928 research outputs found

    Studying the Current Situation and Establishing a Map of Flash Flood Risk Zoning in Lai Chau Province, Vietnam

    Get PDF
    Lai Chau is a mountainous province in the North of Vietnam that frequently experiences flash floods. Flash floods in Lai Chau province were formed by the combined effects of many factors such as topographical characteristics, current land use, soil type, vegetation cover combined with river density and rainfall. In this study, the author analyzed the current state of flash floods, assessed the factors that caused flash floods and established a map of flash flood zoning in Lai Chau province. The flash flood risk area map is built on the basis of GIS spatial analysis, combining hierarchical analysis (AHP) and multi-criteria analysis method (MCA). Data collected for the study is mainly from Sentinel 2 images, statistical data and actual investigation. Research results show that the area with high and very high potential for flash floods accounts for 22.03% of the natural area, and the area with medium risk accounts for 44.42%. Areas with low and very low levels account for 33.55% of the area in Lai Chau province of Vietnam

    Enhancing community resilience in arid regions: A smart framework for flash flood risk assessment

    Get PDF
    This paper presents a novel framework for smart integrated risk management in arid regions. The framework combines flash flood modelling, statistical methods, artificial intelligence (AI), geographic evaluations, risk analysis, and decision-making modules to enhance community resilience. Flash flood is simulated by using Watershed Modelling System (WMS). Statistical methods are also used to trim outlier data from physical systems and climatic data. Furthermore, three AI methods, including Support Vector Machine (SVM), Artificial Neural Network (ANN), and Nearest Neighbours Classification (NNC), are used to predict and classify flash flood occurrences. Geographic Information System (GIS) is also utilised to assess potential risks in vulnerable regions, together with Failure Mode and Effects Analysis (FMEA) and Hazard and Operability Study (HAZOP) methods. The decision-making module employs the Classic Delphi technique to classify the appropriate solutions for flood risk control. The methodology is demonstrated by its application to the real case study of the Khosf region in Iran, which suffers from both drought and severe floods simultaneously, exacerbated by recent climate changes. The results show high Coefficient of determination (R2) scores for the three AI methods, with SVM at 0.88, ANN at 0.79, and NNC at 0.89. FMEA results indicate that over 50% of scenarios are at high flood risk, while HAZOP indicates 30% of scenarios with the same risk rate. Additionally, peak flows of over 24 m3/s are considered flood occurrences that can cause financial damage in all scenarios and risk techniques of the case study. Finally, our research findings indicate a practical decision support system that is compatible with sustainable development concepts and can enhance community resilience in arid regions

    Flash flood susceptibility assessment and zonation by integrating analytic hierarchy process and frequency ratio model with diverse spatial data

    Get PDF
    Flash floods are the most dangerous kinds of floods because they combine the destructive power of a flood with incredible speed. They occur when heavy rainfall exceeds the ability of the ground to absorb it. The main aim of this study is to generate flash flood maps using Analytical Hierarchy Process (AHP) and Frequency Ratio (FR) models in the river’s floodplain between the Jhelum River and Chenab rivers. A total of eight flash flood-causative physical parameters are considered for this study. Six parameters are based on remote sensing images of the Advanced Land Observation Satellite (ALOS), Digital Elevation Model (DEM), and Sentinel-2 Satellite, which include slope, elevation, distance from the stream, drainage density, flow accumulation, and land use/land cover (LULC), respectively. The other two parameters are soil and geology, which consist of different rock and soil formations, respectively. In the case of AHP, each of the criteria is allotted an estimated weight according to its significant importance in the occurrence of flash floods. In the end, all the parameters were integrated using weighted overlay analysis in which the influence value of drainage density was given the highest weight. The analysis shows that a distance of 2500 m from the river has values of FR ranging from 0.54, 0.56, 1.21, 1.26, and 0.48, respectively. The output zones were categorized into very low, low, moderate, high, and very high risk, covering 7354, 5147, 3665, 2592, and 1343 km2, respectively. Finally, the results show that the very high flood areas cover 1343 km2, or 6.68% of the total area. The Mangla, Marala, and Trimmu valleys were identified as high-risk zones of the study area, which have been damaged drastically many times by flash floods. It provides policy guidelines for risk managers, emergency and disaster response services, urban and infrastructure planners, hydrologists, and climate scientists

    National-scale flood risk assessment using GIS and remote sensing-based hybridized deep neural network and fuzzy analytic hierarchy process models : a case of Bangladesh

    Get PDF
    Assessing flood risk is challenging due to complex interactions among flood susceptibility, hazard, exposure, and vulnerability parameters. This study presents a novel flood risk assessment framework by utilizing a hybridized deep neural network (DNN) and fuzzy analytic hierarchy process (AHP) models. Bangladesh was selected as a case study region, where limited studies examined flood risk at a national scale. The results exhibited that hybridized DNN and fuzzy AHP models can produce the most accurate flood risk map while comparing among 15 different models. About 20.45% of Bangladesh are at flood risk zones of moderate, high, and very high severity. The northeastern region, as well as areas adjacent to the Ganges–Brahmaputra–Meghna rivers, have high flood damage potential, where a significant number of people were affected during the 2020 flood event. The risk assessment framework developed in this study would help policymakers formulate a comprehensive flood risk management system

    Application of geospatial technologies in constructing a flash flood warning model in northern mountainous regions of Vietnam: a case study at TrinhTuong commune, Bat Xat district, LaoCai province

    Get PDF
    The model was constructed based on GIS spatial analyses, combined with Analytic Hierarchy Process (AHP) and Multi-Criterion Analysis method (MCA). The data gathered for the study were mainly from remote-sensing images, statistical data and surveys. Field experiments were conducted in Trinh Tuong Commune, Bat Xat District, Lao Cai province. This is a typical remote mountainous region of Vietnam in which flash floods often occur. The study analyzes and evaluates six primary factors that incite flash flood, namely: geomorphological characteristics, soil properties, forest and fractional vegetation cover types, local drainage basin slopes, maximum average rainfall of various years, and the river/stream density of the region. The zoning map showing flash flood potentials has determined that 19.91% of the area had an extremely high risk of flash flood occurrence, 64.92% of the area had a medium risk, and 15.17% had a low or very low risk. Based on the employment of daily maximum rainfalls as the primary factor, an online flash flood warning model was constructed for areas with a “high” or “very high” risk of flash flood occurrence.

    Spatial prediction of flood susceptible areas using machine learning approach: a focus on west african region

    Get PDF
    Dissertation submitted in partial fulfilment of the requirements for the Degree of Master of Science in Geospatial TechnologiesThe constant change in the environment due to increasing urbanization and climate change has led to recurrent flood occurrences with a devastating impact on lives and properties. Therefore, it is essential to identify the factors that drive flood occurrences, and flood locations prone to flooding which can be achieved through the performance of Flood Susceptibility Modelling (FSM) utilizing stand-alone and hybrid machine learning models to attain accurate and sustainable results which can instigate mitigation measures and flood risk control. In this research, novel hybridizations of Index of Entropy (IOE) with Decision Tree (DT), Support Vector Machine (SVM), Random Forest (RF) was performed and equally as stand-alone models in Flood Susceptibility Modelling (FSM) and results of each model compared. First, feature selection and multi-collinearity analysis were performed to identify the predictive ability and the inter-relationship among the factors. Subsequently, IOE was performed as bivariate and multivariate statistical analysis to assess the correlation among the flood influencing factor’s classes with flooding and the overall influence (weight) of each factor on flooding. Subsequently, the weight generated was used in training the machine learning models. The performance of the proposed models was assessed using the popular Area Under Curve (AUC) and statistical metrics. Percentagewise, results attained reveals that DT-IOE hybrid model had the highest prediction accuracy of 87.1% while the DT had the lowest prediction performance of 77.0%. Among the other models, the result attained highlight that the proposed hybrid of machine learning and statistical models had a higher performance than the stand-alone models which reflect the detailed assessment performed by the hybrid models. The final susceptibility maps derived revealed that about 21% of the study area are highly prone to flooding and it is revealed that human-induced factors do have a huge influence on flooding in the region

    Toward an integrated disaster management approach: How artificial intelligence can boost disaster management

    Get PDF
    Technical and methodological enhancement of hazards and disaster research is identified as a critical question in disaster management. Artificial intelligence (AI) applications, such as tracking and mapping, geospatial analysis, remote sensing techniques, robotics, drone technology, machine learning, telecom and network services, accident and hot spot analysis, smart city urban planning, transportation planning, and environmental impact analysis, are the technological components of societal change, having significant implications for research on the societal response to hazards and disasters. Social science researchers have used various technologies and methods to examine hazards and disasters through disciplinary, multidisciplinary, and interdisciplinary lenses. They have employed both quantitative and qualitative data collection and data analysis strategies. This study provides an overview of the current applications of AI in disaster management during its four phases and how AI is vital to all disaster management phases, leading to a faster, more concise, equipped response. Integrating a geographic information system (GIS) and remote sensing (RS) into disaster management enables higher planning, analysis, situational awareness, and recovery operations. GIS and RS are commonly recognized as key support tools for disaster management. Visualization capabilities, satellite images, and artificial intelligence analysis can assist governments in making quick decisions after natural disasters

    Remote Sensing of Natural Hazards

    Get PDF
    Each year, natural hazards such as earthquakes, cyclones, flooding, landslides, wildfires, avalanches, volcanic eruption, extreme temperatures, storm surges, drought, etc., result in widespread loss of life, livelihood, and critical infrastructure globally. With the unprecedented growth of the human population, largescale development activities, and changes to the natural environment, the frequency and intensity of extreme natural events and consequent impacts are expected to increase in the future.Technological interventions provide essential provisions for the prevention and mitigation of natural hazards. The data obtained through remote sensing systems with varied spatial, spectral, and temporal resolutions particularly provide prospects for furthering knowledge on spatiotemporal patterns and forecasting of natural hazards. The collection of data using earth observation systems has been valuable for alleviating the adverse effects of natural hazards, especially with their near real-time capabilities for tracking extreme natural events. Remote sensing systems from different platforms also serve as an important decision-support tool for devising response strategies, coordinating rescue operations, and making damage and loss estimations.With these in mind, this book seeks original contributions to the advanced applications of remote sensing and geographic information systems (GIS) techniques in understanding various dimensions of natural hazards through new theory, data products, and robust approaches

    Flood risk assessment using multi-sensor remote sensing, geographic information system, 2D hydraulic and machine learning based models

    Full text link
    University of Technology Sydney. Faculty of Engineering and Information Technology.Flooding events threaten the population, economy and environment worldwide. In recent years, several spatial methods have been developed to map flood susceptibility, hazard and risk for predicting and modelling flooding events. However, this research proposes multiple state-of-the-art approaches to assess, simulate and forecast flooding from recent satellite imagery. Firstly, a model was proposed to monitor changes in surface runoff and forecast future surface runoff on the basis of land use/land cover (LULC) and precipitation factors because the effects of precipitation and LULC dynamics have directly affected surface runoff and flooding events. Land transformation model (LTM) was used to detect the LULC changes. Moreover, an autoregressive integrated moving average (ARIMA) model was applied to analyse and forecast rainfall trends. The parameters of the ARIMA time series model were calibrated and fitted statistically to minimise prediction uncertainty through modern Taguchi method. Then, a GIS -based soil conservation service-curve number (SCS-CN) model was developed to simulate the maximum probable surface runoff. Results showed that deforestation and urbanisation have occurred upon a given time and have been predicted to increase. Furthermore, given negative changes in LULC, surface runoff increased and was forecasted to exceed gradually by 2020. In accordance with the implemented model calibration and accuracy assessment, the GIS-based SCS-CN combined with the LTM and ARIMA model is an efficient and accurate approach to detecting, monitoring and forecasting surface runoff. Secondly, a physical vulnerability assessment of flood was conducted by extracting detailed urban features from Worldview-3. Panchromatic sharpening in conjunction with atmospheric and topographic corrections was initially implemented to increase spatial resolution and reduce atmospheric distortion from satellite images. Dempster–Shafer (DS) fusion classifier was proposed in this part as a feature-based image analysis (FBIA) to extract urban complex objects. The DS-FBIA was investigated among two sites to examine the transferability of the proposed method. In addition, the DS-FBIA was compared with other common image analysis approaches (pixel- and object-based image analyses) to discover its accuracy and computational operating time. k-nearest neighbour, Bayes and support vector machine (SVM) classifiers were tested as pixel-based image analysis approaches, while decision tree classifier was examined as an object-based image analysis approach. The results showed improvements in detailed urban extraction obtained using the proposed FBIA with 92.2% overall accuracy and with high transferability from one site to another. Thirdly, an integrated model was developed for probability analysis of different types of flood using fully distributed GIS-based algorithms. These methods were applicable, particularly where annual monsoon rains trigger fluvial floods (FF) with pluvial flash flood (PFF) events occur simultaneously. A hydraulic 2D high-resolution sub-grid model of hydrologic engineering centre river analysis system was performed to simulate FF probability and hazard. Moreover, machine learning random forest (RF) method was used to model PFF probability and hazard. The RF was optimised by particle swarm optimisation (PSO) algorithm. Both models were verified and calibrated by cross validation and sensitivity analysis to create a coupled PFF– FF probability mapping. The results showed high accuracy in generating a coupled PFF–FF probability model that can discover the impact and contribution of each type to urban flood hazard. Furthermore, the results provided detailed flood information for urban managers to equip infrastructures, such as highways, roads and sewage network, actively. Fourthly, the risk of a flood can be assessed through different stages of flood probability, hazard and vulnerability. A total of 13 flood conditioning parameters were created to construct a geospatial database for flood probability estimation in two study areas. To estimate flood probability, five approaches, namely, logistic regression, frequency ratio (FR), SVM, analytical hierarchy process and combined FR–SVM, were adopted. Then, a flood risk map was generated by integrating flood hazard and vulnerability. The accuracy of flood probability indices indicated that the combined FR–SVM method achieved the highest accuracy among the other approaches. The reliability of the results obtained from this research was also verified in the field. The most effective parameters that would trigger flood occurrence were rainfall and flood inundation depth. In this research, transferable residency from one study area to another was verified through all the implemented methods. Therefore, the proposed approaches would be effectively and easily replicated in other regions with a similar climate condition, that condition that is, having a sufficient amount of flooding inventory events. Moreover, the results of the proposed approaches provided solid-detailed information that would be used for making favourable decisions to reduce and control future flood risks
    • …
    corecore