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Abstract

Modern electrical and electronic devices are very sensitive to the power supply
and require steady and stable electric power. Factories may also need electric
power within a specific standard range of voltage, frequency, and current to
avoid defects in the production. For these reasons electric power utilities must
produce an electric power of a specific standard of power quality parameters
[EN50160]. Nowadays, renewable energy sources, such as wind energy and solar
energy are used to generate electric power as free and clean power sources as well
to reduce fuel consumption and environmental pollution as much as possible.
Renewable energy, e.g. wind speed or solar irradiance, are not stable or not
constant energies over the time. Therefore smart control systems (SCSs) are
needed for operate the power system in optimal way which help for producing a
power with good quality from renewable sources. The forecasting and prediction
models play a main role in these issues and contribute as the important part
of the smart control system (SCS). The main task of the SCS is to keep the
generated power equal to the consumed power as well as to consider standard
levels of power quality parameters as much as possible.

Some of previous studies have focused on forecasting power quality parame-
ters, power load, wind speed and solar irradiance using machine learning models
as neural networks, support vector machines, fuzzy sets, and neuro fuzzy.

This thesis proposes designing forecasting systems using machine learning
techniques in order to be use in control and operate an electrical power system.

In this study, design and tested forecasting systems related to the power and
renewable energies. These systems include wind speed forecasting, power load
forecasting and power quality parameters forecasting.

The main part of this thesis is focus in power quality parameters forecasting
in short-term, these parameters are: power frequency, magnitude of the supply
voltage, total harmonic distortion of voltage (THDu), total harmonic distor-
tion of current (THDi), and short term flicker severity (Pst) according to the
definition in [EN50160]. The output of the forecasting models of power quality
parameters can be used in shifting the load to run in switch time which will
help for correct and optimize the quality of the power.
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Chapter 1

Introduction

One of the important issues in our daily life is the electricity. All our devices that
are used throughout needed to electric power to run. With of many different
devices are used now as TVs, smart phones, wash machines, kettle, electric
oven, lights, car passenger chargers, etc. Therefor the demand power became
more consumed and more needed than before. In traditional power system to
generating the demand power which are needed many of the fuel will consumed
and addition increasing in the environment pollution and cost of the power
generation. Nowadays for reducing the cost generation and air pollution, the
renewable energies are used to generating the power. These sources are available
free everywhere around the word, but these power sources are unstable. The
challenge is to how producing a power with good quality from theses unstable
source and became the focus of lots the researchers around the world.

1.1 Problem Definition and Motivation

At this times the electricity become one of the basic life requirements which
needed to supply hold houses, factories, lighting of cities, etc. In traditional
power plants use fuel to run the power generators which causes various pollu-
tions. While in the modern power plants use renewable energies for generating
the electricity, whether separately (off-grid system) or connected with external
power grid (on-grid system), moreover generating electrical power as needed. It
means power system should use renewable energies sources as much as possible,
generating power as demand power. Therefor the power grid should operate
by intelligence system. The challenge is to design an intelligence system which
control power grid that producing a power and keeping the generated power at
required limits of the power quality parameters as much as possible.
To build smart control model two main parts should consider: the main and
difficult part is forecasting model and the second part optimization model. This
thesis focuses on the first part, as can be seen in Figure 1.1

1.2 Goal of This Work

The main goal of this thesis is to design forecasting systems which contribute
as a main part of the SCSs. The SCSs are needed when operate and control
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forecasted in advance as short-term, mid-term and long-term. The power systems need tight control
functions to produce good quality power so that the power quality parameters [EN 50160] can be
immediately corrected. The power load forecasted in the short-term plays a very significant role in
electric utility. For these reasons, we focused on reviewing past studies on short-term forecasting below.
This study presents five sections: Section 1 with the introduction, Section 2 includes the motivation of
this study, Section 3 explains the power load forecasting, Section 4 presents the previous studies of
load forecasting, and Sections 5 and 6 with a discussion and conclusion.

2. Motivation of This Study

As a result of the growing and continuous use of renewable energy sources, being clean and free
electrical power sources, forecasting models are being developed worldwide in order to incorporate the
renewable energy sources for supplying the demand power as much as possible. The most significant
challenge for power load predicting is to create a reliable and precise model to estimate demand
electrical power values because it is impossible to store the generated power. The generated power
must be fed to supply the load in an optimal way that will keep balancing the power grid as can be
seen in Figure 1. For this purpose, this study aims to be a review of the previous studies focusing on
the design of power demand forecasting models. This study can help researchers and students, who
can get an accessible brief overview on power forecasting. The electrical power which is generated
from renewable energy sources depends on weather conditions that fluctuate randomly, thus making
the electrical power generation values uncontrollable. From the perspective of the economy and the
power quality, the power load must consider the generated power from renewable energy sources.
Hence comes the need to study and design intelligent control models to operate and control the power
flow from sources to consumers in an efficient manner. A smart control model includes several stages
or models, where one of the important models is a forecasting power load model. This study has been
motivated to provide a brief description of power load forecasting systems.

Generated power Demand power 

Figure 1. Power Load Balance. The balancing between the generated and consumed power, this is one
of the main tasks of the distribution power system for producing power with good quality.

3. Power Load Forecasting

The future power load value must be forecasted so that it is known in advance in order to
minimize possible costs and to keep power quality satisfactory. The electrical power load fluctuates

Figure 1.2: Power Grid Balance [1]. The balancing between the generated and
consumed power, this is one of the main tasks of the distribution power system
for producing power with good quality

power system especially with renewables.
Since power quality parameters are forecasted as power frequency, voltage

THD, and flicker, then can shift the load to run in the switch time, this task
will keep for producing a power with good quality. The important one of power
quality parameters is the power frequency. For example- when the frequency
power exceed the nominal value 50Hz [EN 50160] in this case, at same time can
increase the equivalent load value that will cause the frequency to decrease to
the nominal value. As can be seen in Figure 1.3 and Figure 1.4, that illustrated
a simple example how to correcting the quality of the power.

The forecasted values of the power quality parameters will be used to find an
optimal reconfiguration of the distribution power system. The reconfiguration of
the distribution power system includes: moving household appliances to suitable
runtime, changes in the power distribution switches, and turning on and off
renewable electric power unit. These tasks will contribute to balancing between
the generated power and demand power as much as possible.

In this thesis, for the purpose of design a forecasting system a different fore-
casting models using ANN, DT, SVM, LR have been already designed, tested,
and published.
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Figure 1.3: Power quality correction. Simple example shows how to correct the
power frequency

Figure 1.4: Moving home appliances to suitable runtime, which keeps the electric
power at standard levels of power quality parameters as much as possible. For
example moving runtime of car charge battery to suitable time from 1:00 to
21:00

This study presents sex chapters: in this chapter, we introduce the objective
of this study, and define the problem. In the second chapter, we provide an
introduction of the renewable energies and power quality parameters. In the
third chapter explains the formal methods which used in this thesis such as
ANN, TD, SVM, and LR. In the fourth chapter, we listed previous studies
includes forecasting models, and reconfiguration the power systems. In the fifth
chapter, we proposed methods that include designing forecasting models. In the
sixth chapter, we lead a discussion and conclude this Ph.D. thesis.

3



Chapter 2

Renewable Energies and
Power Quality

2.1 Introduction

Many types of renewable energies are naturally are available, such as tidal,
water, wind, solar power. This study focused on solar and wind power. At
present, renewable energies: as solar and wind power are used for generating
electrical power as alternative free and clean power sources. Can build a power
system from a wind turbine or solar panel, or from both together. It can in a
small scale at consumer’s homes, or in a large industrial scale according to the
desired purpose. Using renewable energies as alternative power source helps to
reduce the cost of energy generation and to reduce environmental pollution.

2.2 Off-Grid System

An off-grid system works independent on the external power grid. An off-grid
system is designed and used to generate electrical power as an alternative, clean
and free power source. It can also help customers when they are distant from the
external power grid, and it is expensive to connect them to that distant external
grid [2]. In general, Off-Grid Power System consists of the following main parts-
at least one renewable energy generator, such as a power photovoltaic device
or wind turbine, battery storage, converter, control unit, and is connected to
the load, such as home appliances. An off-grid may also have an optional diesel
generator to provide power on demand and charge the battery, or in case the
weather conditions are unfavourable for a long time [2], [3]. Figure 2.1 illustrates
an example of Off-Grid Power System built at VŠB-Technical University of
Ostrava. It consists of the following components- two photovoltaic systems on
the roof and tracker, battery system, control charger, inverter, weather station,
and load home appliances. This system was used to supply the home appliances,
such as LCD TV, lights, kettle, etc. At the same time, meteorological data and
power load data were recorded to be used in this study.
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Figure 2.1: An example of off-grid power system built at VSB-Technical Uni-
versity of Ostrava. The system in normal operation works as off-grid system. In
case the weather conditions are insufficient to generate the demand power and
the battery is low, the system connects to the external grid which will works as
on-grid system

2.3 Power Quality

2.3.1 Introduction

In general, the electrical and electronic devices are designed to run with specific
range of power supply which defines the RMS limits of lower and upper for
frequency and voltage. The power quality is purely defined as an interaction
the electrical power with electrical appliances, or the ability of source power
system to provide a constant and regular power flow as a regular power supply.
It means any problem which can occur in the frequency, current, or in voltage,
which cause failure in consumer devices [2]. For example, when the power grid is
connected with consumers and electrical devices work without electrical damage,
we can call the PQ good. Otherwise when electrical devices get damaged the
PQ is low [2] [4]. Modern electrical and electronic devices are very sensitive
and require a constant voltage and frequency. For example, suppose we a have
light bulb 200 watt needed 220 volt to generate desired light. If the voltage of
power supply goes down about 200 volt the light bulb still works but with low
light efficiency. If the voltage increases about 240 volt the bulb produce more
light than designed value causing overheating and stress of the bulb. So every
change in voltage of power supply either by increase or decrease than designed
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value changes bulb efficiency. The voltage must be stable at designed value so
to keep the bulb at desired efficiency and designed life. The low power quality
causing result in lost production, damaged in electrical devices, and early defuse
of electrical and components devices. PQ is an important matter for electricity
users either in industries or in household appliances.

2.3.2 Power Quality Parameters

Power quality is estimated using power quality parameters according to a spe-
cific standard range. There are a number of such parameters- Harmonics, Power
frequency variations, Voltage and Current unbalance, Transients, Flicker, Volt-
age Sag or Voltage Dip. But the important parameters are used in the most
cases are magnitude of the supply voltage variations, power frequency, harmon-
ics [EN 50160] which are in the centre of attention in this study.

• Harmonics

Harmonics in the power system are frequencies of current or voltage which
results of multiples fundamental frequency of the power with a integer.

The waveform is not affected when the load linear, but in non-linear load
the current consumption in a nonlinear manner which cause a change in
the current waveform away from the sinusoidal form, for this reason chang-
ing in voltage waveform can occur accordingly.

Total Harmonics Distortion (THD)

THD is term uses to determine the distortion in a waveform signal which
caused by harmonics. For example, if the fundamental waveform was
about 50Hz, then the second, third, and fourth harmonic components will
be equal to 100Hz, 150Hz, 200Hz, and so on.

THD for voltage and current can describe by following equations:

THDu(%) =

√
V 2
2 + V 2

3 + . . .+ V 2
i

V1
× 100 (2.1)

THDi(%) =

√
I22 + I23 + . . .+ I2i

I1
× 100 (2.2)

Where Vi, Ii are individual Harmonic of order i, V1, I1 are fundamental
Harmonic (first harmonic) which has standard value of range from 50 to
60Hz.

• Voltage Drop (Variations).

Voltage Variations: is changing whether increase or decrease in the voltage
of the power system from designed nominal value for short time.

Sag is decrease in RMS voltage from nominal value by 10 to 90% for short
time (from half cycle to one minute).

Swell- is increase in RMS voltage than nominal value by 10 to 80% for
short time (from half cycle to one minute).
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• Frequency.

Frequency Variations: The Frequency Variations it means changing in
the fundamental frequency of the power system from standard value (50
Hz) [EN50160]. Or by other meaning changing in the power frequency
either less or more than nominal standard value of the frequency power
supply, which causes the irregularity of the work of the customer devices
efficiently, and perhaps the failure of these devices.

• Flickers.

Voltage Flickers. is fast and random change in the voltage power which
causes a rapid change in the light levels which can be detect and visible
by human eyes. It means a change in the amplitude of the voltage power
which can be seen and recognized in the surroundings. The flickers in
power system can be measured and estimated by two main parameters-
perception short term (Pst) and perception long term (Plt), or short term
flicker index, and long term flicker index respectively [5].

In (Pst) the flicker severity estimated for short time interval about minutes,
while in (Plt) it estimated for long time interval about hours [EN 50160].

Pst =
√
0.0314P0.1 + 0.0525P1 + 0.06574P3 + 0.028P10 + 0.08P50 (2.3)

Plt =
3

√
1

12

∑
P 3
st (2.4)

Table 2.1: Power Quality Parameters

Type Standard Level Cause Possibility problems occur

Voltage variations 230 ±10 V 78.00% 76.50%
Frequency 49.5 - 50.1 Hz ——— 78.00%

THD For voltage 2% 85.52% 84.76%
Flickers Plt ≤ 1 98.00% 90.00%
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Chapter 3

Formal Methods

3.1 Introduction

This chapter contains a brief mathematical description about the mathematical
techniques used in my experiments and my publications to design my proposed
approach includes- Linear Regression, support vector regression (SVR), Artifi-
cial Neural Networks, and Decision Tree (DT).

3.2 Clustering

The main idea of clustering is grouping the original data set into groups or
clusters. In this study, samples are clustered into several groups, followed by
the extraction of new features space by measuring the distance between the
samples and each group centre. New features space is fed into the next-stage
forecasting models. In this study, K-means and K-medoids clustering were used
and compared.

3.2.1 K-means Clustering

K-means [6] is one of the basic unsupervised learning methods for data analysis
by grouping the data samples. The main idea is to measure the distance between
the centre points and data points, and to assign every data sample to one
cluster of minimum distance. In K-means, the following equation for Euclidean
Distance is used [7].

d =

√ n∑
i=1

(ci − xi)2 (3.1)

where n is the number of the features in each sample.
K-means may be understood as follows:

• Choose a random number of samples considered as centroids.

• Calculate the distance between a sample and each centroid.

• Allocate each sample to a unique cluster that is closer in distance.

8



• Update the centroids via making the average of each assigned sample.

• Repeat the steps from step No. 2 till no sample changes.

3.2.2 K-medoids Clustering

K-medoids Clustering [6] is a modified version of K-means algorithm. K-means
and K-medoids divide the data set in different groups.

K-medoids work in the following steps:

• Select a number of samples which represent the medoids.

• Compute the distance between all the samples and centres of medoids.

• Assign the rest of the samples to a closer cluster.

• Random choose nonmedoids sample onew

• Determine the cost (T ) of swapping oold with onew, T = new total cost −
old total cost. Then change oold with onew if the swap reduced the total
cost.

• Repeat the steps from step No. 2 to 4 till no sample changes [7].

3.3 Linear Regression (LR)

Linear regression (LR) [8] is an approach for modelling the relationship between
a scalar dependent variable y and one or more explanatory variables (or indepen-
dent variables) denoted X. The case of one explanatory variable is called simple
linear regression. For more than one explanatory variable, the process is called
multiple linear regression. LR can be used to fit a curve between patterns of
data, or to predicted one value variable from input variables. The relationships
are modelled using linear predictor functions whose unknown model parameters
are estimated from the data. Such models are called linear models [9]. The
general form LR is

Y ′ = BX +A (3.2)

In Equation (3.2) Y ′ denoted predicted value or dependent variable, X is
independent variable, B is line slop, and A is intercept of Y axel. The values
B and A are calculated in training phase from training data set. Afterward we
can use the obtained equation to predict new value Y ′.

For multiple LR the process will find a curve which represents all data sam-
ples as possible as following equation

Y ′ = A+B1X1 +B2X2 + . . .+BnXn + ϵ. (3.3)

Where X1, . . . , Xn are independent variables (features) of the dataset.

9



Figure 3.1: Simple linear regression model with actual data set and intercept of
Y axel (A)

3.4 Support Vector Machines (SVM)

Support Vector Machine (SVM) for classification simply finds the best line which
tries to separate data samples which belong to Two classes. In SVM for regres-
sion, the algorithm attempts to fit the best line of data samples which minimiz-
ing the error of cost function. This process can be done using an optimization
method which deals data points of the training set that near to the line with
the minimum error of cost function. These data samples which near to the line
called support vectors.

We assume a data set with samples (x1, x2, . . . , xm) and corresponding out-
put values (y1, y2, . . . , ym) , where xi ∈ Rn , yi ∈ R. The basic concept of SVR
is find a function f(x) = wx+ b,

which estimate the values of output y. The best hard SVR model can be
found by minimizing amount of 1

2w
2 subject to

Y ′ − ⟨wxi − b⟩ ⩽ ϵ. (3.4)

⟨wxi − b⟩ − Y ′ ⩽ ϵ. (3.5)

where i = 1, 2, . . . ,m , is the number of samples. As can be seen in Figure 3.2,
there are hard and soft regression SVM whether linear or nonlinear, more details
about that can found in [10].

3.5 Artificial Neural Networks (ANN)

Artificial neural network is a computation process which tries to mimic biological
nervous systems that can learn from examples. NN constructed of a large num-
ber of neuron which connected in way to solve a specific problem such as pattern
recognition, classification, forecasting, and so on. These neurons organized in
three layers- input layer, hidden layer, and output layer. The neurons connected
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Figure 3.2: Hard Margin Support Vector Regression

of each other via weights, in learning phase the network tries to modify these
weights to minimize the error between target output and network output till the
network learned all of training examples. More details about ANN can be found
in [11]. Figure 3.3 illustrates using NN for forecasting wind speed in our exper-
iment. In our experiments we utilized Feedforward neural network (FfNet) and
Function fitting neural network (FitNet) from Matlab Neural Network Toolbox.

Figure 3.3: Example of ANN structure

3.6 Decision Tree (DT)

Decision Tree (DT) is supervisor learning, and the powerful technique has been
used successfully in many applications for classification and regression purposes.
The basic working principle of the decision tree is the same, whether for classi-
fication or regression purpose. In classification tree, the target output is classes
(as yes, no, and so on) but in Regression Tree the target output is value num-
bers (as wind speed, price, and so on), more details about classification tree can
found in [12].
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In regression tree, each of features is handled as the independent variable
later used to fit regression modes with the residue of the independent features.
Data samples are splits for all independent features. In each split node comput-
ing the error between target and forecast output, then calculating the sum of
squared error (SSE), the point with the minimum value of SSE is selected as a
root node. By the same way, the process is repeatedly continued. In regression
tree, the standard deviation is used instead of information gain which is used in
classification tree to make decisions. More information about regression trees
can be found in [13].

In this study, we used Microsoft Excel and MATLAB to design and run
the experiments. Microsoft Excel used for cleaning and preparing the data set.
MATLAB used for designing and creating the proposed forecasting models.
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Chapter 4

Related Works

4.1 Introduction

There are many studies which focus on the designing and construct of smart
control systems to control and operate power systems using different models.
This section includes some previous studies related to the main part of this
thesis is designing of forecasting systems in renewable energies, in the power
load and in power quality parameters. As well includes other studies related
to optimization of power flow or reconfiguration of power grids. All these tasks
aim at the same goal of supplying users with power of good quality.

4.2 Wind and Solar Power Forecasting

There are many studies which used and designed different models to forecast
wind speed and solar energy: in [14] proposed a method based on genetic pro-
gramming with Fuzzy Logic, the proposed method was applied on solar data
collected from the Czech Republic for the purpose of forecast output power from
photovoltaic. The study mentioned that, the simulation result was reassured. A
model to predict wind energy based on two stages: in the first stage they used
wavelet decomposition with adaptive wavelet neural network (AWNN) to fore-
cast speed of wind, in the second stage a feed forward neural network (FFNN)
was used to convert the predicted wind speed into predicted wind power. The
results of predicted wind power, confirmed the efficiency of the proposed method
[15]. In [16] proposed and applied support vector machines (SVM) for forecast-
ing power output of photovoltaic (PV) based weather conditions. The results
confirmed the ability of the proposed model for the estimation of output of PV.
Used statistical feature parameters with a neural network to forecast short time
solar irradiance based temperature and irradiance data. Their model has been
tested on different weather conditions, when compared the predicted value with
measured value. The results proved the efficiency of the proposed model [17].
Applied Fuzzy sets with neural a network for solar irradiance prediction for var-
ious sky and temperature conditions. The irradiance predicted result of their
proposed method was more accurate than other compared methods [18]. In [19]
applied weighted support vector machine (WSVM) to predict short time photo-
voltaic power output. The simulation results of their model show the accuracy
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of the model and also better than ANN. In [20] proposed a technique for wind
speed prediction, the planned method combined of wavelet transform (WT),
with support vector machine (SVM) and Genetic Algorithm (GA), WT used
to decompose the signal speed, GA used to evaluate and adjust the weights of
SVM, SVM to predict wind speed. Their method was compared with others and
was accurate for wind speed prediction. A combined wavelet transform (WT)
with RBFNN neural network to predict photovoltaic power based on irradiance
and temperature data designed in [21]. The experiments results proved the ac-
curacy and efficiency of the proposed model. Forecasting energy productions of
photovoltaic for times of 15 minute, 1 hour and 24 hours ahead using AAN and
support vector regression (SVR) and compared their results have been proposed
in [22]. The proposed approach was evaluated using statistical errors. The sim-
ulation results showed that, the proposed model exceed other classical methods.
A proposed of Physical Hybrid Artificial Neural Network (PHANN) for ahead
predicting of output of photovoltaic system was investigated in [23]. The results
of the proposed approach were compared with standard ANN which proved the
accuracy of proposed method than standard ANN. Least Square (LS) Support
Vector Machine (SVM) has been used for solar prediction based on atmospheric
data: humidity, wind speed, and sky cover. The simulation results showed
that, the proposed model was better than others such as Autoregressive (AR)
model and Radial Basis Function Neural Network (RBFNN) model. This pro-
posed model was suggested in [24]. Wind speed forecasting using support vector
machines was applied in [25]. The forecasting result of the proposed model out-
performed back propagation algorithm and has minimal value of mean absolute
error and mean square error. The combination of statistical model with neural
network to predict hourly wind speed is planned in [26]. The simulation re-
sults proved that, the performance of the planned system was better than other
present predicting methods. In [27] designed a forecasting of the output of
photovoltaic using neural network trained with extreme learning machine algo-
rithm. The experimental results showed that the proposed system can forecast
photovoltaic power with high efficiency. Forecasting monthly mean of global
solar radiation using Support Vector Machine (SVM) with Firefly Algorithm
has been applied in [28]. The input features used are maximum temperature,
minimum temperature, and sunshine duration. The result of proposed model
was compared with other existing systems which proved the efficiency of their
method. In [29] combining of empirical mode decomposition with elman neural
network to predict wind speed. The forecasting results of the proposed approach
was better when compared with other models, also the study conclude that the
proposed system is appropriate for wind speed forecasting. Merging Wavelet
decomposition and neural network to build an accurate hybrid model to predict
short term wind speed was designed in the article [30]. Wavelet decomposing
used to decompose Wind speed, and ANN optimized by crisscross optimization
algorithm used to predict wind speed. The proposed system archived minimal
mean absolute percentage error when compared with other hybrid methods. In
[31] designed hybrid system to forecast wind speed, this model was constructed
of improved empirical mode decomposition and Genetic Algorithm-BP neural
network. The proposed model was tested and evaluated using a dataset collected
from China. The simulation results demonstrate that the designed system was
better than standard GA-BP neural network. Wind speed prediction using
wavelet transform combined with neural network have been proposed in [32].
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The proposed system was trained using: wind direction, temperature, pressure,
humidity, and wind speed. The result proved the efficiency of the model for
wind speed forecasting and takes less computation time when compared with
backpropagation ANN. Combined neural network with wavelet transform for
solar prediction have been designed and applied in [33]. The forecasted values
of solar radiation were higher when compared with traditional ANN. In this
article [34] designing forecasting photovoltaic power using wavelet transforms
(WT) and neural network. The proposed method used WT to decompose and
reconstruct power of PV which used as target output of ANN, where the me-
teorological data where used as input variables of NN, the results proved the
activity of the designed system and needed less computation time when com-
pared with other traditional methods. In [35] designed a model for short term
wind power forecasting based on adaptive neuro fuzzy inference system (ANFIS)
in China. The designed system was composed of two ANFIS stages: the first
one for forecasting wind speed using meteorological data, while in the second
one forecasted wind speed was used to predict wind power. Experiment results
proved that the system was out-performed by other three existing models also
with low time computation. Forecasting of short-term power generation from
solar PV has been studied in [36], the designed system used wavelet transform
(WT) for filtering and Fuzzy ARTMAP Network for power generation predic-
tion, which was optimized using Firefly algorithm. The obtained results showed
a higher efficiency of the planned mode than other of the tested models. The use
of historical meteorological data for building a system for solar power genera-
tion forecasting using a least absolute shrinkage and selection operator (LASSO)
was introduced in [37]. The results proved the activity of the system with little
training data samples compared with two other existing approaches. Developed
two models [38]: a fuzzy logic and ANFIS systems for predicting the solar irra-
diation, and the systems were tested and validated. The results confirmed the
validity of the designed systems. In 2020, a hybrid model of a gated recurrent
unit (GRU) neural network with an attention mechanism have been used for
solar irradiance forecasting, designed in [39]. The planned model tested for all
year seasons, and outcome of the system was compared with other traditional
models. In [40] used direct explainable neural network: which consisting of one
input layer, two linear layers and one nonlinear layer, for predicting solar irradi-
ance. The model has been investigated using a data set of Lyon in France. The
simulation results confirmed the performance of the planned system. A designed
two systems: an ANN and a recurrent neural network (RNN) for solar radiation
forecasting, and compared their results to each other investigated in [41]. The
experimental results, shows the RNN model was improving the forecasting ac-
curacy by 47% improvement in Normalized Mean Bias Error (NMBE), and 26%
improvement in root mean squared error (RMSE), and the forecasting results
was improved when using moving window algorithm.

4.3 Power Load Forecasting

Among the many published papers using and combining various types of tech-
niques with the purpose to design models for electrical load forecasting. The
load forecasting models seek to determine relations between the power load and
many factors affecting it, such as air temperature, humidity, types of days, pre-
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vious load, etc. In 2009, a back propagation neural network with rough sets
for power demand forecasting proposed in [42]. The system was compared with
standard BP and in general the performance of BP with rough sets was better
than standard BP. In [43] applied the Feed Forward Neural Network (FFN) and
Recurrent Neural Network (RNN) with deep learning for short period power
load forecasting, using a dataset collected from New England for the period
from 2007 to 2012. The model was tested for two cases: the first case time
domain features were used, while in the second case both features from time
and frequency domains were used. The evaluated system using MAPE, RMSE
and MAE errors, which rendered lower rates in the second case than in the first
one, and the accuracy of the model were improved in the second case. An ap-
plied ANN with wavelet decomposition was designed in [44]; the experiment re-
sults showed the efficiency performance of the proposed system, which exceeded
ANN. Electrical load forecasting using advanced wavelets with neural networks
was proposed in the article [45]. The proposed system consists of four steps:
load data decomposed into high and low frequencies using wavelet transform,
feature chosen based mutual information, training NN for each component and
testing the trained model. The model was evaluated for two data sets from Aus-
tralia and Spain. The mean absolute percentage errors were 0.268% and 1.716%
for the Australian and Spanish data sets respectively. In addition, the articles
conclude that the system out-performed the other existing models. Using a dy-
namic Neural network to forecast the electricity load was studied in [46]. The
proposed system was designed and tested using a dataset of the French Trans-
mission System Operator. The simulation results proved the validation of the
designed method. In the article [47] proposed the idea for using loads of identi-
cal days as the input variable of the combination from wavelet transform with
a neural network to predict future values of the load. Designed an intelligent
model for demand power forecasting, k-means for cluster data wavelet trans-
form to decompose the data and finally ANN to forecast the final value of the
power load carried out in [48]. In [49] used a Hybrid Monte Carlo technique
for training a Bayesian neural network (BNN) for the purpose of designing a
power load forecasting model. The designed system was compared with BNN
trained using a La-place algorithm and ANN trained using a Backpropagation
technique using MAPE and RMSE criteria. The experiments result proved the
validity of the designed method for load forecasting. Combining the K-means
clustering with ANN for load forecasting was studied in [50]. The experiments
used k-means and k-medoids for clustering the original data into groups then
measuring the distance between each sample and each cluster as new features
which were fed into ANN. The results of ANN proved better than a decision
tree when comparing the results using the MAPE criterion. The idea of using a
bagged neural network (BNN) for load forecasting is proposed in [51]. The con-
cept of BNN is dividing the data set into random parts, then training the neural
network for each part, the average of the outputs representing the output of the
model. The outcome of the proposed idea reduced the forecasting error when
compared with standard ANN and other existing approaches. The concept of
BPNN for power load forecasting designed in [52]. The idea was to optimize
the network weights using a genetic algorithm faster than standard BPNN. The
results showed that the proposed optimization algorithm improved the learning
speed and the accuracy of the learning process. An extreme learning machine
(ELM), regularized ELM (RELM) and ANN for electrical load forecasting, and
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comparing their performance was investigated in [53]. The outcome of the ex-
periments confirmed that the RELM learned much faster than ANN and the
forecasting accuracy of RELM was better than standard ELM. A hybrid model
for short load forecasting was studied in this article [54]. The model has been
constructed from improved empirical mode decomposition, an autoregressive in-
tegrated moving average (ARIMA) and wavelet neural network optimized by the
fruit fly optimization algorithm. The MAPE of the models forecasting results
was improved and is about 0.82% higher than other compared systems. In the
USA, designed a one day-ahead system for power load forecasting. The designed
system constructed in three stages: pre-processing, in this stage removing un-
wanted samples, the forecasting stage using ANN, and the optimization stage
for minimizing the forecasting errors. The forecasting accuracy of the system
improved in comparison with other models [55]. In [56] introduced a hybrid sys-
tem for electricity forecasting. The model is constructed as follows: empirical
mode decomposition, minimal redundancy maximal relevance, neural network
for regression with the fruit fly optimization algorithm. The simulation results
of the model proved the validity of the system in STLF. In Spain, a short-term
load forecasting model was designed using three stages: SOM maps used for
pattern recognition, k-means for clustering the patterns, and ANN to predict
the power load. The methodology has been trained and tested using a data set
from the Iberdrola company. The system has a small error when compared with
others [57]. Short-term weekday power load forecasting was proposed in [58].
The paper compared ANN with different learning algorithms. The best results
were obtained when using a Generalized Neural Network with wavelet trans-
form that was trained using an adaptive genetic algorithm and fuzzy system.
In Canada, El-Hendawi and Wang designed a method for short-term demand
power forecasting. The method combined the full wavelet packet transform with
neural networks. The designed system decreases the forecasting error by 20%
when compared with standard neural networks [59].

SVM is a powerful tool for classification and regression purposes. SVM was
applied and used by several researchers in the area of power load forecasting,
whether alone or combined with other techniques to improve the forecasting
accuracy. In [60] designed a prediction system to predict demand power using
a wavelet transform with least squares SVM (LSSVM) with the optimization
factors of LSSVM using a cuckoo search; the results of designed system were
compared with other various methods of SVM, which proved the efficiency of
the introduced model. An annual power load forecasting system of based SVM,
which was optimized by particle swarm optimization was introduced in [61].
The proposed approach was trained and tested using data of the city of Beijing
city for the years from 1978 till 2010. The simulation results proved the validity
of the model for load prediction, where the MSE error was about 2.53%. In
[62] designed an intelligent system for short-term load forecasting using wavelet
least square SVM (W-LSSVM) combined with the DWT and inconsistency rate
model (DWT-IR) for feature selection. The system was evaluated using RMSE
and MAPE, which was about 0.019 and 1.83% respectively. It proved the ac-
tivity of the model and out-performed other existing methods when the results
were compared. Another study in [63] have designed a power load prediction
method, which combined an ant colony optimization (ACO) with a support vec-
tor machine (SVM), ACO used for feature selection and SVM for load regression.
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The proposed system was suitable for short-term load forecasting and surpassed
other existing methods. The use of the large-scale linear programming support
vector regression (LP-SVR) for STLF was studied in [64]. The studied model
was compared against bagged regression tree, Feed Forward ANN and Large-
Scale Support Vector Regression (LSSVR). The MAPE error of the LP-SVR
approach was about 1.58% lower than from the other compared models. In [65]
applied and tested a tree model of SVM for short-term power demand forecast-
ing. Standard SVM, SVM optimized using Genetic Algorithm (SVRGA), and
SVM optimized using a Particle Swarm Optimization Algorithm (SVRPSO).
The outcome accuracy of the proposed mode when estimated for SVM, SVRGA
and SVRPSO was about 97.67%, 97.82% and 97.89% respectively. The article
concluded that the three models were highly active for STLF, but SVRPSO,
and SVRGA consumed more time than standard SVM. A data set from Hubei
SVM for short-term power load prediction was studied in [66]. The performance
of the proposed approach was compared with traditional models: BPNN and
the time series method. The MAPE error for SVM was about 1.91%, for BPNN
it was 4.06% and for the time series it was about 4.47%. The capacity of SVM
in STLF was better than others according to the simulation results. A combina-
tion of singular spectrum analysis (SSA), a support vector machine (SVM) and
Cuckoo search (CS), was applied for power forecasting. Results of the proposed
approach were compared with other studies, which confirmed the capability of
the hybrid model in load forecasting [67]. A hybrid intelligent system was de-
signed for STLF in [68]. The previous temperature and the wavelet coefficients
of the previous load are used as input variables where the GramSchmidt (GS)
was used for feature selection and SVR was used to predict the consumed power.
The system was applied for both weekdays and weekend days. The hybrid sys-
tem produced the best prediction accuracy when compared with others. In [69]
designed a daily peak power load forecasting system. The load was decomposed
using the complete ensemble empirical mode decomposition with adaptive noise,
and modified grey wolf optimization and support vector machine used to fore-
cast the final result of the load. The performance of the model was compared
with various SVMs and ANN. The simulation results confirmed the ability and
reliability of the designed system. The empirical mode decomposition (EMD)
method and the support vector machine with the particle swarm optimization
(PSO) algorithm were designed in [70]. The experiment was carried out in three
forecasting parts, followed by a summation of the results of these parts as the
final forecasting result. The experiment outcome demonstrated that the pro-
posed example was effective when compared with other existing formations of
SVM.

There are a huge number of studies which used various kinds of decision
trees to estimate the demand power. Using a random forest decision tree for de-
mand power forecasting was designed in [71]. The proposed method was tested
on a dataset from Poland. The performance of the system was highly accurate
when compared with the results of other current methods. The REPTree Deci-
sion Tree for power load forecasting is applied and tested in [72]. The designed
system was compared with standard and other decision trees which proved the
validity of the proposed system for predicting the power load. In [73] designed
a decision tree to estimate future demand power for short-term periods. The
input features were weather data and power load, while the current load was
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used as the output of the system. The outcome of the experiments showed the
validation of DT for power load forecasting. The use of generalized minimum
redundancy and maximum relevance (G-mRMR) for feature selection and ran-
dom forest for short-term demand power forecasting is studied in [74]. Results
showed that the G-mRMR can capture important features for STLF, plus the
forecasting results were better than other tested existing patterns. In Tunisia,
one day ahead of one-hour step for short-term power demand prediction using
a random forest technique was studied in [75]. The article concluded that the
designed system was fast and did not need any improvement in the approach.
In 2018, [76] designed two stages to predict daily power load: a moving average
method and random forest, and the predicted result was evaluated using time-
series cross-validation. The results of the proposed model outperformed others
when comparing the results, which proves the validity of the proposed model.
In Spain four models of regression trees (bagging, random forest, conditional
forest and boosting) have been designed and tested for power load prediction
using the data set of a campus university in Cartagena [77]. The temperature,
calendar information and types of days are used as predictors to improve the
performance of the model. The designed system has been tested for special and
regular days. In southern China, used the days average humidity, average tem-
perature, humidity average of the first three days, temperature average of first
three days and historical load at same moment of the first days. The used fac-
tors were input variables to predict the load using a Gradient Boosting Decision
Tree. The forecasting accuracy was evaluated and compared with other current
systems. The compared result proved the validity of the designed method for
load prediction [78].

Linear regression for STLF and its various types have been used and studied
by many researchers. In [79] have constructed a system for power load pre-
diction as follows: a whale optimization algorithm to detect and choose the
appropriate level of the wavelet decomposition, discrete wavelet transform to
decompose data into detail and approximation signals and a multiple linear re-
gression technique to predict the final result of the load. The proposed scheme
was tested for weekdays and holiday days for all seasons and produced a low
forecasting error when compared with different models. Another study in [80]
designed multiple linear regression for load forecasting. The experiments were
made for both the dry and rainy seasons. The MAPE error between the actual
and forecasted values was about 3.52% and 4.34% for the dry and rainy days re-
spectively. An article applied multiple linear regression on a big data set to find
the relation between weather conditions and demand power. Multi-core parallel
processing is used to deal with big data. The MAPE error of the system was
about 3.99% and the implementation time was faster than the other existing
models like ANN [81]. Improving the accuracy of the STLF based combining
clustering K-nearest neighbour (K-NN) and K-means with multivariate linear
regression was studied in [82]. The used input variables are: Max and Min
temperature and the previous power load. The MAPE of the combined model
was about 3.345%, i.e., better than multi-linear regression.

There are many studies which used and designed fuzzy models for power
load forecasting. The main and basic idea is converting the input crisp values
into fuzzy values or membership degree (fuzzification), such as air temperature,
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wind speed and so on. The same procedure is used for the target output (power
load). Next, the fuzzy inputs pass the inference engine which include several
fuzzy rules (if - then) to make decisions. The last stage is defuzzification to
convert the output of the inference engine from a fuzzy to crisp value, which
will represent the forecasted power load. Fuzzy sets and their different config-
urations have been used successfully by several researchers for load forecasting
fields. For example, the use of fuzzy logic and an adaptive neuro fuzzy inference
system (ANFIS) for short-term load forecasting has been applied in [83]. The
system has been tested and compared with other systems where the MAPE
error was about 2.1% and 1.85% for fuzzy logic and ANFIS respectively, which
confirmed the validity of the proposed model. Short period load forecasting
using fuzzy control in Jordan has been designed in [84]. They used the previous
day load, previous week load, previous day temperature, forecasted tempera-
ture, weather and index day, which is classified as a weekend or workday. The
results confirmed the validity of the system for demand power forecasting. A
new type of reduction (TR) based on an artificial neural network (ANN) of an
interval type two fuzzy logic system (IT2FLS) for power load prediction was
proposed in[85]. The paper compared the result of the planned system with 5
conventional TR. The numerical results show that the performance of the de-
signed model outperformed IT2FLS with traditional TR. An article [86] applied
IT2FLS for short-term load forecasting. The input variables used are: lagged
power demands, meteorology data and calendar information, where the genetic
algorithm was used for training the system. The simulation results proved the
validity of the IT2FLS for STLF problem, which out-performed the type 1 fuzzy
system and ANN. Power demand prediction using a fuzzy logic system was ap-
plied in [87], where the temperature, similar previous day load and time are used
as input variables. The forecasted and the real load were compared, where the
error ranged between about +2.69% and −1.88%. An extreme learning machine
(ELM) algorithm for training IT2FLS of the purpose of designing a power load
forecasting model was designed in [88]. The data set used in this experiment is
taken from the Australian National Electricity Market and Ontario Electricity
Market. The performance of the proposed system was compared with the per-
formance of ANN, ANFIS and IT2FS, which was trained using a KF algorithm.
The Empirical results showed and confirmed that the designed model works
better for load forecasting and it out-performed the other compared systems.
Another study in Indonesia used IT2FLS to design a model for load forecasting.
The system tested using the data sets of 2005 and 2006, where the MAPE error
was about 1.0335% and 1.5683% for the years 2005 and 2006 respectively. This
study also concluded that IT2FLS can solve load forecasting problems better
than standard fuzzy logic [89]. Analysing demand power prediction using a fuzzy
logic system was introduced in [90]. The input variables used are temperature,
humidity and wind speed while the power load was used as the target output.
The model was tested for different numbers of days: holidays and working days.
In 2016, a study designed a model for demand power forecasting based on fuzzy
sets. The model used three parameters as inputs: temperature, time and pre-
vious day load. The MAPE of the model was about 6.17%, as well observed
that the most significant weather parameters affecting the power load was the
temperature [91]. A fuzzy model for hourly load forecasting for different days
has been designed [92]. Time and day type (workday, weekend or holiday) were
used as input variables. The results of the suggested model were satisfactory.
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They also concluded that the model could not deal with any sudden changes
in the load. In Iran, an article used a data set measured from Iran and a lo-
cally applied linear model tree for training the Takagi-Sugeno-Kang neuro fuzzy
model. The model has been used to analyse short-term power load forecasting.
The local linear model tree helps to set up the parameters and build a flexible
neuro fuzzy [93].

4.4 Reconfiguration Power System and Power
Quality Parameters Forecasting

There are many studies focusing on Reconfiguration Power System using dif-
ferent techniques. In the following listing some methods were designed for the
reconfiguration of distribution power system which will keep generated power
equal to consumed power as well keep the generated power at required power
quality parameters. For example, in [94] designed a multi agent system (MAS)
for the reconfiguration and restoration of distribution power system. The de-
signed model was built using an artificial immune system. The proposed system
was tested and the experimental results proved the ability and efficiency of the
proposed method for reconfiguration power system. Another study has designed
a model for the reconfiguration of power system using a genetic algorithm (GA).
The simulation results of the proposed system showed that the GA can deal with
reconfiguration of distribution system, and it can be used to set a switch pro-
cess program. And the results were promising to reduce the power loss as well
increase the reliability of the power system [95]. Reinforcement Learning (RL)
technique has been applied in [96] for control power distribution grid (DG). RL
algorithm was used for choose the best branch which will flow the power, this
will help in minimizing the power loss. The system was able to control and
set DG better than other approaches when comparing the performance. In [97]
applied and proposed MAS for restoration power distribution system after an
electrical defect. The system was tested under three different cases, which con-
firmed that the MAS are suitable for resetting power distribution system after
electrical default. Refined genetic algorithm designed in [98], which applied for
optimal switches setup of the power distribution grid. In [99] used a Binary
particle swarm optimization (BPSO) algorithm to find a better configuration of
the switches in the distribution power grid, in each cycle of learning the algo-
rithm the reliability and the power loss are calculated. The model was successful
when evaluated and tested using 32 bus and 123 bus distribution system. An
article has applied Dynamic Fuzzy C-means (DFCM) clustering with 3-layers
artificial neural network (ANN) for optimal reconfiguration power distribution
system. The proposed approach implemented on IEEE 33 and IEEE 69 bus.
The simulation results proved that the designed system took short computation
time, simple design, and higher accuracy when compared with other traditional
models [100]. Another article applied a multi agent model for restoration power
distribution system after an electrical failure. The experiment extracted that
the designed system can set the switches of the distribution system using lo-
cal information, and it can be applied for complex and wide-range power net-
works [101]. In [102] designed a multi agent model for the reconfiguration of
the topology of the power distribution network. The model was tested under
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two systems- 11-Bus and 16-Bus. The results demonstrated the validity of the
system, which gave a good quality reconfiguration of the distribution network.
Teaching learning based optimization algorithm was applied to determine the
best reconfiguration of the distribution generation (DG), which will help in im-
proving the voltage profile, voltage stability, and minimizing the power loss. The
type was evaluated using two radial distribution system 33 bus and 6 bus, the
effectiveness of the system was good when comparing the results for the same
tested system [103]. In [104] designed a model for the reconfiguration of redial
distribution system in fuzzy framework using a genetic algorithm. The designed
model tested for 70 and 136 bus distribution power system. The experiment re-
sults compared with results of other methods which proved the validity of the
system. Automatic reconfiguration of shipboard power distribution system us-
ing Q-learning was applied in [105]. The results demonstrated the validity of
the designed system to find an optimal configuration of power system. Distri-
bution system Reconfiguration using a mathematical mode with consideration
some factors as load balancing, switching cost, and line loss minimization. The
system was tested under three distribution system- 32, 70, 135 bus [106]. In
[107] designed a system for optimal reconfiguration power system using whale
optimization algorithm. The mode is estimated under different number of test
bus and as well the results of the proposed system out-perform the results of
other models when comparing the results. A study investigated three methods
to find the optimal reconfiguration of renewable power distribution system- the
harmony search (HS), bat-inspired (BA) , and cuckoo search (CS) techniques.
The performance of three models was tested using radial distribution network
with 33 node. The BA and the HS achieved better results than CS [108]. For
reducing the electrical power losses, in [109] designed a model for reach optimal
solution for reconfiguration power system using improved binary particle swarm
optimization (IBPSO) algorithm. The proposed system was tested using 16,
and 33 bus. The validity of the designed system was proved when compared
the results of other models. In [110] applied catfish particle swarm optimization
(PSO) to solve the feeder power network. The system was tested for 33 and 16
bus power network. The article as well concluded that the proposed mode is suit-
able method for distribution grid restoration. Applying Fuzzy multi-objective
technique for the purpose of minimizing the active loss power and increase the
power system reliability has been designed in [111]. Constructed system was
tested for 70 notes distribution generation. The results showed that the system
reduced the loss active power by 37.92%. For reducing loss power active and
balancing load, in [112] introduced a method for optimal reconfiguration of the
power distribution grid based on ant colony algorithm. The designed model
was applied for two types of bus distribution system. Outcome confirmed the
efficiency of the approach in finding optimal reconfiguration of power system.
In [113] applied Modified plant growth simulation algorithm for reconfiguration
distribution system which aimed to minimize the real power loss. The designed
system has been applied and tested for radial distribution system with 33 bus.
The outcome of this study confirmed the efficiency of this algorithm as well it
can be applies in real time .

Many studies focused on power quality parameters forecasting in short-tem
as power frequency and magnitude of the supply voltage such as following ar-
ticles. There are a study used Arterial neural networks (ANN) for forecast-
ing power frequency. The input variables fed to ANN to predicting power
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frequency. The planned model produced low forecasting MAPE error when
compared with other traditional models [114]. Another study used Artificial
Intelligence with Backpropagation Learning tool for forecasting power quality
parameters (PQPs), and the model used as supporting off-grid system to pro-
duce power with good quality [115]. In [116] used optimized random forest
to forecasting PQPs: frequency, voltage, THD, and flicker as supporting tool
in off-grid platform. The forecasted results exceed 90% for 15 min time step.
In China, an article applied to use cluster analysis, feature selection, and sup-
port vector machine for forecasting PQPs as harmonic distortion and voltage
deviation. The article concludes that the relative error of results is improved
significantly [117]. In [118] designed a model for forecasting voltage deviation.
The model was constructed of PCA for dimension reduction, affinity propaga-
tion for grouping the input variables into groups, and back propagation neural
network for predicting the voltage deviation. The MAPE where used to eval-
uate the results and was about 3.06%, the results of the proposed system was
improved when compared with others.

23



Chapter 5

The Proposed Methods

In this chapter, I introduce the proposed methods. We have made some experi-
ments on weather and power data for purpose of creating and testing forecasting
models. Our goal is to find an efficient model for power quality parameters fore-
casting in short term as a main part of SCSs, which still remains challenging on
global level.

The basic idea of the experiments is to find a relation between the input
variables as weather condition and with one of power quality parameters (power
frequency, magnitude of the supply voltage, THDu, THDi, and short term
flicker severity ). These experiments, and their results have been published in
conference papers and scientific journals. They include:

• Jahan, I. S., Prilepok, M., Misak, S., Snasel, V. “Wind Speed Forecasting
by regression Models.” Proceedings of the Dateso 2016 Workshop.

• Jahan, I. S., Prilepok, M., Misak, S., Snasel, V. “Intelligent System for
Power Load Forecasting in Off-grid Platform.” 2018 19th International
scientific Conference on Electric Power Engineering (EPE).

• Jahan, Ibrahim S., Stanislav Misak, Vaclav Snasel. ”Smart Control Sys-
tem based on Power Quality Parameter Short-term Forecasting.” In 2020
21st International Scientific Conference on Electric Power Engineering
(EPE), pp. 1-5. IEEE, 2020.

• Jahan, Ibrahim S., Vaclav Snasel, Stanislav Misak. ”Intelligent Systems
for Power Load Forecasting: A Study Review.” Energies 13, no. 22 (2020):
6105.

• Jahan Ibrahim Salem, Stanislav Misak, Vaclav Snasel. ”Power Quality
parameters analysis in smart Grid platform.” (2021). In the process re-
view.
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5.1 Wind Speed Forecasting using Regression
Models

5.1.1 Data set

The dataset which we used was taken from the Centre for Solar Energy Research
and Studies Tripoli- Libya (www.csers.ly/en) as can be seen in Figure 5.1. The
captured data has been recorded for the whole month November 2015 every one
minute. From the recorded data we choose the following values wind direction
and speed, air temperature, air humidity, global radiation, and air pressure
[119].

In our experiments we used following attributes to learn and test selected
models. In time t we utilized wind direction Wdt, air temperature Ttt, relative
humidity Rht, air pressure Pt, and global irradiation Grt. To these five current
vales we added two measurements back for the past t− 1, and t− 2, for wind

speed Wst−1, and Wst−2, wind direction Wdt−1 and Wdt−2, air pressure
Pt−1 and Pt−2 , and global irradiation Grt−1 and Grt−2 .

The training and testing vector consist of following elements:
(Wdt, T tt, Rht,Wst−1,Wdt−1,Wst−2,Wdt−2, P t, Pt−1, Pt−2, Grt, Grt−1, Grt−2).
For training we used in the input the current measured wind speed Wst.

Figure 5.1: The Centre for Solar Energy Research and Studies: Tripoli-Libya
(www.csers.ly/en). Data set used in the wind speed forecasting experiments
taken from this Centre

5.1.2 Experiment Setup

This experiment has been done to forecasting wind speed based weather condi-
tions using few selected models. The aim is to compare the selected four models.
The experiment was run many times with different settings of selected method.
We preformed five settings with LR model, one with SVM, two for NN and
one for decision tree. All models used same data. The data description can
be found in section 5.1.1. The model performance was evaluated using mean
squared error (MSE), and mean absolute percentage error (MAPE)
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Figure 5.2: The experiment diagram of wind speed forecasting

MSE =
1

n

n∑
i−1

(Fi −Ai)
2 (5.1)

MAPE =
100

n

n∑
i−1

(
Ai − Fi

Ai

)
(5.2)

Where Ai is the actual value: actual wind speed, Fi is forecast value: fore-
casting wind speed, n is the number of evaluated forecast values. MSE measures
the average of the squares of the errors or deviations, the difference between the
estimator and what is estimated. MAPE expresses accuracy as a percentage.

The experiment diagram is depicted in Figure 5.2. The diagram shows the
scheme of forecasting wind speed model. The training the model is in the
upper part of the figure. The model uses input variables and actual wind speed
(AWS) described in Data set Section. The forecasting model is depicted in the
bottom part of the figure. It uses the same input variables excluding AWS,
and the output predicts forecasting wind speed (FWS). For each model we
find the best combination of settings of models were implemented in Matlab
toolboxes. In the linear regression model we evaluated the following model
specification: constant model contains only a constant (intercept) term, linear
model contains an intercept and linear terms for each predictor, interactions
model contains an intercept, linear terms, and all products of pairs of distinct
predictors (no squared terms), pure quadratic model contains an intercept,
linear terms, and squared terms, and quadratic model contains an intercept,
linear terms, interactions, and squared terms. The SVM and DT were used with
standard configuration. For ANN FitNet, fitting neural network with a hidden
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layer, and FfNet, Feedforward neural network, we used one input layer, three
hidden layers with 10, 4, and 2 neurons and the out layer.

All obtained results for all nine models and four prediction periods are
summed up in Table 5.1 and Table 5.2. The prediction performance was eval-
uated using MSE and MAPE. We forecasted the wind speed for four following
time 4, 8 12 and 24 hours. These time periods can be considered all middle
and long terms prediction intervals.

Table 5.1: Wind Speed Prediction Results for 4 and 8 Hours Ahead

Model 4 hours prediction 8 houre prediction
MSE MAPE MSE MAPE

LR Constant 3.1626 37.6082 3.1756 38.0709
LR Linear 0.3282 10.7470 0.3009 10.0924

LR interactions 0.3135 10.0655 0.2920 9.5814
LR purequadratic 0.3222 10.9760 0.2988 10.4888
LR quadratic 0.3195 10.5295 0.3089 10.5441

SVM 0.5662 16.7659 0.5326 15.9842
FitNet 0.4393 11.9273 0.4234 12.0511
FfNet 0.4324 11.9273 0.4308 13.2712
DT 0.5823 15.4267 0.5907 15.5128

Table 5.2: Wind Speed Prediction Results for 12 and 24 Hours Ahead

Model 12 hours prediction 24 houre prediction
MSE MAPE MSE MAPE

LR Constant 4.2618 41.0187 3.6625 46.2635
LR Linear 0.4284 11.1261 0.4135 15.2689

LR interactions 0.4020 10.8391 0.3928 14.1704
LR purequadratic 0.4137 11.3224 0.4017 15.4776
LR quadratic 0.4183 11.6243 0.3957 14.3196

SVM 1.5502 20.6647 2.2201 36.5536
FitNet 0.9252 16.9117 4.2796 40.6134
FfNet 0.8438 16.1433 0.4620 15.9578
DT 0.7649 15.9241 0.6913 18.5174

5.1.3 Experiment Results

All obtained result for all nine models and four prediction periods all summed
up in Table 5.1 and Table 5.2. The prediction performance was evaluated using
MSE and MAPE error. We forecasted the wind speed for four following time
4, 8 12 and 24 hours. These time periods can be considered all middle and long
terms prediction intervals [119]. The best results were obtained in all prediction
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intervals for LR with interactions model. These model has the lowest MSE and
MAPE values. We got the best prediction for 8 hour period. The other models
except LR constant had very similar results. For 4 hour prediction interval
the MSE value varied between 0.2988 (LR pure quadratic 8 hours) and 4.2796
(FitNet 24 hours). The MAPE varied between 10.4888 (LR pure quadratic 8
hours) and 40.6134 (FitNet 24 hours). In general we can say, that for this data
and selected model and they settings the best prediction period was 8 hours.
The worst prediction performed LR constant model. But this was expected.
The constant model is not suitable to fit or predict time series data with lots of
changes well. The Figure 5.3 shows a comparison between AWS and FWS for
the best linear regression and SVM model [119].

Figure 5.3: Wind speed results comparison: actual wind speed with forecasted
wind speed by LR and SVM

28



Figure 5.4: Diagram of the off-grid platform constructed at VŠB-Technical Uni-
versity of Ostrava used for the experiment

5.2 Intelligent System for Power Load Forecast-
ing in Off-grid Platform

5.2.1 Data Set

The data set used in this article was taken from the off-grid platform constructed
at the Faculty of Electrical Engineering and Computer Science at VŠB-Technical
University of Ostrava, the Czech Republic. This data set includes several vari-
ables related to meteorology and power data. In our experiment, we used in-
dex day, normalized temperature, normalized humidity, wind speed, normalized
pressure, and one, two, three steps back of power load. These are used as input
variables, while the power load is used as the output. The data set used to train
our model was from 23/05/2017 to 18/06/2017. In the testing phase, one-day
ahead (19/06/2017) was used to test the model and predict the power load [50].

5.2.2 Experiments Setup

The experiments were carried out in three steps as follows. In the first step,
the weather data were clustered into groups using K-means and K-medoids.
In the second step, the distances between the samples and each cluster centre
were measured using Squared Euclidean Distance. These distances represented
the new features of the data set. In the third step, the new features were fed
into the regression model with the smoothed actual power load for training the
model. We applied the smoothing because the measured data come from one
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Figure 5.5: Diagram of the training phase for the proposed model. The used
variables are: index of days, normalized temperature, normalized humidity, wind
speed, normalized pressure, and one, two, three steps back of the power load,
with actual load as target output. The same procedure is used in the testing
phase, where only the input variables were fed into the model to produce the
power load

household and contain rapid peaks which are generated by switching on and off
devices with high load. The input power load was smoothed using a moving
average technique. In the testing phase, only the distances are fed into the
regression model to predict the load in the future time. The features used in
this experiment are: index day - any working day = 1, weekend = 0, normalized
temperature, normalized humidity, wind speed, normalized pressure, and one,
two, three steps back of the power load, as can be seen in Figure 5.5. The
experiments were carried out using four models: K-means with DT, K-means
with ANN, K-medoids with DT, and K-medoids with ANN [50].

5.2.3 Results and Discussion

The results of the four models are compared using the mean absolute percentage
error (MAPE). The results of MAPE values of K-means (with DT or ANN) and
K-medoids (with DT or ANN) are listed in Table 5.3, Table 5.4, respectively [50].

The experiment was repeated with different numbers of clusters- 5, 10, 15,
. . . , 50. The best results of K-medoids was achieved with 10 clusters combined
with ANN, which was about 8.08%, as can be seen in Figure 5.6.

It shows the difference between the actual load and the output of the pro-
posed model. In this study the numerical results of both DT and ANN in
Table 5.3 and in Table 5.4, show that the ANN performance outperformed DT
in load forecasting.
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Table 5.3: K-means with DT & ANN for one Day Ahead

Number of Clusters DT MAPE ANN MAPE
5 163.00% 270.89%
10 46.74% 36.73%
15 263.77% 30.80%
20 185.47% 40.87%
25 261.72% 47.26%
30 221.17% 52.29%
35 464.30% 49.50%
40 142.56% 32.94%
45 745.15% 39.04%
50 458.09% 28.76%

Table 5.4: K-medoids with DT & ANN for one Day Ahead

Number of Clusters DT MAPE ANN MAPE
5 440.61% 47.95%
10 494.28% 8.08%
15 153.21% 29.23%
20 257.29% 27.38%
25 437.33% 30.31%
30 60.54% 31.00%
35 454.92% 39.50%
40 481.29% 38.20%
45 503.35% 36.60%
50 446.19% 29.04%
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Figure 5.6: Power Load forecasting for 24 hours using K-medoids Clustering
with Artificial neural network (where the original load is power load before
smoothing, blue one is actual smoothed power load and red one is forecasted
load)

5.3 Smart Control System based on Power Qual-
ity Parameter Short-term Forecasting

The proposed model has been constructed as five separate forecasting models.
As can be seen in Figure 5.7, these models are- voltage, power frequency, total
harmonic distortion of voltage (THDu), total harmonic distortion of current
(THDi), and short term flicker severity (Pst) forecasting models. The forecasted
values of PQPs can be used to schedule and find the appropriate time for the
running of home appliances. This procedure will help towards improving the
flow of good-quality power as efficient as possible. The experiments used a
regression tree model to predict the target output (PQPs). The five models were
designed using the same procedure: the input variables which are fed directly
to a regression tree with target output of one of the power quality parameters
[120].

5.3.1 Data Set

The data set of June and July 2019 are used in this experiments. They were
obtained from the off-grid platform constructed at the Faculty of Electrical
Engineering and Computer Science at VŠB-Technical University of Ostrava,
the Czech Republic. This data set includes several variables related to power
data, such as: magnitude of the supply voltage, power frequency, THDu, THDi,
short term flicker severity (Pst), and status ( on = 1, off= 0) of running load
(as AC heating, fridge, light, TV). In addition, the data set includes weather
conditions ( as wind speed, air temperature, air pressure, UV steps, . . . , ect )
at the same time step. The data set was available every one minutes as time
step.
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Figure 5.7: Diagram of The Proposed Model: PQPs Forecasting using DT.
Input variables are: power load, temperature, UV steps, and home appliances
status (1, or 0) with one of PQPs as a targot output

5.3.2 Experiments Setup

The used input variables are- power load, temperature, ultraviolet step (from 0
till 10 steps where each step represent intensity of the Ultraviolet), and status
of home appliances (AC heating, fridge, light, and TV), as well PQPs as target
outputs. The data set used in training the model is from 14 June till 5 July
2019, while we forecasted one day ahead, the day of 6 July was used to predict
every one hour[120].

5.3.3 Results

The more significant power quality parameters are power frequency, magnitude
of the supply voltage, THDu, THDi, and flicker (Pst).

The experiments were run many times for every model with different types
of input variables, and the best forecasted results were selected, see Table 5.5.

The results of five forecasting models have been evaluated using mean abso-
lute percentage (MAPE), and root mean square error (RMSE). As can be seen
in Table 5.5 which depict the MAPE of all forecasted PQPs [120].

Table 5.5: MAPE Error for Five PQPs Forecasting Models

PQP Type MAPE
Power frequency 5.4701× 10−07

Voltage 2.3× 10−04

THDu 0.0253
THDi 0.0176

Flicker (Pst) 1.2279

The model was forecasted PQPs for one day ahead, in every one hour, it
means 24 points were forecasted. The MAPE and RMSE errors were for power
frequency 5.4701 × 10−07%, 1.7487 × 10−05, for voltage 0.0002%, 0.0189, for
THDu 0.0253%, 0.0267, for THDi 0.0176%, 0.2416, and flicker (Pst) 1.227%,
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0.529, respectively. The experiments noted that: the forecasted voltage was
affected by power load and step of ultraviolet, the power frequency was very
sensitive to power load and air temperature, THDi was more affected by power
load and type of home appliances, THDu was slightly influenced by power load
and slightly by the step of ultraviolet, and flicker (Pst) was slightly affected by
power load and step of ultraviolet [120].

5.4 Power Quality Parameters Analysis in Smart
Grid Platform

5.4.1 Experiments

In this study two models for PQPs forecasting have been designed, tested and
compared: ANN and DT. The planned system tested for short-term period for
each one day separately (one day ahead), and for two days together 7th-8th
(two days ahead).

One day ahead forecasting:

The experiments are tested for 6 days separately: 7, 8, 9, 10, 11, 12 of July
2019. The forecasting was every one hour for one day ahead, it means 24 points
was forecasted per one day. In each day, the error was calculated for each PQP
type. The same experiment procedure was implemented for six tested days.

Then the error average was taken for both: per day and for each PQP type.
Finally, the total error averages for both models (ANN and DT) were compared.

The input variables are fed with one of power quality parameters as a target
output to construct the model. Since the training phase done, in testing phase
the constructed model use to forecast the PQPs, as can be seen in Figure 5.8
which illustrate the planned system [121].

5.4.2 Data Set

The data set of June and July 2019 are used in this study. They were obtained
from the off-grid platform constructed at our school VŠB-Technical University
of Ostrava, the Czech Republic. The data set from 14.06.2019 till 05.07.2019
used for training the models, and six days from 7th, till 12th were used for
testing the models. The input variables which used are: power load, air tem-
perature, ultraviolet steps, and status of home appliances (AC heating, fridge,
lights system, and TV) either on=1, or off=0. Were the output variables are:
power frequency, magnitude of the supply voltage, total harmonic distortion of
voltage (THDu), total harmonic distortion of current (THDi), and short term
flicker severity (Pst) [121].

5.4.3 Discussion

The experiments runs for ANN and DT as can be seen in Table 5.6, and in Ta-
ble 5.8, which illustrate the forecasting results of the ANN and DT respectively.
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Figure 5.8: Diagram of the planned comparison model for PQPs forecasting
using ANN and DT. Input variables are: power load, temperature, UV steps,
and home appliances status with one of PQPs as a targot output

Table 5.6: MAPE error achived by ANN when using 100 epochs and 10 hidden
neurons. The experiments carried out for two periods: for one day ahead (for
each day separately from 7th till 12th day ) and for two days ahead (7th and
8th days together)

PQP Type
Days

07.07.19 08.07.19 09.07.19 10.07.19 11.07.19 12.07.19 7-8.07.19

Frequency 6.5× 10−65.0× 10−66.2× 10−69.3× 10−62.2× 10−52.0× 10−55.8× 10−6

Voltage 0.0048 0.003 0.0025 0.0033 0.0145 0.0122 0.0038
THDu 0.0943 0.0433 0.048 0.0884 0.256 0.1946 0.0455
THDi 0.1050 0.0968 0.1364 0.1428 0.1134 0.1146 0.0746

Flicker(Pst) 1.920 3.495 3.796 3.155 0.6681 0.876 2.526
Average 0.420 0.726 0.795 0.677 0.194 0.237 0.526

Table 5.7: Error average of PQPs for six tested days achieved by ANN

PQP Type MAPE
Frequency 1.16× 10−5

Voltage 0.0066
THDu 0.11
THDI 0.117

Flicker (Pst) 2.27
Average 0.50
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Table 5.8: MAPE error achived by DT. The experiments carried out for two
periods: for one day ahead (for each day separately from 7th till 12th day) and
for two days ahead (7th and 8th days together)

PQP Type
Days

07.07.19 08.07.19 09.07.19 10.07.19 11.07.19 12.07.19 7-8.07.19

Frequency 2.2× 10−59.3× 10−71.9× 10−51.3× 10−51.4× 10−51× 10−51.1× 10−5

Voltage 0.003 2.1× 10−4 0.0059 1.8× 10−4 0.0052 0.002 0.0016
THDu 0.062 0.0281 0.0627 0.0259 0.1171 0.0581 0.045
THDi 0.0193 0.0181 0.0654 0.0441 0.0541 0.0771 0.0187

Flicker(Pst) 1.0160 1.8698 0.9631 1.1081 0.7353 1.6010 1.44
Average 0.2201 0.3832 0.2194 0.2357 0.1823 0.3476 0.314

Table 5.9: Error average of PQPs for six tested days achieved by DT

PQP Type MAPE
Frequency 1.34× 10−5

Voltage 0.00274
THDu 0.0575
THDI 0.045

Flicker (Pst) 1.18
Average 0.25

ANN results: the experiment runs for 50 and 100 epochs, in each one used
different number of the hidden neuron 10, 20, 30, the best results achieved when
used 100 epochs with 10 hidden neuron.

The MAPE error for each PQP in all days as following: the error between
actual and forecasted power frequency it was varied between 5 × 10−6 and
2 × 10−5, the lowest error of magnitude supply voltage forecasting is 0.0025,
and the biggest was 0.014, for (THDu) was between 0,0433 and 0.256, (THDi)
from 0.096 till 0.142, and for (Pst) it was 0.668 and 3.7 as can be seen in Ta-
ble 5.6, and the average error per day for all days was about 0.508, the average
error per PQP was about 0.50 as can be seen in Table 5.7 [121].

DT results: the MAPE error for each PQP in all days as following: the power
frequency forecasting error it was varied between 9.35×10−7 and 2.26×10−5, for
magnitude supply voltage was in between 1.80× 10−4 and 0.0059, for (THDu)
it was from 0.0259 to 0.117, with regard (THDi) it was from 0.0181 to 0.077,
and for (Pst) was varied between 0.735 and 1.86 as can be seen in Table 5.8, and
the average error per day for all days was around 0.264, the average error per
PQP was about 0.25 as can be seen in Table 5.9. In figures from Figure 5.9 till
Figure 5.13, comparison of acual and forecasted value using DT for frequency,
voltage, (THDu), (THDi) , and (Pst) respectively [121].

Two days ahead forecasting:

As well the experiments are tested for the period more than one day. Two
days together (7th and 8th) used to forecast PQPs every one hour it means
48 points forecasted as can be seen the forecasting error in the last column in
Table 5.6, and in Table 5.8, which shows the forecasting results of the ANN
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Figure 5.9: Comparison of actual and forecasted power frequency using DT
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Figure 5.10: Comparison of actual and forecasted voltage using DT

and DT respectively. The experiments carried out with the same procedure and
data set of one day ahead experiments.
In this study when comparing the results of ANN with DT, the performance of
DT better than ANN, and the results confirmed the validity of performance of
DT in PQPs forecasting for the both tested periods one day ahead (24 hours)
and two days ahead (48 hours).
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Chapter 6

Discussion and Conclusion

6.1 Results Comparison

In this section, we compare the forecasting results of our experiments. In the
first experiments we designed and comparing 4 types of forecasting models:
ANN, DR, SVM, and LR for forecasting wind speed using dataset from the
Centre for Solar Energy Research and Studies Libya [119]. The best forecasting
result was achieved by LR interactions was 9.5814% for the period 8 hours fore-
casting ahead, 10.0655 for 4 hours, 10.8391 for 12 hours, and 14.1704 for one
day ahead. Then ANN ranks second achieved results for 4 hours was 11.9273,
and for 8 hours 13.2712, and for one day was about 15.9578. Just for 8 hours
period DT was achieved best result than ANN it was 13.2712. In the last, worst
results achieved by SVM. As can be seen in Table 6.1 that depict the lowest
MAPE error of forecasting used models.

Table 6.1: Results comparison of the wind speed forecasting models

Model Type
Forecasting period

4 hours 8 hours 12 hours 24 hours
ANN 11.9273 13.2712 16.1433 15.9578
DT 15.4267 15.5128 15.9241 18.5174
SVM 16.7659 15.9842 20.6647 36.5536
LR 10.0655 9.5814 10.8391 14.1704

In the second experiments [50], compiling K-means with ANN, DT, and K-
medoids with ANN, DT, for power load forecasting in short-term for one day
ahead for every one hour from 00:00 till 23:00 clock, it means 24 points fore-
casted. The experiments have been carried out for different number of clusters
from 10 till 50 clusters. For ANN the lowest error 8.08% achieved when com-
piling K-medoids with ANN with 10 numbers of clusters. For DT the lowest
error 46.74% achieved when compiling K-means with DT with 10 numbers of
clusters. In this experiments the performance of ANN was better than DT, as
can be seen in Table 6.2.
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Figure 6.1: Results comparison of average error per day of ANN with DT

Table 6.2: Comparison of the forecasting results of the power load

Model Type Number of clusters MAPE
K-medoids with ANN 10 8.08%

K-means with DR 10 46.74%

In the fourth experiments: two models ANN and DT have been tested for
PQPs forecasting using dataset from off-grid system in VSB- Technical univer-
sity of Ostrava. The experiments carried out for both ANN, DT and compared
their results. As can be seen in Figure 6.1, that shows the comparison of MAPE
error of ANN and DT. The curve shows the average errors for all 6 tested days
(7th - 12th July 2019). Reults of DT overcome the results of ANN for all days
just in last days 12th July, which proved the performance of DT model in this
study [121].

Table 6.3: Comparison of the PQPs forecasting results

Model Type MAPE Forecasting period
ANN 0.508 24H
DR 0.2647 24H

6.2 Discussion

Till now, for designing and applying forecasting model especially in the real
time seems very hard due to nature of the nonlinearity of the forecasted values.

In this study three data sets have been used, the first data set was collected
from Libya, and second and third data sets was collected from off-grid system
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in Ostrava, we tested four models ANN, DT, LR, SVM for forecasting purpose.
For power quality parameters we used ANN, and TD which gives good results
with small computation time.

Generally in power quality field, the important power quality parameters are-
power frequency and magnitude of the supply voltage as in following limitations
of [EN 50160] as can be seen in Table 6.4.

• For power frequency - LV: mean value of fundamental measured over 10
second, ±1% (49.5 – 50.5 Hz ) for 99.5% of week, -6% till +4% (47 – 52
Hz) for 100% of week [EN 50160] .

• For voltage magnitude variations- LV: ±10% for 99.5% of week, mean 10
minutes rms values [EN 50160].

In our experiments- the forecasted values of power frequency was about in
the range between 50.00701 till 50.00725 Hz, for voltage it was in range about
from 224.75 till 225.97 volt. These forecasted values depends on several factors
such as used data set.

These important power quality parameters are reflect the power quality and
they use for correcting the quality of the generated power. As can be seen in
simple example in Figure 1.3, which illustrate how to correcting the frequency
power to nominal value (50 Hz) [EN 50160].

This study noted that:
The forecasting results of PQPs using DT better than ANN, that may be due
to data set included on logical values which represented the working status of
home appliances: either on = 1, or off=0.
The forecasted power frequency was sensitive to the power load and air temper-
ature. Forecasted voltage was affected by power load and step of ultraviolet.

Table 6.4: Power frequency and supply voltage variations [EN 50160]

Parameter
Supply voltage characteristics

according to EN 50160

Power Frequency

LV: mean value of fundamental
measured over 10 s

∓ 1 % (49.5 - 50.5 Hz ) for 99.5% week
- 6% / + 4% (47 - 52 Hz ) for 100% of week

Voltage magnitude variations
LV: ∓ 10 % for 95% of week
mean 10 minutes rms value
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6.3 Conclusion

Accurate smart control power systems (SCS) are important for the operation
and control of power systems as they ensure the supply of accurate and reliable
electricity to users, which aim to balance the consumed power and generated
power as well as to maintain power quality parameters at standard levels. De-
spite a number of previous studies focused on the design of various smart control
power system models, the challenge remains to design and apply efficient tech-
niques in real time. Nowadays, most common of renewable energies are solar and
wind power used to generating the electricity as an alternative power sources,
and they available around all the world as a clean and free power sources.
These power sources are fluctuate randomly dependence to weather conditions.
A power control system are needed to control in following the power to users
with good quality, and the forecasting systems are consider as an important
part of power control system. Since, the PQPs are forecasted successfully, then
the forecasted values can be used for scheduling the load. This thesis focuses
on designing short-term forecasting systems of renewables power sources, which
represent the goal of this study. For that in proposed methods in chapter five
four forecasting systems have been designed and tested includes: Wind Speed
Forecasting by regression Models, in this article nine models are designed and
tested using data set from Libya. And second article Intelligent System for
Power Load Forecasting in Off-grid Platform, in this article two models are
implemented- ANN and TD using data set from off-grid system in the school.
In the third article Smart Control System based on Power Quality Parameter
Short-term Forecasting, DT was investigated using data set from off-grid system
in the school. In the fourth article which still in the progress: Power Quality
Parameters Analysis in Smart Grid Platform, two models ANN and DT have
been investigated for short-term PQPs forecasting and compared their perfor-
mance. The best forecasting performance was achieved by DT. We noticed from
the experiments that- the voltage was affected by power load and step of the
ultraviolet, the power frequency was sensitive to power load and air temper-
ature, total harmonics distortion of current was more affected by power load
and type of home appliances, total harmonics distortion of Voltage was slightly
influenced by power load and slightly by the step of the ultraviolet, and short
term flicker severity was slightly affected by power load and step of ultraviolet.

6.4 Future Work

In the future work, we will try to designing PQPs forecasting system, using
data set from another off-grid system with more power load consumption: it
means implementation with Vehicle-to-grid (V2G). Since PQPs forecasted then
these forecasted values of PQPs will use to scheduling the load to run in switch
time. This procedure will keep the balancing between generated energy with
consumed energy.
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