54 research outputs found

    Machine-learning methods for integrated renewable power generation: A comparative study of artificial neural networks, support vector regression, and Gaussian Process Regression

    Get PDF
    Renewable energy from wind and solar resources can contribute significantly to the decarbonisation of the conventionally fossil-driven electricity grid. However, their seamless integration with the grid poses significant challenges due to their intermittent generation patterns, which is intensified by the existing uncertainties and fluctuations from the demand side. A resolution is increasing energy storage and standby power generation which results in economic losses. Alternatively, enhancing the predictability of wind and solar energy as well as demand enables replacing such expensive hardware with advanced control and optimization systems. The present research contribution establishes consistent sets of data and develops data-driven models through machine-learning techniques. The aim is to quantify the uncertainties in the electricity grid and examine the predictability of their behaviour. The predictive methods that were selected included conventional artificial neural networks (ANN), support vector regression (SVR) and Gaussian process regression (GPR). For each method, a sensitivity analysis was conducted with the aim of tuning its parameters as optimally as possible. The next step was to train and validate each method with various datasets (wind, solar, demand). Finally, a predictability analysis was performed in order to ascertain how the models would respond when the prediction time horizon increases. All models were found capable of predicting wind and solar power, but only the neural networks were successful for the electricity demand. Considering the dynamics of the electricity grid, it was observed that the prediction process for renewable wind and solar power generation, and electricity demand was fast and accurate enough to effectively replace the alternative electricity storage and standby capacity

    An ensemble framework for day-ahead forecast of PV output in smart grids

    Get PDF
    The uncertainty associated with solar output power is a big challenge to design, manage and implement effective demand response and management strategies. Therefore, a precise PV output power forecast is an utmost importance to allow seamless integration and higher level of penetration. In this research, a neural network ensemble (NNE) scheme is proposed, which is based on particle swarm optimization (PSO) trained feedforward neural network (FNN). Five different FFN structures with 20 FNN in each structure with varying network parameters are used to achieve the diverse and accurate forecast results. These results are combined using trim aggregation after removing the upper and lower forecast error extremes. Correlated variables namely wavelet transformed output power of PV, solar irradiance, wind speed, temperature and humidity are applied as inputs of multivariate NNE. Clearness index is used to classify days into clear, cloudy and partially cloudy days. The forecast results demonstrate that the proposed framework improves the forecast accuracy significantly in comparison with individual and benchmark models

    Mining sensor data in a smart environment: a study of control algorithms and microgrid testbed for temporal forecasting and patterns of failure

    Get PDF
    The generation of active power in renewable energy is dependent on several factors. These variables are related to the areas of weather, physical structure, control, and load behavior. Estimating the future value of the active power to be generated is difficult due to their unpredictable character. However, because of the higher precision required of the estimation, this problem becomes more complex if we examine a short-term temporal prediction. This study presents a method for converting stochastic behavior into a stable pattern, which can subsequently be used in a short-term estimator. For this conversion, K-means clustering is employed, followed by Long-Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) algorithms to perform the Short-term estimate. The environment, the operation, and the generated (normal or faulty) signal are all simulated using mathematical models. Weather parameters and load samples have been collected as part of a dataset. Monte-Carlo simulation using MATLAB programming has been realized to conduct an experiment. In addition, the LSTM and the GRU are compared to see how well they perform in this system. The proposed method's end findings outperform the current state-of-the-art

    Big Data Analysis application in the renewable energy market: wind power

    Get PDF
    Entre as enerxías renovables, a enerxía eólica e unha das tecnoloxías mundiais de rápido crecemento. Non obstante, esta incerteza debería minimizarse para programar e xestionar mellor os activos de xeración tradicionais para compensar a falta de electricidade nas redes electricas. A aparición de técnicas baseadas en datos ou aprendizaxe automática deu a capacidade de proporcionar predicións espaciais e temporais de alta resolución da velocidade e potencia do vento. Neste traballo desenvólvense tres modelos diferentes de ANN, abordando tres grandes problemas na predición de series de datos con esta técnica: garantía de calidade de datos e imputación de datos non válidos, asignación de hiperparámetros e selección de funcións. Os modelos desenvolvidos baséanse en técnicas de agrupación, optimización e procesamento de sinais para proporcionar predicións de velocidade e potencia do vento a curto e medio prazo (de minutos a horas)

    Control System for Electrical Power Grids with Renewables using Artificial Intelligence Methods

    Get PDF
    Modern electrical and electronic devices are very sensitive to the power supply and require steady and stable electric power. Factories may also need electric power within a specific standard range of voltage, frequency, and current to avoid defects in the production. For these reasons electric power utilities must produce an electric power of a specific standard of power quality parameters [EN50160]. Nowadays, renewable energy sources, such as wind energy and solar energy are used to generate electric power as free and clean power sources as well to reduce fuel consumption and environmental pollution as much as possible. Renewable energy, e.g. wind speed or solar irradiance, are not stable or not constant energies over the time. Therefore smart control systems (SCSs) are needed for operate the power system in optimal way which help for producing a power with good quality from renewable sources. The forecasting and prediction models play a main role in these issues and contribute as the important part of the smart control system (SCS). The main task of the SCS is to keep the generated power equal to the consumed power as well as to consider standard levels of power quality parameters as much as possible. Some of previous studies have focused on forecasting power quality parameters, power load, wind speed and solar irradiance using machine learning models as neural networks, support vector machines, fuzzy sets, and neuro fuzzy. This thesis proposes designing forecasting systems using machine learning techniques in order to be use in control and operate an electrical power system. In this study, design and tested forecasting systems related to the power and renewable energies. These systems include wind speed forecasting, power load forecasting and power quality parameters forecasting. The main part of this thesis is focus in power quality parameters forecasting in short-term, these parameters are: power frequency, magnitude of the supply voltage, total harmonic distortion of voltage (THDu), total harmonic distortion of current (THDi), and short term flicker severity (Pst) according to the definition in [EN50160]. The output of the forecasting models of power quality parameters can be used in shifting the load to run in switch time which will help for correct and optimize the quality of the power.Modern electrical and electronic devices are very sensitive to the power supply and require steady and stable electric power. Factories may also need electric power within a specific standard range of voltage, frequency, and current to avoid defects in the production. For these reasons electric power utilities must produce an electric power of a specific standard of power quality parameters [EN50160]. Nowadays, renewable energy sources, such as wind energy and solar energy are used to generate electric power as free and clean power sources as well to reduce fuel consumption and environmental pollution as much as possible. Renewable energy, e.g. wind speed or solar irradiance, are not stable or not constant energies over the time. Therefore smart control systems (SCSs) are needed for operate the power system in optimal way which help for producing a power with good quality from renewable sources. The forecasting and prediction models play a main role in these issues and contribute as the important part of the smart control system (SCS). The main task of the SCS is to keep the generated power equal to the consumed power as well as to consider standard levels of power quality parameters as much as possible. Some of previous studies have focused on forecasting power quality parameters, power load, wind speed and solar irradiance using machine learning models as neural networks, support vector machines, fuzzy sets, and neuro fuzzy. This thesis proposes designing forecasting systems using machine learning techniques in order to be use in control and operate an electrical power system. In this study, design and tested forecasting systems related to the power and renewable energies. These systems include wind speed forecasting, power load forecasting and power quality parameters forecasting. The main part of this thesis is focus in power quality parameters forecasting in short-term, these parameters are: power frequency, magnitude of the supply voltage, total harmonic distortion of voltage (THDu), total harmonic distortion of current (THDi), and short term flicker severity (Pst) according to the definition in [EN50160]. The output of the forecasting models of power quality parameters can be used in shifting the load to run in switch time which will help for correct and optimize the quality of the power.410 - Katedra elektroenergetikyvyhově

    Industrial Applications: New Solutions for the New Era

    Get PDF
    This book reprints articles from the Special Issue "Industrial Applications: New Solutions for the New Age" published online in the open-access journal Machines (ISSN 2075-1702). This book consists of twelve published articles. This special edition belongs to the "Mechatronic and Intelligent Machines" section
    corecore