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ABSTRACT 

In this study the nature of systems consisting of a single queue are first considered. 

Attention is then drawn to an analogy between such systems and storage systems. 

A development of the single queue viz queues with feedback is considered after first 

considering feedback processes in general. The behaviour of queues, some with 

feedback loops, combined into networks is then considered. Finally, the application 

of such networks to the analysis of interconnected reservoir systems is considered 

and the conclusion drawn that such analytic methods complement the more recently 

developed mathematical programming methods by providing analytic solutions for 

sub systems behaviour and thus guiding the development of a system model. 
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CHAPTER 1 - QUEUEING SYSTEMS 

1.1 INTRODUCTION 

When customers arrive at a station where a particular service is offered, a queue of 

customers can form if the demand for service exceeds the ability of the server to supply 

the service immediately. A queueing system is formed when one or more such demand/ 

supply structures operate in conjunction with one another. Although queueing systems 

often appear in which people are the customers, e.g. the queue formed by people waiting for 

service from a teller in a bank, the same demand/supply structure can be recognised in 

more diverse systems. One such example is a telephone system in which the placing of a 

telephone call corresponds to the arrival of a 'customer' and the 'service' provided is the 

provision of a telephone circuit for the duration of the call. When the call is completed 

the caller vacates the system by freeing the circuit for use by other callers. If the 

latter had rung during the initial call, they would have formed a queue waiting for the 

circuit to become free, or would have balked on finding the line was 'busy'. If they 

had found the line was busy for longer than they cared to wait, they could have 

cancelled their call, thus reneging from the queue. The terms customer and server 

are thus often applied figuratively. The rapid development of telephone systems at the 

turn of the century led to a need by telephone engineers for rules for determining the 

number of connecting lines, operators, etc, in order to handle the demand adequately 

but in an economical way. Until this time, rules of thumb based on experience had 

been applied, but the increasing demand for telephone services and complexity in 

telephone systems necessitated a more systematic approach. This was initiated in 

1917 by A.K. Er Jang who used probability distributions to describe the variation in 

the number of calls arriving/unit time and the variation in the length of these calls. 

He was thus able to determine a distribution function for the number of calls 

waiting and the distribution of waiting times. The probability distributions used by 

Erlang were either negative exponential or constant. Later work extended his results 

to other distributions for which the mathematical treatment proved to be much less 

tractable. Saaty (1961) gives details of this earlier development and an extensive 

bibliography up to 1961. Kleinrock ( 1976) also covers this material as an introduction 

to more recent work on the behaviour of more elaborate queueing systems viz computer 

networks. 
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The large variety of queueing networks as well as, within each queue, the infinity 

of combinations of interarrival time distributions, service time distributions, queue disciplines 

and number of servers has led to a large queueing theory literature (see 1.6). The 

development of digital computers has enabled systems, which because of their complexity 

were difficult to treat analytically, to be studied by simulation methods. Again, 

because of the variety of models and methods to be considered, a large literature on 

computer simulation has developed to which reference will be made later. In this study 

use is made of analytic and simulation methods to investigate the behaviour of a hydro

storage system. This is modeled as a queue-network incorporating a feedback mechanism 

between separate queues. 

Although arrival and service processes in real queueing systems are generally found to 

be stochastic in nature, it is useful to consider first the limiting case in which the 

timing of future events is known. 

1.2 DETERMINISTIC QUEUEING MODELS 

Queueing models in which the interarrival times and service times are constant 

(i.e. deterministic) are useful as approximations to real queues in which, for a period 

at least, the variation in the interarrival and service times is limited. Such models, 

by being conceptually simpler than stochastic models, also enable a clearer view of the 

interaction between the arrival and service streams to be obtained. Figure 1 below 

illustrates a queueing system which is empty at time t=o and which has first-in-first-out 

(FIFO) queueing discipline. Also the arrival rate is less than the service rate (in 

order that the queue length should not keep increasing) and as each service is completed 

a new one is begun. Then clearly the number in the system n(t) = (no. of arrivals in 

(o, t]) - (no. of services completed in (o, t]) 

= [A,_t] - [µt - \] where [x] = integer part of x, x?;::,o 

If the system size is limited to k-1 say, then this equation_ is valid only until time t. where 
l 

n(t.) = k. Any customers arriving until the end of the current service will balk and the 
l 

system size will remain at k-1. At the time of the next service completion, n(t) will 

drop to k-2, unless an arrival occurs at the same instant in which case n(t) remains at 

k-1. Arrival and service completion events coincide if and only if 
1 /A is a multiple of 

1 fJJv 
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Since in the example shown on Figure 1, ?\__ = 4, jJ-- = 8 and k=5 Equation ( 1.1) shows that rn 

this case t. = 32 and so for t ~32 the system is in a steady state. 
l 

t= 
Customers 

Arriving 

Customers 

0 

I 
4 8 12 1 6 20 24 28 32 36 40 

l 
Time 

Leaving Steady State 

n(t) = 
2 2 3 4 4 L,t 4-

0 
Figure 1 

In addition to n(t), the number in the system at time t, another important measure of the 

queue performance is the waiting time experienced by customers forced to join the queue. 

W . . W (n) f h . . h b h th S(n) f h ritrng or t e time spent rn t e queue y t e n customer, or t e same 

customer'sq service time and T(n) for the time between the arrivals of the nth and (n+ I) th 

customers the following recurrence relation exists between these values: 

1./(htt) I, \., 

\IV 9, ::: O ( ~✓t(>i) -t s(h) -T(i,,) ~o l ( 1.2) 

{ 

w l:;(h) + s (h) - T(l\; ( \✓ci ('1'1) + s(r,) - -f ") 7 0 ' 

This is illustrated in Figure 2 and h;lds whether the times S(n) and T(n) are deterministic 

or stochastic: 

Customers 

Arriving 

Customers 

Leaving 

n n+1 

11/ 

Figure 2 
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In the present example for n<:8 equation ( 1.2) yields W (n) as follows: 
q 

s<n) = 8 and T(n) = 4 so that W (n+ 1) = W (n) + 4-
q q 

i.e. 6,W (n) W (n+ 1) w (n) 
= q q q 

= 4-

so w (n) 
4-n-4 = 

q 

since w (1) = 0 
q 

If n 8 each arrival (which does not balk) finds k-2 customers already m the system 

and each requiring a service time S(n) = 8 thus if k=5, 

_ {4('n.-i) tt.C::.~ 

24- r1 ?t. g 
not a multiple of 

1 ~ a diagramatic method as used in In the case m 

I / (n) 
w1, 

which l }Lis 

Figure 1 reveals that the system size undergoes a cyclic pattern of change, the length 

of the cycle being equal to the least common multiple of 
1 /p. and 

1 /A. Further 

complications can be introduced by having the system start off in a non-empty state 

or by changing the queue discipline, etc. Exact solutions are always obtainable by 

graphing however since all factors are deterministic. As the number of complications 

increases or the queues are combined into networks, graphical methods become more 

cumbersome and methods of approximation, to be considered later in connection with 

stochastic queueing models, become appropriate. 

1.3 GRAPHICAL REPRESENTATION OF CUMULATIVE FUNCTIONS 

Although the diagrams in section 1.2 clarify the relationships between individual arrival 

and service events, the nature of cumulative processes over a period of time is less 

clear. Three cumulative processes are of particular interest: 

A(t) = Cumulative quantity or number to arrive by time t, 

D(t) = Cumulative quantity or number to enter service by time t, 

* D (t) = Cumulative quantity or number to have left service by time t; 

all of these functions are monotonic non-decreasing. 

Clearly Q(t) = quantity in queue or queue length at time t 

= A(t) - D(t) 

and S(t) = quantity or number in service 

* = D( t) - D ( t) 



J:-'Al.:rt. ) 

* so that A(t)J D(t)? D (t) since Q(t)),;: o, S(t)),- o 

These relationships hold for any queue discipline or number of servers or number of 

servers and are illustrated in Figure 3 for th~ example in Section 1.2. 
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For FIFO queue discipline the horizontal distance marked w in Figure 3 represents 

A(12)-D(20) i.e. w = time spent in the queue by the 3rd customer. The height of the 

shaded rectangle is 1 unit, so that waiting time accumulated by all customers up 

to time t is equal numerically to the area between the A(t) and D(t) curves. For non 

FIFO queue disciplines or queues with more than one server, the simple interpretation 

of the length marked w in Figure 3 may not be valid and an alternative approach is 

needed. This is achieved by considering x as the independent variable and constructing 

as in Figure 4 a graph of/J.(x) where ti,(x) is the time of departure from the queue of 

x
th 

cumulative arrival, i.e. for j-/<x< j,D(x) = departure time from the queue of the 

. th . l h D- l ( ) h . f h th l . d Th J arnva w ereas x was t e time o t e x cumu at1ve eparture. us x 1s 

now the label given to the customer on arrival. 
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The shape of £.;.(x) depends on the queue discipline and if this is FIFO the graphs,A (x) and 

o- 1(x) are identical. In Figure 4 the graph of~(x) corresponds to a last-in-first-out (LIFO) 

queue discipline applied to the queue graphed in Figure 1. In this case the 2nd, 4th and 

6th customers wait in the queue forever for service, all other new arrivals arriving just 

at the instant a service is completed and so having priority to enter service. 

Thus D. (x) - A - \x) = {o ~f x f 2, 4 or 6 

oe::>lf x = 2, 4 or 6 

corresponding to the horizontal measurement w in Figure 3. 

A vertical line V drawn at t=32 in Figure 4 indicates that the cumulative total 

remaining in the queue at time t is now the sum of possibly several segments rather 

than just one (i.e. Q(t)) as in Figure 3. The same method applies to service completions 

if there is more than one server. Clearly, graphs such as Figures 3 and 4 can be drawn 

for stochastic as well as deterministic queues if the arrival and departure times of each 

customer are known. However, even if only the cumulative functions A(t) and D(t) or 

(x) are known, useful averages representing the queue behaviour can be found from such 

graphs. Evaluating the area between the graphs of A(t) and D(t) in Figure 3 using vertical 

strips and then horizontal strips illustrates Little's formula L = /\:.w (J.D.C. Little, 

"A Proof for the Queueing Formula : L = )_ w" Operations Research 9 383-387, 1961.) 

i.e. average queue length = arrival rate x average queue time/customer since in the 

1 example 3 = 8 x 24. Before considering these graphical methods in the fluid approximation of 

queues, it is necessary to consider the influence of the introduction of random variation 

into the arrival and service streams. 

1.4 PROBABILISTIC DESCRIPION OF ARRIVAL AND SER VICE PROCESSES 

The state of a queueing system in which arrival and/or service times vary in a random 

way, is not precisely predictable at future moments in time. The probability of a 

queue having a particular length at a particular time t in the future can be related 

to the probability of it changing from one length to another during a given interval 

as follows: 
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= the prob. that the queue has length ) 1 at time t 

Let T t ( J1 , f 2, a) = the prob. of changing from length J 1 to j,
2 

during the interval 

[t,t+a) 1 

then by the theorem of total probability, 

P t+a (~) = L P / f1 )T t(£ 1' ~,a) [summing over all lengths J 1 J ( 1.3) 

The probability T t(j,, t,a) will depend on the number of arrivals and departures during 

[t,t+a). In turn the number of arrivals will depend on the length of the interval and the 

time at which the last customer arrived before t, the start of the interval. Similarly; 

the number of departures will depend on the length of the interval and the length of 

time any services in progress at the start of the interval had been going on. This 

dependancy makes solving ( 1.3) difficult except for particular distributions of arrivals 

and service times. It is useful therefore to consider the case in which this dependancy 

is absent. 

Let f(t) be the p.d.f. of the interarrival intervals 

and F(t) = J! f(u)du i.e. the d.f. and let p(t, ~t) 

be the probability of an arrival during (t, t+(bt) 

Then p(t, 6 t) = the proportion of the dist. in the interval (t t+ S"t) 

then p(t, d t) = 

the proportion of the dist. in excess of t 

f(t) t t 
1-F(t) 

If now P(t, dt) is independent of t, then P(t, ~t) = kt say, where k is a constant. 

)( iS t = f(t) J t/(1-F(t)) 

and hence f( t) = K e.-kt 

As it can be shown (Parzen ( 1962)) that the negative exponential distribution is the only 

continuous p.d.f. with this Markov property, the central importance of this p.d.f. in 

queueing theory is apparent. Implied in the above derivation are the following three 

assumptions which define a Poisson process { N( t), t~O} 

(i) prob. of an arrival during the interval [t,t+ b t) = \?)t + o( ot) 

1.e. p(t, gt) =~St + o( gt) where )... is a constant independant of N(t) and 
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(ii) prob. of more than one arrival during [ t, t+ [ t) = o( 5 t) 

(iii) the number of arrivals in non-overlapping intervals are statistically independant. 

i.e. the process has independant increments. With these assumptions, the probability 

P (t) of n(n ~ 0) arrivals during a time interval of length t can be found by the 
n 

following method which appears often in queueing 

P(t+ St) = Pr { n arrivals in t and zero in J t} 

+ Pr{n-1 arrivals int and m 6't} 

+ Pr {n-2 arrivals m t and 2 in ~t J 

theory. 

+ ... + Pr { 0 arrivals in 

(ii) and (iii) ( 1.4) becomes 

t and n in cl tJ , n}l 

by (i), 

( 1.4) 

P (t + rjt) = P (t)U-.>St + o( Kt)]+ P l(t) [\at+ o(at)] + o(St) (1.5) n n n-

where the last term represents P n { n-j arrivals in t and j in $""t; 2 ::::'. j tc'.- n) 

If n=o then P (t + ~t) = P (t)[l-,AJt - o( ~t)] (1.6) 
0 0 

Rewriting (1.5) and (1.6) and taking limits asat-o/ 0 gives 

dP (t) 
0 - AP ( t) = 

0 

dt 

and dP (t) 
n 

-)\Pn(t) +,A-Pn_ 1(t) n~l = i 
dt 

The general solution of these linear first order differential equations usmg the boundary 

conditions P ( 0) = 1 and P (0) = 0, n ~ 1 is 
o n 

P (t) -- ( l'--,tt ') 
~ - p,., t 

n n, "" 
n>:0 y 

( 1.7) 

From (1.7) it follows that E[N(t)] = ,'),.,_t i.e. N(t) has a mean arrival rate A· That the 

Poisson process has stationary increments i.e. for t ,>-s, N(t) - N(s) and N(t+h) - N(s+h) 

are identically distributed, is seen by noting that assumption (iii) i.e. independent increments 

implies that there is no loss of generality if N(s) and N(s+h) are assumed to be zero. If 

the above derivation is carried out under assumptions (i), (ii) and (iii) the same formula 

results for N(t) as for N(t+h). 
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The close association between the Poisson process and the exponential distribution can 

be seen from (1.7) as follows. If T is the random variable 'time between successive 

arrivals' then 

Pr { zero arrivals in time t} = 

Letting A(t) be the d.f. of T, it follows that 

A(t) = Pr { T ~ t} = 1-e - At 

p (t) 
0 

= e 
- Xt 

thus T has the exponential distribution with mean 
1 ?x., which is intuitive since the mean 

arrival rate is A. Conversely it can be shown that if the interarrival times are 

independent and have the same exponential distribution, then the arrival rate follows 

the Poisson distribution. This Poisson/exponential arrival process is sometimes referred 

to as completely random arrivals. This is bec3.use of the following property of a 

Poisson process. Given that k arrivals have occured during an interval fO,T] the k 

times T 1 <T 2 < ... <T k at which the arrivals occured are distributed as the 

order statistics of k uniform random variables on [O,T] 

This is shown as follows: 

Writing fT T T (t 1,L, ... ,tklk arrivals m [O,T]) dt 1 dt2 ... dtk = fT(tlk)dt 
1 ' 2' ••• ' k . L . · 

\~l6\ + dtk I k arrivals m [ QT] 

e -,1\{T -dt 1-dt2 - . .• -dtk) 

which reduces to fT(t/ 11 = k! /T k which is the joint density function of the order 

statistics of k random variable on [O, T] 

The arrival process considered above can also be used to describe the service pattern 

if in assumptions (i) - (iii), the term arrival is replaced by service and if the probabilities 

are conditioned on the system being non-tempty. In addition, the basic Poisson/exponential 

process can be generalised in several ways which include (a) truncating the infinite range 

(b) allowing to depend on t, i.e. the process becomes non-homogeneous (c) allowing 

that more than one occurence in t has probability greater than o( tt) i.e. a batch process. 
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More general renewal processes than the Poisson process can be used to describe arrival/ 

service patterns as can non-renewal processes. These will be considered later where 

appropriate but the Poisson process often appears in the description of a queueing 

system either directly or in an imbeddedyrocess or as a first approximation. The 

reason for this is not just the tractable properties of this process but also because 

many real-life processes obey at least approximately the requirements (i) - (iii) 

listed previously. Information theory provides an additional argument. This is that the 

information content for the distribution f(x), defined as J:Cx)logf(x)dx, is lease for the exponential 

function and as such provides a conservative description of arrival and service patterns. 

WAITING TIME AND BUSY TIME DISTRIBUTIONS 

These features of queue behaviour are, unlike the measures of effectiveness, dependant 

on the queue discipline. It is also noted that the time a ficitious customer would have to 

wait were he to arrive at an arbitrary point in time, i.e. the virtual waiting time, has 

a steady state distribution equal to that of the waiting time of an actual customer ifff 

theinput is Poisson. For the present model the waiting time distribution W (t) is part 
q 

discrete and part continuous. 

{

I -p 
. 

-P..( [-L?) t 
l -pe..· C 

The mean waiting time (via a Riemann-Stieltjes integration) is W 
q 

Similarly for the total time spent rn the system, _(f-A.}t 
W(t) = (j}v-A) e · . 

w 
These results 

"= E[T] - f ~ A 
exemplify again Little's formula· 

L 
which is valid under much less stringent restrictions than those of the present model. 

Since a busy period continues as long as there is at least one item in the system 

P (t) is seen to 
0 

I 

givingp
0

(t) = 

I 

be the d.f. of the busy period and P (t) 
(/\. . .,U) ( 0 2,fil- e.~ + r 1(2ffet) 

the p.d.f.. 

and also 

t 
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1.5 PROBALISTIC DESCRIPTION OF QUEUES 

The simplest probabilistic queuing model is the single server model with exponential 

interarrival and service times and having a first-in-first- out (FIFO) queue discipline. 

To find an equation relating the state probabilities 

Pn(t) = Pr { n in the system at time t) a similar method to that used to obtain (1.4-) 

is employed. 

Applying the assumptions set out m J 1. 4- gives 

P (t+St) = P (t)(1 -\gt _l.fiJt) P 
1
(t)(.U,St) + P 

1
(t)(,,\bt) + o(dt), n~1 

n n r n+ I n-

Rewriting and taking limits as tt ➔ o gives 

dP (t) 
n 

= 
dt 

dP (t) 
0 (1.8) 
dt 

where i IS the number in the system at time t=o, and 

I (y) = k-nJ (ky) where J (y) 
n n n is the regular Bessel function. Using the assymptiotic 

Q.~ 

approximation In (y) rv r;:::-::;:; 
v2Tf~ 

The symbol p is often used to represent the rate which although dimensionless IS often 

given in 'erlangs' in honour of A.K. Erlang. Thus (1.9) becomes Pn = (1-f)p1,p<1] 

Considering the complexity of (1.9) and its derivation, in this the simplest of 

( 1.9) 

( 1.10) 

probabilistic queueing models, it is fortunate that it is often the limiting distribution which 

is of most interest. By taking the limit as t·➔oein (1.8), the resulting equations can be 

used to determine (1.10) directly. There are a number of ergodic theorems which consider 

the existence of steady-state solutions but, as in this case, the conditions under which a 

queueing process is ergodic often becomes apparent from other considerations. 
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Having determined the steady-state probability distribution of the system size, representative 

characteristics of the system called measures of effectiveness can be calculated. These 

include the expected number in the system (L) and the expected number in the queue, 

(L ) (i.e. customers actually waiting - ex eluding the customer being served). 
q 

cl.. 
L = E[N] = 2-_ 1'\ l?i Similarly, 

Y\=li 

Also of interest is 

Let 

the expected size of non-empty queues 
I r I <1 

then 

PY1 ::: fr-1 n in the system YI':?: 2) 
· I 52.. I 

Li ::: 2-( h-1) R, 
f1 :'2. 

1.e. 

p'2-

\-p 

The classification of more general queue models was facilitated by a notation due to Kendall. 

1.6 KENDALLs NOTATION 

D.G. Kendall (1953) introduced a notation later modified to the following form AIBlmlKIL 

to clarify different queue models. In the notation A and B represent the distribution 

function of the inter arrival time and the service time respectively. m represents the 

number of servers, K the system capacity (queue plus service) and L the size of the 

customer population. The arrival and service streams are considered to be sequences 

of random variables having independent and identical distributions. Morse (1957) discusses 

sampling of a queueing system to obtain the A and B distributions and describes the 

Erlang and hyper -exponential distributions which provide a reasonable rep re sen ta tion 

of sampling distributions found in practice. The letters M = Markov (i.e. Poisson 

process) 1 G = general distribution, D = deterministic are used in positions A and B 

in the notation. 
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The moments and often the distributions of many of the random variables which are 

involved in the description of queue behaviour of many different queue models have 

been determined. The complexity of the derviation of these results tends to increase 

as either A or B or both differ from a Markcv process. Brief references to this work 

follows. 

Page ( 1972) considers various queue mg models which have Erlang, Poisson or deterministic inter 

arrival or service time distributions. Graphs and tables of system variables are provided. 

Some comment is made about priority queues with reference to Jaiswal (1968) for a 

more complete discussion. Takacs ( 1961) in addition to batch arrival processes 

discusses the application of queueing models to particle counting and considers queues 

with infintiely many servers. Riordan ( 1962) includes a discussion on virtual waiting time 

and queue disciplines other than FIFO. 

Morse ( 19 5 7) considers the derviation of sampling distributions from arrival and service 

processes. Erlang and hyper-exponential distributions are used as models and useful 

tables of these distributions are provided. Saaty ( 1961) considers the ergodic properties of 

queues and in addition to a study of queues with Poisson and non-Poisson input and service 

processes, provides ari interesting discussion of less common queueing models. These include 

cooperating parallel channels and cyclic queues. A final chapter indicates the wide range 

of problems to which queueing models have been applied including semi-conductor noise, 

hospitals and the demand for medical care, as well as an introduction to dams and 

storage systems which is further considered in Chapter 2. Kosten ( 1973) considers the 

MIG j m model under several different queue disciplines and queue size restrictions. 

An introduction to computer simulation methods includes a comparison of simulation 

and analytic methods in investigating the behaviour of queues. Gross and Harris ( 1974) 

provide a systematic coverage of Markovian queue models. They then precede to a 

discussion of semi-Markovian and ergodic processes in queues with general arrival and/or 

service processes as well as the use of approximation methods with such models. A 

chapter on computer simulation and simulation languages is followed by a final chapter 

detailing a case study involving queueing theory and simulation which provides and 

example of optimizing a queueing model using a cost critereon. Kleinrock (1975) 

Volume 1 provides a fuller discussion of the more general models GIMlm and 

GIGI 1 and in Volume 2 considers queue networks and their application to time-shared computers 
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NEWELL ( 1972, 1982) has considered queueing models in an engineering 

V 
context emphasising approximation and graphical methods. Borokov (1976) has presented 

t 

general and unified mathematical treatments of aquite wide class of queueing models. 

Kingman (1966) discusses an algebriac approach to generalising treatment of the GIGlm queue 

model for m 1.Syski ( 1967) discusses the Pollaczek method in queueing theory and Prahbu ( 1974 

discusses another technique of wide application in queueing theory, the Wiener-I--bpf method. 

In addition to developing unifying treatments and general methods of analysis, more recent 

papers have treated topics in the optimising of queue operation, queueing network theory, 

simulation of queues as well as the analysis of queueing models arising in real systems. 

Reference to papers on these and related topics can be found in the followng and similar 

publications. Management Science, Operations Research, Information, ORSNZ, Journal of 

Advanced Probability, Journal of Applied Probability, Naval Research Logical Quarterly 

Journal. In the present context approximation methods and computer simulation are of 

particular relevance and are considered below. 

1.7 APPROXIMATION METHODS, BOUNDS AND INEQUALITIES 

In those cases in which an exact expression can be found for an expected value or 

the distribution of a variable of interest in a queueing model, it is often difficult 

to evaluate numerically and further, the assumptions about the conditions under which 

the result was derived may be difficult to verify. Consequently considerable effort 

has been spent in developing approximations, bounds and inequalities which are robust to 

changes from underlying assumptions and which are relatively quick to calculate. In 

practical situations the control of a queueing system becomes most critical when the 

traffic density is greatest i.e. as f ➔ l. Kleinrock ( 197 5) Volume 2 gives a discussion 

of results obtained for the GIGI 1 queue model in the heavy traffic case. Central to 

to these results is that the waiting time distribution is approximately exponentially 

distributed with mean wait given by: ( i¼L + ~ ) j 2 ( 1 - f )t 

where are the variances of the interarrival and service times respectively, 

pis the traffic density and tis the mean interarrival time. It is also shown that this 

mean wait forms an assympto.tically sharp upper bound for the mean wait in any GIGI 1 

queue. The case for a lower bound on the mean waiting time is less clear cut and the 

results obtained depend on the nature of the input process. Bounds on the tail of the 

distribution of waiting time are given and bounds on the mean waiting time for the 
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G/G/m (m 1) model are derived. All of these results are approximations and bounds for 

the exact solution. An alternative procedure is to find exact solutions to an 

approximation of the original problem. As was noted in j 1.2 the basic recurrence 

relation for waiting times 

hJlds for deterministic or stochastic arrival and service processes. Consequently 

an approximation to the system behaviour can be obtained by approximating the 

stochastic processes which control the operation of the system. A 'first-order' 

approximation is obtained by replacing the stochastic processes by their possibly time

dependent averages. This is called the fluid approximation method. By allowing each 

stochastic process to be represented by both its mean and its variance a 'second-order' 

approximation is obtained. This is termed a diffusion approximation. These methods 

enable the elementary deterministic methods outlined previously to facilitate the 

analysis of queues involving complex stochastic processes. To apply these approximation 

metrods it is necessary first to estimate the appropriate parameters from the relevant 

stochastic processes. Gross and Harris ( 1974) discuss those aspects of statistical 

inference which relate to parameter estimation in queueing sytems. Computer 

simulation of queues provides another method of investigating queueing systems. 

As simulation amounts to statistical sampling, the approximations and bounds outlined 

above are helpful also in drawing inferences from the sample statistics produced by 

the computer simulation. (Fishman, 1974). An application of these methods is 

described in Chapter 5 .• 


