8,009 research outputs found

    Orbital stability: analysis meets geometry

    Get PDF
    We present an introduction to the orbital stability of relative equilibria of Hamiltonian dynamical systems on (finite and infinite dimensional) Banach spaces. A convenient formulation of the theory of Hamiltonian dynamics with symmetry and the corresponding momentum maps is proposed that allows us to highlight the interplay between (symplectic) geometry and (functional) analysis in the proofs of orbital stability of relative equilibria via the so-called energy-momentum method. The theory is illustrated with examples from finite dimensional systems, as well as from Hamiltonian PDE's, such as solitons, standing and plane waves for the nonlinear Schr{\"o}dinger equation, for the wave equation, and for the Manakov system

    Orbital stability via the energy-momentum method: the case of higher dimensional symmetry groups

    Get PDF
    We consider the orbital stability of relative equilibria of Hamiltonian dynamical systems on Banach spaces, in the presence of a multi-dimensional invariance group for the dynamics. We prove a persistence result for such relative equilibria, present a generalization of the Vakhitov-Kolokolov slope condition to this higher dimensional setting, and show how it allows to prove the local coercivity of the Lyapunov function, which in turn implies orbital stability. The method is applied to study the orbital stability of relative equilibria of nonlinear Schr{\"o}dinger and Manakov equations. We provide a comparison of our approach to the one by Grillakis-Shatah-Strauss

    Invited review: KPZ. Recent developments via a variational formulation

    Get PDF
    Recently, a variational approach has been introduced for the paradigmatic Kardar--Parisi--Zhang (KPZ) equation. Here we review that approach, together with the functional Taylor expansion that the KPZ nonequilibrium potential (NEP) admits. Such expansion becomes naturally truncated at third order, giving rise to a nonlinear stochastic partial differential equation to be regarded as a gradient-flow counterpart to the KPZ equation. A dynamic renormalization group analysis at one-loop order of this new mesoscopic model yields the KPZ scaling relation alpha+z=2, as a consequence of the exact cancelation of the different contributions to vertex renormalization. This result is quite remarkable, considering the lower degree of symmetry of this equation, which is in particular not Galilean invariant. In addition, this scheme is exploited to inquire about the dynamical behavior of the KPZ equation through a path-integral approach. Each of these aspects offers novel points of view and sheds light on particular aspects of the dynamics of the KPZ equation.Comment: 16 pages, 2 figure

    Symmetries and Fixed Point Stability of Stochastic Differential Equations Modeling Self-Organized Criticality

    Get PDF
    A stochastic nonlinear partial differential equation is built for two different models exhibiting self-organized criticality, the Bak, Tang, and Wiesenfeld (BTW) sandpile model and the Zhang's model. The dynamic renormalization group (DRG) enables to compute the critical exponents. However, the nontrivial stable fixed point of the DRG transformation is unreachable for the original parameters of the models. We introduce an alternative regularization of the step function involved in the threshold condition, which breaks the symmetry of the BTW model. Although the symmetry properties of the two models are different, it is shown that they both belong to the same universality class. In this case the DRG procedure leads to a symmetric behavior for both models, restoring the broken symmetry, and makes accessible the nontrivial fixed point. This technique could also be applied to other problems with threshold dynamics.Comment: 19 pages, RevTex, includes 6 PostScript figures, Phys. Rev. E (March 97?

    Dirichlet sigma models and mean curvature flow

    Full text link
    The mean curvature flow describes the parabolic deformation of embedded branes in Riemannian geometry driven by their extrinsic mean curvature vector, which is typically associated to surface tension forces. It is the gradient flow of the area functional, and, as such, it is naturally identified with the boundary renormalization group equation of Dirichlet sigma models away from conformality, to lowest order in perturbation theory. D-branes appear as fixed points of this flow having conformally invariant boundary conditions. Simple running solutions include the paper-clip and the hair-pin (or grim-reaper) models on the plane, as well as scaling solutions associated to rational (p, q) closed curves and the decay of two intersecting lines. Stability analysis is performed in several cases while searching for transitions among different brane configurations. The combination of Ricci with the mean curvature flow is examined in detail together with several explicit examples of deforming curves on curved backgrounds. Some general aspects of the mean curvature flow in higher dimensional ambient spaces are also discussed and obtain consistent truncations to lower dimensional systems. Selected physical applications are mentioned in the text, including tachyon condensation in open string theory and the resistive diffusion of force-free fields in magneto-hydrodynamics.Comment: 77 pages, 21 figure

    Self-Similar Dynamics of a Relativistically Hot Gas

    Full text link
    In the presence of self-gravity, we investigate the self-similar dynamics of a relativistically hot gas with or without shocks in astrophysical processes of stellar core collapse, formation of compact objects, and supernova remnants with central voids. The model system is taken to be spherically symmetric and the conservation of specific entropy along streamlines is adopted for a relativistic hot gas. In terms of equation of state, this leads to a polytropic index γ=4/3\gamma=4/3. The conventional polytropic gas of P=κργP=\kappa\rho^\gamma, where PP is the thermal pressure, ρ\rho is the mass density, γ\gamma is the polytropic index, and κ\kappa is a global constant, is included in our theoretical model framework. Two qualitatively different solution classes arise according to the values of a simple power-law scaling index aa, each of which is analyzed separately and systematically. We obtain new asymptotic solutions that exist only for γ=4/3\gamma=4/3. Global and asymptotic solutions in various limits as well as eigensolutions across sonic critical lines are derived analytically and numerically with or without shocks. By specific entropy conservation along streamlines, we extend the analysis of Goldreich & Weber for a distribution of variable specific entropy with time tt and radius rr and discuss consequences in the context of a homologous core collapse prior to supernovae. As an alternative rebound shock model, we construct an Einstein-de Sitter explosion with shock connections with various outer flows including a static outer part of a singular polytropic sphere (SPS). Under the joint action of thermal pressure and self-gravity, we can also construct self-similar solutions with central spherical voids with sharp density variations along their edges.Comment: 21 pages, 15 figures, accepted for publication in MNRA

    High-speed shear driven dynamos. Part 2. Numerical analysis

    Full text link
    This paper aims to numerically verify the large Reynolds number asymptotic theory of magneto-hydrodynamic (MHD) flows proposed in the companion paper Deguchi (2019). To avoid any complexity associated with the chaotic nature of turbulence and flow geometry, nonlinear steady solutions of the viscous-resistive magneto-hydrodynamic equations in plane Couette flow have been utilised. Two classes of nonlinear MHD states, which convert kinematic energy to magnetic energy effectively, have been determined. The first class of nonlinear states can be obtained when a small spanwise uniform magnetic field is applied to the known hydrodynamic solution branch of the plane Couette flow. The nonlinear states are characterised by the hydrodynamic/magnetic roll-streak and the resonant layer at which strong vorticity and current sheets are observed. These flow features, and the induced strong streamwise magnetic field, are fully consistent with the vortex/Alfv\'en wave interaction theory proposed in Deguchi (2019). When the spanwise uniform magnetic field is switched off, the solutions become purely hydrodynamic. However, the second class of `self-sustained shear driven dynamos' at the zero-external magnetic field limit can be found by homotopy via the forced states subject to a spanwise uniform current field. The discovery of the dynamo states has motivated the corresponding large Reynolds number matched asymptotic analysis in Deguchi (2019). Here, the reduced equations derived by the asymptotic theory have been solved numerically. The asymptotic solution provides remarkably good predictions for the finite Reynolds number dynamo solutions
    corecore