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National-Scale Flood Risk Assessment Using GIS and Remote Sensing-32 

Based Hybridized Deep Neural Network and Fuzzy Analytic Hierarchy 33 

Process: A Case of Bangladesh  34 

 35 

Assessing flood risk is challenging due to complex interactions among flood 36 

susceptibility, hazard, exposure, and vulnerability parameters. This study presents a 37 

novel flood risk assessment framework by utilizing a hybridized deep neural network 38 

(DNN) and fuzzy analytic hierarchy process (AHP) models. Bangladesh was selected 39 

as a case study region, where limited studies examined flood risk at a national scale. 40 

The results exhibited that hybridized DNN and fuzzy AHP models can produce the 41 

most accurate flood risk map while comparing among 15 different models. About 42 

20.45% of Bangladesh are at flood risk zones of moderate, high, and very high 43 

severity. The northeastern region, as well as areas adjacent to the Ganges–44 

Brahmaputra–Meghna rivers, have high flood damage potential, where a significant 45 

number of people were affected during the 2020 flood event. The risk assessment 46 

framework developed in this study would help policymakers formulate a 47 

comprehensive flood risk management system. 48 

 49 

Keywords: Flood Risk Assessment; Flood Susceptibility Mapping; Hybridized Deep 50 

Neural Network; Hybridized Support Vector Regression; Genetic Algorithm; Fuzzy 51 

Analytic Hierarchy Process; Random Forest 52 

Introduction 53 

Flooding is known to be one of the most common yet devastating natural hazards (Stefanidis 54 

and Stathis 2013, Dewan 2015, Rahmati et al. 2020). Floods caused direct economic losses of 55 

USD 386 billion worldwide since 2001 (Wang et al. 2011, Rahmati et al. 2020). Economic 56 

damages caused by floods negatively impact human wellbeing, promoting long-term poverty 57 

in flood-affected regions (Adnan et al. 2020a, Barbour et al. 2022). An upsurge in population 58 

growth, exorbitant poverty, and climate change have increased flood risk in developing 59 

countries, especially in South Asia (Rahman et al. 2021a). Locating in an active deltaic 60 

region and crisscrossed by many large river channels, Bangladesh is frequently affected by 61 

floods of different magnitudes primarily due to high discharge in the Ganges, Brahmaputra, 62 

and Meghna (GBM) rivers caused by an excessive amount of rainfall in upstream 63 

regions(Chowdhury and Hassan 2017, Leon et al. 2020, Rahman et al. 2021b). The country is 64 

generally affected by four distinct types of floods: riverine or fluvial, flash or rainwater, 65 

urban or pluvial, and coastal floods (Adnan et al. 2019b). Heavy monsoon rainfall in the 66 

upstream river catchments leads to recurring riverine floods in Bangladesh (Rahman et al. 67 

2021a). Various extreme riverine flood events, especially those that occurred in 1988, 1998, 68 

and 2004, killed many lives and caused extensive property damages, causing significant 69 

losses to the national economy (Dewan 2015). Most recently (in 2020), about a quarter of the 70 

country’s lands was inundated by monsoon flooding, affecting over four million people 71 

(NASA 2020).  72 

Since flooding is the outcome of extremely complex and intricate dynamic processes, 73 

it is nearly impossible to prevent it from occurring (Pappenberger et al. 2006). Hence, flood 74 
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risk reduction has become one of the major challenges worldwide (Rahmati et al. 2020). 75 

Reducing the detrimental effects of flooding depends on a quick and accurate assessment of 76 

risk, which helps to formulate risk management plans (Mojaddadi et al. 2017). The 77 

emergence of various remote sensing and the geospatial techniques has enabled researchers 78 

and practitioners to assess flood risk more accurately (Dewan and Kankam-Yeboah 2006, 79 

Pradhan 2010, Thirumurugan and Krishnaveni 2019, Rahman et al. 2021b). Evaluation of 80 

flood risk includes investigating flood risk-prone zones where the flood potentials are very 81 

high (Mojaddadi et al. 2017). A comprehensive flood risk assessment plays a vital role in the 82 

overall flood risk management system, which requires quantification of flood hazard, 83 

exposure, and vulnerability (Meyer et al. 2009, Pham et al. 2021a, Pham et al. 2021b). 84 

Various studies indicated that an accurate flood susceptibility model (FSM) can be translated 85 

into a flood hazard model by integrating factors such as flood depth, flood duration, and 86 

rainfall (Mojaddadi et al. 2017, Rahman et al. 2019, Pham et al. 2021a, Pham et al. 2021b, 87 

Rahman et al. 2021a).      88 

Several studies conducted flood risk assessments both at the local and national scales 89 

around the world with the aid of remote sensing and GIS techniques, traditional statistical 90 

models, and multi-criteria decision analysis (MCDA) methods (Wang et al. 2011, Rincón et 91 

al. 2018, Luu et al. 2019, Akay and Baduna Koçyiğit 2020, Akay 2021, Ekmekcioğlu et al. 92 

2021). However, the results produced by those methods could be affected by the nonlinear 93 

and dynamic nature of flooding (Tehrany et al. 2015), scarcity of necessary data especially in 94 

developing countries (Darabi et al. 2019), and restricted applicability of the models at 95 

multiple scales (de Moel et al. 2015). The limitations of various statistical flood models have 96 

prompted researchers to apply different machine learning (ML) algorithms in assessing flood 97 

risk (Rahmati et al. 2020). Recent studies applied different standalone as well as hybridized 98 

ML models. For instance, hybridized support vector machine (SVM) (Mojaddadi et al. 2017, 99 

Ma et al. 2019b) including SVM based on the radial basis function (SVM-RBF) (Ngo et al. 100 

2021, Siam et al. 2021a) and SVM with the convolutional neural network (CNN) (Wang et 101 

al. 2020), standalone and hybridized decision table models (Pham et al. 2021b), hybridized 102 

decision tree (DT) (Chen et al. 2021) and others (Darabi et al. 2019). Tehrany et al. (2015) 103 

examined the efficacy of SVM in flood susceptibility mapping by comparing the 104 

performance of such models with four distinct kernels: linear, polynomial, RBF, and sigmoid. 105 

All these studies reported that hybridized ML models potentially produce more accurate 106 

results compared to standalone models (Rahmati et al. 2020, Siam et al. 2021a, Siam et al. 107 

2021b). Also, to address the uncertainties related to the classical MCDA approaches, a few 108 

studies exploited the fuzzy MCDA approach (Akay 2021, Costache et al. 2021, Vilasan and 109 

Kapse 2021).  110 

The application of deep learning (DL) algorithms has proved to be very efficient in 111 

quantifying flood probability (Ma et al. 2019a). Recently, several studies have been 112 

conducted using various deep neural network (DNN) architectures for FSM, with various 113 

combinations of algorithms. The latest DNN-based flood susceptibility models include the 114 

use of (1) DNN in combination with the manta ray foraging optimization algorithm (Nguyen 115 

et al. 2021), (2) combined the multilayer perceptron (MLP) and autoencoder models 116 

(Ahmadlou et al. 2021), (3) CNN and recurrent neural network (RNN) (Panahi et al. 2021), 117 
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(4) standalone and hybridized CNN architectures (Wang et al. 2020). However, all these 118 

studies were limited to flood susceptibility assessment. Consequently, little is known 119 

regarding the applicability of hybridized models in assessing flood risk. Only a few studies 120 

utilized DNN models (Chen et al. 2021) in combination with the MCDA approach for flood 121 

risk modeling (Pham et al. 2021a, Pham et al. 2021b). Still, the use of the hybridized DNN 122 

architectures is underexplored in flood risk studies. Besides, in the context of Bangladesh, 123 

only a few studies carried out flood susceptibility assessment at a national scale (Rahman et 124 

al. 2019, Rahman et al. 2021a, Rahman et al. 2021b, Siam et al. 2021a), while no study has 125 

attempted to quantify country-level flood risk.  126 

In response to the above-discussed research gaps, this study aims to present a flood 127 

risk assessment framework by utilizing a hybridized DNN and fuzzy analytic hierarchy 128 

process (AHP) models. This study hypothesized that the integration of hybridized DNN 129 

model with the fuzzy AHP method can potentially produce more realistic results than the 130 

classical AHP method. Unlike previous studies on risk assessment framework to flood, we 131 

have modeled a hybridized DNN-based flood susceptibility model as a principal operator in 132 

developing a flood hazard map. The framework has been applied in assessing flood risk at the 133 

national scale in Bangladesh.   134 

 135 

Materials and methods  136 

The study was conducted in five steps. First, various flood conditioning factors were 137 

identified for developing a flood susceptibility model. Second, flood susceptibility models 138 

were developed based on different standalone and hybridized DNN and SVR models, as well 139 

as other conventional ML models (e.g., conditional inference tree, KNN, and MLP). Third, 140 

based on several evaluation metrics, the best-performing method was chosen for mapping the 141 

flood susceptibility. Fourth, flood hazard, exposure, and vulnerability maps were developed 142 

using the fuzzy AHP method, where the best-performing flood susceptibility map was used to 143 

model flood hazards. Finally, a flood risk map was developed by integrating flood hazard, 144 

exposure, and vulnerability maps. Figure 1  shows a brief methodological overview of the 145 

present study. 146 
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 147 

 148 

Figure 1. Flowchart of this study 149 

 150 

Study area  151 

The present study focused on Bangladesh (Figure 2). Geographically, the country is located 152 

in South Asia, between the latitudes of 20°34′ and 26°38′ to the north and longitudes of 153 

88°01′ and 92°41′ to the east (Hasan et al. 2017, Rahman et al. 2019). More than 162.7 154 

million people inhabit the country, with an annual population growth rate of 1.37%, within an 155 

area of 1,47,570 km2. Thus, Bangladesh has the highest population density in the world, with 156 

a density of approximately 1,063 people per km2 (Hasan et al. 2017, Rahman et al. 2019). 157 

The country is characterized by five topographic regions — Chittagong, Tippera-Comilla, 158 

north Bengal, northeastern, and southwestern regions — comprising 64 districts, eight 159 

divisions, and 492 subdistricts (Islam and Sado 2000). It includes three major river systems: 160 

the Ganges, Meghna, and Brahmaputra, with numerous distributaries and tributaries. The 161 

geographical location, flat topography, and tropical climatic conditions of Bangladesh make 162 

it one of the world's most flood-prone areas. The yearly average precipitation generally 163 

ranges between 2200 and 2500 mm. Annual mean temperature ranges between 25 °C and 35 164 

°C. Almost 80% of the total landmass of Bangladesh is fertile alluvial lowlands. The rest of 165 

the country slightly elevated older plains and small hilly regions (Rahman et al. 2019). 166 
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  167 

Figure 2. Map of Bangladesh with sample flood locations  168 

Flood inventory mapping 169 

The flood inundation areas of historical flooding events are typically used as a dependent 170 

variable for modeling flood susceptibility (Rahman et al. 2019, Pham et al. 2021a). 171 

Inundation data, of three different periods (July 12-21, July 23-27, and July 29-August 02) in 172 

monsoon season of 2020, were collected from the United Nations Institute for Training and 173 

Research (UNITAR). The UNITAR used Sentinel-1 satellite data to detect inundated areas 174 

(UNITAR 2020). The obtained inundation vector files were then converted to raster layers at 175 

30 m resolution to ensure agreement with the digital elevation model (DEM) used in this 176 

study. The inundation raster layer was binarized — non-flood and flood locations were 177 

labeled as 0 and 1, respectively (equation 1).  178 

𝐹𝑙𝑜𝑜𝑑 𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦, 𝑦 =  {
1;  𝑖𝑓 𝑓𝑙𝑜𝑜𝑑𝑖𝑛𝑔

             0;  𝑖𝑓 𝑛𝑜𝑛 − 𝑓𝑙𝑜𝑜𝑑𝑖𝑛𝑔
 (1) 

The combined flood inundation map was utilized to produce sample flood and non-179 

flood points. A total of 2,766 sample points (flood points – 1408 and non-flood points – 180 

1358) were created using the stratified random sampling technique. The stratified random 181 

sampling technique divides a population into smaller homogeneous subgroups known as 182 

strata. The strata are constructed depending on the members' shared characteristics or 183 

attributes. This technique has been widely used in flood modeling due to its ability to reduce 184 

bias in the sample (Adnan et al. 2020a, Adnan et al. 2020b). Based on the previous studies 185 

(Pham et al. 2021a, Pham et al. 2021b), the sample points were split into two groups: 70% of 186 

the total sample points (983 flood points, 953 non-flood points) was considered to train the 187 

flood susceptibility model while the other 30% sample (425 flood points, 405 non-flood 188 

points) was employed to test the model. To reduce model overfitting, this study applied a 10-189 
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fold cross-validation technique to further divide the train set (70% sample points) into train 190 

and validation sets. 191 

 192 

Flood conditioning factors 193 

An important component of preparing FSMs is to choose appropriate flood conditioning 194 

factors that contribute to the occurrence of flooding in an area (Pham et al. 2021a). There is 195 

no universal method to identify appropriate flood conditioning factors as different studies 196 

used various combinations (Rahman et al. 2019, Wang et al. 2019, Costache et al. 2020a, 197 

Rahmati et al. 2020, Talukdar et al. 2020, Pham et al. 2021a). However, factors should be 198 

identified according to the environmental conditions of the study area (Adnan et al. 2020b). 199 

In this study, initially, thirteen flood causative factors were chosen based on the 200 

topographical, hydrological, locational, geological, and anthropogenic characteristics of the 201 

study area. Selected factors include slope, aspect, curvature, elevation, Stream Power Index 202 

(SPI), flow accumulation, Topographic Wetness Index (TWI), soil permeability, soil texture, 203 

land use/land cover (LULC), geology, distance to rivers, and drainage density. The thematic 204 

maps for all thirteen flood causative factors were developed at a spatial resolution of 30 m 205 

(Figure 3). 206 

Topographical factors considered for flood susceptibility modeling include elevation, 207 

slope, aspect, and curvature. Surface elevation is an important factor accountable for flooding 208 

(Bui et al. 2020a, Sarkar and Mondal 2020, Islam et al. 2021). Generally, elevation is 209 

negatively associated with flooding, as areas with lower elevation tend to be highly 210 

susceptible to flooding (Rahman et al. 2021b). In this study, a raster elevation layer was 211 

prepared using the Advanced Land Observing Satellite (ALOS) Digital Elevation Model 212 

(DEM) at 30 m resolution (JAXA 2015). Other topographical factors like slope, curvature, 213 

and aspect are computed from DEM. Slope determines the runoff velocity after a rainfall 214 

event (Talukdar et al. 2020). Flood potential is higher in areas with a lower slope and vice 215 

versa (Adnan et al. 2020b). Aspect is another important topographical factor that indicates 216 

slope directions (Adnan et al. 2020b). Generally, aspect denotes the magnitude of rainfall and 217 

sunshine that an area would receive, influencing the water balance of an area (Tehrany et al. 218 

2017). Curvature indicates geomorphological features of an area (Paul et al. 2019). Surfaces 219 

with flat or concave characteristics are usually susceptible to flooding (Adnan et al. 2020b).  220 

Flow accumulation is an important hydrological factor that impacts the flood 221 

susceptibility of an area. The raster layer of flow accumulation was derived from DEM by 222 

developing a continuing network of drainage systems (Planchon and Darboux 2002). Pixel-223 

wise flow accumulation value denotes accumulated water flowing in the downslope direction 224 

(Adnan et al. 2020b). The flow accumulation layer was used to identify drainage channels 225 

(Adnan et al. 2019a), which was later used to develop a drainage density layer. Other 226 

hydrological factors such as SPI and TWI indicate drainage characteristics of the study area. 227 

SPI typically exhibits the erosive power of flowing water (Talukdar et al. 2020), indicating 228 

the rate of sediment that could relocate to natural drainage channels (Adnan et al. 2020b). On 229 

the other hand, TWI denotes the amount of water that is accumulated in every pixel size 230 

(Islam et al. 2021). TWI explains the possibility of a wet surface. An area with higher SPI 231 

National-scale flood risk assessment using GIS and remote sensing-based hybridized deep neural network and fuzzy analytic hierarchy process models: a case of Bangladesh



8 
 

and TWI is highly likely to be flooded (Bannari et al. 2017). SPI and TWI were computed 232 

using equations (2) and (3).  233 

𝑆𝑃𝐼 = 𝐴𝑠 × 𝑡𝑎𝑛𝛽 (2) 

𝑇𝑊𝐼 = 𝑙𝑛 (
𝐴𝑠

𝛽
) 

(3) 

where, As is the fixed catchment region (m2/m) and β is the slope gradient. 234 
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236 

Figure 3. Thematic layers of various indicators for modeling flood risk 237 

This study also used three geological factors: geology, soil permeability, and soil 238 

texture. Soil texture controls infiltration rate as well as surface runoff, hence, it is considered 239 

a significant flood conditioning factor (Rahman et al. 2021b). The raster layer of soil texture 240 

was taken from Bangladesh Agricultural Research Council (BARC) database (BARC 2014). 241 
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Soil permeability data can explain runoff patterns and drainage processes. It indicates the 242 

hydraulic activity of unsaturated soils and is an important factor influencing streamflow 243 

(Singh et al. 2020). The soil permeability data were also obtained from BARC (2014). This 244 

study also considered the geological characteristics of Bangladesh. The geology of an area 245 

influences the formation and construction of drainage patterns (Islam and Sado 2000, Bui et 246 

al. 2019), leading to the generation and development of floodplains. Typically, areas with a 247 

mostly impenetrable surface geology are highly susceptible to flood (Islam and Sado 2000). 248 

The digital geological data of Bangladesh was taken from the United States Geological 249 

Survey (USGS) (Persits et al. 2001). 250 

LULC is a crucial flood conditioning factor since it directs the initiation as well as 251 

infiltration of the surface runoff and transportation of sediment (Adnan et al. 2020b). It 252 

directly impacts some parameters in the hydrological cycle such as interception and 253 

concentration (Rahman et al. 2019). Generally, built-up areas are more prone to flooding 254 

compared to the forest and open spaces due to low infiltration rates and high surface runoff 255 

(Talukdar et al. 2020). LULC data of 2020 was collected from the Environmental Systems 256 

Research Institute (Esri), which is developed using Sentinel-2 imagery (Karra et al. 2021).  257 

Rivers are considered as the main paths of water flow causing flood events (Rahmati 258 

et al. 2020). This study incorporated a layer explaining distance to river as a locational factor 259 

(Mojaddadi et al. 2017). Areas that are close to the river are generally more susceptible 260 

(Costache et al. 2020b, Talukdar et al. 2020). The distance to river layer was derived from a 261 

river network database, collected from Water Resources Planning Organization (WARPO) 262 

(WARPO 2018) using the Euclidean distance algorithm. Table 1 shows a summary of the 263 

sources and spatial resolution of flood causative factors. 264 

 265 

Table 1. Indicators used for flood susceptibility, hazard, exposure and vulnerability modeling 266 

No. Factors Spatial 
resolution  

Variable 
type 

Sources  

1 Elevation 30 m Numeric (JAXA 2015) 
2 Slope " Numeric Derived from DEM 
3 Aspect " Categorical " 
4 Curvature " Categorical  " 
5 Flow Accumulation 

 
" Numeric " 

6 SPI " Numeric  " 
7 TWI " Numeric " 
8 Soil Permeability " Categorical (BARC 2014) 
9 Soil Texture " Categorical (BARC 2014) 

10 LULC 10 m Categorical (Karra et al. 2021) 
11 Geology 30 m Categorical  (Persits et al. 2001) 
12 Distance to River " Numeric  (WARPO 2018) 
13 Drainage Density " Numeric Derived from DEM 
14 Flood Depth " Categorical  (BARC 2014) 
15 Rainfall 11.1 km Numeric (Huffman et al. 2019) 
16 Population Density 100 m Numeric (WorldPop 2020) 

National-scale flood risk assessment using GIS and remote sensing-based hybridized deep neural network and fuzzy analytic hierarchy process models: a case of Bangladesh



12 
 

(Population per Cell) 
17 Age (Less than 14 and Greater 

than 60)  
100 m Categorical (Bondarenko et al. 

2020) 
18 Poverty (Wealth Index)  60 m – 5 km  Numeric (Steele et al. 2017) 
19 Road Density 30 m   (WARPO 2018) 

 267 

Flood risk components  268 

Flood hazard   269 

This study considered flood susceptibility (Pham et al. 2021a), flood depth (Pham et al. 270 

2021a), and rainfall (David and Schmalz 2020) to develop a flood hazard map of Bangladesh 271 

(Table 1). Rainfall is a crucial hydrological factor for flood hazard mapping (Lu et al. 2020). 272 

In Bangladesh, both short-term heavy rainfall and long-term low to moderate rainfall are 273 

accountable for flooding (Adnan et al. 2019b). Rainfall can cause hydrostatic pressure, 274 

promoting a higher water level in the major rivers (Rahman et al. 2019). Satellite-derived 275 

gridded precipitation data of July and August 2020, collected from Huffman et al. (2019), 276 

were used to develop a layer of the average monthly total rainfall. A thematic layer of flood 277 

depth was collected from BARC (2014) (Figure 3 (n)).  278 

 279 

Flood exposure  280 

Three indicators were used for developing a flood exposure map: distance to river, LULC, 281 

and population density (Table 1). Previous studies considered population density as an 282 

important indicator for modeling flood exposure (Zou et al. 2013, Pham et al. 2021a). Flood-283 

prone areas with a high population density are more vulnerable to flooding than areas with a 284 

low density. In this study, population density data of 2020 was collected from WorldPop 285 

(2020) (Figure 3 (p)). As described in section 2.3, areas near the river are identified from 286 

DEM, and LULC data are collected from Karra et al. (2021). 287 

 288 

Flood vulnerability  289 

Flood vulnerability is typically correlated with the type of infrastructures as well as 290 

characteristics of the communities in flood-prone areas. Flood vulnerability was estimated 291 

based on three indicators: road density (Ronco et al. 2015, Pham et al. 2021a), age (Brito et 292 

al. 2018), and poverty (wealth index) (Pham et al. 2021a) (Table 1). Generally, flood-prone 293 

areas with a high road density are vulnerable to flooding (Pham et al. 2021a). A raster road 294 

density layer was derived from road network data collected from WARPO (2018). The 295 

population age structure is also a useful flood vulnerability indicator (Brito et al. 2018). A 296 

high percentage of children and older people increase flood vulnerability of an area (Brito et 297 

al. 2018). The age distribution data was retrieved from the WorldPop (Bondarenko et al. 298 

2020), where the total number of people aged less than 14 and greater than 60 was estimated 299 

for Bangladesh for the year 2020. Also, an area with a high poverty ratio becomes vulnerable 300 

to flooding (Adnan et al. 2020a, Pham et al. 2021a). The wealth index data was retrieved 301 

from Steele et al. (2017) to analyze poverty scenarios. Flood vulnerability indicator maps are 302 

shown in Figure 3 (q–s).  303 

 304 
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Flood risk assessment 305 

We estimated flood risk to be the product of flood hazard, exposure, and vulnerability 306 

(equation 4) (Pham et al. 2021a, Pham et al. 2021b).   307 

𝐹𝑙𝑜𝑜𝑑 𝑅𝑖𝑠𝑘 = 𝐹𝑙𝑜𝑜𝑑 𝐻𝑎𝑧𝑎𝑟𝑑 × 𝐹𝑙𝑜𝑜𝑑 𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒 × 𝐹𝑙𝑜𝑜𝑑 𝑉𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (4) 
 308 

Flood susceptibility modeling 309 

Flood susceptibility modeling was considered as a component of flood hazard mapping. 310 

Pixel-wise flood susceptibility scores (FS) were estimated using equation (5) (Rahman et al. 311 

2019, Siam et al. 2021a). 312 

𝐹𝑆 =  ∑ 𝑤𝑗𝑥𝑗

𝑛

𝑗=1

 
(5) 

where n denotes the number of flood conditioning factors used for FSM, xj indicates 313 

selected flood conditioning factors and wj represents the weight of every factor. To find the 314 

optimal weight of every factor for flood susceptibility modeling, a total of six standalone and 315 

hybridized DNN models were established: adaptive moment estimation (ADAM) – rectified 316 

linear unit (ReLU) – Softmax – DNN, ADAM – ReLU – Sigmoid – DNN, L2 regularization 317 

(L2) – ADAM – ReLU – Softmax – DNN, L2 – ADAM – ReLU – Sigmoid – DNN, Dropout 318 

– ADAM – ReLU – Softmax – DNN and Dropout – ADAM – ReLU – Sigmoid – DNN. 319 

Also, a total of six standalone and hybridized SVR models were investigated such as 320 

standalone SVR, Gaussian Radial Basis Function Kernel (Gaussian RBF) – SVR using grid 321 

search technique, GA – Gaussian RBF – SVR, GA – laplacian RBF kernel (Laplacian RBF) – 322 

SVR, GA – sigmoid or multilayer perceptron kernel (MLP) – SVR and GA – linear kernel 323 

(Linear) – SVR. Besides, three conventional ML models (e.g., conditional inference tree, k-324 

nearest neighbor (KNN), and MLP) were established. All standalone and hybridized deep 325 

neural network models were developed using the ‘keras’ package in the R programming 326 

language. The conditional inference tree, k-nearest neighbor, and multilayer perceptron 327 

models were established using the ‘ctree’ function of ‘party’ package, ‘knnreg’ function of 328 

‘caret’ package, and ‘neuralnet’ function of ‘neuralnet’ package in R, respectively. 329 

i. Multicollinearity analysis for optimizing features  330 

In the present study, multicollinearity among flood causative factors was diagnosed by 331 

estimating the variance inflation factors (VIF) (Midi et al. 2010), using the ‘Car’ package in 332 

R, to remove factors that are subject to multicollinearity. VIF for each factor should be <2.5 333 

to circumvent the model bias (Midi et al. 2010). If the value is >10, it denotes the presence of 334 

multicollinearity (Midi et al. 2010). After investigating multicollinearity, the flood 335 

susceptibility model includes a total of eleven flood conditioning factors whose VIF values 336 

were less than 2.5 (Bai et al. 2011). TWI and flow accumulation layers were discarded since 337 

the addition of these two layers increased VIF values (Table 2). 338 

Table 2. VIF values, indicating multicollinearity of selected factors 339 

Factors VIF (Iteration 1) VIF (Iteration 2) 
Aspect 1.029 1.007    

Distance to River 1.162   1.160  
Drainage Density 1.189 1.182 

Elevation 2.496   2.472    
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Flow Accumulation 4.119   - 

Geology 1.487    1.481   
LULC 1.255   1.254    

Curvature 1.251    1.182   
Slope 3.673  1.833  

Soil Permeability 1.997    1.988   
Soil Texture 2.461    2.459   

SPI 6.410 1.284 
TWI 7.621  - 

 340 

ii. Feature scaling 341 

Since we exploited gradient descent as well as distance-based models, all continuous 342 

variables such as slope, drainage density, distance to river, elevation and SPI were scaled 343 

using z-score normalization technique (equation 6). 344 

𝑧 =  
𝑥 −  𝜇

𝜎
  (6) 

where, x is the feature value, μ and σ are mean and standard deviation of that feature, 345 

respectively. After feature scaling, values of eleven flood conditioning factors were extracted 346 

corresponding to flood and non-flood points. 347 

                 348 

iii. Standalone and hybridized DNN models  349 

We developed and applied six standalone and hybridized DNN models for mapping flood 350 

susceptibility. In the DNN model, we experimented with three hidden layers consistent with 351 

the study by Bui et al (Bui et al. 2019). A total of eleven nodes (i.e., 11 flood conditioning 352 

factors) were taken in the input layer and one node (sample flood points) in the output layer. 353 

We set the number of nodes to eight in each of the three consecutive hidden layers since the 354 

number of nodes in each hidden layer is suggested to be in between the number of input 355 

nodes and output nodes (Bui et al. 2020b). We used rectified linear activation function 356 

(ReLU) in each of the three hidden layers. However, in the output layer, we used the sigmoid 357 

activation function and the softmax activation function separately. For the sigmoid activation 358 

function, we used the binary cross-entropy loss function. For the softmax activation function, 359 

we applied one-hot encoded the output variable. Therefore, the number of output nodes 360 

became two instead of one in the case of the softmax activation function. For the loss 361 

function, we used the categorical cross-entropy function for the softmax activation function. 362 

We initialized the weights setting the parameters of mean to 0, the standard deviation 363 

to 0.05, and the biases with the values of zero. For gradient descent optimization, we used the 364 

ADAM optimizer that integrates the gradient descent with momentum technique with the 365 

root mean square propagation (RMSprop) method. In the model,  the number of epochs and 366 

mini-batches was set to 50 and 32, respectively. To circumvent the model overfitting issue 367 

with the train set, we further divided the train set (70% sample points) into train and 368 

validation sets implementing a 10-fold cross-validation technique so that the prediction 369 

accuracy on the test set (30% sample points) gets maximized. 370 

We hybridized two DNN models: ADAM – ReLU – Sigmoid – DNN and ADAM – 371 

ReLU – Softmax – DNN, using two approaches that are L2 regularization and dropout 372 
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technique to reduce the high variance in the models. For L2 regularization, we specified 373 

regularization as the parameter in each of the three hidden layers and set the value of λ to 374 

0.001. For dropout, we added an extra layer after each of the three hidden layers and set the 375 

value of к to 0.6.  376 

iv. Standalone and hybridized SVR models  377 

We developed and evaluated six standalone and hybridized SVR models for predicting flood 378 

susceptibility. First, the baseline SVR model was developed and combined with four different 379 

kernel functions (e.g., linear, gaussian RBF, laplacian RBF, and MLP kernels) separately. 380 

The grid search algorithm and GA were used for hyperparameter tuning and hybridization. 381 

The objective of SVR is to generate function, describing correlation between input 382 

and output mentioned in equation (7). 383 

𝑓(𝑥) = 𝑤𝑇𝜓(𝑥) + 𝑏𝑖𝑎𝑠 (7) 
where, 𝑥 𝜖 𝑅𝑛 indicates flood conditioning features, w ∈ Rn represents weight vector, 384 

and non-linear mapping function is denoted by 𝜓(𝑥). The final solution to the constrained 385 

optimization problem in SVR using Lagrangian formulation is described in equation (8).  386 

𝑓(𝑥) =  ∑(𝛼𝑗 − 𝛼𝑗
∗)𝑘(𝑥, 𝑥𝑗) + 𝑏𝑖𝑎𝑠

𝑛

𝑗=1

 (8) 

where, 𝛼𝑗 and 𝛼𝑗
∗ denote the Lagrangian multipliers and 𝑘(𝑥𝑚, 𝑥𝑛) = <387 

𝜓(𝑥𝑚), 𝜓(𝑥𝑛) > indicates the kernel function. Various types of kernel functions could be 388 

employed (Rahmati et al. 2020). The linear, gaussian RBF, laplacian RBF and MLP kernels 389 

can be described in equations (9)-(12), respectively. 390 

𝑘(𝑥, 𝑥𝑗) = 𝑠𝑢𝑚(𝑥. 𝑥𝑗) (9) 

𝑘(𝑥, 𝑥𝑗) =  𝑒−𝛾‖𝑥−𝑥𝑗‖
2

 (10) 

𝑘(𝑥, 𝑥𝑗) =  𝑒
−

‖𝑥−𝑥𝑗‖

𝛾  
(11) 

𝑘(𝑥, 𝑥𝑗) = 𝑡𝑎𝑛ℎ (𝐴𝑥𝑇𝑥𝑗 + 𝐵) (12) 
where, γ is an optimizing hyperparameter indicating the spread of the kernel. A is the 391 

scale value and B is the offset value. The prediction accuracy of SVR model also depends on 392 

other parameters, that are, epsilon, ε representing approximation quality and the cost value 393 

that determines the tradeoff between model complexity and training error. 394 

In the standalone SVR model, we have set epsilon to 0.1, cost to 1, and gamma to 0.1. 395 

For gaussian RBF – SVR, we optimized gamma and cost using the grid search technique in 396 

combination with the 10-fold cross-validation technique while setting epsilon to 0.1. We 397 

searched from 0.1 to 2 (interval = 0.1) to find the optimal value of gamma. The optimal value 398 

of cost was searched from 0.1 till 10 (interval = 0.1) using a grid search algorithm. This 399 

resulted in generating and training a total of 2000 SVR models with different values of 400 

gamma and cost. The optimal parameter values derived from the grid search technique 401 

produce the least mean squared error (MSE) on the test dataset. Using GA, we optimized the 402 

parameters of GA – Linear – SVR (i.e., epsilon and cost), GA – Gaussian RBF – SVR and 403 

GA – Laplacian RBF – SVR (i.e., epsilon, cost, and gamma), and GA – MLP – SVR (i.e., 404 

epsilon, cost, scale, and offset). The negative quantity of the MSE on the test set prediction 405 

was defined as the objective function of GA as we maximized the objective function. Again, 406 
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a 10-fold cross-validation technique was employed while training all the SVR models on the 407 

train set to reduce overfitting. 408 

 409 

v. Conventional ML models 410 

This study also developed three conventional ML models: conditional inference tree, KNN, 411 

and MLP models. The conditional inference tree is a distinct type of decision tree model that 412 

employs recursive partitioning of the dependent variables depending on the correlation values 413 

to avoid biasing. This model exploits a significance test to choose the input variables rather 414 

than choosing the variable maximizing the information measure. We set the values of the 415 

minimum criterion and split to 0.95 and 200, respectively. KNN is a supervised ML model 416 

that assumes the similarity or resemblance between the novel case and the known or available 417 

cases and consequently puts the novel case into the class or category most similar to the 418 

available classes or categories (Costache et al. 2020a). We experimented with different 419 

values for k in the KNN model. However, the model performed better for a k value of five. 420 

MLP is another supervised ML model that provides a very fundamental feedforward neural 421 

network architecture utilized for both classification and regression-based problems 422 

(Ahmadlou et al. 2021). In the architecture of MLP, we used two hidden layers with the first 423 

layer containing a total of ten nodes and the second layer containing a total of three nodes. 424 

We set the values of the threshold to 0.1 and the maximum steps for training to 106. We used 425 

RPROP+ as the learning algorithm for MLP. 426 

 427 

vi. Validation and comparison of models 428 

For identifying the best performing flood susceptibility model, this study estimated values of 429 

various cutoff-dependent and cutoff-independent validation indicators using the ‘roc’ and 430 

‘plot.roc’ functions of ‘pROC’ package in R. The indices include receiver operating 431 

characteristic (ROC) and area under the receiver operating characteristic (AUROC) curves, 432 

kappa statistic, overall accuracy (OA), positive predictive value (PPV), negative predictive 433 

value (NPV), sensitivity, specificity, and MSE. We used Youden’s index for estimating the 434 

optimal cutoff point (Youden 1950) and binarized the predicted flood susceptibility scores by 435 

the models (Adnan et al. 2020b). We also estimated the seed cell area index (SCAI) (Akay 436 

2021) values for validation and comparison of flood susceptibility, hazard, exposure, 437 

vulnerability, and risk models.  438 

 439 

vii. Flood susceptibility map  440 

Applying the best-performing flood prediction model, a flood susceptibility map of 441 

Bangladesh was developed using the ArcGIS 10.8 software. The susceptibility values were 442 

normalized on a 0-1 scale. The resultant flood susceptibility map was categorized into five 443 

classes using the equal interval method in GIS: Very Low (0 – 0.2), Low (0.2 – 0.4), Medium 444 

(0.4 – 0.6), High (0.6 – 0.8), and Very High (0.8 – 1) (Rahman et al. 2019).  445 

 446 

Flood hazard modeling 447 

Flood hazard in the study area was estimated using equation (13) (Pham et al. 2021a, Pham et 448 

al. 2021b). 449 
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𝐹𝑙𝑜𝑜𝑑 𝐻𝑎𝑧𝑎𝑟𝑑 𝑆𝑐𝑜𝑟𝑒 =  𝐴1 × 𝐹𝑙𝑜𝑜𝑑 𝑆𝑢𝑠𝑐𝑒𝑝𝑡𝑖𝑏𝑖𝑙𝑖𝑡𝑦 𝑆𝑐𝑜𝑟𝑒 +  𝐵1 ×

𝐹𝑙𝑜𝑜𝑑 𝐷𝑒𝑝𝑡ℎ +  𝐶1 × 𝑅𝑎𝑖𝑛𝑓𝑎𝑙𝑙    

(13) 

where, A1, B1, and C1 are the weights of flood susceptibility, flood depth, and rainfall, 450 

respectively. Although previous studies reported the efficacy of the classical AHP tool in 451 

modeling flood hazards (Pham et al. 2021a, Pham et al. 2021b), this study utilized a fuzzy 452 

AHP model (Zadeh 1996) due to its higher prediction accuracy (Büyüközkan and Feyzıog̃lu 453 

2004). First, fuzzy pairwise comparison matrices of the criteria and sub-criteria were 454 

developed using the triangular fuzzy numbers (TFN) of the scale of Saaty on relative 455 

importance (Ekmekcioğlu et al. 2021). Then weights of different criteria and the local 456 

weights of their sub-criteria were generated (Liou and Wang 1992). We also conducted a 457 

pairwise comparison of each alternative against every sub-criterion. Global weights of all 458 

sub-criterion were estimated by multiplying the weight of each criterion by their local 459 

weights. The flood susceptibility parameter was given the most importance, followed by 460 

rainfall and flood depth (Pham et al. 2021a). The higher values of all these three criteria 461 

indicate a higher flood hazard score. The validity of the weights was checked by ensuring a 462 

consistency ratio of less than 10%, where the consistency ratio is defined in equations (14)-463 

(15) (Liou and Wang 1992).  464 

 465 

𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦 𝐼𝑛𝑑𝑒𝑥 =  
𝜆𝑚𝑎𝑥 − 𝑘

𝑘 − 1
 

(14) 

𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦 𝑅𝑎𝑡𝑖𝑜 =  
𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦 𝐼𝑛𝑑𝑒𝑥

𝑅𝑎𝑛𝑑𝑜𝑚 𝐼𝑛𝑑𝑒𝑥
 

(15) 

where 𝜆𝑚𝑎𝑥 denotes the highest eigenvalue that belongs to the decision matrix and k 466 

is the number of criteria. We set a random index value consistent with the study of Saaty and 467 

Tran (2007). The optimism index was set to 80%. Finally, a weighted sum method was 468 

employed in equation (13) to estimate a flood hazard score. 469 

Flood exposure modeling 470 

The flood exposure score was estimated using equation (16) (Pham et al. 2021a, Pham et al. 471 

2021b). 472 

 𝐹𝑙𝑜𝑜𝑑 𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒 𝑆𝑐𝑜𝑟𝑒 =  𝐴2 × 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑜 𝑅𝑖𝑣𝑒𝑟 +  𝐵2 × 𝐿𝑈𝐿𝐶 +

 𝐶2 × 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝐷𝑒𝑛𝑠𝑖𝑡𝑦    

(16) 

where A2, B2, and C2 are the weights of distance to river, LULC, and population 473 

density, respectively. For designing fuzzy pairwise comparison matrices of criteria and sub-474 

criteria for flood exposure modeling, the population density parameter was prioritized for its 475 

positive association with exposure (Pham et al. 2021b), followed by LULC and distance to 476 

river (Pham et al. 2021b).  477 

 478 

Flood vulnerability modeling 479 

The flood vulnerability score can be defined in equation (17) (Brito et al. 2018, Pham et al. 480 

2021a, Pham et al. 2021b). 481 

𝐹𝑙𝑜𝑜𝑑 𝑉𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑆𝑐𝑜𝑟𝑒 =  𝐴3 × 𝑅𝑜𝑎𝑑 𝐷𝑒𝑛𝑠𝑖𝑡𝑦 + 𝐵3 × 𝐴𝑔𝑒 +

 𝐶3 × 𝑃𝑜𝑣𝑒𝑟𝑡𝑦 (𝑊𝑒𝑎𝑙𝑡ℎ 𝐼𝑛𝑑𝑒𝑥)    

(17) 
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where A3, B3, and C3 are the generated weights of road density, age, and poverty 482 

(wealth index) respectively utilizing the fuzzy AHP model. Here, poverty (wealth index) was 483 

given the highest preference (Pham et al. 2021a), followed by age and road density.  484 

 485 

Flood risk modeling 486 

After estimating flood hazard, exposure, and vulnerability scores using fuzzy AHP models, 487 

we normalized their scores on a 0-1 scale. Finally, the flood risk map of Bangladesh was 488 

derived using equation (4) in GIS. In this study, all fuzzy AHP models were established using 489 

MATLAB R2020a software.  490 

Sensitivity analysis of flood causative factors   491 

This study performed a sensitivity analysis of all the flood causative factors in modeling 492 

flood susceptibility, hazard, exposure, vulnerability, and risk by estimating their importance 493 

rank using the random forest (RF) function. The %IncMSE and IncNodePurity indicators 494 

were exploited to rank the flood causative factors, estimated using the ‘randomForest’ 495 

package in R. The %IncMSE measures the upsurge in the MSE value of model prediction 496 

when the values of a feature are randomly permuted. The IncNodePurity indicates the total 497 

reduction of node impurities estimated by the Gini Index from variable splitting averaged 498 

over all the decision trees. The higher the values of %IncMSE and IncNodePurity suggest 499 

greater importance of a feature in the model — a greater sensitivity (Rahmati et al. 2020, 500 

Siam et al. 2021a). 501 

 502 

Results 503 

Flood susceptibility assessment  504 

Standalone and hybridized DNN models 505 

Figure 4 shows the variation of the loss and accuracy metrics over the progression of 50 506 

epochs in each of the six DNN models on the train and validation datasets. The L2 – ADAM 507 

– ReLU – Softmax – DNN model is found to be the best-performed model for the train set, 508 

with an accuracy value of 0.8892. However, the ADAM – ReLU – Sigmoid – DNN model 509 

yielded the highest accuracy (0.8196) with validation data. 510 

 511 
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Figure 4. Variation of train loss and accuracy, validation loss and accuracy over the number 512 

of epochs for: (a) ADAM – ReLU – Sigmoid – DNN, (b) ADAM – ReLU – Softmax – DNN, 513 

(c) L2 – ADAM – ReLU – Sigmoid – DNN, (d) L2 – ADAM – ReLU – Softmax – DNN, (e) 514 

Dropout – ADAM – ReLU – Sigmoid – DNN and (f) Dropout – ADAM – ReLU – Softmax – 515 

DNN models.  516 

 517 

Standalone and hybridized SVR models 518 

In this study, the number of support vectors is found to be 1650, 1266, 1086, 1335, 756, and 519 

978 for standalone SVR, Gaussian RBF – SVR, GA – Gaussian RBF – SVR, GA – Laplacian 520 

RBF – SVR, GA – MLP – SVR, and GA – Linear – SVR models, respectively, during the 521 

training phase. This indicates that the MLP kernel reduces the complexity of the SVR model 522 

more compared to other kernels. The algorithm settings and solutions of GA – Gaussian RBF 523 

– SVR, GA – Laplacian RBF – SVR, GA – MLP – SVR, and GA – Linear – SVR are shown 524 

in Table 3. 525 

 526 

Table 3. Settings and results of hybridized SVR models 527 

 
  Criteria   

GA- 
Gaussian 
RBF-SVR 

GA- 
Laplacian 
RBF-SVR 

GA-MLP-
SVR 

GA-
Linear-
SVR 

GA  
Settings 

Type   Real  
value 

Real  
value 

Real  
value 

Real  
value 

Population 
size 

  50 50 50 50 

Number of  
generations 

  100 100 100 100 

Elitism   2 2 2 2 
Crossover  
probability 

  0.8 0.8 0.8 0.8 

Mutation  
probability 

  0.1 0.1 0.1 0.1 

Search  
domain 

Epsilon Lower 0 0 0 0 
Upper 1 1 1 1 

Gamma Lower 0.0010 0.0010 - - 
Upper 2.0000 2.0000 - - 

Cost Lower 0.0001 0.0001 0.0001 0.0001 
Upper 10 10  10 10  

Scale Lower - - 0.00001 - 
Upper - - 1 - 

Offset Lower - - -10 - 
Upper - - -0.00001  - 

GA 
Results 

Iterations   100 100 100 100 
Fitness  
function 
value 

  -0.0922 -0.0904 -0.1164 -0.1186 
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Solution Epsilon  0.1737 0.1020 0.6959 0.4982 
Gamma  0.1149 0.2989 - - 
Cost  1.4114 9.3438 8.1556 5.1641 
Scale  - - 0.1435  - 
Offset  - - -3.2567 - 

  528 

Figure 5 (a) shows the performance of all the trained Gaussian – RBF – SVR models 529 

using grid search in a contour plot where values of gamma are shown along the x-axis and 530 

values of cost are in the y-axis while the z-axis shows corresponding MSE. The optimal value 531 

of cost is 1.10 while the optimal gamma value is 0.10 for the best Gaussian RBF – SVR 532 

model with an MSE of 0.0925 from the grid search result. In the best Gaussian RBF – SVR 533 

model, weight values of slope, distance to river, drainage density, elevation, SPI, soil texture, 534 

soil permeability, LULC, geology, curvature, and aspect are -30.03, -40.58, 8.15, -47.18, 535 

10.20, 18.70, 25.02, -2.52, 2.96, 0.09 and -0.08, respectively, where the bias is 0.39. The 536 

fitness values of the other four hybridized SVR models are shown in Figure 5 (b–e).  537 

 538 
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Figure 5. (a) Performance of all the trained Gaussian RBF – SVR models. Variation of fitness 539 

value over the number of generations in (b) GA – Linear – SVR, (c) GA – Gaussian RBF – 540 

SVR, (d) GA – Laplacian RBF – SVR and (e) GA – MLP – SVR models.  541 

 542 

Conventional ML models 543 

Among the other three ML models employed, the conditional inference tree performed better 544 

than KNN and MLP models in terms of fitting the train data more accurately. Figure 6 545 

illustrates the fitted conditional inference tree on the train set.  546 

 547 

Figure 6. Conditional inference tree based on train set 548 

 549 

Model validation and comparison  550 

This study compares all fifteen ML models to select the best-performed model for flood 551 

susceptibility mapping in Bangladesh. Figure 7 illustrates the ROC curves of all models 552 

based on the test set. 553 
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 554 

Figure 7. Validation of (a) the standalone and hybridized SVR, (b) standalone and hybridized 555 

DNN and, (c) other machine learning models using the ROC curves 556 

The ADAM – ReLU – Softmax – DNN model yields the highest prediction accuracy, 557 

with an AUROC value of 95.7%, followed by the ADAM – ReLU – Sigmoid – DNN model 558 

(AUROC - 95.6%) and the L2 – ADAM – ReLU – Sigmoid – DNN model (AUROC - 559 

95.5%) (Figure 7 (b)). A total of four DNN models have an AUROC greater than or equal to 560 

95%. Contrarily, SVR models have relatively a lower prediction accuracy, where the GA – 561 

Laplacian RBF – SVR model obtained the highest AUROC value of 94.9% (Figure 7 (a)). In 562 

the case of conventional ML models, the conditional inference tree obtained the highest 563 

AUROC value of 94.6% (Figure 7 (c)). Model comparison results indicate a higher efficacy 564 

of the DNN models over the other models in estimating flood susceptibility. Table 4 presents 565 

the outcomes of performance assessment of different models. 566 

 567 

Table 4. Model performance using different statistical indices  568 

Models Cutoff AUROC OA Kappa Sensitivity Specificity PPV NPV MSE 
ADAM-ReLU- 
Sigmoid-DNN 

0.697 0.956 0.893 0.785 0.911 0.874 0.884 0.903 0.087 

ADAM-ReLU- 
Softmax-DNN 0.507 0.957 0.894 0.788 0.929 0.857 0.872 0.920 0.083 

L2- ADAM-ReLU- 
Sigmoid-DNN 

0.603 0.955 0.898 0.795 0.927 0.867 0.880 0.919 0.084 

L2- ADAM-ReLU- 
Softmax-DNN 0.848 0.950 0.883 0.766 0.894 0.872 0.880 0.887 0.108 

Dropout- ADAM-ReLU- 
Sigmoid-DNN 

0.618 0.904 0.887 0.773 0.960 0.810 0.841 0.951 0.117 
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Dropout- ADAM-ReLU- 
Softmax-DNN 

0.429 0.940 0.892 0.783 0.941 0.840 0.860 0.932 0.140 

SVR 0.554 0.914 0.847 0.693 0.878 0.815 0.833 0.864 0.126 

Gaussian RBF-SVR 0.572 0.944 0.879 0.759 0.913 0.844 0.860 0.902 0.093 

GA- 
Gaussian RBF-SVR 0.582 0.945 0.884 0.768 0.906 0.862 0.873 0.897 0.092 

GA- 
Laplacian RBF-SVR 

0.394 0.949 0.881 0.761 0.944 0.815 0.842 0.932 0.090 

GA-MLP-SVR 0.525 0.943 0.883 0.766 0.908 0.857 0.869 0.899 0.116 
GA-Linear -SVR 0.496 0.931 0.866 0.732 0.934 0.795 0.827 0.920 0.119 
Conditional Inference Tree 0.639 0.946 0.869 0.740 0.812 0.931 0.925 0.825 0.087 
KNN 0.600 0.914 0.842 0.684 0.873 0.810 0.828 0.859 0.114 
MLP 0.633 0.924 0.879 0.759 0.915 0.842 0.859 0.905 0.108 

 569 

The L2 – ADAM – ReLU – Sigmoid – DNN model obtains the highest OA value of 570 

0.898 and a kappa statistic of 0.795, followed by the ADAM – ReLU – Softmax – DNN (OA 571 

= 0.894 and kappa = 0.788) and  ADAM – ReLU – Sigmoid – DNN (OA = 0.893 and kappa 572 

= 0.785) models. However, the ADAM – ReLU – Softmax – DNN model achieves the lowest 573 

MSE value of 0.083, followed by the L2 – ADAM – ReLU – Sigmoid – DNN (MSE = 0.084) 574 

and ADAM – ReLU – Sigmoid – DNN (MSE = 0.087) models. Based on the AUROC, OA, 575 

kappa statistic, and MSE metrics together, this study identifies the L2 – ADAM – ReLU – 576 

Sigmoid – DNN and the ADAM-ReLU-Softmax-DNN models as the best two models for 577 

flood susceptibility mapping. However, the estimated SCAI values (Table 7) of flood 578 

susceptibility indicate that the hybridized L2 – ADAM – ReLU – Sigmoid – DNN model 579 

outperforms the ADAM-ReLU-Softmax-DNN model. Therefore, this study uses the 580 

hybridized L2 – ADAM – ReLU – Sigmoid – DNN model for mapping flood susceptibility in 581 

Bangladesh. 582 

 583 

Flood hazard assessment  584 

Figure 8 (b) shows the resultant flood hazard map. Among three criteria of flood hazard, 585 

flood susceptibility received the highest weight, followed by rainfall and flood depth (Table 586 

5). About 20% of the total area is estimated to be flood hazard-prone zones of moderate to 587 

very high levels of severity. Southwestern and northeastern Bangladesh, as well as areas 588 

adjacent to major rivers, are high hazard zones (Figure 8 (b)). The SCAI of high and very 589 

high classes in the hazard map is the lowest, with values of 0.53 and 0.59, respectively (Table 590 

6). 591 

 592 

Flood exposure assessment 593 

Figure 8 (c) shows the flood exposure map of Bangladesh. About 40% of the country is 594 

categorized as moderate to very high magnitudes. Among the three variables (distance to 595 

river, LULC, and population density), the estimated weight for population density is the 596 

highest (Table 5). Unsurprisingly, areas characterized by high population density are highly 597 
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exposed to flooding.  598 

 599 

Flood vulnerability assessment 600 

The flood vulnerability map is shown in Figure 8 (d). Results show that about 69% of 601 

Bangladesh is vulnerable (moderate to very high) to flooding. The highest weight for the 602 

parameter wealth index (WI) (Table 5) indicates that the economic status of the people is one 603 

of the major determining flood vulnerability factors. Areas characterized by a low wealth 604 

index are highly vulnerable to flooding. 605 

 606 

 607 

Figure 8. (a) Flood susceptibility, (b) flood hazard, (c) flood exposure and (d) flood 608 

vulnerability maps of Bangladesh 609 

 610 

Flood Risk Assessment  611 

Table 5 exhibits weights of criteria as well as sub-criteria for flood hazard, exposure, and 612 

vulnerability. Local weights indicate the type of association that exists between floods and 613 

various risk indicators. For instance, flood susceptibility, flood depth, rainfall, population 614 
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density, road density, and age are positively associated with flood risk. On the other hand, 615 

distance to river and wealth index are negatively correlated. In the case of LULC, built-up 616 

areas and croplands are highly prone to flood risk, particularly in areas with high flood 617 

potentials. In the case of the SCAI results, moderate to very high flood risk zones yield 618 

relatively low SCAI values. These results indicate a good agreement between the observed 619 

flood locations and modeled flood risk zones.  620 

 621 

Table 5. Weights of criteria as well as sub-criteria generated by fuzzy AHP method  622 

Component Criteria Weight Class 
Sub – 
criteria 

Local 
Weight 

Global 
Weight 

Flood Hazard Flood 
susceptibility 

0.6037 0 - 0.2 
0.2 - 0.4 
0.4 - 0.6 
0.6 - 0.8 
0.8 - 1 

Very Low 
Low 
Moderate 
High 
Very High 

0.0309 
0.0843 
0.1698 
0.2870 
0.4280 

0.0187 
0.0509 
0.1025 
0.1733 
0.2584 

Flood depth 0.1003 No Flooding 
<0.30 
0.30 - 1.83 
1.83 - 3.05 
>3.05 

1 
2 
3 
4 
5 

0.0412 
0.0757 
0.1223 
0.2950 
0.4658 

0.0041 
0.0076 
0.0123 
0.0296 
0.0467 

Rainfall 0.2960 245.4 - 333.7 
333.8 - 435.8 
435.9 - 560 
560.1 - 725.5 
725.6 – 949.02 

1 
2 
3 
4 
5 

0.0475 
0.0870 
0.1408 
0.2770 
0.4476 

0.0141 
0.0258 
0.0417 
0.0820 
0.1325 

Flood Exposure Distance to 
river 

0.0918 0 - 432 
432 - 1297 
1297 - 2594 
2594 - 4899 
4899 - 36890 

1 
2 
3 
4 
5 

0.4199 
0.2597 
0.1922 
0.0937 
0.0345 

0.0385 
0.0238 
0.0176 
0.0086 
0.0032 

 LULC 0.3727 Water 
Bare Land 
Vegetation 
Crops 
Built Area 

1 
2 
3 
4 
5 

0.0321 
0.0871 
0.2213 
0.2897 
0.3698 

0.0120 
0.0325 
0.0825 
0.1080 
0.1378 

 Population 
density 
(Population 
per cell) 

0.5355 0-1 
1-2 
2-3 
3-6 
6-370 

1 
2 
3 
4 
5 

0.0298 
0.1104 
0.1579 
0.2785 
0.4234 

0.0160 
0.0591 
0.0846 
0.1491 
0.2267 

Flood 
Vulnerability 

Road density 0.0859 0-0.9 
0.9 - 1.3 
1.3 - 1.6 
1.6 - 1.9 
1.9 - 3.4 

1 
2 
3 
4 
5 

0.0375 
0.1046 
0.1601 
0.2287 
0.4692 

0.0032 
0.0090 
0.0138 
0.0196 
0.0403 
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Age (< 14 
and > 60) 

0.2643 0-1 
1-2 
2-3 
3-6 
6-101 

1 
2 
3 
4 
5 

0.0395 
0.1110 
0.1700 
0.2433 
0.4362 

0.0104 
0.0293 
0.0449 
0.0643 
0.1153 

Poverty 
(Wealth 
index) 

0.6498 -1.2 - -0.61 
-0.6 - -0.3 
-0.29 - 0.07 
0.071 - 0.64 
0.65 - 2.2 

1 
2 
3 
4 
5 

0.4141 
0.2492 
0.1797 
0.1237 
0.0334 

0.2691 
0.1619 
0.1168 
0.0804 
0.0217 

 623 

Table 6: SCAI measurements of flood susceptibility, exposure, hazard, vulnerability and risk 624 

maps 625 

Class Flood 

Susceptibility 

(L2-ADAM-

ReLU-

Sigmoid-

DNN)  

Flood 

Susceptibility 

(ADAM-

ReLU-

Softmax-

DNN) 

Flood 

Exposure 

Flood 

Hazard 

Flood 

Vulnerability 

Flood 

Risk 

Very 

Low 

1.56 3.24 1.56 1.49 1.20 1.40 

Low 0.60 2.09 0.85 0.81 0.93 0.96 

Moderate 0.63 1.92 0.97 0.66 0.91 0.66 

High 0.53 1.89 0.97 0.53 1.55 0.59 

Very 

High 

0.56 0.68 3.17 0.59 1.04 0.67 

 626 

Table 7 represents the consistency ratio for each component and criteria which is less 627 

than 10% i.e., acceptable in each case.  628 

Table 7. Consistency ratio for flood risk components  629 

Component Consistency 
ratio (%) 

Criteria Consistency 
ratio (%) 

Flood hazard 8.70 Flood susceptibility 9.88 
Flood depth 8.93 
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Rainfall 6.17 
Flood exposure 8.11 Distance to river 8.02 

LULC 7.79 
Population density 9.94 

Flood vulnerability 4.19 Road density 7.61 
Age 5.88 
Poverty (Wealth  
index) 

7.99  

 630 

Figure 8 (a–d) illustrates the predicted flood susceptibility, flood hazard, flood 631 

exposure, and flood vulnerability maps of Bangladesh. The flood risk map obtained in this 632 

study is shown in Figure 9. About 20.45% of the area is categorized as flood risk zones, 633 

where the percentages of moderate, high, and very high flood risk-prone zones are 13.37%, 634 

5.44%, and 1.64%, respectively. The northeastern region of Bangladesh, as well as areas near 635 

the GBM rivers, have high flood damage potential.  636 

 637 

Figure 9. Flood risk map of Bangladesh 638 

Figure 10 shows the percent of flood risk areas in a few districts where floods affected 639 

a significant number of people in 2020. For instance, in the Kurigram district, a total of 640 

227,440 people (10.4% of the total population of Kurigram) were affected during monsoon 641 

flooding in 2020. This study found that about 52.95% of the total area of Kurigram district is 642 

a flood risk zone of moderate to very high severity. Similarly, in other northern districts such 643 

as Gaibandha, Nilphamari, and Ranpur, a significant number of people were flood-affected. 644 
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This study also found highly risk-prone regions. In the case of northeastern Bangladesh, 645 

districts such as Sunamganj and Netrakona are in this risk zone, with damage potential of 646 

64.43% and 65.38%, respectively. In these two districts, a total of 113,237 and 84,300 people 647 

were inflicted by floods in 2020 (CARE 2020).  648 

 649 

 650 

Figure 10. Percentage of flood risk prone areas in different districts 651 

 652 

Sensitivity analysis results  653 

This study estimates the sensitivity of all corresponding factors in modeling flood 654 

susceptibility, hazard, exposure, vulnerability, and risk with respect to %IncMSE and 655 

IncNodePurity scores provided by RF. The flood susceptibility model is highly sensitive to 656 

factors such as elevation and distance to rivers (Figure 11 (a - b)). In the case of flood hazard, 657 

flood susceptibility is the most significant parameter (Figure 11(c - d)). LULC and population 658 

density are the imporant factors determining flood exposure (Figure 11(e - f)). In the case of 659 

flood vulnerability, poverty is the most influential factor (Figure 11(g - h)). Finally, this study 660 

notes that flood risk is sensitive to flood hazard (Figure 11(i - j)). A recent study (Adnan et al. 661 

2020a) validates the results of flood exposure, vulnerability, and risk. 662 

 663 
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 664 

Figure 11. Sensitivity analysis of flood causative factors in modeling flood susceptibility, 665 

hazard, exposure, vulnerability and risk based on %IncMSE and IncNodePurity. 666 
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Discussion 667 

This study aimed to present a flood risk assessment framework using hybridized DNN and 668 

fuzzy AHP models, hypothesizing that the use of hybridized models would improve the 669 

accuracy of flood risk models. Hence, we developed and evaluated the performance of fifteen 670 

models including twelve standalone and hybridized ML models and three conventional ML 671 

models. The results exhibit the efficacy of the hybridized DNN architectures over all other 672 

models. This is a first attempt to combine hybridized DNN architectures with fuzzy AHP 673 

models to assess flood risk in a complex flood regime like deltaic Bangladesh.    674 

In the case of flood susceptibility, elevation and distance to river were found as the 675 

most influential factors influencing flood potentials. Both these findings are supported by 676 

other recent studies (Wang et al. 2019, Rahmati et al. 2020, Chou et al. 2021, Pham et al. 677 

2021a, Pham et al. 2021b). This study established a total of fifteen flood susceptibility 678 

models that produced an AUC value of more than 90%, indicating an excellent prediction 679 

accuracy (Arabameri et al. 2019). Flood susceptibility map produced using the hybridized L2 680 

– ADAM – ReLU – Sigmoid – DNN model (Figure 8 (a)) yielded the highest prediction 681 

accuracy, resulting in a good agreement with the flood inundation map of Bangladesh in 682 

2020.  683 

The flood susceptibility map produced in this study showed that the northeastern part of 684 

Bangladesh is highly susceptible, including Netrokona, Sunamganj, Kishoreganj, and 685 

Mymensingh. These districts are also in high-risk-prone zones. All these districts include large 686 

water bodies (locally known as “Haor”) and faced severe flooding in the last couple of years. 687 

These districts are also characterized by a low slope and elevation. A recent study reported that 688 

areas with a lower slope and elevation have greater flood damage potential (Adnan et al. 689 

2020b). On the contrary, districts in the southeastern zone such as Khagrachori and Banderbans 690 

are characterized by high elevation areas and low-density population; hence, pose a relatively 691 

low risk. These districts mostly remained inundation-free during the flood events of 2020 692 

(Figure 2). This finding is in accord with other studies that noted that elevation has an inverse 693 

relationship with flooding in general (Rahman et al. 2021b). The flood risk map produced in 694 

this study showed that several districts in northern and northeastern parts of Bangladesh are 695 

located in a high-risk zone, where a significant number of people were affected during the 2020 696 

flood event. Previous studies also reported that the flood potentials of these districts are very 697 

high primarily due to their proximity to major rivers (Rahman et al. 2019, Siam et al. 2021a). 698 

This finding is also consistent with studies that mentioned that areas closer to the rivers are 699 

highly at risk of flood disaster (Talukdar et al. 2020). This study also noted that flood hazard, 700 

vulnerability, and risk models are sensitive to flood susceptibility, poverty, and flood hazard, 701 

respectively. Several recent studies (Adnan et al. 2020a, Adnan et al. 2020b, Siam et al. 2021a) 702 

validates the results of flood hazard, vulnerability, and risk. 703 

Although the proposed framework resulted in a very high flood risk prediction 704 

accuracy, several limitations and uncertainties can be anticipated. First, this study considered 705 

only one flood event due to the unavailability of long-term flood observation data at the 706 

national level. Second, flood susceptibility, hazard, exposure, and vulnerability indicators’ 707 

data had differing spatial resolutions. For these reasons, the independent and dependent 708 

variables used in this study might be subject to label noise. A recent study has observed 709 
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negative effects of label noise on the performance of ML-based flood susceptibility modeling 710 

(Siam et al. 2021b). Future research can address these limitations by establishing label noise-711 

tolerant standalone and hybridized ML models.   712 

 713 

Conclusion  714 

In the present study, a novel approach to flood risk assessment in Bangladesh was developed, 715 

combining hybridized DNN and fuzzy AHP methods. Based on various model performance 716 

assessment indices, the hybridized L2 – ADAM – ReLU – Sigmoid – DNN model was 717 

selected as the best-performed flood susceptibility model. The resultant flood susceptibility 718 

map was used to develop a flood hazard map utilizing the fuzzy AHP model. Finally, the 719 

flood risk map of Bangladesh was developed by integrating flood hazard, exposure, and 720 

vulnerability maps. Despite some uncertainties and limitations, the study promotes the use of 721 

hybridized DNN model for spatial flood risk modeling to achieve a country-scale flood risk 722 

map. The proposed flood risk assessment framework is expected to be useful for 723 

policymakers to better manage flood risk. For future research, this study can be extended to 724 

appraise spatiotemporal flood risk assessment using hybridized DNN models. 725 
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