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Abstract  12 

Renewable energy from wind and solar resources can contribute significantly to the decarbonisation of the 13 

conventionally fossil-driven electricity grid. However, their seamless integration with the grid poses significant 14 

challenges due to their intermittent generation patterns, which is intensified by the existing uncertainties and 15 

fluctuations from the demand side. A resolution is increasing energy storage and standby power generation which 16 

results in economic losses. Alternatively, enhancing the predictability of wind and solar energy as well as demand 17 

enables replacing such expensive hardware with advanced control and optimization systems. The present research 18 

contribution establishes consistent sets of data and develops data-driven models through machine-learning 19 

techniques. The aim is to quantify the uncertainties in the electricity grid and examine the predictability of their 20 

behaviour. The predictive methods that were selected included conventional artificial neural networks (ANN), 21 

support vector regression (SVR) and Gaussian process regression (GPR). For each method, a sensitivity analysis 22 

was conducted with the aim of tuning its parameters as optimally as possible. The next step was to train and 23 

validate each method with various datasets (wind, solar, demand). Finally, a predictability analysis was performed 24 

in order to ascertain how the models would respond when the prediction time horizon increases. All models were 25 

found capable of predicting wind and solar power, but only the neural networks were successful for the electricity 26 

demand. Considering the dynamics of the electricity grid, it was observed that the prediction process for renewable 27 

power and wind was fast and accurate enough to effectively replace the alternative electricity storage and standby 28 

capacity. 29 
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1. Introduction 34 

Nowadays the need to move towards more sustainable technologies and methods is more urgent than ever due to 35 

the adverse effects caused by climate change. The International Energy Agency [1] asserts that over 65% of the 36 

GHGs (greenhouse gases) emanate from the energy sector, which signifies the need for transformation within this 37 

sector. Recent global events such as COP21 have set challenging targets to prevent the alarming impacts of climate 38 

change, which will be addressed by the adoption of stringent legislation. While the power sector accounts for 66% 39 

of the GHG emissions globally [1], renewable energy resources (RESs) have a burgeoning leading role in its 40 

decarbonisation. However, the intermittent generation patterns of solar and wind power due to the meteorological 41 

effects have rendered their deep implementation difficult, and further research and measures are required. In an 42 

electricity grid, the primary objective is to ensure the balance between supply and demand, in order to avoid power 43 

cuts and ensure that all consumers receive the electricity they need. This can be met by installing energy storage 44 

units as well as the commitment of stand-by generation capacities, but such an integration raises the costs of the 45 

electricity grid.  46 

For this reason, many endeavours have been made in predicting power load as well as electricity generation from 47 

RESs, which with sufficient accuracy could minimise operational costs and facilitate their technological 48 

penetration [2]. One of the approaches with which this issue is addressed is by enhancing the near-term 49 

predictability of the renewable energy systems and incorporating this knowledge into smart control systems that 50 

can optimise the power dispatch within an electricity smart grid. Here Big Data analytics is the “enabler” as it can 51 

convert real-time data, into “actionable knowledge”. Many studies have been conducted with the view to 52 

predicting the renewable energy generation as well as the electricity demand. Extensive reviews can be found for 53 

the prediction of electricity demand [3,4], the photovoltaic power generation in [5], [6] and the wind power [7]. 54 

Baños et al., [8] reviewed the optimisation studies focused on all areas of renewable energy operation. Here, the 55 

broad observation is that artificial intelligence methods tend to outperform the respective statistical approaches 56 

[9–11]. These application areas are briefly reviewed in the following.  57 

1.1. Predicting power generation from wind energy  58 

Wind power forecasting has had a growing interest in the research community throughout the last decades [12]. 59 

Research involving forecasting wind power generation is summarized in Table 1. In  [13] an extensive review is 60 

provided on the feature selection methodologies that have used across the literature for wind power prediction. It 61 

was additionally shown that feature selection is an important pre-processing technique when using AI techniques. 62 
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Two trends can be found in the literature for wind power forecasting in which the wind power is either predicted 63 

directly from historical data and wind speed, or indirectly by predicting wind speed and converting the speed to 64 

power via power curves. A review was conducted that groups the studies accordingly [14]. Shi, et al. [15] 65 

conducted a comparative study between predicting the wind power directly from the historical data and indirectly 66 

from power curves and found that wind speed data provides better accuracy. They showed that the former method 67 

produces more accurate results, which is expected since the correlation between wind speed and power is 68 

stochastic and cannot satisfy a deterministic approach. The inability to predict wind power with the use of power 69 

curves is also discussed in [16,17]. Meng et al. [18] applied a hybrid method where wavelet packet decomposition 70 

was first applied for pre-processing wind data and their decomposition into time subseries, which are then using 71 

for training an artificial neural network (ANN) using a crisscross optimization algorithm. It was observed that the 72 

proposed algorithm outperforms other methods for 1 to 5-hour ahead predictions. In addition, outperformed back-73 

propagation and particle swarm optimization in training the ANN parameters. Similarly, Liu et al. [19] applied a 74 

hybrid method consisting of wavelet transformation and two neural networks. The decomposed low-frequency 75 

sub-layers of wind speed data was applied for training a long short-term memory neural network, and the high-76 

frequency sub-layers were applied for training an Elman neural network. Wang et al. [20] applied a similar hybrid 77 

algorithm in which wavelet transform was applied to decompose the signals into various frequency series. The 78 

data sets were then applied for training a deep belief network, where the uncertainties was handed by the spine 79 

quantile regression. Huai-zhi et al. [21] applied a deep learning based ensemble framework that was a combination 80 

of wavelet transform and convolutional neural networks. They demonstrated the success of their approach on case 81 

studies from China. Yu et al. [22] proposed a hybrid approach in which the data is decomposed into time series 82 

using a Gaussian mixture copula method, and then applied for training Gaussian process regression models. The 83 

proposed method showed promise in accommodating seasonality variations, and uncertainties in the wind speed. 84 

The performance of linear, non-linear, artificial intelligence and hybrid models for predicting the mean hour-wind 85 

speed was examined with comparison to one another in [9]. More specifically, AR, ARIMA, MLP, RBF, ELM, 86 

ANFIS, and NLN models were built and it was concluded that linear models had the largest errors, whereas the 87 

non-linear and artificial intelligence (AI) models had approximately close errors with the neural network logic 88 

having the lowest. Yu et al. [23] applied an improved neural network structure called Long Short-Term Memory-89 

enhanced forget-gate (LSTM-EFG), combined with Spectral Clustering to extract temporal correlation 90 

characteristics for forecasting wind power. The authors reported up to 18.3% higher accuracy compared to 91 

conventional LSTM, SVR, and KNN methods with higher computational efficiency. Liu et al. [24] applied a 92 
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model consisting of three elements; wavelet packet decomposition (WPD) was applied for decompose the original 93 

time-series into several sublayers. The high frequency sublayer was to train a convolutional neural network (CNN) 94 

with a one-dimensional convolution operator. Finally, a convolutional long short term memory network 95 

(CNNLSTM) was applied for low frequency sublayers. The author reported superior performance and robustness 96 

against sudden changes in the wind speed. Similar studied by Liu et al. [19,25], using the same strategy for 97 

decomposing the data to multilayers and training various recurrent neural networks, which showed improvements 98 

over conventional approaches. Zhu et al. [26] applied convolutional neural networks for four-hours ahead forecast 99 

of wind farm with successful results. Hu and Chen [27] applied a nonlinear hybrid model in which, hysteresis (a 100 

biological neural system property) was included in the activation function to improve the performance of an 101 

Extreme Learning Machine (ELM) model. In addition, a weighted objective function was optimized using 102 

Differential Evolution algorithm (DE) in order to establish the balance between “learning performance” and 103 

“model complexity” in a long short term memory neural network (LSTM). The authors reported superior 104 

performance over other conventional models for the cases of the ten-minute ahead (utmost short term) and one-105 

hour ahead (short term) wind power predictions. Wang and Li [28] developed a model consisting of the three 106 

elements of optimal feature extracting, deep learning and error correction for wind speed prediction. The feature 107 

extraction element consisted of variational mode decomposition, Kullback-Leibler divergence, energy measure 108 

and sample entropy methods.  A long short term memory (LSTM) network was applied for deep learning. A 109 

generalized auto-regressive conditionally heteroscedastic model was applied for error correction. The 110 

demonstrated the superior performance of the model over benchmarks using three sets of real data. Wang et al. 111 

[29] used k-mean clustering for the classification of numerical weather prediction (NWP) data, which was then 112 

applied for training a deep belief network (DBN) consisting of cascading restricted Boltzmann machines (RBMs). 113 

The authors validated their model using data from the Sotavento wind farm in Spain. The results demonstrated 114 

more than 44% improvement over a back-propagation neural network (BP) and a Morlet wavelet neural network 115 

(MWNN) benchmark. Zhang et al. [30] studied short-term wind power forecaster, using a hybrid model. Singular 116 

spectrum analysis was applied to decompose the original data into a trend component and a fluctuation component.  117 

The trend component was forecasted using a least squares support vector machine, while the fluctuation 118 

component was predicted using a deep belief network (DBN). A locality-sensitive hashing search algorithm was 119 

applied to cluster the nearest training samples for further improvement.  120 

Yu et al. [31] developed three hybrid models include wavelet transform is firstly adopted to decompose the data 121 

into several sub-series. The second element of the model included either a standard recurrent neural network 122 
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(RNN), a long short term memory (LSTM) neural network, or a gated recurrent unit neural (GRU) network aimed 123 

at extracting “deeper features”. The final element consisted of support vector machine (SVM) for prediction. The 124 

authors demonstrated the performance of their hybrid methods using real data. Higashiyama et al. [32] applied 125 

feature extraction from numerical weather prediction (NWP) data using three-dimensional convolutional neural 126 

networks (3D-CNNs) which has the advantage of direction extraction of spatio-temporal features from NWP data. 127 

They demonstrated the superior performance of their model against benchmark models. Chen et al. [33] applied 128 

a hybrid model based on support vector regression machine (SVRM), Long Short Term Memory neural networks 129 

(LSTMs), and an extremal optimization algorithm (EO) for forecasting wind speed. A cluster of LSTMs was 130 

applied to explore the implicit information of wind data. Then, the parameters of the nonlinear SVRM model were 131 

optimized using the extremal optimization algorithm. The demonstrated the performance of their model for 10min 132 

ahead prediction of wind speed data from inner Mongolia, China.  133 

In [16], between 4 different data mining algorithms, namely support vector regression (SVR), the multilayer 134 

perceptron (MLP), and two types of regression trees the accuracy of the SVR was the highest. Chen et al. [34] 135 

reported that dynamical GPR (Gaussian Regression Process) outperforms an MLP (Multilayer Perceptron Neural 136 

Network).  Jiang et al. [35] also observed that GPR displayed good performance in comparison to MLP and SVM 137 

(Support Vector Machine) for predicting the wind speed. In the study by Ernst et al. [36], SVM yielded the best 138 

predictions out of artificial neural networks (ANN), a mixture of experts (ME) and nearest neighbour search 139 

(NNS) for wind power. However, when all the models were incorporated together as an ensemble model the least 140 

errors were achieved. It has been observed that the combination of multiple modelling techniques could optimise 141 

the performance of the predictions [37,38], since the weaknesses observed in some models may be smoothed by 142 

others.  Tascikaraoglu and Uzunoglu provide an extensive review of the ensemble methodologies that have been 143 

used for wind power forecasting [39]. Finally, accuracy measures and benchmarking techniques used in the 144 

literature have been reviewed by [7,40].  145 

 146 

Table 1. Literature concerning wind speed and power forecasting 147 

Authors Input (historical data) 
Output 

(predictions) 

Forecast 

horizon 
Method Models used 

Ak, Vitelli and 

Zio, [41] 
Wind Speed Wind Speed Short-term Statistical MLP 

Masseran [42] Wind Speed Wind Speed Short-term Statistical ARIMA ARCH 

Shi, Qu and Zeng 

[15] 
NWP, Wind Power Wind Power Short-term Statistical ARIMA 

Alexiadis [43] 

Wind Speed, Direction, 

Pressure, Temperature, 

Spatial correlation 

Wind Speed 

and Power 

Very 

short-term 

Artificial 

Intelligence 
ANN, ARMA 
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Sideratos and 

Hatziargyriou [44] 

Wind Power, NWP 

time series 
Wind Power Short-term 

Artificial 

Intelligence 
RBF, FLS 

Mohandes et 

al.[45] 

Daily Mean Wind 

Speed 
Wind Speed Long-term 

Artificial 

Intelligence 
SVM, MLP 

Jursa and Rohrig 

[46] 

Wind Power, NWP 

time series of multiple 

areas 

Wind Power Short-term 
Artificial 

Intelligence 
ANN/kNN  

Ghadi et al. [47] NWP, SCADA Wind Power Short-term 
Artificial 

Intelligence 
ICA, ANN 

Kramer and 

Gieseke [48] 
Wind Speed Wind Power Short-term 

Artificial 

Intelligence 
SVR 

Han, Li and Liu 

[49] 

Wind Speed Direction, 

Air Temperature, Air 

Pressure, Relative 

Humidity 

Wind Power Short-term 
Artificial 

Intelligence 
ANN 

Carolin Mabel and 

Fernandez [50] 

Wind Speed , Relative 

Humidity, Generation 

Hours Energy Output 

Wind Power Short-term 
Artificial 

Intelligence 
ANN 

Cellura et al. [51] Weibull Distribution Wind Speed Short-term 
Artificial 

Intelligence 

ANN, Universal kriging 

(UK) estimator 

Welch, Ruffing 

and 

Venayagamoorthy 

[52] 

Wind Speed, 

Temperature, Relative 

Humidity 

Wind Speed Short-term 
Artificial 

Intelligence 
ANN (MLP, ELM, SRN) 

Ernst et al., [36] 

Wind Power, NWP 

time series of multiple 

areas 

Wind Power Short-term 
Artificial 

Intelligence 

SVM, ANN, ME, NNS 

(ensemble) 

Ramirez-Rosado et 

al. [53] 
NWP, Wind Power Wind Power Short-term Hybrid 

MLP/Kalman-ARIMA-

FLS 

Bin, Haitao and 

Ting [54] 
Historic Wind Speed Wind Speed Short-term 

Artificial 

Intelligence 
NN, GPR, LS-SVR 

Hong, Pinson and 

Fan [55] 
Historic Wind Power Wind Power Short-term 

Artificial 

Intelligence 
NN, GPR, SVM  

Jiang et al. [35] Historic Wind Speed Wind Speed Short-term 
Artificial 

Intelligence 
GPR 

Chen et al. [34] NWP Wind Power 

Short/ 

medium 

terms 

Artificial 

Intelligence 
GPR, ANN 

Sfetsos, [9] Hourly Wind Speed 
Hourly Wind 

Speed 
Short-term 

Statistical, 

Hybrid 

NLN, AR, ARMA, 

ANFIS, RBF 

Kusiak, Zheng, 

and Song [16] 
Wind Speed and Power 

Wind Speed 

and Power 
Short-term Hybrid 

SVM(speed), 

kNN(power) 

Barbounis and 

Theocharis [56] 

Spatial Correlation, 

Wind Speed Data 
Wind Speed 

Very 

short-term 
Hybrid FNN 

Hu et al. [37] Wind Power Wind Power 

Very short 

term 

(15m) 

Hybrid, 

ensemble 

ARIMAX, bagging, 

QRF, RF, QR-SVM, 

QR-NN 

Barbosa de 

Alencar et al. [38] 

Air Temperature, Air 

Humidity, 

Atmospheric Pressure, 

average wind speed, 

wind direction 

Wind Speed 

Very 

Short/Shor

t./Medium

/Long 

Hybrid, 

ensemble 
NN, ARIMA 

Eseye et al. [57] NWP Wind Power 
Medium-

term 

Artificial 

Intelligence 
GA-ANN, BP NN 

Najeebullah et al. 

[58] 

Wind Speed, Relative 

Humidity, Temperature 
Wind Power 

Medium-

term 
Hybrid ANN, SVR 

Li et al. [59] NWP Wind Power Short-term AI SVM 

 148 

1.2. Predicting power generation from solar energy  149 

With respect to the input selection for solar power forecasting, data from numerical weather predictions (NWP) 150 

and historic power production are used in most cases. The research in the field is summarized in Table 2.  Bacher 151 



7 | P a g e  

 

et al. applied two autoregressive models for PV power forecasting in which both had an input of the historic power 152 

production data, but only one of them used additionally NWP. It was concluded that the model which used the 153 

NWP had a better performance particularly for predictions after two hours, but for very short-term predictions, 154 

historical data was the most vital entry [60].  155 

Artificial intelligence and statistical methods have been implemented for solar irradiance and photovoltaic power 156 

predictions extensively in various comparative studies, with a view to identifying the methods that fit better to 157 

this application. The applied methods are very diverse and include auto-regressive time-series [60], regression 158 

trees [61], k-nearest neighbours (kNNs) [62,63], artificial neural networks (ANNs) [64,65], support vector 159 

regression [66,67], and Gaussian process regression [68] to name a few.  Martín et al. [10] found that multilayer 160 

neural networks (MLP) and adaptive neuro-fuzzy inference systems (ANFIS) are superior in predicting the solar 161 

energy that is harnessed by solar thermal plants compared to autoregressive statistical models. Salcedo-Sanz et al. 162 

[69] studied the prediction of the total daily solar irradiance with a number of various techniques, such as SVR, 163 

ELM, Bagged Trees and GPR and found that GPR had a better accuracy than other methods. Fernandez-Jimenez 164 

et al. [11] compared various statistical and AI models namely kNN, ANFIS, ARIMA and ANN (MLP, EML, 165 

RBF), where data was obtained from two different numerical weather (NWP) prediction programmes. It was 166 

shown that the MLP ANN outperformed all the other models followed by ANFIS. Similarly, in [62] MLP neural 167 

networks were successful in making 1 hour and 2 hour forecasts with the use of historical data of power produced 168 

by a PV farm compared to the statistical method ARIMA and the kNN. For small time steps (5 minutes), Reikard 169 

[70] found that ANN provided more accurate forecasts compare to an ARIMA method as well as from a hybrid 170 

method of ANN coupled with ARIMA. On the other hand, for larger time steps, the ARIMA was the best method 171 

(15, 30, 60 min). This is expected since on higher resolutions the forecast is more data dependent making the 172 

ANN the better choice, whereas for lower resolutions the diurnal cycle can be captured more effectively by 173 

regression methods. Behera et al. [71] applied a single layer feed-forward whose weights were optimized using a 174 

particle swarm algorithm. Sharma and Kakkar [72] applied four machine-learning tools, namely FoBa, 175 

leapForward, Spikeslab, Cubist and bagEarthGCV for predicting solar irradiance. The underlying methodologies 176 

of these models were an adaptive forward-backward greedy algorithm, regression subset selection algorithm, a 177 

spikes and slab algorithm, a rule-based multivariate linear modelling, a multivariate adaptive regression splines 178 

algorithm, respectively. The results of Spikeslab and Cubist were reported to be stable and accurate for different 179 

time horizons. Tang et al. [64] applied a combination of extreme learning machine and entropy method. They 180 

reported that this hybrid algorithm performs better than a generalized regression neural network, and a radial basis 181 



8 | P a g e  

 

function neural network, for short-term photovoltaic power forecast. Similarly, Hossain et al. [73] applied an 182 

extreme learning machine (ELM) algorithm for predicting power output from a photovoltaic system. They 183 

reported a superior performance compared to SVR and ANN benchmarks. Majumder et al.  [74] applied 184 

Variational Mode Decomposition and Extreme Learning Machine for predicting solar irradiation. The algorithm 185 

was reported robust under noisy conditions and despite the presence of outliers in the historical data. Srivastava 186 

and Lessmann [75] studied the forecast of forecasting global horizontal irradiance (GHI), a measure of shortwave 187 

radiation received used for PV installation, using a long short term memory (LSTM) neural network. The average 188 

forecast skill of 52.2% over benchmark was reported. Qing and Niu [76] applied LSTM neural networks for hourly 189 

day-ahead solar irradiation prediction from weather data. Using experimental data, they demonstrated 18.34 and 190 

42.9% improvements in root mean square error (RMSE), compared to BPNNs, for two datasets. Alzahrani et al. 191 

[77] applied deep recurrent neural networks (DRNNs) for forecasting solar irradiance, using real data from 192 

Canada. They demonstrated significant improvements over conventional methods such as support vector 193 

regression (SVR) models, and feedforward neural networks (FNNs). Li et al. [78] studied short-term solar power 194 

forecast. Using correlation coefficient, they identified the solar radiation intensity, atmospheric temperature and 195 

relative humidity as the most correlated variables with the photovoltaic power output. A deep belief network was 196 

applied which should significant improvements over a base-line back propagation (BP) neural network. Abdel-197 

Nasser and Mahmoud [79] applied long short-term memory recurrent neural network (LSTM-RNN) to forecast 198 

solar power generation. Compared to multiple linear regression (MLR) model, bagged regression trees (BRT), 199 

and feedforward neural network models, their LSTM-RNN model showed a superior performance. Zhang et al. 200 

[80] studied several ANN configuration for short term (in the order of minutes) of photovoltaic power generation, 201 

namely multi-layer perceptron (MLP), convolutional neural network (CNN), and long short term memory (LSTM) 202 

structures.  Image data such as the sun intensity, cloud movement and appearance, was applied to forecast the 203 

solar power generation. The authors report root mean squared error (RMSE) of 7%, 12% and 21% for the MLP, 204 

LSTM, and CNN configurations, respectively. Wang et al. [81] applied hybrid deterministic and probabilistic 205 

models for forecasting photovoltaic power. The deterministic model consisted of wavelet transform (WT) and 206 

deep convolutional neural network (DCNN). WT was applied for decomposing original signal into several 207 

frequency series which were applied for training the DCNN model. The probabilistic model was developed by 208 

extending the deterministic model using spine quantile regression (QR). They demonstrated the outperformance 209 

of their method using real data from PV farms in Belgium.  210 

 211 

  212 
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Table 2. Literature concerning solar irradiance and PV power forecasting 213 

Authors 
Forecast 

horizon 

Method 

Type 
Method 

Prediction 

Output 
Input 

Ridley, 

Boland and 

Lauret [82] 

Short-

term 
Statistical BIC 

Diffuse solar 

radiation 

Hourly/Daily Clearness index, Solar altitude, 

Apparent solar time, Measure of persistence 

of global radiation levels 

Ruiz-Arias 

et al. [83] 

Short-

term 
Statistical AR 

Solar 

Irradiance 
Global, diffuse solar radiation 

Bacher, 

Madsen and 

Nielsen, 

[60] 

Short-

term 
Statistical AR PV power NWP, Past power production 

Chen et al., 

[84] 
Medium 

Artificial 

intelligence 
RBF ANN PV power 

 Past power production, NWP (Solar 

Irradiance, Temperature, Relative Humidity) 

İzgi et al. 

[85] 

Very 

short-

term 

Artificial 

intelligence 
MLP ANN PV power 

 Past power production, Solar Irradiance, 

Temperature, Relative Humidity 

Mellit and 

Pavan [86] 

Short-

term 

Artificial 

intelligence 
MLP ANN 

Solar 

Irradiance 
Solar Irradiance, Temperature 

Mellit, 

Benghanem 

and 

Kalogirou 

[87] 

Short-

term 

Artificial 

intelligence 
MLP ANN PV power 

Solar Irradiation, Temperature, Relative 

Humidity 

Mellit et al. 

[88] 

Short-

term 

Artificial 

intelligence 
FNN 

Solar 

Irradiance 

Air Temperature, Relative humidity, Direct, 

Diffuse Global irradiance, Sunshine duration 

Martín et al. 

[10] 
Medium 

Artificial 

intelligence 

AR, ANN, 

ANFIS 

Solar Thermal 

Plants 

Ground Solar Radiation (hourly), Clearness 

index, Lost component 

Shi et al. 

[89] 

Short-

term 

Artificial 

intelligence 

SVM with 

weather 

classification 

PV power NWP, Past power production 

Yona et al. 

[90] 

Short-

term 

Artificial 

intelligence 

ANN (MLP, 

RBF, ELM) 
PV power 

Global Solar Radiation, Temperature, 

Atmospheric pressure, Humidity, Cloud 

amount, Wind speed, and Rainfall 

Ding, Wang 

and Bi [91] 

Short-

term 

Artificial 

intelligence 
ANN PV power Past power production, Meteorological Data 

Salcedo-

Sanz et al. 

[69] 

Short-

term 

Artificial 

Intelligence 

ELM, SVR, 

GPR, 

Bagged 

Trees 

Solar 

Irradiance 
NWP 

Sfetsos and 

Coonick 

[92] 

Short-

term 

Artificial 

intelligence, 

Hybrid 

ANN (MLP, 

ELM, RBF), 

ANFIS, 

ARMA 

PV power Solar Radiation, Time indicator 

Reikard 

[70] 

Short-

term 

Artificial 

intelligence, 

Hybrid 

ARIMA, 

ANN, 

ARIMA-

ANN 

Solar 

Irradiance 

Solar Irradiation, Temperature, Relative 

Humidity, Cloud cover 

Mellit et al. 

[93] 
Medium 

Artificial 

intelligence, 

Hybrid 

ANFIS, 

ANN (MLP, 

RBF) 

Mean monthly 

clearness 

indexes, daily 

solar radiation 

Latitude, Longitude, Altitude 

Fernandez-

Jimenez et 

al. [11] 

Short-

term 
Hybrid 

kNN, ANN 

(MLP, 

RBF,ELM), 

ANFIS, 

ARIMA 

PV power 

Year moment, Past power production, NWP 

(x2) [Solar power surface sensible heat flux, 

Surface latent heat flux, Surface downward 

shortwave radiation, Surface downward 

longwave radiation, Top outgoing shortwave 

radiation, Top outgoing longwave radiation, 

Temperature] 

Pedro and 

Coimbra 

[62] 

Short-

term 
Hybrid 

GA-ANN, 

ANN, 

ARIMA, 

kNN 

PV power Past power production 
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Several of the studies presented in Table 2 have applied various types of artificial neural networks with the view 214 

to determining the most suiting one. As mentioned above, Fernandez-Jimenez et al. found that the MLP neural 215 

network outperformed ELM and RBF architectures [11]. However, in [90] ELM networks are suggested for time 216 

series data forecasting since they exceeded the performance of both the MLP and RBF neural networks. In 217 

addition, in [52] it was similarly established that recurrent architectures (ELM) provide a better performance than 218 

the respective linear ones (MLP). Finally, Shi et al. implemented Support Vector Machines (SVM) along with a 219 

data classification algorithm that categorises days as sunny, foggy, cloudy and rainy and found promising results 220 

particularly for the two former categories [89]. 221 

1.3. Predicting power demand  222 

Predicting electricity load has been the focus of intense research too. The conducted research is inherently 223 

multifaceted, and include input selection, predictive model type and structure, training algorithm, dynamic 224 

learning, and the implications of electricity deregulation for the price [94]. Table 3 summarises the research in 225 

the field. Broadly speaking, the prediction horizon can be divided into very short-term, short-term, mid-term and 226 

long-term, each with a different set of decision variables (Table 1). Amongst these, short-term (hours to a day) 227 

prediction of electricity demand has significant implication for the optimal operation of electricity grids, as it has 228 

similar time-scale when significant fluctuations occur during stochastic wind and solar power generation. Overall, 229 

with regard to the inputs used for demand forecasting, historical load data is essential and in some cases, 230 

meteorological information is utilised. The former is of greatest significance in very short-term forecasting (10-231 

30 minutes), whereas for greater time intervals the weather data becomes increasingly important [95]. For 232 

instance, Drezga and Rahman studied the optimal variables selection for short-term load forecast using the so-233 

called phase-space embedding method. The input variables applied for training the neural network included 234 

electricity load, temperature, as well as daily and half-daily cycles, at different time intervals. They demonstrated 235 

that with appropriate selection of only 15 inputs, high accuracy could be achieved for predicting power load on 236 

working days and weekends [96]. Sovann et al. [97] applied Autocorrelation (ACF), partial autocorrelation 237 

(PACF), and cross-correlation (CCF)  in order to identify the best-suited input variables for the neural network-238 

based forecast of electricity load. They reported that a combination of time indicators, lagged load, and weather 239 

variables such as dry bulb and dew point temperature provided the best performance. Tao et al. [98], proposed a 240 

method based on correlation clustering. The idea is that assigning consumers with similar demand behaviour can 241 

improve the overall demand forecast. Recently, nonconventional variables were proposed for power consumption 242 
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prediction. For instance, Vinagre et al. [99] demonstrated that solar radiation serves as a good indicator of energy 243 

consumption for in a building.  244 

 245 

Table 3. Literature concerning demand forecasting 246 

Authors 
Forecast 

horizon 
Method Type Method Input 

Taylor [100] Short-Term Statistical ARMA, EXS Historic Load Data 

Taylor, de 

Menezes and 

McSharry [101] 

Short-Term Statistical EXS, PCA Historic Load Data 

Taylor and Buizza 

[102] 
Short-Term Statistical ARMA 

Historic Load Data, NWPs, 

Weather data 

Gould et al. [103] 
Short\Medium 

Term 
Statistical EXS Historic Load Data 

Al-Hamadi and 

Soliman [104] 
Short-Term Statistical Kalman Filtering 

Historic Load & Weather Data, 

Current Weather Data 

Taylor and 

Mcsharry [105] 
Short-Term Statistical 

ARIMA, AR, EXS, 

PCA 
Historic Load Data 

Taylor [95] Very short-term Statistical 
ARIMA, AR, EXS, 

PCA 
Historic Load Data 

Villalba and 

Alvarez [106] 
Short-Term 

Artificial 

Intelligence 
ANN Historic Load Data 

Wang et al. [107] Short-Term 
Artificial 

Intelligence 
ε-SVR Historic Load Data 

Zheng, Zhu and 

Zou [108] 
Short-Term 

Artificial 

Intelligence 
SVM Historic Load Data 

Badri, Ameli and 

Motie Birjandi 

[109] 

Short-Term 
Artificial 

Intelligence 
ANN, FLS Historic Load Data 

Ho et al. [110] Short-Term 
Artificial 

Intelligence 
ES Historic Load & Weather Data 

Galarniotis et al. 

[111] 
Short-Term 

Artificial 

Intelligence 
ELM, FIR Historic Load Data 

Hong, Pinson, and 

Fan [55] 
Short-Term 

Artificial 

Intelligence 
ANN, GPR  Historic Load Data, Temperature 

Shu and Luonan 

[112] 
Short-Term Hybrid SOM-SVM Historic Load Data 

Zhang and Dong 

[113] 
Short-Term Hybrid ANN-Wavelet Historic Load Data 

Song et al. [114] Short-Term Hybrid FLS Historic Load Data 

 247 

The examples of the machine-learning methods applied for load forecast include time series [115], linear 248 

regression [116], moving average [117], wavelet transforms [118], support vector regression (SVR) [119], 249 

Gaussian process regression (GPR) [120], Fuzzy models [121], Artificial Neural Networks (ANNs) [94], and 250 

expert systems [122,123]. Artificial neural networks have been broadly used for demand forecasting. Hippert, et 251 

al. [124] presented a review of the load forecasting methods. In [111,125],  a comparative study was conducted 252 

with regard to the MLP, FIR and ELM neural networks. It was established that ELM and FIR are more capable 253 

in forecasting time series than MLP, with the latter of the two producing the best results. It should be mentioned 254 

that neural networks outperform FL models due to their ability to compute nonlinearity in the data [109]. Support 255 

Vector Machines and Regression have also been extensively used in load forecasting [107,108,112]. Support 256 
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vector regression was applied to a smoothed and pre-processed dataset of the load corresponding to East China, 257 

the results of which were further developed in order to account for the seasonal variations [107]. Three different 258 

Support Vector Machines were compared in [108], namely a Gaussian wavelet SVM, a conventional Gaussian 259 

SVM and a Morlet wavelet SVM, and it was found that the former had a superior performance both in accuracy 260 

and speed. Hong  et al. [55] reported a forecasting competition where several techniques were considered in order 261 

to forecast the load for a number of different horizons by using historical data and temperature information.  262 

Amongst the various methods developed, GPR was found the best in terms of accuracy. Almeshaiei and Soltan 263 

[117] proposed a method based on decomposition and segmentation of the electricity time series for daily load 264 

forecast. They demonstrated their method on a case study from Kuwaiti electric network. Outliers in historical 265 

load data could severely degrade the accuracy of forecast. With the view of overcoming this challenges, Zhang et 266 

al. [126] proposed a method based on spatial-temporal feature clustering, and demonstrated its effectiveness. What 267 

is more, the volume of data has an impact on the accuracy of the forecasting models; when sufficient data on load 268 

was provided that could represent not only the weekly and daily patterns but also the respective annual ones, the 269 

accuracy of the statistical model used (ARMA) increased significantly [100]. With a view to establishing the most 270 

suitable statistical methods, a comparative study was carried out by Taylor and McSharry and it was found that 271 

exponential smoothing outperformed the ARIMA, AR, and PCA models [105]. Coelho et al. [121] proposed a  272 

hybrid model with adaptive parameter update using an evolutionary bio-inspired optimization algorithm. They 273 

described the method computationally efficient and accurate for predicting short-term electricity load. Hong [127] 274 

applied a hybrid method consisting of recurrent neural networks (RNNs), support vector regression (SVR), chaotic 275 

artificial bee colony algorithm. Such hybrid algorithm offers several desirable functionalities such as seasonal 276 

classification and adjustment, recurrent calculations, and chaotic sequence to enable seasonal and monthly 277 

electricity forecast. Dedinec et al. [128] applied a deep belief network (DBN) consisting of multiple layers of 278 

restricted Boltzmann machines for forecasting electricity load. The author demonstrated the performance of their 279 

method using real data from the Macedonian system operator (MEPSO), which showed between 8.6% to 21% 280 

reduction in the absolute percentage error (MAPE) compared to a typical feed-forward multi-layer perceptron 281 

neural network. Shi et al. [129] applied a deep learning algorithm for the two power load forecast of aggregated 282 

demand in New England, and 100 individual households in Ireland. They reported up to 23% improvements in 283 

the aggregated case and 5% improvement in the disaggregated case compared to a “shallow neural network” 284 

benchmark.  285 
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Hernández et al. [130] applied a multi-agent architecture based on multi-layer perceptrons (MLP) neural network, 286 

in the context of virtual power plants for collaborative load forecast. Javed et al. [131] proposed a multiple load 287 

forecasting model which combines individual time-series into a single model, using ANNs and SVMs. They 288 

demonstrated that such aggerated model is superior for predicting short-term demand. Critical reviews of demand 289 

forecasting, dynamic pricing and demand side management is recently presented by Khan et al. [4], Raza et al. 290 

[94], and Hernandez et al.[132]. 291 

A close research area is concerned with the electricity price forecasting. In a deregulated market, this price is 292 

closely related to the deficit and surplus between supply and demand. By the emergence of renewable power from 293 

wind and solar, the electricity supply-demand balance has become more and more uncertain. Therefore, the 294 

electricity price forecast has been the subject of intensive research. While a comprehensive review of these 295 

methods is beyond the scope of this article, Weron and Nowotarski have provided extensive reviews and recent 296 

updates [133,134] for electricity price forecasting. More recent studies have focused on hybrid methods. Yang et 297 

al. [135] applied the kernel extreme learning machine (KELM) and autoregressive moving average (ARMA) for 298 

forecasting electricity price. The parameters of KELM are optimized using a particle swarm optimization 299 

algorithm and therefore, the overall framework is self-adaptive. The performance of the method was demonstrated 300 

on a few case studies from the US, Spain, and Australia. Inspired by the field of chemical reaction optimization, 301 

Abedinia et al. [136] proposed a combinatorial neural network (CNN) framework, in which the parameters of 302 

CNN are optimized by a stochastic search algorithm. Wang et al. [137] developed a hybrid framework based on 303 

empirical mode decomposition, variational mode decomposition, and neural networks. The developed method 304 

proved efficient for multi-step prediction of the electricity prices in several case studies from France and Australia. 305 

Amjady and Daraeepour [138] proposed that due to the interrelation between the electricity demand and price, it 306 

is more effective to forecast them simultaneously. They applied mutual information (MI) for the selection of 307 

inputs, and a cascaded neuro-evolutionary algorithm for learning. Ghasemi et ai, [139] for forecasting electricity 308 

price and load. They applied a hybrid algorithm in which Conditional Mutual Information (CMI) and adjacent 309 

features were applied for input selection. The input signals were decomposed into several terms using Flexible 310 

Wavelet Packet Transform (FWPT).  Finally, nonlinear least square support vector machine (NLSSVM) and 311 

autoregressive integrated moving average (ARIMA) were applied for learning.  312 

The above-mentioned artificial neural network models fall in the category of deterministic machine-learning 313 

methods. In the recent years, the deterministic methods are developed further to include the confidence intervals 314 

of predictions too, known as probabilistic forecasting methods. The probabilistic forecasting methods could be 315 
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based on scenario with assigned probability, or in the form of probabilities of quantiles, intervals, or density 316 

functions [140]. While thorough review of these methods are not in the scope of the present publication, interested 317 

readers are referred to recent reviews by Hong and Fan [140], Zhang et al. [141], and  van der Meer and 318 

Munkhammar [142]. 319 

Finally, it should be noted that the application of forecasting method is gaining wide-spread acceptance in power 320 

and energy industry. Examples of lateral application include occupancy prediction of office buildings [143], State 321 

of charge estimation for electric vehicle [144] the estimation of energy consumption in buildings using solar data 322 

[145], and forecasting the of district heating consumption [146], security assessment of power systems [147], and 323 

restoring microgrids after fault occurrence [148]. 324 

Despite the broad research in the literature, a comprehensive analysis where the performance of all the key 325 

machine-learning algorithms is compared against a consistent set of data is missing. The key contribution of this 326 

study is to exhaustively compare the three machine-learning methods of ANN, GPR, and SVR against a 327 

comprehensive set of solar, wind and demand data, hence illustrating the challenges that need to be overcome and 328 

quantifying the performance of each method.  329 

In the first part of this publication, an introduction was presented that puts the research in context. The next section 330 

outlines the methodology that was followed throughout this research, starting with the data pre-processing steps 331 

that were required prior to performing any prediction, and continuing with the exact procedures with which the 332 

predictive models were tuned and built. The third section will present the results and is split into five categories, 333 

namely wind power prediction, solar power prediction, electricity demand prediction and the comparison of 334 

results.  The final section summarizes the observations and proposes future research directions.  335 

2. Methodology 336 

The research methodology is presented in two parts. The first part describes the data acquisition and pre-337 

processing. The second part reports the employed machine-learning algorithms and their implementation methods. 338 

More details are provided in the online Supplementary Materials.  339 

2.1. Data pre-processing 340 

As the objective of this research was to develop data-driven models that can produce relatively accurate 341 

predictions for the wind power, solar power, and electricity demand, the acquisition, and processing of data is one 342 

of the most important aspects of the present research, to which special attention is paid. In the next subsections 343 

the data that was used in this study will be introduced, followed by an elaboration on the procedures that were 344 

implemented with regard to its processing. More specifically, the topics of normalisation, cleaning, time series 345 
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data clustering, and correlation analysis will be covered. The former two are procedures which are more often 346 

than not implemented with every data training technique, and are to large extent common for data pre-processing. 347 

Data clustering was required specifically for the electricity demand, in order to construct the training datasets. 348 

Finally, the correlation analysis was one of the most important parts of the present research, as it provided an 349 

insight for the lags that were used by the predictive NARX models. 350 

Table 4 summarizes different inputs available in the present study, for each type of model training and validation, 351 

more specifically, the data used for wind power prediction included the wind power, the wind speed at 10m above 352 

ground level at the specific location, and the temperature. For the solar power prediction, the inputs include direct 353 

and diffuse irradiance, as well as the temperature. Finally, the only information applied for the demand is the 354 

hourly measurement of consumed electrical energy per household. 355 

Table 4. Inputs used for wind power, solar power, and electricity demand forecasting. 356 

Input Vectors 
Wind Power 

Prediction 

Solar Power 

Prediction 

Electricity Demand 

Prediction 

Hourly Variable ✓ ✓ ✓ 

Seasonal Variable ✓ ✓ ✓ 

Wind Power (KW) ✓   

Solar Power (KW)  ✓  

Electricity Energy [Wmin]   ✓ 

Temperature (°C) ✓ ✓  

Wind Speed at 10m (
m

s
) ✓   

Direct irradiance (KW)  ✓  

Diffuse irradiance (KW)  ✓  

 357 

The wind and solar data were acquired from the ninja renewables website [149] and the details that were input 358 

can be observed in Table 5. Here, the location shown corresponds to a southeast location of the UK, namely 359 

Canterbury. For the wind simulations, one of the most commonly used onshore wind turbines was used, a Vestas 360 

V80 [150,151].  The dataset covered the years from1985 to 2014. 361 

Table 5. The option used for the ninja renewables simulations 362 

Required details for simulation Values 

Latitude [°] 51.379 

Longitude [°] 1.441 

Wind turbine capacity [𝑘𝑊] 1 

Wind Turbine Hub Height [𝑚] 58 

Wind Turbine Model Vestas V80 2000 

Solar panel capacity [𝑘𝑊] 1 

Solar Azimuth [°] 164.3853 

Solar Pitch [°] 38.67047 

 363 

The demand data used for this study was hourly measurements of electrical energy of 1157 households which was 364 

made available by Hildebrand Technology. Based on a confidentiality agreement, the data did not have any 365 
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information with regard to the location of the households, and it was not possible to associate any meteorological 366 

information to it. The period covered by the dataset was from the 1st June of 2013 until the 30th of May 2016 and 367 

the electrical energy was measured in [𝑊𝑚𝑖𝑛].  The electricity demand data was clustered with a view to 368 

extracting representative consumer patterns which were used as an input in the predictive data-driven methods. 369 

Normalisation is particularly important for most machine-learning methods; as non-normalised data can result in 370 

computationally ill-conditioned calculations. A representative example of this is with neural networks with a 371 

sigmoid activation function, for which, if the values of t are large, the gradient of 𝑓(𝑡) will become very small. 372 

This makes the training procedure unproductive and inefficient. The algorithm that was chosen for the 373 

classification of the demand data was the K-Spectral Centroid, which is a partitioning method based on the k-374 

means approach that classifies data with regard to their shapes. The MATLAB code was available from the 375 

Stanford Network Analysis Project (SNAP) [152]. 376 

2.2. Forecasting Methods 377 

In forecasting a time series with a data-driven approach, there are three types of architecture that can be used, 378 

namely the input-output approach (I-O), the non-linear autoregressive (NAR) and the nonlinear autoregressive 379 

with exogenous inputs (NARX). The main difference between these architectures is the type of data each method 380 

accepts as inputs. The former uses any kind of input except the past value of the target series. The second approach 381 

uses only the past values of the target series, and finally the latter uses both the target’s previous values as well as 382 

exogenous inputs. It can be easily seen that the NARX procedure outperforms the former two when the exogenous 383 

inputs are correlated to the targets, as it carries more information about the system. These three main types of 384 

models are listed in the following.  385 

𝑦(𝑡 + 𝑝) = 𝑓(𝑥(𝑡), 𝑥(𝑡 − 1),… , 𝑥(𝑡 − 𝑑𝑥))                                                                                                                  (1) 386 

𝑦(𝑡 + 𝑝) = 𝑓 (𝑦(𝑡), 𝑦(𝑡 − 1), … , 𝑦(𝑡 − 𝑑𝑦))                                                                                                                (2) 387 

𝑦(𝑡 + 𝑝) = 𝑓 (𝑥(𝑡), 𝑥(𝑡 − 1),… , 𝑥(𝑡 − 𝑑𝑥), 𝑦(𝑡), 𝑦(𝑡 − 1), … , 𝑦(𝑡 − 𝑑𝑦))                                                           (3) 388 

where 𝑦(𝑡) is the output time series of the dependent variable that is predicted (in this case wind power output, 389 

solar power output and electricity demand), 𝑓( ∙ ) represents the “black box” model used for prediction. 𝑥(𝑡) is 390 

the input time series (independent variable). 𝑑𝑦 and  𝑑𝑥 are the feedback and input delays which correspond to 391 

the number of past values of the target or the inputs, respectively, that are used for the prediction of the future 392 

value. 𝑝 represents the number of steps ahead for which the future behaviour is being predicted (𝑝 ≥ 1).  393 

The present research examines the performance of artificial neural networks (ANN), support vector regression 394 

(SVR) and Gaussian process regression (GPR) for predicting power generation from wind and solar energy, as 395 
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well as the stochastic behaviour of electricity demand. These methods were chosen for various reasons that were 396 

associated with either their proven good performance (ANN, SVR) or their potential to provide high accuracy 397 

forecasts and black-box models in other applications (GPR).   398 

2.2.1. Artificial Neural Networks 399 

Artificial neural networks (ANNs) are developed in analogies with the architecture of the human brain, enabling 400 

it to interpret a great amount of data and transform them into actionable knowledge [153]. A thorough survey of 401 

literature suggests that for the prediction of time series, dynamical neural networks are most efficient as they can 402 

be trained and tuned to predict time-dependent data. Amongst the various developments of dynamical neural 403 

networks, the Non-linear AutoRegressive model with exogenous inputs (NARX) neural network has gained great 404 

popularity in the research community [154–159].  405 

In order to obtain a neural network that is both accurate and effective in terms of computational cost, there are 406 

many parameters that are required to be tuned and many options that need to be selected.  More specifically, prior 407 

to training a NARX neural network, the two key parameters of the autoregressive model, namely the input (𝑑𝑥) 408 

and feedback (𝑑𝑦) delays need to be determined as well as the number of neurons in the hidden layer. Upon 409 

finding the optimal architecture, the next step is to find the appropriate training method. As will be seen in the 410 

results section, a fully connected ANN with a single hidden layer would suffice for accurate modelling of power 411 

generation from wind and solar energy, as well as electricity demand. While details comparison of various ANN 412 

methods are beyond the scope of the present study, the research are generalizable in the sense that more complex 413 

neural network architectures could also gain similar or better performance. The overall procedure that was 414 

followed in the present research, in order to build the NARX models for every one of the three prediction studies 415 

(wind, solar and demand forecasting) is depicted in Figure 1. It should be noted that in principle, the optimal 416 

values of the input delays, the feedback delays and the number of neurons in the hidden layer are all interrelated. 417 

However, simultaneous optimization of these structural parameters poses a formidable bi-level optimization 418 

problem, as they are indeed hyper-parameters, and their values must be fixed before the training process could 419 

start. Nevertheless, as will be shown in Results section, even under the simplifying assumption that they could be 420 

optimized independently, excellent results can be achieved. The artificial neural networks were implemented 421 

using the Neural Network ToolboxTM, and the Optimization ToolboxTM (for the case of the genetic algorithm) in 422 

MATLAB. The options for stochastic gradient descent (SGD) were activated in order to manage the computational 423 

costs. 424 
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 425 

Figure 1. Framework for tuning NARX neural network parameters and selecting the training method 426 

Neural networks are highly efficient in predicting empirical data. It is shown that for a sufficiently large number 427 

of neurones, even only one hidden layer suffices to simulate any nonlinear function from a compact input set 428 

[160–162].  Therefore, in order to minimize the training effort and without loss of generality, the neural networks 429 

designed in this research consisted of a single layer. Then the number of neurons in the hidden layer of the neural 430 

network were optimized until no further improvement was achieved. In order to set the input and feedback delays,  431 

a correlation analysis was performed on the data, and then through a trial and error procedure, the best performing 432 

delays were selected for each model [154,157]. It should be noted that artificial neural networks often suffer the 433 

two problems of overfitting and premature convergence to local solutions. In order to tackle these issues, the ANN 434 

model was first trained with a Genetic Algorithm (GA), and then its solution was applied as the initial guess for 435 

the Levenberg-Marquardt and Bayesian Regularization methods. The justification is that GA is a stochastic global 436 

optimization algorithm and is efficient in handling local solutions, while the role of the other two methods is to 437 

refine the solution. In order to handle the overfitting issues, prior to the training procedures, the available data was 438 

split into three subsets, namely the training set (typically 70%), the validation set (15%) and finally the testing set 439 
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(15%). The training algorithm uses the training set to update the weights and biases of the neural network by 440 

minimising the mean squared error. At the same time, however, an additional mean squared error is calculated 441 

which corresponds to the validation data. In the beginning of the training procedure, both of these errors drop, but 442 

as the neural network becomes more and more tuned to the training data, the validation error will start increasing. 443 

From the moment this happens, the training algorithm runs for a predetermined number of times. If by the time it 444 

has ran for this number of steps, the validation error does not decrease, the training terminates and the weights 445 

and biases that correspond to the lowest validation error (that occurred during those iterations) are returned. The 446 

testing data is utilised after the training is completed, in order to examine the network’s performance. This 447 

procedure is referred to as early stopping, since the training algorithm terminates prior to reaching the optimal 448 

point [163].  449 

2.2.2. Support Vector Regression (SVR) 450 

Support vector machines are a renowned classification algorithm, which categorise data accurately, do not have 451 

any difficulty with the number of dimensions of data and require only a small training sample, but they are 452 

computationally demanding if caution is not taken [164]. By applying minor alterations this method can be also 453 

implemented for regression purposes [165,166]. Support Vector Machines and ε-SVR are applicable to static 454 

problems, and therefore, the black box models that can be built through this method can only be used for 455 

simulation. In order to make step-ahead predictions further modifications need to be made, in order to build a 456 

NARX architecture for the SVR that could give a dynamic effect to the model. In the present research, a toolbox 457 

developed in KU Leuven was employed, which is based on the Least Squared Support Vector Regression (LS-458 

SVR) methodology, and allows the development of a dynamical model [167,168].  459 

2.2.3. Gaussian Process Regression (GPR) 460 

Gaussian Process Regression (GPR) is a non-parametric probabilistic kernel model. This machine-learning 461 

method has gained more and more ground in the literature over the past few years [169]. This method not only 462 

can be applied for prediction, but also can provide the confidence interval for each point in the prediction which 463 

quantifies the uncertainty of the forecast. Essentially, a Gaussian process is generalisation of the respective 464 

probability distribution. The Gaussian distribution takes an input vector and computes its probability whose 465 

characteristics are a mean and variance. The probability of an input time series vector, for each time step, is 466 

computed. Therefore instead of having a mean and variance that are scalars, the GPR model calculates a mean 467 

and covariance vector [169–171]. It should be mentioned that the GPR, similarly to SVR, cannot dynamically 468 

predict ahead as it is not a dynamic algorithm. For this purpose, a toolbox developed by Stepančič and Kocijan 469 
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[172] was applied in this study that can build a NARX architecture and allows predictions to be made for any time 470 

horizon. 471 

3. Results and discussion  472 

This section presents the results. It is divided into four sections which correspond to the three different types of 473 

predictions that were conducted, namely wind power, solar power, and electricity demand forecasting, followed 474 

by the last section in which a comparison of the different models and datasets is made. For each type of prediction, 475 

the structure of the results begins with firstly demonstrating the various features of the data and follows with 476 

evaluating the performance of the various predictive analytics methods. The various inputs used for each case of 477 

wind power, solar power, and electricity consumption forecasting are given in Table 6. It should be mentioned 478 

that throughout this paper a prediction time step is equivalent to an hour. Moreover, the term “model” is used to 479 

denote the black box model that is fed by the inputs of the present time and predicts the response of the system at 480 

the present time, meaning that no forecasting takes place.   481 

Table 6. Inputs used for wind power, solar power, and electricity demand forecasting. 482 

Input Vectors 
Wind Power 

Prediction 

Solar Power 

Prediction 

Electricity Demand 

Prediction 

Hourly Variable ✓ ✓ ✓ 

Seasonal Variable ✓ ✓ ✓ 

Wind Power (KW) ✓   

Solar Power (KW)  ✓  

Electricity Energy [Wmin]   ✓ 

Temperature (°C) ✓ ✓  

Wind Speed at 10m (
m

s
) ✓   

Direct irradiance (KW)  ✓  

Diffuse irradiance (KW)  ✓  

 483 

3.1. Wind power forecast  484 

3.1.1. Data pre-processing 485 

In Table 7 the maximum absolute value for each cross-correlation is given, in order to quantify the dependence 486 

of wind power with regard to each input. It can be seen that wind power is directly dependent on wind speed 487 

(Figure 2b), whereas the correlation with hourly (time) variable is weak (Figure 2e). This is expected since wind 488 

speed is the driving force of the turbines, and even though wind is a result of the temperature gradients caused by 489 

solar irradiance, the time of the day seems to have an indirect and random interrelationship with power. However, 490 

it can be seen that the time of the year (Figure 2d) as well as the temperature (Figure 2c) influence the wind 491 

power.  492 
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Table 7.  Maximum absolute cross-correlations for input data used for wind power prediction 493 

Input Maximum absolute correlation 

Hourly variable -0.026563 

Seasonal variable -0.205345 

Wind Speed 0.979487 

Temperature -0.206958 

 494 

 495 

 496 

Figure 2. Cross-correlations for input data applied for the wind power prediction 497 

3.1.2. Forecasting wind power with Artificial Neural Networks (ANN) 498 

For the implementation of neural networks, firstly a sensitivity analysis was conducted with which the delays of 499 

the network as well as the number of hidden neurons were determined. Moreover, the response of the selected 500 

neural network was tested for a number of different time horizons. In order to select the most fitting value for each 501 

instance, two factors were taken into consideration. Firstly, the mean square error (MSE) of the neural network’s 502 
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response with regard to the testing data for the one-hour ahead prediction was taken into consideration, which is 503 

depicted in the vertical axis of Figures 3a-c. Secondly, the error’s autocorrelation and cross-correlation with each 504 

input were calculated as graphically presented in Figures 2d-f for each simulation, and the simulation for which 505 

the most of the correlations that were within limits was selected. In particular, especially for the neural networks 506 

whose response did not significantly change, the second factor was utilised to make a selection.   507 

Figures 3a-c show that there is a point beyond which the performance of the neural network did not significantly 508 

change, as the input delays, the feedback delays and the number of neurons in the hidden layer increased. 509 

Therefore, the aforementioned second factor was taken into consideration and the characteristics of the neural 510 

network that were chosen were 10 input delays, 12 feedback delays and 10 neurons within the hidden layer. 511 

 512 

Figure 3.  The sensitivity analysis and performance of ANN for wind power prediction 513 
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With regard to the predictability analysis, different neural networks were developed for each time horizon. The 514 

accuracy as well as the regression values of these neural networks are given in Table 8, and are represented in 515 

Figure 3.d.  516 

Table 8. Regression and MSE values for various time horizons regarding wind power prediction with neural networks 517 

Time horizon Regression (R2) Mean Square Error 

model 0.99874 1.4473E-04 

1-step 0.99874 1.4560E-04 

2-step 0.9914 9.9105E-04 

3-step 0.97675 2.7000E-03 

4-step 0.95477 5.1000E-03 

5-step 0.92761 0.0081 

6-step 0.89807 0.0113 

 518 

As expected, the accuracy and the fitting capability of the model drops as the time horizon of the prediction 519 

increases, since the model is given no knowledge for the interval between the current state and the time horizon 520 

of the prediction. This can also be observed in Figure 3.e and f, where the response of the neural network is given 521 

for all the predicted time horizons that were tested. The cooler colours denote the shorter time horizons and it can 522 

be observed that they are closer to the target series (black line). It seems that the neural network’s response 523 

becomes less smooth as we move along to longer prediction steps. 524 

The forecasting error of the ANN model for predicting the wind power generation is reported in the second column 525 

of Table 9.  526 

Table 9. The performance of ANN training algorithms for wind power generation, solar power generation and 527 

electricity demand 528 

 Training error for wind 

power prediction  
Training error for solar 

power prediction  
Training error for 
electricity demand  

Levenberg-Marquardt  0.000147  0.00032439  0.000846 

Bayesian Regularization  0.00014342  0.00026489  0.000747 

Genetic Algorithm  0.0108  0.0252 0.0364  

 529 

 530 

 531 
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3.1.4. Forecasting wind power with Support Vector Regression 532 

As the SVR machine-learning method is stationary, it cannot be directly implemented to a time series problem 533 

that will be built to forecast. For this reason, a different toolbox from the default respective one in MATLAB (ε-534 

SVR) was utilised that could use a NARX architecture in conjunction with LS-SVR for time series forecasting.  535 

The sensitivity analysis that took place for tuning the SVR was done for the MATLAB toolbox (ε-SVR) in which 536 

the three available kernel functions were tried, namely the linear, the polynomial and the radial basis function 537 

(RBF). Upon testing the various available kernels, it was found that the RBF was more suited for this case.  538 

Table 9. MSE values for various time horizons regarding wind power prediction with SVR 539 

Time horizon Mean Square Error (Testing) 

Model (ε-SVR) 0.000797 

1-step (NARX LS-SVR) 0.0000503 

2-step (NARX LS-SVR) 0.0024 

3-step (NARX LS-SVR) 0.0062 

4-step (NARX LS-SVR) 0.0093 

 540 

In Table 9, the performance indicator is given for all the time horizons for which predictions were conducted. As 541 

mentioned earlier, the Model (ε-SVR) is stationary, i.e., with an input at a given time provides the response of the 542 

system for the same time. As can be seen in Figure 4.a, the Model (ε-SVR) has a much greater error than when 543 

the LS-SVR predicts one hour ahead. This observation should be attributed to the fact that the ε-SVR does not 544 

have an autoregressive architecture, which means that to make a prediction this method uses only the input that is 545 

specific to that particular time, and does not use the past values of the target series at all. The time-series responses 546 

for each time horizon are given in Figure 4.b, and magnified in Figure 4.c, for various time steps. Similar to the 547 

neural networks, as the time horizon of the prediction increases, the accuracy of the model decreases. 548 

 549 
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 550 

Figure 4. The sensitivity analysis and performance of the SVR for wind power prediction 551 

3.1.4. Forecasting wind power with Gaussian Regression Process 552 

The sensitivity analysis conducted for the GPR included the establishment of the best kernel function that could 553 

be used to predict the response of the wind power as it was given an input vector that included the hourly variable, 554 

the seasonal variable, the wind speed and the temperature. The kernels that were tested are the ones listed as well 555 

as the performance of the model for each one of the cases is listed in Table 10. The best testing performance was 556 

provided by the kernel Matern 32, although the best training performance was given from ARD Matern 32. It can 557 

be observed that there is a trend in the listed performances which signifies that the ARD kernels give a good 558 

training performance but their testing performance is degraded, whereas the others have the opposite effect except 559 

for the squared exponential that seems to have a similar training and testing performance. Since it is sought to 560 

have good generalisation in the designed models, the testing performance is prioritised and therefore for wind 561 

power prediction the kernel Matern 32 was selected. Finally, in Figure 5 the response of the GPR model for wind 562 

power prediction is represented and it can be noticed that overall the GPR captures the data very well and the 563 

target series lies always within the confidence intervals. Furthermore, it seems that there is more uncertainty 564 

associated with the time the wind power reaches local maxima and minima.  565 
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Table 10. Training and Testing Performance of GPR for various kernel functions for wind power prediction 566 

Kernel function  Training Performance (MSE) Testing Performance (MSE) 

Squared exponential 8.0220E-04 8.2141E-04 

Matern 32 8.2351E-04 7.5198E-04 

Matern 52 8.0885E-04 7.9520E-04 

ARD Squared Exponential  7.8194E-04 8.4339E-04 

ARD Matern 32 7.8154E-04 8.4127E-04 

ARD Matern 52 7.8162E-04 8.4274E-04 

 567 

 568 
Figure 5. Time series response of GPR for wind power prediction (present time) magnified for observation purposes 569 

 570 
3.2. Solar power forecast 571 

3.2.1. Data pre-processing 572 

The methodology and the steps required for solar power prediction are identical to the respective ones conducted 573 

for wind power prediction. This is due to the fact that the data were acquired from the same source, and therefore 574 

the same pre-processing steps were needed. However, due to the discontinuous nature of solar power, the results 575 

gained from this dataset were quite different.  576 

In Table 11 the maximum absolute cross-correlations of the solar power with each respective input are given. It 577 

should be noted that the reason the autocorrelation is not included in this table is that its maximum value is always 578 

1 and corresponds to the zero-time lag (Figure 6.a). Equivalently to wind power, the two variables that seem to 579 

be related more closely to the solar power output are the direct and diffuse irradiance (Figure 6.b). The temporal 580 

variables and temperature have an entirely different relation, though. The time of the day has a greater effect on 581 

the solar power output than the time of the year, which is expected as the photovoltaics have a discontinuous 582 

response; they produce energy during daylight only (Figures 6.c-f).  583 

Table 11. Maximum absolute cross-correlations for input data used for solar power prediction 584 
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Input Maximum absolute correlation 

Hourly variable 0.612193 

Seasonal variable 0.241428 

Direct Irradiance 0.963682 

Diffuse Irradiance 0.812037 

Temperature 0.432654 

 585 

 586 

 587 

Figure 6. Cross-correlations for input data applied for the solar power prediction 588 

 589 

3.2.2. Forecasting solar power with Artificial Neural Networks 590 

The framework in Figure 1 was followed to establish the ANN’s architecture. More specifically, the feedback 591 

delays (Figure 7.a) were first studied, followed by the input delays (Figure 7.b), and the number of neurons 592 

within the hidden layer (Figure 7.c). By allowing these parameters to take various values a nonlinear response 593 

can be observed, which is distinctively different from respective sensitivity analyses conducted for the case of 594 
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wind power. In addition, it should be mentioned that even though in Figure 7.c it seems that if the number of 595 

neurons was increased, the accuracy of the ANN could further improve, this was not pursued since the model 596 

became very computationally expensive when the number of hidden neurons took a value over 14. The parameters 597 

that were selected for the neural network’s architecture were 12 input delays, 12 feedback delays and 14 neurons 598 

within the hidden layer. 599 

 600 

Figure 7.  The sensitivity analysis and performance of ANN for solar power prediction 601 

With a view to generating predictions for various future time horizons, six different NARX neural networks were 602 

constructed. The performance of each of these networks is listed in Table 12. It can easily be identified that the 603 

accuracy of the neural network decreases as the time horizon increases.  This trend can be observed additionally 604 

from the response of the neural networks for the various time horizons which is visualized in Figure 7.d. The 605 

one-hour ahead closely follows the target series and shows a very good performance, followed by the two-hour 606 

ahead prediction, which although in general, it captures the target series well, there are some instances for which 607 

it did not converge to the desired value. From 3 hours and further, although for some days a satisfactory accuracy 608 

is achieved, there are numerous instances for which the predictions show a 200% error of solar power production 609 

which can be problematic if these models are used in an actual practice. The forecasting error of the ANN model 610 

for predicting the solar power generation is reported in the third column of Table 9.  611 
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Table 12. MSE values for various time horizons regarding solar power prediction with neural networks 612 

Time horizon Mean Square Error 

model 0.00031467 

1-step 0.00032632 

2-step 0.0028 

3-step 0.0037 

4-step 0.0047 

5-step 0.0061 

6-step 0.0065 

 613 

3.2.3. Forecasting solar power with Support Vector Regression 614 

Similar to the case of wind data, a sensitivity analysis in the MATLAB toolbox (ε-SVR) was conducted in order 615 

to establish the most fitting kernel function out of the choices of linear, polynomial and radial basis function 616 

(RBF). The polynomial kernel did not converge and did not manage to capture the underlying pattern of the solar 617 

dataset. The linear kernel provided an error of 0.0114 but did not terminate due to reaching the maximum number 618 

of iterations and finally, the RBF which was deemed to be most suitable, converged with the performance of 619 

0.0015.   620 

 621 

Figure 8.  The sensitivity analysis and performance of SVR for solar power prediction 622 
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The solar power was forecasted for a number of time horizons with the NARX LS-SVR method by applying the 623 

RBF kernel and setting the delays for the input vector and the target to 12. The performances for each 624 

corresponding time horizon is given in Table 13, and depicted in Figure 8.a, where it can be seen that for one 625 

step ahead prediction a significant accuracy is accomplished. The reason for this is that the model that predicts 626 

the present response has a greater error is identical to the respective one given for wind power, that is to say, the 627 

ε-SVR does not have an autoregressive architecture. In  Figure 8.b, the response of the time series for all the time 628 

horizons simulated are provided and similarly to the case of wind, as it moves towards larger prediction horizons, 629 

the model tends to lose its accuracy. One striking observation, though is that the accuracy does not seem to drop 630 

for all time steps equivalently, as in the case of wind, but mostly for the days for which a small amount of solar 631 

power is produced (Figure 8.c). The reason behind this phenomenon is in contrast to the wind power case, the 632 

solar power is discontinuous. Therefore when the model is asked to predict 5 hours ahead at dawn it has no 633 

knowledge of whether the solar irradiance will be limited throughout the day. This leads to the model giving a 634 

prediction that has an average pattern over all the training data. On the other hand, when performing one-hour 635 

ahead predictions the model can adjust its response if the day is cloudy, as it receives all the respective information 636 

with only one hour delay. This is the reason for which when moving from the one step ahead prediction towards 637 

longer time horizons, the error increases by approximately the power of 3.  638 

Table 13. MSE values for various time horizons regarding solar power prediction with SVR 639 

Time horizon Mean Square Error (Testing) 

Model (ε-SVR) 0.0015 

1-step (NARX LS-SVR) 0.000002025 

2-step (NARX LS-SVR) 0.0049 

3-step (NARX LS-SVR) 0.0182 

4-step (NARX LS-SVR) 0.0356 

5-step (NARX LS-SVR) 0.0551 

 640 

3.2.4. Forecasting solar power with Gaussian Regression Process (GPR) 641 

In order to tune the GPR for the prediction of solar power, a sensitivity analysis was conducted in order to establish 642 

the best kernel function. From Table 14 it can be seen that the Matern 52 kernel outperformed all others, and this 643 

function was therefore selected to build the final GPR model. The response of the built model is depicted in Figure 644 

9.a for all the testing data (the year 2014), and in Figure 9.b a total of 500 hours, with a view to providing a higher 645 

resolution. Even though there are some instances where the prediction is not exactly fitted to the target series (as 646 

was mostly for the case of the wind), the model gives satisfactory results and the target series for almost the 647 

entirety of the time steps lies within the confidence intervals.  648 
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Table 14. Sensitivity analysis for appropriate kernel function selection for solar power prediction 649 

Kernel function  Training Performance Testing Performance 

Squared exponential 1.5598E-05 3.3E-03 

Matern 32 9.2948E-06 3.2E-03 

Matern 52 6.4625E-06 1.9E-03 

ARD Squared Exponential  7.9675E-06 2.2E-03 

ARD Matern 32 1.2948E-05 3.5E-03 

ARD Matern 52 8.7765E-06 2.1E-03 

 650 

 651 
Figure 9. (a) Time series response of GPR for solar power prediction (present time) and (b) Time series 652 

response of GPR for solar power prediction (present time) magnified for observation 653 

 654 

3.3. Electricity demand forecast 655 

3.3.1. Data Pre-processing  656 

3.3.1.1. Time Series Data Clustering 657 

The case of electricity demand prediction was quite different from the respective wind and solar power for several 658 

reasons. Firstly, owing to the fact that the dataset provided was in a disaggregated form and included the hourly 659 

electricity consumption of 1157 households located around the world, the dataset required clustering. Secondly, 660 

this data had no other inputs associated with it, due to privacy considerations. Finally, as this dataset was received 661 

from actual measurement units that were installed in the households there are additional errors and uncertainties 662 

affiliated with the data, such as instrument failures.  663 

In order to perform the data clustering, the K-Spectral Centroid analysis was performed, which is a data clustering 664 

technique that categorises time series data according to their shape [152]. As this is a partitioning data technique 665 

the number of clusters needed to be set prior to excuting the algorithm. In this study,  the number of clusters for 666 

which this algorithm was run are 𝐾 = {2,3,4,5,6,7,8,10}. Beyond 10 clusters the households were thought to be 667 

poorly split as there were only 610 households to be divided and some of the clusters were comprised of very few 668 

households. 669 
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In Table 15 the numbers of houses that correspond to each cluster for each value of K are given. It can be seen 670 

that overall for all cases, each cluster has a sufficient amount of information. In Figures 10.a-c, the division of 671 

the data can be observed for different numbers of clusters for k=2,3,5. Over the various clusters, for all cases, 672 

there is at least one of the patterns that has a distinctly different behaviour compared to the rest, as it seems to be 673 

shifted by 6 months. These patterns that seem to have a six-month lag correspond to households in the southern 674 

hemisphere since during the warmer months of the southern hemisphere, the northern hemisphere experiences 675 

colder temperatures and vice versa. This observation stands due to the positive correlation between the electricity 676 

consumption and the temperature. 677 

Table 15. Number of households that correspond to each cluster, for each simulation 678 

Total number of 

clusters 
2 3 4 5 6 7 8 10 

cluster 1 220 166 240 164 225 164 124 95 

cluster 2 390 407 144 125 105 97 76 46 

cluster 3  37 192 120 60 51 36 96 

cluster 4   34 167 104 111 57 31 

cluster 5    34 84 94 88 90 

cluster 6     32 66 116 58 

cluster 7      27 81 90 

cluster 8       32 48 

cluster 9        26 

cluster 10        30 

Total: 610 610 610 610 610 610 610 610 

 679 

 680 
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 681 

Figure 10. Data Clustering of electricity demand data for the total of (a) two (b) three, and (c) five clusters. 682 

The number of clusters that was selected was five which is graphically represented in Figure 10.c. The reasoning 683 

behind this decision is: 684 

• The wind and solar data that correspond to a specific location in the UK and therefore the selected 685 

electricity demand pattern should at least correspond to the northern hemisphere 686 

• The majority of households in the dataset are located in the northern hemisphere  687 

As can be observed from Figure 10.c there are two distinct patterns that correspond to the northern hemisphere; 688 

Pattern 1 and Pattern 2. Finally, Pattern 1 was chosen because a larger number of households were within that 689 

specific cluster and also its pattern seems to be closer to what is expected from a household. Pattern 2 maintains 690 

large values throughout the winter there are some instances were little variation is observed, whereas Pattern 1 691 

seems to have a daily pattern in conjunction with a seasonal variation.  692 

3.3.1.2. Data Autocorrelations 693 

For electricity demand prediction although no other data was associated with it, for the predictive analytics two 694 

inputs were included, specifically the hourly and seasonal variables. By introducing these variables, it was hoped 695 

that the training of the models would be facilitated. This statement has proven to stand, as from Table 16 it can 696 
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be observed that the maximum cross-correlations of each of the inputs can be considered to be significant, 697 

especially for the hourly variable. 698 

Table 16. Maximum absolute cross-correlations for input data used for electricity demand prediction 699 

Input Maximum absolute correlation 

Hourly variable 0.622855 

Seasonal variable 0.29743 

Similar to the case of solar power, the autocorrelation of demand shows both a yearly and daily repetition and the 700 

values do not decrease as steeply as for the case of wind power (Figure 11.a). The dependence of the demand on 701 

the time of the day and year is represented in the cross-correlation graphs depicted in Figure 11.a-c. A noteworthy 702 

characteristic of all the graphs in this section is that they are not entirely symmetrical as opposed to the wind and 703 

solar data. This is due to the fact that this dataset is a result of actual measurements and therefore has the 704 

stochasticity associated with them.  705 

 706 

Figure 11. Cross-correlations for input data applied for the solar power prediction 707 

3.3.2. Forecasting electricity demand with Artificial Neural Networks 708 

As mentioned earlier, the demand data had no inputs associated with it, but during the pre-processing procedure, 709 

the hourly and seasonal variables were introduced to the electricity demand dataset with an aim to facilitate each 710 

of the predictive analytics methods in identifying the temporal dependence of the data. Before continuing with the 711 

identification of the optimal parameters of the NARX network it was deemed necessary to examine whether these 712 
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exogenous inputs would improve the network’s performance resulting in a NARX (nonlinear autoregressive 713 

method with exogenous inputs) architecture, or whether it would be preferred to only use the past values of the 714 

electricity demand as an input (NAR, nonlinear autoregressive method). The results of this analysis are depicted 715 

in Figure 12.a where it can be clearly seen that the temporal variables drastically improve the performance of the 716 

neural network especially for low feedback delays. For this reason, the NARX architecture was selected and a 717 

sensitivity analysis of the input and feedback delays as well as the number of neurons in the hidden layer was 718 

conducted. The results are depicted in Figure 12.a-c for each parameter, respectively. The performance of the 719 

neural network constantly improved until a certain point, as the number of input and feedback delays increased. 720 

The optimal values were identified 22 and 24 for the former and latter respectively. However, the number of 721 

neurons in the hidden layer did not seem to affect the performance of the network, and therefore the respective 722 

value was maintained at 12.  723 

 724 

Figure 12. The sensitivity analysis and performance of ANN for electricity demand prediction 725 
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From the three predictive analytics methods used in this research, neural networks were the only ones that 726 

managed to achieve an overall good response for forecasting electricity demand which is depicted in Figure 12.d. 727 

The performance of the neural networks for each time horizon respectively is enlisted in Table 17. As expected 728 

the accuracy of the model drops as the time horizon of the prediction increases. The forecasting error of the ANN 729 

model for predicting the electricity demand is reported in the fourth column of Table 9. 730 

Table 17. MSE values for various time horizons regarding solar power prediction with neural networks 731 

Time horizon Mean Square Error 

model 0.00079575 

1-step 0.00084579 

2-step 0.000931306 

3-step 0.001427005 

4-step 0.001738486 

5-step 0.00186682 

6-step 0.001882147 

 732 

3.3.3. Support Vector Regression 733 

Following the same approach as for the previous cases, the MATLAB toolbox of SVR was employed to study the 734 

response of the model for each of the three kernels, namely the linear, polynomial and the RBF. Similarly, it was 735 

found that the RBF kernel outperformed both others, and it was this kernel that was used therefore for the NARX 736 

LS-SVR.  The testing performance of all the models computed are given in Table 18 and are graphically 737 

represented in Figure 13.a.  738 

The way with which the error increases for the case of electricity demand is remarkably different from the case 739 

of solar and wind prediction, since it does not seem to increase as steeply when the time horizon rises. This can 740 

be explained with Figure 13.b where it can be observed that overall the SVR failed to be trained successfully. 741 

Even though the right part of the response of Figure 13.a-b show promising results for a part of the data, at some 742 

point the model decays to a value. This signifies that perhaps the training data may not have been sufficient to 743 

make the model sensitive to the seasonal variations, or that after the data clustering the dataset should have been 744 

cleaned and any potential outliers ought to have been smoothed out. Nonetheless, it should be mentioned that the 745 

good response shown for parts of the forecasts displays the potential of SVRs to be used for this particular 746 

application.  747 
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Table 18. MSE values for various time horizons regarding electricity demand prediction with SVR 748 

Time horizon Mean Square Error (Testing) 

Model (ε-SVR) 0.0037 

1-step (NARX LS-SVR) 0.000677 

2-step (NARX LS-SVR) 0.000931 

3-step (NARX LS-SVR) 0.0012 

4-step (NARX LS-SVR) 0.0014 

5-step (NARX LS-SVR) 0.0017 

 749 

 750 

Figure 13.  The sensitivity analysis and performance of SVR for solar power prediction 751 

 752 

3.3.4. Gaussian Regression Process (GPR) 753 

The Gaussian Regression Process, similar to SVR, was found also not to be able to capture the underlying patterns 754 

of the dataset of electricity demand. In Table 19, the performances retrieved from trying the various available 755 

kernels from the respective MATLAB toolbox can be seen. The training performances of all kernels other than 756 

the squared exponential and the ARD squared exponential were particularly high. The kernel that was selected 757 

was the squared exponential and the response of the model for the whole testing dataset is displayed in Figure 758 

14.a where it can be observed the model for a large part of the dataset does not follow the target series. In Figure 759 

1E-4

1E-3

1E-2

1E-1

model 1-step 2-step 3-step 4-step 5-step

M
ea

n
 S

q
u

ar
ed

 E
rr

o
r 

(M
S

E
)

Time Horizon of prediction (hr)

NARX LS-SVR

ε-SVR

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

15000 15100 15200 15300

N
o

rm
al

is
ed

 c
lu

st
er

ed
 e

le
ct

ri
ci

ty
 d

em
an

d

Number of hours

Target Series 1 step ahead 2 steps ahead

3 steps ahead 4 steps ahead 5 steps ahead

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

14000 16000 18000 20000 22000

N
o

rm
al

is
ed

 c
lu

st
er

ed
 e

le
ct

ri
ci

ty
 d

em
an

d

Number of hours

Target Series 1 step ahead

2 steps ahead 3 steps ahead

(a) Predictability for various time horizon using 

SVR for electricity demand prediction

(b) Time series response of SVR for electricity demand for 

various horizons, magnified for observation purposes

(c) Time series response of SVR for electricity 

demand for various horizons



38 | P a g e  

 

14.b, an area in which a good fitting was achieved is depicted and as for the method SVR, it is noted that this 760 

method has the potential of reaching a good accuracy.  761 

Table 19. Sensitivity analysis for appropriate kernel function selection for electricity demand prediction 762 

Kernel function  Training Performance Testing Performance 

Squared exponential 0.0106 0.0106 

Matern 32 1.0302 0.0105 

Matern 52 1.0301 0.0105 

ARD Squared Exponential  0.0106 0.0106 

ARD Matern 32 1.0298 0.0104 

ARD Matern 52 1.0299 0.0105 

 763 

 764 
Figure 14. (a) Time series response of GPR for electricity demand prediction (present time), (b) Time series response of 765 

GPR for electricity demand prediction (present time) magnified for observation purposes  766 
 767 

3.4. Comparison of the prediction methods for wind and solar power as well as demand 768 

In this section, all methods and types of predictions will be compared, with a view to summarise all the results 769 

presented above and to acquire an insight on the gains and limitations of each method tested. The comparison will 770 

be conducted on two levels. Firstly, the most suitable method will be identified for each type of prediction, and 771 

secondly the datasets will be compared for each machine-learning technique. Figures 15a-c depict the comparison 772 

of the models by graphing the mean square error of each model with the time horizon for which it was simulated 773 

while Figures 15e-f illustrate how each method has performed with regard to each dataset. The following points 774 

can be concluded: 775 

• NARX LS-SVR outperforms NARX NN when the time horizon of the prediction is one, for all types of 776 

predictions. 777 

• NARX NNs are found to be more robust for the case of wind power and solar power predictions as their 778 

decrease in accuracy is smaller than NARX LS-SVR. The opposite is observed for electricity demand. 779 
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• ε-SVR and GPR have similar errors for the cases of wind and solar power prediction. This signifies that if a 780 

NARX GPR is implemented it is possible to gain satisfactory results. 781 

• The poor performance of the GPR as well as of the ε-SVR (for wind and solar power) is attributed to the fact 782 

that these models are not autoregressive, and utilise the target series only for supervised training and not as 783 

an input. 784 

• When looking at the electricity demand data, as time horizons of the predictions increase, the accuracy of 785 

the models does not drop as in the respective cases of wind and solar power prediction. This denotes that the 786 

initial error of the model is significant and the new error introduced by the predicting for longer periods of 787 

time, contributes only slightly to the overall error. 788 

• Figures 15d-e are similar which means that the wind and solar dataset behave in a similar manner with 789 

regard to the various predictive models. 790 
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 791 

Figure 15. Comparison of the prediction methods for wind and solar power as well as demand 792 

 793 

The best performing method built in this research was the NARX LS-SVR for one-hour ahead solar power 794 

prediction and the worst performing method was the GPR model for the case of demand. Even though the SVR 795 

and GPR models did not provide satisfactory results for the electricity demand prediction, it was shown that during 796 

some periods, the models managed to capture the underlying patterns of the data. This demonstrates that these 797 

particular methods are capable of potentially performing these predictions, however, certain measures must be 798 

taken in order to accomplish the desired outcome:  799 
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• More training data should be used with a view to provide the model more chances to understand the seasonal 800 

variation of demand. 801 

• The initial dataset of the 1157 households needs to be cleaned more thoroughly and include a step were the 802 

outliers of the dataset are smoothed out. It is suggested the data is clustered and the resulting centroids should 803 

be checked for outliers, and return to the initial data to perform smoothing with a view to cluster it again in 804 

order to ensure that the outliers did not affect the classification of the data. 805 

• The clustering of the data should be evaluated with further criteria other than the Silhouette coefficient 806 

• Additional exogenous inputs should be introduced wherever possible. An example would be to include a 807 

variable that denotes weekdays and weekends. 808 

• If the steps above do not provide any significant improvements, a modelling tool could be used to extract 809 

data with a view to establish whether the uncertainty and noise carried in the electricity demand dataset is 810 

related to the failure of the prediction models. 811 

• Finally, in Table 20 and Table 21 the mean square error of all the models is given. The green highlighting 812 

denotes the method which has the best accuracy for each time horizon. 813 

Table 20. Performance of all dynamic models 814 

Time Wind Power Solar Power Electricity Demand 

Horizon NN SVR NN SVR NN SVR 

1 hour 1.46E-04 5.03E-05 3.26E-04 2.03E-06 8.46E-04 6.7E-04 

2 hours 9.91E-04 2.4E-03 2.8E-03 4.9E-03 9.31E-04 9.31E-04 

3 hours 2.7E-03 6.2E-03 3.7E-03 1.82E-02 1.43E-03 1.2E-03 

4 hours 5.1E-03 9.3E-03 4.7E-03 3.56E-02 1.74E-03 1.4E-03 

5 hours 8.1E-03  6.1E-03 5.51E-02 1.87E-03 1.7E-03 

6 hours 1.13E-02  6.5E-03  1.88E-03  

 815 

Table 21. Performance of all non-dynamic models 816 

Method Wind Power Solar Power Electricity Demand 

NN 1.45E-04 3.15E-04 7.97E-04 

ε-SVR 7.97E-04 1.50E-03  

GPR 7.82E-04 1.90E-03 1.04E-02 

 817 

  818 
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3.5. Error Analysis and denormalization  819 

With an aim to quantify the efficacy of the forecasting methods and the results of the predictive analysis, we 820 

selected the best performing method for each of the time horizons and compared the error distributions with those 821 

of a naive model, for wind power, solar power as well as electricity demand. Moreover, with a view to assessing 822 

the impact of the mean errors to the forecasted values in a real-world application, the ranges of uncertainty have 823 

been extrapolated to dimensional units. For the error analysis and specifically for the extrapolation of the error, 824 

the following assumptions were made:  825 

• Any fatigue factors or correlations to the age of the solar panels/ wind turbines is ignored. 826 

• It is assumed that the predictive models are not influenced by the wind turbine model or the photovoltaic 827 

types, respectively. 828 

• Effects with regards to the interactions between the wind turbines are ignored. 829 

• In the calculation of the mean capacity factor, no corrections were made to consider the periods in which the 830 

wind turbines or solar photovoltaics are non-operational due to maintenance or other reasons. 831 

• When extrapolating to calculate the expected generated energy along with the threshold of uncertainty, any 832 

smoothing effects that may happen due to aggregation is ignored. 833 

• The geographical variations in wind and solar availability, as well as electrcity demand was formulated 834 

according to a recent publications [173]. In that contribution, the availability of wind and solar energy was 835 

clustered according into various geographical zones, and demand was considered according to its 836 

demographical distribution.  837 

The results of error percentage are shown in Figure 16(a-c) respectively, and denormalized in the following 838 

sections. A comparison is also made with a naive model, for the sake illustration and clarification. The box plots 839 

(also known as box and whisker diagram) in Figure 16, show six elements of the error distribution namely, the 840 

minimum and maximum error, the first quartile, median, and third quartile, as well as the mean percentage errors 841 

for each stochastic variable.  842 
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 843 
 844 

Figure 16. Box plot of percentage error distributions of (a) the wind power forecasting, (b) the solar power forecasting, (c) 845 
the electricity demand forecasting. 846 

3.5.1. Error calculation of predictive models 847 

The metric used for the error distribution analysis is the normalised root squared which is calculated as follows: 848 

𝑛𝑟𝑠𝑒 =
√(𝑦𝑎𝑐𝑡 − 𝑦𝑝𝑟)

2

𝑦𝑎𝑐𝑡
                                                                                                                                          (4) 849 

where 𝑛𝑟𝑠𝑒 stands for normalised root square error. 𝑦𝑎𝑐𝑡  and 𝑦𝑝𝑟 are the values of the actual and predicted 850 

performance respectively.  851 

3.5.2. Naive Models 852 

Naive models are used as a benchmark for comparison with the predictive models. Typically, it is expected that 853 

the predictive models outperform the naive models. For this work, two naive approaches were taken. For wind 854 

power which as prementioned (Table 7) has a low correlation with the time of day, for the naive approach, it is 855 

assumed that the energy produced at a given time horizon will be the same as the one at a given time earlier. More 856 

specifically: 857 

𝑦𝑝𝑟 = 𝑦𝑡−𝑖                                                                                                                                                                  (5) 858 

where 𝑦𝑝𝑟 is the resulting value of the naive model and 𝑦𝑡−𝑖  is the actual energy value at i hours before t.  859 

On the other hand, solar power and electricity demand have a strong correlation to the time of day. Therefore, for 860 

the naive model, it is more appropriate to assume that the value at a given time horizon is the same as that of the 861 

respective time of the previous day. 862 

𝑦𝑝𝑟 = 𝑦𝑡−24                                                                                                                                                                 (6) 863 

It is noted that whereas for wind power there are 6 naive models, for solar power and electricity demand only a 864 

single naive model is required. 865 
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3.5.3. Wind Power 866 

3.5.3.1. Error denormalization and distribution analysis 867 

In order to calculate the error of the wind prediction models in dimensional units, the output of the models is 868 

denormalised. The output of the wind forecasting models is the dimensionless power of a wind turbine. The data 869 

used for this research - as described in Section 2.1, Table 4 - involved a particular model of a wind turbine at a 870 

hypothetical 1kW capacity. By denormalising the predictors’ output and by looking at the error distributions of 871 

each of the predicted time horizons, Figure 16(a) shows the percentage error of the expected wind power of a 872 

wind turbine for a given time horizon. It should be noted that for the extraction of these, graphs outliers have been 873 

removed (errors that are greater or less that 3 standard deviations). The number of data points that were omitted 874 

for each case was at most 1.8%. In addition, the error distributions were calculated for the best performing model 875 

in each time horizon (see Table 20). In Table 22 the respective results of the naive model can be seen. It is evident 876 

that as the time horizon increases the errors of the naive approach become increasing larger than the errors of the 877 

predictive forecasting methods. This means that the predictive models developed in this work add greater value 878 

in the increasing time horizons. 879 

Table 22. The mean percentage error of naive and predictive model for wind power 880 

Time horizon (hr) 1 step 2 step 3 step 4 step 5 step 6 step 

Naive Model 1.76% 3.38% 4.82% 6.12% 7.27% 8.31% 

Predictive model 1.88% 2.05% 2.04% 2.61% 3.17% 3.73% 

 881 

3.5.3.2. Quantification of errors in dimensional units. 882 

In this section, the uncertainty of the wind power predictions will be quantified for a Vestas V80 2000 wind 883 

turbine and will be extrapolated at a national level (UK). The range of uncertainty will be given for the generated 884 

energy that corresponds to the mean capacity factor of a wind turbine in the UK. The mean capacity factor of 885 

onshore wind farms can be estimated with the following calculation: 886 

𝑐𝑓𝑤𝑖𝑛𝑑 =
 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 𝐸𝑛𝑒𝑟𝑔𝑦2017
𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦2017 ∗ 24 ∗ 365

                                                                                                                               (7) 887 

where 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 𝐸𝑛𝑒𝑟𝑔𝑦2017 refers to the total power generated from onshore wind farms in 2017 and  888 

𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦2017 is the total capacity of onshore wind farms in 2017.  Since the capacity of wind power is ever 889 

increasing and therefore not a constant value throughout the year, we assume that the new onshore wind farms in 890 

2017 where introduced to the grid evenly across the year.  891 

𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦2017 = 𝑇𝑜𝑡𝑎𝑙𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦2017 − (
𝑇𝑜𝑡𝑎𝑙𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦2017 − 𝑇𝑜𝑡𝑎𝑙𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦2016

2
) = 30.52%               (8) 892 
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Table 23. The capacity of and electricity generated from onshore wind farms in the UK [174] 893 

Total generated energy from onshore wind farms in the UK for 2017 29088 GWh 

Total onshore wind farm capacity at the end of 2017  12847 MW 

Total onshore wind farm capacity at the end of 2016 10880 MW 

 894 

Using the values in Table 23 [174] the mean capacity factor is estimated to be 30.52%. In Table 24, the estimated 895 

generated energy for a given hour of a Vestas V80 2000 wind turbine, and of the entire UK onshore wind farm 896 

fleet have been calculated.  897 

Table 24. The mean percentage error of naive and predictive model for wind power generation for an hour 898 

 Model Type 1 step 2 step 3 step 4 step 5 step 6 step 

Wind Turbine [KWh] Naive Model 610.4 ±10.7  610.4 ±20.6 610.4 ±29.4 610.4 ±37.3 610.4 ±44.3 610.4 ±50.7 

Wind Turbine [KWh] Predictive model 610.4 ±11.5 610.4 ±12.5 610.4 ±12.4 610.4 ±15.9 610.4 ±19.3 610.4 ±22.8 

UK (2017) [MWh] Naive Model 3921±69.0 3921±132.5 3921±189.0 3921±240.0 3921±285.1 3921±325.8 

UK (2017) [MWh] Predictive model 3921±73.7 3921±80.4 3921±80.0 3921±102.3 3921±124.3 3921±146.3 

 899 

3.5.4. Solar Power 900 

3.5.4.1. Error denormalization and distribution analysis 901 

In a similar manner to wind power, the outputs of the solar prediction models are denormalised and the percentage 902 

root squared error distribution is calculated (Table 25 and Figure 16(b)). It should be noted that for the error 903 

distribution analysis, only values during daylight were considered. It can be seen that the naive approach 904 

outperforms the predictive models for time horizons greater than 4 hours. This indicates that better forecasting 905 

performances may have been achieved if the energy produced on the previous day at the same time was used as 906 

an input. 907 

Table 25. Mean percentage error of naive and predictive model for solar power 908 

Model Type Mean percentage error 

1 step 7.86% 

2 step 9.66% 

3 step 6.10% 

4 step 10.17% 

5 step 16.48% 

6 step 21.41% 

Naive 10.38% 

 909 

3.5.4.2. Quantification of errors in dimensional units. 910 

In this section, the uncertainty of the solar power predictions will be quantified for a solar power farm of 200 MW, 911 

and will be extrapolated at a national level (UK). Similar to the section above, the mean capacity factor is estimated 912 

to be 10.66%, given the values of Table 26. The mean percentage error of naive and predictive model are reported 913 

in Table 27. 914 
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Table 26. The capacity of and electricity generated from solar photovoltaic farms in the UK [174]  915 

Total generated energy from onshore wind farms in the UK for 2017 11525 GWh 

Total onshore wind farm capacity at the end of 2017  12776 MW 

Total onshore wind farm capacity at the end of 2016 11912 MW 

 916 

 917 

Table 27. Mean percentage error of naive and predictive model for solar power for an hour 918 

 1 step 2 step 3 step 4 step 5 step 6 step Naive 

Solar Farm [MWh] 21.3 ±1.68  21.3 ±2.06 21.3 ±1.3 21.3 ±2.17 21.3 ±3.51 21.3 ±4.56 21.3 ±2.21 

UK (2017) [MWh] 1362±107 1362±132 1362±83 1362±139 1362±225 1362±292 1362±141 

 919 

  920 
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3.5.5. Electricity Demand 921 

3.5.5.1. Error denormalization and distribution analysis 922 

The output of the electricity demand models is the normalised energy spent in a household for a given hour. The 923 

distribution of the percentage error is presented in Figure 16(c), and the mean values of the error are given in 924 

Table 28.  As in the case of solar power generation, it can be observed that the performance of the naive model is 925 

relatively good. This indicates that for the 6 hours ahead prediction, better forecasting performances could be 926 

achieved if the energy produced on the previous day at the same time was used as an input.  927 

Table 28. Mean percentage error of naive and predictive model for electricity demand 928 

Model Type Mean percentage error 

1 step 2.10% 

2 step 3.13% 

3 step 3.00% 

4 step 3.31% 

5 step 3.40% 

6 step 5.20% 

Naive 3.67% 

 929 

3.5.5.2. Quantification of errors in dimensional units 930 

With a view to quantifying the errors in dimensional units for domestic electricity demand, the energy usage will 931 

be extrapolated to that of an average household in the UK. According to [175] looking at the average hourly load 932 

curves of households without electricity heating the peak load typically reaches 600W (Table 29).  933 

Table 29. Mean percentage error of the naive and predictive models for the electricity consumption of an 934 

average household without electricity heating. 935 

 1 step 2 step 3 step 4 step 5 step 6 step Naive 

Household consumption 

during peak time for 1hr 

[Wh] 

600 ±12.59  600 ±18.79 600 ±18 600 ±19.84 600 ±20.41 600 ±31.21 600 ±22.01 

 936 

4. Conclusions 937 

This research has successfully implemented predictive analytics methods that forecast the wind power, the solar 938 

power and the electricity demand of households. Moreover, the uncertainty of these predictions is quantified by 939 

the mean square error for the case of neural networks and support vector regression, as well as confidence intervals 940 

for the Gaussian process regression method. It is believed that from the knowledge acquired by these data-driven 941 

models an optimal investment and usage of energy storage units could be achieved, which would result in 942 

achieving an economically feasible solution that allows an even higher level of penetration of renewable energy 943 

sources within an electricity grid. 944 
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Finally, it should be mentioned that there are many additional opportunities and issues that need to be addressed, 945 

when looking at the future of the energy sector. For example, demand-side response, where incentives are given 946 

to customers to use electricity at off-peak hours has shown to have a very beneficial effect in managing and 947 

controlling the load of the electricity grid. With the increase of electric vehicles, demand-side response can gain 948 

an even greater role in the electricity distribution system. The batteries of the cars that are interconnected to the 949 

grid in an event of a frequency drop can provide electricity to the grid instead of charging, thus avoiding the 950 

immediate conventional plant response [176]. All these opportunities should be integrated within a predictive 951 

control system for a smart grid and it is evident that the results of such research can be immediately applicable 952 

and can facilitate and contribute to the transition of the energy sector to modern and sustainable technologies. 953 
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Abbreviations  959 

ANFIS Adaptive Neuro Fuzzy Inference System 

ANN Artificial Neural Networks 

AR AutoRegressive 

ARCH AutoRegressive Conditional Heteroskedasticity model 

ARIMA AutoRegressive Integrated Moving Average 

ARMA AutoRegressive Moving Average 

BIC Bayesian Information Critetion 

BP Back Propagation Neural Network 

BR Bayesian Regularisation 

ELM Elman Recurrent Neural Network 

EXS Exponential Smoothing 

FIR Finite Impulse Response Neural Network 

FLS Fuzzy Logic Systems 

FNN Fuzzy Neural Network 

GA Genetic Algorithm 

GHGs Greenhouse gases 

GPR Gaussian Regression Process 

ICA Imperialist Component Algorithm 

IEA International Energy Agency 

I-O Input-Output model 

kNN k-Nearest Neighbour 

LM Levenberg-Marquart 
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LS-

SVR 
Least Squared Support Vector Regression 

MA Moving Average 

ME Mixture of Experts 

MLP Multilayer Perceptron Neural Network 

MPC Model Predictive Control 

NAR Nonlinear AutoRegressive model 

NARX Nonlinear AutoRegressive model with eXogenous inputs 

NLN Neural Logic Network 

NNS Nearest Neighbour Search 

NWP Numerical Weather Prediction 

PCA Principal Component Analysis 

PV PhotoVoltaic 

SCADA Supervisory Control and Data Acquisition 

QR Quantile Regression 

QRF Quantile Random Forest  

RBF Radial Base Function Neural Network 

RES renewable energy resources  

RF Random Forest  

SRN Simultaneous Recurrent Neural Network 

SVM Support Vector Machines 

SVR Support Vector Regression 
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