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• Research on Data Analytics in the electricity sector is growing faster than related fields of research. 
• Studies span the entire electricity value chain, with the main activity in consumption forecasting. 
• The methodological focus is shifting from neural networks to hybrid methods. 
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a b s t r a c t 

The rapid transformation of the electricity sector increases both the opportunities and the need for Data Analytics. 
In recent years, various new methods and fields of application have been emerging. As research is growing and 
becoming more diverse and specialized, it is essential to integrate and structure the fragmented body of scientific 
work. We therefore conduct a systematic review of studies concerned with developing and applying Data Analytics 
methods in the context of the electricity value chain. First, we provide a quantitative high-level overview of the 
status quo of Data Analytics research, and show historical literature growth, leading countries in the field and 
the most intensive international collaborations. Then, we qualitatively review over 200 high-impact studies to 
present an in-depth analysis of the most prominent applications of Data Analytics in each of the electricity sector’s 
areas: generation, trading, transmission, distribution, and consumption. For each area, we review the state-of-the- 
art Data Analytics applications and methods. In addition, we discuss used data sets, feature selection methods, 
benchmark methods, evaluation metrics, and model complexity and run time. Summarizing the findings from the 
different areas, we identify best practices and what researchers in one area can learn from other areas. Finally, 
we highlight potential for future research. 
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. Introduction 

The ongoing decarbonization, decentralization and digitalization of
he electricity sector drive the importance of Artificial Intelligence in
eneral, and Data Analytics in particular. On the one hand, push factors ,
uch as the declining costs of information and communication technol-
gy as well as the advances in computing power, lead to an increasing
vailability of data and new opportunities for its analysis. On the other
and, pull factors , such as the increasing volatility of electricity genera-
ion due to a growing share of renewable energy sources, and a rising
umber of active actors in the electricity system, increase complexity
nd create new needs for Data Analytics. 

Driven by these new opportunities and needs, numerous new meth-
ds and fields of application are emerging, and research is becoming
ore specialized and fragmented. Data Analytics studies today span dif-
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erent areas along the entire value chain, from generation and trading
o transmission, distribution and consumption. Studies also range over
ifferent applications such as forecasting or clustering and different ap-

roaches such as various types of Artificial Neural Networks. Past liter-
ture reviews have focused on certain sub-domains of Data Analytics in
he electricity sector. For example, multiple recent reviews focus on re-
earch centered on the energy consumption in buildings, as one particu-
ar area of the electricity value chain [1–4] . Other papers have analyzed
xisting work about specific applications [5,6] , or approaches [7–9] . On
eview even focuses on a single particular combination of approach, ap-
lication and area [10] . An overview of existing literature reviews is
iven in Table 1 . 

All these reviews provide useful information on their specific sub-
elds of Data Analytics in the electricity sector. However, their lim-

ted focus does not foster comparison or supports a transfer of learnings
rticle under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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Table 1 

Literature reviews in sub-domains of Data Analytics in the electricity sector. 

Study Area-specific Application-specific Approach-specific 

[1–4,11,12] X 

[5,6] X 

[7–9] X 

[13–22] X X 

[23] X X 

- X X 

[10] X X X 
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1 see references [5–7,11,13,14] , [25–68] . 
cross fields. In order to enable researchers and practitioners to apply
nd advance state-of-the-art methods effectively in the future, it is im-
ortant to integrate and structure the comprehensive body of existing
cientific work. This calls for a holistic review across all important areas,
pplications and approaches of Data Analytics in the electricity sector.
herefore, we attempt to make two key contributions with this paper: 

1. We quantitatively capture the big picture of Data Analytics research
in the electricity sector, thus displaying the high-level status quo of
research activity. 

2. We qualitatively analyze over 200 high impact studies in-depth, thus
laying out the inner mechanics of current Data Analytics research,
identifying best practices from different areas, and deriving sugges-
tions for future research. 

For our qualitative analysis, we review in detail the used data sets,
eature selection methods, evaluation metrics, benchmark methods, and
tate-of-the-art methods of each reviewed paper. We acknowledge exist-
ng sub-domain literature reviews where they exist, and reference them
s a source for additional valuable information for the interested reader.

Subsequently, this paper proceeds as follows. Section 2 provides def-
nitions of the dimensions along which studies in this review are catego-
ized. In Section 3 , we describe the methodology used for searching and
electing the most relevant literature. The results are presented in two
ays: Section 4 presents a quantitative analysis, delivering a high-level
verview of the landscape of Data Analytics research in the electricity
ector. Section 5 then provides a structured in-depth review of the most
nfluential studies. Finally, in Section 6 we summarize the review find-
ngs, derive best practices, and outline potential key trends for future
esearch. 

. Definitions and dimensions of analysis 

We structure our review along three dimensions: area, application

nd approach , which we describe in more detail in the following. 
Area . The electricity system value chain is composed of multiple

omponents. The present study derives the following categories: (i) Gen-
ration, (ii) Trading, (iii) Transmission and Distribution, (iv) Consump-
ion, and (v) System. Generation is the production of electric energy
arried out in power plants, while trading refers to the buying and sell-
ng of electricity on wholesale markets. Transmission and Distribution
enotes the delivery of electricity via grids. Consumption is the demand
nd end-usage of electricity. Studies that contemplate the system as a
hole and simultaneously assess multiple areas are grouped in the Sys-

em area. 
Application . This study defines application as the specific task or ac-

ivity on which an investigation focuses. Based on typical applications
rom Data Analytics literature, four categories are defined: (i) Forecast-
ng and Prediction (Supervised Data Analytics), (ii) Clustering (Unsuper-
ised Data Analytics), (iii) Monitoring and Controlling (both supervised
nd unsupervised), and (iv) Other. Forecasting and Prediction are both
oncerned with the estimation of outcomes for unseen data in the future.
n addition, because the terms ’prediction’ and ’forecasting’ are used as
ynonyms by many authors, the first category contemplates both appli-
ations. Clustering, on the other hand, is the aggregation of objects into
omogeneous groups. As for Monitoring and Controlling, both terms are
elated and involve a process of observation and measurement of per-
ormance in order to take corrective action if necessary. 

Approach . To compress the exceptionally large amount of single and
ombined methods existing in Data Analytics research, this review de-
nes eight groups of approaches that represent the third perspective
f analysis of each reviewed paper: (i) Time Series, (ii) Regression,
iii) Neural Networks, (iv) Support Vector Machines, (v) Tree-based
pproaches, (vi) Clustering Approaches, (vii) Hybrid Approaches, and

viii) Other Approaches. In addition, other literature reviews belong
o another category (viiii) due to their different investigative objec-
ives. This study categorizes an approach as Time Series if it falls into
ne of the following families: autoregressive integrated moving aver-
ge (ARIMA), generalized autoregressive conditional heteroskedasticity
GARCH), Kalman filtering (LQE), Grey system theory (GST) and expo-
ential smoothing or transfer functions (TF). Regressions can be defined
s an approach used to identify a relationship between the explanatory
nd the dependent variables [19] . Apart from the support vector regres-
ion (SVR) and the regression tree, all types of regressions – including
inear, logistic, logic, and quantile regression – belong to this category.
rtificial Neural Networks (ANNs) are Machine Learning approaches

nspired by cells in the brain. Similar to brain neurons, artificial neu-
ons are connected with each other in multiple layers, forming a net-
ork [19] . The network can adopt multiple architectural forms, which
e summarize under the term ANNs. Support Vector Machines (SVM)
re a Machine Learning approach for classification and regression prob-
ems [19] . When used for regression, it is known as SVR. Tree-based ap-
roaches function by developing a tree to predict an outcome from input
ariables. They can be used for classification and regression. Related ap-
roaches are,e.g. random forests, boosting and bagging as well as Extra
rees. Clustering approaches aggregate objects in homogeneous groups,

n other words, clusters. Two clustering families exist – hierarchical and
artitioning approaches. We categorize an approach as a Hybrid if it
ombines two or more approaches from the classes defined above. This
xcludes models which use a second approach only for pre-processing.
f an approach cannot be allocated to any category, it is defined as Other
pproach. 

Fig. 1 gives an overview of the relationships among these three di-
ensions, together with examples. A typical study in our review uses

eal-world data from an area, introduces a certain application use case
nd presents one or more approaches. The results give new insights on
oth the respective area and the performance of the approach. 

. Methodology 

In order to identify the main streams of relevant literature, we fol-
ow the fundamental three steps suggested by Webster and Watson [24] :
1) Identify major contributions, (2) search backwards, and (3) search
orward. The scope of the present review is very broad compared with
ther review articles. Therefore, we enhance the conventional first man-
al step of identifying major contributions with a database query search
nd automatic filtering with data mining. Our methodology is presented
n detail below to ensure transparency and validity. Fig. 2 gives an
verview of the steps described in this section. 

.1. Selection of initial paper pool 

The starting point for identifying literature for the review is a manual
election of highly relevant papers. The selection is performed with the
elp of experts in the field, taking into account the number of citations
f a paper and the journal rank in terms of h-index and impact factor.
he result of this step is the initial pool, consisting of 50 studies. 1 
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Fig. 1. The three dimensions of analysis and their interaction as well as examples. 

Fig. 2. Overview of the methodology used in the present paper. 
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.2. Evaluation and selection of most appropriate database and query 

The second step in capturing high-impact literature for the review is
n online database search. To this end, we evaluate different databases
nd search queries, and select the one best-suited to the purpose. For
atabase selection, the deciding factor is the number of studies of the
nitial paper pool it contains. This number must be maximized. We eval-
ate the established databases Web of Science, Scopus, Science Direct,
EEE Xplore, and Wiley Online Directory. We select Web of Science, be-
ause it is the database which contains the highest number of studies,
.e. 44 of the 50 studies listed in the initial pool. 

Next, a search string is constructed that searches the titles and ab-
tracts of all articles in the respective database. When constructing the
earch string, three aspects are taken into account: the consistency of
he query, the number of papers of the initial pool found with it, and
he total number of papers retrieved by it. After assessing 10 different
ueries, a query that best balances the three aspects is selected. 

The search string is composed of four parts, which are linked with
he logical AND. The first part of keywords refers to the general object of
nalysis in a paper, such as electricity . The second part refers to the area
r subtopic, for instance transmission . In the third part, the keywords
efer to the applications of the study, e.g. load frequency control (LFC) .
inally, the fourth part consists of approaches that might be used, such
s neural networks . The keywords within each part are linked with the
ogical OR. 2 

(electric ∗ OR energy OR power OR load OR radiation OR “smart
meter$ ” OR lines OR voltage) AND 

(customer$ OR consum 

∗ OR demand OR generation OR transmission
OR distribution OR retail OR “short term ” OR “long term ” OR loss ∗ 

OR stability OR system$ OR solar OR price$) AND 
2 $ indicates that a keyword can be singular or plural. ∗ is a placeholder for any 
ombination of letters; ”consum 

∗ ” e.g. captures ”consumer ” and ”consumption ”. 

o  

f  

r  

i  
(cluster ∗ OR segment ∗ OR forecast ∗ OR predict ∗ OR detect ∗ OR
analy ∗ OR simulat ∗ OR applicat ∗ OR implement ∗ OR monitor ∗ OR
control ∗ OR characteriz ∗ OR “LFC ”) AND 

(technique$ OR model OR data OR “artificial intelligence ” OR
“learning machine ” OR “machine learning ” OR “time series ” OR
“regression analysis ” OR “decision tree ” OR “neural network$ ” OR
“ANN ” OR “support vector ” OR “deep learning ” OR “data mining ”
OR “ARIMA ” OR “ARMA ” OR “ANFIS ”) 

The search is performed using the selected string on the chosen
atabase in February 2019. In total, 7708 papers are retrieved. 

.3. Automatic filtering 

Of the retrieved articles, those most relevant and suited are identi-
ed using a text mining algorithm. The algorithm’s goal is to determine
he most relevant documents in relation to the given search query. It is
mplemented using the programming language R. 

First, the search string is disaggregated into a list of 20,834 queries
hat contains all possible combinations resulting from the selection of
ne keyword per category block of the aggregated query (4 keywords
or four blocks). Second, a Vector Space Model is constructed, using the
isaggregated search strings and the abstracts of the 7708 documents
etrieved in the previous step. The Vector Space Model is an algebraic
odel that involves two steps: the representation of each document as
 vector of the words that occur within it, and the transformation of
he vectors into a numerical format. When breaking the documents into
ectors, preprocessing steps are applied in order to remove stop words,
umbers, any extra white spaces and punctuation, and to reduce the
emaining words to their word stem. For the second part of the Vector
pace Model, a Term Document Matrix is constructed. This is a method
f representing document vectors in a matrix format, where rows stand
or all the terms present in at least one of the documents, and columns
epresent the document vectors across all terms. In this case, a cell value
n the matrix is filled with the number of times the particular term is
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Table 2 

Top 10 contributing countries by topic. 

Rank Data Analytics in the electricity sector All Topics 

1 China United States 

2 United States China 

3 India United Kingdom 

4 Iran Germany 

5 Turkey Japan 

6 Spain France 

7 Taiwan Canada 

8 Korea Italy 

9 Australia India 

10 Malaysia Spain 
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resent in the particular document. If the term is not present in the
ocument, then the cell value contains the number 0. 

We define articles as relevant when they have a high similarity to
he search string. Because documents and queries are represented as
ectors, the angle 𝜃 between the vectors can be used as a similarity
easure. The cosine similarity between two documents on the vector

pace is a measure that calculates the cosine of the angle between them,
ccording to 1 . 

𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 = cos ( 𝜃) = 

𝐴𝐵 

‖𝐴 ‖‖𝐵‖ = 

∑𝑛 

𝑖 =1 𝐴 𝑖 𝐵 𝑖 √ ∑𝑛 

𝑖 =1 ( 𝐴 𝑖 ) 2 
√ ∑𝑛 

𝑖 =1 ( 𝐵 𝑖 ) 2 
(1)

This metric is a measure of orientation and not magnitude, since it
ocuses on the angle between the documents, and not the magnitude
f each word count. In this sense, the cosine similarity is advantageous
ecause even if two similar documents are far apart according to the Eu-
lidean distance - due to the difference in size - they will still be grouped
lose together. However, a document containing the words from a string
ector several times will not be closer to that vector than a document
ith the words appearing just once. 

After the calculation of the cosine similarity between each paper vec-
or and each search string vector, each document is assigned its highest
btained score, i.e. the highest cosine similarity obtained with any of
he string vectors. As a result of this first step of filtering, the top 1000
apers with the overall highest similarity score are selected. 

.4. Abstract filtering 

A second manual step of filtering is performed by reading and evalu-
ting the abstracts of the top 1000 documents. First, we exclude studies
hich use only physical or engineering methods. In addition, we rule
ut studies that cover the application of Data Analytics in an energy
ector that does not include electricity such as natural gas. Following
his step, 514 papers remain, which form the quantitative analysis pool
epicted in Fig. 2 used to carry out the quantitative analysis of elec-
ricity analytics research in Section 4 . The pool is later refined for the
ualitative analysis, as described in the paragraphs below. 

.5. Manual filtering 

In order to conduct a qualitative analysis of the studies within the
cope of this review, a more finely-tuned pool of literature is needed.
ith this objective, the papers are grouped by area and year. Within

ach group, they are then ordered according to their number of citations.
he amount of studies to select from each group is defined according to
he proportion that each group represents in the quantitative analysis
ool. The grouping thus has two purposes: to control the influence that
he year of publication has on the number of citations, and to ensure that
he proportion of articles in each area remains the same as before. Based
n these criteria, the documents with the highest number of citations
re selected from each group. Following this second step of filtering,
47 studies remain. 

.6. Backward and forward search 

To ensure that the most relevant literature is analyzed, backward and
orward searches are conducted. The backward search is the revision
f papers cited by the articles that are currently part of the literature
ist, thus determining prior studies that should also be included. The
orward search, on the other hand, is the identification of papers that
ite the articles that are included in the literature list, thus determining
ubsequent studies that should be included. 

As part of the backward search, all papers that are cited by at least
0 of the articles on the current literature list are included. Following
his step, there are 9 new studies on the list. For the forward search,
apers that cite the articles on the current literature list, and have an
bove average number of citations in relation to them, are included. In
he course of this step, 16 new studies are added to the list. 

Finally, the literature list is merged with the initial pool, excluding
uplicates. The resulting qualitative analysis pool includes a total of 205
tudies which are reviewed in Section 5 . 

It should be noted that, due to the broad scope of the attempted
eview, we concentrate on the most important studies and fields of re-
earch with the highest impact. Other studies related to Data Analytics in

he electricity sector exist, but are not at the center of the research focus.

. Quantitative overview 

The paper pool with 514 studies, obtained after the abstract filtering
xplained in Section 3.4 , is used for a high level overview of publica-
ions. 

.1. Literature growth 

The body of Data Analytics-related work in the electricity context has
een growing substantially and many publications on the subject exist.
e compare the development to the trend of scientific publications in

ther major fields by using data from the portal SCImago Journal &
ountry Rank [69] . Among other things, the portal classifies the infor-
ation contained in the Scopus database from 1996 into subject cate-

ories. The comparison of the literature growth across different topics
s presented in Fig. 3 . 

From Fig. 3 , it is apparent that all topics together have seen growth in
he number of annually published papers. Starting around 2005, papers
ublished in Artificial Intelligence outpace those published across All top-

cs, Energy and Computer Science . This suggests that Artificial Intelligence

s a topic that has received attention not only from the field of computer
cience, but persistently from the entire scientific community. The field
f Data Analytics in the electricity sector received less attention than other
elds, before 2010. Since then, its growth has become more pronounced
han in any other field, surpassing even the Artificial Intelligence -related
iterature. This underlines the importance of a literature review in this
eld. 

.2. Country-Level analysis 

Having established the increasingly high degree of interest in the
opic of this study, we now explore the countries most interested in this
esearch. The top 10 countries, ranked by total number of publications,
re compared for All topics and Data Analytics in the electricity sector .
he information for publications across All topics is again based on the
CImago Journal & Country Rank portal [69] . The results are presented
n Table 2 . 

These results suggest that there is a special interest in research on
ata Analytics in the electricity sector in Asian countries – seven of the top

en countries in this subject are from Asia. Furthermore, the majority of
hese countries have a special focus on this topic, since they play a major
ole here, but are not included in the list of top countries ranked by the
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Fig. 3. Growth of number of documents by 
topic. 

Fig. 4. Collaboration network. 
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verall research output. On the other hand, in several countries – most
f them European – research on Data Analytics in the electricity sector is
nder-represented compared with the overall number of publications,
pecifically in the United Kingdom, Germany, Japan, France, Canada,
nd Italy. 

Another aspect of the country-level analysis is the amount and
eight of collaborative work being published. Fig. 4 presents a collab-
ration network, where the width of the edges stands for the amount of
ollaborations between two countries. For the sake of readability, only
ountries whose work in collaboration with others represents at least
0% of their total research output are taken into account. The country
odes are those defined in ISO [70] . 

When the network is examined, it becomes evident that China is
t the center of the collaborative work in the research related to Data
 t  
nalytics in the electricity sector . The United States also plays a major role,
s several countries are included in the network because of their strong
ollaborative work with researchers from US-American institutes, such
s Ecuador and Colombia. Finally, other countries with many strong ties
re Australia, the United Kingdom, Taiwan, Canada, Iran, and Malaysia.

.3. The three A’s: Area, application, approach 

Each of the studies reviewed in this paper is categorized along the
hree defined dimensions: area, application, and approach. Fig. 5 dis-
lays the proportion of applications used in the different areas. 

The first essential finding is the importance of the Consumption area
n the research topic Data Analytics in the electricity sector . In fact, more
han one-third of the literature reviewed corresponds to this area. The
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Fig. 5. Applications across the electricity value chain. 

Fig. 6. Approaches used across the years. 
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econd is the Generation area, followed by Transmission and Distribution,

rading , and System . 
When considering the applications among the areas, Forecasting and

rediction plays the most important role across the electricity value
hain. Control and Monitor is also present, but plays a considerable role
nly in the Transmission and Distribution area and in the System as a
hole. Moreover, Other applications are the focus of the System area.
his can be explained by the fact that studies that do not work in a spe-
ific area, usually perform simulations and modeling before anything
lse. Finally, the application Clustering is rarely the main object of the
tudies but plays a minor role in the Consumption sector. However, clus-
ering is often conducted as a pre-processing step within the studies. 

Moving on to the analysis of the approach category, Fig. 6 shows a
hift in the methodological focus across the years. The family of neural
etworks has played a major role since 1990 and still does in absolute
umbers, but its share has been decreasing to give way to other methods.
hree similarly high-cited reviews on neural networks along the energy
alue chain have been published by Kalogirou in that time [7,8,71] . He
efines sub-areas that can be tackled by neural network and describes
ne corresponding paper for each sub-area. Over the last few years, a
ange of approaches has emerged, with hybrid being the most frequent.
his suggests that there exists a propensity to merge different techniques

n an attempt to achieve better results. Other approaches that are gain-
ng attention are tree-based and clustering methods. A deeper evalua-
ion of the approaches used for each area and application is conducted
n Section 5 . 

.4. Programming languages 

Based on the programming languages and statistical software that
he studies in the Qualitative Analysis Pool report, their popularity in
ata Analytics research can be observed. Fig. 7 depicts the numbers of
eported languages, aggregated into three periods from 2005 to 2019. In
ll periods, MATLAB was the most popular language, used by over 50%
f the studies. Yet, both Python and R are becoming increasingly popular
n recent years. In the period from 2015 to 2019 they were used by 20%
nd 11% of studies, respectively. The share of ”other ” programming
anguages and software has been decreasing. That group includes Java,
PSS, Eviews, Rapid Miner, SAS, Excel, Microsoft Visual Basic, Minitab,
abView, and Weka, which are all named one to three times in the period
rom 2005 to 2019. It is notable that only about half of all studies report
he used programming language (43% in 2005–2009, 50% 2010–2014,
nd 53% in 2015–2019). 

. Qualitative review 

We structure our review along the area dimension. Each area section
tarts off with a concise overview of the most relevant applications. For
ach application, we then examine the research in more detail. First of
ll, the used approaches, data sets and features are described. We then
resent benchmarks and their role in the respective area and application.
e also discuss typical error measures, as well as the complexity and

un time of approaches. Finally, notable state-of-the-art approaches are
ortrayed and a summary is given. 

.1. Generation 

The volatility of solar and wind power represents a new challenge for
uccessfully balancing supply and demand in electricity grids. The ris-
ng penetration of renewable electricity generation has therefore made
ccurate forecasting of the resources used a key topic of research. This
s mirrored by the studies in our final pool. All but two studies in the
eneration area are affiliated with Forecasting . These studies are further
lassified according to type of generation. Solar forecasting studies make
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Fig. 7. Shares of programming languages reported by 
recent studies in the final qualitative analysis pool. 
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Table 3 

Proportion of used input features within wind power forecasting studies. 

Feature Percentage 

Wind Power 33% 

Wind Power, Wind Speed 17% 

Wind Power, Wind Speed, Wind Direction 17% 

Wind Speed, Other Weather-based Data a 25% 

Wind Power, Other Weather-based Data a 8% 

a ’Other Weather-based Data’ include: temperature, relative humidity, and 
weather prediction 
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p 60% (25 publications) of the pool, wind accounts for 33% (14 pub-
ications), 5% (2 publications) relate to two or more generation types,
nd one paper [72] is exclusively related to hydro power. Within wind
nd solar generation, we identified several reviews [5,37,62,66,73–80] .
n the case of [9] , the author also reviews examples of solar radiation
redictions, as well as the modelling and forecasting in energy engineer-
ng systems in general, but he focuses exclusively on the application of
NNs. The two studies which are not related to forecasting, cover the

opic of solar power control. The authors of Hiyama et al. [81] use a
NN to learn the optimal operating voltage of a PV system. This op-

imal value is then fed back to the PV inverter to adjust the terminal
oltage of the system. In Chia et al. [82] the authors use a support vec-
or machine to control the energy flow. The study is further reviewed in
he context of Section Transmission and Distribution. 
pproach overview The output of solar electricity systems mostly de-
ends on solar radiation. Hence, related studies focus on the forecasting
ither of solar radiation or of photovoltaic (PV) power. Specifically, 27
apers contain a prediction of solar radiation. When examining the ap-
roaches used within this group, ANNs and variations of this method
re the most popular [32,56,74,83–98] . SVMs are the second biggest
roup [82,99,100] . Tree-based approaches can be found in [66,89] . The
uthors of [55,73] use Times Series methods. Hybrid approaches as pre-
ented in [88,101] are a combination of more than one approach into a
ew model. For example, the author of [88] combines an ANFIS-model
ith a particle swarm optimization (PSO), a differential evolution (DE),
nd a Genetic Algorithm (GA). The group of publications focusing on
ind energy includes fourteen papers. It is noticeable that within the

tudies of wind generation, hybrid approaches are more common than
or solar generation [102–106] . However, ANNs also play an important
ole within this group [32,84,85,107–109] and an SVM is applied in
110] . 
ata sets Most analyses are built on single data sets. The biggest share
f used data sets originates in the USA (7), followed by China (6), France
3), India (3) and Australia (3). The time span of these data sets ranges
rom several days [91] to over 100 years [100] . Yet, most of the data
ets include several months up to a few years. The time interval usually
xtends from hours to months. An outlier in this group is [93] ; their data
et consists of 48.000 single data points which represent 1 minute of PV
ower output values. The split between test, validation, and training set
s ambiguous and differs between the studies. A trend can nonetheless
e identified: newer publications tend to use a training set of over 70%
83,88–90,104,110] . 
eature selection In relation to the input features, wind and solar
ower forecasting studies must be differentiated. The former group fo-
uses mainly on the forecasting of the power generation of wind tur-
ines. Only a few studies predict both power generation and wind speeds
84,105,108] . The authors of [84] and [108] develop a two-stage fore-
asting model, where the wind speed forecast is used as an input fea-
ure of the power generation forecast. The proportion of used features
ithin wind power forecasting studies is presented in Table 3 . It shows
he importance of the variables wind power and wind speed – half of
he studies do not consider any other input feature in their models. Few
ublications use statistical methods for feature selection. The authors of
abel and Fernandez [32] conduct a correlation analysis in this respect.
s a result, they suggest that besides wind speed, relative humidity and
eneration hours are important parameters influencing wind power gen-
ration. However, the evaluation of input features for wind power fore-
asting models is still an area with potential for future research. 

Regarding the group of studies investigating solar power forecasting,
ne difference from wind power forecasting is that the vast majority of
apers focuses on solar radiation as a moderator for solar power gen-
ration and not on solar power forecasting itself. However, the input
eatures used between studies focusing either on radiation or on power
re similar – both use historical data of the output variable as input. 

Some contradictions in feature evaluation in solar forecasting can
e observed. In Deo and Ş ahin [86] , the authors obtain the best perfor-
ance for the combination of extraterrestrial radiation and daily tem-
erature, whereas the authors of Yadav et al. [96] suggest that extrater-
estrial radiation is one of the least influencing input features. Both
tudies agree that temperature information should be considered, be-
ause it represents one of the most important variables for accuracy
nhancement. In general, studies agree that meteorological information
mproves the performance of the models (e.g. [56,91,101] ). 
enchmark approaches All publications in this area, except for eight,
ompare their model with other models. Across all papers, there is no
ommon benchmark standard. Generally, the benchmark methods can
e divided into three major groups. Firstly, some authors compare their
odel against one from another category of approaches. For example,

he authors of Halabi et al. [88] check the performance of their AN-
IS models against SVM models. Second, some authors compare their
odel to a model within the same approach category. For example, the

uthors of Yadav et al. [96] use different ANN models as a benchmark
or their generalized regression neural network (GRNN) and radial ba-
is function neural network (RBFNN) models. Third, some publications
escribe and design more than one approach in detail, (e.g. different
ariations of an ANN) and benchmark them against each other. The au-
hors of Wang et al. [90] compare the performance of their RBFNN,
RNN, multilayer perceptron (MLP), and Empirical Improved Bristow-
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Table 4 

Proportion of used error measures within electricity generation forecasting stud- 
ies. 

Measure Percentage 

Root mean square error (RMSE) 25% 

Mean absolute error (MAE) 15% 

Mean absolute percentage error (MAPE) 11% 

Bias-based a 7% 

Coefficient of determination ( R 2 ) 4% 

Relative RMSE 5% 

Correlation coefficient ( R ) 4% 

Mean squared error (MSE) 3% 

Standard deviation error (SDE) 3% 

Sum squared error (SSE) 3% 

Other b 18% 

a includes Bias, mean bias error (MBE), and mean absolute bias error (MABE) 
b includes all measures that are observed maximally twice within the pool of 

studies. 
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ampbell model against each other. Also, the authors of Mason et al.
85] train their recurrent neural network (RNN) and benchmark the re-
ults of each of the seven different algorithms against each other. 
valuation metrics We cannot observe a consensus regarding the mea-
ures for evaluation. The most popular is root mean square error (RMSE),
ollowed by mean absolute error (MAE), and then by mean absolute per-

entage error (MAPE). More than 50% of the publications use one or more
f these measures to evaluate their results. An overview of all measures
s presented in Table 4 . 

RMSE and MAE are easy to interpret as they are based on abso-
ute values. However, this also means that they complicate compari-
on between data sets and they assign high weights to large absolute
rrors, which might in some use cases be unwanted. Both measures
an be useful for comparing different models used on the same data
et. These absolute metrics can be complemented by relative measures
uch as MAPE. This also enables comparisons across data sets. We would
ike to point out that MAPE is biased in favor of models which under-
orecast [111] , and therefore recommend not to rely on a single error
easurement, but to use a combination of absolute and relative error
easures. In addition, we suggest including biased errors such as the
ean bias error (MBE) to check for systematic errors in the forecast
odel. 
omplexity and running speed Only a few authors provide infor-
ation about the complexity and running speed of their models. The

omputation setup is also rarely provided. The authors of Ramli et al.
95] state the running speed of their SVM and compare it against an
NN. The authors of Halabi et al. [88] also provide the execution time

or each ANFIS Model to evaluate their performances. In real-world use
ases, the selection of the best-suited approach can depend on running
peed and costs of computation, especially as models are getting more
omplex. We suggest providing the running speed along side with the
orresponding computational setup as best practice. 
otable approaches First, multiple studies employ notable ANN-based
pproaches. The authors of Jursa and Rohrig [109] give an exceptional
verview of the performance of different approaches and combinations
f them. They compare PSO, DE, ANN with back-propagation (BP), a
earest Neighbour Search approach (NNS), as well as combinations of

his. The authors evaluate the performance of each approach for wind
ower forecasting for ten wind farms in Germany. ANN-PSO provides
he highest accuracy. However, even better results are obtained when
sing the mean model output of ANN-PSO and NNS-PSO; namely this
auses a reduction in the error of 10.75%. 

Second, Bhaskar and Singh [84] develop a two-stage forecasting ap-
roach, where the wind speed is predicted first and then used as a basis
o forecast the wind power output. For both stages, a feed forward neu-
al network (FFNN) and an adaptive wavelet neural network (AWNN)
re evaluated and compared. AWNN is used for wind speed forecasting
ecause of better approximation and faster training ability compared to
FNN. However, for the second stage, a FFNN is selected. The approach
s then evaluated against two naive approaches and the results confirm
he higher accuracy of the proposed model, obtaining an average nor-
alized MAE of 7.08% and an RMSE of 10.22%. 

Third, hybrid approaches have achieved promising results in this
rea [103,112–114] . The authors of Wang et al. [112] develop a hybrid
robabilistic approach based on wavelet transformation (WT), a convo-
utional neural network (CNN), and an ensemble technique, which is
ested using historical time series of wind farms in China. The proposed
pproach is superior to the benchmark approaches – persistence, back
ropagation with quantile regression, and SVM with quantile regression
in terms of average coverage error and interval sharpness for all exam-

ned seasons and time horizons. The authors of Yuan et al. [103] develop
 model based on a least squares support vector machine (LSSVM) and
ravitational search algorithm (GSA) to forecast the short-term wind
ower. Compared to the single approaches, FFNN-BP, SVM, LSSVM, and
he hybrid method SVM-GSA, the proposed model shows better perfor-
ance concerning all used evaluation metrics. The absolute error of the
roposed model is less than 3% and its correlation coefficient is 0.9087.
he authors of Xie et al. [114] combine an Optimized Discrete Grey
odel (ODGM) for forecasting total consumption amount with a Markov
odel for trends of energy generation structure. The authors of Alessan-
rini et al. [113] compare two probabilistic hybrid approaches, namely
CMWF-EPS (Ensemble Prediction System in use at the European Centre
or Medium-Range Weather Forecasts) and COSMO-LEPS (Limited-area
nsemble Prediction System developed within COnsortium for Small-
cale MOdelling). 
ummary Although hydropower is the most used renewable energy in
he world ( [115] ), the current academic focus lies on solar and wind gen-
ration forecasting. The main reason for this may be the high volatility
f solar and wind power which creates unique challenges of integrating
t into the electricity system. Hydropower on the other hand is often
ontrollable, like other forms of conventional power generation. In the
uture, Data Analytics research may also address other volatile sources
uch as wave energy [72] . 

Apart from the differences described in the factors influencing the
erformance of the models, some general aspects can still be estab-
ished regarding the approaches. First, ANN is the dominant method
sed within the forecast of both wind and solar generation types. Par-
icularly in the area of solar power forecasting, a wide range of ANN
ariations are applied. However, in wind power forecasting studies, this
pproach is more often seen in combination with other techniques then
y itself. In many cases, these hybrid approaches outperform others, al-
hough exceptions do occur [105] . 

The interest in SVM which are used in both solar and wind forecast-
ng has been increasing over the last few years. Although not used as
requently as ANNs, this approach shows good performance, even sur-
assing ANNs in some cases for solar radiation prediction [95] , and in
he context of wind power [103] . Furthermore, as mentioned above, it
eems that SVMs perform well when integrated in hybrid approaches.
ree-based approaches have emerged recently, providing very satisfac-
ory results. In various solar radiation forecasting studies, tree-based
pproaches have outperformed ANNs [89] and also SVMs [99] . As es-
ablished by Hong et al. [5] , several of the best-ranked teams in the
EFCom2014 forecasting challenge, both in the solar and wind power

orecasting category, developed a tree-based approach. This suggests
hat this direction should be explored further in this context. 

Probabilistic forecasting of wind power [5,107,112] and solar power
5] has gained attention in recent years and has been shown to deliver
romising results. 

Further improvements in forecasting performance can be achieved
y conducting thorough feature selection with statistical methods.
astly, studies can demonstrate the practical usefulness of their ap-
roaches by evaluating error metrics in combination with computational
ime and modelling effort. 
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Fig. 8. Approaches used in price forecasting 
studies. 

Fig. 9. Approaches used by price types. 
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Table 5 

Proportion of input features used within electricity price forecasting studies. 

Feature Percentage 

Price 36% 

Price, Demand 18% 

Price, Demand, Time indices 14% 

Price, Demand, Production information 7% 

Price, Demand, Generation Reserve 7% 

More features 18% 
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.2. Trading 

Thirty-one studies from the final analysis pool are classified in the
rading category. All of these studies deal with price forecasting. Ac-
urate forecasting of electricity prices concerns all market participants,
ncluding generators, utilities and power brokers, since it is crucial for
eveloping bidding strategies and for making strategic, tactical and op-
rational business decisions. 

Price forecasting is typically classified according to time horizons, in
ther words, in short-term (STPF), medium-term (MTPF) and long-term
rice forecasting (LTPF). In line with Weron [67] , we classify studies
ith a forecasting horizon of up to a few days as STPF, studies with a
orizon from a few days up to a few months as MTPF, and studies with
orizons of several months and longer as LTPF. From all studies taken
nto account, 30 focus on STPF and one focuses on MTPF. 

Fig. 8 presents the approaches used for price forecasting of the re-
iewed studies. On the left, the proportion of all approaches used is
hown. On the right, the proportion of approaches used in the context
f hybrid approaches is shown. 

The studies are further classified with regard to the pricing type
sed. The most common type in the literature is the system-wide Market-

learing Price (MCP) with 23 studies. In addition, seven studies address
orecasting of Locational Marginal Prices (LMP), also called Nodal Prices .
ecause LMPs heavily depend on location, LMP market systems carry a
igher level of complexity and therefore greater transaction costs [11] .
his is one reason why the majority of medium-sized markets calculate
 price for the entire system and LMPs are usually computed only for
ajor markets [67] . 
pproach overview Fig. 9 presents the absolute number of studies dif-

erentiated by approach for LMP and MCP forecasting publications. It
ighlights the importance of ANN, since the approach is used by the
ajority of studies [116–119] . One study employs an approach based

n Time Series [120] , and three employ a Hybrid approach [40,90,121] .
 e  
For MCP forecasting, ANN-based methods also play a major role
28,33,40,46,49,59,61,117,119,122–126] . Other relevant approaches
re Time Series [35,52,127,128] , hybrid approaches [106,121,125,129–
31] , and SVMs [132] . 
ata sets Most commonly, studies use electricity price data from Spain

11 articles), PJM (7), California (5), or Australia (5). Studies which ap-
ly the same approach to different data sets have not found remarkable
ifferences between MCP and LMP forecasting [117,121,126] . 
eature selection The input features used vary from study to study.
ince the performance of a model is strongly related to the inputs used, it
s difficult to compare two approaches that do not use the same variables
s input. Table 5 presents the proportion of input features used within
he examined pool of Trading literature. 

More than half of the studies consider only price or price and de-
and as input variables. Since the selection is often made based on

he experience of the forecaster, many authors agree that the optimal
hoice of features should be a focus of future research [28,59,67,123] .
or instance, the authors of Singhal and Swarup [59] suggest genera-
or availability and bidding strategy as potential features. In general,
or low-price volatility, even considering only the prices of similar days
as provided adequate results [129] . However, from time to time prices
xhibit sudden jumps reaching extreme levels, making it difficult for
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Table 6 

Proportion of error measures used within electricity price forecasting studies. 

Measure Percentage 

Mean absolute percentage error (MAPE) 22% 

MAPE-based 18% 

Mean absolute error (MAE) 16% 

Root mean square error (RMSE) 11% 

RMSE-based 9% 

Error Variance 7% 

Standard deviation error (SDE) 5% 

Sum squared error (SSE) 4% 

Theil’s inequality coefficient (TIC) 4% 

Forecast Error 4% 
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orecasting models to remain accurate if they rely on a combination of
istorical prices, demand, and even time indices alone (e.g. [59] ). These
rice spikes are often attributed to unexpected increases in demand,
hortfalls in generation, and failures in the transmission or distribution
ines [133] . Consequently, an understanding of the factors contributing
o the occurrence of extreme prices, together with a careful selection of
nput features for the models, could improve their accuracy. 

Two studies in our pool concentrate particularly on feature selection.
he authors of [132] explicitly select input features in a recursive man-
er: Starting with the default input data of hourly electricity demand,
he next potential element is added to the model to test whether the ac-
uracy is improved with it or not; The next potential input is then tested,
nd so on. The final selected features for the model are hourly electricity
emand, daily peak electricity demand, monthly average electricity de-
and, daily price of natural gas, previous years’ monthly average elec-

ricity MCP, and time codes. The authors of Bento et al. [121] reduce the
nput feature vector to hourly price data of the three most similar days
nd of the six days prior to the current day. This reduction is conducted
o achieve acceptable computational costs, which results in a running
ime of less than 30 minutes for each forecast. 
enchmark approaches All recent studies employ several benchmarks.

t can therefore be considered best practice to do so. For exceptionally
xtensive comparisons of state-of-the-art approaches, we refer to Bento
t al. [121] and Lago et al. [49] who include time series, hybrid, and
ther machine learning approaches. 
valuation metrics Price forecasting studies apply a variety of error
easures. The proportion of error measures used within the analyzed

tudies is presented in Table 6 
The problem with the popular measures based on absolute errors –

AE, RMSE and RMSE-based – is that they make it difficult to compare
esults between different data sets. For this purpose, relative error mea-
ures such as MAPE are more appropriate. However, MAPE has other
rawbacks. If actual price values are close to zero, MAPE becomes very
arge, and even undefined for actual prices of zero. To overcome these
isadvantages, some authors substitute the actual price for the average
f actual prices [33,35,116–118,131] or for the median of actual prices
122] . 

Alternatives to MAPE are the mean absolute scaled error (MASE), and
he symmetric mean absolute percentage error (sMAPE). Only few studies
ave used these measures in this area, e.g. [124] and [49] . We rec-
mmend the use of MASE, because in addition to not relying on the
ivision by the actual price and to the possibility of comparing the mea-
ure across data sets and scales, it penalizes positive and negative errors
qually. It can also be easily interpreted [134] . 
omplexity and running speed Not all studies provide useful insights

nto the computational complexity of their approaches. Only a minority
f studies states the computational setup used. Besides, some authors
eport the total computational time needed – pre-processing steps in-
luded – and others mention only the run time of the forecast. The au-
hors of Anbazhagan and Kumarappan [119] showcase the relevance of
omputational complexity for model selection very well. The study uses
he Elman network variant of RNN to forecast LMPs. Results show good
ccuracy, with an average weekly MAPE of 3.82%. However, the pro-
osed model is slightly outperformed by some of the hybrid benchmark
odels; specifically, by a WT and hybrid of neural networks and fuzzy

ogic (WNF), a wavelet-ARIMA-RBFNN, a cascaded neuro-evolutionary
lgorithm (CNEA), and an adaptive-network-based fuzzy inference sys-
em (WPA) model. However, the RNN’s average computation time is
bout 650 milliseconds, whereas for the hybrid approaches the values
re 5 seconds, 5 min, 40 min, and 1 min, respectively. Considering this
rade-off between accuracy, computational time, and complexity, RNN
s named the best choice. 
otable approaches For LMP forecasting, neural networks are used
y the vast majority of authors. Classic FFNN-BP are applied by Man-
al et al. [116] and Vahidinasab et al. [118] . The results suggest that
NNs can capture the non-linear behavior more precisely than tradi-

ional time series approaches. Other authors develop more advanced
ersions of neural networks. The authors of Pindoriya et al. [117] com-
ine the classical FNN with wavelet theory into an AWNN model, which
rovides higher accuracy than GARCH and MLP. Furthermore, the in-
orporation of load demand further improves the accuracy of LMP fore-
asts. The authors of Bento et al. [121] use a bat algorithm (BA) for
arameter selection, WT as a pre-processing step to decompose price
ime series obtaining a stable variance and less outliers, and a combina-
ion of BA and a scaled conjugate gradient (SCG) algorithm for training
n ANN. An RNN with Elman architecture is applied by Anbazhagan
nd Kumarappan [119] and Hong and Hsiao [40] . In the former work,
he proposed model is selected as the best choice when a trade-off be-
ween accuracy, computational time, and complexity is considered. In
he latter work, results show the effectiveness of RNN against the MLP
n the one hand, while on the other hand indicate the improvement on
he performance of the model when it is combined with FCM for clus-
ering the data. As the only non-ANN approach in our pool, Liu and
hi [120] evaluate and compare ARMA-GARCH approaches on the New
ngland market. ARMA-SGARCH-M achieves the smallest MAE value
0.122) and in addition offers low complexity of model construction. 

For MCP forecasting, the neural network‘s family is again the most
rominent. Within this group, the classic FNN is used by the majority
f authors [33,59,61,118,122–124] . When compared to naive or time
eries approaches, the proposed models show better results. However,
he traditional ANN is outperformed by other special variants of the
amily of ANN in the studies of [28] and [126] . The former focuses on
n appropriate tool to soften the non-stationary and non-linear MCP
ignals using fuzzy logic, fuzzy neural networks (FNNs), and the latter
pplies the concept of deleting ’bad’ samples for learning, as opposed to
NN which selects all samples, and SVM which only selects the ’good’
nes. 

After ANN approaches, Hybrid approaches represent the second
argest group within MCP forecasting studies. Fig. 8 disaggregates these
odels into its component methods. Once again, the family of neural
etworks represents the major share in this group [125,129,130] . Sec-
nd in importance are ’other approaches’, which are not found when
ooking at non-hybrid approaches. This suggests that there are methods
hat do not play an important role by themselves in this area, but in fact
lay a role in combination with others – particularly with ANN. This is
he case with some heuristic algorithms, such as the firefly algorithm
FA) applied by Wang et al. [106] , and the gravitational search algo-
ithm (GSA), used by Shayeghi and Ghasemi [131] . Similarly, cluster-
ng approaches play a role in STPF when combined with other methods
40,46] . Although these studies show accurate results, the authors of
ago et al. [49] suggest that hybrid methods do not provide a better
ccuracy than their simpler counterparts. In addition, they often need
ore computational time (e.g. [106] ). 

Support vectors machines are also used in this context, although to
 lesser extent, as part of hybrid approaches [131] or by themselves.
n example of the latter group is presented in Yan and Chowdhury
132] . The study proposes a model which combines Least Squares SVMs
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LSSVM) for classification and forecasting, obtaining good results, and
utperforming single LSSVM, LSSVM-ARMAX, ARMAX, and SVM. The
uthors of Lago et al. [49] suggest that, in general, SVMs, ANNs, and
ree-based approaches outperform time series approaches. 

Deep learning (DL) architectures have not been widely used in this
ontext. Apart from the studies mentioned who apply a simple ver-
ion of an RNN [40,119] , only the authors of Lago et al. [49] high-
ight the potential benefit that deeper structures could bring in the
lectricity price forecasting context. The authors compare four differ-
nt DL models: deep neural networks (DNN), long-short term memory
etworks (LSTM), gated recurrent units (GRU), and convolutional neu-
al networks (CNN). Three of the four DL models outperform the rest,
howing a very good performance and suggesting the potential of these
pproaches. 

Although most of the papers in the literature apply point forecasts,
here has been recent progress in probabilistic forecasts. The authors of
ong et al. [5] review forecasting approaches, price spike pre-processing

echniques, and combined forecasting models. Furthermore, the authors
f Nowotarski and Weron [22] offer guidelines for using methods, mea-
ures, and tests in the context of probabilistic electricity forecasting. 
ummary Although the problems explained in this section complicate
he comparison among approaches, some generalities can be estab-
ished. 

First, time series techniques exhibit reasonably good performance
hen volatility is low. However, the studies found with a proposed time

eries model do not provide benchmark comparisons with approaches
rom other method families. In addition, when time series techniques
re used as a benchmark, they are often outperformed by other methods
e.g. [33,46] ). 

Second, hybrid approaches have gained attention in the last few
ears and authors report very good performance metrics. However, the
erformance in relation to their simpler counterparts is still disputed.
or instance, the authors of Lago et al. [49] obtain better performance
ith a simple SVR model than with a hybrid SVR-based model. Further-
ore, when time complexity is balanced with accuracy, some authors

uggest that single machine learning methods are a better choice be-
ause of their smaller computational effort compared with hybrid ap-
roaches (e.g. [119] ). We argue that the potential justifies further re-
earch on Hybrid approaches, in line with Weron [67] . 

Finally, in the same way, SVM and tree-based approaches show po-
ential in the electricity price forecasting research context. Although
hey have not been used frequently for this purpose, in the extensive
enchmark comparison of Lago et al. [49] , the approaches are part of
he leading group in terms of performance. 

One of the most distinct properties of the electricity price time series
s its volatility. In this sense, one challenge of the models is to remain
obust, even in cases of high volatility. A well-informed selection of the
dequate Data Analytics approaches is therefore crucial. 

.3. Transmission and distribution 

The research employing Data Analytics methods in the operation and
ontrol of transmission and distribution grid is very diverse. It is also
ften interconnected with other areas. This is especially the case for load
orecasting. In [29,82,135,136] the authors combine load forecasting
ith considerations of transmission or distribution system research. For

nstance, the authors of Ding et al. [136] use load forecasting as a vehicle
or improved distribution system operation. 

The majority of papers that use analytics methods focus on the real
ime operation of transmission and distribution grids and develop in-
elligent controllers. Such control strategies are described in [137] ,
57,68,137,138–145] ] and reviewed in [53] . The latter puts a major
ocus on the inclusion of energy storage into load frequency control
trategies. Another important stream of research in this area is fail-
re prediction and analysis. We analyze four papers in this research
tream [54,58,146,147] . In addition, three papers conduct Data Ana-
ytics research on non-technical losses, usually related to energy theft
25,50,51] . A review on the topic is provided in Viegas et al. [65] . The
uthors find that the major missing pieces of this research stream are
ethods that can identify all different kinds of non-technical losses.

urthermore, they propose a typology for papers covering the issue. Cy-
ersecurity of electricity systems is considered by Pan et al. [148] . The
uthors of Kang and Lee [149] use empirical data to assess the reliabil-
ty of demand curtailment offers. Such an empirical data set is rarely
een in this research direction. In [150] , a corresponding literature re-
iew on load shedding is provided. In [151] the authors predict future
rid congestion to ensure a stable grid operation. The deployment of
ower plants for congestion management is considered in [60] . Finally,
he author of [152] describes the operation of a robot for power line
aintenance. Altogether, we consider 30 papers in total in this area. 
pproach overview The approaches used in this area are as diverse as

he research directions themselves. The developed control strategies al-
ost always rely on neural networks. In 10 out of 12 considered papers

he authors use some form of ANN. In [140] , the authors do not nec-
ssarily propose a new control method but more a paradigm that could
educe training times using a SVM. In [144] , a method is proposed to
mprove neural network-based controllers. The stream of failure predic-
ion and analysis is based on ANNs except for [54] where martingale
oosting is used. The research on non-technical losses taken into con-
ideration, is always based on SVMs and the research on load forecasts
s always based on ANNs. Finally, the remainder of research is very di-
erse and so are the employed approaches. Most use different forms of
eural networks or support vector machines. The only unsupervised ap-
roach is used in [149] . Here the authors employ a k-nearest neighbors
nd a k-recent model. In [148] , the authors use common path mining to
dentify intrusions into the cybersystem of a utility. 
eature selection The control strategies are always developed based
n technical system variables such as the phase angles or voltages. Gen-
rally, it is often not explained why the chosen features are relevant,
aking the feature selection seem arbitrary. Some papers do not de-

cribe the used features in detail at all. This is similar for failure pre-
iction and analysis. The authors use technical variables of the system
o describe a fault. It might also be interesting to include more external
ariables and describe the feature selection in some more detail. In both
esearch streams, the feature data is almost exclusively based on sim-
lations instead of empirical data. This is understandable as it allows
ertain conditions in the network to be simulated which might other-
ise be dangerous or rare. However, it would be important to develop
n empirical data set that can be used to test the respective approaches.
t is always difficult to extract interesting aspects from a simulated en-
ironment where cause and effect are so easily connectable. This is dif-
erent from the literature on technical losses where authors always use
ome form of empirical data. However, the data sets lack information
n what actually induced non-technical loss and are therefore some-
hat limited. In the research stream of load forecasting, the authors of

136] are the only ones to use data beyond autoregressive or technical
eatures. While this is common practice in the load forecasting area, it
eems less common in the system operator area. This might be caused
y a more technical perspective on the problems. From the remaining
esearch, only Staudt et al. [60] and Kang and Lee [149] use empirical
eatures. In summary, future studies should focus on the use of more
mpirical data, as up to now, simulated data has been predominantly
sed. 
enchmark approaches For control strategies, the developed ap-
roaches are commonly benchmarked against the performance of a reg-
lar proportional-integral-derivative (PID) controller. In other cases, the
eveloped approaches support this controller. In the remaining litera-
ure, one common benchmark is not necessarily used. Given that most
esearch does not rely on common data sets, it is more difficult to choose
ppropriate benchmarks. The only paper that actively references an-
ther paper as a benchmark is [148] . Some papers do not use bench-
arks at all. 
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valuation metrics Evaluation is not performed homogeneously. In-
erestingly, some papers from the research stream of control strategies
o not use any specific metric, but rely on visual evaluation of their
esults. However, metrics such as the integral of the time multiplied ab-
olute value of the error (ITAE) can be used, as for example in [143] and
144] . Similarly to the discussion on benchmarks, we cannot find any
ommon ground in the remaining papers. There is obviously no con-
ent in the research communities of the different research streams. This
ould be overcome through common data sets that would facilitate the
omparison between different papers. 
otable approaches Given the very heterogeneous field it is hard to

dentify specific trends. However, it is notable that two of the three re-
iews in the area on non-technical losses and on load frequency con-
rol were published very recently. This shows that there is a need for
onsolidation of what has been accomplished thus far. However, a few
ndividual notable approaches are described in the following. 

One of the most notable papers from the research stream of load
requency control is [142] . The authors propose an innovative ANN
pproach based on a Hopfield network. The authors find superior per-
ormance results for the proposed controller. They perform extensive
enchmarking against the standard PID controller but also against other
ossible controller approaches. In this paper, the authors also evaluate
heir approaches using well-defined performance metrics and the au-
hors test their controller in several case studies. The paper can therefore
erve as an indication on what a paper should consider when proposing
 frequency controller. 

The work by Kang and Lee [149] is very noteworthy due to the data
ets used. The authors have information on actual load curtailment of
ndividual participants in demand response (DR) programs for a period
f about two years. While many authors consider demand side flexibil-
ty, they rarely use field data as most of this research field is focusing
n more theoretical solutions due to the fact that such programs are
arely implemented. The authors analyze the response rate of the par-
icipants who are contracted for demand curtailment. To do so, they
stablish a baseline of consumption and then analyze the response to-
ards a signal in regard to that baseline. The observed customers have
ifferent contracts that can even change year by year and the authors
an therefore not simply observe actual load reductions. However, the
esearch is important as many researchers consider DR aggregators as
n important role in future energy markets that are intended to react to
olatile renewable generation. Even though the results of their specific
pplication are disappointing, their approach using ensemble classifiers
s interesting. The data used in this paper can serve as a benchmark for
ther researchers and could set a standard for future research on DR and
emand side management literature. 

In [60] , the authors predict transmission system congestion. This pa-
er is notable for its use of empirical data and for the derivation of busi-
ess strategies from the analytical model results. The authors aim to
orecast whether a certain power plant would be redispatched to reduce
ransmission grid congestion using different models to benchmark them
gainst each other. They show that these models have different advan-
ages depending on the stakeholder, due to the characteristics of their
orecasts: One model has a better precision, while the other model has
etter recall. These metrics are important for different stakeholders and
he authors then move on to describe appropriate strategies based on
hese different kinds of foresight. 
ummary Research on Data Analytics in the area of distribution system
perators (DSOs) and transmission system operators (TSOs) is very di-
erse and covers multiple topics. However, this area still holds a lot of
otential for further exploration of Data Analytics approaches. The most
otable stream is the use of different architectures of neural networks
n a control strategy to achieve a balanced grid frequency in the event
f disturbances. This research is mostly based on simulations and the
uthors often show that their controller achieves good stability values.
owever, even though this is a well-researched topic, there are obvi-
usly no clear guidelines and there is no common structure for such
pproaches. The authors do not use the same problem formulations, but
ifferent simulation setups and evaluation metrics. Some do not use any
valuation metrics at all but limit themselves to a visual analysis of their
esults. This research direction would benefit from more empirical data,
ommon data sets and common evaluation metrics. Where applicable,
e recommend quantitative evaluation, using for instance the ITAE, as
ell as encouraging thorough description of features. Additional poten-

ial may lie in extending the common feature set to more external vari-
bles such as weather predictions. 

Another topic that is frequently researched is the evaluation of non-
echnical losses. This is often attributed to energy theft. The authors of
hese papers mostly try to identify atypical load patterns and then char-
cterize these as theft, although it can be hard to evaluate their success
s it is unclear whether or not the found outliers actually constitute
heft. Again, this stream of research would benefit from better bench-
ark data sets and the authors should also compare their results with

ther studies. Some authors classify faults or congestion in transmission
rids, with two studies actually using empirical data for their analysis.
owever, this area of research is still very diverse and thus generally in-

eresting for further research. Some research focuses on load frequency
ontrol, which is often connected to the design of an intelligent con-
roller that activates the LFC when necessary. These studies suggest an
valuation metric in contrast to the controller design papers mentioned
t the beginning of this section. Some individual research on different
opics such as lifetime optimal operation of batteries exists, but this is
ore isolated. One of the most notable findings is that the research in

his area has very little in common. It might be a useful task to better
tructure research in the area of DSO/TSO operations. There is no co-
erence in the areas of data, evaluation metrics or methods both in this
ubsection overall and even within the papers on the same topic. 

.4. Consumption 

Within the consumption area, we structure the studies into four ap-
lications: Forecasting, Analysis, Clustering and Control. In the follow-
ng subsections we review the most relevant aspects of Data Analytics re-
earch in each application. Forecasting of consumption is by far the most
rominent application of Data Analytics in the electricity sector. We cat-
gorize consumption forecasting studies regarding their time horizon
short-term versus long-term) and their spatial scope (system-wide ver-
us individual buildings, households, and electric vehicles (EVs)). We
efine all studies with a forecasting horizon of up to one week as short-

erm and all cases with longer horizons as long-term . 

.4.1. Short-term forecasting of system consumption 

Short-term forecasting of system-wide consumption is crucial for sys-
em reliability tasks such as congestion management, wholesale trading
nd adequate scheduling and dispatching of power plants. We categorize
1 studies, plus five reviews in this category. Of these, the large major-
ty forecasts the total consumption within a given time interval. Some
rticles also forecast daily peak values [27,153,154] . Two studies focus
n consumption forecasting of special days, i.e. public holidays, consec-
tive holidays, and days preceding and following holidays [155,156] . 
pproach overview In general, consumption forecasting of entire
ystems is often performed using ANNs [8,17,153,154,157–161] and
RIMA [156,162–164] models. These are often combined with other
pproaches to hybrid approaches including ANNs [17,85,123,155,165–
72] or ARIMA models [27,170,173,174] . Further observed forecasting
pproaches are a Fuzzy Inference Model [175] , Multivariate Adaptive
egression Splines (MARS), Holt-Winters exponential smoothing [63] ,
As, Decision Trees [2] , and Hybrid approaches based on Grey Model
176] or SVRs [177] . 
ata sets Most studies use real-world data from electricity systems from

he USA (10), Australia (5), France (4), Great Britain (3) or China (3).
he majority of studies uses one data set to evaluate their method.
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xceptions are [63,154,161,169,172,174] which utilize multiple real-
orld data sets. The length of the used time series differs substan-

ially between studies and ranges from one month [160] , to 17 years
178] of data. Typically, hourly or half-hourly consumption data is used.
 few studies utilize very granular consumption data, i.e. one-minute
159] or four-seconds [168] . This enables them to forecast consump-
ion in smaller intervals, i.e. ten and five minutes, respectively. Avail-
ble data sets are usually split up into training and test set, and some-
imes an additional validation set. The sizes of the training set depends
n the size of the total data set and typically contains 50–75% of the
ata. 
eature selection All forecasting studies use historical consumption
ata as an input feature. Multivariate models employ additional external
ariables as input features. The most common are temperature-related
eatures (14), followed by type of day (9), relative humidity (4), and
ther weather variables (5). Only few studies pay special attention to
odel-specific feature selection. The authors of [162] select weather

eatures based on the average standardized regression coefficients. Out
f five weather variables only temperature shows a relevant influence on
he daily load anomaly and is therefore selected. Recently, AL-Musaylh
t al. [177] and AL-Musaylh et al. [178] employed Partial Autocorrela-
ion Functions (PACF) to determine the most significant input features.
enchmark approaches Apart from four studies all articles in our pool
ompare their proposed approach to one or multiple benchmark ap-
roaches. Out of those four, two ( [158,164] ) do not use a benchmark
pproach, but compare the performance of the proposed approaches to
esults from literature and expectations from industry. For the other
tudies, benchmarks range from conventional ANNs and ARIMA-based
odels to more sophisticated models or real-world industry models.
n exceptionally wide range of non-conventional – oftentimes hy-
rid – approaches is assessed and compared in several recent studies
161,172,174,178] . 
valuation metrics Almost all studies evaluate the performance of their
odels using the MAPE. Oftentimes, MAPE is complemented with ad-
itional metrics, mostly RSME, Standard Deviation, MAE or MSE. The
uthors of AL-Musaylh et al. [177] and AL-Musaylh et al. [178] present
n exceptionally large range of different evaluation metrics, including
APE, Pearson Product-Moment Correlation coefficient, RMSE, MAE,
illmott’s Index, Legates and McCabe Index, Nash-Sutcliffe coefficients,

nd the relative RMSE. Typically, studies report MAPE values of 0.4%
o 3%. For special days – such as holidays – forecast performance tends
o be worse with reported MAPE values of 1.02% to 8.7%. 
omplexity and running speed Not many studies report details on the
omplexity and computational efficiency of their models, or the com-
utational setup used in their experiment. Notably, the training time of
NN-based methods has decreased from several hours in the early 1990s
153] to minutes in the mid-1990s [165] and seconds in the early 2000s
159] . Hybrid approaches have longer running times than non-hybrid
pproaches, as they combine several methods. Their potential benefit in
ccuracy therefore must be weighted against increased computational
ffort and more complex model-building. 
otable approaches First, static and dynamic forecasting models can
e differentiated. The authors of Lee et al. [157] present a dynamic ANN
orecasting model which forecasts the load of the next 24 hours sequen-
ially using the previous-time forecasts. Notably, the dynamic model
chieves higher accuracy than a static approach for one-day forecasts
especially for peak forecasting – and trains faster. 

Second, hybrid approaches – whether based on ANNs, SVMs, or
RIMA – outperform their separate component approaches. The earliest
ybrid approach paper in our pool is Park et al. [173] . They present a
ybrid ARIMA-based model, which splits up the load forecast into three
arts: The nominal load is dealt with by a Kalman filter. The type load
or weekend load prediction is addressed with the exponential smooth-
ng method. Last, the residual load is forecasted by an AR model. The
uthors of Jin et al. [176] introduce a Hybrid Optimization Grey Model
HOGM) based on segmented grey correlation and a multi-strategy con-
est. Most recently, the authors of Mason et al. [85] apply an ANN with
ovariance Matrix Adaptation Evolutionary Strategy (CMA-ES) to en-
rgy forecasting. The authors of Singh and Dwivedi [172] introduce a
ombination of ANN and a FollowTheLeader algorithm (ANN-FTL). In
uralitharan et al. [171] , the authors assess an ANN-based Genetic Al-

orithm (NNGA). 
Third, studies historically focused on point forecasts. The recent

ransformation of the electricity sector has motivated the research of
robabilistic forecasting approaches. These approaches forecast a distri-
ution of values and thus provide additional information which is espe-
ially valuable when consumption is highly volatile. Such approaches in-
lude Nonparametric Probability Density Estimation, Bayesian Models,
parse Heteroscedastic Models, and Quantile Regression [6] . In general,
he known evaluation measures from point forecasting can also be ap-
lied to probabilistic forecasting. However, specific measures for proba-
ilistic forecasting have also been developed. The two default measures
re the Pinball loss function and the Continuous Rank Probability Score
CRPS) [6] . 

Fourth, in studies comparing many different approaches over multi-
le data sets, Partial Least-Squares Regression (PLSR), Nadaraya-Watson
stimator (NWE), GRNN and Double Seasonal Holt-Winters Exponential
moothing Method perform best. The author of Dudek [161] assesses
he performance of multiple ANN based approaches, as well as ARIMA,
xponential smoothing, Principal Components Regression, PLSR, NWE,
uzzy Neighborhood Model, k-means based models, and Artificial Im-
une Systems. Based on the evaluation of four different data sets from
oland, France, Great Britain, and Australia, GRNN performs better than
ll ANN benchmarks, but the non-ANN models PLSR and NWE perform
ven better. GRNN is the simplest and fastest of the models, as it only
as to estimate one parameter. The authors of Taylor and McSharry
63] compare ARIMA, periodic AR, an extension for double seasonal-
ty of Holt-Winters exponential smoothing, an alternative exponential
moothing formulation, and a method based on the principal component
nalysis (PCA) of the daily demand profiles. Measured by the achieved
APE and MAE the double seasonal Holt-Winters exponential smooth-

ng method consistently performs best. 
Finally, one notable recent stream of forecasting literature uses dis-

ggregated consumption data to perform forecasts on more granular
patial level and afterwards aggregates results to a system-wide fore-
ast. Such forecasts can, for example, be conducted for individual house-
olds [169] or conventional consumption and EV consumption [163] .
hey are able to outperform aggregated forecasting methods, but rely
n more granular input data. Approaches for short-term forecasting of
ndividual consumption are reviewed below. 
ummary Good consumption forecasting can lead to substantial finan-
ial savings [11] and is therefore crucial. In its early days, forecasting re-
earch often lacked proper out-of-sample evaluation and rigorous bench-
arking [10] . Nowadays this can be regarded standard practice. Simul-

aneously, the number of available forecasting approaches has strongly
ncreased. Numerous studies demonstrate the superiority of their pro-
osed approach over others on one specific data set. This shows that
very application scenario must be addressed specifically and no one-
ts-all approach exists. For instance, different models might be appro-
riate for different time horizons [154,177] . When developing a forecast
or a certain use case, multiple approaches should therefore be deployed
efore selecting an appropriate one. It can be considered best practice
or authors to compare their new method with various state-of-the-art
ethods, thus connecting their work to the existing tree of knowledge.
ore complex approaches – such as dynamic, hybrid, probabilistic and

isaggregated models – often achieve better accuracy, but require higher
odelling effort and longer training times. Studies that assess various

pproaches with regard to these criteria across multiple data sets could
rovide valuable new insights for the forecasting community. The field
f peak consumption forecasting is relatively small and can be expected
o gain importance in future systems with reduced controllable genera-
ion and increasing grid congestion problems. Probabilistic forecasting
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an provide useful additional information about the distribution of ex-
ected values in cases of highly volatile consumption. 

.4.2. Short-term forecasting of individual consumption 

In an electricity system with multiple distributed technologies, such
s rooftop solar panels, home battery storage, smart meters, and con-
rollable smart home appliances, the need as well as options for fore-
asting individual consumption are greater. Potential use cases are effi-
ient building operation, as well as optimization [18] and smart storage
peration. Compared with system-wide forecasting, the forecasting of
ndividual consumption is a more recent stream of research. We classify
3 studies, plus eleven reviews in this category. All studies forecast the
otal consumption of households in a given time interval for a short-term
orizon. The authors of Fan et al. [179] also forecast daily peak values.
pproach overview Most high-impact studies that forecast short-term

ndividual consumption use ANNs [7,8,15,20,169,180,181] or ANN-
ased hybrid approaches [15,18,19,23,171,179,182–185] . In addition,
VR [19,20,23,183,186,187] , SVR-based hybrid approaches [19] , and
ayesian Networks [188] are used. 
ata sets The data for these studies comes from office buildings

180] , residential buildings [169,183,185,186,188] , commercial build-
ngs [181,184] , public sector buildings [181,182,185,187] , private EVs
189] , and mixed-use buildings [179] . Most studies use one type of data
et to evaluate their method. The length of the time series used, varies
epending on the study, and ranges from ten days [187] to five years
185] . Time granularity of data is usually between 15 minutes and one
our. Several studies utilize very granular consumption data in the range
f one to five minutes [183,185,188] . Notably, the authors of [188] use
ppliance-level data measured in six-second intervals. Available data
ets are usually split up into training and test sets, and sometimes an
dditional validation set. Typically, training sets contain 60–80% of the
ata. The largest training set share is used in [181] with 90%. In gen-
ral, accuracy tends to increase with the training set – for instance, in
188] from 82% at 25%, to 86% at 50%, and 90% at 75%. Compared
ith system-wide consumption forecasting, training set shares tend to be

onger. This might indicate additional difficulty in forecasting individual

onsumption. 
eature selection All forecasting studies that focus on buildings use
istorical consumption data as an input feature. Multivariate models
tilize additional external variables as input features. The most com-
on are temperature-related (6), followed by type of day (4), month or

eason (4), and solar radiation (3). When using external variables, stud-
es should ensure that only information is used that in reality would be
vailable at the time of forecasting. This aspect poses a notable limita-
ion to Cai et al. [181] , which use actual “future ” weather data as an
xternal input, and not the weather forecast. The authors add “white
oise ” cases for robustness analysis, but this still assumes that weather
orecasting errors follow a Gaussian distribution which impacts practi-
al usability. We recommend choosing one of three other methods to
ntegrate weather data in consumption forecasts, in line with [5] : Fore-
asters could either (a) use historical weather forecasts directly, (b) rear-
ange the original historical weather data with, e.g. bootstrap methods,
r (c) create a mathematical weather forecasting model and use its out-
ut as input for the consumption forecast. 

The EV forecasting study [189] represents a special case, as it does
ot use historical consumption data as input, but instead relies on kine-
atic parameters of trips – such as distance, travel time, and tempera-

ure – and of cars – such as acceleration. 
In general, a higher number of input features tends to improve fore-

asting accuracy, but also the risk of overfitting. Some studies pay spe-
ial attention to feature selection. The authors of Neto and Fiorelli
180] employ Recursive Feature Elimination (RFE) for feature selection.
he authors of Li et al. [182] utilize PCA. In Cai et al. [181] and Fan et al.
179] , the authors select external features based on the Pearson Corre-
ation Coefficient and the Coefficient of Determination of feature values
nd consumption values, respectively. Another promising approach is
o utilize variables from similar surrounding buildings via cross corre-
ation, or mutual entropy methods [3] . 
enchmark approaches All building forecasting studies benchmark

heir proposed approach against others. Benchmarks can range from
aive baseline persistence models to more advanced physical, statisti-
al and Machine Learning approaches. Notably, some studies compare a
ider selection of approaches from different categories [179,183,185] . 
valuation metrics Unlike system-wide forecasting studies, the 13 re-
iewed studies of individual consumption forecasting do not show a
ommon, default error measure. Instead, a variety of measures can be
bserved, including MAPE (6), RMSE (5), Coefficient of Variation (5),
AE (4), and a long tail of twelve more measures. One key reason for

his variety is that certain conventional error metrics like MAPE become
mpossible to calculate when values are zero, and very high when val-
es are close to zero – which is likely to occur for individual consump-
ion. The resulting diversity in measures limits the comparability of stud-
es. Therefore, reporting multiple error metrics is advisable. Forecasters
hould also be aware that MAPE, RMSE, MAE, and MSE are point-wise
easures which thus double-penalize models which forecast the shape

f the consumption curve well, but get the timing wrong. For appli-
ations which have a certain tolerance for mistiming, it can therefore
e more appropriate to conduct a restricted permutation of the original
orecast and select the one that minimizes the error [3] . Last, probabilis-
ic forecasts demand new evaluation metrics. The pinnball loss function

as seen widespread use and provides easy implementation and com-
unication [5] . 
omplexity and running speed Similarly to system-wide forecasting,
nly few studies explicitly state the complexity and computational effi-
iency of their models. In the reported cases, most models can be trained
nd run in a matter of minutes on standard personal computers. Nev-
rtheless, time for building and training models can vary substantially.
or training, times might vary between two seconds and five minutes de-
ending on the approach [179] . Similarly, comprehensive feature selec-
ion takes additional time – the authors of Fan et al. [99] report between
ine seconds and 50 minutes. Reducing the number of features can de-
rease training time of the model. In ensemble models, the weighting
tep takes additional time. 

As the computational and modelling effort can be highly significant
n real-world use cases, authors are encouraged to report them. Fur-
hermore, authors who wish to demonstrate the usability of their ap-
roaches for real-time applications are encouraged to report training
imes. 
otable approaches First, ANN models can perform better when

rained separately for working days and non-working days, i.e. week-
nds and holidays. The ANN models in [180] achieve average errors of
0.8 (working days) and 10.5 (non-working days) compared with 21.0
or a combined model. 

Second, hybrid approaches tend to outperform their individual com-
onent approaches both for total energy consumption and peak power
orecasting [179,185] . On the downside, hybrid approaches demand
igher computational and modelling effort. This should be weighted
gainst the gains in accuracy from a hybrid approach, especially when
hose gains are minor, as reported in Zhang et al. [187] . 

Third, current Deep Learning Approaches such as Deep Belief Net-
orks (DBN) can outperform many advanced approaches such as BP-
NN, ELM, and SVR [21,184] . 
ummary In decentralized electricity systems, forecasting short-term
onsumption at a distributed level gains importance. This new chal-
enge can be tackled with tailored solutions as the various approaches
eviewed in this section show. The selected forecasting time horizon
an influence the suitability of approaches [171] . The state-of-the-art in
hort-term forecasting of individual consumption includes careful fea-
ure selection, hybrid approaches and deep learning approaches, all of
hich come at higher modelling and computation costs than conven-

ional approaches, which must be weighted against accuracy improve-
ents for each use case. 
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In comparison with system-wide consumption forecasting, no studies
se ARIMA-based models, training sets tend to be larger, and more atten-
ion is accorded to feature selection. When used as benchmarks, ARIMA-
ased models are outperformed by others. This suggests that ARIMA
ased models might be less suitable for capturing the higher volatility
n individual consumption profiles. The larger training sets and more so-
histicated feature selection methods indicate higher requirements of
ndividual consumption forecasting. 

In addition, no default error measures exist. We propose using MASE,
s it does not rely on division by the actual consumption value and thus
s very suitable for individual consumption values which can be close to
ero at times, enables comparability across data sets and scales, penal-
zes positive and negative errors equally, and can be easily interpreted.
n cases where large errors in forecasting lead to over-proportionally
arge losses it is adequate to also report non-linear loss metrics like
he root of the average squared error RASE. For applications where the
hape of the consumption curve is more important than the timing, we
ropose conducting a restricted permutation of the original forecast, and
electing the error minimizing forecast. 

Most studies use one type of data set to evaluate their method, which
imits the generalizability of their findings. We therefore encourage au-
hors to a) assess various approaches, b) apply their model to a reference
ata set which has been used by other studies in the past, c) report accu-
acy, computational setup and running time as well as model building
ffort, and d) calculate and present multiple common error measures for
valuation. This way, future studies can provide valuable new insights
or the forecasting community and foster convergence of research in this
eld. 

The field of peak consumption forecasting is relatively small and of-
ers future potential, for example with respect to DR, as electricity tariffs
ith peak demand and peak capacity charges gain attention [190] . For

his and further use cases, probabilistic forecasting can be expected to
lay a large role as individual consumption exhibits higher volatility
nd uncertainty than system-wide consumption. 

.4.3. Long-term forecasting of system consumption 

Long-term electricity consumption forecasting at a system or region
evel supports adequate planning of generation and grid expansion, as
ell as trading on electricity markets. Most studies in our pool focus on

lectricity consumption. A few papers also forecast other energy sources
n addition to electricity, such as petroleum [191] or natural gas [192] or
he self-sufficiency rate [114] . 
pproach overview The most popular approaches for long term fore-
asting are ARIMA models, grey models, SVRs and ANN in different
orms and combinations. If a linear regression benchmark is used, the
eural networks outperform this benchmark (e. g. in Azadeh et al. [30] ,
aytez et al. [45] , Ekonomou [193] , Azadeh et al. [194] ). 
ata sets Most often the data comes from China, Iran, Turkey and the
S, although individual papers also examine the electricity consumption

n the UK [41] or Taiwan [191] . 
eature selection Although the methods are transferable from one data
ource to another, some external influences vary across countries. For
xample, the authors of Zeng et al. [195] find that taking the GDP into
ccount is more important when forecasting the energy consumption in
hina than in the US. Most papers, however, do not compare their meth-
ds across data sets. Generally, including weather and socioeconomic
actors seems to improve the forecasts [41,43,160] . The authors of Wu
t al. [196] find that the total population is the key factor in forecasting
he consumption for the Shandong Province in China, while the author
f Kavaklioglu [44] also includes features such as imports and exports.
n Hamzacebi and Es [197] , the authors include primary energy sources
o forecast the yearly electricity consumption for Turkey. The authors of
zadeh et al. [194] include the electricity price for each sector, number
f consumers, electricity intensity, value added, consumption, and the
rice weighted mean of fossil fuels. 
enchmark approaches When a clear benchmark model is used, it is
ostly a linear regression. Otherwise, most authors compare their ver-

ion of the forecasting model with other versions of the same model.
or example, the authors of AL-Musaylh et al. [178] introduce a new
ethod called improved complete ensemble empirical mode decompo-

ition with adaptive noise. They compare all models (SVR, PSO) with
nd without adding the new method. Other authors use a simpler varia-
ion of the investigated algorithm, for example in Zeng et al. [195] , the
uthors compare their adaptive differential evolution backpropagation
eural network with a simple neural network. 
valuation metrics The performance criteria are almost always the
APE and RMSE. Other criteria are also used, for example when de-

loying an ARIMA model, information criteria such as BIC are reported
e. g. Barak and Sadegh [198] , Ediger and Akar [199] ). Some papers
lso include ANOVA reports in their analysis [30] . 
otable approaches The authors of Kheirkhah et al. [200] present a
ybrid model based on ANN for forecasting, PCA for feature selection
nd Data Envelopment Analysis to compare constructed ANN models as
ell as ANN learning algorithm performance. The average, minimum,
aximum and standard deviation of MAPE of each constructed ANN are
sed as the DEA inputs. Analysis of variance (ANOVA) is used to deter-
ine the best structure in the group that has been identified by DEA.
he model is applied to monthly load data from Iran and compared with
A, Fuzzy Regression, ANN, and ANFIS. The proposed model achieves

he lowest MAPE of 0.01, compared to 0.14 (GA), 0.082 (FR), 0.156
ANN), and 0.155 (ANFIS). 

The author of Ekonomou [193] compares a linear regression, a neu-
al network and an SVR. They find that the neural network and SVR
erform similarly when forecasting the yearly energy consumption of
reece, while both perform better than the linear regression. The grey
odels are not compared with either a neural network or an SVR. How-

ver, hybrid grey models, such as a grey model in combination with
RIMA [201] , or a grey model in combination with genetic program-
ing [202] , improve the accuracy when forecasting the yearly energy

onsumption of China. Additionally, the natural gas consumption of In-
ia is found to be overestimated by the planning commission, when
ompared with the results of a grey Markov model [192] . 

The authors of He et al. [203] , Xiong et al. [204] and Hyndman and
an [42] examine probabilistic long-term forecasting. While the first pa-
er forecasts the yearly consumption in parts of the US and China, the
econd paper forecasts intervals for the monthly power on two power
ines in the US. Both papers use some form of a neural network in
ombination with more statistical approaches such as LASSO and Holt-
inters. The last of the three paper uses a two-step methodology to fore-

ast the probability distribution of annual and weakly peak electricity
emand for South Australia. In the first step, semi-parametric additive
odels estimate the effects of external variables such as calendar and
eather on the demand. In the next step, the demand distribution is

orecasted using simulated temperature, economic scenarios and boot-
trapping. 
ummary A range of approaches exists for forecasting the long-term
lectricity demand for systems. Overall, there is a need for clear bench-
ark models to make these approaches more comparable. Additionally,

he amount of probabilistic forecasts is rather low and should be inves-
igated in more detail in the future. Careful feature selection can also
mprove the forecasts and especially social and economic variables play
n important role. 

.4.4. Long-term forecasting of individual consumption 

Long term consumption forecasts of buildings and individual cus-
omers are useful for decision making regarding installation of dis-
ributed energy resources, like roof-top solar and battery storage, as well
s the development of DR programs. We categorize five papers into this
ategory. 
pproach overview The retrieved studies use ANNs [64,171,188,205] ,
VRs [188,206] , DTs [64] and linear regressions [64] . 
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ata sets While two papers forecast the consumption of business build-
ngs in Singapore [206] and Hong Kong [64] respectively, two papers
tilize the Pecan Street data set from Texas, USA [171,205] or compare
he results on a variety of data sets [188,205] . 
enchmark approaches The authors of Tso and Yau [64] and Rahman
t al. [205] compare different models with the well-established linear
egression approach. The other studies compare new approaches only
mong each other [171,188] , or use a theoretical comparison [206] . 
eature selection In Tso and Yau [64] , the authors include a feature
election in the analysis, which finds that summer and winter features
iffer slightly. While the most important features in summer are the
at size, number of members and air-condition ownership, in winter
he housing type also plays a significant role. The other studies do not
onduct an explicit feature selection. 
valuation metrics The evaluation metrics comprise MSE (used twice),
V-RMSE, accuracy, precision, recall, Pearson Coefficient, RMSE, and
he square root of the mean squared error (RASE) (all used once). Simi-
arly to short-term forecasting of individual consumption, values can be
lose to zero, which renders conventional error metrics like MAPE un-
ractical. To enable a comparability of studies, reporting multiple error
etrics is useful. 
otable approaches The oldest of the analyzed papers Dong et al.

206] is a feasibility study for SVRs. They find that an SVR is able to
redict the monthly energy consumption of four office buildings in Sin-
apore. A SVM is used in Singh and Yassine [188] . However, they find
hat SVM – as well as ANN – is outperformed by their proposed model
ombining frequent pattern mining, association rules and bayesian net-
orks on appliance-based data sets. 

The authors of Rahman et al. [205] apply an RNN for forecasting
ourly electricity consumption for a) a commercial building, and b)
ggregated residential buildings from the Pecan Street data set. Inter-
stingly, they find that the proposed deep RNN outperforms an MLP
or the single commercial building, but not for the aggregated residen-
ial buildings. They hypothesize that this is due to the RNN’s strength
f identifying long-term dependencies, which occur less in aggregated
onsumption profiles. 

On the same data set Muralitharan et al. [171] apply a ANN to predict
he daily, monthly and yearly demand of the buildings. They combine
n ANN with genetic algorithms (NNGA) and particle swarm optimiza-
ion (NNPSO) and compare the performance of the models for different
ime horizons. Interestingly, the NNGA is best suited for short-term fore-
asting, while the NNPSO is superior in the long-run. 
ummary With only a few papers looking at long-term forecasts for
uildings, there still seems to be some potential for further analysis.
owever, for planning purposes, where the need for long-term forecasts

s high, the building level seems to be unimportant. Most likely, the long-
erm building level consumption only changes when there is a change
n inhabitants and thus a short-term forecast is the most useful. 

.4.5. Consumption analysis 

Consumption analysis is an exceptionally broad field of application
ith a variety of use cases. Studies can be categorized regarding cus-

omer type – household, commercial, industry – time horizon, and spa-
ial scope of analysis Zhou and Yang [4] . Most of the retrieved studies
ocus on the household level. 
pproach overview Observed approaches include (i) a combination of
OM and k-means (for clustering), with decision trees (DTs) and rule
et for classification [36] , (ii) conditional demand analysis [207] , (iii)
daptive k-means algorithm with feature extraction and final hierar-
hical clustering depending on segmentation criteria [48] , (iv) ANFIS
208] , (v) finite mixture model-based clustering [39] , (vi) unsupervised
ata clustering plus frequent pattern mining analysis [188] , and (vii)
ssociation rule mining [209] . 
ata sets The majority of studies analyses data from households

36,39,48,188,207,209] . The authors of Singh and Yassine [188] utilize
ata on appliance level. In Sefeedpari et al. [208] , the author analyses
he consumption data from 50 dairy farms. Time resolution ranges from
ix seconds [188] to one hour [48] . The length of the time series ranges
rom six months [36] to two years [188] , but the majority of studies
ses data of one calendar year. 
enchmark approaches Only two reviewed studies compare their ap-
roach to a benchmark. The authors of Aydinalp-Koksal and Ugur-
al [207] compare their CDA to both an ANN and an engineering
odel (ENG). In Sefeedpari et al. [208] , the authors compare their AN-

IS approach to a Linear Regression. Two other studies employ cross-
alidation [36] or bootstrapping [39] for robustness checks. 
eature selection All studies use historical real-world consumption
ata as input feature. Other input features are seasonal scores, week-
nd/weekday scores, dwelling characteristics, socio-demographic fac-
ors, attitudes towards energy, characteristics of households’ appliances,
nd usage of other energy carriers – such as diesel, gasoline, kerosene,
nd natural gas. 
valuation metrics The set of observed evaluation metrics is as broad
s the set of approaches and contains mean index adequacy, accuracy,
 

2 , CV, RMSE, MAPE, classification uncertainty, entropy, standard de-
iation, and sum of squared errors (SSE). 
otable approaches A highly relevant field of analysis is the classifica-

ion and segmentation of customers. Classifying and segmenting residen-
ial, commercial and industrial customers enables appropriate electricity
ariffs, (DR) programs and energy efficiency programs to be marketed
ffectively. The authors of Figueiredo et al. [36] apply a combination of
n SOM, and k-means for clustering, and subsequently classify customers
ith a (DT) and a rule Set. The final classification accuracy is 81% for
orking days and 74% for weekends. In Kwac et al. [48] , the authors

egment residential customers with a three-step model. First, they cre-
te a dictionary for representative load shapes by modeling the distribu-
ion of load shapes and clustering them with an adaptive k-means algo-
ithm. Second, they extract proper dynamic features from the encoded
ata utilizing the pre-processed dictionary. Third, they perform a hierar-
hical clustering depending on segmentation criteria such as a lifestyle
r usage variability. Entropy is used for capturing customer variability.
he results show that it is possible to use customers’ load shape pro-
les to calculate their level of use and entropy. The authors of Wang
t al. [209] present an association rule mining algorithm. Their results
uggest that socio-demographic factors such as employment status, and
umber of occupants have strong significant associations with typical
lectricity consumption patterns (TECPs). In addition, the results indi-
ate that attitude-related factors have almost no effect on TECPs. Last,
ouseholds with more than one person are more likely to change their
ECP across seasons. 
ummary Consumption analysis can be applied to a variety of use cases.
his is represented by the range of studies reviewed in this category.
he most prominent sub-field of consumption analysis is the classifica-
ion and segmentation of customers. Benchmarks are less common than
n other areas. To improve comparability and convergence, future stud-
es are encouraged to adopt rigorous benchmarking. In this regard, re-
earchers can learn from best practices in Short-term Forecasting of Sys-
em Consumption and Short-term Forecasting of Individual Consump-
ion for instance. 

.4.6. Consumption clustering 

Clustering consumption data can provide useful descriptive informa-
ion to retailers and system operators, while serving as a pre-processing
tep for forecasting. We classify five studies plus three reviews into this
ategory. 
pproach overview The most common approaches are hierarchical
lustering [2,13,31,34,210] , k-means [2,13,16,31,34,169] , follow-the-
eader [13,34] , fuzzy K-means [13,34] , self-organizing maps [2,31,34] ,
nd model-based clustering [16,31,39] . 
ata sets The data used ranges from traffic data in South Korea [210] to

mart meter data from residential customers [13,31,169] and non-
esidential [39] customers. 
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enchmark approaches The most exhaustive clustering analysis of cus-
omer load data is performed in Chicco [13] . The author compares 15
ifferent methods and evaluates them with nine different metrics. One
f the central results is that the best performance is achieved by cluster-
ng methods which can effectively isolate outliers. 
eature selection The most commonly used features are those which
an be derived from the existing data such as the relative average power
n each period [39] or the number of morning peaks [31] . Additionally,
eather information [210] and calendar information [39] seem to im-
rove the clustering process, as does any other information about con-
umers, such as decade a building was built in [16] . 
valuation metrics Typical evaluation measures for clustering are the
onnectivity index, Dunn index [31] , silhouette index [31,188] , entropy
39] , and cophenetic correlation coefficient [210] . Using multiple eval-
ation measures helps to avoid local optima. 
otable approaches Grouping the customers before forecasting seems

o improve the forecasting accuracy [169] , where the accuracy depends
n the clustering quality and stability. This stability can be evaluated
sing bootstrapping Haben et al. [39] . However, there appears to be a
rade-off between the prediction accuracy on each cluster and the cluster
tability [16] . 

The authors of Arias and Bae [210] conduct an agglomerative hier-
rchical clustering of traffic patterns in order to forecast EV electricity
onsumption. A grey relational analysis is subsequently performed to
dentify factors influencing traffic volume. Last, (DT) is applied to con-
ect influencing variables (input) to clusters of traffic patterns (output).

In Biscarri et al. [31] , the authors cluster consumption data from 281
ustomers in Spain. Consumption profiles are clustered with a variety
f different algorithms, i.e. hierarchical, k-means, Diana, PAM, Fanny,
lara, SOM, SOTA, Model-based Clustering. No algorithm can identify
he optimum for all categories of customers. It can thus be concluded
hat, similar to forecasting, the most appropriate clustering approach
epends on the given data sample. 
ummary Clustering techniques are difficult to compare and depend to
 large extent on the use case at hand. However, there is a general trade-
ff between cluster stability and prediction accuracy. Additionally, any
nformation about the data to be clustered, such as weather at the same
ocation or meta-information about the building at hand, improves the
lustering process. 

.4.7. Consumption control 

Building a control model itself is not so much a Data Analytics task,
ather than a modelling task – and thus outside the scope of this re-
iew. However, control models still rely on reliable Data Analytics ap-
roaches, e.g. in order to determine when to take an (automated) ac-
ion. Since control tasks require long-term reliability, this represents a
hallenging task, as external factors change over time, reducing the per-
ormance of previously appropriate Data Analytics approaches. 
pproach overview There is one study in this category, which employs
n ANN [211] . 
ata sets This category contains one study that uses 15-minute data

rom a tertiary building in Italy. 75% of data is used for training, 15% for
alidation and 15% for testing. Notably, the study finds that a collecting
eriod of only about two months for the training data set is sufficient
or their use case, as it allows to create a reliable hourly energy model
ith a MAPE of 9.53% on the test set. 
eature selection Input features include consumption data, calendar
ariables, external temperature, illuminance, relative humidity, and the
umber of people inside the building. 
enchmark approaches Two methods are compared for model retrain-

ng – Mobile Training and Growing Training. 
valuation metrics The MAPE is used for evaluation. 
otable approaches The study presents an approach for training an
NN, continuously checking its test performance and automatically re-

raining it if necessary. After the ANN is trained, its accuracy is evaluated
very week. If the previously identified threshold is passed, retraining is
nitiated. The two approaches for retraining are found to perform simi-
arly well, with mobile training (6.77%) slightly outperforming growing
raining (6.49%). 
ummary Good Data Analytics-based models are the key precondition
or efficient consumption control [1] . One key challenge is the ade-
uate selection of input features, mainly thermal property variables,
limatic variables, and occupancy variables. Furthermore, in the light
f increasing electrification of industry processes, efficiency goals, and
he spread of time-varying tariffs and peak demand charges, automated,
ata Analytics-driven consumption control can be expected to gain fur-

her relevance in the future. 

.5. System 

Two studies and one literature review simultaneously analyze more
han one area of the electricity value chain. 
pproach overview Both studies use ANN-based approaches. The au-

hors of Tiwari et al. [212] apply a conventional ANN. In Xiao et al.
213] , the authors introduce a hybrid forecasting model based on Sin-
ular Spectrum Analysis (SSA), combined with the Broyden-Fletcher-
oldfarb-Shanno (BFGS) method for fast local conversion and a modi-
ed Wavelet Neural Network (WNN) with Improved Cuckoo Search Al-
orithm (CS) for optimizing the initial weights and the parameters of
ilation and translation in the WNN (SSA-BFGS-CS-WNN). 
ata sets The authors of Xiao et al. [213] use half-hourly load and
rice data from Australia, and 10-minute wind speed data from China.
raining is performed on 12 days (i.e. 92% of data), testing on 1 day. In
iwari et al. [212] , the authors uses data from a special setup comprised
f two areas, each including two 900 MVA machines and a 187 MVAr
apacitor, which are connected by a 220 KV double circuit line. 
eature selection Historical consumption values are used as input fea-
ures in Xiao et al. [213] . 
enchmark approaches The approach proposed in [213] is compared
ith several benchmarks, namely BPNN, a genetic algorithm-optimized
PNN (GABPNN), radical basis function neural network (RBFNN),
NN, and cuckoo search-optimized WNN. The authors of Tiwari et al.

212] compare their approach to a ’conventional controller’. 
valuation metrics MAPE, MSE, MAE and computation time are re-
orted and discussed in Xiao et al. [213] . 
otable approaches In Tiwari et al. [212] , the authors investigate how
n ANN can be used to control a Unified Power Flow Controller (UPFC)
o improve the transient stability performance of a power system. The
tudy introduces a two zone system with different levels of power flow-
ng from Zone 1 to Zone 2 through a 220 KV double circuit line with a
ength of 220 km. One transmission line is subjected to a short circuit
ault for a duration of 200 ms. The proposed method damps the inter-
one and local modes of oscillation in the system very effectively in all
he cases under consideration, as compared with the conventional con-
roller. It performs satisfactorily even at those operating points where
he regular PI controller fails to stabilize the system. 

The authors of Xiao et al. [213] apply a hybrid approach to fore-
ast short-term electricity generation, load and price. The proposed
SA-BFGS-CS-WNN outperforms all benchmarks in all three areas. It re-
ults in MAPE reductions of 46% (load), 32% (wind speed) and 26%
price) compared with the next best approach. In addition, for load
orecasting the SSA-BFGS-CS-WNN calculation speed (18.34-20.61) is
uch faster than the second-best CS-WNN (29.34-31.64), but slower

han other benchmarks with a worse performance. 
In Liu et al. [12] , the authors present a review of approaches for

solated electricity systems, such as islands, which acknowledges the
mportance of consumption forecasting when modelling such systems.
issing historical data and the high influence of consumption behavior

an pose an extraordinary challenge in these environments, necessitat-
ng specifically-tailored approaches. Methods based on ANN, ARIMAX,
ARIMA, and SOM have been successfully applied. Another important
spect is precise generation forecasting of renewable resources. Apart
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c  
rom numerical models, studies have researched ANN, ARIMA, ARIMAX,
NFIS for renewable generation forecasting. 
ummary Only a small number of studies covers system-related applica-
ions. In particular, ANN- and ARMA-based models have shown reliable
erformance in various system-related forecasting tasks. With a growing
umber of microgrids, local electricity markets, and multi-energy sys-
ems, this area contains abundant potential for future research, as iso-
ated systems have special characteristics that create unique challenges.

. Conclusion 

In this review, we aim to provide a structured analysis of high-impact
esearch related to Data Analytics in the electricity sector. Because of the
niquely broad scope of our review, we apply a hybrid search method,
ncluding manual and automated steps for selecting relevant literature.
his allows us to identify and review the main streams of research in
his field. 

.1. Key findings and applicable knowledge 

We first provide a high-level overview of the research landscape. We
iscover that the number of related articles is growing rapidly, outpac-
ng other fields of research. A large share of high-impact studies come
rom Asian universities. Regarding international collaboration, China
nd the USA are at the center of the collaborative network in the field. 

Next, we present an in-depth review. For this purpose, we classify
etrieved studies along the three dimensions area, application , and ap-

roach . State-of-the-art approaches that can be seen across multiple
reas include (hybrid) Machine Learning approaches based on ANNs,
VMs, SVRs, and DTs. Our findings indicate that no one-size-fits-all ap-
roach exists. The most appropriate approach highly depends on the
ontext. Guiding questions that future researchers can ask themselves
o find a suitable approach are: What kind of data is available? Is time
eries data used? How volatile is it? How important is the interpretabil-
ty of results? Can a hybrid combination of different approaches help
o tackle different characteristics of the problem? What is acceptable
omputational effort and modelling complexity? Considering these as-
ects enables an appropriate Data Analytics approach to be tailored to
ach use case. The area subsections in this article provide orientation
or researchers and practitioners to identify promising state-of-the-art
pproaches for their respective use case and to determine possible fu-
ure research directions. We provide a summary of overall best practices
nd area-specific findings below. 

.2. Best practices 

We observe a number of aspects that future Data Analytics research
n the electricity sector should incorporate in order to move the field
orward. Input data should always be thoroughly described and ideally,
enchmark data sets should be developed and used. Programming lan-
uages, software packages and data sources should be named and if
ossible, data should be made available to enable other researchers to
eproduce results. This goes hand in hand with the global movement of
pen source, open data and open science. 

Moreover, newly proposed approaches are to be compared to mul-
iple state-of-the-art benchmarks. Evaluation of multiple error metrics,
odel building effort, run time, and computational setup improves the

omparability of studies. Showcasing the performance of an approach
n more than one data set demonstrates its potential generalizability
nd helps in avoiding over-fitting. 

In the spirit of transferring insights, it can be beneficial for re-
earchers in a certain area to apply approaches and best practices to
heir problem that have proven valuable in other areas. For this, the
n-depth area sections in this review can offer ideas and inspiration. We
ummarize the main area-specific findings below. 
.3. Area summaries 

In the Generation area, we see that most publications focus on fore-
asting the generation of either wind or solar energy. As these renewable
nergy sources depend on the weather conditions, advances in forecast-
ng methods contribute to the overall system stability and enable net-
ork as well as power plant operators to lower their costs. In this area,
e see an example of the push factor impact like increasing comput-

ng power. This enables the development of more complex models. The
rowing number of advanced neural networks approaches (e.g., ANFIS)
nd the combination of different approaches underline this argument.
andom forest and regression tree approaches are an upcoming trend
nd we suggest that researchers explore the capabilities of these ap-
roaches regarding generation data. Pull factors in future generation
esearch will likely be a more detailed differentiation within the solar
nd wind groups. The generation from off-shore wind power plants is
teadily increasing in many countries. This offers potential for future re-
earch, as the focus of current research is on-shore wind. Furthermore,
ising renewable generation capacities will increase the need for pre-
iction of generation curtailment by network operators in some systems
nd their impact on energy markets. Besides, the dependencies between
istributed generation and consumption in distribution grids will be-
ome crucial for distribution network operators. Improved forecasting
esults of both sides (consumption and generation) will allow operators
o predict critical system states (e.g. congestion) and enable them to
ounter or prevent these. However, they also require spatially granular
ata. 

The most prominent literature in the Trading area focuses on the
orecasting of electricity prices, especially in the short term. An accu-
ate forecast impacts all market participants, which leads to the large
umber of studies in the area. However, there are still some gaps in the
nderstanding of the factors that contribute to the occurrence of extreme
rices. In order to better deal with the distinct volatility of electricity
rices, thorough selection of external features can be expected to gain
mportance. Furthermore, the recent introduction of renewable energy
nd smart grids have led to higher uncertainty of future long-term elec-
ricity prices. It is important to understand the limitations of the tradi-
ional point forecasts in this respect and focus stronger on probabilistic
orecasting, also in the short and medium term. 

The review of the Data Analytics related literature in the area of
lectricity Transmission and Distribution shows that the field has yet to
e consolidated. Currently, researchers borrow the methodology they
eed for certain isolated problems but they do not necessarily adhere to
tandards in the Data Analytics community. That means that there are
o benchmark data sets, no common evaluation metrics and the analy-
es are often based on simulated data. The area is also very diverse in
erms of research interests. One focus research stream is certainly auto-
ated control but other streams are also considered by multiple authors,
amely non-technical losses or failure prediction. Additionally, a lot of
ndividual research streams can be identified in our analyzed pool. How-
ver, most research is motivated by push factors such as the increased
vailability of computing power and more data (even though most data
n this area is still simulated). Pull factors only play a minor role. In
he future, the community should begin a dialogue with transmission
nd distribution system operators to find what they need to improve
heir operations. Possible topics include the anticipation of deviations
rom scheduled power generation or consumption, the automated iden-
ification of optimal switching patterns to avoid congestion or the use of
ynamic line rating dependent on the anticipated weather conditions.
ll of these would improve the operation of power grids and decrease
osts. These topics have been addressed by individual publications but
he review shows that these are still rather isolated researchers and that
he community should put a stronger focus on the TSO and DSO opera-
ion improvement. 

Within the Consumption area studies focus on four applications: Fore-
asting, Analysis, Clustering and Control. Forecasting, has recently seen
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 strong increase in research interest and represents the largest field of
pplication in this area. 

Short-term probabilistic and peak consumption forecasting can be
xpected to gain importance in future systems with increasing grid
ongestion problems, higher loads from EVs at the distribution grid
evel, and more opportunities for DR. Similarly, in decentralized elec-
ricity systems, short-term forecasting of consumption at a distributed
evel gains importance. The volatility of individual consumption poses
 unique challenge. Consequently, we can observe that successful indi-
idual consumption forecasting typically requires especially thorough
eature selection and larger shares of the data set for training. On both
evels, state-of-the-art hybrid approaches and deep learning approaches
sually outperform ARIMA models. 

Long-term forecasting is challenging, especially as it highly depends
n socio-economic and economic factors which for a proper forecast
eed to be forecasted as well. Probabilistic forecasts are rare in this area
nd thus leave some potential for the future. Overall, simpler models
uch as ARIMA and linear regressions perform well but can be outper-
ormed by well specified and trained neural network approaches. 

The most prominent sub-field of consumption analysis is the classi-
cation and segmentation of customers. To improve comparability and
onvergence, future studies are encouraged to adopt rigorous bench-
arking. In this regard, researchers can learn from best practices in,

.g. Consumption Forecasting research. 
For Clustering, the choice of the most suitable approach highly

epends on the use case at hand. There is a general trade-off be-
ween cluster stability and prediction accuracy. The availability of meta-
nformation and additional external features are shown to substantially
implify and improve the clustering process. 

Furthermore, in the light of increasing electrification of industry pro-
esses, efficiency goals, and the spread of time-varying tariffs and peak
emand charges, automated, Data Analytics-driven consumption control
an be expected to gain further relevance in the future. Data Analytics
s also a key pre-step for efficient consumption control. One key chal-
enge is the adequate selection of input features. Here, researchers can
dopt recent advances from other fields, e.g. short-term forecasting of
ndividual consumption. 

System related Data Analytics covers multiple areas in an integrated
ashion. Only a small number of the retrieved high impact studies cov-
rs such applications. Especially ANN- and ARMA-based models have
hown good performance for various system-related forecasting tasks.
iven the rise of microgrids, local electricity markets, and multi-energy

ystems, we predict a rising need and potential for integrated System

ata Analytics applications across multiple areas, as we outline below.
his is a chance for researchers from different backgrounds to work to-
ether to find innovative solutions for the future energy system. 

.4. Outlook 

In the near future, several major trends will affect the electricity
ector and influence the development of Data Analytics in this context. 
ntegration of Electricity Value Chain Areas First, Data Analytics
ill need to acknowledge the increasing interconnectedness of areas
long the electricity value chain. Larger shares of varying Generation

rom renewables have an increasing impact on Transmission and Dis-

ribution capacity and wholesale Trading . Under time-varying electricity
ariffs, these effects will be passed on to short-term end-consumer prices.
hose prices, in combination with higher flexibility from EVs, station-
ry storage and automated DR will in turn impact Consumption . Hence,
pproaches that are applicable to multiple areas and integrated analyses
an provide additional value. 
ntegration of Energy Sectors In the future, the electricity sector will
e increasingly coupled with other energy sectors like mobility, heat,
nd gas leading to multi-energy systems. Data Analytics can be expected
o play a crucial role in the transition and integration of these sectors.
or instance, heat pumps, air conditions and EVs will have a consid-
rable effect on the forecasts of individual household’s consumption.
herefore, future work could expand the present review to other energy
ectors and the aspect of sector coupling. 
ecentralization of Generation and Consumption In the upcoming
ears, new applications for Data Analytics at the interface to consumers
ay move further to the center of research attention. If adoption of roof-

op solar panels, residential batteries, EVs, electric heat pumps, smart
ome appliances and smart metering infrastructure continues to rise,
oth the availability of data and the need for new solutions will grow
ubstantially. For example, granular smart meter data can be used for
orecasts on building level with probabilistic approaches to capture the
pecific time dependencies of individual consumption. If a household
as solar generation, consumption forecasts can be expanded to pro-

umption forecasts. Such forecasts enable new solutions for future de-
entral challenges like grid congestion, optimized charging of batter-
es and EVs and the design and recommendation of spatially and time-
arying electricity tariffs. As Data Analytics applications move closer
o individuals, they have to increasingly consider consumer anonymity
214] and human behavior [4] . An outline of the potential future inter-
lay between Data Analytics research and Behavioral Energy Economics
esearch is given in Staudt et al. [215] . 
emocratization of Data Analytics Finally, we observe that the key re-

ources needed to conduct Data Analytics research become more avail-
ble to a broader community. Looking at the programming languages
hat the studies in our qualitative analysis pool report, Open Source Pro-

ramming Languages like Python and R are becoming increasingly popu-
ar (see Fig. 7 ). Moreover, some institutions and researchers make their
ata sets accessible and legally usable as so-called Open Data . Papers in
ur review, e.g. have used freely available data from Open Power System
ata [216] and ENTSO-E [217] on generation, prices, and consumption.
or further related data sources and a discussion of the legal aspects of
haring and using electricity system data we refer to Hirth [218] . Besides
ata, publishing newly developed models including the associated code
ncreases reproducibility ( Open Methodology ). Last, progress of Data An-
lytics is fostered by Open Educational Resources like online courses as
ell as freely available cloud computing resources [219] which render
ossible increasingly complex models. 

Given these major push and pull trends, the importance of Data An-
lytics and Artificial Intelligence in the energy sector is set to grow
urther. With the analysis provided in this work, we hope to help re-
earchers in finding inspiration for new ideas and to facilitate successful
uture research. 
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