.

C. Using SVR
We also implement SVR, which is another state-of-the-art machine learning algorithm,

shown to obtain excellent performance for forecasting solar power data [16]. Similar

to NNs, SVR is able to learn from training examples and form complex non-linear

decision boundaries. However, unlike NNs, SVR finds a global rather than a local

minimum during training, does not overfit as the decision boundary is defined by a
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Figure 4.4: Forecasting using the clustering-based NN

small number of training examples and has a smaller number of parameters to tune.

To develop an SVR prediction model and generate the forecast for the next day,

we followed the same methodology as for NNs, using the most recent day S from the

same cluster as an input. However, in contrast to the single NN model for each cluster,

that predicts all 20 power outputs for the next day, we created 20 SVR models for each

cluster, each predicting one half-hourly value for the next day. Thus, for our case study

we trained 80 SVR models in total (4 clusters × 20 models).
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4.1.2 Case Study

To evaluate the performance of direct clustering-based methods, a case study is con-

ducted using Australian PV and weather data for two years. The performance is com-

pared with several other state-of-the-art non-clustering methods including k-NN, NN,

SVR, seasonal ARIMA, ES and a persistence model as the baseline.

4.1.2.1 Experimental Setup

As before, we consider the task of predicting the half-hourly PV power output for the

next day, given historical PV power data, weather data and weather forecasts.

More specifically, given: (i) a time series of historical PV power outputs up to the

day d: [p1, p2, p3, ..., pd], where pi = [pi1, p
i
2, p

i
3, ..., p

i
20] is a vector of 20 half- hourly

power outputs for the day i, (ii) a time series of weather vectors for the same days:

[W 1,W 2,W 3, ...,W d], and (iii) the weather forecast for day d+1 : WF d+1, our goal

is to forecast PV d+1, the half-hourly power output for the next day d+1.

A. Data Sources and Preprocessing
We use the PV power data for two complete years - from 1 January 2013 to 31 Decem-

ber 2014. For each day, we only select data during the daylight period, from 7 am to 5

pm.

The original PV data is collected at 1-min intervals and contains 2× 365× 600 =

438, 000 measurements. There are 1,518 missing values, which accounts for approx-

imately 0.35% of the total data. Each missing value is replaced by the average of the

values from the previous 5 min. We aggregate data into 30-min intervals as our task is

to make half-hourly predictions for the next day. Thus, we have 20 PV values for one

day and 14,600 (20× 365× 2) values in total for two years. The data is normalized to

the interval [0-1].

With regards to the weather data, we only collected the temperature and solar ir-

radiance of each single day to represent the day as these measurements are usually

available at PV plants. The same pre-processing approach was applied as for the PV

data. As the weather forecast data is not available retrospectively, we use the actual

weather data with added 10% noise as the weather forecast.
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Figure 4.5: Forecasting using non-clustering based k-NN

B. Training, Validation and Testing Sets
We divide the solar power and corresponding weather data into three non-overlapping

subsets: 50% (day 1 - day 365) for training, 25% (day 366 - day 550) for validation and

25% (day 551 - day 730) for testing. The training set is used to build the prediction

models; the validation set is used for parameter selection and the testing set is used

to evaluate the performance of the proposed clustering-based approach and the other

methods used for comparison.

4.1.2.2 Methods for Comparison

To compare the performance of our proposed clustering based forecasting approaches,

we implemented three non-clustering based counterparts of the approaches described

in the previous section and two other non-clustering methods based on ARIMA and

ES. Unlike the proposed clustering based approaches that used both weather and PV

power data, the non-clustering based approaches use only the PV power data (from one

or more previous days) and do not require weather information. We also implemented

two other persistence models as baselines.

A. Methods Without Using Clustering

1. Non-clustering Based k-NN
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Fig. 4.5 shows the forecasting procedure of the non-clustering based k-NN. To

predict the power output for the next day d+1, it firstly selects the k days from

the historical dataset whose power profiles are most similar to day d (i.e. the day

preceding to target day d+1), based on a distance measure between P d and all of

[P 1, P 2, ..., P d−1]. It then computes the forecasts for P d+1 by taking the average

of the subsequent day for each of the k selected similar days. Specifically, if

S = s1, s2, ..., sk denotes the set of selected k days, then the prediction for P d+1is

given by: P d+1 = 1
k
[ps1+1+ps2+1+, ..., psk+1], where each pi∈S a 20-dimensional

vector (i.e. P i = [pi1, p
i
2, ..., p

i
20]) representing the 20 half-hourly power outputs

for the day i.

2. Non-clustering Based NN

The non-clustering based NN is similar to the clustering based NN, except that:

1) there is only one NN model for all days, since there is no clustering, and 2) as

inputs it uses the PV power data from the most recent day d, not from the most

recent day from the same cluster. To select the parameters of the non-clustering

based NN, we followed the same procedure and experimental setting as for the

clustering based NN.

3. Non-clustering Based SVR

The non-clustering based SVR is similar to the clustering based SVR except that:

1) there is one set of 20 SVR models for all days, not a different set for each

cluster of days, and 2) as inputs it uses the PV power data from the most recent

day d, not from the most recent day from the same cluster. The parameters of

the non-clustering SVR were selected using on same procedure as for clustering-

based SVR.

4. Seasonal ARIMA and Exponential Smoothing

Similar to the case studies in Chapter 3, we implemented a seasonal ARIMA and

Exponential Smoothing (ES) for comparison. The parameters of ARIMA were

selected by comparing the corrected Akaike Information Criterion (AICc) of the

different ARIMA models. The parameters of the ES model were computed using

an optimization procedure which minimizes the MSE for the training data.

B. Persistence Models
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We also implemented two persistent models as baselines for comparison. The first

baseline (B1) uses the clustering of days. It considers the power outputs from the

closest day (in terms of time) with similar weather conditions as the predictions for the

next day d+1. Specifically, the prediction for P d+1 = [pd+1
1 , pd+1

2 , ..., pd+1
20 ] given by

P r = [pr1, p
r
2, ..., p

r
20] such that both r and d+1 belong to same cluster Ck and r is the

closest to d+1 among all the days in Ck.

The second baseline (B2) does not utilize the clustering. It considers the PV power

outputs from the previous day d as the predictions for the next day d+1. This means

that the prediction for P d+1 = [pd+1
1 , pd+1

2 , ..., pd+1
20 ] is given by P d = [pd1, p

d
2, ..., p

d
20]

4.1.2.3 Results and Discussion

A. Performance of the Clustering Based Approaches
Table 4.1 presents the accuracy results of the four clustering based approaches for the

five different weather representations used for the clustering. The main results can be

summarized as follows:

• The most accurate prediction model, in terms of all three accuracy measures, is

the clustering based k-NN using the vector of half-hourly solar irradiance for the

clustering. It achieved MAE = 59.81 KW and RMSE = 96.18 KW.

• The second most accurate prediction model is the clustering based k-NN us-

ing the vector of half-hourly temperature as an input for the clustering, which

achieved MAE = 68.49 KW and RMSE = 109.36 KW. The other approaches

achieved considerably lower accuracy: MAE = 82.55-140.18 KW and RMSE =

113.59-200.82 KW.

• There is no single best prediction algorithm different algorithms perform best

with different weather representations used for the clustering. For the clustering

methods that use a single aggregated weather measurement (mean daily temper-

ature for clustering method 1 and mean daily irradiance for clustering method 3,

the best results are achieved using SVR as a prediction algorithm, followed by

NN, while k-NN performs similarly or below the baseline.

• For the clustering methods that uses a 20-dimensional weather representation

of all half-hourly values of the solar irradiance or temperature during the day
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Table 4.1: Performance of the clustering based approaches

Clustering using: MAE
(KW)

RMSE
(KW)

(1) Mean daily solar irradiance (1 feature)
k-NN 90.84 128.19
NN 93.94 130.2

SVR 82.55 113.59
Persistent (B1) 90.59 145.24
(2) Vector of half-hourly solar irradiance (20 features)

k-NN 59.81 96.18
NN 94.57 134.45

SVR 83.38 116.14
Persistent (B1) 90.43 144.52
(3) Mean daily temperature (1 feature)

k-NN 140.18 181.86
NN 133.28 177.73

SVR 116.7 155.17
Persistent (B1) 128.49 198.07
(4) Vector of half-hourly temperature (20 features)

k-NN 68.49 109.36
NN 137.62 183.72

SVR 119.51 158.34
Persistent (B1) 125.49 193.67
(5) Daily lowest, mean and highest temperature (3 features)

k-NN 120.70 162.02
NN 135.63 184.77

SVR 120.21 162.01
Persistent (B1) 130.94 200.82
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(clustering methods 2 and 4), k-NN is the most accurate algorithm, considerably

outperforming the others. For the case in between that uses three weather vari-

ables (clustering method 5), k-NN and SVR perform similarly and are the best

algorithms.

• The performance of k-NN is more sensitive to the weather data used for the

clustering than SVR and NN, and performs better with a longer weather vector.

This is not surprising as nearest neighboring methods such as k-NN are more

unstable and sensitive to noise, especially when only a subset of the examples

are used for the prediction (the 5 nearest neighbors in our case). In addition,

using only one aggregated weather variable is not sufficient to find the most

similar days.

B. Performance of the Non-Clustering Based Approaches
Table 4.2 presents the accuracy results of the six non-clustering based approaches.

Recall that they use only the previous PV data and do not consider the weather data.

We can summarize the main results as follows:

• NN is the most accurate approach on all performance measures, achieving MAE=95.38

KW and RMSE=131.74 KW. The second best approach is SVR, followed by k-

NN, ES, the persistent model and finally ARIMA.

• The improvement in MAE of NN compared to the other approaches is between

18% and 41%.

• All approaches except ARIMA outperformed the baseline persistent model.

• The machine learning approaches (NN, SVR and kNN) outperformed the statis-

tical ones (SARIMA and ES).

C. Comparison Between Clustering and Non-clustering Based Approaches
By comparing the results from Table 4.1 and Table 4.2, we can see that the cluster-

ing based approaches outperform the non-clustering based approaches for clustering

methods 1 and 2, for all prediction algorithms. For the other clustering methods the

performance varies, which shows again the importance of the weather representation

used for the clustering.



CHAPTER 4. CLUSTERING-BASED METHODS 77

Table 4.2: Performance of the non-cluster based approaches
Model MAE (KW) RMSE (KW)

k-NN 119.17 180.29
NN 95.38 131.74

SVR 117.33 155.77
ARIMA 161.71 193.98

ES 123.46 168.75
Persistent (B2) 125.27 193.58

Fig. 4.6 visually compares the accuracy (MAE) of the clustering based approaches

using the best clustering method (clustering method 2 - the 20-dimensional solar ir-

radiance vector) and the non-clustering based approaches. We can see that the use of

clustering improved the performance of all prediction algorithms the biggest improve-

ment was achieved for k-NN (50%), followed by SVR (29%), the persistent model

(28%), and NN (1%). The comparison of the RMSE results show a similar trend as

MAE.

Thus, we can conclude that with appropriate weather representation, the cluster-

ing based approaches provide accurate prediction, outperforming their non-clustering

based counterparts and also statistical non-clustering based methods such as ARIMA

and ES.

D. Clustering Based k-NN
To better understand the performance of our best approach, the clustering based k-NN

with clustering method 2, we calculated the accuracy for the days from each cluster

separately as shown in Table 4.3. We can see that the best accuracy was achieved for

cluster C1, closely followed by clusters C3 and C2, and finally cluster C4, which has

considerably lower accuracy.

Fig. 4.7 shows the predicted and actual PV power output for typical consecutive

days from each cluster. For days from C1 the PV power output is stable with a peak

in the middle of the day reaching 850-900 KW, with very small differences between

the actual and predicted values, mainly around the peak. For C3 the pattern is similar

but the daily peak PV output is lower (600-700 KW) and there are more differences

between the actual and predicted values for the last day. For C2 the pattern is also

similar with a daily peak of 800 KW and slightly more differences between the actual
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Figure 4.6: Comparison of clustering based and non-clustering based approaches

Table 4.3: Performance of k-NN for each cluster separately, with clustering method 2
Cluster MAE (KW) RMSE (KW)

C1 48.77 76.31
C2 61.47 84.54
C3 52.94 76.92
C4 133.19 206.43

and predicted values compared to C1. Cluster C4 is different there are random fluctu-

ations in the generated PV output for each day; there is still one or several peaks in the

middle of the day, reaching about 550-650 KW; this cluster is most difficult to predict

as shown by the differences between the actual and predicted value. In summary, we

can see that the four clusters represent days with different characteristics, with C1 most

likely corresponding to sunny days with clear-sky, and C4 corresponding to days with

changing solar irradiance due to rainy, cloudy, foggy or other conditions.

4.1.2.4 Conclusion

In this case study, we considered the task of forecasting the PV power output for the

next day at half-hourly intervals to evaluate the performance of direct clustering-based

methods. The forecasting is done (1) directly, without the need to firstly predict the
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Figure 4.7: Actual vs predicted data for typical consecutive days from each cluster

solar irradiance and then convert it into PV output, and (2) simultaneously for all half-

hourly intervals, rather than incrementally using the forecasts for the previous times.

The main idea behind our approaches is to cluster the days based on their weather

characteristics and then built separate prediction models for each cluster using the PV

data. We investigated if building such separate prediction models improves the accu-

racy, compared to building a single prediction model for all type of days.

We evaluated the performance of clustering based approaches that use five differ-

ent weather representations based on temperature and solar irradiance, and three dif-

ferent prediction algorithms (k-NN, NN and SVR). We compared them with their non-

clustering based counterparts, non-clustering based statistical methods such as ARIMA

and ES, and clustering and non-clustering based persistent models used as baselines.

Our evaluation was conducted using Australian data for two years.

We found that the most accurate prediction model was a clustering based k-NN,

which uses a vector of half-hourly solar irradiance for the clustering. It achieved MAE

= 59.81KW, RMSE = 96.18KW, significantly outperforming all other clustering and
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non-clustering based methods and baselines. Our results also showed that the cluster-

ing based approaches did not always outperform their non-clustering based counter-

parts; the performance varied based on the weather representation used for the clus-

tering, with solar irradiance representations favouring the clustering based approaches.

In addition, our results showed that k-NN, NN and SVR, with and without clustering,

performed better than ARIMA and ES.

4.2 Pair Pattern-based Method

The direct clustering-based prediction method proposed in the previous section does

not consider the relationship between two consecutive days. In this section we de-

scribe an alternative clustering-based method - the Weather Pair Pattern-based (WPP)

method. WPP builds specialized prediction models based on the cluster transition be-

tween consecutive days. It firstly partitions the days from the training data into clusters

based on their weather characteristics and then uses the cluster label of the consecu-

tive days to form pair patterns for each different type of cluster transition. A separate

prediction model using NN or SVR is then built for each pair pattern group.

4.2.1 Methodology

Fig 4.8 summarizes the proposed WPP approach. There are four main steps:

1. Clustering of the days into k groups based on the historical weather data and

labelling the days with the cluster name;

2. Forming pairs of two consecutive days (pair patterns) based on the cluster labels,

e.g. if there are two clusters C1 and C2, four pair patterns will be formed: {C1-

C1}, {C1-C2}, {C2-C1} and {C2-C2};

3. Training a separate prediction model for each pair pattern using the historical

PV data. It takes as an input the PV data of the previous day and predicts the PV

data of the next day.

4. Predicting the PV power for a new day d+1 by firstly identifying the cluster la-

bels for days d and d+1 based on the weather and weather forecast data respec-

tively, and then using the prediction model for the corresponding pair pattern.
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Figure 4.8: The WPP approach

For example, if day d belongs to C1 and day d+1 to C2, then the prediction

model for {C1-C2} will be used.

4.2.1.1 Clustering and Labelling of Days

Like the direct clustering-based methods, we use the k-means clustering algorithm to

partition the days into k clusters based on the historical weather data, where each day

is represented as a weather vector. We chose k-means as it is a classical and easy to

implement algorithm, that has also shown good results in previous work on solar power

prediction [8, 16].

For example, in the case study described in Section 4.2.2, we collect four weather

variables: Solar Irradiance (SI), Temperature (T), Wind Speed (WS) and Humidity

(H). These variables are typically available for most PV plants and are commonly used

for PV prediction tasks. The daily weather data for day d can be represented as a
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Table 4.4: Clustering evaluation results
Indexes Best k Second Best k

Davies-Bouldin 5 6
Calinski-Harabasz 2 3
Silhouette 2 3

12-dimensional vector:

W d = [SIdmin, SI
d
avg, SI

d
max, T

d
min, T

d
avg, T

d
max,

WSd
min,WSd

avg,WSd
max, H

d
min, H

d
avg, H

d
max]

To determine the number of clusters k, we calculate the Davies-Bouldin, Calinski-

Harabasz and Silhouette indexes over the weather vector and then apply majority vot-

ing. The results are shown in Table 4.4 and based on them we select k=2 as the best

number of clusters. We then partition the days into two clusters and label them as C1

and C2.

4.2.1.2 Weather Type Pairs Forming and Model Training

After clustering and labelling of the days, weather type pairs are formed based on the

labels of every two consecutive days. For example, if the label of day d is C1 and the

label of day d+1 is C1, these two days will form a pair {day d to day d+1} and pair

pattern {C1 - C2}. Since we have two clusters, the historical data can be partitioned

into four pair patterns: {C1 - C1},{C1 - C2},{C2 - C1} and {C2 - C2}.
For each pair pattern group, a separate prediction model is trained using the PV

power data of the days with this pattern. Specifically, for each pair of days, the PV

vector of the first day is used as an input, while the PV data of the second day is used

as a target. We implement prediction models using NN and SVR and compare their

performance:

A. Using NN
Since we have two clusters, we train four NNs, one for each pair pattern group. Fig. 4.9

shows the structure of the NN model - a multi-layer perceptron with one hidden layer,

20 input and 20 output nodes. Each NN takes as an input the PV data of the previous
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Figure 4.9: NN prediction model in WPP

day (first day in the pair) and as a target the PV data of the next day (second day in

the pair). The input and output vectors are 20-dimensional corresponding to the 20

half-hourly PV power values of the day. Thus, the prediction for all half hours of the

next day is generated simultaneously, not incrementally.

As a training algorithm we use the Levenberg-Marquardt algorithm. The NN pa-

rameters, including the number of hidden nodes, are selected based on the NN perfor-

mance on the validation set. We train NNs with different combinations of parameters

and then select, for each pair pattern, the NN with the best performance on the valida-

tion set.

B. Using SVR
We follow the same methodology as for the NN models, except that we train 20 SVRs

for each pair pattern, one for each of the 20 half-hourly PV values for the next day,

since SVR has only one output We follow the same methodology as for the NN models,

except that we train 20 SVRs for each pair pattern, one for each of the 20 half-hourly

PV values for the next day, since SVR has only one output.This process is similar with



CHAPTER 4. CLUSTERING-BASED METHODS 84

the case of direct clustering-based methods.

4.2.1.3 Forecasting New Data

As shown in Fig. 4.8, the last step of WPP is to make predictions for the new day d+1.

Firstly, the weather forecast vector for day d+1 is obtained and compared with the

cluster centroids using a distance measure (we used the Euclidean distance) and day

d+1 is labelled with the cluster label of the closest cluster Cpos. The cluster label for

day d, Cpre, is retrieved from the already labelled data from step 1. Finally, an already

trained NN or SVR model for the pair pattern {Cpre - Cpos} is selected and used to

predict the PV data for day d+1 by taking as an input the PV data for d.

4.2.2 Case Study

We conducted a case study to evaluate the performance of the WPP-based method

for PV power forecasting. We compared the performance of WPP with the direct

clustering-based method, and also with non-clustering-based methods and persistence

models.

4.2.2.1 Experimental Setup

To make the comparison throughout the thesis consistent, in this case study we again

consider the task of directly and simultaneously predicting the PV power data of the

next day at 30-min intervals, using historical weather data, historical PV data and

weather forecast.

More specifically, given: (i) a time series of historical PV power outputs up to the

day d: [p1, p2, p3, ..., pd], where pi = [pi1, p
i
2, p

i
3, ..., p

i
20] is a vector of 20 half- hourly

power outputs for the day i, (ii) a time series of weather vectors for the same days:

[W 1,W 2,W 3, ...,W d], and (iii) the weather forecast for day d+1 : WF d+1, our goal

is to forecast PV d+1, the half-hourly power output for the next day d+1.

A. Data Sources and Preprocessing
We use the same source of PV data as in the direct clustering-based methods’ case

study. More specifically, we use the PV power data for two complete years - from
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1 January 2013 to 31 December 2014. For each day, we only select data during the

daylight period, from 7 am to 5 pm.The original data is collected at 1-min intervals

and contains 2 × 365 × 600 = 438, 000 measurements. There are 1,518 missing

values, which accounts for approximately 0.35% of the total data. Each missing value

is replaced by the average of the values from the previous 5 min. We aggregate data

into 30-min intervals as our task is to make half-hourly predictions for the next day.

Thus, we have 20 PV values for one day and 14,600 (20× 365× 2) values in total for

two years. The data is normalized to the interval [0-1].

As WPP requires weather features and weather forecasts to determine the cluster

labels, we also collect weather data. Unlike the direct clustering-based methods’ case

study, we collect a different set of weather variables and form a 12-dimensional vector

to represent the day. The four variables are Solar Irradiance (SI), Temperature (T),

Wind Speed (WS) and Humidity (H); the vector consists of the maximum, minimum

and average daily value of these four variables.

As the weather forecast data is not available retrospectively, we use the actual

weather data with added 10% noise as the weather forecast.

B. Training, Validation and Testing Sets
We follow the same procedure to split the data into three different sets as we did in

section 4.2.3 for consistent comparison. Specifically, We divide the solar power and

corresponding weather data into three non-overlapping subsets: 50% (day 1 - day 365)

for training, 25% (day 366 - day 550) for validation and 25% (day 551 - day 730) for

testing. The training set is used to build the prediction models; the validation set is

used for parameter selection and the testing set is used to evaluate the performance of

the proposed clustering-based approach and the other methods used for comparison.

4.2.2.2 Methods for Comparison

To comprehensively evaluate the performance of WPP, we implement 4 different groups

of methods for comparison. This includes a comparison with the direct clustering-

based method using the new weather features. Specifically, the four groups of methods

are: group 1: clustering-based machine learning models (with NN and SVR as predic-

tion algorithms), group 2: non-clustering-based machine learning models (NN, SVR

and k-NN), group 3: statistical models (ARIMA and ES), and group 4: baselines -
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three simpler (persistence) models, two using clustering and one not using clustering.

Group 1: Clustering-Based Machine Learning Models
Fig. 4.10 shows the main steps of the implemented clustering-based models. In step

1, the historical weather data is clustered into k groups (k=2 in our case) and labelled

in the same way as in WPP. In step 2, a prediction model is trained for each cluster as

opposed to each pair pattern as in WPP. The model takes as an input the PV power data

of day i and as a target the PV power data of the next (closest in time) day j from the

same cluster. Note that in contrast to WPP, the day j is not necessarily day i+1, the day

following i, as only the days in the cluster are considered and i+1 may be in another

cluster. As prediction algorithms we used NN and SVR for consistency with WPP.

To predict the PV data for the new day d+1 in step 3, the cluster label for d+1

is firstly identified by comparing the weather forecast vector for d+1 with the cluster

centroids using the Euclidean distance and assigning the day to the cluster of the closest

centroid, Cx. The prediction for d+1 is then computed by the trained prediction model

(NN or SVR) for Cx, using as an input the PV power data for the most recent day s

(the day closest in time to day d+1) from cluster Cx.

In summary, both WPP and the Group 1 methods cluster and label the days based

on the weather data. However, WPP forms pair patterns of consecutive days and builds

a prediction model for each pair pattern given the PV power for the previous day, it

predicts the PV power for the next day: {train, target}={P i, P i+1}. The Group 1

methods build a prediction model for each cluster using pairs of days closest in time

from each cluster (i.e. the consecutive days for the cluster): {train, target}={P i, P j}.
As we did with the direct clustering-based methods, we implement both NN and

SVR versions:

1. Clustering-Based NN

For each cluster, we train a feedforward NN with 20 input nodes and 20 output

nodes which correspond to the half-hourly PV power data of day i and the closest

day j from the same cluster, respectively. Similar to the training of WPP-based

NN, we implement NN with different parameter combinations and select the one

that performs best on the validation dataset.

2. Clustering-Based SVR
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Figure 4.10: Clustering-based methods used for comparison

The training of clustering-based SVR follows the same methodology as for the

clustering-based NN, using the PV power data of day i and the closest day j in

the same cluster as inputs and targets respectively. However, in contrast to the

NN method where we build one NN for each cluster, which predicts all 20 power

outputs for the next day, here we create 20 SVR models for each cluster, each

predicting one half-hourly value for the next day, since SVR has only one output.

Group 2: Non-Clustering-Based Models
Instead of clustering the days and building a prediction model for each weather type,

we develop three general prediction models for all weather types using NN, SVR and

kNN.

1. NN

The NN has the same structure as the non-clustering-based NN. It takes as an

input the PV data of day i and as an output the PV data of the following day i+1.
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For parameter selection we used the same procedure as for the clustering-based

NN.

2. SVR

The non-clustering-based SVR is similar to the clustering based SVR except

that: a) there is only one set of 20 SVR models for all days, not a different set

for each cluster of days, and b) as inputs it uses the PV power data from the

most recent day d, not from the most recent day j from the same cluster. The

parameters of the non-clustering-SVR were selected using on same procedure as

for the clustering-based SVR.

3. k-NN

To predict the power output for the next day d+1 using k-NN, we firstly obtain the

weather forecast vector WF d+1 or day d+1 from the weather forecast. Then the

k nearest neighbours for d+1 are determined - these are the days with the most

similar weather vectors WF (smallest distance) to WF d+1. In our experiments,

we used the Euclidean distance and the value of k was determined based on the

performance on the validation set.

To generate the PV power prediction for day d+1, k-NN takes the average of the

half-hourly PV data of the k neighbors: p̂d+1
t = 1

k

∑k
j=1 p

j
t , where p̂d+1

t is the

predicted PV value at time t for day d+1, t=1,,20 and j is the day index of the

neighbors.

Group 3: Statistical Models
For comparison, we also implemented two statistical models: a seasonal ARIMA and

a Holt-Winter ES.

Group 4: Baselines
We develop three persistence models, used as baselines.

The first baseline (Bpersistent) does not use clustering. It considers the half-hourly

PV power outputs from the previous day d as the prediction for the next day d+1.

This means that the prediction for day d+1, p̂d+1 = [p̂d+1
1 , p̂d+1

2 , ..., p̂d+1
20 ], is given by

P d = [pd1, p
d
2, ..., p

d
20]. This baseline is called a persistence model.
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The second baseline (Bcluster) uses the clustering of days and is a cluster based

persistence model. To make a prediction for day d+1, it finds the most recent day

(closest in time) to d+1 from the same cluster, and predicts its half-hourly PV power

outputs. This means that the prediction for day d+1, p̂d+1 = [p̂d+1
1 , p̂d+1

2 , ..., p̂d+1
20 ] is

given by P d = [pr1, p
r
2, ..., p

r
20], where both days r and d+1 belong to same cluster Cx

and day r is the closest to day d+1 among all days in Cx.

The third baseline (Bpair) is a WPP based persistent model. To make a prediction

for day d+1, it follows the WPP method to find the cluster labels for days d and d+1

and their pair pattern Cpre to Cpos. It then searches the historical data to find the most

recent pair of consecutive days (day s to day s+1) with the same pair pattern and uses

the PV power data of day s+1 as the prediction. More specifically, the prediction for

p̂d+1 = [p̂d+1
1 , p̂d+1

2 , ..., p̂d+1
20 ] is given by P d = [ps+1

1 , ps+1
2 , ..., ps+1

20 ] such that the pair

patterns from day d to day d+1 and day s to day s+1 are the same, and days s and s+1

are the closest pair of days with the same pair pattern.

4.2.2.3 Results and Discussion

A. Overall Performance
Table 4.5 shows the accuracy results (MAE and RMSE) for all methods and Fig. 4.12

shows the MAE results from Table 4.5 in sorted order for visually comparison.

The results show that the proposed WPP methods are the most accurate group of

methods, with WPP using NN outperforming WPP using SVR and achieving MAE =

99.74 KW and RMSE = 136.78 KW. All pair-wise differences in accuracy between

the two WPP methods and the other methods used for comparison are statistically

significant at p ≤ 0.001 except the difference between the WPP-based SVR and the

clustering-based NN which is statistically significant at p ≤ 0.05.

The second best group of methods is the clustering-based, followed by the two

baselines Bpair and Bcluster, then the non-clustering machine learning methods and

ES, and finally the persistent baseline Bpersistent and ARIMA.

The first two groups of approaches both use clustering, either pair-based or stan-

dard, and significantly outperform their nonclustering-based counterparts (SVR and

NN). This shows that grouping the days based on their weather patterns and building

specialized prediction models for each group is useful.
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Figure 4.11: Comparision of the WPP, clustering-based and non-clustering-based ap-
proaches for NN and SVR separately

Fig. 4.11 compares the accuracy of WPP with NN and SVR with its clustering-

based and non-clustering counterparts using these algorithms. It can be seen that the

proposed WPP approach outperforms the other methods for both NN and SVR. When

NN is used, WPP improves the accuracy (MAE) of the clustering based and non-

clustering-based methods with 12.55% and 20.07% respectively. When SVR is used,

this improvement is 6.55% and 11.58% respectively. We can also see that NN performs

better than SVR in the clustering based methods.

The statistical methods show mixed results. While ES performs relatively well and

similarly to the non-clustering based machine learning methods, ARIMA is the least

accurate method, performing significantly worse than all other methods, including the

baselines.

By comparing the performance of the baselines we can see that Bpair and Bcluster

perform very well, and achieve higher accuracy than all non-clustering-based machine

learning and statistical methods. Both Bpair and Bcluster are clustering-based base-

lines, which again shows the advantages of using clustering to group the days with

similar weather. Bpair is the best performing baseline and is closely related to the

WPP approach. In summary, we can see that the proposed WPP approach, with both

NN and SVR, is more effective than the standard clustering based methods and the

non-clustering-based machine learning and statistical methods. It significantly im-

proves the performance of its non-clustering-based NN and SVR counterparts. The
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Table 4.5: Accuracy of all methods
Methods MAE (kW) RMSE (kW)

Group 1: WPP-based
(P1) WPP-based NN 99.74 136.78
(P2) WPP-based SVR 107.36 144.39
Group 2: Clustering-based

(C1) Clustering-based NN 114.06 158.58
(C2) Clustering-based
SVR 114.88 149.70

Group 3: Non-clustering-based
(N1) NN 124.79 166.15
(N2) k-NN 126.58 183.18
(N3) SVR 121.42 159.63
Group 4: Statistical

(S1) ARIMA 164.22 196.69
(S2) ES 125.20 171.42
Group 5: Baselines

(B1) Bpersistent 129.46 197.36
(B2) Bcluster 120.73 182.69
(B3) Bpair 116.80 179.45
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prediction modelFigure 4.12: Performance of all prediction models (MAE)

pair-based persistent model, closely related to WPP, also shows good results and out-

performs all non clustering-based methods.

B. WPP Cluster Analysis
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Figure 4.13: Comparison of the centroid values

To get a better understanding of the performance of WPP, we examine the cluster

centroids which summarize the weather characteristics of the days in each cluster. Ta-

ble 4.6 shows the centroids of the two clusters and Fig. 4.13 compares the centroid

values. The days in cluster C1 have considerably high solar irradiance and temperature

than the days in cluster C2, and also lower humidity and higher wind speed. Thus, the

days in cluster C1 are most likely to be clear sunny days, while the days in cluster C2

are more likely to be cloudy or rainy.

C. WPP Performance for Each Pair Pattern
We also investigate the performance of WPP for each of the four pair patterns. Ta-

ble 4.7 provides detailed information for each pair pattern prediction model using NN.

We can see that most of the days in the training and validation set belong to pair pat-

terns {C1 - C1} and {C2 - C2} , and the accuracy of the corresponding prediction

models is the highest (MAE = 92.24 and 92.74 kW, respectively). The prediction mod-

els for pair patterns {C2 - C1} and {C1 - C2} are less accurate, especially the one for
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Table 4.6: Centroids of the two clusters
Cluster Feature Min Average Max

Solar irradiance 0.1190 0.4879 0.7899
C1 Temperature 0.4296 0.5814 0.6575

Humidity 0.4087 0.5429 0.7632
Wind speed 0.0492 0.2261 0.3914

Solar irradiance 0.0350 0.2462 0.4770
C2 Temperature 0.3055 0.4302 0.4985

Humidity 0.5915 0.7066 0.8708
Wind speed 0.0468 0.1568 0.2778

Table 4.7: Detailed information for each pair pattern prediction model for WPP-based
NN

WPP
Model

Training+
Validation
Size

Testing
Size

Best
Hidden
Layer
Size

MAE
(kW)

RMSE
(kW)

C1 - C1 267 105 9 92.24 127.04
C1 - C2 50 17 27 153.25 195.99
C2 - C1 49 18 15 108.19 152.26
C2 - C2 183 40 24 92.74 122.27
Overall 549 180 N/A 99.74 136.78

{C1 - C2} , which can be explained with the smaller size of the training and validation

sets, and also with the bigger weather variability when there is a transition between

sunny and cloudy days, which makes predicting the PV power more difficult.

D. WPP Performance for Each Cluster
We further analyse the performance of WPP for each cluster. The days in the testing

set are labelled with their weather cluster and Table 4.8 shows the per-cluster results

Table 4.8: Per-cluster comparison of WPP-based NN and Clustering-based NN
Cluster WPP-based NN Clustering-based NN

MAE (kW) RMSE (kW) MAE (kW) RMSE (kW)
C1 94.62 131.17 107.53 155.79
C2 110.79 148.15 128.17 164.43
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for WPP using NN and the clustering-based NN which is used for comparison. We can

see that both methods give higher accuracy for sunny days (cluster C1) than for cloudy

or rainy days (cluster C2).

E. Computational Time
The training and prediction times of WPP are both acceptable. The training time was

less than 5 minutes for both WPP with NN and SVR. As the training is done offline,

this is an acceptable requirement for both offline and online applications of WPP. WPP

was also fast at making predictions for new instances taking only a few seconds.

4.2.2.4 Conclusion

In this study, we propose a new weather type pair pattern approach, called WPP, to

directly and simultaneously predict the PV power for the next day at half-hourly in-

tervals. This new method extends the direct clustering-based methods discussed in

Section 4.2 and aims to better utilize the similarity of PV power profiles between con-

secutive days. WPP firstly partitions the days from the training data into clusters based

on their weather characteristics and then uses the cluster label of the consecutive days

to form pair patterns. A separate prediction model using NN or SVR is then built for

each pair pattern group, and used to make predictions for the new days.

We evaluate the performance of WPP using PV and weather data for 2 years from a

large PV plant in Australia. The results show that WPP was the most accurate method,

outperforming the standard clustering-based methods, and also non-clustering- based

methods using NN, SVR and k-NN, statistical (seasonal ARIMA and ES) and three

persistence baselines. All differences in accuracy between WPP and the other methods

are statistically significant.

The two highly accurate types of methods, WPP and the standard clustering-based,

utilise clustering, which shows that grouping the days based on their weather patterns

and building specialized prediction models for each group is useful. By utilizing the

similarity between the weather and PV profiles of the consecutive days, WPP is able to

improve the accuracy of the standard clustering-based methods which do not consider

this information. The good performance of the pair-based baseline also reinforces the

usefulness of this information. The best accuracy was achieved by the WPP based NN

(MAE = 99.74 KW), which is an improvement of 12.55% and 20.07% compared to



CHAPTER 4. CLUSTERING-BASED METHODS 95

the clustering-based NN and the non- clustering-based NN respectively.

4.3 Summary

This chapter discusses clustering-based methods for solar power prediction tasks. Most

of the existing methods build a single prediction model for all weather types. In con-

trast, the clustering-based methods take advantage of the similarity of the PV profiles

of days with similar weather patterns. To utilize this similarity, they partition the days

into groups with similar weather characteristics using clustering and then build a sep-

arate, specialized, prediction model for each cluster.

Section 4.1 proposed a new approach for predicting the solar power based on direct

clustering. The main idea is to cluster the days based on their weather characteristics

and build a separate prediction model for each cluster using the PV solar data. The

case study uses Australian PV data for two years and shows that the direct clustering-

based method is more accurate than the general, single prediction model for all types

of days.

Section 4.2 introduces the weather pair patterns (WPP) clustering-based method,

which extends the direct clustering-based method by utilizing the relationship between

consecutive days. WPP builds a separate prediction model for each type of cluster

transition between two consecutive days. The case study shows that WPP outperforms

the direct clustering-based method.

In summary, our results show that methods using clustering to partition the days

into groups with similar weather characteristics and then build a separate prediction

model for each group, were more beneficial for solar power forecasting, than methods

using one prediction model for all types of days.



Chapter 5

Ensemble Methods

This chapter describes ensemble methods for solar power prediction. Most of the pre-

vious work on time series prediction has focused on using single prediction models.

Ensemble methods combine the predictions of several prediction models in some way

to form the final prediction, and have been shown to be very competitive [80, 82, 82].

One of the key ideas for building successful ensembles is to include diverse ensem-

ble members [96], i.e. ensemble members with different expertise, which can be used

to handle different scenarios [97, 98]. By combining the predictions of the ensemble

members using appropriate combination strategies, the ensemble may achieve higher

forecasting accuracy than the individual ensemble members.

Diversity can be generated in various ways: (i) by altering the training data for

each ensemble member (e.g. by using different data sources or different data subsets;

different pre-processing methods or by introducing noise); (ii) by altering the feature

set for each ensemble member (e.g. by using feature subsets) or (iii) by altering the

prediction models (e.g. using NNs with different topologies, different parameters or

training algorithms).

Based on the adaptation strategy, ensembles can be divided into two main cate-

gories: static and dynamic:

• Static ensembles combine the predictions of the individual ensemble members

in the same way (e.g. by taking the average of the individual predictions), regard-

less of the changes in the time series or the relative performance of the ensemble

members.

96
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• Dynamic ensembles combine the predictions of the ensemble members adap-

tively. For example, by tracking the error of the ensemble members on recent

data and weighting their contribution for the new data accordingly or by pre-

dicting the performance of the ensemble members for the new data and weight-

ing their contribution accordingly . In this way the ensemble is adapted to the

changes in the time series and the changes in the relative performance of the

ensemble members.

In this chapter, we propose several static and dynamic ensembles for solar power

forecasting, and compare them with traditional ensembles such as Bagging, Boosting

and Random Forest. Section 5.1 describes the static ensembles and the dynamic en-

sembles based on previous performance. Section 5.2 describes the dynamic ensembles

based on predicted future performance using meta-learning. The main results of this

chapter have been published in [99, 100].

5.1 Static Ensembles and Dynamic Ensembles Based

on Previous Performance

As already mentioned, effective ensembles include diverse ensemble members. We

propose three strategies to generate diverse ensemble members, and based on them cre-

ate three types of static ensembles combining NNs. The final prediction is formed by

taking the average of all individual predictions. In addition, we propose four strategies

for constructing dynamic ensembles of NNs which adaptively weight the contribution

of the ensemble members based on their recent performance.

5.1.1 Static Ensembles

The key idea of using ensembles for forecasting is to utilize the benefits generated by

the diversity among the individual ensemble members. We generate diversity using

three strategies: 1) by altering the training data, 2) by altering the feature set and 3) by

combining these two strategies. Based on these strategies we construct the following

static ensembles of NNs:

1. Ensemble 1 (EN1). It uses random example sampling of the training data to

generate different training subsets for the ensemble members.
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2. Ensemble 2 (EN2). It uses random feature sampling to generate data subsets

with different features for the ensemble members.

3. Ensemble 3 (EN3). It combines the previous two strategies to generate data

subsets with both randomly sampled examples and features.

As a base classifier (ensemble member) in all ensembles we use a single NN,

trained with the Levenberg-Marquardt version of the backpropagation algorithm. It

takes as an input the PV power of the previous day (all values of the day or less, de-

pending on the ensemble type) and predicts the PV power of the next day. In this study,

we still consider the task of predicting the half-hourly data of the next day simultane-

ously (maximum 20 data points for each single day).

Using the previous day as a prediction model was motivated by Wang et al. [95],

where it was shown that the PV power of the previous day is a good prediction model

for the PV power of the next day. Thus, a single ensemble member in all ensembles

is a multi-layer perceptron with 1 hidden layer, 20 or less input nodes and 20 output

nodes. The number of hidden neurons in all NNs was set to the average of the input

and output neurons.

To make a prediction for a new day d+1, the predictions of the individual ensemble

members are combined by taking the arithmetic average:

P̂ d+1 =
1

s

S∑
j=1

p̂d+1
j

where p̂d+1
j the prediction of ensemble member j for day d+1, and the index j is over

all S ensemble members.

5.1.1.1 EN1 - Random Example Sampling

Fig. 5.1 shows the structure of ensemble EN1 which uses the first strategy - random

example sampling. EN1 consists of S NNs. Each NN is trained using a different

training subset generated by sampling with replacement, with a given sampling rate

Rs (e.g. 75%). We firstly create a bootstrap sample for each NN which contains only

Rs% of the d examples for the first year, which is the whole data used for training and

validation. These examples are then randomly divided into training set (70%, used for
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Figure 5.1: Ensemble EN1 using random example sampling

training of the NN) and validation set (30%, used for selecting the NN parameters).

Thus, the training set for a single NN will contain a smaller number of examples than
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the original training set and will have the same number of features.

The difference between our and the standard bootstrap sampling is that instead

of sampling n instances, where n is the number of examples, we sample a smaller

number, determined by the sampling rate. Since the sampling is with replacement, the

maximum number of unique examples in each training set is Rs%× d× 70%.

A single ensemble member: A single NN in EN1 has a full set of nodes (20

for this study) and output nodes, corresponding to the half-hourly PV power of the

previous and next day respectively.

Parameters: In our experiments we used S = 30 ensemble members (single NNs)

and a sampling rate Rs=75%. The sampling rate was selected by varying Rs from 25%

to 75% with an increment of 25%, evaluating the performance of the ensemble on the

validation set and selecting the best Rs (the one with the highest accuracy).

Number of unique examples: We build 30 member NNs in the ensemble. The

number of unique examples for the selected sampling rate varied from 46% to 59% for

the all ensemble members.

5.1.1.2 EN2 - Random Feature Selection

Fig. 5.2 shows the structure of the second static ensemble (EN2) which uses random

feature selection. EN2 also consists of S NNs. However, unlike EN1 where each NN

uses all features and a subset of all training examples, in EN2 each NN uses a subset

of all features and all training examples. The number of features is determined by the

feature sampling rate Rf . We firstly form a feature bootstrap sample for each single

NN which contains all d examples but only Rf% of their features, which are randomly

selected using sampling with replacement. Each sample is then randomly split into

training and validation set containing 70% and 30% of the examples, respectively.

Thus, the maximum number of unique features in each training set is Rf%× f , where

f is the number of all features.

Single ensemble member: A single NN in EN2 has k input nodes (k ≤ Rf%×f )

corresponding to the selected features (PV power outputs for the previous day) and 20

output nodes corresponding to all 20 half-hourly PV power outputs for the next day.

Parameters: As in EN1, we used S = 30 ensemble members and the same pro-

cedure for selecting the best feature sampling rate Rf based on the validation set. The
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Figure 5.2: Ensemble EN2 using random feature sampling
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selected best Rf was 50%.

Number of unique features: The number of unique features for the selected sam-

pling rate varied from 45% to 50% across the 30 ensemble members.

5.1.1.3 EN3 - Random Sampling and Random Feature Selection

The third strategy is a combination of the previous two. As shown in Fig. 5.3, an

ensemble EN3 with S NNs is built and each NN is trained using a subset of the training

data as well as a subset of all features.

Firstly, a random sampling with replacement as in EN1 is applied to form training

sets for each ensemble member. The best sampling rate Rs is selected using the same

procedure as in EN1.

Secondly, three different feature sampling rates Rf are applied to each training

set to select only a subset of the features: Rf1 = 25% for the first 1/3 of the NNs,

Rf2 = 50% for the second 1/3 of the NNs, and Rf3 = 75% for the last 1/3 of the

NNs.

Single ensemble member: Each NN in EN3 has k input nodes corresponding to

the sampled features (PV power outputs of the previous day) and 20 output nodes

corresponding to all 20 half-hourly PV power output of the next day. As in EN1 and

EN2, we used the same number of ensemble members: S = 30.

Parameters: The sampling rate Rs is selected using the validation set as in EN1

and EN2; the best Rs was 50%. The feature sampling rates were set as follows: Rf1 =

25%, Rf2 = 50% and Rf3 = 75% as described above.

Number of unique examples and features: The number of unique examples for

the selected sampling rate varied from 33% to 43% for the 30 ensemble members.

The number of unique features was 20-30% for the first 1/3 of the ensemble members,

40-50% for the next 1/3 and 64-70% for the last 1/3.

5.1.2 Dynamic Ensembles Based on Previous Performance

The proposed ensembles EN1, EN2 and EN3 are static - the way they combine the

predictions of the individual ensemble members do not change with time or as the

time series evolves. We also explored if an adaptive combination would be beneficial.
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Figure 5.3: Ensemble EN3 using both random example and feature sampling
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We developed four dynamic ensemble strategies that we applied to the best performing

static ensemble.

The main idea is to dynamically weight the contribution of the ensemble members

based on their previous performance. Thus, the predictions of the ensemble mem-

bers are combined using weighted average instead of simple arithmetic average. To

predict a new day d+1, each ensemble member NNi is assigned a weight wd+1
i cal-

culated based on its most recent performance, i.e. its performance during the last D

days. Higher weights are assigned to the more accurate ensemble members and lower

weights to the less accurate ones. The weights are re-calculated for every new day that

needs to be predicted. Thus, the weights of the ensemble members for day d+1 depend

on their performance during the previous D days which makes the ensemble dynamic.

The motivation behind using dynamic ensembles is that the different ensemble

members have different areas of expertise, with their performance changing as the

time series evolves over time. By tracking the error of the ensemble members on

recent data, we can estimate their area of expertise and weight their contribution in the

final prediction, so that the most suitable ensemble members for the new example will

receive the highest weights. Thus, we adapt the ensemble to the changes in the time

series and the expertise of the ensemble members.

In particular, we investigated two main strategies for calculating the weights of

the ensemble members: linear transformation and non-linear transformation using the

softmax function:

1. Linear transformation for calculating weights. The weight of the ensemble

member NNi for predicting day d+1 is calculated as:

wd+1
i =

1− enormi∑S
j=1(1− enormj )

where enormi is the total error of ensemble member NNi in the last D days, nor-

malised between 0 and 1, and j is over all S ensemble members.

As an error e we used the MAE, summed over the previous D days. The number

of previous days D was set to 7, the length of a week. The subtraction of the error

from 1 is necessary as higher errors should be associated with lower weights and

vice versa. The denominator ensures that the weights of all ensemble members

sum to 1.
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2. Non-linear transformation for calculating weights. The weight of the ensem-

ble member NNi for predicting day d+1 is calculated as a softmax function of

the negative of its error ei:

wd+1
i =

exp(−ei)∑S
j=1 exp(−ej)

where ei is the total error of ensemble member NNi in the last D days, j is over

all S ensemble members and exp denotes the exponential function.

As in the linear transformation above, we used the MAE as e and D was set to

7 days. By taking the negative of the error, higher errors will be associated with

lower weights and vice versa. The denominator again ensures that the weights

of all ensemble members sum to 1.

In summary, by using the softmax function, the weight of an ensemble member

decreases exponentially as its error increases. In contrast, by using the linear func-

tion, the weight of an ensemble member decreases linearly as its error increases. In

addition, the least accurate ensemble member will be assigned a weight of 0, and thus,

effectively will be dropped out from the prediction.

The final prediction of the dynamic ensemble is calculated by the weighted average

of the predictions of the individual ensemble members:

P̂ d+1 =
S∑

j=1

P̂ d+1
j · wd+1

j

We also considered combining the predictions of the K best ensemble members,

based on their error in the last D days, instead of combining all ensemble members.

This led to four different dynamic ensemble strategies - linear vs non-linear weight

calculation and combining all vs combining the best K ensemble members.

5.1.3 Case Study

In this section, we describe the case study we conducted to evaluate the performance

of the proposed static and dynamic ensembles. We used Australia data for two whole

years, from 1 January 2015 to 31 December 2016. We compare the performance of
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the proposed static and dynamic ensembles with a single NN, SVM, k-NN and a per-

sistence model as baseline, as well as with the traditional ensembles bagging, boosting

and random forests.

5.1.3.1 Experimental Setup

As before, we consider the task of predicting the half-hourly PV power outputs for the

next day at 30-min intervals. The prediction is based on using historical PV data only.

Thus, it doesn’t depend on weather information, which is an advantage as meteoro-

logical measurements for previous days and reliable weather forecasts for future days,

for the location of the PV panels are not always available, while previous PV data is

readily available.

More specifically, given a time series of historical PV power outputs up to the day

d: [p1, p2, p3, ..., pd], where pi = [pi1, p
i
2, p

i
3, ..., p

i
20] is a vector of 20 half- hourly power

outputs for the day i, our goal is to forecast PV d+1, the half-hourly power output for

the next day d+1.

As in the previous chapters, we use again MAE and RMSE as evaluation measures.

A. Data Sources and Preprocessing
We collected and used PV data for two complete years: 2015 and 2016. We applied

similar preprocessing methods as in the previous case studues to replace the missing

values and normalize the data. The proportion of missing values of this dataset is

0.02%. The whole dataset contains 14, 620(= (365 + 366)× 20) data points in total.

B. Training, Validation and Testing Sets
We divide the PV power data into three subsets:

1. Training - 70% of the 2015 data; it is used for model training

2. Validation - the remaining 30% of the 2015 data; it is used for parameter selec-

tion

3. Testing - the 2016 data is used to evaluate the accuracy of all models
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5.1.3.2 Methods for Comparison

We compare the proposed ensembles with two groups of methods: (i) single forecast-

ing methods: a single NN, SVR, k-NN and a persistence model used as a baseline, and

(ii) traditional ensemble methods: bagging, boosting and random forest.

A. Single Forecasting Methods
We build the same single forecasting models as we did for the case studies in Chapter

3 and 4. In short, we have four models built:

NN model. We build a NN model with one hidden layer of m nodes, where m was

set to the average of the input and output nodes. It takes as an input the 20 half-hourly

PV power data of the previous day d-1 and predicts the 20 half-hourly PV data for day

d.

SVR model. The SVR model is similar to the NN model, except that we train 20

SVRs, each predicting one of the 20 half-hourly value for the next day d+1. All SVRs

take as an input the 20 half-hourly PV values of the previous day d.

k-NN model. To forecast the PV power data of day d+1, k-NN firstly finds the k

nearest neighbors of day d - these are the days from the training set with most similar

PV power profile using the Euclidean distance. To compute the predicted PV power

output for day d+1, it then finds the days immediately following the neighbors and

averages their PV power.

Persistence model. As a baseline, we developed a persistence model which uses

the PV power output of day d as the forecast for day d+1.

B. Ensembles
The second group includes classic ensemble methods: bagging, boosting and random

forests, which are very successful tree-based ensembles. When used for forecasting,

these methods combine regression trees.

Bagging (Bagg) generates diversity by altering the training data for each ensemble

member. It creates a bootstrap sample with size n, where n is the number of training

examples, for each regression tree, and then combines the predictions of the individual

trees by taking the average.

Boosting (Boost) produces a series of prediction models iteratively, where each
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Table 5.1: Accuracy of all static methods
Method MAE (kW) RMSE (kW)

EN1 110.78 145.75
EN2 111.31 145.34
EN3 102.50 134.25
NN 116.64 154.16
SVR 121.58 158.63
k-NN 127.64 166.15
Bagg 109.87 146.40
Boost 118.08 158.80
RF 110.29 146.25
P 124.80 184.29

new prediction model focuses on the examples that were misclassified by the previ-

ous model. It uses a weighed vote based on previous performance to combine the

predictions of the individual trees.

Random Forest (RF) uses two strategies to generate diversity in the trees that are

combined: bagging and random feature selection. Specifically, it firstly uses bagging to

generate bootstrap samples and then grows a regression tree for each sample. However,

when selecting the best feature as a tree node at each step, it only considers k randomly

selected features, from all features available at the node. The individual tree predictions

are combined by taking the average. RF can be seen as a bagging ensemble of random

trees.

For consistency with EN1, EN2 and EN3, the number of trees in Bagg, Boost and

RF was set to 30. As regression trees cannot predict all 20 values for the next day

simultaneously, a separate ensemble is created for each half-hourly value, as in the

SVR model. Thus, we create 20 ensembles of each type.

5.1.3.3 Results and Discussion

A. Static Ensembles
Table 5.1 shows the accuracy results of all static forecasting methods and Fig. 5.4

presents graphically the MAE results in sorted order for visual comparison. The RMSE

results follow the same trend.

The main results can be summarized as follows:
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Figure 5.4: Comparison of forecasting methods (MAE)

• EN3 is the most accurate model, followed by Bagg and RF. EN3 has an addi-

tional advantage - it directly predicts the 20 half-hourly values for the next day,

while Bagg and Boost required to build a separate ensemble for each value.

• EN1 and EN2 outperform the single NN which shows that the diversity brought

by the random sampling (EN1) and random feature selection (EN2) was benefi-

cial for improving the accuracy.

• EN1 and EN2 perform similarly, which indicates that the two diversity strategy

had similar benefits.

• EN3 is more accurate than EN1 and EN2. This shows that combining both ran-

dom sampling and random feature selection can further improve the performance

of ensembles which utilize only one of these strategies.

• All ensemble methods (both the proposed and classical) are better than all single

models.

• From the single prediction models, the best accuracy is achieved by NN and

SVM, followed by k-NN and finally the persistence model. NN has an advantage

over SVR as only one NN model is trained which predicts all values for the next

day simultaneously.

• All forecasting models except k-NN outperform the persistence baseline model.
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Table 5.2: EN3 dynamic ensembles - summary
Calculating weights Combining ensemble members

Method Linear Non-linear All Only best K

EN3-lin
√ √

EN3-sofmax
√ √

EN3-bestK-lin
√ √

EN3-bestK-softmax
√ √

• All differences in accuracy between EN1, EN2, EN3 and the other prediction

models are statistically significant at p ≤ 0.05, except the difference between

EN1 and EN2.

B. Dynamic Ensembles
We applied the four dynamic ensemble strategies described in Section 5.1.2 to the best

performing static ensemble EN3. These strategies are summarized in Table 5.2.

For the versions using the best K ensemble members, K was set to 10, 15 and 20,

which is 30%, 50% and 67% of all ensemble members. The best results were achieved

for K = 15 for EN3-bestK-lin and K = 10 for EN3-bestK-softmax.

Table 5.3 shows the accuracy results of the four dynamic ensembles. Fig. 5.5

presents graphically these results in sorted order and compares them with the accu-

racy of the static ensemble.

A pair-wise comparison for statistical significance of the differences in accuracy

was conducted using the t-test. The results showed that all pair differences between

the EN3 dynamic and static ensembles are statistically significant at p ≤ 0.05 except

the difference between two of the dynamic versions: EN3-lin and EN3-bestK-lin.

We can summarize the results as follows:

• All dynamic versions are more accurate than the static ensemble, and the differ-

ences are statistically significant.

• The most accurate version is EN3-bestK-lin which uses linear weight calculation

and combines only the best K ensemble members. It is closely followed by EN3-

bestK-softmax which also combines the best K ensemble members but uses a

non-linear function to calculate the weights.
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Table 5.3: Accuracy of EN3 dynamic ensembles
Method MAE (kW) RMSE (kW)

EN3-lin 101.64 130.79
EN3-sofmax 102.40 131.36
EN3-bestK-lin 100.46 130.61
EN3-bestK-softmax 100.69 130.57
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Figure 5.5: Comparison of EN3 dynamic ensembles (MAE)

• The dynamic ensemble versions using linear calculation of the weights outper-

formed the versions using the nonlinear softmax calculation of the weights.

• The versions combining only the best K ensemble members outperformed the

versions combining all ensemble methods, for both linear and nonlinear weights.

5.1.3.4 Conclusion

In this case study, we considered the task of simultaneously forecasting the PV power

output for the next day at half-hourly intervals, using only previous PV power data. We

evaluated the proposed ensembles using Australian PV data for two years, and com-

pared their performance with classical and state-of-the-art ensembles such as bagging,

boosting and random forests, and also with four single prediction models (NN, SVM,

k-NN and persistence).
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Our results showed that all three static NN ensembles were beneficial they were

more accurate than a single NN and all other single and classical ensemble meth-

ods used for comparison, and the differences were statistically significant. Ensemble

EN3 which combines both random example sampling and random feature selection

was the most effective ensemble. All four dynamic versions of EN3 resulted in fur-

ther improvements in accuracy, which were also statistically significant. The most

accurate dynamic ensemble (EN3-bestKlin) uses linear transformation to calculate the

contributing weights of the ensemble members and combines only the best K ensemble

members. It achieved MAE = 101.64 kW and RMSE = 130.79 kW.

Hence, we conclude that EN3 and its dynamic versions are promising methods for

solar power forecasting. This case study especially highlights the potential of dynamic

ensembles for accurate solar power forecasting.

5.2 Dynamic Ensembles Based on Predicted Future Per-

formance

The dynamic ensemble described in the previous section tracks the error of the en-

semble members on previous data and converts this error into weights, used in the

weighed combination of predictions for the new day. Here we investigate a different

approach that is based on predicting the error of the ensemble members for the new

day and converting this error into weights. The prediction is done using meta-learners,

one for each ensemble member. The idea of using meta-learners was first proposed

in [101]. We adapt this idea by developing meta-learners for our sampling-based

ensemble members, investigating different weight calculation and different ensemble

member combination strategies.

5.2.1 Methodology

There are three main steps in creating the dynamic meta-learning ensemble EN-meta

as shown in Fig. 5.6:

1. Training ensemble members

2. Training meta-learners
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Figure 5.6: Structure of EN-meta

3. Calculating the weights of the ensemble members for the prediction of the new

example.

We train the ensemble members to predict the PV power for the next day and their

corresponding meta-learners (one for each ensemble member) to predict the error of

this prediction. Thus, each meta-learner learns to predict how accurate the prediction

of the ensemble member will be for the new day based on the characteristics of the day.

The predicted errors are converted into weights (higher weights for the more accurate

ensemble members and lower for the less accurate) and the final prediction is given by

the weighted average of the individual predictions.

5.2.1.1 Training Ensemble Members

We apply the meta-learning strategy to our best static ensemble model (EN3), which

uses both random example sampling and random feature sampling to generate diver-

sity. This is shown in Fig. 5.7.

Random example sampling: We create S bootstrap samples, one for each NN,

using random sampling with replacement and a pre-defined example sampling rate

Rs. Each sample contains only Rs% of the d examples for the first year, which is

the whole data used for training and validation. These examples are then randomly
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Figure 5.7: Training ensemble members

divided into training set (70%, used for training of the NN) and validation set (30%,

used for selecting the NN parameters). Thus, the training set for a single NN will

contain a smaller number of examples than the original training set and will have the

same number of features. The best Rs was selected by experimenting with different

values and evaluating the performance on the validation set (best Rs = 25%).

Random feature sampling: The S training sets from the previous step are filtered

by retaining only some of their features and discarding the rest. This is done by using

feature sampling with replacement with a pre-defined sampling rate Rf . We split the

S training sets into three parts and applied Rf1=25%, Rf2=50% and Rf3=75% for

each third.

A single ensemble member is a NN with f input neurons (f < 20), corresponding

to the sampled features (PV power of the previous day), and 20 outputs, corresponding

to all 20 PV values of the next day. It had one hidden layer where the number of

neurons was set to the average of the input and output neurons, and was trained using

the Levenberg-Marquardt version of backpropagation algorithm. In this study, we still

combined S=30 NNs.

5.2.1.2 Training Meta-learners

Every ensemble member NNi has an associated meta-learner MLi, which is trained to

predict the error of NNi for the new day. Thus, MLi, takes as an input the PV data

for day d and predicts the forecasting error of NNi for day d+1. The error is then

converted into a weight for NNi and used in the weighted average vote combining the
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predictions of all ensemble members.

The motivation behind using dynamic ensembles is that the different ensemble

members have different areas of expertise, with their performance changing as the time

series evolves over time. We can learn to predict the error of an ensemble member for

the next day based on its prior performance. Then we can use these predicted errors

to weight the contributions of the ensemble members in the final prediction, so that

ensemble members that are predicted to be more accurate are given higher weights. In

this way we match the expertise of the ensemble members with the characteristics of

the new day and adapt the ensemble to the changes in the time series.

For this study, we implemented and compared two sets of meta-learners: NN and

k-NN. Both sets contain S meta-learners, one for each ensemble member. Each meta-

learner was trained to predict the Mean Absolute Error (MAE) of its corresponding

ensemble member for the next day.

NN meta-learners. To train a NN meta-learner MLi for ensemble member NNi,

we firstly need to create the training data for it, and in particular to obtain the target

output. Using the trained ensemble member NNi, we obtain its prediction for all ex-

amples from the training set; the input is P d the PV power vector of the previous day

d but containing only the f sampled features, and the output is P d+1, the PV power

vector for the next day d+1 containing all 20 values. We then calculate MAEd+1, the

error for day d+1. A training example for MLi will have the form: [P d, MAEd+1],

where P d is the input vector (containing the same f features as NNi) and MAEd+1 is

the target output. Thus, the meta-learner NN has f input and 1 output neurons. We

again used 1 hidden layer and the number of neurons was set to the average of the input

and output neurons.

k-NN meta-learners. In contrast to the NN meta-learners, there is no need to pre-

train the k-NN meta-learners as the computation is delayed till the arrival of the new

day. Specifically, to build a k-NN meta-learner for ensemble member NNi for the new

day d+1, the PV data of the previous day d is collected and processed by selecting the

same subset of features f as for NNi. Then, the training set is searched to find the k

most similar days to day d in terms of the f features. The errors (MAE) of the NNi for

the days immediately following the neighbors are calculated and averaged to calculate

MAEd+1, the predicted error of ensemble member NNi for day d+1. To select the

value of k, we experimented with k from 5 to 15, evaluating the performance on the

validation set; the best k was 10 and it was used in this study.
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5.2.1.3 Weight Calculation and Combination Methods

Similarly, we conduct the same combination strategies, both linear and non-linear ver-

sions, to combine the predicted results generated by different ensemble members (As

described in Section 5.1.2).

We also considered combining the predictions of only the M best ensemble mem-

bers, based on their predicted error, instead of combining all ensemble members. To

select the best M, we experimented with M=1/3, 1/2 and 2/3 of all ensemble mem-

bers (30 in our study), evaluating the performance on the validation set. Hence there

are four different strategies for combining the individual predictions linear vs non-

linear weight calculation and combining all vs combining only the best M ensemble

members.

5.2.2 Case Study

5.2.2.1 Experimental Setup

To evaluate the proposed meta-learner based method, we conduct a case study using

the same PV data as in Section 5.1.3, considering the same task: predicting the half-

hourly PV power outputs for the next day at 30-min intervals. More specifically, given

a time series of historical PV power outputs up to the day d: [p1, p2, p3, ..., pd], where

pi = [pi1, p
i
2, p

i
3, ..., p

i
20] is a vector of 20 half- hourly power outputs for the day i, our

goal is to forecast PV d+1, the half-hourly power output for the next day d+1.

For consistent comparison, we also use MAE and RMSE as evaluation measures.

The methods used for comparison can be categorized into three groups:

1. Single Models. This is the same with the single models in Section 5.1.3. We use

the same structure and parameters.

2. Classic Ensembles. Similarly, we also implement the regression tree-based en-

sembles Bagging (Bagg), Boosting (Boost) and Random Forest (RF). For con-

sistency with the proposed ensemble, the number of trees in Bagg, Boost and RF

was set to 30. As regression trees cannot predict all 20 values for the next day

simultaneously, a separate ensemble is created for each half-hourly value, as in

the SVR model. Thus, we create 20 ensembles of each type.
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3. Static and Dynamic Ensembles Without Meta-learners. To assess the contri-

bution of the meta-learning component, we also compare the performance of the

dynamic meta-learning ensemble EN-meta with two versions of this ensemble

without meta-learning: static and dynamic, proposed in Section 5.1.

The static ensemble is EN-meta without the meta-learning component and using

the average of the individual predictions to form the final prediction. We refer to

this ensemble as EN-static.

The dynamic ensemble is an extension of EN-static: it uses weighed average

for combining the individual predictions. The weighs of the ensemble members

are calculated based on their previous performance (MAE error) in the last 7

days. The errors of the ensemble members are converted into weights using the

same methods(linear and nonlinear; combining all or only the best M ensemble

members).

We evaluated the different versions using validation set testing; the best re-

sult were achieved for the version using a linear transformation and combining

the best M ensemble members with M=15; we refer to this ensemble as EN-
dynamic.

5.2.2.2 Results and Discussion

A. Performance of EN-meta
Table 5.4 shows the accuracy results of EN-meta for the two different types of meta-

learners and four weight calculation methods. The graph in Fig. 5.8 presents the MAE

results in sorted order for visual comparison. We also conducted a pair-wise com-

parison for statistical significance of the differences in accuracy using the Wilcoxon

ranksum test with p ≤ 0.05. The results can be summarized as follows:

• Overall performance: The most accurate version of EN-meta is kNN-bestM-

lin, which uses kNN meta-leaners, combines the predictions of only the best

M ensemble members and uses linear transformation to convert the predicted

errors into weights. It is followed by kNN-bestM-softmax, which differs only

in the weight calculation function softmax instead of linear, and then by NN-

bestM-softmax.
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Table 5.4: Accuracy of EN-meta versions
EN-meta MAE (kW) RMSE (kW)

with NN meta-learners

NN-lin 88.40 115.35
NN-softmax 89.63 116.13
NN-bestM-lin 87.75 115.55
NN-bestM-softmax 87.68 115.29

with kNN meta-learners

kNN-lin 88.10 114.89
kNN-softmax 89.61 116.11
kNN-bestM-lin 86.77 114.57
kNN-bestM-softmax 87.34 115
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Figure 5.8: MAE comparison

• The pair-wise differences in accuracy between these three best models are not

statistically significant but all other differences between the best model (kNN-

bestM-lin) and the other models are statistically significant.

• All vs best M ensemble members: The EN-meta versions combining only the

predictions of the best M ensemble members are more accurate than their corre-

sponding versions which combine the predictions of all ensemble members and

these differences are statistically significant.
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Table 5.5: Accuracy of all models
Method MAE(kW) RMSE(kW)

EN-meta 86.77 114.57

Single models

NN 116.64 154.16
SVR 121.58 158.63
kNN 127.64 166.15
Persistence 124.80 184.29

Classic ensembles

Bagg 109.87 146.40
Boost 118.08 158.80
RF 110.29 146.25

EN-meta without meta learners

EN-static 102.50 134.25
EN-dynamic 100.46 130.61

• Linear vs softmax weight calculation: The EN-meta versions using linear

weight calculations outperformed their corresponding versions using the soft-

max weight calculation in 3/4 cases but the differences are not statistically sig-

nificant.

• NN vs kNN meta-learners: The EN-meta versions using kNN meta-learners

were more accurate than their corresponding versions using NN meta-learners

in all 4 cases but these differences are not statistically significant.

Based on these results we selected the best version (EN-meta-kNN-bestM-lin) for

further investigation. We will refer to it as EN-meta.

B. Comparison With Other Methods
Table 5.5 compares the accuracy of EN-meta with the single models, classical en-

sembles and the two EN versions without meta-learners (static and dynamic). Fig. 5.9

graphically presents the MAE results in sorted order for visual comparison. The main

results can be summarized as follows:

• The proposed EN-meta is the most accurate method. It considerable outper-

formed all other methods and all differences are statistically significant (Wilcoxon
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Figure 5.9: MAE comparison

sun-rank test, p ≤ 0.05).

• The next best performing methods are EN-dynamic and EN-static, the EN-meta

versions without meta-learners. This shows that the use of meta-learners was

beneficial.

• EN-dynamic was more accurate than EN-static and the difference was statisti-

cally significant. This shows the advantage of tracking the error of the ensemble

members on recent data and correspondingly weighting their contribution in the

weighed vote.

• By comparing the two dynamic ensembles, EN-meta and EN-dynamic, we can

see that the use of meta-learners and the more proactive approach of EN-meta

for assessing the ensemble members - based on predicted error for the new day

rather than error on previous days, gives better results.

• Bagg is the most accurate classic ensemble, followed by RF and Boost. All

classical ensemble models outperform the single models, except for Boost which

performs slightly worse than the single NN.

• From the single prediction models, NN was the best, followed by SVR, P and

k-NN. All forecasting models except k-NN outperform the baseline P model.
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5.2.2.3 Conclusion

In this case study, we evaluated EN-meta - a meta-learning ensemble of NNs, where

the ensemble members are generated using sampling techniques. The key idea is to

pair each ensemble member with a meta-learner and train the meta-learner to predict

the error for the next day of its corresponding ensemble member. The errors are then

converted into weights and the final prediction is formed using weighed average of

the individual predictions. EN-meta is a dynamic ensemble as the combination of

predictions is adapted to the characteristics of the new day based on the expected error.

We investigated four strategies for converting the predicted error into weights and

two types of meta-learners (k-NN and NN). We also compared the performance of

EN-meta with three state-of-the-art ensembles (bagging, boosting and random forest),

four single models (NN, SVM, k-NN and persistence) and two versions of EN-meta

without meta-learners. The evaluation was conducted using Australian data for two

years. Our results showed that EN-meta was the most accurate model, considerably

and statistically significantly outperforming all other methods. The kNN meta-learners

were slightly more accurate than NN and the most effective strategy was combining

only the best M ensemble members and using linear transformation to calculate the

weights. The use of meta-learners to directly predict the error for the new day instead

of estimating it based on the error on the previous days was beneficial.

5.3 Summary

This chapter proposed several methods for constructing static and dynamic ensembles

of NNs for solar power forecasting, evaluated their performance on Australian data

and compared them with classical ensembles (bagging, boosting and random forest)

and single prediction models.

Firstly, in Section 5.1 we proposed three strategies for creating static ensembles

based on random example and feature sampling, and four strategies for creating dy-

namic ensembles, by adaptively weighting the contribution of the ensemble members

in the final prediction based on their recent performance. Our evaluation using Aus-

tralian PV data for two years showed that all static ensembles were beneficial, out-

performing the single models and classical ensembles used for comparison, with EN3

being the most accurate ensemble. All four dynamic versions of EN3 further improved
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the accuracy of EN3.

Next, in Section 5.2 we investigated another type of dynamic ensemble (EN-meta)

which uses predicted performance for the new day instead of actual performance on

past days to calculate the weights of the ensemble members for the combined predic-

tion. Specifically, instead of evaluating the error of an ensemble member on the most

recent previous days and converting it into weight, EN-meta builds a meta-learner for

each ensemble member, which forecasts the error for the new day, and this predicted

error is converted into weight. Our case study showed that the dynamic ensemble using

meta-learners was more accurate than the dynamic ensemble without meta-learning.

Therefore, based on the results, we can conclude that the proposed ensembles are

promising methods for solar power forecasting tasks. Our research in particular high-

lights the potential of dynamic ensembles to generate accurate forecasts.



Chapter 6

Conclusions and Future Directions

6.1 Conclusions

In this thesis, we considered the task of using machine learning methods for predicting

the PV power output for the next day. More specifically, we focused on directly and

simultaneously predicting the PV power for the next day at 30-min intervals, using

data from various data sources: previous PV data, previous weather data and weather

forecasts.

In Chapter 3, we investigated two state-of-the-art instance-based methods for time

series prediction tasks, k-NN and PSF, and discussed their limitations. We proposed

two extensions, addressing these limitations, namely DWkNN and the extended PSF.

DWkDD extends k-NN by considering the importance of the three data sources (his-

torical PV power data, historical weather data and weather forecasts) and assigning

weights to them instead of treating them equally in the final prediction. The best

weights for the data sources are learnt from previous data. Our results using Aus-

tralian data showed that DWkNN was more accurate than the standard k-NN and other

state-of-the-art methods and baselines used for comparison. In the same chapter, we

also discussed the limitation of the standard PSF algorithm, namely its inability to deal

with time series data from more than one source, and proposed two extensions (PSF1

and PSF2) to address this limitation. We evaluated the PSF extensions using Australian

data for two years showing that the proposed extensions were beneficial and were more

accurate than the standard PSF algorithm. We concluded that both the DWkNN and

123
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PSF extensions are promising methods for solar power forecasting, allowing to inte-

grate data from multiple sources.

In Chapter 4, we focused on clustering-based methods, which take advantage of

the similarity between the PV power profiles of days with similar weather profiles.

We proposed two groups of methods: direct clustering-based and and pair patters

clustering-based. The main idea of the direct method is to partition the days based

on their weather characteristics and then build a separate prediction model for each

cluster using the PV solar data. The results of our case study showed that the direct

clustering-based method is more accurate than the general, single prediction model

for all types of days. The second method, Weather Pair Patterns (WPP), extends the

direct clustering-based method by utilizing the relationship between consecutive days.

This method builds a separate prediction model for each type of cluster transition be-

tween two consecutive days. Our results showed that WPP outperformed the direct

clustering-based method. In summary, the proposed methods which use clustering to

partition the days into groups with similar weather characteristics and then build a sep-

arate prediction model for each group, were more beneficial for solar power forecasting

than the methods using one prediction model for all types of days.

In Chapter 5, we investigated the potential of static and dynamic ensemble to im-

prove the performance of single forecasting models. In particular, we created ensem-

bles combining NNs and using only PV data as the weather information may not be

available for the location of the PV plant. Firstly, in Section 5.1 we proposed a num-

ber of strategies for constructing static and dynamic ensembles of NNs. Specifically,

we proposed three strategies for creating static ensembles based on random example

and feature sampling, and four strategies for creating dynamic ensembles by adap-

tively weighting the contribution of the ensemble members in the final prediction based

on their recent performance. Our evaluation using Australian PV data for two years

showed that all static ensembles of NNs were beneficial, outperforming the single NN

and all other single and classical ensemble methods used for comparison. We further

investigated the most effective static ensemble (EN3); the results showed that all dy-

namic versions of EN3 further improved the accuracy, demonstrating the promise of

dynamic ensembles.

In Section 5.2, we investigated another type of dynamic ensemble (EN-meta) which

utilized meta-learners to improve the performance. It uses predicted performance for

the new day instead of actual performance on previous days to calculate the weights
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of the ensemble members for the combined prediction. More specifically, instead of

evaluating the error of an ensemble member on the most recent previous days and

converting it into weights, EN-meta trains a meta-learner for each ensemble member,

which forecasts the error for the new day and converts this predicted error into weights.

Our results showed that the dynamic ensembles using meta-learners were more accu-

rate than the dynamic ensemble without meta-learning. Based on the results in this

chapter, we can conclude that the proposed ensembles of NNs are promising methods

for solar power forecasting, especially the dynamic ensembles.

In conclusion, this thesis addresses the task of directly and simultaneously forecast-

ing the PV power output for the next day at 30-min intervals using machine learning

methods. As a main contribution of this thesis, we have developed novel instance-

based, clustering-based and ensemble methods; we applied them to accomplish this

task - we evaluated them on Australian data and compared them with other machine

learning methods, demonstrating their advantages. We explored the use of different

data sources (historical PV data, historical weather data and weather forecasts), taking

into account that sometimes only the historical PV data may be available for the loca-

tion of the PV plant. The methods proposed in this thesis can be employed by engineers

at PV plants for practical purposes or adopted by researchers for solar, energy-related

or other time series forecasting tasks.

6.2 Recommendations

In this section we provide some general recommendations about the applicability of

the three groups of methods that we have developed: instance-based, clustering-based

and ensembles.

We note that direct comparison between the three groups is not possible as they use

different data sources - the ensemble methods use only PV power data while the other

two groups use PV power, weather and weather forecast data but differ in the weather

and weather forecast features used. In addition, the clustering-based methods (which

were developed first) were evaluated on data from 2013 and 2014, while the other two

groups of methods were evaluated on newer data - 2015 and 2016, due to unavailability

of the required weather data for the older years. Finally, the training/validation/test

split for the clustering-based methods is slightly different than that for the other two
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groups. Each group of methods is comprehensively evaluated and compared with a

number of other methods and baselines in the respective chapter of the thesis.

For practical applications in industry, the characteristics of each group of methods

should be taken into consideration, together with the specific forecasting scenario and

data availability.

The methods discussed in Chapter 3 (DWkNN and extended PSF) are instance-

based. Instance-based methods are also called lazy learning methods as the main com-

putation is delayed till the forecasting stage when the nearest neighbours are found.

Finding neighbours in the extended PSF is faster than in DWkNN as sequences of clus-

ter labels are compared instead of weather or PV vectors. The training for both methods

is fast as it only includes parameter selection. Hence, this group of methods are faster

to train than the clustering-based and ensemble-based methods, but slower at fore-

casting. They may be suitable for scenarios where frequent updates of the model are

required (e.g. for online forecasting) provided the historical window for finding neigh-

bours is appropriately chosen, given the computing resources and time constraints.

Also, both DWkNN and the extended PSF require meteorological variables to be col-

lected. For better performance, accurate weather forecasts are especially important. So

this group of methods should be applied in scenarios where meteorological measure-

ments are readily available, frequent updates of the model are required and the nearest

neighbours can be computed sufficiently fast given the computing resources and time

resources.

The methods discussed in Chapter 4 (direct clustering and weather pair patterns)

are clustering-based. They also require meteorological variables and are thus applica-

ble when weather and weather forecast variables can be easily collected. Compared to

the instance-based methods, the training stage of the clustering-based models is slower

but the forecasting stage is very fast. This means that the clustering-based models are

more suitable for scenarios when less frequent updates are required. Another charac-

teristic of the clustering-based methods is that they split the training data into subsets

based on the cluster label or the weather pair patterns. This suggests that the clustering-

based methods should be used in scenarios where there is sufficient data in each cluster

partition so that accurate prediction models can be built.

The methods discussed in Chapter 5 utilize ensembles of neural networks. They

use only the PV power data, and do not require the availability of meteorological data.

Similarly to the clustering-based methods, the training of the ensembles is slower and
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more computationally expensive than for the instance-based models, but once the en-

semble is trained, the forecasting process is fast. Ensembles are also slower to train

than the clustering-based methods, since each ensemble combines the predictions of

multiple neural networks, which are trained separately. Hence, frequent updates of the

ensembles would take more time than for the other two groups of methods. So the

best scenario for applying ensemble-based methods is when no frequent updates of the

model are required and no meteorological information is easily available. Our results

showed that when using only PV data, without any weather information, the ensemble-

based methods were the most accurate models, with the dynamic meta-learning ensem-

ble EN-meta achieving the best result.

6.3 Future Directions

There are several directions for future work.

First, methods for feature selection can be investigated to select a smaller set of

informative features, before the application of the prediction algorithms. This can be

done for the whole day or for specific time intervals during the day. In our work we

didn’t investigate feature selection methods - we used the whole daily PV and weather

feature vectors. The feature selection can also be used in conjunction with the DWkNN

model from Chapter 3 which considers the importance of the data sources and learns

the best weights for them.

Second, our methods can be evaluated on other datasets, with different character-

istics. Our evaluation was conducted on data collected from the Australian largest

roof-top PV solar plant located in Queensland. The PV power profile of this data set is

relatively stable with two clear patterns: a smooth curve in summer and fluctuation in

winter. Future work could apply and extend our proposed methods to other data sets

with more complex PV and weather profiles. This will help to evaluate the robustness

of our methods for different types of PV and weather patterns.

Third, in our ensemble methods we investigated ensembles combining NNs. Our

methods can be used to combine different types of prediction models and generate

a heterogeneous ensemble, e.g. an ensemble combining LR, SVR and NN. In addi-

tion, dynamic ensembles can be built for different weather types or other scenarios by

analysing the performance of the individual ensemble members. More sophisticated
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strategies for building dynamic ensembles can also be used.

Fourth, the potential of using deep learning approaches such as recurrent neural net-

works, long short-term memory networks, convolutional and temporal convolutional

neural networks should also be explored. Deep learning has shown excellent results

in many applications and its application for solar power forecasting is a promising

direction for future work.

Finally, our methods can also be applied to other energy-related time series such as

wind and electricity demand prediction.
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