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Spatial Prediction of Flood Susceptible Areas Using Machine Learning 

Approach: A Focus on West African Region  

ABSTRACT 

The constant change in the environment due to increasing urbanization and climate change 

has led to recurrent flood occurrences with a devastating impact on lives and properties. 

Therefore, it is essential to identify the factors that drive flood occurrences, and flood 

locations prone to flooding which can be achieved through the performance of Flood 

Susceptibility Modelling (FSM) utilizing stand-alone and hybrid machine learning models 

to attain accurate and sustainable results which can instigate mitigation measures and flood 

risk control. In this research, novel hybridizations of Index of Entropy (IOE) with Decision 

Tree (DT), Support Vector Machine (SVM), Random Forest (RF) was performed and equally 

as stand-alone models in Flood Susceptibility Modelling (FSM) and results of each model 

compared. 

First, feature selection and multi-collinearity analysis were performed to identify the 

predictive ability and the inter-relationship among the factors. Subsequently, IOE was 

performed as bivariate and multivariate statistical analysis to assess the correlation among 

the flood influencing factor’s classes with flooding and the overall influence (weight) of each 

factor on flooding. Subsequently, the weight generated was used in training the machine 

learning models. The performance of the proposed models was assessed using the popular 

Area Under Curve (AUC) and statistical metrics. 

Percentagewise, results attained reveals that DT-IOE hybrid model had the highest 

prediction accuracy of 87.1% while the DT had the lowest prediction performance of 77.0%. 

Among the other models, the result attained highlight that the proposed hybrid of machine 

learning and statistical models had a higher performance than the stand-alone models which 

reflect the detailed assessment performed by the hybrid models. The final susceptibility 

maps derived revealed that about 21% of the study area are highly prone to flooding and it 

is revealed that human-induced factors do have a huge influence on flooding in the region.  
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1 INTRODUCTION 

1.1 Background and Motivation 

Flooding is a natural phenomenon, considered as one of the major disasters overwhelming 

the world today because of its catastrophic and devastating after-effects[1]. Flooding is a 

resulting event of an excessive inundation of overland flow[2]. The hazard has been a threat 

to all areas of human lives in various ways such as destruction of lives and properties, 

wrecking of nations' economy, severe damages to transportation systems, and the alteration 

of biodiversity live patterns[3]. The exponential and severe economic losses caused by 

flooding every year globally amounts to over $20 billion with over 3000 fatalities and 

losses[4]. Regrettably, flooding has been labelled the costliest natural hazard because of the 

resulting high economic losses ranging to about 31%[5].   

Similarly, the West African States (WASs) are not exempted from this cataclysmic hazard. 

These states are not far-fetched from the hazard due to rapid indiscriminate development 

and population increase[6], [7]. Based on past studies, these states are more vulnerable 

because of bad infrastructural planning, low level of technology, and political instability 

which leads to the creation of poorly resourced policies[2], [8]. However, these factors are 

aggravated by climatic, topographic, geomorphologic, and anthropogenic factors[9]. It has 

been recorded by past studies that fluvial and coastal flooding are the major flooding types 

that are paramount within the region which is of major concern to the urban residents and 

government authorities affected by this hazard[10]. According to the international disaster 

(EM-DAT) database, over 1,803 deaths have resulted from flooding in the last 30 years in 

Nigeria alone[5], [11]. 

Furthermore, studies have revealed that flooding occurs more in developing countries such 

as the WASs due to the lack of understanding and poor knowledge about flood mitigation 

measures and how to tackle it[12]. It makes it almost impossible to predict, mitigate, control, 

and manage coastal, fluvial, and flash floods[13]. Based on EM-DAT database, floods in the 

WASs last for 79 days on averagely and researchers have opined on the major roles of 

anthropogenic activities on the occurrence of floods[11], [13], [14].  It is observed that the 

unsystematic development within the cities, blocked drainage systems, and unsystematic 

waste disposal methods are a few of the anthropogenic factors that cause flooding[12]. These 

factors have been difficult to control because of the increasingly growing population with 

spaces inadequate to contain the people which leads to the construction of houses on 
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waterways and the filling up of water channels[15]. Consequently, a series of developments 

and urban expansion occurs in inappropriate locations which relate to the influence of 

urbanization on the reshaping of the natural environment[16].  

Considering the WASs, although several policies are being established and various 

community-based approaches are being adopted, climate change continually fuel up the 

occurrence of these flood events and urbanization upsurges the threats of these events[6], 

[9]. As urbanization increases, so does imperviousness which increases run-off speed and 

exacerbates flooding[14]. The focus of these countries has always been towards the high 

amount of rainfall while other major factors that drive the occurrence of flooding are most 

times neglected. The major approach often adopted deals with the rainfall-runoff approach 

(hydrological modelling) which sometimes involves water percolation rate and drainage 

systems while other major factors are not considered because of the lack of datasets which 

could reveal the spatial and temporal variations of the major influencing factors of flood 

occurrences[13]. 

Consequently, there has been a high limitation and low performance of flood susceptibility 

modelling (FSM) in West Africa and the hydrological models utilized requires high-

resolution quality datasets such as LIDAR, and heavy, complex algorithms with high 

computation costs in modelling flood occurrences[17]. Thus, accessibility to geospatial 

datasets is a paramount issue in WASs as acquiring these datasets still seems limited, and to 

fully obtain an accurate assessment of flooding requires the identification of flood 

influencing factors characteristics which are largely based on remote sensing data to develop 

a flood susceptibility map and identify areas prone to flooding[18].  However, there have 

been recent developments that have provided the platforms in acquiring these datasets such 

as the recently launched Sentinel satellite from the European Space Agency (ESA) and the 

Global ASTER DEM from NASA which gave insights into this study and has provided the 

opportunity for solving the problems faced in this part of the world. 

Fortunately, machine learning models uplifts this burden due to its flexibility with non-

linear data such as floods and has proven superiority with success in the modelling of natural 

hazards[19], [20]. More so, utilizing the ML approach is cost-effective and practical in data-

scarce areas[3]. Furthermore, it is ascertained that creating hybrid models through the 

integration of statistical models with machine learning models saves time and reliable 

results are attained[21], [22]. Therefore, this research seeks to fill this gap by investigating 

not just the impact of natural factors but also the human-induced factors on flood 
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susceptibility and utilizing machine learning approach for modelling flood susceptibility in 

the region. 

Considering the study’s context, seven models were utilized in identifying and predicting 

areas prone to flooding. These models are Index of Entropy (IOE) stand-alone model, 

Decision Tree (DT) stand-alone model, Support Vector Machine (SVM) stand-alone model, 

Random Forest (RF) stand-alone model, DT-IOE, SVM-IOE, and RF-IOE hybrid models. 

Fifteen flood influencing factors, 139 flood locations, and 139 non-flood locations were used 

in training the seven models. Subsequently, flood probability indexes generated from the 

models were used in deriving the flood susceptibility maps. Thereafter, results attained were 

validated using the ROC curve and several efficient statistical indices. This study was 

conducted in Lagos city which is arguably the most affected city in the region affected by 

flood incidences (Figure 1). 

                                            Figure 1: Flooding in Lagos[23], [24] 

 

 

 

1.2 Research Gap Identification  

Flood is a global disaster that has been studied by several researchers, focusing on its 

mitigation and modelling. However, in recent years, through the utilization of geospatial 

technologies (GI) which is composed of GIS, remote sensing, and Global Positioning System 

(GPS), flood susceptibility mapping accuracy has increased. GI technologies have been 

integrated with machine learning (ML) algorithms to model areas susceptible to floods[25], 

[26]. 

To facilitate the reduction of flooding necessitates previous identification of factors 

influencing the occurrence of floods and areas that are highly susceptible to flood risks[22]. 



4 
 

Accordingly, highly accurate flood susceptibility maps should be considered as an essential 

resource in managing flood risk. Therefore, the distinction of this research from other 

studies is the full consideration of factors that influences the occurrence of floods. Different 

studies have considered the geomorphologic, hydrological, and climatic factors which are 

often categorized as natural-caused factors such as slope, aspect, Topographic Wetness 

Index (TWI), Stream Power Index (SPI), curvature, altitude, rainfall, Land Use Land Cover 

(LULC), NDVI, geology and while major anthropogenic factors are mostly not considered. 

This is because flood influencing factors vary based on geo-environmental characteristics of 

the study area and factors are often selected based on existing works done in the study 

area[21]. 

However, while flooding is a cataclysmic and recurrent hazard in West Africa, no previous 

studies have been performed paying attention to flood susceptibility prediction. Studies have 

been performed emphasizing hazards description and awareness, risk, vulnerability, and 

feasibility studies[7], [12]. Thus, there is low knowledge and limitation on the mitigation 

capabilities of flood occurrences in the region. Also, these studies are conducted using 

secondary data sources, social and descriptive analysis as research instruments, while a few 

flood hydrological modelling studies performed, are conducted without a huge focus on 

flood influencing factors[6], [17]. 

Therefore, it is of paramount importance to further investigate the impact of flood 

influencing factors on flood occurrences to develop floodplains management approaches, 

lay down more refined policies, and provide more knowledge on the influencing factors.  

According to the United Nations, improper flood control techniques and land use, and bad 

urban planning practices intensify flood occurrences[27]. On a global scale, few studies have 

related the impact of urbanization on the occurrence of floods and an increase in runoff due 

to rapid urbanization, high population, enormous deforestation which drives floods 

occurrences.  

As such, anthropogenic factors such as Normalized Difference Building Index (NDBI), 

population density, drainage density, distance from roads while distance from river as a 

natural-caused factor should be considered in flood susceptibility modelling. Past studies 

have related that anthropogenic factors play a huge role in the region under study which 

necessitates considering them in this study[28]. Also, apart from predicting the areas 

susceptible to flooding through the implementation of machine learning models, it is of high 
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necessity to identify the impact of each flood influencing factor on flood occurrence relative 

to the study area which is also implemented in this study.  

In summary, this study attempts to assess the influence of flood influencing factors (natural-

caused and human-induced) on flooding to predict future flood occurrences thereby 

providing key and valuable information on flood susceptibility zones and measures that can 

be adopted in mitigating its occurrence.  

 

1.3 Research Aim  

1.3.1  Aim  

The aim of this research study is to develop and utilized machine learning-based flood 

susceptibility models in creating flood susceptibility maps to identify locations prone to 

flooding considering the human-induced and natural-caused factors while also 

acknowledging the impact of these factors on the area under study. 

 

To achieve this main research aim, the following research sub-questions were addressed: 

1. What is the impact of both natural-caused and human-induced influencing factors 

on the occurrence of floods in the study area?  

2. Which machine learning technique is appropriate based on accuracy to predict areas 

susceptible to flooding when natural and human factors are both considered? 

 

 

1.4 Methodology Overview 

Within the context of the aim and research questions, the following methodology was 

adopted: 

• Creation of geospatial database through the derivation of flood predictors 

(influencing factors) and flood inventory map.  

• Feature selection of variables and multi-collinearity analysis to ensure each factor’s 

predictive ability and significance.  

• The implementation of bivariate and multivariate statistical model analysis 

adopting the IOE technique to attain each factor’s influence on flood occurrence.   



6 
 

• Implementation of machine learning algorithms for model training using DT, SVM, 

and RF stand-alone models and hybrid models through the models’ integration 

with IOE.  

• Derivation of flood susceptibility maps. 

• Model evaluation and performance metrics using Area Under Curve (AUC) and 

statistical Indices namely, Accuracy, Sensitivity, and Specificity, NPV and PPV. 

 

1.5 Thesis Structure 

• Chapter 2 (literature review) explores the past related works on flood influencing 

factors that drive flood occurrences and flood susceptibility modelling (FSM) 

approaches.  

• Chapter 3 describes the study area, the preprocessing of primary datasets required 

to create the geospatial database for performing FSM and tools utilized for the 

research.   

• Chapter 4 (Methodology) details the implementation procedures performed to 

produce the final susceptibility maps and fulfil the intents of the research.  

• Chapter 5 presents the results acquired.  

• Chapter 6 details the critical analysis of the results attained relating them to 

literature, the limitations encountered and recommendations for future steps in the 

research domain. 

• Chapter 7 details the research’s summary with its main findings presented.  
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2 LITERATURE REVIEW 

This chapter focuses on three sections which conceptualize within the framework of this 

study. Section 2.1 is devoted to flood influencing factors and are further categorized into two 

sections based on natural and man-made driven variables. Section 2.2 details various 

approaches that have been utilized in the performance of flood modelling in the FSM 

domain. The section further details the pros and cons of each approach and how the 

approaches have been integrated to perform flood modelling. Finally, section 2.3 comprises 

various machine learning techniques that have been utilized in flood modelling with their 

strengths and weaknesses and weighing more on the algorithms adopted in the study.  

2.1 Flood Influencing Factors 

Flood influencing factors are referred to as triggers that enhances the occurrences of floods. 

Zhao et al. (2019) noted that the identification of influencing factors is a major procedure in 

flood susceptibility assessment[29]. Influencing factors are often chosen based on past 

related work in the study area where the most important factors have been identified as 

factors vary from one region to another based on the geo-environmental characteristics 

(topology, geology, hydrology, and anthropology) of the study area[22]. Moreover, there is 

no consensus on the set of influencing factors or the number of influencing factors enough 

for FSM[30].  

Therefore, Flood influencing factors are commonly chosen based on previous studies and 

expert knowledge. However, it is of relative significance to acquire the geographical 

information related to the catchment area and its environs in flood modelling as urban 

catchment areas are composed of natural and artificial substances[31]. As such, each of the 

factors relatively important is categorized into natural-caused and human-induced and each 

factor is described below accordingly.  

2.1.1 Natural-caused Factors 

 Natural influencing factors such as elevation, slope, curvature, stream power index (SPI), 

topographic wetness index (TWI), land use land cover (LULC), normalized difference 

vegetation index (NDVI), rainfall, lithology, and soil have been utilized in previous 

studies[18], [32]. Elevation is crucial in flood occurrence as areas with high elevation 

enhances an increase in runoff while flat areas are often more prone to flooding due to high 

water discharge[1]. Dodangeh et al. (2020) pointed out that a negative correlation exists 
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between flooding occurrence and elevation[33]. Slope influences surface runoff and water 

percolation rate into the soil as water flows from a higher elevation to a lower one[1]. 

 Khabat et al. (2018) attested that the increase in slope causes a decrease in runoff 

infiltration[34]. Consequently, runoff velocity is dependent on the slope impact as steep 

slopes have low water percolation because of a high increase in runoff velocity[35]. 

Curvature is a morphometric factor that influences the occurrence of floods as divergent and 

convergent runoff areas are identified through curvature. It is categorized into three classes 

namely, concave (negative curvature), flat (zero curvature) and convex (positive 

curvature)[4]. It is observed that flooding occurs mostly in flat and concave areas[33]. Areas 

with concave and flat shapes are more susceptible to flooding as such areas retain water 

longer than areas with convex shape[36]. Soil characteristics differ from one region to 

another based on the different composition of particles which determines the level of water 

percolation. Its texture, type, and structure account for the runoff rate and level of water 

infiltration.  

Furthermore, TWI describes the flow of water towards the pull of gravity within a watershed. 

The factor accounts for the accumulation of water in lower slope areas[16]. K. Chapi et al. 

(2017) defined TWI as the ratio of a specific basin area to the slope[34].  TWI identifies areas 

within a watershed that are prone to flooding as areas with a steeper slope have lower 

percolation rate unlike flat terrain[22].  TWI, therefore, indicates percolation status in a 

region and areas prone to flooding. SPI measures runoff’s water flow erosive power[20]. 

Consequently, areas with highly concentrated surface runoff and high erosive power are 

identified[20]. It identifies the strength of flood flowing towards gravity and the amount of 

water accumulated in the watershed as the steeper the slope, the increase in velocity of the 

water flow[37]. Therefore, areas with a high tendency for flow accumulation indicates high 

value while low values indicate areas with low flow accumulation[38]. 

Also, LULC plays a vital role in flood occurrence; urban areas are more peculiar to flooding 

through increase runoff rate due to imperviousness of its surfaces while vegetated areas are 

often less flooded because of the high vegetation density. Consequently, an inverse 

relationship exists between vegetation density and flood occurrences[16]. Previous studies 

indicated that land-use patterns play a major role in flooding and should be considered in 

flood studies as each LULC type performs a specified role in flooding[39].  Lithology is an 

important factor considering spatio-temporal variation where high underlying resistant 

rocks or highly penetrable particles determine the drainage density rate of the area. It also 
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controls and determines the amount of sediment transported, speed of runoff, and 

percolation rate[20], [33].  

Also, rainfall in most studies has been referred to as the most important influencing 

factor[40]. Rainfall has a remarkable influence on flood occurrence through its spatial and 

temporal patterns, accordingly, an increase in the amount of rainfall leads to a significant 

tendency of flooding[41]. Tehrany et al. (2019), noted that flooding is mainly originated by 

rainfall and further influenced by other factors, and the amount of rainfall drives water 

inundation depending on the characteristics of the basin such as its expanse, altitude and 

the LULC formations[22], [42]. Distance from river plays a major role in flooding and 

significantly determine its extent and magnitude[16].  Haoyuan Hong et al. (2018) 

maintained that river initiates flooding when the amount of water exceeds the amount the 

river network can handle[20]. Esmaeel Dodangeh et al. (2020) also emphasized that the 

closer it is to a river, the increase the risk of flood occurrence[33]. Kamran Chapi et al. (2017) 

revealed that frequent locations most affected by floods are areas close to the river[34]. Thus, 

it is necessary to consider distance to river as an influencing factor. 

In conclusion, NDVI represents the vegetation density and indicates the vegetational 

characteristics of the study area, it is observed that high vegetation reduces flooding[33]. A 

higher NDVI increases the possibility of water percolation into the soil and reduces the 

possibility of flooding[19]. Consequently, a decrease in NDVI automatically increases the 

probability of flooding. 

2.1.2 Anthropogenic Factors (Human-Induced) 

Previous studies have related that population density, drainage density, normalized 

difference building index (NDBI), and distance from roads as anthropogenic factors play a 

role in flood occurrence[43], [44]. 

Drainage density is defined as the total steam length(m) by the total basin area (𝑘𝑚2) of a 

watershed. As a result, a high tendency of flooding in areas are identified with high drainage 

density[36]. Therefore, high drainage density is positively correlated with high flood peaks 

and volumes[34]. H. Shafizadeh-Moghadam et al. (2018), noted that drainage density 

describes how well-drained or poorly drained the watershed is[19]. Idowu et al. (2020) also 

corroborated that substandard drainage networks aggravate the occurrence of flooding and 

Augustine (2017) opined that poor drainage systems cause continual flooding and stream 
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overflow in an area[7], [12]. Also, Mahmoud et al. (2018) revealed that a dense drainage 

network coupled with a steep slope often leads to continual flooding[36].  

Previous studies have related population density to have a significant influence on flood 

occurrence as an increase in population within a region causes a significant decrease in 

pervious spaces and an increase in urban growth[9], [15]. The Global Assessment Report on 

Disaster Risk Reduction (UNISDR, 2019) revealed that the high increase in population 

growth has caused an increase in flood risk[27]. This has been attested by previous flood 

modelling studies[45].  Population density is defined as the total number of people 

occupying a given region per unit area[46]. Hamid Darabi et al. (2019)  noted that flood 

occurrences are highly associated with high population density and should be significantly 

considered in flood studies[39].  

Furthermore, Distance from road influences the occurrence of floods. Gang Zhao et al. 

(2020) related that road enhances water inundation due to its imperviousness and forms a 

pathway for water flow[31]. It reduces the percolation rate which increases the runoff 

rate[22].  

In conclusion, Normalized Difference Building Index (NDBI) indicates the building 

attributes within a region[33]. It a major determinant of impervious areas as the 

concentration of buildings increases run-off. Therefore, there exists a direct relationship 

between flooding and building density. Thus, should be considered as a driver of flood 

occurrence[38].  

2.2 Flood Susceptibility Modeling Approaches 

Flood Susceptibility Modelling (FSM) has been achieved through various approaches. 

However, each approach has its pros and cons and generates different results. Therefore, no 

universal consensus is laid down on model selection for FSM. Each model differ based on 

sensitivity to outliers, prediction accuracy, processing time and presumptions on data 

distribution[19]. Consequently, each of the flood modelling approaches is discussed below. 

2.2.1 Hydrological Approach (Physical-based) 

In the past decade, traditional hydrological and hydraulic modelling approach has been 

adopted by researchers for susceptibility mapping[47]. This modelling approach is 

categorized into three namely; one-dimensional model (MIKE 11, HECRAS), two-

dimensional model (TUTFLOW, SOBEK) and three-dimensional model (Navier-

Stroke)[13]. However, with this approach, fieldwork is essential and highly costly for data 
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gathering[47]. According to Balicia et al. (2013), highly comprehensive and detailed data is 

needed to achieve significant accuracy[48]. Moreover, hydrological models have been 

ensembled with GIS, which has proven its capability for flood modelling[47]. The model 

requires high computational time based on the model’s dynamics and the 2D model 

performs more accurately than the 1D model in flood modelling but requires very long-term, 

high-resolution data which are burdensome to acquire and prevents short-term 

prediction[31]. It is revealed that most authors do not use the three-dimensional model to 

avoid unessential complex algorithms since some less complicated models can provide 

reasonable solutions[13]. 

2.2.2 Qualitative Approach 

The qualitative approach incorporates expert knowledge and qualitative techniques to relate 

independent variables with flood occurrence based on numerical expressions[20]. Some of 

the popular qualitative techniques are the Analytical Hierarchy Process (AHP)[44], fuzzy 

logic[20], and Multi-Criteria Decision Analysis (MCDA)[47]. Tehrany et al. (2019), noted 

that qualitative models incorporate expert’s opinion for its modelling considering the 

influencing factors and their attributes which could generate bias in the prediction 

modelling. The author noted that flooding is a global problem and should be predicted with 

an efficient and robust modelling approach[35]. 

However, most studies optimize this approach through the integration of the qualitative 

models with various decision analysis algorithms, statistical models and machine learning 

models[19]. Hossein et al. (2016) applied GIS ensemble method of FR and SVM to create 

flood susceptible mapping in Malaysia where each influencing factor is optimized by MCDA 

technique to generate weights that serve as inputs for SVM model[47]. Rahmati et al. (2016) 

utilized the MCDA technique for flood modelling and generated flood susceptibility 

maps[49]. However as opposed by Tehrany et al. (2019), the method is unsuitable for flood 

susceptibility studies as expert knowledge is integrated into the model, it was further 

attested by Romulus et al. (2020), who utilized fuzzy AHP model which achieved low 

performance based on expert’s judgement involved in the modelling[4].  

Rahmati et al (2016) however noted that AHP is simple, budget-friendly, less time-

consuming and easier to develop for flood susceptibility studies and more suited for regional 

studies[47].  Samantha et al. (2018) also adopted MCDA which was conducted and 

compared with the FR model. The author related that FR model had a better performance 

than MCDA[25]. Hong et al. (2018) adopted the fuzzy logic technique for FSM and revealed 
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that the technique chosen does not quantify the variables’ importance as the variables were 

chosen based on expert judgement on the study area. He further argued that incorporating 

field experience and expert judgements generate more accurate results[20]. 

2.2.3 Statistical Approach 

The statistical approach has been utilized by researchers in recent times, some of these 

methods are frequency ratio (FR)[21], logistic regression(LR)[50], weight of evidence 

(WOE)[51], Index of Entropy (IOE)[52] and Evident Belief Function[22]. This approach 

works on a presupposition that flood influencing factors are associated with, and drives the 

occurrence of flood events[1]. Tehrany et al. (2019) opined that most statistical methods 

rely on linear presumption while flood is a multidimensional phenomenon, the author 

related that ensemble statistical methods augment this flaw such as the adaptive neuro-fuzzy 

inference system (ANFIS) however, this model requires various parameters to perform FSM 

accurately[35].  

This was counteracted by Pradhan et al. (2015) who LR and noted that LR utilizes both 

continuous and discrete variables in FSM thereby describing the flexibility of the model[30]. 

Statistical modelling techniques are categorized into bivariate and multivariate statistical 

models. Bivariate statistical models such as FR and WOE are probabilistic models which 

measure the occurrences of flood based on each class of the influencing factors[45]. 

Therefore, the bivariate probability is calculated by correlating each class of the influencing 

factors with flood occurrence and the higher the bivariate probability the stronger the impact 

of that factor on flood occurrence[53]. However, it is noted that the bivariate approach is 

based on generalization as interaction among factors are not considered and weights not 

assigned to each factor[16]. This presumes that flood occurrence is based on the same set of 

factors with equal weights across the study area[21], [26].  

On the other hand, multivariate statistical model such as LR correlates each influencing 

factor directly with flood occurrence and performs correlation among the influencing 

variables[50]. However, the weak point of statistical models is its inefficiency in handling 

complex and multidimensional phenomena because of its linear structure[54]. Moreover, It 

is noted that the combination of FR and LR increases the efficiency of the model and cover 

up the weakness of both models[30].  Furthermore, hybrid models formed from the 

integration of statistical and machine learning models have been ascertained by past studies 

to yield more accurate results[4]. According to Hong et al. (2018), hybrid model’s flexibility 

allows extensive assessment of influence on each flood-related independent variables in 
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each class[20]. Wei Chen et al. (2020) related that increase in accuracy of flood studies 

requires the precise identification and greater prediction capabilities in forecasting future 

flood occurrences which is achievable through the hybridization of statistical and machine 

learning models[40].  

2.3 Machine Learning Modelling Approach  

Machine learning (ML) is an efficient approach to the prediction of natural hazards[55]. The 

approach helps to detect and uncover insights, relationships among variables which makes 

it suitable for predictive modelling. Various methods have been applied to flood 

susceptibility modelling (FSM). Models such as random forest (RF)[38], decision 

trees(DT)[21], support vector machine(SVM)[22], artificial neural network (ANN)[56], 

multivariate adaptive regression splines (MARS)[33], neuro-fuzzy inference system 

(ANFIS)[54], have been utilized for FSM studies. These models have been compared with 

their performances noted. However, to date, there is no superiority among the models as 

each has its pros and cons[26]. In recent times, ML approaches are being integrated with 

geospatial technologies in flood mapping studies for handling more complex phenomena 

and computing large amounts of data accurately[54]. ML techniques have the advantage of 

predicting and modelling complex structures in a proficient manner[16]. 

Furthermore, in recent times hybridization of machine learning models are being adopted. 

The aim of utilizing the hybrid models is to increase the predictive capability and precise 

identification of areas susceptible to flooding[4]. Thereby, the influence of the conditioning 

factors on flooding can be detailly assessed. According to Amir Morsavi et al. (2018), the 

hybridization of machine learning models enhances performance and increases 

accuracy[55]. Romulus et al. (2019) noted that no single method is appropriate for flood 

modelling and revealed that the utilization of hybridized machine learning models 

eradicates the weaknesses of ML models and generates more accurate results[52].  

ML approach learns the relationship between the flood influencing factors and flooding 

occurrences without subjecting to an expert opinion which often leads to bias[38].  ML 

models are advantageous in assessing any kind of data type (categorical, nominal, and 

continuous) which makes the algorithm more flexible[43].  

However, as revealed by researchers in various instances, ANN and ANFIS have been 

adopted in flood studies, and both techniques are robust in the presence of outliers and 

efficient in handling errors in the input dataset. However, it is noted that these algorithms 
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are difficult to understand and implement even with high versatility on incomplete 

datasets[35]. Sayed Tameh et al. (2018) supported this fact as tuning of function parameters 

complicates the utilization of the algorithm and noted that it is essential to optimize the 

parameters with other algorithms to increase its flexibility[16]. A brief theoretical 

background and overview of a few notable ML algorithms are detailed below. 

2.3.1 Decision Tree (DT) 

 DT is an efficient ML technique that has performed effectively in flood modelling[3]. Its 

procedural approach is easy to create and interpret. Although decision trees consume a lot 

of time in classifying and computing, the algorithm can deal with uncertainties to a 

significant extent in a dataset[35]. The algorithm is flexible in handling data with various 

scales, assumes no statistical distribution and has high efficiency in creating rules for 

predicting complex relationships[16].  DT algorithm classifies the influencing factors in a  

hierarchical manner and equivalently in accordance with the susceptibility levels, and create 

decision rules based on an established tree structure built on the significant levels of the set 

of independent parameters utilized[35].  

Thus, the set of parameters are analyzed to generate an outcome. Decision trees have been 

integrated with different algorithms such as the naïve bayes tree (NBTree)[3] and 

alternating decision tree (ADT)[18] and other processing techniques such as the 

Classification and Regression Trees (CART)[51], Chi-squared Automatic Interaction 

Detection (CHAID)[57], Unbiased Efficient Statistic Tree (QUEST)[39]. Each of these DT 

classifiers has been used in modelling studies and each has its pros and cons. The NBTree is 

often combined with the J48 algorithm to increase the predictive capability of the 

algorithm[34].  

2.3.2 Random forest (RF) 

 RF is a classification and regression modelling approach. RF is based on a fusion of random 

subspace method and bagging ensemble learning[38]. RF algorithm combines decision trees 

in predicting an outcome by permuting each variable randomly and the prediction results 

acquired is compared with each variable to obtain its significance. In this context, a training 

dataset D = ((A1, B1), …, (𝐴𝑛 ,𝐵𝑛)) which contains the n vectors. A ∈ X and B ∈ 𝑌 where X 

represents numerical observations and Y represents the class labels (flood and non-

flood)[3], [58]. RF works based on two processes namely bagging and random selection. 

This is performed to prevent overfitting within the dataset and to increase the predictive 

ability of the model. The process is popularly referred to as the out-of-bag procedure where 
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samples within the dataset are randomly drawn and replaced till a most minimal error is 

achieved[14]. RF is versatile in handling inconsistent and missing data and performs well 

with multi-collinearity and the performance of the model is based on the number of decision 

trees (𝑁𝑡𝑟𝑒𝑒) and variables attributes in the subset (𝑀𝑡𝑟𝑦)[34]. An increase in the value of 

𝑁𝑡𝑟𝑒𝑒 increases the time consumed in modelling while the modelling becomes more prone 

to errors when the 𝑁𝑡𝑟𝑒𝑒 is small[59]. 

2.3.3 Support Vector Machine (SVM) 

 SVM is a high predictive model with high versatility, till recent, SVM has not been explored 

in FSM[55]. It relies on a statistical learning approach that generates output values from a 

number of input values[22]. It is a supervised machine learning technique that converts non-

linear structures into linear by generating a hyperplane to simplify and distinguish classes 

in the data while categorizing the data into the training and testing dataset[35]. SVM, based 

on predictive accuracy, is suitable for FSM as it handles data independently of the 

measurement scales and works efficiently with any data format[22]. Hong et al. supported 

this fact and revealed the effectiveness of SVM in classifying linear and non-linear data[20]. 

 Researchers, however, noted that the efficiency of SVM performance highly depends on the 

kernel adopted and the influencing factors adopted[30]. The SVM kernels mostly used are 

linear kernel (LN), polynomial kernel (PL), radial basis function (RBF), and sigmoid kernel 

(SIG)[35]. Radial basis function kernel (RBF) has often been implemented in previous 

studies because of its efficiency and high accuracy. Hong et al. (2018) noted that SVM is 

disadvantageous because of its inability to measure the significance of attributes chosen[20]. 

However, this drawback was resolved by Tehrany et al. (2019) who utilized kappa index with 

the SVM model to detect the significance of the attributes[22]. A kernel function is used in 

distinguishing and transforming the data[21]. Afterwards, the main input of the training 

dataset is mapped into a high dimensional space where the split hyperplane is created in the 

original space of n coordinates to distinguish between points of two different classes (flood, 

non-flood)[22].  

According to Tehrany et al. (2019), several hazard modelling studies have revealed that DT 

is moderately robust than SVM in modelling natural hazards[35]. However, other studies 

reveal that both ML algorithms are both efficient and robust in hazard modelling and offer 

similar results.  
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3. DATA AND CASE STUDY  

The following chapter describes the area of study, datasets and tools utilized in the study.  

Furthermore, it focuses on the geographical derivations and the creation of the geospatial 

database that was used in performing the flood modelling. Section 3.1 defines the study area 

while section 3.2 details the preprocessing and the creation of the flood inventory dataset, 

section 3.3 details the flood influencing variables derivation and analyses majorly from 

satellite imageries using ArcGIS Pro’s spatial analysis and spatial statistical tools.  

3.1 Case Study 

The study focuses on the entire region of Lagos state, a metropolitan coastal low-lying city 

located in the South-western region of Nigeria, West Africa. It is regarded as the economic 

hub of Africa. The city’s geographical coordinate ranges between 3.1º to 3.4º E longitude 

and 6.5º to 6.8ºN latitude[12]. The city experiences an equatorial (humid and hot) climate 

with a double-maxima rainfall all through the year. The region’s climate has two distinct 

periods namely the rainy season (April – October) and the dry season (November – 

March). The city is composed of mangrove swamp and forests where the mangrove 

swamps dominate the south while the forests are majorly found in the northern areas of 

the region[7].  

The city is composed of highly dense road networks with inland waterways and her southern 

boundaries are defined by about 180 km of Atlantic coastline and a border along the western 

perimeter with the Republic of Benin. The city has a total landmass of about 2,345km2 which 

represents about 0.4% of Nigeria’s total land area[10]. It is a highly populated region, and 

its population density continues to increase due to its commerciality. Based on its rapid 

urbanization, there has been a series of expansion towards the creeks and lagoon within the 

city[28]. Recurrently, flood occurs within the city with a destructive impact on lives and 

properties which forces the evacuation of people from their residences. Thus, regarded as 

one of the West-Africa cities highly prone to flooding.  
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Figure 2: Case Study 

    

3.2 Datasets and Preprocessing  

3.2.1 Derivation of Flood Inventory Dataset  

Flood susceptibility mapping demands two sets of data. The first dataset constitutes the past 

flood locations (flood inventory) which indicate the past flooded regions while the second 

dataset constitutes the flood triggering parameters otherwise referred to as the flood 

influencing factors[32]. Flood susceptibility is based on the impact of the flood influencing 

factors on the occurrence of floods which entails assessing the significance of each 

contributing parameter on flood occurrence. In this study, the flood inventory dataset was 

provided by the Lagos State Emergency Management Agency (LASEMA) which comprises 

past flood location events within the study area from 2010 to 2020 and was augmented with 
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satellite imageries, flood historical records and data derived from the international disaster 

(EM-DAT) database. A total of 139 flood events were located within the study area and an 

equal number of 139 non-flood points was created across the study area using the ‘create 

random point’ tool. To verify the correctness of the flood locations and non-flood locations, 

the Normalized Difference Water Index (NDWI) was calculated from Landsat 7 ETM+, 

Landsat 8 OLI, and Sentinel 2 satellite imageries using the near-infrared (NIR) and short-

wave infrared (SWIR) bands to identify the past flood locations from 2010 to 2020. It is 

calculated as follows: 

    NDWI=
𝑵𝑰𝑹−𝑺𝑾𝑰𝑹

𝑵𝑰𝑹+𝑺𝑾𝑰𝑹
     (1) 

The flood locations were represented as points as polygon formats yields exaggerated results 

and become complicated for the algorithms utilized[50]. Therefore, the points were 

pinpointed on the centroid of the flooded areas. This has been further proven by hazards 

modelling studies which utilized the point format for flood inventory and generated accurate 

results[20]. The flood inventory map (Figure 3) was further divided into training and testing 

dataset as required for the training and validation stages, respectively. There is no consensus 

on how the inventory data is classified as it is highly dependent on the availability and quality 

of data. Space robustness and time robustness are two standards for classifying flood 

inventory. Time robustness involves dividing flood inventory data into two periods of past 

occurrence and future occurrence which represents training and testing datasets, 

respectively[22].  

However, acquiring temporal data is burdensome as each flood occurrence is associated with 

the precipitation that triggered it and goes for other spatio-temporal influencing parameters. 

In space robustness, flood inventory data is randomly divided into two datasets namely 

training and testing datasets [35]. In this study, both standards were integrated based on 

the flood inventory data available. Therefore, the flood inventory data was divided into 70% 

for training and 30% for testing based on the 2010 to 2020 flood data. Flooding is a binary 

classification modelling; therefore, it was required to create equal 139 non-flood location 

points to ensure consistency and accuracy. Consequently, the 139 flood and 139 non-flood 

locations were divided using random selection technique into training and testing datasets, 

respectively. Values 0 and 1 were assigned to the non-flood and flood points respectively, 

where 0 represents flood non-existence and 1 represents flood existence. 
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Figure 3: Flood Inventory Map 

 

3.2.2 Derivation of Flood Influencing Factors Datasets  

Satellite imagery has successfully proven to play a major role in hazard assessment based on 

its combination of spatial, spectral and temporal resolution which identifies past and present 

occurrences of hazards[4]. Sentinel 2 imagery was utilized in this study to derive the flood 

predictors namely LULC, NDBI, NDVI. The Sentinel-2 imagery provided a spatial resolution 

10m-60m), multi-spectral features (13 bands) and temporal resolution (five days with two 

satellites at the equator)[60]. The LULC was obtained from the classification of the Sentinel 

2 imagery using the maximum likelihood algorithm which achieved an overall accuracy of 

89%. The Sentinel-2 imagery was acquired on October 15, 2020, and a spatial resolution of 

10m and four spectral bands; red (B4), green (B3), blue (B2) and NIR (B8) were used in 

deriving the LULC map. Google Earth imagery was used as the training data and a total of 

14 LULC classes were distinguished within the study area. 

On the other hand, the NDVI and the NDBI were also calculated using the SWIR (B11) 

bands, NIR bands and red bands. The formula used for calculating both indices are as 

follows: 

    NDBI=
𝑺𝑾𝑰𝑹−𝑵𝑰𝑹

𝑺𝑾𝑰𝑹+𝑵𝑰𝑹
     (2) 
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    NDVI=
𝑵𝑰𝑹−𝑹𝒆𝒅

𝑵𝑰𝑹+𝑹𝒆𝒅
     (3) 
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Figure 4: Flood influencing factors; (a) Distance from River, (b) Distance from Road, (c) Altitude, 

(d) Curvature, (e) Geology, (f) LULC, (g) NDBI, (h) Drainage Density, (i) NDVI, (j) Rainfall, (k) 

Population density, (l) Slope (m) Soil, (n) TWI, (o) SPI. 
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Furthermore, a digital elevation model (DEM) for the watershed was obtained from the 

advanced spaceborne thermal emission and reflection radiometer (ASTER Global DEM) 

30m database. The following flood predictors such as elevation, curvature, slope, TWI, SPI, 

distance from river (river network), and drainage density were derived from the DEM (Table 

1).   

 

Table 1: Spatial Datasets and Data sources 

 

 

 

Influencing 
Factor 

Source of Data Data 
Type  

Scale and 
Resolution  

            Data Source 

Rainfall UEA climatic research unit GRID 30m https://sites.uea.ac.uk/cru/data 

Altitude Derived from DEM  GRID 30m https://earthdata.nasa.gov/learn/articles/new-
aster-gdem 

Curvature  Derived from DEM  GRID 30m              

                                  “ 
Slope  Derived from DEM  GRID 30m     

                                  “ 

TWI  Derived from DEM  GRID 30m    

                                 “ 
SPI Derived from DEM  GRID 30m   

                                 “ 
Drainage 
Density  

Derived from DEM  GRID 30m                               

                                “ 
Distance from 
Road  

Geofabrik Website 

(Open Street Map) 

Line 
Coverage  

30m https://www.geofabrik.de/ 

LULC  Classifying Sentinel-2 
Imagery.  

GRID 30m https://scihub.copernicus.eu/ 

Soil  Digital Soil map (DSM) 
database  

Vector 1:250,000 https://data.mendeley.com/datasets/zmrt6k83
wk/draft?a=d9a35c1e- c19b- 4ddd- b34e- 
69674a8ceb18 

Geology  Digital Soil map (DSM) 
database  

Vector 1:250,000 https://data.mendeley.com/datasets/zmrt6k83
wk/draft?a=d9a35c1e- c19b- 4ddd- b34e- 
69674a8ceb18 

Population  City population Website  GRID 30m http://www.citypopulation.de/ 

Distance from 
River  

Derived from DEM  GRID 30m https://earthdata.nasa.gov/learn/articles/new-
aster-gdem 

NDVI  Derived from Sentinel-2 
Imagery  

GRID 30m https://scihub.copernicus.eu/ 

NDBI Derived from Sentinel-2 
Imagery  

GRID 30m https://scihub.copernicus.eu/ 

https://sites.uea.ac.uk/cru/data
https://earthdata.nasa.gov/learn/articles/new-aster-gdem
https://earthdata.nasa.gov/learn/articles/new-aster-gdem
https://www.geofabrik.de/
https://scihub.copernicus.eu/
https://data.mendeley.com/datasets/zmrt6k83wk/draft?a=d9a35c1e-%20c19b-%204ddd-%20b34e-%2069674a8ceb18
https://data.mendeley.com/datasets/zmrt6k83wk/draft?a=d9a35c1e-%20c19b-%204ddd-%20b34e-%2069674a8ceb18
https://data.mendeley.com/datasets/zmrt6k83wk/draft?a=d9a35c1e-%20c19b-%204ddd-%20b34e-%2069674a8ceb18
https://data.mendeley.com/datasets/zmrt6k83wk/draft?a=d9a35c1e-%20c19b-%204ddd-%20b34e-%2069674a8ceb18
https://data.mendeley.com/datasets/zmrt6k83wk/draft?a=d9a35c1e-%20c19b-%204ddd-%20b34e-%2069674a8ceb18
https://data.mendeley.com/datasets/zmrt6k83wk/draft?a=d9a35c1e-%20c19b-%204ddd-%20b34e-%2069674a8ceb18
http://www.citypopulation.de/
https://earthdata.nasa.gov/learn/articles/new-aster-gdem
https://earthdata.nasa.gov/learn/articles/new-aster-gdem
https://scihub.copernicus.eu/
https://scihub.copernicus.eu/
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Curvature was classified into three classes namely concave (positive value (+)), flat (value 0) 

and convex ((negative value (-)). The spatio-temporal factors such as the SPI and TWI was 

calculated from as DEM as follows: 

    TWI = In (𝐴𝑠/𝑡𝑎𝑛 𝛽)     (4)  

   SPI = 𝐴𝑠𝑡𝑎𝑛 𝛽     (5) 

Where 𝐴𝑠 equals the area of the catchment(𝑚2), and β (radians) equals slope gradient[22]. 

Furthermore, the drainage density was derived using the following equation stated below:  

DD=
𝟏

𝑺
∑ 𝑳

𝒔

𝒊𝒊       (6) 

Where S  equals the study area and Li
s equals the length of the river within the study area[36]. 

The population data was obtained from the city population website[61] which was processed 

using an areal interpolation tool to derive the population raster map. The mean annual 

rainfall data from 2010-2020 was obtained from a high resolution spatial gridded dataset 

provided by the climatic research unit, university of East Anglia[62]. The road data was 

obtained from the open street map through the Geofabrik website[63], while the river 

network was derived from the DEM using the flow accumulation and flow direction tool and 

distance to both attributes were derived using the Euclidean distance tool. 

Soil and Lithology at a scale of 1:250,000 were extracted from the free open adaptable digital 

soil map database of Nigeria created by Ugonna et al(2020)[64]. The Soil was categorized 

into eight classes identified as Oxic Rhodudalf, Rhodic Paleudult, Oxic Tropudalf, Typic 

Tropudult, Typic Tropudult, Oxic Tropudalf, Aquic Paleudult, Orthic Tropaudalf and Typic 

Tropaquent while lithology is categorized into nine classes identified as Coastal plain sand 

(Alfisols), Coastal plain sands, Recent Alluvium, Sandstone (Abeokuta Formation), 

Transitional materials of subrecent alluvium, Coastal plain sands II (Ultisols), Ewekoro 

Formation( Upper coal measure), and Deltaic Basin and tidal flats respectively. All the other 

predictors were reclassified to the desired classes using the quantile classification method to 

create the flood database. The flood influencing factors were all re-processed to a 30 by 30m 

pixel size that corresponds to the DEM’s spatial resolution and re-projected to the UTM zone 

Minna 31N to create the geospatial database. 
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4. METHODOLOGY 

The methodological approach for this research study is divided into six steps and 

procedurally detailed as follows: (A) Data derivation, pre-processing and preliminary 

analysis as laid out in chapter 3. (B) Feature Engineering (Feature Selection and Multi-

collinearity analysis). (C) Data Cleaning and Normalization. (D) Index of Entropy bivariate 

modelling (E) Machine learning models training and the generation of flood susceptibility 

maps (F) Models validation using Area under Curve and other statistical indices. A detailed 

description of each step is presented in the following subsections (Figure 5). 

Figure 5: Methodology Flowchart 

4.1 Feature Selection and Multi-collinearity Analysis 

 This is a process to identify the predictive capabilities of the flood predictors as factors 

selected fully depends on the geo-environmental characteristics of the study area and factors 

that have low predictive power which could generate outliers and decrease the model’s 

predicting ability can be identified and removed[4]. To ensure accuracy as no previous 

studies have been done in the region, linear support vector machine was utilized in checking 
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each factor’s predictive ability and significance (Step B). Also, to avoid redundancy among 

the factors, multicollinearity analysis was performed.  

4.1.1 Linear Support Vector Machine (LSVM) 

 This is an efficient means of evaluating a predictor’s capability. It has been proven to 

enhance the classification accuracy in modelling[4], therefore considered for this study. 

Considering the training dataset and the fifteen influencing factors, the LSVM equation is 

calculated as follows: 

   f(x) = sign (𝒘𝑻 a + b)     (7) 

Where f(x) represents the function upon which the linear support vector machine is derived,  

𝑤𝑇represents the inverse matrix of weight associated with each flood influencing factor, a = 

(a1, a2,….a15) represents the input vector that contains the flood influencing factors, and b 

represents the offset of the hyperplane’s origin[22].  The factors are selected based on the 

average merit for each factor which ranges from 0 – 1. Consequently, a factor equal to zero 

is excluded from the analysis. The LSVM algorithm was implemented in the WEKA 

environment using the attribute evaluation tool.  

4.1.2 Multi-collinearity Analysis 

 This is to check if two or more influencing factors are highly correlated which could cause 

redundancy and reduce the accuracy of the models utilized for the study[20]. All factors 

introduced are very important in terms of anthropogenic, climatic, hydrological, and 

geomorphological unique characteristics. Consequently, Tolerance (TOL) and Variance 

Inflation Factor (VIF) approaches was utilized where VIF > 10 and TOL < 0.1 standard 

indicates multicollinearity in the influencing factors as laid out in existing literature[35]. 

This approach has proven its efficiency in hazard modelling with a success record. The VIF 

measures the correlation among variables by inflating the variance of each variable within 

the regression’s coefficient while TOL is the inverse of VIF[20]. 

4.2 Data Cleaning and Normalization 

 After the creation of the geospatial database, data cleaning and normalization was required 

before performing the flood modelling (Step C). Therefore, seven missing values found in 

the database were replaced by the mean of each variable by computing differential statistics 

for each of the influencing variable. Also, to avoid varying scales among the variables which 

could alter the results of the machine learning algorithm, the min-max normalization 
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approach was utilized with values ranging between 0 and 1. The normalization equation is 

represented as follows:  

     𝑿′ =
(𝑿−𝑿𝒎𝒊𝒏)

(𝑿𝒎𝒂𝒙−𝑿𝒎𝒊𝒏
    (15) 

Where X represents the original value, 𝑋′ equals the normalized value, and 𝑋𝑚𝑖𝑛, 𝑋𝑚𝑎𝑥 

represents the minimum and maximum values for each influencing variable[60]. 

4.3 Index of Entropy Modelling 

 The index of Entropy is a bivariate statistical approach popularly utilized in the modelling 

of natural hazards[53]. Previous studies have utilized this method and generated highly 

accurate results in susceptibility modelling[51]. Consequently, the approach was adopted in 

this study (Step D). Index of entropy measures variabilities and instabilities within a 

database. Considering this study, the extent to which flood influencing factors triggers flood 

occurrence is represented by the entropy of a flood event thereby generating the weight of 

each influencing factors. Therefore, the weight of each influencing factor in the flood 

probability index will be ascertained. To perform IOE, each influencing factor was classified 

using the quantile classification technique to ensure even distribution of pixels across each 

class and a reliable assessment of each class’s impact on flood occurrence is identified.  

Furthermore, the IOE model generates two main outputs namely weights associated with 

each factor and each factor’s classes. Each factor’s weight (𝑊𝑗) is calculated as follows:  

(𝑷𝒊𝒋)=
𝑭𝑹𝒊𝒋

∑ 𝑭𝑹𝒊𝒋
𝑺𝒋
𝒋=𝟏

     (8) 

Where 𝐹𝑅𝑖𝑗 represents the frequency ratio coefficient for each class of each influencing 

factors; 𝑆𝑗 represents the number of classes, and (𝑃𝑖𝑗) represents the probability density[4]. 

    𝑯𝒋=∑ (𝑷𝒊𝒋)
𝑺𝒋

𝒊=𝟏
 𝒍𝒐𝒈𝟐(𝑷𝒊𝒋), 𝒋 = 𝟏, 𝟐, … , 𝒏   (9) 

  𝑯𝒋𝒎𝒂𝒙 =  𝒍𝒐𝒈𝟐(𝑺𝒋)     (10) 

    𝑰𝒋 =  
𝑯𝒋𝒎𝒂𝒙− 𝑯𝒋

𝑯𝒋𝒎𝒂𝒙
, I = (0,1), 𝒋 = 𝟏, … , 𝒏   (11) 

    𝑷𝒋 =
𝟏

𝑺𝒋
∑ 𝑷𝒊𝒋

𝑺𝒋

𝒊=𝟏
     (12) 

    𝑾𝒋 =  𝑰𝒋 ∗  𝑷𝒋      (13) 
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Where 𝐻𝑗  𝑎𝑛𝑑 𝐻𝑗𝑚𝑎𝑥 equals the values of entropy; 𝐼𝑗 represents the information coefficient; 

𝑃𝑗 represents the empirical probability; 𝑊𝑗  equals the weight values associated with each 

flood influence factor.  

Considering the stand-alone model, flood probability index final values is calculated, and 

the equation is as follows:  

   𝑭𝑺𝑰𝑰𝑶𝑬 = ∑
𝒁

𝒎𝒋
∗ 𝑪 ∗ 𝑾𝒋

𝒏
𝒊=𝟏      (14) 

Where i equals the total number of conditioning factors; Z equals the number of classes of 

the factor having the highest number of classes; 𝑚𝑗 represents the number of classes of each 

factor; C equals the calculated rate of each class; and 𝑊𝑗 represents the final weight of each 

factor. The advantage of IOE is it can be used for both BSA and MSA[52] which was 

implemented in this study. The final weights derived from each factor were used as inputs 

in modelling the hybrid machine learning models. 

4.4 Machine Learning (ML) Algorithms 

 In this subsection, the three ML model’s implementation in this study is briefly explained. 

The ML models are adopted to identify the correlation existing between the influencing 

factors and flood occurrences and to forecast flood susceptibility in the study area (Step E). 

Therefore, SVM, RF, and DT were utilized, and the implementation of each ML algorithm is 

described below: 

4.4.1 Support Vector Machine  

 The training dataset contains instance-label pairs (𝑥𝑖 , 𝑦𝑖), with 𝑦𝑖 ∈ 𝑅𝑛, 𝑦𝑖 ∈ {1, −1}, and i 

=1, …, m. x signifies the vector within the input space which incorporates all the influencing 

factors (elevation, slope, curvature, rainfall, geology, soil, LULC, NDBI, NDVI, TWI, SPI, 

population density, drainage density, river, and roads). SVM sets up an optimal hyperplane 

that distinguishes and separates flood and non-flood pixels into {1, 0} in the training set. 

Separating a hyperplane using linear separable data is defined as: 

𝐲𝐢(𝐰. 𝐱𝐢 + 𝐛) ≥ 𝟏 − 𝛆𝐢    (16)  

  

Where w represents the coefficient vector through which the hyperplane's orientation is 

defined in the feature space, b represents the hyperplane's offset from its origin and 

ε𝑖represents the positive slack variable. Lagrangian multipliers are solved to find an optimal 

hyperplane. It is calculated thus:  
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∑ ∝𝒊−  
𝟏

𝟐
∑ ∑ ∝𝒊

𝒏
𝒋=𝟏

𝒏
𝒊=𝟏

𝒏
𝒊=𝟏 ∝𝒋 𝒚𝒊𝒚𝒋(𝒙𝒊𝒙𝒋),  (17) 

    

    ∑ ∝𝒊 𝒚𝒋 = 𝟎, 𝟎 ≤ ∝𝒊≤ 𝑪 ,𝒏
𝒊=𝟏     (18) 

Where ∝𝑖 are Lagrange multipliers, C is the penalty and ε𝑖 represents the slack variables that 

allow the penalized constraint violation. The step-by-step layout of SVM modelling is well 

described in Tehrany et al (2014)[65]. The decision function of SVM classification is defined 

as:  

     𝒈(𝒙) = 𝒔𝒊𝒈𝒏{∑ 𝒚𝒊 ∝𝒋 𝑲(𝒙𝒊. 𝒙𝒋) + 𝒃𝒏
𝒊=𝟏 }  (19) 

Where K (𝑥𝑖, 𝑥𝑗) represents the kernel function. The kernel function is mathematically 

expressed as:  

K(𝒙𝒊, 𝒙𝒋) = 𝒆𝒙𝒑(−𝜸||𝒙𝒊 −  𝒙𝒋||𝟐)   (20) 

The penalty (C) and the kernel width (𝛾) were optimized using the cross-validation approach 

to actualize accurate results as opposed to the trial-and-error technique to prevent 

overfitting. To perform cross-validation requires dividing the training dataset into n folds 

where one-fold is reserved for testing and the remaining folds (n-1) fold is used for training. 

The average accuracies of the validation are established and used in generating the final 

flood susceptibility model. Therefore, ten-fold cross-validation was used in this study by 

dividing the training dataset into 10 random groups till the best values of these parameters 

were actualized. The optimized parameters (𝐶, 𝛾)  were used in generating the final SVM and 

𝑆𝑉𝑀𝐼𝑂𝐸  probability maps. RBF kernel was utilized in this study as its efficiency and advanced 

interpolation and extrapolation potentialities have been proven in hazard modelling studies 

and various literature sources[22].  

4.4.2 Random Forest Model 

 The random forest modelling depends on the user-defined parameters namely as the 𝑚𝑡𝑟𝑦 

and 𝑛𝑡𝑟𝑒𝑒. The 𝑚𝑡𝑟𝑦 represents the number of variables randomly selected at the split of each 

node and 𝑛𝑡𝑟𝑒𝑒 represents the number of trees contained in the model[20], [34]. Therefore, 

the 𝑚𝑡𝑟𝑦 values are within the range of [ 1, 15] while the 𝑛𝑡𝑟𝑒𝑒 values are within [500, 1000, 

1500, 2000, 2500] range. Ten- fold cross validation method was also utilized in tuning these 

parameters to ensure their values are within the number of flood variables range. The tuned 

parameters actualized were used in creating the final RF and 𝑅𝐹𝐼𝑂𝐸probability indexes. 
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4.4.3 Decision Tree Model 

 The chi-squared Automatic Interaction Detection (CHAID) algorithm was chosen for the 

flood susceptibility modelling as each factor used in building a branch shows a strong 

correlation with the dependent variable and each new branch is created based on the relative 

importance relationship between the influencing factors and flood inventory while factors 

signifying the same influence are consolidated to form a branch. Therefore, this makes 

CHAID a very suitable algorithm for modelling natural hazards based on its multifaceted 

splitting in an optimum manner[35].  

The splitting and merging parameters range between 0 and 1 and several parameters were 

used until the optimum parameters were set. After this process, the Chi-square statistic was 

applied by creating a tree structure which is initiated by the root node and further branched 

into the internal nodes, and afterwards the terminal nodes. The Chi-square establishes a 

binary decision that splits-up classes from other classes thereby creating a top-down 

structural tree till the terminal nodes are concluded. This creates a structure that relates the 

level of variable’s influence on the tree’s structure where some features are classified while 

others are rejected by the algorithm based on their relative importance. 

4.5 Hybrid Modelling 

The flood conditioning factors were all re-classified using the IOE weights (𝑊𝑗). The 

database derived was then used as inputs in training the machine learning models ( 𝑅𝐹𝐼𝑂𝐸, 

𝑆𝑉𝑀𝐼𝑂𝐸  and 𝐷𝑇𝐼𝑂𝐸). Ten-fold cross-validation was also performed on each of the hybrid 

machine learning models and the flood probability indexes were generated. To attest to the 

accuracy of the hybrid models, stand-alone ML models were also used in training the 

database in which all the influencing factors were all in a continuous data format and 

unclassified without the influence of the IOE weights deriving the flood probability indexes 

for each of the stand-alone machine learning models. 

4.6 Creation of Flood Susceptibility Maps 

The flood susceptibility models were used in deriving the flood susceptibility maps by 

splitting up flood probability index generated in continuous data format into pixels 

representing the susceptibility classes. The pixels are assigned a distinctive susceptibility 

index by calculating flood susceptibility indices for each pixel to ascertain the possibility of 

flood occurrences in the study area[22]. Each pixel obtained represents a value between 0 

and 1, where 0 denotes no potential of flood susceptibility and 1 denotes a high potential of 

flood susceptibility.  
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The probability index was further classified using the quantile technique to produce the final 

susceptibility maps. The quantile technique was adopted in classifying the flood 

susceptibility index due to its suitability in grouping an equal number of pixels in the same 

classes without tampering with the values[34]. Quantile technique is a popular and efficient 

classification technique based on its reliable performance in hazard modelling[29]. 

Subsequently, the flood susceptibility maps were classified into five classes namely: low, very 

low, moderate, high, and very high based on literature[22]. 

4.7 Results Validation and Model’s Performance Assessment  

The performance assessment and prediction capability of the flood models are evaluated 

using both the training and the testing datasets through the ROC curve and statistical 

metrices (Step F). Both evaluation measures are described below. 

4.7.1 Model Evaluation using the ROC Curve 

  The Receiver Operating Curve (ROC) curve is a popular, comprehensive evaluation tool 

used in hazard modelling studies[20], [52]. The ROC curve is conventionally utilized to 

assess the performance of the ML models and its efficiency relies on the ranking model’s 

performance in an organized manner and attractive visualization[35], [48]. The statistical 

indicator of the ROC curve is represented by the Area Under Curve (AUC). Through the AUC, 

the accuracy and the performance of the ML models are quantified using various thresholds 

of the probability.   

The curve is created by plotting ‘sensitivity’ on the Y-axis against ‘1-specificity’ on the X-axis. 

The AUC ranges between 0 and 1 where 1 indicates that the observed and simulation data 

are in a perfect spatial agreement[1]. Therefore, the closer the value is to 1 determines the 

efficiency and the precision of the model. Consequently, an AUC value of <0.6 depicts weak 

accuracy, 0.6 – 0.7 indicates moderate accuracy while 0.7 – 0.8 depicts good accuracy while 

>0.8 indicates an almost perfect accuracy[66]. To plot the AUC curve and derive the 

statistical indices is dependent on the following parameters namely: True Positive (TP), True 

Negative (TN), False Positive (FP), False Negative (FN), (P) and (N).  The AUC is derived as 

thus:  

     

     𝑨𝑼𝑪 =
∑ 𝑻𝑷+ ∑ 𝑻𝑵

(𝑷+𝑵)
    (21) 

Where TP denotes the number of pixels correctly classified, TN denotes the number of pixels 

correctly classified as non-flood pixels, P is the total number of flood pixels, and N represents 

the total number of non-flood pixels.  
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Considering this study’s context, success rate and prediction rate were constructed. The 

success rate represents a ROC curve plot type that describes how the flood probability index 

segregates the flood locations across the susceptibility zones and highlights the model fitting 

rate to the training dataset[4]. On the other hand, the prediction rate reveals the 

performance of the models in predicting locations prone to flooding and indicates how 

efficient the model is in predicting floods[3].  The Success Rate is constructed based on the 

training dataset which does not describe the efficiency of the model and the testing dataset 

was used in constructing the prediction rate through the comparison of the testing dataset 

to the flood susceptibility maps. 

4.7.2 Statistical Metrics 

 Statistical measures were implemented in this study to augment the AUC curve in having a 

detailed statistical analysis of the model’s predictive capabilities and to check the statistical 

significance of the models[3]. The set of statistical metrics considered in this study were 

Sensitivity (Recall), Accuracy and Specificity, Positive Predictive Rate (Precision), and 

Negative predictive Rate (NPV). 

Sensitivity is a statistical index that measures the proportion of flood pixels correctly 

classified as flood pixels. Specificity index indicates and measures the proportion of non-

flood pixels correctly classified as non-flood pixels. The accuracy index measures the rate of 

difference between the flood and non-flood pixels[4]. Each of the statistical indicators is 

defined as[52]:  

 

𝑺𝒆𝒏𝒔𝒊𝒕𝒊𝒗𝒊𝒕𝒚 =  
𝑻𝑷

𝑻𝑷+𝑭𝑵
 * 100    (22) 

 𝑺𝒑𝒆𝒄𝒊𝒇𝒊𝒄𝒊𝒕𝒚 =
𝑻𝑵

𝑭𝑷+𝑻𝑵 
 * 100    (23)  

 

𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 =
𝑻𝑷+𝑻𝑵

𝑻𝑷 `+𝑭𝑷+𝑻𝑵+𝑭𝑵
 * 100   (24)  

𝑷𝑷𝑽 =  
𝑻𝑷

𝑻𝑷+𝑭𝑷  
  *100     (25)  

 

𝑵𝑷𝑽 =  
𝑻𝑵

𝑻𝑵+𝑭𝑵
 * 100     (26) 

Where FP equals the number of pixels incorrectly classified as flood events, and FN equals 

the number of pixels incorrectly classified as non-flood. Thus, the higher the TP and the 

lower the FP indicates the efficiency of the model. 
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4.8 Software and Device Specifications 

The data derivation and pre-processing were implemented using the software ArcGIS Pro 

2.7.0 from ESRI and ERDAS IMAGINE 2020. Afterwards, the IOE modelling was developed 

using ArcGIS Pro 2.7.0 and Microsoft Excel through which each coefficient values were 

derived.  

WEKA 3.8.4 was used in performing the feature selection process while the multi-

collinearity statistical analysis was derived through the SPSS statistics 26 software from 

IBM. The machine learning model training and classification was implemented using WEKA 

3.8.4 which contains the required packages for conducting machine learning analysis as it 

includes the Decision Tree, Support Vector Machine and Random Forest classification 

algorithms and other packages which were used in performing the complete model training 

process. SPSS statistics 26 was also used in deriving the Area under Curve (AUC) and other 

performance metrics in validating the model.  

The hardware (computer) utilized has an installed 8GB RAM and a processor Intel(R) Core 

i5-6300U CPU @2.40GHZ 2.50GHz. 
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5 RESULTS  

This chapter introduces the outputs attained from the methodology implemented in chapter 

4. It should be noted that only selected tables and figures where appropriate were presented 

while other results are attached in Annexes. 

5.1 Predictiveness of Flood Influencing Factors (Feature Engineering) 

5.1.1 Feature Selection 

 The predictive capability of each flood influencing factors on flood occurrences is germane 

to performing flood susceptibility. Therefore, the linear support vector machine algorithm 

was employed in performing the feature selection process and the Average Merit (AM) 

values were attained (Figure 6). The AM values describe the strength of each influencing 

factor in predicting flood occurrence and the value ranges between 0 and 1. Consequently, 

the distance from river obtained the highest AM (0.850) and followed by the population 

which obtained the average merit of 0.642, Distance from Road (0.583) while NDVI had the 

lowest average merit of 0.089. Based on the results attained, all the influencing factors 

achieved values greater than zero.  Therefore, all the factors were considered in the flood 

susceptibility modelling as each factor tend to have a certain influence on flood occurrence. 

Furthermore, to ensure an outright assessment of flood susceptibility within the region, it is 

of high necessity to give full consideration for each of the influencing factors no matter how 

low the influence might be.  

Figure 6: Factor’s predictive ability (average merit) result 
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5.1.2 Multi-collinearity Analysis 

Tolerance (TOL) and Variance Inflation Factor (VIF) was utilized in performing this process 

using the threshold of TOL > 0.1 and VIF < 10 critical values based on existing literature 

(Table 2). Geology has the lowest tolerance (0.115) and the highest VIF (8.714). However, 

even as it seems to have almost the same influence as soil with the TOI (0.133) and VIF 

(7.504), both influencing factors were considered as previous studies have proved the 

influence of geology on the occurrence of floods. Furthermore, all the influencing factors 

considered met the threshold laid down as all factors exceed the theoretical critical values 

for any evidence of multi-collinearity and were all therefore utilized in the modelling 

process.  

 

Factor Tolerance  VIF 

Rainfall 0.500 2.001 

Altitude  0.569 1.758 

Curvature  0.736 1.359 

Slope 0.458 2.183 

TWI 0.430 2.326 

SPI 0.685 1.460 

Drainage Density 0.883 1.133 

Distance from Road 0.439 2.278 

LULC 0.443 2.258 

Soil 0.133 7.504 

Geology 0.115 8.174 

Population 0.495 2.021 

Distance from River 0.350 2.857 

NDVI 0.359 2.782 

NDBI 0.413 2.419 

Table 2 : Multi-collinearity Analysis 

 

5.2 Flood Modelling Algorithms  

5.2.1 Index of Entropy Flood Modelling 

 IOE modelling was utilized in this study as bivariate and multivariate statistical modelling. 

This is to ensure the weights attributed to each class of an influencing factor and the overall 

weight of each factor on flood occurrence was attained (Table 3). To perform IOE modelling 

required calculating the FR values of the classes of each factor. However, it should be 
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mentioned that ratios > 1 signifies a high probability of flood occurrence while ratios < 1 

signifies a low probability of flood occurrence. Population class between 21970 – 73351 

attained the highest value of FR attaining 4.01. This was followed by grassland class of the 

LULC factor which attained a value of 2.56. It should be mentioned that 22 classes attained 

FR value equal to zero. The FR values were used to attain the probability density values (𝑃𝑖𝑗) 

which measures the probability of flood occurrence representing the weight of influence in 

each class of influencing factors. Consequently, distance from river class between 0 – 

2986.4m attained the highest value of 0.98, followed by distance from road class 0 - 440.3m 

attaining a value of 0.85. This was then followed by the subrecent alluvium and coastal plain 

sands class of the geology factor which attained a value of 0.43. It should be noted that as in 

the case of FR values which attained the values of 0 also resulted in the probability density 

of the classes’ values equaling to 0.  

Subsequently, the weights of the flood influencing factors which ranges from 0 to 1 were 

derived after completing the modelling (Table 3). Distance from river achieved the highest 

weight with a value of 0.52 followed by the distance from road with a value of 0.34, Altitude 

(0.26), SPI (0.20), NDBI (0.19), LULC (0.19), Geology (0.18), Population (0.17), Soil (0.17), 

Slope (0.12), NDVI (0.12), Drainage Density (0.07), Rainfall (0.071), TWI (0.04), Curvature 

(0.002).  Thereafter, the susceptibility index 𝐹𝑆𝐼𝐼𝑜𝐸  was derived through the multiplication 

of the influencing factor’s weight (𝑊𝑗) with the IOE coefficients earmarked to each class.  

Thus, in deriving the flood susceptibility index, the final equation is as follows: 

𝐹𝑆𝐼𝐼𝑜𝐸 = 0.51 ∗ [𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑓𝑟𝑜𝑚 𝑅𝑜𝑎𝑑] + 0.34 ∗ [𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑓𝑟𝑜𝑚 𝑅𝑖𝑣𝑒𝑟] + 0.26 ∗ [𝐴𝑙𝑡𝑖𝑡𝑢𝑑𝑒]

+ 0.20 ∗ [𝑆𝑃𝐼] + 0.19 ∗ [𝑁𝐷𝐵𝐼] + 0.19 ∗ [𝐿𝑈𝐿𝐶] + 0.18 ∗ [𝐺𝑒𝑜𝑙𝑜𝑔𝑦] + 0.17

∗ [𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛] + 0.17 ∗ [𝑆𝑜𝑖𝑙] + 0.12 ∗ [𝑁𝐷𝑉𝐼] + 0.07 ∗ [𝐷𝑟𝑎𝑖𝑛𝑎𝑔𝑒 𝐷𝑒𝑛𝑠𝑖𝑡𝑦]

+ 0.07 ∗ [𝑅𝑎𝑖𝑛𝑓𝑎𝑙𝑙] + 0.04 ∗ [𝑇𝑊𝐼] + 0.002 ∗ [𝐶𝑢𝑟𝑣𝑎𝑡𝑢𝑒] 
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Factor  Class Flood 
Pixels  

Class Pixels  
 

  

  

Altitude (m) 0 - 7 22 1621454 0.593882 0.158748 0.258 
 

8 - 16 54 1652308 1.43049 0.382377 
 

 
20 - 36 19 538174 1.545301 0.413067 

 

 
37 - 57 1 255416 0.17137 0.045808 

 

 
58 - 109 0 134622 0 0 

 

Rainfall (mm) 0 - 9.6 7 948452 0.323004 0.089865 0.071 
 

9.7 - 10.7 48 1671607 1.2567 0.349637 
 

 
10.8 - 12.0 34 1167270 1.274771 0.354664 

 

 
12.1 - 13.7 7 414088 0.739827 0.205833 

 

Slope (Degree) 0 - 1.96 37 1921380 0.839859 0.21496 0.124 
 

1.97 - 5.15 42 1281650 1.429216 0.365805 
 

 
5.16 - 9.78 12 645367 0.810947 0.20756 

 

 
9.79 - 16.71 5 263677 0.827019 0.211674 

 

 
16.72 - 45.32 0 74793 0 0 

 

Curvature  Convex  11 482290 0.998313 0.320926 0.002 
 

Flat  73 3255206 0.981582 0.315547 
 

 
Concave  12 464478 1.130832 0.363527 

 

Soil Aquic Paleudult 0 21150 0 0 0.169 
 

Orthic Tropudalf 0 19449 0 0 
 

 
Oxic Rhodudalf 15 976453 0.671283 0.200306 

 

 
Oxic Tropudalf 0 22323 0 0 

 

 
Oxic Tropudalt 16 629038 1.111499 0.331663 

 

 
Rhodic Paleudult 0 15477 0 0 

 

 
Typic Tropaquent  0 16716 0 0 

 

  Typic Tropudult 2 535389 0.16324 0.04871 
 

 
Typic Ustifluvent 63 1959055 1.40527 0.419322 

 

SPI 0 - 67626 96 4185641 1.000293 1 0.2 
 

676267 - 287411 0 743 0 0 
 

 
287411 - 625452 0 315 0 0 

 

 
625542 - 1115832 0 117 0 0 

 

 
1115833 - 2155584 0 51 0 0 

 

Drainage Density  0 - 3896.93 52 2650331 0.858909 0.237492 0.073 
 

3897 - 11690.78 34 944863 1.575266 0.435568 
 

 
11691 - 22948.57 9 493284 0.79871 0.220847 

 

 
22949 - 55206.47 1 114092 0.383697 0.106094 

 

Distance from Road 
(m) 

0 - 440.3 90 2138540 1.834335 0.847763 0.337 

 
441.4 - 9373.4 3 1242905 0.105205 0.048622 

 

 
9374 - 19598.7 3 583243 0.224195 0.103615 

 

 
19600 - 36214.5 0 219630 0 0 

 

Land use Land Cover Irrigated Croplands  0 1040 0 0 0.185 
 

Residential Areas 17 728714 1.020756 0.09349 
 

 
Rural Areas 0 11631 0 0 

 

𝑭𝑹𝒊𝒋  (𝑷𝒊𝒋) 𝑾𝒋 
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Table 3: Frequency ratio and Index of Entropy coefficients values distribution within flood 
influencing factors classes.

 
Broadleaved Evergereen Forest 15 871338 0.753242 0.068989 

 

 
Semi-deciduous Woodland 8 403307 0.867929 0.079493 

 

 
Broadleaved Deciduous Woodland 0 47792 0 0 

 

 
Grassland 1 17097 2.559236 0.234398 

 

 
Shrubland 6 239933 1.094187 0.100216 

 

 
Hebaceous Vegetation 3 229139 0.572865 0.052468 

 

 
Broadleaved Forest regularly flooded 0 44018 0 0 

 

 
Broadleaved Forest 3 101851 1.288802 0.11804 

 

 
Woody Vegetation 0 1557 0 0 

 

 
Central Business District  38 665013 2.500251 0.228996 

 

 
Water Bodies 5 838074 0.261046 0.023909 

 

Geology  Coastal Plain Sands 15 997603 0.657052 0.19921 0.175 
 

Coastal Plain Sands (Alfisols) 2 537657 0.162551 0.049284 
 

 
Coastal Plain Sands (Ultisols) 16 651361 1.073406 0.325444 

 

 
Deltaic Basin and Tidal Flats 0 15477 0 0 

 

 
Ewekoro Formation (Upper Coal Measure) 0 16077 0 0 

 

 
Recent Alluvium 0 17181 0 0 

 

 
Sandstone (Abeokuta Formation) 0 639 0 0 

 

  Subrecent Alluvium and Coastal Plain Sands 63 1959055 1.40527 0.426062 
 

Population 0 - 486  52 3334648 0.682253 0.061751 0.173 
 

487 - 1053 13 336658 1.689454 0.152912 
 

 
1054 - 6010 15 287226 2.284859 0.206802 

 

 
6011 - 21969 9 165197 2.383594 0.215738 

 

 
21970 - 73351 7 76405 4.008373 0.362797 

 

Distance from 
River(m) 

0 - 2986.4 95 2469057 1.665271 0.97788 0.513 

 
3000.2 - 7700.3 1 1148992 0.037668 0.02212 

 

 
7701.4 - 40071.7 0 536880 0 0 

 

NDVI  0 - 0.04160 1 298954 0.146425 0.031126 0.122 
 

0.04200 - 0.25140 38 873942 1.903355 0.4046 
 

 
0.25150 - 0.43219 21 801044 1.147576 0.243943 

 

 
0.43220 - 0.61302 13 656931 0.866248 0.18414 

 

 
0.61400 - 0.84449 23 1571457 0.640684 0.136192 

 

NDBI -1 - -0.4814 1 487770 0.089744 0.018046 0.192 
 

-0.4813 - -0.2320 10 1251171 0.349866 0.070354 
 

 
-0.2319 - -0.0884 15 724405 0.906418 0.182269 

 

 
-0.0883 - 0.0552 32 682483 2.05247 0.412726 

 

 
-0.0553 - 1.0000 38 1056499 1.574466 0.316605 

 

TWI  0 - 6.8 31 1348395 1.00275 0.210479 0.042 
 

6.9 - 8.9 29 1154504 1.095597 0.229968 
 

 
9.0 - 11.6 21 690239 1.326991 0.278538 

 

 
11.7 - 14.3 11 480114 0.999302 0.209755 

 

 
14.4 - 24.2  4 513908 0.339487 0.071259 
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5.2.2 Support Vector Machine Flood Modelling 

 To perform the SVM flood modelling requires the tuning of parameters gamma (𝛾) and 

penalty  (∁) to train the SVM stand-alone and SVM-IOE hybrid model. This was achieved 

through the ten-fold cross-validation. In consideration of the SVM stand-alone model, 

𝛾(0.11) and ∁(1.4) were attained and used for optimizing the database and deriving the flood 

susceptibility index (Figure 7) while for the SVM-IOE model, 𝛾(0.19) and ∁(1.6) were 

attained and used in generating the flood susceptibility index. The stand-alone SVM flood 

susceptibility map ranges from 0.152 to 0.836 and using the quantile technique, the map 

was classified into five classes of very low, low, moderate, high, and very high (Figure 8).  

The lowest class (0.152 – 0.369) occupies 31.73% of the total study area which indicates the 

low flood susceptibility areas of the watershed and the moderate class (0.495 – 0.635) 

occupies 20.47% of the watershed while the very high susceptibility class (0.680 – 0.836) 

which indicates areas highly prone to flooding occupies 22.81% of the watershed. On the 

other hand, SVM-IOE susceptibility map ranges from 0.196 to 1.374. SVM-IOE lowest 

susceptible class (0.196 – 0.450) occupies 21.56% of the total study area while the moderate 

flood susceptible class (0.810 – 1.032) occupies 18.86% of the watershed while the highest 

flood susceptible class (1.110 – 1.374) occupies 22.41% of the study area. 
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Figure 7: Flood probability index derived from: (a) RF-IOE, (b) DT-IOE, (c) Stand-alone DT, (d) 
Stand-alone RF, (e) SVM-IOE, (f) Stand-alone IOE, (g) Stand-alone SVM. 

 

5.2.3 Random Forest Flood Modelling 

The ten-fold cross-validation technique was also used in tuning the 𝑚𝑡𝑟𝑦 and 𝑛𝑡𝑟𝑒𝑒 

parameters to train the random forest model. Thereafter, optimal parameters were set to be 

𝑛𝑡𝑟𝑒𝑒 = 2000 trees and 𝑚𝑡𝑟𝑦 = 10. The out of bag error procedure was also implemented, 

which is based on the uniformity of the nodes and leaves within the RF model[58]. This is to 

ensure accuracy within the model as the model’s accuracy decreases based on the exclusion 

of important variables. Based on these metrics, distance from road, distance from river, 

population, LULC and soil demonstrates high importance in the flood modelling.  

The RF susceptibility map (Figure 8) derived ranges from 0.130 to 0.675. The lowest class 

(0.130 – 0.327) which signifies areas less susceptible to flood occupies 36.15% of the study 

area while about 15.60% of the watershed signifies areas moderately susceptible to flood 

within the watershed. The highest class (0.547 – 0.675) signifies areas highly susceptible 

and occupies 23.49% of the total study area. On the other hand, the optimal parameters 

achieved through the cross-validation for the RF-IOE was 𝑛𝑡𝑟𝑒𝑒 = 2500 𝑡𝑟𝑒𝑒𝑠 and 𝑚𝑡𝑟𝑦 =

11 and the out of the bag procedure was also implemented for modelling the algorithm. 

Thus, the final RF-IOE susceptibility index ranges from 0.055 to 0.615. The lowest 

susceptible class (0.055 – 0.171) occupies 20.71% of the study area while the moderate 
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susceptible class (0.275 – 0.483) occupies 37.14% of the watershed having the highest 

percentage of the study area. The highest susceptible class (0.518 – 0.615) which signifies 

areas highly susceptible to flood occupies 17.32% of the study area. 

Figure 8: Flood susceptibility maps derived from (a) RF-IOE, (b) Stand-alone DT, (c) Stand-alone 
RF, (d) DT-IOE, (e) Stand-alone SVM, (f) SVM-IOE, (g) Stand-alone (IOE). 
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5.2.4 Decision Tree Flood Modelling 

 The splitting and merging parameters were set with the values of 0.8 and 0.001 for the 

stand-alone DT model which were arrived at after continuous trial and error to achieve the 

best accuracy. DT algorithm reduces parameters in performing its modelling as the most 

important variables are selected and used in generating the model. Therefore, in the stand-

alone DT model, TWI, geology, altitude, NDVI and slope were rejected by the algorithm 

while the other 10 influencing factors were utilized for the modelling. In terms of the DT 

top-down structure, the influencing factors higher on the tree structure signifies a higher 

influence on flood occurrence. Therefore, distance from road, distance from river, drainage 

density, LULC and rainfall were first selected for splitting by the algorithm. 

 Thus, the DT tree generated contains 10 variables, 458 nodes and 108 leaves making it 

impossible to present as a tree in the document and each leaf describes a certain degree of 

flood potentiality. The final susceptibility index generated for the DT model ranges from 

0.114 to 0.649. The lowest susceptible class (0.114 – 0.313) occupies 37.20% of the total 

study area while the moderate class (0.412 – 0.489) occupies 14.39% of the watershed. The 

highest susceptible class (0.529 – 0.649) indicating areas highly prone to floods occupies 

22.43% of the study area. On the other hand, the splitting and merging parameters for the 

DT-IOE model was set to 0.7 and 0.005, respectively.  NDVI, TWI, slope, and altitude were 

rejected by the hybrid model.  

Therefore, 11 influencing factors were utilized for the modelling and the final tree contains 

648 nodes and 189 leaves. The flood susceptibility index derived ranges from 0.057 to 0.600. 

The lowest class of susceptibility (0.057 – 0.168) occupies 18.50% of the study area while 

the third class (0.265 – 0.467) which signifies areas moderately susceptible to flood occupies 

37.20% of the study area having the highest percentage of the study area. The highest 

susceptible class (0.503 -0.600) which indicates high flood susceptibility occupies 17.86% of 

the study area.  

 

5.3 Accuracy Assessment and Validation of Flood Models 

 The seven flood susceptibility maps were evaluated by AUC technique and other statistical 

metrics namely Sensitivity, Specificity, Accuracy, Positive Predictive Value (PPV), and 

Negative Predictive Value (NPV). This was to test the accuracy of the models and the higher 

the AUC values the better the model in terms of success rate and prediction rate.  The DT 

and RF stand-alone model has the highest success rate of 0.900 while the IOE model and 

the SVM model both had the success rate of 0.899 (Figure 9).  
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     Figure 9: Area under Curve (AUC) showing the Success Rate  

 

    Figure 10: Area under Curve (AUC) showing the Prediction Rate  

 

This was then followed by the RF-IOE (AUC = 0.895), SVM-IOE (AUC = 0.894), and DT-

IOE (AUC = 0.890) had the lowest performance.  
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In consideration of the hybrid models, DT-IOE model produced the highest prediction rate 

of 0.871 followed by the RF-IOE model with a prediction rate of 0.867 while SVM-IOE had 

a prediction rate of 0.864 (Figure 10). On the other hand, the DT stand-alone model 

produced the lowest prediction rate of 0.770, followed by the RF stand-alone model with a 

prediction rate of 0.801 while the stand-alone SVM model had the highest prediction of 

0.861. Percentagewise, using the hybrid technique improved the prediction rate as the DT-

IOE is 10% higher than the stand-alone model, and the RF-IOE model is 7% higher than RF 

stand-alone model while the SVM-IOE slightly performed than the SVM stand-alone model  

in predicting areas susceptible to flood.  

 

Classifier Sensitivity  Specificity  Accuracy  PPV NPV 

DT-IOE 83.2 77.6 80.3 78.2 82.6 

DT 67.4 69.2 68.3 70.7 65.9 

IOE 74.4 72.1 73.2 70.7 75.6 

RF 67.4 69.2 68.3 70.7 65.9 

RF-IOE 79.4 80.6 80.3 81.1 78.9 

SVM 78.0 69.8 73.8 71.1 76.9 

SVM-IOE 82.4 84.1 78.3 77.0 80.0 

Table 4: Performance metrics of Classifiers  

 

The authenticity and reliability of the results were further checked with other statistical 

metrics (Table 4). Overall, the DT-IOE model had the highest performance assessing the 

accuracy of the classifiers based on the validation dataset with a specificity (83.2%), and this 

was followed by SVM-IOE with the sensitivity of 82.4%, RF-IOE (79.4%), SVM (78%), IOE 

(74.4%), RF (67.4%) and DT (67.4%). Based on the accuracy, the RF-IOE and DT-IOE had 

the overall highest performance with an accuracy of 80.3%, followed by the SVM-IOE 

(78.3%), SVM (73.8%), IOE (73.2%), RF (68.3%) and DT (68.3%).  
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6 DISCUSSION  

The major focus of this research is to develop and utilize machine learning-based flood 

susceptibility models in deriving flood susceptible maps considering a diverse range of 

factors relative to the study area and to identify the impact of the factors on flood occurrence 

in the study area.  This was performed taking account of the human-induced factors and 

other natural-caused factors acknowledged in previous studies and proven to have a certain 

influence on flood occurrence in the study area. Moreover, feature engineering was 

performed to investigate the predictive ability, significance, and interrelationship among the 

influencing factors before the main modelling and all the factors had a certain influence and 

were therefore utilized for the modelling. Furthermore, feature engineering was performed 

as there are no existing works related to flood susceptibility in the area which necessitates 

the identification of the factors prevalent in the region and their significance.  

Also, it is worthy to note the importance of remote sensing which facilitated the derivation 

of most of the influencing factors, verification of the past flood events and generally plays a 

huge role in assessing potential areas susceptible to natural hazards. Subsequently, in 

achieving accurate results and high prediction based on the novelty of FSM in the region, 

novel hybrid models of efficient ML algorithms namely DT, SVM and RF integrated with 

IOE, and each model as a stand-alone model was implemented in deriving flood 

susceptibility maps for the study area (Figure 8). The ML models were implemented as an 

effectual flood risk assessment is essential due to the increasing incessant flooding in the 

region, the complex nature of the flood influencing variables resulting in its occurrence and 

its long devastating effects on the region.  

Based on the modelling’s novelty in the area, the study utilized all the fifteen influencing 

variables considering a certain degree of influence each variable has on the spatial 

distribution of flood occurrence in the region. The utilization of the IOE statistical model 

provided the platform in assessing the influence of each class of each influencing factor and 

the overall weight of each factor on flood occurrence through bivariate and multivariate 

statistical analysis (Table 3). The acquired weights were then used in reclassifying the 

factors. IOE was further utilized based on its superiority to other BSA/MSA models as it does 

not presume a linear model and make no assumptions with regards to the distribution of 

variables[53].  

According to Costache et al. (2020) and Tehrany et al.(2019), adopting this hybridization 

approach of machine learning and statistical techniques approach increases the accuracy of 

the classification algorithms significantly which was further proven by the outcome of this 
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study[35]. Furthermore, the influence of each class of each factor’s influence on the 

occurrence of floods is identified and given uttermost consideration.  

Regarding the first research question, distance from river network has the highest 

influence on flood occurrence in the area. This confirms that areas highly susceptible to 

floods are very close to the river network, Furthermore, the lowest class (0 – 2986.4m) of 

the distance from river has the highest influence (0.98) which indicates areas within 3000m 

to the water bodies are highly susceptible to flooding. This is followed by distance from road 

which had the second overall influence on flood occurrence within the region. This was more 

significant in the factors first class (0 – 440.3m) which signifies the confluence of roads 

within a 440m radius highly influences the occurrence of floods.  

Furthermore, altitude does have a significant influence on the occurrence of floods in the 

area having the highest third overall influence. Water flows from high altitudes to lower ones 

and therefore upsurges the occurrence of floods in the lower areas. The geologic composition 

of the region influences flooding as the subrecent alluvium and coastal plain lands which 

comprises 85% of the Lagos landform is composed of fossils, sedimentary rocks which 

reduces water permeability, allowing water inundation, and exacerbates flooding. This 

reveals the impact of geology on flooding within the region.  

Consequently, the overall results reveal that the factors majorly distance from river, distance 

from road, NDBI, altitude, soil, LULC, rainfall and SPI play a critical and huge role in the 

spatial distribution of flood occurrences in the study area. On the other hand, slope has a 

low influence on flooding in the study area as the slope reflects a downward trend thereby 

having a huge percentage of flat curvature which increases runoff speed and reduced water 

percolation into the soil. However, this affected the SPI which describes the erosion capacity 

to be greatly increased thereby having a very moderate impact on flood occurrence. Also, the 

NDVI which describes the vegetation density has a low impact on flood occurrence in the 

region due to the low vegetation density in the urban and residential areas. Curvature had 

the lowest value signifying the least influence on the occurrence of floods.   

Based on previous studies, curvature often generates low values which have, in turn, led to 

various contrasting assertions on the role of curvature in FSM[20].  Figure 9. 1(Annex) 

details the relative distribution of flood pixels within the classes of each flood influencing 

factor which describes the flood potential observed in each class. Based on the flood 

susceptibility maps derived, areas highly prone to flooding occupied approximately 21% of 

the study area, which are around the lagoon, also in the plain region near river networks and 

majorly in the residential areas and the central business district of the city. This reveals the 

impact of urbanization on flood occurrences in the study area and confirms the influence of 
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NDBI and LULC on the occurrence of floods in the region. This can be attributed to Bahram 

Choubin’s study that revealed 181,000 people inhabiting residential and urban areas around 

rivers in the world are consistently affected by flooding[45].  

Regarding the second research question based on accuracy assessment and predictive 

performance of the models, all the models performed relatively well with slight differences 

in terms of the success rate which describes the model fitting rate to the training dataset. 

The DT and RF models had the highest performance followed by SVM and IOE.  however, 

hybrid models (DT-IOE, SVM-IOE, and RF-IOE) attained the lowest performance which 

could be attributed to quantile classification technique implemented in classifying each of 

the influencing factors in performing the IOE modelling though quite insignificant based on 

the success rates achieved.  

On the other hand, considering the prediction rate, the DT-IOE had the highest overall 

prediction performance over the six other models outperforming the SVM-IOE and the RF-

IOE models. This signifies that the DT-IOE susceptibility map had the highest accuracy in 

predicting flood locations prone to flooding. Also, this proves the rejection or addition of 

additional influencing factors does not necessarily increase the accuracy of the models as 

factors with similar influence may be rejected by the algorithm and does not suggest the 

factor’s significance invalid[35].  

 Tehrany et al. (2019) also attained similar findings where DT model performed slightly 

more than SVM model. This relates to the SVM’s ability in handling multi-linear data with 

high precision and low error rates. Fotovatikhah et al. (2018) explored over a hundred 

articles on floods and attested to this fact[43].  However, SVM algorithm lacks the ability in 

evaluating the significance of variables utilized. Consequently, based on literature, past 

flooding studies often utilizes SVM with various statistical models and integration with other 

machine learning models in addressing the importance of variables utilized[4], [35]. 

However, DT stand-alone model attained the lowest prediction performance.  

Furthermore, the advantage of utilizing hybrid machine learning models is further proven 

as the DT-IOE obtained a higher accuracy than the DT stand-alone model. Additionally, it 

should be mentioned that the utilization of hybrid models quickened the modelling process 

as the processing time remarkably reduced due to the pre-processing of the flood influencing 

factors as one of the major drawbacks of the ML models utilized is the required time for 

analysis.  

On the other hand, to ensure statistical significance and overall efficiency, statistical metrics 

namely Sensitivity, Specificity, Accuracy, NPV and PPV were utilized in also assessing the 

performance of the models. The DT-IOE performed best slightly than the RF-IOE and the 
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SVM-IOE in terms of specificity of over 80%. The RF had the lowest performance of 

approximately 70% sensitivity which suggest a good indiscriminatory performance of all the 

models utilized for the study.   

Also, each model produced partly varied different susceptibility patterns with relation to the 

susceptibility maps (Figure 8) generated even with similar statistical performances. This 

could be relatively attributed to the selection procedure and the utilization technique of the 

variables implemented by each ML algorithm. The RF permutes each variable randomly and 

DT (CHAID) selects the variables hierarchically based on their relative importance on flood 

occurrence while SVM incorporates all the variables and sets up an optimal plane to 

distinguish the classes of the variables based on flood and non-flood origin. Thus, the 

variation of susceptibility patterns based on selection and combinations of set of factors by 

each ML algorithm.  

However, it should be mentioned that selecting the best model for FSM is quite challenging, 

even though hybridization of models is powerful, variations exist depending on the region 

which could induce uncertainty in spatial prediction. Therefore, changing input data based 

on future conditions could alter the model’s accuracy[19].  

 

6.1 Limitations and Recommendations 

There were some remarkable limitations encountered in this study. Foremostly, there was 

data paucity (spatial and temporal) in terms of flood influencing variables, flood inventory 

data, and resolution of imageries acquired for the study. It is ascertained that the prediction 

abilities of the factors will increase if the factors are derived from higher resolution 

imageries. Also, regarding the temporal dimension of flood occurrence in the region, which 

is fully based on rainfall that initiates flooding, there is a limitation based on the availability 

of rainfall data from rainfall stations which could reveal the unceasing influence of rainfall 

on flooding in the region. However, rainfall’s influence was quite significant in the study 

based on the data utilized which relates that more reliable data will further reveal the 

increasing influence of rainfall in the study area over time.  

 Furthermore, acquiring more accurate and detailed inventory data is very fundamental to 

the entire process and would help in enriching and optimizing the model’s parameters for 

the study area and more accurate models can be attained. Even though multiple iterations 

of random points for the inventory map were performed, there was no increase in the 

precision of models which addresses the stability of the results attained.  
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However, it is needed to acquire more inventory points where one inventory dataset (map) 

can be used for training and another inventory dataset for testing and multiple interactions 

can be performed with their outcomes compared. This will help to attain a more significant 

impact on the temporal dimension of flood occurrence in the region. In essence, there is a 

huge absence of a comprehensive spatial data infrastructure (SDI) in the region which is 

essential in bringing new insights into the flood susceptibility domain.  

Also, based on feasibility studies that have been carried out in the region, wastes generation 

and disposal is a key factor in the occurrence of floods due to the blockage of water channels 

and decrease in the level of water percolation[12]. Therefore, more investigation is needed 

towards the exploration of this factor by acquiring tons of waste generated per block radius 

in each flood susceptibility zone.  

In conclusion, performing accurate flood susceptibility mapping requires updated and 

accurate flood historical data, high resolution derived flood influencing variables and a 

powerful modelling algorithm to achieve highly sustainable results.  
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7 CONCLUSION 

Flood Susceptibility Modelling (FSM) is one of the most popular research areas in natural 

hazard studies. It is a significant domain where accuracy and time are essential in mitigating 

and preventing flood occurrences. This study was implemented to investigate drivers of 

flooding and identify areas prone to flooding in the West Africa region using Lagos as a case 

study. This was achieved by implementing a novel hybrid and stand-alone machine learning 

algorithms specifically DT-IOE, SVM-IOE, RF-IOE, DT, SVM and RF to train the geospatial 

database composed of 15 influencing factors and 139 flood locations and 139 non-flood 

locations. The hybrid models were created to enhance the accuracy of the stand-alone 

models.  

Thereafter, the models were then validated using the AUC and statistical metrics to check 

the statistical significance and the overall efficiency of the model.  Based on the AUC through 

the evaluation of the success rate and the prediction rate, the DT-IOE (AUC = 0.899) 

achieved better goodness of fit to the training dataset and the highest prediction accuracy 

(AUC = 0.871). Percentagewise, the DT-IOE was approximately 10% higher than the DT 

stand-alone model and the RF-IOE was 7% higher than RF stand-alone model which is a 

significant improvement based on the model’s prediction accuracy. On the other hand, 

checking for the statistical significance of the models and overall efficiency in terms of 

Accuracy, Sensitivity and Specificity, DT-IOE had the best performance based on the 

validation dataset which concludes DT-IOE as the most appropriate ML algorithm when 

natural-caused and human-induced factors are concerned with regards to the study area.  

The results revealed that human-induced factors play a huge role in the occurrence of floods 

such as distance from road, NDBI and population density while natural-caused factors such 

as distance from river, LULC, geology proved to be very significant drivers of flood 

occurrences in the region. Also, the performance of feature selection process was 

implemented to identify the most significant factors before performing the main modelling.  

As a novel-based study in the region, the susceptibility maps generated would assist the 

urban planners to prevent the increasing urbanization in the identified susceptible regions 

thereby mitigating flood impact. Also, more inclined floodplains management approaches 

and refined policies can be developed. Over time, it is realized that LULC, SPI and rainfall 

as spatio-temporal factors influences the occurrence of flood and significant attention 

should be given to the factors as a change in LULC over time determines a significant impact 

of SPI and rainfall in the region.   
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In summary, the contribution of this research is emphasized as follows:  

1. The proposed integration of IOE with DT, SVM and RF is a powerful modelling tool 

in the classification and identification of flood locations prone to flood risk. 

2. The adoption of feature engineering technique is a considerable approach before the 

performance of FSM to identify the significance of the flood drivers as these factor’s 

influence varies with time as to the adoption of user-defined factors from previous 

research.    

3. Human-Induced factors should be given full consideration in any region as 

significant drivers of flood occurrences.  

Finally, it should be mentioned that adopting the utilization of machine learning and 

geospatial technology is very efficient in performing FSM based on time, costs, and 

accuracy without expert judgement in the modelling. Also, the study gave insights into 

the carrying out of FSM within West Africa as the results attained is relevant to the 

national and local governments of flood-prone countries within the region which proves 

FSM can be carried out successfully in the region.  
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9 ANNEXES 

9.1 Relative Distribution of flood pixels within Flood Influencing Factors’ 

Classes 
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 Figure 9. 1: (a) Altitude, (b)Slope, (c) Rainfall, (d) Curvature, (e) Population density, (f) Distance 
from River, (g) NDVI, (h) NDBI, (i) SPI, (j) Drainage Density, (k) Distance from Road, (l) TWI, 
(m) LULC, (n) Geology, (o) Soil 
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9.2 Descriptive statistics of the training and testing datasets 

  S.E – Standard Error; S.D – Standard Deviation; S.V – Sample Variance.  

 

 

 

 

Rainfall Altitude Curvature Slope TWI SPI Drainage Density LULC Soil Geology Population Dist_F_River Dist_F_Road NDVI NDBI

Training Sample Mean 10.53 16.35 -1043.45 3.99 7.20 7.87 4234.98 107.70 7.01 5.19 8160.86 4.86 45.42 0.43 -0.06

S.E 0.07 1.12 774.16 0.33 0.09 2.37 408.87 5.24 0.18 0.22 947.34 0.43 4.52 0.02 0.01

Median 10.44 11.00 0.00 2.32 7.18 0.00 1676.86 120.00 9.00 8.00 1352.07 2.67 25.48 0.39 -0.02

S.D 0.98 15.59 10810.57 4.54 1.32 33.06 5709.54 73.14 2.52 3.11 13228.92 6.06 63.11 0.24 0.19

S.V 0.97 243.02 116868329.51 20.63 1.74 1093.00 32598897.86 5349.09 6.37 9.70 175004261.89 36.68 3982.77 0.06 0.04

Kurtosis 0.44 4.37 3.50 4.96 0.86 121.58 6.05 -1.82 -1.30 -1.81 2.06 1.36 6.97 -1.39 0.19

Skewness 0.50 2.04 -0.12 2.12 0.64 10.25 1.99 0.15 -0.70 -0.28 1.62 1.45 2.40 -0.03 -0.69

Range 5.03 87.00 84240.00 23.52 7.91 415.48 37342.90 180.00 7.00 7.00 69157.13 24.88 350.84 0.94 1.00

Minimum 8.36 0.00 -44064.00 0.00 4.30 0.00 0.00 30.00 2.00 1.00 -4843.43 0.00 0.00 -0.16 -0.73

Maximum 13.38 87.00 40176.00 23.52 12.21 415.48 37342.90 210.00 9.00 8.00 64313.70 24.88 350.84 0.78 0.27

Sum 2052.49 3189.00 -203472.00 777.52 1403.99 1535.34 825821.16 21002.00 1367.00 1012.00 1591367.39 948.48 8856.17 82.91 -12.23

Count 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195

Testing Sample Mean 10.35 14.66 93.69 3.26 7.42 8.45 3145.15 116.86 6.90 5.06 7663.99 3.51 30.03 0.41 -0.07

S.E 0.09 1.42 961.43 0.35 0.17 2.90 487.07 8.20 0.29 0.36 1326.29 0.55 4.96 0.02 0.02

Median 10.26 11.00 0.00 2.10 7.12 0.00 426.27 120.00 9.00 8.00 2207.44 1.91 18.72 0.36 -0.01

S.D 0.81 12.95 8759.05 3.19 1.57 26.39 4437.44 74.71 2.67 3.26 12083.12 5.03 45.16 0.23 0.20

S.V 0.66 167.69 76720890.58 10.16 2.47 696.39 19690874.59 5581.08 7.11 10.64 146001827.02 25.31 2039.74 0.05 0.04

Kurtosis 0.41 4.95 5.02 4.95 0.52 25.96 1.62 -1.87 -1.48 -1.90 2.54 3.69 18.43 -1.50 0.92

Skewness 0.70 2.11 0.47 2.13 1.02 4.82 1.49 -0.09 -0.65 -0.25 1.72 2.00 3.50 0.12 -1.03

Range 3.90 65.00 67392.00 14.71 6.75 181.69 18192.50 180.00 6.00 7.00 54556.57 21.79 313.87 0.70 0.94

Minimum 9.06 0.00 -28512.00 0.00 5.34 0.00 0.00 30.00 3.00 1.00 -4455.17 0.00 0.00 0.07 -0.70

Maximum 12.95 65.00 38880.00 14.71 12.09 181.69 18192.50 210.00 9.00 8.00 50101.40 21.79 313.87 0.77 0.24

Sum 859.06 1217.00 7776.00 270.33 616.07 701.69 261047.67 9699.00 573.00 420.00 636111.00 291.19 2492.82 33.87 -5.87

Count 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83
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