7,154 research outputs found

    Decomposing the queue length distribution of processor-sharing models into queue lengths of permanent customer queues

    Get PDF
    We obtain a decomposition result for the steady state queue length distribution in egalitarian processor-sharing (PS) models. In particular, for an egalitarian PS queue with KK customer classes, we show that the marginal queue length distribution for class kk factorizes over the number of other customer types. The factorizing coefficients equal the queue length probabilities of a PS queue for type kk in isolation, in which the customers of the other types reside \textit{ permanently} in the system. Similarly, the (conditional) mean sojourn time for class kk can be obtained by conditioning on the number of permanent customers of the other types. The decomposition result implies linear relations between the marginal queue length probabilities, which also hold for other PS models such as the egalitarian processor-sharing models with state-dependent system capacity that only depends on the total number of customers in the system. Based on the exact decomposition result for egalitarian PS queues, we propose a similar decomposition for discriminatory processor-sharing (DPS) models, and numerically show that the approximation is accurate for moderate differences in service weights. \u

    Human activity modeling and Barabasi's queueing systems

    Get PDF
    It has been shown by A.-L. Barabasi that the priority based scheduling rules in single stage queuing systems (QS) generates fat tail behavior for the tasks waiting time distributions (WTD). Such fat tails are due to the waiting times of very low priority tasks which stay unserved almost forever as the task priority indices (PI) are "frozen in time" (i.e. a task priority is assigned once for all to each incoming task). Relaxing the "frozen in time" assumption, this paper studies the new dynamic behavior expected when the priority of each incoming tasks is time-dependent (i.e. "aging mechanisms" are allowed). For two class of models, namely 1) a population type model with an age structure and 2) a QS with deadlines assigned to the incoming tasks which is operated under the "earliest-deadline-first" policy, we are able to analytically extract some relevant characteristics of the the tasks waiting time distribution. As the aging mechanism ultimately assign high priority to any long waiting tasks, fat tails in the WTD cannot find their origin in the scheduling rule alone thus showing a fundamental difference between the present and the A.-L. Barabasi's class of models.Comment: 16 pages, 2 figure

    Product-form solutions for integrated services packet networks and cloud computing systems

    Full text link
    We iteratively derive the product-form solutions of stationary distributions of priority multiclass queueing networks with multi-sever stations. The networks are Markovian with exponential interarrival and service time distributions. These solutions can be used to conduct performance analysis or as comparison criteria for approximation and simulation studies of large scale networks with multi-processor shared-memory switches and cloud computing systems with parallel-server stations. Numerical comparisons with existing Brownian approximating model are provided to indicate the effectiveness of our algorithm.Comment: 26 pages, 3 figures, short conference version is reported at MICAI 200

    Some aspects of queueing and storage processes : a thesis in partial fulfilment of the requirements for the degree of Master of Science in Statistics at Massey University

    Get PDF
    In this study the nature of systems consisting of a single queue are first considered. Attention is then drawn to an analogy between such systems and storage systems. A development of the single queue viz queues with feedback is considered after first considering feedback processes in general. The behaviour of queues, some with feedback loops, combined into networks is then considered. Finally, the application of such networks to the analysis of interconnected reservoir systems is considered and the conclusion drawn that such analytic methods complement the more recently developed mathematical programming methods by providing analytic solutions for sub systems behaviour and thus guiding the development of a system model

    Datacenter Traffic Control: Understanding Techniques and Trade-offs

    Get PDF
    Datacenters provide cost-effective and flexible access to scalable compute and storage resources necessary for today's cloud computing needs. A typical datacenter is made up of thousands of servers connected with a large network and usually managed by one operator. To provide quality access to the variety of applications and services hosted on datacenters and maximize performance, it deems necessary to use datacenter networks effectively and efficiently. Datacenter traffic is often a mix of several classes with different priorities and requirements. This includes user-generated interactive traffic, traffic with deadlines, and long-running traffic. To this end, custom transport protocols and traffic management techniques have been developed to improve datacenter network performance. In this tutorial paper, we review the general architecture of datacenter networks, various topologies proposed for them, their traffic properties, general traffic control challenges in datacenters and general traffic control objectives. The purpose of this paper is to bring out the important characteristics of traffic control in datacenters and not to survey all existing solutions (as it is virtually impossible due to massive body of existing research). We hope to provide readers with a wide range of options and factors while considering a variety of traffic control mechanisms. We discuss various characteristics of datacenter traffic control including management schemes, transmission control, traffic shaping, prioritization, load balancing, multipathing, and traffic scheduling. Next, we point to several open challenges as well as new and interesting networking paradigms. At the end of this paper, we briefly review inter-datacenter networks that connect geographically dispersed datacenters which have been receiving increasing attention recently and pose interesting and novel research problems.Comment: Accepted for Publication in IEEE Communications Surveys and Tutorial

    Buffer Sizing for 802.11 Based Networks

    Get PDF
    We consider the sizing of network buffers in 802.11 based networks. Wireless networks face a number of fundamental issues that do not arise in wired networks. We demonstrate that the use of fixed size buffers in 802.11 networks inevitably leads to either undesirable channel under-utilization or unnecessary high delays. We present two novel dynamic buffer sizing algorithms that achieve high throughput while maintaining low delay across a wide range of network conditions. Experimental measurements demonstrate the utility of the proposed algorithms in a production WLAN and a lab testbed.Comment: 14 pages, to appear on IEEE/ACM Transactions on Networkin

    Pilot interaction with automated airborne decision making systems

    Get PDF
    An investigation was made of interaction between a human pilot and automated on-board decision making systems. Research was initiated on the topic of pilot problem solving in automated and semi-automated flight management systems and attempts were made to develop a model of human decision making in a multi-task situation. A study was made of allocation of responsibility between human and computer, and discussed were various pilot performance parameters with varying degrees of automation. Optimal allocation of responsibility between human and computer was considered and some theoretical results found in the literature were presented. The pilot as a problem solver was discussed. Finally the design of displays, controls, procedures, and computer aids for problem solving tasks in automated and semi-automated systems was considered
    • 

    corecore