11 research outputs found

    The longest path problem is polynomial on interval graphs.

    Get PDF
    The longest path problem is the problem of finding a path of maximum length in a graph. Polynomial solutions for this problem are known only for small classes of graphs, while it is NP-hard on general graphs, as it is a generalization of the Hamiltonian path problem. Motivated by the work of Uehara and Uno in [20], where they left the longest path problem open for the class of interval graphs, in this paper we show that the problem can be solved in polynomial time on interval graphs. The proposed algorithm runs in O(n 4) time, where n is the number of vertices of the input graph, and bases on a dynamic programming approach

    On rr-Simple kk-Path

    Full text link
    An rr-simple kk-path is a {path} in the graph of length kk that passes through each vertex at most rr times. The rr-SIMPLE kk-PATH problem, given a graph GG as input, asks whether there exists an rr-simple kk-path in GG. We first show that this problem is NP-Complete. We then show that there is a graph GG that contains an rr-simple kk-path and no simple path of length greater than 4logk/logr4\log k/\log r. So this, in a sense, motivates this problem especially when one's goal is to find a short path that visits many vertices in the graph while bounding the number of visits at each vertex. We then give a randomized algorithm that runs in time poly(n)2O(klogr/r)\mathrm{poly}(n)\cdot 2^{O( k\cdot \log r/r)} that solves the rr-SIMPLE kk-PATH on a graph with nn vertices with one-sided error. We also show that a randomized algorithm with running time poly(n)2(c/2)k/r\mathrm{poly}(n)\cdot 2^{(c/2)k/ r} with c<1c<1 gives a randomized algorithm with running time \poly(n)\cdot 2^{cn} for the Hamiltonian path problem in a directed graph - an outstanding open problem. So in a sense our algorithm is optimal up to an O(logr)O(\log r) factor

    A Linear Time Algorithm for Computing Longest Paths in Cactus Graphs

    Get PDF
    ACM Computing Classification System (1998): G.2.2.We propose an algorithm that computes the length of a longest path in a cactus graph. Our algorithm can easily be modified to output a longest path as well or to solve the problem on cacti with edge or vertex weights. The algorithm works on rooted cacti and assigns to each vertex a two-number label, the first number being the desired parameter of the subcactus rooted at that vertex. The algorithm applies the divide-and-conquer approach and computes the label of each vertex from the labels of its children. The time complexity of our algorithm is linear in the number of vertices, thus improving the previously best quadratic time algorithm.The work performed by this author was partially funded by the Romanian National Council for Scientific Research (CNCS)-UEFISCDI under research grant PD_240/2010 (AATOMMS – contract no. 33/28.07.2010), from the PN II – RU program, and by the Sectoral Operational Programme Human Resources Development 2007-2013 of the Romanian Ministry of Labour, Family and Social Protection through the financial agreement POSDRU/89/1.5/S/62557

    Finding a family of simple circuits in graphs with vertex semidegrees bounded by k

    Get PDF
    Исследована алгоритмическая сложность задачи о поиске семейства простых циклов, обходящих каждую вершину орграфа с полустепенями вершин, не превосходящими k, при наличии дополнительных ограничений на вид списка смежности. Рассмотрены поисковый и оптимизационный её варианты. Показана параметрически полиномиальная разрешимость задачи в обоих вариантах, предложены алгоритмы со временем работы O (nk 2 + n log2 n), O (n(k2 + k ) + n log2 n) и O(n) для различных типов ограничений; n — количество вершин орграфа

    A Streaming Algorithm for the Undirected Longest Path Problem

    Get PDF
    We present the first streaming algorithm for the longest path problem in undirected graphs. The input graph is given as a stream of edges and RAM is limited to only a linear number of edges at a time (linear in the number of vertices n). We prove a per-edge processing time of O(n), where a naive solution would have required Omega(n^2). Moreover, we give a concrete linear upper bound on the number of bits of RAM that are required. On a set of graphs with various structure, we experimentally compare our algorithm with three leading RAM algorithms: Warnsdorf (1823), Pohl-Warnsdorf (1967), and Pongrasz (2012). Although conducting only a small constant number of passes over the input, our algorithm delivers competitive results: with the exception of preferential attachment graphs, we deliver at least 71% of the solution of the best RAM algorithm. The same minimum relative performance of 71% is observed over all graph classes after removing the 10% worst cases. This comparison has strong meaning, since for each instance class there is one algorithm that on average delivers at least 84% of a Hamilton path. In some cases we deliver even better results than any of the RAM algorithms

    On the Performance of a Simple Approximation Algorithm for the Longest Path Problem

    Get PDF
    The longest path problem is known to be NP-hard. Moreover, they cannot be approximated within a constant ratio, unless P=NP{\rm P=NP}. The best known polynomial time approximation algorithms for this problem essentially find a path of length that is the logarithm of the optimum.In this paper we investigate the performance of an approximation algorithm for this problem in almost every case. We show that a simple algorithm, based on depth-first search, finds on almost every undirected graph G=(V,E)G=(V,E) a path of length more than V3VlogV|V|-3\sqrt{|V| \log |V|} and so has performance ratio less than 1+4logV/V1+4\sqrt{\log |V|/|V|}.

    Triangles, Long Paths, and Covered Sets

    Get PDF
    In chapter 2, we consider a generalization of the well-known Maker-Breaker triangle game for uniform hypergraphs in which Maker tries to build a triangle by choosing one edge in each round and Breaker tries to prevent her from doing so by choosing q edges in each round. The main result is the analysis of a new Breaker strategy using potential functions, introduced by Glazik and Srivastav (2019). Both bounds are of the order Θ(n3/2) so they are asymptotically optimal. The constant for the lower bound is 2-o(1) and for the upper bound it is 3√2. In chapter 3, we describe another Maker-Breaker game, namely the P3-game in which Maker tries to build a path of length 3. First, we show that the methods of chapter 2 are not applicable in this scenario and give an intuition why that might be the case. Then, we give a more simple counting argument to bound the threshold bias. In chapter 4, we consider the longest path problem which is a classic NP-hard problem that arises in many contexts. Our motivation to investigate this problem in a big-data context was the problem of genome-assembly, where a long path in a graph that is constructed of the reads of a genome potentially represents a long contiguous sequence of the genome. We give a semi-streaming algorithm. Our algorithm delivers results competitive to algorithms that do not have a restriction on the amount of memory. In chapter 5, we investigate the b-SetMultiCover problem, a classic combinatorial problem which generalizes the set cover problem. Using an LP-relaxation and analysis with the bounded differences inequality of C. McDiarmid (1989), we show that there is a strong concentration around the expectation
    corecore