
Triangles, Long Paths, and Covered Sets
Dissertation

zur Erlangung des Doktorgrades

der Mathematisch-Naturwissenschaftlichen Fakultät

der Christian-Albrechts-Universität zu Kiel

vorgelegt von

Christian Schielke

Kiel, 2021

Erster Gutachter: Prof. Dr. Anand Srivastav

Zweiter Gutachter: Prof. Dr. Anusch Taraz

Tag der mündlichen Prüfung: 22.12.2021

Contents

1 Introduction 9

1.1 The Triangle-Game in Uniform Hypergraphs . 9

1.2 Path Games . 10

1.3 A Streaming Algorithm for the Longest Path Problem . 10

1.4 A Randomized Approximation for the Set Multicover Problem in Hypergraphs 11

2 The Triangle-Game in Uniform Hypergraphs 13

2.1 Positional Games . 13

2.2 Previous and Related Work . 14

2.3 Upper and Lower Bounds for the Threshold Bias of the K3
n -Triangle Game 16

2.4 A New Breaker Strategy for the K3
n -Triangle Game . 20

2.4.1 Breaker’s Strategy . 24

2.4.2 Controlling Critical Rounds . 32

2.4.3 Bounding the Increase in the Overall Potential . 34

2.4.4 Proof of the Main Result . 41

2.5 Extension to k-Uniform Hypergraphs . 42

3 Path Games 45

3.1 Path-Maker-Breaker and Walker-Breaker Games . 45

3.2 The P3-Game . 46

3.2.1 Potential Function Based Approach . 46

3.2.2 Counting Argument . 49

3

4 CONTENTS

4 A Streaming Algorithm for the Longest Path Problem 51

4.1 Notation, Hardness, and Polynomial Algorithms for Special Graph Classes 52

4.2 Color Coding . 54

4.2.1 Randomized Algorithm . 55

4.2.2 Derandomization . 57

4.3 Gabow and Nie’s Algorithm . 58

4.4 Björklund and Husfeldt’s Algorithm . 59

4.4.1 The Algorithm . 59

4.4.2 Approximation Ratio . 60

4.5 Pongrácz’s Algorithm . 61

4.6 Pohl-Warnsdorf’s Algorithm . 63

4.6.1 Warnsdorf’s Rule . 63

4.6.2 Pohl’s Extension . 63

4.7 Streaming Algorithms and the Semi-Streaming Model . 65

4.8 Previous and Related Work . 65

4.9 Previous Algorithms . 67

4.10 Description of Our Streaming Algorithm . 67

4.11 Properties of Our Streaming Algorithm . 69

4.12 Test Instances . 73

4.13 Experimental Setup . 75

4.14 Data and Discussion . 76

4.15 Tables of Experimental Data . 78

5 A Randomized Approximation for the Set Multicover Problem in Hypergraphs 83

5.1 Introduction . 83

5.2 Definitions and Preliminaries . 84

5.3 The Randomized Rounding Algorithm . 85

5.4 Analysis of the Algorithm . 87

List of Algorithms

4.1 Longest Path in trees . 54

4.2 Find colorful k-path . 56

4.3 Gabow and Nie’s Algorithm . 58

4.4 Björklund and Husfeldt’s Algorithm . 59

4.5 Pongrácz/create . 61

4.6 Pongrácz/search . 62

4.7 Pongrácz . 62

4.8 Warnsdorf’s rule . 64

4.9 Tiebreak . 64

4.10 Streaming Phase (1): Spanning Tree Construction . 68

- Procedure SpanningTree(T) . 69

4.11 Streaming Phase (2): Improvement . 71

5.1 SET b -MULTICOVER . 86

5

Abstract

In chapter 2, we consider a generalization of the well-known Maker-Breaker triangle game for uniform

hypergraphs in which Maker tries to build a triangle by choosing one edge in each round and Breaker

tries to prevent her from doing so by choosing q edges in each round. The triangle game in simple graphs

was first introduced by Chvátal and Erdős (1987) alongside the concept of biased games, i.e., Breaker can

choose q edges in each round instead of just one. This enabled the research on more complex winning

sets than fair games. The natural question is whether there is a so-called threshold bias, i.e., a point

q∗ where for any bias q > q∗ Breaker wins and for any bias q < q∗ Maker wins. We give a lower

bound for the threshold bias for the Maker-Breaker game played on a 3-uniform hypergraphs and an

upper bound for k ∈ O (
p

n). While the lower bound can be proved with a generalization of the Maker

strategy of Chvátal and Erdős, the main result is the analysis of a new Breaker strategy using potential

functions, introduced by Glazik and Srivastav (2019). Both bounds are of the order Θ(n3/2) so they are

asymptotically optimal. The constant for the lower bound is 2−o(1) and for the upper bound it is 3
p

2

thus the threshold bias, if it exists, must be in the interval [2− o(1)n3/2, 3
p

2n3/2].

In chapter 3, we describe another Maker-Breaker game, namely the P3-game in which Maker tries to

build a path of length 3. First, we show that the methods of chapter 2 are not applicable in this scenario

and give an intuition why that might be the case. Then, we give a more simple counting argument to

bound the threshold bias.

In chapter 4, we consider the longest path problem which is a classicN P -hard problem that arises in

many contexts. Our motivation to investigate this problem in a big-data context was the problem of

genome-assembly, where a long path in a graph that is constructed of the reads of a genome potentially

represents a long contiguous sequence of the genome. We give a semi-streaming algorithm, i.e., an al-

gorithm that has sequential access to the set of edges of an input graph and limited memory (RAM).

Our algorithm delivers results competitive to internal memory algorithms that do not have a restric-

tion on the amount of memory. We compared an implementation of our algorithm experimentally to

existing algorithms on various types of graphs with different densities and degree distributions and also

experimentally, show the high efficiency of the algorithm, in theory and practice.

In chapter 5, we investigate the b -SETMULTICOVER problem, a classic combinatorial problem which

generalizes the set cover problem. Using a simple relaxation of an integer program with subsequent

randomized rounding, we show that the expectation of the solution gives a good approximation. Using

the bounded differences inequality of C. McDiarmid (1989), we further show that there is a strong

concentration around the expectation, thus, we obtain a good approximation with high probability.

6

Deutsche Zusammenfassung

In Kapitel 2, betrachten wir eine Verallgemeinerung des bekannten Maker-Breaker-Dreiecksspiels für

uniforme Hypergraphen, bei dem Maker versucht, ein Dreieck zu bilden, indem sie in jeder Runde eine

Kante wählt, und Breaker versucht versucht, sie daran zu hindern, indem er in jeder Runde q Kanten

wählt. Das Dreiecksspiel in Graphen wurde erstmals von Chvátal und Erdős (1987) zusammen mit dem

Konzept der biased Games, d.h., Breaker kann q Kanten in jeder Runde anstelle von nur einer. Dies

ermöglichte die Erforschung von komplexeren Gewinnmengen als bei fairen Spielen. Die natürliche

Fragestellung ist die nach der existenz eines sogenannten Schwellenwertes, d.h. einem Punkt, an dem

für einen größeren Bias Breaker gewinnt und für einen geringeren Bias Maker. Wir geben eine untere

Schranke für 3-uniforme Hypergraphen und eine obere Schranke für k ∈ O (
p

n).

In Kapitel 3 beschreiben wir das P3-Spiel, ein weiteres Maker-Breaker-Spiel, in dem Maker versucht,

einen Pfad der Länge 3 zu bauen. Zuerst zeigen wir, dass die Methoden aus Kapitel 2 in diesem Szenario

nicht anwendbar sind und geben eine Intuition, warum das der Fall sein könnte. Dann geben wir ein

einfacheres Abzählargument, um den Threshold Bias abzuschätzen.

In Kapitel 4 betrachten wir das Problem der längsten Pfade, das ein klassischesN P -hartes Problem ist,

das in vielen Zusammenhängen auftritt. Unsere Motivation, dieses Problem in einem Big-Data-Kontext

zu untersuchen, war das Problem der Genom-Assemblierung, bei der ein Graph, der aus den Reads

eines Genoms konstruiert ist, als Eingabe dient. In diesem stellt ein langer Pfad potentiell eine lange

zusammenhängende Sequenz des Genoms dar. Wir geben einen Semi-Streaming-Algorithmus an, d.h.

einen Algorithmus, der sequentiellen Zugriff auf die Menge der Kanten eines Eingabegraphen hat und

begrenzten Speicher hat. Dieser Algorithmus lieferte Ergebnisse, die konkurrenzfähig zu Algorithmen

mit internem Speicher sind, die keine Beschränkung auf die Speichermenge haben. Wir verglichen eine

Implementierung unseres Algorithmus experimentell mit existierenden Algorithmen auf verschiedenen

Typen von Graphen mit unterschiedlichen Dichten und Gradverteilungen und haben experimentell die

hohe Effizienz des Algorithmus gezeigt.

In Kapitel 5 untersuchen wir das b -SETMULTICOVER Problem, ein klassisches kombinatorisches Über-

deckungsproblem, das das Set-Cover Problem verallgemeinert. Unter Verwendung einer einfachen Re-

laxation eines ganzzahligen Programms mit anschließender randomisierten Rundung zeigen wir, dass

der Erwartungswert der Lösung eine gute Approximation liefert. Unter Verwendung der Ungleichung

der begrenzten Differenzen von C. McDiarmid (1989) zeigen wir außerdem, dass dass es eine starke

Konzentration um den Erwartungswert herum gibt, so dass wir mit hoher Wahrscheinlichkeit eine

gute Annäherung ans Optimum erreichen.

7

8

Chapter 1

Introduction

In this chapter we give a short summary of the different areas of research in this thesis, highlighting the

techniques used and the results that were achieved.

1.1 The Triangle-Game in Uniform Hypergraphs

The Maker-Breaker triangle game in simple graphs is a classic biased positional game introduced by

Chvátal and Erdős [CE78]. In this game, played on the complete graph, Maker attempts to claim all

three edges of a triangle and Breaker tries to prevent this. Since this game is biased, i.e., Breaker claims

q edges in each round, the focus of research is the so-called threshold bias. This is the point q∗ where

for any q > q∗, Breaker wins and for q < q∗ Maker wins. Chvátal and Erdős gave a lower bound of
p

2
p

n that has not been improved yet. Their upper bound of 2
p

n has been improved by Balogh and

Samotij [BS11], who gave a non-constructive Breaker strategy that uses probabilistic arguments. Re-

cently, in a breakthrough work, the bound has been improved to
q

8
3

p
n by Glazik and Srivastav [GS18]

who developed a new type of potential function and a two-phase strategy. We give a generalization of

this result for 3-uniform hypergraphs. First, we show an asymptotically optimal lower bound for the

3-uniform case of 2n3/2 using a Chvátal-Erdős-type of argument. We then develop the potential func-

tion for the upper bound in the 3-uniform case and give a thorough analysis of the potential’s behaviour

during the game. We show that if the potential never exceeds 2n, then Breaker has a winning strategy.

We further prove that if Breaker plays according to the potential function, prioritizing edges of high

potential, he wins the game for q >
q

36
5 n3/2. At the end, we give an outlook for a potential function

9

10 CHAPTER 1. INTRODUCTION

and an upper bound for general k-uniform hypergraphs where k ∈ O (
p

n).

1.2 Path Games

We give an upper bound for the P3-game where Maker’s goal is to build a path of three edges. A trivial

upper bound of 2n for the threshold bias can be achieved by Breaker by isolating both vertices of Maker’s

previously claimed edge. We first demonstrate how the techniques from the previous chapter are not

useful in this scenario and then give a less sophisticated counting argument that achieves an upper bound

of
p

3+1
2 ≈ 1.366.

1.3 A Streaming Algorithm for the Longest Path Problem

The longest path problem is the problem of finding a directed or undirected path with maximum length

within a graph. Our interest in researching this problem in a Big Data context was the application in

genome assembly where the genome is read by a sequencing machine and a graph can be constructed

from the machine’s output. A long contiguous path corresponds to a long sequence of the genome itself.

While this is an oversimplification of the genome assembly problem, it might be worth investigating

whether or not a path-based genome assembly algorithm would yield good results compared to the

convential ones.

The longest path problem is well-known to beN P -hard since it contains the Hamiltonian path prob-

lem as a special case. It is evenN P -hard to find an nδ approximation for fixed δ > 0. Because of the

hardness and inapproximability, the most commonly used algorithms are heuristics that perform well

in most cases.

We will first present approximation algorithms for the problem and two RAM heuristics that we com-

pare our own algorithm to. Since the input graphs from the sequencing machine can become too large

for a computer’s internal memory, we developed an algorithm for the longest path problem that deals

with the restrictions of the Semi-Streaming model. In this model, the memory available to the algo-

rithm is restricted to an amount linear in the number of vertices of the input graph and the input is

given as a stream in no particular order. The number of passes over the stream must be constant. The

existing heuristics are based on BFS and DFS which are not possible in the Semi-Streaming model.

Our approach works in two phases: First, we construct a set of minimum spanning trees in which we

limit the degrees of its vertices. This construction retains long paths and is sparse enough to be stored

1.4. A RANDOMIZED APPROXIMATION FOR THE SET MULTICOVER PROBLEM 11

inside the internal memory. We then find a long path inside this graph using an existing heuristic. The

algorithm then builds an MST that contains all of the edges of the found path and improves the length

of the path by adding edges and removing others. Adding an edge creates a cycle. We show that our

algorithm is able to detect which edge to remove from the resulting cycle, such that the length of a

longest path in the tree is optimal. We show that this is done in O (n) time, where the naïve solution

would require n2 steps.

We analyze the results of our algorithm experimentally by comparing it to the heuristic algorithms on

various types of graphs. Our algorithm delivers competitive results: with the exception of preferen-

tial attachment graphs, we deliver at least 71% of the solution of the best RAM algorithm. The same

minimum relative performance of 71% is observed over all graph classes after removing the 10% worst

cases. This comparison has strong meaning, since for each instance class there is one algorithm that on

average delivers at least 84% of a Hamilton path. In some cases we deliver even better results than any

of the RAM algorithms.

1.4 A Randomized Approximation for the Set Multicover Prob-

lem in Hypergraphs

We consider the b -MULTICOVER problem in hypergraphs, where a hypergraphH = (V ,E) consisting

of a finite set V of vertices, a set of (hyper) edges E ⊆ 2V , and b ∈ N are given as input. The b -

MULTICOVER problem is the problem of finding a minimum cardinality set of edges C ⊆ E such that

each vertex v ∈ V is covered by at least b edges. The special case b = 1 is the SETCOVER problem,

which is a classical combinatorial problem that is part of Karp’s 21N P -complete problems [Kar72].

Because of the hardness of the special case, the more general version is also N P -hard and thus, we

cannot give an exact polynomial time algorithm unless P = N P . We present an approximation

algorithm based on an integer programming formulation of the problem, using both deterministic and

randomized rounding along with an additional repair step.

For the analysis of the algorithm, we use the well-known McDiarmid-inequality [McD89] to show that

the algorithm achieves a
�

1− (b−1)e
δ+1

2

32`

�

-approximation with high probability.

12 CHAPTER 1. INTRODUCTION

Chapter 2

The Triangle-Game in Uniform

Hypergraphs

2.1 Positional Games

Positional games have been an active field of research for several decades. A survey of the topic can

be found in the book written by Hefetz et. al. [Hef+14] or the monograph by Beck [Bec08]. We will

briefly describe the general setting and important results in the following section.

Positional games are a kind of combinatorial game played by two players on a finite set X and a family of

subsetsF ⊆ 2X , usually called winning sets. The two players take turns alternately by claiming elements

of X that are previously unclaimed. The game ends once one of the players fulfills a winning criterion.

If, at the end of the game, no player fulfils a winning criterion, the game is a draw. Positional games

are perfect information games and because X is finite and the players take elements in each round, the

game ends after a finite number of rounds.

The most famous positional game is Tic-Tac-Toe, where X represents the nine spaces and the set of

winning setsF contains all rows, columns and the diagonals of length three. A player wins if he claimed

all three spaces of such a winning set. It is well-known that this game ends in a draw if both players play

perfectly. This can be shown by simply constructing a game graph that contains every possible scenario

that can occur during the game. For obvious reasons, this enumeration is not feasible for large sets.

In Maker-Breaker games, we call the two players Maker and Breaker. Maker wins the game if she can

13

14 CHAPTER 2. THE TRIANGLE-GAME IN UNIFORM HYPERGRAPHS

claim all elements of a winning set and Breaker wins if he can prevent Maker from doing so until every

element of X is claimed by either player.

The following criterion by Erdős and Selfridge [ES73] gives a condition on the winning sets that ensures

a Breaker’s win.

Theorem 2.1 (Erdős-Selfridge Criterion) LetH = (X ,E) be a hypergraph. Then,

∑

E∈E
2−|E | <

1
2
=⇒ Breaker has a winning strategy.

Biased Games

So far, we only considered games where each player claimed one element in each round. We call this a fair

game. Chvátal and Erdős introduced the notion of biased positional games in their seminal paper [CE78]

where the players claim p and q elements in each turn, respectively, p, q ≥ 1. We call this a (p : q)-biased

game. This natural extension of positional games enabled the research on an abundance of subgraph

games, e.g. [Bec81; Bec82; Bec85; BŁ00; MS14].

A biased version of Theorem 2.1 was given by Beck [Bec82].

Theorem 2.2 Let n, m ∈N and p, q ∈ [n]. LetH = (X ,E) be the game hypergraph of a (p : q)-Maker-

Breaker game with |X |= n and |E |= m.

(i) If
∑

E∈E (1+ q)−
|E |
p < 1

q+1 , then Breaker (as second player) has a winning strategy.

(ii) As first player, he has a winning strategy if
∑

E∈E (1+ q)−
|E |
p < 1.

2.2 Previous and Related Work

The triangle game in simple graphs has been studied extensively while to our knowledge there are no

known results for the hypergraph triangle game. In the following, we summarize the current state of re-

search on the triangle game played on simple graphs. The Maker-Breaker Triangle Game was introduced

along with other biased games by Chvátal and Erdős [CE78]. Their lower bound construction consists

of a Maker strategy where she builds a star around a fixed vertex leading to her win for q <
p

2
p

n.

This lower bound has not been improved since and is conjectured to be optimal. For the upper bound

given in this paper, Breaker’s strategy is to close possible Maker-triangles whenever they appear, be-

cause otherwise Maker could win the game in the next round, and to avoid stars of size q/2, where q is

2.2. PREVIOUS AND RELATED WORK 15

Breaker’s bias. Their upper bound is 2
p

n and for any q ≥ 2
p

n, this is a Breaker winning strategy. The

upper bound has been improved slightly by Balogh and Samotij [BS11], who gave a non-constructive

Breaker strategy using probabilistic methods leading to an upper bound of 1.935
p

n. Recently, the up-

per bound has been substantially improved to
p

(8/3+ ε)
p

n, for arbitrarily small ε > 0, by Glazik

and Srivastav [GS18], who gave a constructive Breaker strategy that uses a new type of non-monotone

potential function and a two-phase strategy.

Bednarska and Łuczak [BŁ00] developed a technique for deriving asymptotically optimal threshold

biases for arbitrary Maker-Breaker subgraph games. The asymptotic threshold bias depends on the 2-

density m2(H) of the subgraph H Maker tries to build.

Theorem 2.3 (Bednarska and Łuczak, 2000) For every fixed graph H with at least 2 edges, let

m2(H) := max
A⊆H , |V (A)|>2

|E(A)| − 1
|V (A)| − 2

.

We call m2 the 2-density of H . For the threshold bias qH of the H -game it holds

bH ∈Θ(n
1/m2(H)).

The asymptotic result has been generalized by Kusch et al. [Kus+17] for k-uniform hypergraphs where

the threshold bias depends on the k-density of the hypergraphH that Maker tries to build.

Theorem 2.4 (Kusch et al., 2017) For every fixed k-uniform hypergraphH on at least 2 edges, let

mk (H) := max
A⊆H , |V (A)|>k

|E(A)| − 1
|V (A)| − k

denote the k-density of the hypergraph. The threshold bias bH of theH -game satisfies qH ∈Θ(n1/mk (H)).

Definition 2.5 (K k
n -Triangle Game) Let K k

n be the complete k-uniform hypergraph on which the game is

played. We call a triplet of edges {e1, e2, e3} a (hypergraph) triangle if |e1 ∩ e2|= |e1 ∩ e3|= |e2 ∩ e3|= 1 and

e1∩ e2∩ e3 = ;. The K k
n -Triangle Game is defined as the (1 : q)-Maker-Breaker game where Maker wins if she

claims all three edges of a triangle and Breaker wins if he can prevent Maker from doing so until the end of

the game.

Depending on k, Theorem 2.4 gives the following asymptotic threshold values qk
4 for the triangle game

in k-uniform hypergraphs are shown in Table 2.1. Note that these techniques are non-constructive and

do not give concrete constants.

16 CHAPTER 2. THE TRIANGLE-GAME IN UNIFORM HYPERGRAPHS

k 2 3 4 5 · · ·
qk
4 Θ(n1/2) Θ(n3/2) Θ(n5/2) Θ(n7/2) · · ·

Table 2.1: Asymptotic threshold biases for the Triangle game in k-uniform hypergraphs

2.3 Upper and Lower Bounds for the Threshold Bias of the K3
n-

Triangle Game

We begin by adapting the techniques of Chvátal and Erdős to complete 3-uniform hypergraphs on which

the game is played in order to find better constants for the threshold bias.

Theorem 2.6 In the K3
n Maker-Breaker hypergraph triangle game, Maker has a winning strategy for q <

(2− o(1))n3/2.

Proof. At the beginning, Maker selects an arbitrary vertex v and constructs a star centered in this vertex

by choosing edges incident in v that are, except for v, pairwise disjoint. If, at some point in time, there

is an edge e , where Maker’s choice of e would yield a Maker-triangle, she chooses that edge and as a

result, wins the game.

Breaker’s defense against Maker’s star building strategy has to fulfill two objectives: closing emerging

Maker triangles by choosing edges that would allow Maker to close a triangle in her next turn, and

preventing the Maker-star in v from getting too big by choosing edges incident in v.

Suppose Breaker, as the first player, can defend against Maker’s star building strategy. Then

�

n− 2d − 1
2

�

+
�

d
2

�

4(n− 5)≤ (d + 1)q . (2.3.1)

This can be proved as follows. The first summand describes the number of Breaker-edges needed to

prevent the Maker-star from exceeding d edges. This can be seen as follows. In the 3-uniform complete

hypergraph on which the game is played, each vertex has
�n−1

2

�

incident edges. From those, we exclude

the edges containing the 2d vertices that are covered by Maker’s d edges and v itself and get the first

term. An example is shown in Figure 2.1.

The second term represents the total number of edges needed for Breaker to close every potential Maker-

triangle within a Maker-star on d edges. For each pair of Maker’s star edges, there are four ways of

building a Maker-triangle using one of the n− 5 remaining vertices not contained in this pair of edges

as shown in Figure 2.2. There are
�d

2

�

pairs of Maker edges in a Maker-star of degree d .

2.3. BOUNDS FOR THE THRESHOLD BIAS OF THE K3
N -TRIANGLE GAME 17

d Maker edges

2d + 1 vertices

n− 2d − 1 additional vertices

Figure 2.1: Maker builds a star around the vertex v using d edges on 2d − 1 distinct vertices.

n− 5 vertices

v
1

v
2

v

w
1

w
2

Figure 2.2: Two Maker-edges {v, v1, v2} and {v, w1, w2}. For each vertex u ∈ V \ {v, v1, v2, w1, w2},
Breaker has to claim the edges {v1, u, w1}, {v1, u, w2}, {v2, u, w1}, and {v2, u, w2}.

18 CHAPTER 2. THE TRIANGLE-GAME IN UNIFORM HYPERGRAPHS

The right hand side of the inequality gives the total number of edges Breaker picks in d + 1 rounds. If

Breaker wins, the inequality must have a solution for d . Equivalently, if, for some q , no such solution

exists, then Maker wins the game by following her strategy described above. We get equality for (2.3.1)

solving a quadratic equation for

d = d ? :=
1
2

√

√

√n2+ 9n− 40
n− 4

− 2

!

and

q = q? := 2
p

n3+ 5n2− 76n+ 160− 8n+ 29.

Note that Maker-Breaker games are bias monotone. We now show that for q smaller than q?, Breaker

cannot defend against Maker’s star building strategy. Assume for a moment that q? − 1 is a sufficient

bias for Breaker’s win against a star building Maker. The decrease in bias changes only the right hand

side of (2.3.1) by an additive term of −(d + 1). If (2.3.1) still holds, then d needs to increase. Because d

is integral, d increases by at least one. To compute the increase on the left hand side, we consider the

summands individually:

Let ν := n− 2d − 1, then for n− 2(d + 1)− 1= ν − 2 we get

�

n− 2(d + 1)− 1
2

�

−
�

n− 2d − 1
2

�

=
�

ν − 2
2

�

−
�

ν

2

�

=
(ν − 2)(ν − 3)

2
−
ν(ν − 1)

2

=
ν2− 3ν − 2ν + 6

2
− ν

2− ν
2

=−2ν + 3 def= −2n+ 4d + 5 (2.3.2)

For the second term, we get

�

d + 1
2

�

4(n− 5)−
�

d
2

�

4(n− 5) =
��

d + 1
2

�

−
�

d
2

��

4(n− 5)

=
�

d (d + 1)
2

−
d (d − 1)

2

�

4(n− 5)

=
�

d 2+ d − d 2+ d
2

�

4(n− 5)

=4d (n− 5) (2.3.3)

Adding (2.3.2) and (2.3.3) yields −2n+ 4d + 5+ 4d (n− 5) = 4d n− 2n− 16d + 5. In order for (2.3.1)

2.3. BOUNDS FOR THE THRESHOLD BIAS OF THE K3
N -TRIANGLE GAME 19

to still hold, we would need

4d n− 2n− 16d + 5≤ q − d − 2

which does not hold for n ≥ 4. Thus, the inequality has no solution for q < q?.

Therefore q? is a lower bound for the threshold bias.

For the upper bound, Breaker needs to prevent Maker from choosing edges between high degree vertices

and thereby creating many possible triangles. The next proposition gives an upper bound on the number

of Breaker edges q to achieve this goal.

Proposition 2.7 If the number of Breaker edges q satisfies

4(n− 5)(degM (u)+ degM (v)+ degM (w))≤ q for all edges {u, v, w} ∈ E , (2.3.4)

then Maker cannot build a triangle in the next round.

Proof. To this end, we call degM (v) ≥
q

12(n−5) Breaker’s dangerous event which he tries to avoid for

every vertex v. Just as in Figure 2.2, there are 4(n− 5) ways to build a triangle between two edges that

intersect only in v. Maker may claim an edge {u, v, w} where for each vertex x ∈ {u, v, w}, there are

4(n− 5)degM (x) ways to close a triangle with {u, v, w} \ {x}.

If no vertex of such high degree exists, (2.3.4) holds, as a simple calculation shows. Setting degM (u) =

degM (v) = degM (w) =
q

12(n−5) − 1 for an arbitrary edge {u, v, w}, we get

4(n− 5)(degM (u)+ degM (v)+ degM (w)) = 4(n− 5)
�

3 ·
�

q
12(n− 5)

− 1
��

= 12(n− 5)
�

q
12(n− 5)

− 1
�

< q .

Because Breaker can claim q edges, he can prevent Maker from closing a triangle.

Theorem 2.8 In the K3
n Maker-Breaker hypergraph triangle game, Breaker has a winning strategy for q >

(3
p

2)n3/2.

20 CHAPTER 2. THE TRIANGLE-GAME IN UNIFORM HYPERGRAPHS

Proof. Breaker needs to ensure that

3 ·
�n−1

2

�

q
<

q
12(n− 5)

(2.3.5)

at all times. This can be seen as follows: For each of the three vertices of Maker’s previously chosen edge,

Breaker claims a portion q of the total edges incident in that vertex such that there are no dangerous

events. Now, we can solve (2.3.5) for q :

3 ·
�n−1

2

�

q
<

q
12(n− 5)

⇔ 3 ·
�

n− 1
2

�

<
q2

12(n− 5)

⇔ 3 · 12(n− 5)
�

n− 1
2

�

< q2

⇔ 18(n− 5)(n− 2)(n− 1)< q2

⇔
p

18(n− 5)(n− 2)(n− 1)< q ,

thus for n > 5, Breaker has a winning strategy for q > 3
p

2n3/2.

2.4 A New Breaker Strategy for the K3
n-Triangle Game

Definition 2.9 (Balance function) The balance of a vertex reflects how close Maker is to the dangerous

event of having a vertex v with degM (v) ≥
q(1−δ)
12(n−5) for some δ > 0 to be fixed later. We define the balance

of v by

bal(v) :=

�n−1
2

�

− degB (v)

q
�

q(1−δ)
12(n−5) − degM (v)

�

− 4(n− 5)
∑q(1−δ)/12(n−5)

i=degM (v)
i
.

A vertex v has higher balance value if its Maker-degree is closer to the dangerous event that degM (v)≥
q

12(n−5) . Let us briefly explain the terms in the balance function.
�n−1

2

�

is the total number of edges

incident in a vertex in the complete 3-uniform hypergraph, so
�n−1

2

�

− degB (w) is the number of edges

that do not belong to Breaker and the balance increases proportionally to this value. degM (v) =
q(1−δ)
12(n−5)

is the desastrous event for Breaker, so the balance drastically increases as degM (v) tends to this value.

Multiplication by q reflects that Breaker has q edges to compensate the threat. The sum represents an

upper bound for additional edges Breaker needed to prevent possible Maker-triangles. For each round

2.4. A NEW BREAKER STRATEGY FOR THE K3
N -TRIANGLE GAME 21

i , Breaker needs to prevent Maker from building triangles using two edges incident in v.

Let q = (βn)3/2 and let bal0(n,δ) denote the balance of each vertex at the beginning of the game. At

this point, we have degM (v) = degB (v) = 0 for all vertices v. Thus,

bal0(n,δ) =

�n−1
2

�

− degB (v)

q
�

q(1−δ)
12(n−5) − degM (v)

�

− 4(n− 5)
∑q(1−δ)/12(n−5)

i=degM (v)
i

=

�n−1
2

�

q ·q(1−δ)
12(n−5) − 4(n− 5)

∑q(1−δ)/12(n−5)
i=0 i

=

�n−1
2

�

q ·q(1−δ)
12(n−5) − 2(n− 5)

�

�

q(1−δ)
12(n−5)

�2
+ q(1−δ)

12(n−5)

�

=

�n−1
2

�

q ·q(1−δ)
12(n−5) −

q2(1−δ)2

72(n−5) −
q(1−δ)

6

=

�n−1
2

�

q(1−δ)
�

q
12(n−5) −

q(1−δ)
72(n−5) −

1
6

�

=
6 ·
�n−1

2

�

q(1−δ)
�

q
2(n−5) −

q(1−δ)
12(n−5) − 1

�

=
3(n− 1)(n− 2) · 12(n− 5)

q(1−δ) (6q − q(1−δ)− 12(n− 5))

=
36(n− 5)(n− 2)(n− 1)

q(1−δ)(q(5+δ)− 12(n− 5))
.

Proposition 2.10 bal0(n,δ)< limn→∞ limδ→0 bal0(n,δ) = 36
5β3 = 1 for β= 3

q

36
5 .

Proof. Setting δ = 0, we get

bal0(n, 0) =
36(n− 5)(n− 2)(n− 1)

q(1− 0)(q(5+ 0)− 12(n− 5))

=
36(n− 5)(n− 2)(n− 1)

5q2− q(12(n− 5))
(q = (βn)3/2)

=
36(n− 5)(n− 2)(n− 1)

5β3n3−β3/2n3/2(12(n− 5))

=
36 · O (n3)

5β3 · O (n3)− o(n3)
n→∞−−→ 36

5β3
.

Setting 36
5β3 = 1 gives β3 = 36

5 and thus β= 3
q

36
5 .

22 CHAPTER 2. THE TRIANGLE-GAME IN UNIFORM HYPERGRAPHS

Because for fixed n and δ, bal0(n,δ) is constant, we write bal0 wherever it is convenient.

Definition 2.11 (Balanced Breaker-degree) The balanced Breaker-degree of a vertex, denoted by deg∗(v),

is the number of Breaker-edges incident in v, so that bal(v) = bal0 at an arbitrary but fixed round.

Proposition 2.10 defines balanced Breaker-degree by the following equation:

�n−1
2

�

− deg∗(v)

q
�

q(1−δ)
12(n−5) − degM (v)

�

− 4(n− 5)
∑q(1−δ)/12(n−5)

i=degM (v)
i

!= bal0 .

Thus

bal0



q
�

q(1−δ)
12(n− 5)

− degM (v)
�

− 4(n− 5)

q(1−δ)
12(n−5)
∑

i=degM (v)

i



=
�

n− 1
2

�

− deg∗(v)

and

deg∗(v) =
�

n− 1
2

�

− bal0



q
�

q(1−δ)
12(n− 5)

− degM (v)
�

− 4(n− 5)

q(1−δ)
12(n−5)
∑

i=degM (v)

i



 . (2.4.1)

We define the deficit d (v) as the number of edges Breaker is missing to achieve a balance value of bal0
at vertex v:

d (v) := deg∗(v)− degB (v).

We proceed to the definition of the potential function of the game.

Definition 2.12 (Potential Function) We assign a potential pot(v) to each vertex as follows:

pot(v) :=











0 if degM (v)+ degB (v) =
�n−1

2

�

µd (v)/q otherwise.

where µ := 1+ 10β3/2 log(n)
δ
p

n .

The potential of an edge e is defined as the sum of the potentials of its vertices, pot(e) =
∑

v∈e pot(v).

The intuitive explanation is the following. High potential means high danger for Breaker to lose the

game. If degM (v)+degB (v) =
�n−1

2

�

, then all edges incident in v have been claimed by Maker or Breaker,

thus v is not part of the game anymore, and naturally pot(v) = 0. Otherwise, and this is the essential

idea of Definition 2.12, the potential may increase exponentially in µ. The total potential of all vertices

is defined by POTt :=
∑

v∈V pott (v).

2.4. A NEW BREAKER STRATEGY FOR THE K3
N -TRIANGLE GAME 23

Remark 2.13 Let v be an arbitrary vertex. At the beginning of the game, it holds deg∗(v) = degB (v) = 0,

because v has a balance of bal0 and Breaker does not need to add any Breaker edges incident in v to reduce

its balance. So d (v) = deg∗(v)− degB (v) = 0. Therefore, pot0(v) =µ
0 = 1.

For the overall potential at the beginning of the game, we have

POT0 :=
∑

v∈V

pot0(v) = n.

Lemma 2.14 Let n sufficiently large. Then, for every round t and every vertex v, if degM ,t (v) =
q

12(n−5)−1,

then pott (v)> 2n.

Proof. First, we estimate dt (v) by plugging degM ,t (v) =
q

12(n−5) −1 into the definition of deg∗t (v). Note

that bal0 is the constant 36
5β3 by Proposition 2.10. Now by (2.4.1),

deg∗t (v) =
�

n− 1
2

�

− bal0



q
�

q(1−δ)
12(n− 5)

− degM ,t (v)
�

− 4(n− 5)

q(1−δ)
12(n−5)
∑

i=degM ,t (v)

i





=
�

n− 1
2

�

− bal0

�

q
�

q(1−δ)− q
12(n− 5)

+ 1
��

+ bal0 4(n− 5)

q(1−δ)
12(n−5)−1
∑

q
12(n−5)−1

i

︸ ︷︷ ︸

=0

=
�

n− 1
2

�

− bal0

�

q2(1−δ)− q2

12(n− 5)

�

− bal0 q

=
�

n− 1
2

�

+ bal0

�

q2δ

12(n− 5)

�

− bal0 q

=
�

n− 1
2

�

+ bal0

�

β3n3δ

12(n− 5)

�

− bal0 q (q = (βn)3/2)

=
�

n− 1
2

�

+
36

5β3
·
β3n3δ

12(n− 5)
− bal0 q

=
�

n− 1
2

�

+
3
5
·δ · n3

(n− 5)
− bal0 q

≥
�

n− 1
2

�

+
3δn2

5
− bal0 q

≥
�

n− 1
2

�

+
2δn2

5
,

and the last inequality is true because bal0 q <δn2/5 for suffiently large n.

24 CHAPTER 2. THE TRIANGLE-GAME IN UNIFORM HYPERGRAPHS

Since trivially, degB ,t (v)≤
�n−1

2

�

, we have

dt (v) = deg∗t (v)− degB ,t (v)≥
�

n− 1
2

�

+
2δn2

5
−
�

n− 1
2

�

=
2δn2

5
.

Thus

pott (v) =µ
dt (v)/q ≥µ

2δn2

5q

=
�

1+
10β3/2 log(n)

δ
p

n

�

2δn2

5q

=
�

1+
10β3/2 log(n)

δ
p

n

�

�

1+ δ
p

n

10β3/2 log(n)

��

1+ δ
p

n

10β3/2 log(n)

�−1 2δn2

5q

.

We use the inequality f (x) = (1+ x)1+1/x > e which holds for all x ∈R>0 since limx→0 (1+ x)1+1/x =

limx→∞ (1+ 1/x)x = e and the function is monotonically increasing in R>0. So

pott (v)≥





�

1+
10β3/2 log(n)

δ
p

n

�

�

1+ δ
p

n

10β3/2 log(n)

�





︸ ︷︷ ︸

≥e

�

1+ δ
p

n

10β3/2 log(n)

�−1 2δn2

5q

.

For the exponent, we get with q = (βn)3/2

2δn2

5q

�

1+
δ
p

n
10β3/2 log(n)

�−1

=
2δn2

5q

�

δ
p

nµ
10β3/2 log(n)

�−1

=
20β3/2δ n2 log(n)
5β3/2δ n3/2 n1/2µ

=
4 log(n)
µ

.

Because µ< 2 for sufficiently large n, we get 4 log(n)
µ > 2 log(n) and thus,

pott (v)≥ e
4 log(n)
µ > n2 > 2n.

2.4.1 Breaker’s Strategy

Breaker’s strategy has two objectives described in the following:

2.4. A NEW BREAKER STRATEGY FOR THE K3
N -TRIANGLE GAME 25

I. Closing Paths

First, Breaker needs to claim every edge that would otherwise complete a Maker-triangle. Let

eM = {v1, v2, v3} and e ′M = {v
′
1, v ′2, v ′3} be Maker-edges with |eM ∩ e ′M | = 1, say v1 = v ′1. Then,

Breaker has to ensure that every possible edge between vertices of {v2, v3} and {v ′2, v ′3} is claimed

because otherwise Maker can choose such an edge that would win her the game. There are four

possible ways to choose pairs of vertices with one from each set. Since the hypergraph is 3-

uniform, one more vertex is needed to construct an edge. The number of ways to choose that

additional vertex is n− |eM ∪ e ′M | = n− 5. Overall, Breaker has to claim 4(n− 5) edges between

any pair of Maker-edges. If there are less than 4(n − 5) such edges left, Breaker claims arbitrary

unclaimed edges. This part of Breaker’s strategy is mandatory and part of every possible Breaker-

strategy.

II. Free Edges

If Breaker still has edges left to claim after the first part of his strategy, he continues by prioritizing

free edges that have the highest potential. Where free edges are those edges that have not been

claimed by either player. A high potential reflects a high danger of its vertex to become part of a

triangle so it is intuitive for Breaker to claim edges incident in these vertices first. We define ft as

the number of free edges in round t by

ft = q − 4(n− 5)(degM ,t−1(v1)+ degM ,t−1(v2)+ degM ,t−1(v3)), (2.4.2)

where {v1, v2, v3} is the edge Maker chose in round t . The number of free edges is simply the

number of edges Breaker can claim in a round given by the bias q minus the number of edges

needed for the first part of Breaker’s strategy.

We now show that there is always a minimum number of free edges, if the overall potential remains less

than 2n.

Observation 2.15 For every round t where ft < 12(n − 5), there is a previous round t ′ < t in which

POTt ′ > 2n.

Proof. We show that there exists a vertex v with degM (v)≥
q

12(n−5) . Lemma 2.14 then gives us pott ′(v)>

2n and since the potential is always non-negative, POTt ′ > 2n. Let t such that ft ≤ 12(n− 5)− 1 and

let eM = {v1, v2, v3} be the edge Maker chooses in that round. We have

ft
(2.4.2)
= q − 4(n− 5)

�

degM ,t−1(v1)+ degM ,t−1(v2)+ degM ,t−1(v3)
�

.

26 CHAPTER 2. THE TRIANGLE-GAME IN UNIFORM HYPERGRAPHS

Now, assume for a moment that degM ,t−1(v)≤
q

12(n−5) − 1 for all v ∈ eM . Then,

ft = q − 4(n− 5)
∑

v∈em

�

degM ,t−1(v)
�

≥ q − 4 · 3(n− 5)
�

q
12(n− 5)

− 1
�

= 12(n− 5),

which contradicts ft ≤ 12(n− 5)− 1. Therefore, degM ,t−1(v)≥
q

12(n−5) for at least one v ∈ {v1, v2, v3}.

Since degM (v) increases by at most one in each round, at some point t ′ < t , we have degM ,t ′(v) =
q

12(n−5) .

Theorem 2.16 POTs ≤ 2n holds in every round s .

This theorem is the backbone of our work and will be proved at the very end of this section. With

Theorem 2.16 we can immediatly show that Breaker wins the game.

Theorem 2.17 At the end of the game, no vertex has Maker-degree at least q
12(n−5) and thus, Breaker wins.

Proof. Assume for a moment that there is a vertex v with degM (v) ≥
q

12(n−5) at the end of the game.

Let t denote the round in which Maker claimed her q
12(n−5) -th v-edge. Thus, in round t − 1 we have

degM ,t−1(v) =
q

12(n−5) − 1. By the previous theorem we get

pott−1(v)≤ POTt−1 ≤µ(1+ ε)n < 2n.

By the contraposition of Lemma 2.14 we get degM ,t−1(v) 6=
q

12(n−5)−1 which contradicts the assumption.

Lemma 2.18 Let deg∗′(u), deg′M (u), and d ′(u) be the balanced Breaker-degree, Maker-degree, and deficit of

a vertex u right after a Maker-edge incident in u has been chosen and before Breaker’s turn. Then

d ′(u)− d (u) = bal0(q − 4(n− 5)degM (u)).

Proof. Since by definition d (u) = deg∗(u)− degB (u) and adding a Maker-edge only affects deg∗(u), we

have d ′(u)−d (u) = deg∗′(u)−deg∗(u). By the assumption of the lemma, deg′M (u) = degM (u)+1. Now

2.4. A NEW BREAKER STRATEGY FOR THE K3
N -TRIANGLE GAME 27

by (2.4.1),

deg∗′(u)− deg∗(u)

=
�

n− 1
2

�

− bal0



q
�

q(1−δ)
12(n− 5)

− deg′M (u)
�

− 4(n− 5)

q(1−δ)
12(n−5)
∑

i=deg′M (u)

i





=
�

n− 1
2

�

− bal0



q
�

q(1−δ)
12(n− 5)

− (degM (u)+ 1)
�

− 4(n− 5)

q(1−δ)
12(n−5)
∑

i=degM (u)+1

i





−





�

n− 1
2

�

− bal0



q
�

q(1−δ)
12(n− 5)

− degM (u)
�

− 4(n− 5)

q(1−δ)
12(n−5)
∑

i=degM (u)

i









=bal0



q
�

q(1−δ)
12(n− 5)

− degM (u)
�

− 4(n− 5)

q(1−δ)
12(n−5)
∑

i=degM (u)

i





− bal0



q
�

q(1−δ)
12(n− 5)

− (degM (u)+ 1)
�

− 4(n− 5)

q(1−δ)
12(n−5)
∑

i=degM (u)+1

i





=bal0



q − 4(n− 5)





q(1−δ)
12(n−5)
∑

i=degM (u)

i −

q(1−δ)
12(n−5)
∑

i=degM (u)+1

i









=bal0(q − 4(n− 5)degM (u)).

Because bal0 < 1, we have for all v ∈V

bal0(q − 4(n− 5)degM (v))≤ q . (2.4.3)

Next, we consider the change in the potential caused by one additional Maker-edge and by one additional

Breaker-edge, respectively.

Lemma 2.19 Let eM and eB be previously unclaimed Maker- and Breaker-edges, respectively. Let pot(e)

denote the potential of e’s vertices before e is claimed. Let pot′(e) denote e’s potential after Maker’s turn.

(i) Choosing eM increases the potential of its vertices by at most a factor of µ. The overall potential

increases by at most (µ− 1)pot(eM).

(ii) Choosing eB decreases the overall potential by at least (1−µ−1/q)pot(eB).

28 CHAPTER 2. THE TRIANGLE-GAME IN UNIFORM HYPERGRAPHS

Proof. (i) Let d ′(u) be defined as in the previous lemma and let v ∈ eM . Choosing eM increases v’s

Maker-degree by one. The potentials of all vertices not in eM remain unchanged. By applying

Lemma 2.18 to pot′(v), which denotes v’s potential just after Maker adds eM , we get

pot′(v) =µd ′(v)/q =µd (v)/q ·
µd ′(v)/q

µd (v)/q

= pot(v) ·µ(d ′(v)−d (v))/q

= pot(v) ·µbal0(q−4(n−5)degM (v))/q (Lemma 2.18)

< pot(v) ·µ, (using (2.4.3)) (2.4.4)

For the overall potential, we have with (2.4.4)

POT′ =
∑

v∈V

pot′(v) =
∑

v 6∈eM

pot′(v)+
∑

v∈eM

pot′(v)

<
∑

v 6∈eM

pot(v)+
∑

v∈eM

pot(v) ·µ (by (2.4.3))

=
∑

v∈V

pot(v)−
∑

v∈eM

pot(v)+
∑

v∈eM

pot(v) ·µ

=
∑

v∈V

pot(v)− (µ− 1)
∑

v∈eM

pot(v)

= POT+(µ− 1)pot(eM).

(ii) Let v ∈ eB . Again, only the potentials of vertices in eB are affected. Let pot′′(v) and d ′′(v) denote

v’s potential and its deficit after Breaker chooses eB . Since the deficit is reduced by one and thus,

pot′′(v) =µd ′′(v)/q =µd (v)−1/q , we have

pot′′(v)
pot(v)

=
µd (v)−1/q

µd (v)/q
=µ−1/q . (2.4.5)

Now, for the overall potential after eB is added, we get with (2.4.5)

POT′′ =
∑

v∈V

pot′′(v)

=
∑

v 6∈eB

pot′′(v)+
∑

v∈eB

pot′′(v)

=
∑

v 6∈eB

pot(v)+
∑

v∈eB

pot′′(v)

2.4. A NEW BREAKER STRATEGY FOR THE K3
N -TRIANGLE GAME 29

=
∑

v 6∈eB

pot(v)+
∑

v∈eB

pot(v) ·µ−1/q

=
∑

v∈V

pot(v)−
∑

v∈eB

pot(v)+
∑

v∈eB

pot(v) ·µ−1/q

= POT−(1−µ−1/q)pot(eB).

Each round t begins with a turn by Maker in which she chooses a single edge. For an arbitrary vertex

w, let It (w) denote the increase in potential caused by adding her edge. Note that only the potentials

of vertices in this edge are affected. After Maker claimed her edge, Breaker claims q edges in his turn.

We define Dt (w) as the decrease in w’s potential caused by the addition of a Breaker-edge. We write

It :=
∑

v∈V

It (v) and Dt :=
∑

v∈V

Dt (v)

for the increase/decrease in the overall potential. Head and tail vertices are defined as follows: suppose

we are observing the potential of a vertex v1 and Breaker claims a closing edge e = {v1, v2, v3} in part I.

of his strategy in some round t , then we call v1 the edge’s head vertex and v2, v3 its tail vertices. Let

D>t (w), resp. D⊥t (w) be the decrease in potential, where w is a closing edge’s head vertex and when w is

one of its tail vertices, respectively. Because e is a closing edge, each of its vertices is by definition either

a head vertex or a tail vertex and for each vertex w ∈ e , only one of the values, either D>t (w) or D⊥t (w),

is non-zero, depending on the type of the respective vertex.

If, on the other hand, e is a free edge claimed in part II., then for w ∈ e , the decrease of w’s potential

that Breaker achieves by adding e is denoted by D f
t (w).

Recall that by the definition of the potential function (Definition 2.12), if no unclaimed edges remain

in some vertex w, then its potential is set to 0. Because of this special case, we have the additional term

D0
t (w) that is non-zero if and only if e was the last unclaimed edge incident in w. The overall decrease

of the potential of a vertex w in round t can be written as

Dt (w) =D>t (w)+D⊥t (w)+D f
t (w)+D0

t (w), (2.4.6)

30 CHAPTER 2. THE TRIANGLE-GAME IN UNIFORM HYPERGRAPHS

We can describe the change of the potential between two rounds by the increase and decrease of the

potential as follows

pott (w)− pott−1(w) = It (w)−Dt (w)

= It (w)−
�

D>t (w)+D⊥t (w)+D f
t (w)+D0

t (w)
�

, (2.4.7)

and for the overall potential

POTt −POTt−1 = It −Dt = It −
�

D>t +D⊥t +D f
t +D0

t

�

. (2.4.8)

Let D−t :=min
�

It (w), D>t (w)
	

and D+t :=max
�

D>t (w)− It (w), 0
	

. Then

D>t (w) =D−t (w)+D+t (w).

From the definition of D−t , it follows that

D−t (v)≤ It (v). (2.4.9)

Lemma 2.20 Suppose Maker chooses eM with v ∈ eM the head vertex of eM in round t . Then we have

(i) It (v)−D−t (v)≤ (µbal0 ft /q − 1)pott−1(v) and

(ii) It −D−t ≤ (µbal0 ft /q − 1)pott−1(eM).

Proof. (i) We can assume that D−t (v) =D>t (v), because otherwise D−t (v) = It (v) and the assertion (i)

trivially holds. Let d (1)t (v), deg∗(1)t , deg(1)B ,t (v), pot(1)t (v) denote the values of dt (v), degt , degB ,t (v),

and pot(1)t (v) after Breaker executes part I. of his strategy.

Furthermore, since v is the head vertex of eM , D⊥t (v) = 0, because v is not a tail vertex of eM .

Recall that D>t (v)+D⊥t (v) is the decrease in v of the potential caused by closing edges in part I.

of Breaker’s strategy and pot(1)t (v) describes v’s potential at that time as defined in the proof of

Lemma 2.20. Maker’s turn increases v’s potential by It (v). Hence, we can describe the change in

v’s potential caused by Maker’s edge and Breaker’s first part of his strategy by

pot(1)t (v)− pott−1(v) = It (v)−
�

D>t (v)+D⊥t (v)
�

2.4. A NEW BREAKER STRATEGY FOR THE K3
N -TRIANGLE GAME 31

= It (v)−



D−t (v)+ D⊥t (v)
︸ ︷︷ ︸

=0 because v is head vertex





= It (v)−D−t (v). (2.4.10)

We have

d (1)t (v)− dt−1(v) = deg∗(1)t (v)− deg(1)B ,t (v)− deg∗t−1(v)+ degB ,t−1(v)

= (deg∗(1)t (v)− deg∗t−1(v))− (deg(1)B ,t (v)− degB ,t−1(v)) (2.4.11)

Since deg∗(v) is not affected by v’s Breaker-degree, deg∗(1)t (v) = deg∗t (v) and deg(1)B ,t (v) = degB ,t (v),

with Lemma 2.18 we get

deg∗(1)t (v)− deg∗t−1(v) = deg∗t (v)− deg∗t−1(v)

= bal0(q − 4(n− 5)degM ,t−1(v)). (by Lemma 2.18) (2.4.12)

The remaining term deg(1)B ,t (v)−degB ,t−1(v) from (2.4.11) is the number of closing edges incident

in v1 that are claimed by Breaker in round t using the argument depicted in Figure 2.2, we count

the number of closing edges between {v1, v2, v3} and edges are incident only in v2. There are

4(n− 5)degM ,t−1(v2) such edges. The analouge argument holds for v3. Overall, we have

4(n− 5)degM ,t−1(v2)+ 4(n− 5)degM ,t−1(v3)

=4(n− 5)(degM ,t−1(v2)− degM ,t−1(v3)). (2.4.13)

We have

d (1)t (v)− dt−1(v) =deg∗(1)t (v)− deg(1)B ,t (v) (by (2.4.11))

− deg(1)B ,t (v)− degB ,t−1(v)

=bal0(q − 4(n− 5)degM ,t−1(v)) (by (2.4.12))

− deg(1)B ,t (v)− degB ,t−1(v)

=bal0(q − 4(n− 5)degM ,t−1(v))

− 4(n− 5)(degM ,t−1(v2)− degM ,t−1(v3)) (by (2.4.13))

≤bal0(q − 4(n− 5)degM ,t−1(v))

32 CHAPTER 2. THE TRIANGLE-GAME IN UNIFORM HYPERGRAPHS

− bal0 4(n− 5)(degM ,t−1(v2)+ degM ,t−1(v3)) (bal0 < 1)

=bal0 ft . (by (2.4.2)) (2.4.14)

Further we have

It (v)−D−t (v) = pot(1)t (v)− pott−1(v) (by (2.4.10))

=µd (1)t (v)/q − pott−1(v)

=

µd (1)t (v)/q

µdt−1(v)/q
− 1

!

pott−1(v) (sincepott−1(v) =µ
dt−1(v)/q)

=
�

µ(d
(1)
t (v)−dt−1(v))/q − 1

�

pott−1(v)

≤ (µbal0 ft /q − 1)pott−1(v). (with (2.4.14))

(ii) By definition, It =
∑

v∈eM
It (v) and D−t =

∑

v∈eM
D−t (v), so

It −D−t =
∑

v∈eM

It (v)−
∑

v∈eM

D−t (v)

=
∑

v∈eM

It (v)−D−t (v)

(i)
≤
∑

v∈eM

(µbal0 ft /q − 1)pott−1(v)

= (µbal0 ft /q − 1)pott−1(eM).

2.4.2 Controlling Critical Rounds

Since µ = 1+ o(1) and bal0 < 1, we get µbal0 < 1 for sufficiently large n. Fix η ∈ (0,1−µbal0). We

now split the change in the potential into two parts that will be considered individually.

Definition 2.21 (Critical Round) For every round t , let

∆t := It −D−t − (1−η)D
f
t and rt :=D+t +D⊥t +ηD f

t +D0
t .

We call t critical, if∆t > 0 and non-critical otherwise.

2.4. A NEW BREAKER STRATEGY FOR THE K3
N -TRIANGLE GAME 33

By the previous definition,

∆t − rt = It −D−t − (1−η)D
f
t −ηD f

t −D+t −D⊥t −D0
t = POTt −POTt−1 . (2.4.15)

Because rt ≥ 0, every round t with POTt > POTt−1 is a critical one.

Lemma 2.22 Let t be a critical round where ft ≥ 12(n−5). Let eM be the edge Maker chooses in this round,

and let e be an arbitrary edge that is unclaimed after round t . Then for sufficiently large n,

pott (e)<
µbal0
(1−η)

pott−1(eM).

Proof. By Lemma 2.20 (ii),

It −D−t ≤ (µ
bal0 ft /q − 1)pott−1(eM)

=µbal0 ft /q (1−µ−bal0 ft /q)pott−1(eM)

≤µbal0 ft (1−µ
−1/q)pott−1(eM) (2.4.16)

The last inequality holds du to the inequality x(1−µ−1/q)≥ 1−µ−x/q∀x>1 and the fact that bal0 ft > 1.

Because t is critical,∆t > 0, so

0<∆t=It −D−t − (1−η)D
f
t

(2.4.16)
≤ µbal0 ft (1−µ

−1/q)pott−1(eM)− (1−η)D
f
t

=⇒ (1−η)D f
t <µbal0 ft (1−µ

−1/q)pott−1(eM) (2.4.17)

Consider a previously free edge e f that was chosen by Breaker. Then pot(e f) ≥ pot(e), because other-

wise Breaker would have chosen e instead. By Lemma 2.19, we get a decrease in the potential of at least

(1−µ−1/q)pot(e) for every free edge e of which there are ft . We have

D f
t ≥ ft (1−µ

−1/q)pott (e).

Thus

pott (e)≤
D f

t

ft (1−µ−1/q)
(2.4.17)
<

µbal0 ft (1−µ−1/q)
(1−η) ft (1−µ−1/q)

pott−1(eM) =
µbal0
(1−η)

pott−1(eM).

34 CHAPTER 2. THE TRIANGLE-GAME IN UNIFORM HYPERGRAPHS

2.4.3 Bounding the Increase in the Overall Potential

Although Breaker’s strategy leads to a maximal decrease of the potential after Maker added her edge,

his strategy does not guarantee that the overall potential decreases in every round. Let t0 be a round

in which the overall potential increases. In the following, we will see that, once the overall potential

exceeds n, after few rounds, the overall potential will be at most POTt0
again, ensuring Breaker’s win.

We follow the pattern of arguments from Glazik and Srivastav [GS18] for the 2-uniform case.

Let γ ∈ (0,1) and ε > 0 be constant parameters with

1−η
(1+ ε)µbal0

> 1. (2.4.18)

and let

c :=
�

log(3)− log(1− γ)
log(1−η)− log(1+ ε)− log(µbal0)

�

. (2.4.19)

With (2.4.18), we get log(1−η)− log(1+ε)− log(µbal0) = log(1−η
(1+ε)µbal0

)> 0. Because γ ∈ (0,1), we get

1− log(1− γ)> 0. It follows that c > 0. Further, because 1<µ< 2, c is bounded by constants. Now,

consider the following points in time:

t0: Let t0 be the round where the overall potential first exceeds n, i.e., when POTt0
> n and POTt0−1 ≤

n with POTt < 2n for all t < t0. t0 is a critical round by Definition 2.21. Due to Observation 2.15,

there are at least 12(n − 5) free edges. Let et0
be the edge Maker chose in round t0 with v :=

argmaxw∈et0
pott−1(w).

t1: Let t1 be the first round after t0− 1 at which pott1
(v)≤ (1− γ)pott0−1(v).

t2: Let t2 be the first round after t0 − 1 at which pott2
(w) ≥ (1+ ε)pots (w) for some w ∈ V and any

round s with t0 ≤ s < t2. Note that since t2 is the first round for which pott2
(w)≥ (1+ε)pots (w),

we have pott (w)≤ (1+ ε)pott0
(w) for all previous rounds t < t2.

t3: Let t3 be the c -th critical round after t0.

If, for i ∈ {1,2,3}, the game ends before round ti , we set ti =∞. Define t ∗ := min{t1, t2, t3} where

t ∗ =∞ is possible.

Theorem 2.23 If the game has not ended before round t ∗, then it holds POTt ∗ ≤ POTt0−1.

2.4. A NEW BREAKER STRATEGY FOR THE K3
N -TRIANGLE GAME 35

Theorem 2.23 will be proved by a series of lemmas, Lemma 2.27, Lemma 2.28, and Lemma 2.29. We

start with the following observation.

Observation 2.24 If the game has not ended before turn t , where t0 ≤ t < t2, it holds

POTt < 2n.

Proof. Let v be an arbitrary vertex. By the choice of t2, for t < t2 it holds that pott (v)≤ (1+ε)pott0
(v).

For the overall potential we have

POTt =
∑

v∈V

pott (v)≤
∑

v∈V

(1+ ε)pott0
(v) = (1+ ε)POTt0

(2.4.20)

Using (2.4.8) and Lemma 2.20 (ii), we get

POTt0
= POTt0

−POTt0−1+POTt0−1

= It0
−Dt0

+POTt0−1 (by (2.4.8))

= It0
−
�

D+t0
+D−t0

+D⊥t0
+D f

t0
+D0

t0

�

+POTt0−1

≤ It0
−D−t0

+POTt0−1

≤µ(bal0 ft0
)/q POTt0−1 (by Lemma 2.20(ii))

≤µPOTt0−1 (bal0 ft/q ≤ 1) (2.4.21)

Combining (2.4.20) and (2.4.21), using POTt0−1 ≤ n and µ= 1+ o(1), we get

POTt

(2.4.20)
≤ (1+ ε)POTt0

(2.4.21)
≤ µ(1+ ε)POTt0−1 =µ(1+ ε)n < 2n.

Lemma 2.25 Let s be a round where t0 ≤ s ≤ t ∗ and s < t2 and let crit(t0, s) ∈ [c] denote the number of

critical rounds between t0 and s , including both t0 and s . Then, for every unclaimed edge e = {v1, v2, v3},

it holds for v = argmaxu∈eM
pott0−1(u) that

pots (e)<
�

(1+ ε)µbal0
1−η

�crit(t0,s)

3pott0−1(v) (2.4.22)

Proof. We give a proof by induction on crit(t0, s), where s is arbitrary as stated in the lemma, but now

36 CHAPTER 2. THE TRIANGLE-GAME IN UNIFORM HYPERGRAPHS

fixed. Let et0
be the edge Maker claimed in round t0 and let v = argmaxu∈et0

pott0−1(u).

We start the induction, so let crit(t0, s) = 1. We have

pots (e) =
∑

w∈e
pots (w)≤

∑

w∈e
(1+ ε)pott0

(w) = (1+ ε)pott0
(e) (2.4.23)

using s ≤ t ∗ ≤ t2, so pots (w)≤ (1+ε)pott0
(w) by the definition of t2. Now by Lemma 2.22 and (2.4.23),

pots (e)≤ (1+ ε)pott0
(e)< (1+ ε)

µbal0
1−η

pott0−1(et0
)≤ (1+ ε)

µbal0
1−η

3pott0−1(v).

For the induction step, assume that claim (2.4.22) is true for any s ′ where crit(t0, s ′) = j , j ∈ [c − 1].

Let s be a round where crit(t0, s) = i + 1 and i + 1≤ c . Let s ′ be the last critical round before s or, if s

is itself critical, then s ′ = s . Thus, crit(t0, s ′− 1) = i and crit(t0, s) = crit(t0, s ′) = i + 1. Let eM be the

edge Maker claims in round s ′. By this choice, after round s ′− 1, the edge eM is still unclaimed which

is required for the application of the induction hypothesis. We have

pots (e)≤ (1+ ε)pots ′(e) (s < t2)

≤ (1+ ε)
µbal0
1−η

pots ′−1(eM) (Lemma 2.22)

≤ (1+ ε)
µbal0
1−η

�

(1+ ε)
µbal0
1−η

�i

pott0−1(eM) (induction hypothesis)

=
�

(1+ ε)µbal0
1−η

�i+1

pott0−1(eM)

≤
�

(1+ ε)µbal0
1−η

�i+1

3pott0−1(v). (by the choice of v)

In Lemma 2.22 (we used above) the assumption ft ≥ 12(n− 5) must be fulfilled. To prove this, we use

Observation 2.15 and Observation 2.24: The contraposition of Observation 2.15 states that if at any

round t , POTt < 2n, then ft ≥ 12(n− 5). The fact that POTt < 2n is given by Observation 2.24.

Lemma 2.26 For any ξ > 0 and n sufficiently large it holds

∑

s , t0≤s≤t ∗ and
s critical

Is ≤ 3c(µ− 1)pott0−1(v)< ξ pott0−1(v).

2.4. A NEW BREAKER STRATEGY FOR THE K3
N -TRIANGLE GAME 37

Proof. Let et0
be the edge Maker claimed in round t0. Because the overall potential only increases in et0

’s

vertices, by Lemma 2.19 (i), we get

It0
≤ (µ− 1)pott0−1(et0

)

≤ 3(µ− 1)pott0−1(v)

Let s be a critical round with t0 < s ≤ t ∗. Let es be Maker’s edge claimed in round s , so es is claimed

after round s − 1. For round s , we have

Is ≤ (µ− 1)pots−1(es) (Lemma 2.19 (i))

< 3(µ− 1)
�

(1+ ε)µbal0
1−η

�crit(t0,s−1)

pott0−1(v) (Lemma 2.25 and es unclaimed in round s − 1)

≤ 3(µ− 1)pott0−1(v), (with (2.4.18))

so

Is ≤ 3(µ− 1)pott0−1(v). (2.4.24)

Recall that t3 is defined as the c -th critial round after t0. Since t ∗ ≤ t3, the number of critical rounds

between t0 and t ∗ is at most c . Thus, by (2.4.24)

∑

s , t0≤s≤t ∗ and
s critical

Is ≤
∑

s , t0≤s≤t ∗ and
s critical

3(µ− 1)pott0−1(v)≤ 3c(µ− 1)pott0−1(v).

We have µ− 1= o(1) and c is bounded by a constant, therefore for sufficiently large n

3c(µ− 1)pott0−1(v)< ξ pott0−1(v).

The results of the following three lemmas will imply Theorem 2.23.

Lemma 2.27 If t1 ≤min{t2, t3}, then POTt0−1 ≥ POTt ∗ .

Proof. Let ξ ∈ (0,ηγ). The assumption on t1 and the definition of t ∗, i.e. t ∗ = min{t1, t2, t3} implies

t ∗ = t1 and by the definition of t1, we get pott ∗(v)≤ (1− γ)pott0−1(v).

38 CHAPTER 2. THE TRIANGLE-GAME IN UNIFORM HYPERGRAPHS

Let R :=
∑

s , t0≤s≤t ∗ rs . Then,

POTt ∗−POTt0−1 =
∑

s , t0≤s≤t ∗
POTs −POTs−1

=
∑

s , t0≤s≤t ∗
∆s − rs (with (2.4.15))

=
∑

s , t0≤s≤t ∗ and
s critical

∆s +
∑

t0≤s≤t ∗

s non-critical

∆s

︸ ︷︷ ︸

≤0 by Definition 2.21

−R

≤
∑

s , t0≤s≤t ∗ and
s critical

∆s −R

=
∑

s , t0≤s≤t ∗ and
s critical

Is −D−s − (1−η)D
f
s −R (by Definition 2.21)

≤
∑

s , t0≤s≤t ∗ and
s critical

Is −R

≤ ξ max
v∈et0

pott0−1(v)−R (with Lemma 2.26)

We now need to show that R≥ ξ pott0−1(v). We have

ξ pott0−1(v)≤ ηγ pott0−1(v)≤ η(pott0−1(v)− pott ∗(v)) (since pott ∗(v)≤ (1− γ)pott0−1(v))

=η
�

∑

s , t0≤s≤t ∗
Ds (v)− Is (v)

�

(by (2.4.7))

=η
�

∑

s , t0≤s≤t ∗
D−s (v)+D+s (v)+D⊥s (v)+D f

s (v)+D0
s (v)− Is (v)

�

(with (2.4.6))

≤η
�

∑

s , t0≤s≤t ∗
D+s (v)+D⊥s (v)+D f

s (v)+D0
s (v)

�

(since D−s (v)≤ Is (v) by (2.4.9))

≤
∑

s , t0≤s≤t ∗
D+s (v)+D⊥s (v)+ηD f

s (v)+D0
s (v) (η ∈ (0,1−µbal0))

=
∑

s , t0≤s≤t ∗
rs = R. (by Definition 2.21 for rs)

Lemma 2.28 If t2 ≤min{t1, t3}, then POTt0−1 ≥ POTt ∗ .

2.4. A NEW BREAKER STRATEGY FOR THE K3
N -TRIANGLE GAME 39

Proof. Let ξ > 0 with ξ ≤ η(1−γ)(1− (1+ ε)−1/bal0). By the choice of t2, we have t ∗ = t2. Thus, there

is a round s0, where t0 ≤ s0 < t ∗ and a vertex w with pott (w) ≥ (1+ ε)pots0
(w). We have t ∗ < t1 and

thus, pott0−1(v) > 0. As in the proof of the previous Lemma, we need to show that R ≥ ξ pott0−1(v).

To this end, we first show that for t , s0 ≤ t ≤ t ∗,

pott (w)≤ pots0
(w)

∏

s0<s≤t
µbal0 fs/q . (2.4.25)

Proof of (2.4.25) via induction over t . For t = s0 the claim is

pots0
(w)≤ pots0

(w)
∏

s , s0≤s≤t
µbal0 fs/q

︸ ︷︷ ︸

≥1 since µ≥1

,

so (2.4.25) is true for t = s0. Now let t such that t − 1≥ s0. We have

pott (w)− pott−1(w) = It (w)−Dt (w) (by (2.4.7))

= It (w)−
�

D+t +D−t +D⊥t (w)+D f
t (w)+D0

t (w)
�

(by (2.4.6))

≤ It (w)−D−t (w)

≤ pott−1(w)
�

µbal0 ft /q − 1
�

, (by Lemma 2.20 (i))

thus pott (w)≤ pott−1(w)µ
bal0 ft /q .

Using the induction hypothesis for pott−1(w), we get from the last inequality

pott (w)≤

pots0
(w)

∏

s0<s≤t−1

µbal0 fs/q

!

µbal0 ft /q = pots0
(w)

∏

s0<s≤t
µbal0 fs/q .

This concludes the proof of (2.4.25). Further, since s0 ≤ t ∗ = t2, we get by the definition of t2 and (2.4.25)

(1+ ε)pots0
(w)≤ pott2

(w)≤ pott ∗(w)≤ pots0
(w)

∏

s0<s≤t ∗
µbal0 fs/q .

Hence

(1+ ε)≤
∏

s0<s≤t ∗
µbal0 ft /q =µbal0

∑

s0<s≤t∗ fs/q .

40 CHAPTER 2. THE TRIANGLE-GAME IN UNIFORM HYPERGRAPHS

Taking the logarithms on both sides of the last inequality delivers

∑

s0<s≤t ∗
fs ≥

q log(1+ ε)
bal0 log(µ)

=: x. (2.4.26)

So, x is the minimum number of free edges claimed by Breaker between rounds s0 and t ∗. By the

choice of t ∗, we have t ∗ < t1. Thus, for any s between t0 and t ∗, pots (v) ≥ (1− γ)pott0−1(v) and

thereby pots (e) ≥ (1− γ)pott0−1(v) for every unclaimed edge e that is incident in v. Every free edge

claimed by Breaker has at least this potential. We can estimate D f
s , the decrease in the potential caused

by free edges, for some round s by the minimum number of free edges times the minimum potential

of a free edge times the minimum reduction of the potential relative to the previous potential given by

Lemma 2.19 (ii). Formally,

D f
s ≥ fs (1− γ)pott0−1(v)

�

1−µ−1/q
�

(by Lemma 2.19 (ii))

≥ x(1− γ)pott0−1(v)
�

1−µ−1/q
�

. (by (2.4.26)) (2.4.27)

R=
∑

s , t0≤s≤t ∗
rs =

∑

s , t0≤s≤t ∗
D+s +D⊥s +ηD f

s +D0
s (by Definition 2.21)

≥ η
∑

s , t0≤s≤t ∗
D f

s

≥ ηx(1− γ)pott0−1(v)
�

1−µ−1/q
�

(by (2.4.27))

≥ η(1− γ)pott0−1(v)
�

1−µ−x/q
�

(using x(1−µ−1/q)≥ 1−µ−x/q∀x∈R≥1
)

= η(1− γ)pott0−1(v)
�

1−µ−
q log(1+ε)

q bal0 log(µ)

�

= η(1− γ)pott0−1(v)
�

1− (1+ ε)−1/bal0
�

(with µ= e log(µ))

≥ ξ pott0−1(v). (by the choice of ξ)

Lemma 2.29 t3 ≥min{t1, t2}.

Proof. Assume for a moment that t3 <min{t1, t2}. Then t3 = t ∗, i.e., t ∗ must be the c -th critical round

2.4. A NEW BREAKER STRATEGY FOR THE K3
N -TRIANGLE GAME 41

after t0− 1. By Lemma 2.25, for every unclaimed edge e after t ∗, it holds

pott ∗(e)<
�

(1+ ε)µbal0
1−η

�c

3pott0−1(v). (2.4.28)

Using the fact x1/ log(1/x) = 1/e for all x ∈R>0 with x = (1+ε)µbal0
1−η and the value for c defined in (2.4.19),

we can write c = (log(3)− log(1− γ))/ log(1/x). The right side of (2.4.28) can be simplified as follows:

�

(1+ ε)µbal0
1−η

�c

3pott0−1(v) = x
log(3)−log(1−γ)

log(1/x) 3pott0−1(v)

=
�

x
�

1
log(1/x)

��log(3)−log(1−γ)
3pott0−1(v)

=
�

1
e

�log(3)−log(1−γ)
3pott0−1(v)

=
(1− γ)

3
3pott0−1(v)

= (1− γ)pott0−1(v).

Thus, pott ∗(e)< (1− γ)pott0−1(v).

Because t ∗ < t1, it holds pott ∗(v) ≥ (1− γ)pott0−1(v) and thus after round t ∗ every unclaimed edge

incident in v has potential at least (1− γ)pott0−1(v). Hence, there can be no unclaimed edges incident

in v and therefore pots (v) = 0 in some round s , where t0 ≤ s ≤ t ∗, but t1 ≤ s ≤ t ∗ = t3 which

contradicts our assumption.

2.4.4 Proof of the Main Result

In this section we prove that Breaker’s strategy works correctly and is indeed a winning strategy.

We now show Theorem 2.16 that for every round s and sufficiently large n, it holds POTs ≤µ(1+ε)n <

2n.

Proof of Theorem 2.16. Let s be a round where POTs > n and let t0 be such that t0 ≤ s is maximal

with POTt0−1 ≤ n. Because the overall potential at the beginning of the game is at most n, such a t0

always exists. Define t ∗ as in subsection 2.4.3. If s = t ∗, then we can apply Theorem 2.23 and get

POTs = POTt ∗ ≤ POTt0−1 ≤ n.

42 CHAPTER 2. THE TRIANGLE-GAME IN UNIFORM HYPERGRAPHS

If s < t ∗ and because t ∗ =min{t1, t2, t3}, it follows that s < t2. Thus, by (2.4.20) we get

POTs ≤ (1+ ε)POTt0
. (2.4.29)

By (2.4.21) we have

POTt0
≤µPOTt0−1 . (2.4.30)

Combining (2.4.29) and (2.4.30) gives, using µ= 1+ o(1) and ε < 1,

POTs ≤ (1+ ε)POTt0
≤µ(1+ ε)POTt0−1 ≤µ(1+ ε)n < 2n.

By Theorem 2.17, Breaker wins the game.

2.5 Extension to k-Uniform Hypergraphs

In the following, we will describe the techniques from section 2.4 for k-uniform hypergraphs where

k�
p

n. Consider two edges e1 = {v1, . . . , vk} and e2 = {v ′1, . . . , v ′k} that intersect in exactly one vertex,

say v = v1 = v ′1. We now determine the number of possible triangles that contain both e1 and e2. An

edge closing a triangle contains exactly one vertex from e1 and one from e2 other than v. So there are

(k − 1)2 ways to pick such a pair. To form a k-uniform edge, there are still k−2 vertices missing which

can be chosen from the remaining vertices V \ (e1 ∪ e2) of which there are n − 2k + 1. Just as in the

3-uniform case, Breaker wants to prevent Maker from connecting high-degree vertices. The event in

which Breaker may be unable to prevent Maker from creating too many possible triangles by adding an

edge eM , i.e.,

q < (k − 1)2
�

n− 2k + 1
k − 2

�

∑

v∈eM

degM (v). (2.5.1)

Now enables us to define the dangerous event which Breaker aims to avoid:

degM (v)≤
q

k(k − 1)2
�n−2k+1

k−2

�
(2.5.2)

2.5. EXTENSION TO K -UNIFORM HYPERGRAPHS 43

If Breaker can prevent Maker from achieving (2.5.2) for all v ∈V then (2.5.1) does not hold and Breaker

wins the game. The balance function is now define analogous to the 3-uniform case with the total

number of edges incident in v now at
�n−1

k−1

�

.

�n−1
k−1

�

− degB (v)

q
�

q(1−δ)
k(k−1)2(n−2k+1

k−2)
− degM (v)

�

− (k − 1)2
�n−2k+1

k−2

�
∑q(1−δ)/(k(k−1)2(n−2k+1

k−2))
i=degM (v)

i
.

By setting degM (v) = degB (v) = 0, we obtain

lim
n→∞
δ→0

bal0(n,δ) = 1 for β(2k−3)/2 =
p

2

√

√

√
k2− 2k3+ k4

(2k − 1)(k − 1)!(k − 2)!

which allows us to compute the leading factors for the upper bound depending on k.

k 2 3 4 5 · · ·
1.6330n1/2 2.6833n3/2 1.852n5/2 0.7857n7/2 · · ·

Table 2.2: Upper Bounds for the Triangle game in k-uniform hypergraphs

44 CHAPTER 2. THE TRIANGLE-GAME IN UNIFORM HYPERGRAPHS

Chapter 3

Path Games

3.1 Path-Maker-Breaker and Walker-Breaker Games

In a Path-Maker-Breaker game, Maker attempts to claim edges such that the Maker-graph contains a

path of fixed length, where the length depends on the concrete game. The game is played on either the

complete graph or random graphs. Most research on Path-Maker-Breaker games has been dedicated to

Hamiltonian Paths, i.e., paths that visit every vertex of the graph on which the game is played exactly

once, see e.g. [CE78; Bec82; Hef+14]. Hefetz et al. [Hef+09] analyzed the fair game inG (n, p) graphs.

They showed that a threshold of p = log n
n exists. This means that for any larger p, the game is almost

surely a Maker’s win. A classic result by Bollobás [Bol84] states that this asymptotical threshold also

holds for the emergence of Hamiltonian paths in random graphs. Stojaković and Trkulja [ST19] showed

that for n > 8 the game is a Maker’s win in the fair variant.

Walker-Breaker Games were first introduced by Espig et. al [Esp+14]. These games are an alteration of

Maker-Breaker Games with additional conditions on how Maker can choose her edges. In this game,

Maker is called Walker. Walker starts at an arbitrary vertex at the beginning of the game and moves

along one edge that does not belong to Breaker in each round with the restriction that the edge has to

be incident to the new vertex of the edge chosen in the previous round. Walker wins the game, if she

claimed all edges of a winning set and Breaker wins if, at the end of the game, there is no winning set

belonging to Maker or if there is no free incident edge available for Maker. Path-Walker-Breaker games

present an additional restriction on the set of edges that Walker can choose from. In this game, Walker

can only walk along previously unclaimed edges. The natural question in this scenario is how many

45

46 CHAPTER 3. PATH GAMES

vertices Walker can visit.

3.2 The P3-Game

We consider the (1 : q)-Maker-Breaker subgraph game with a path of length 3 as the subgraph played on

the complete graph Kn . Maker chooses one edges in each round and Breaker chooses q edges. q is the

bias of the game.

In this section, we give an upper bound for the P3-game. Asymptotically, the threshold bias can be

determined using Theorem 2.3. Let P` be a path of length `, then

m2(P`) = max
A⊆P`, |V (A)|>2

|E(A)| − 1
|V (A)| − 2

=
|V (A)| − 1− 1
|V (A)| − 2

= 1

The 2-density of a path is 1, independent of its length `. Hence, the threshold bias is Θ(n1/1) = Θ(n).

We first show that the methods from section 2.4 cannot be applied to this type of game. Instead, we

give a more prosaic counting argument.

A trivial upper bound of 2n for the threshold bias can be achieved by Breaker by isolating both vertices

of Maker’s previously claimed edge. For the lower bound, it is easy to see that if q ≤ n − 2, Breaker

cannot isolate any vertices and thus loses the game after three rounds.

3.2.1 Potential Function Based Approach

The notation in this section largely follows the one from chapter 2. For an edge e , we let dM (e) denote

the number of vertices of e that have incident Maker-edges other than e itself. Thus, dM ∈ {0,1,2} for

all edges. Again, we first construct a balance function that later leads to the potential function. The

dangerous event, i.e., the event where Breaker might not be able to prevent Maker from winning, is now

defined as dM (e) = 2 for some edge e . In case Maker can claim an edge e where dM (e) = 2, she wins the

game. If dM (e)< 2 for all e ∈ E , no Maker P3 exists and thus, Breaker wins the game.

We define the balance function for edges instead of vertices due to the definition of the dangerous event

that is also defined on edges.

Definition 3.1 (Balance function) Let q = βn. The balance of an edge bal : E −→ R reflects how close

Maker is to the dangerous event of having an edge {v, w} for which dM ({v, w})≥ 2 with 1>δ > 0. Let us

3.2. THE P3-GAME 47

define

bal({v, w}) :=
2n− degB (v)− degB (w)

q (2(1−δ)− dM ({v, w}))− n
�

1+ 1
2β

� . (3.2.1)

The numerator describes the number of edges incident in v and w that are available for Maker, i.e.,

not belonging to Breaker. In the denominator, we multiply the number of edges q that Breaker can

claim in one round by the term expressing the distance of Maker to the dangerous event for Breaker.

The additive term in the denominator is an upper bound for the number of edges that Breaker needs

to claim in order to prevent Maker from connecting two disjoint edges. From Breaker’s point of view,

this can be achieved by isolating one of Maker’s edge’s vertices in each round and then claiming an edge

that connects each one of Maker’s existing edges to the one she chose in that round.

At the beginning of the game, for every edge e , we have dM (e) = 0 and thus the balance at the beginning

of the game bal0(e) can be computed with (3.2.1) and degB (u) = degM (u) for all u ∈ E . Since bal0(e) has

the same value for every edge e , we can write bal0.

bal0 = bal0(δ) =
2n

βn (2(1−δ))− n
�

1+ 1
2β

�

=
2

2β(1−δ)− 1− 1
2β

<
2

2β− 1− 1
2β

Solving 2
2β−1− 1

2β

= 1 for β using a quadratic equation gives β= 3+
p

13
4 ≈ 1.65139.

Let {v, w} be an arbitrary edge. We now define the balanced breaker degree, i.e., the Breaker-degree

Breaker would need to achieve bal({v, w}) = bal0 as the function deg∗ : V −→ N by the following

equation

2n− deg∗(v)− deg∗(w)

q (2(1−δ)− dM ({v, w}))− n
�

1+ 1
2β

�

!= bal0

⇔ 2n− deg∗(v)− deg∗(w) = bal0

�

q (2(1−δ)− dM ({v, w}))− n
�

1+
1

2β

��

⇔ deg∗(v)+ deg∗(w) = 2n− bal0

�

q (2(1−δ)− dM ({v, w}))− n
�

1+
1

2β

��

(3.2.2)

48 CHAPTER 3. PATH GAMES

The deficit d , d : V −→N is now defined as the number of edges Breaker is short of reaching bal= bal0,

so

d (v) := deg∗(v)− degB (v).

For the potential function argument in Glazik [Gla19], it is crucial for the potential to exceed a certain

value, i.e. 2n in the dangerous event for Breaker. In that event, Breaker is not guaranteed to be able to

prevent Maker from winning the game. In our case, this is the case for dM ({v, w}) = 2 for some edge

{v, w}. We set dM ({v, w}) = 2 and from (3.2.2), we get

deg∗(v)+ deg∗(w) = 2n− bal0

�

q (2(1−δ)− 2)− n
�

1+
1

2β

��

= 2n+ bal0

�

2qδ + n
�

1+
1

2β

��

≥ 2n+ bal0(2qδ + n)

and thus,

d (v)+ d (w) = deg∗(v)− degB (v)+ deg∗(w)− degB (w)

≥ 2n+ bal0(2qδ + n)− degB (v)− degB (w)

≥ 2n+ bal0(2qδ + n)− 2n

= bal0(2qδ + n)

Because q =βn, we get

µ(d (v)+d (w))/q ≥µO (1)

This expression exceeds 2n, if µ=ω(1), for example

µ=
�

1+
β log(n)
δ

�

,

But the estimations of the potential in Section 3.3 of Glazik’s dissertation rely on the fact that µ= 1+

o(1). Thus, these methods appear not to be applicable in this type of game as no function is compatible

3.2. THE P3-GAME 49

to the two conditions that on the one hand, the potential exeeds 2n at the dangerous event for Breaker

and that on the other hand, µ = 1+ o(1). It seems that the potential function method as displayed

by Glazik works for games, where Maker can increase the potential of an edge (or of a vertex) over a

non-constant number of rounds, such that Breaker can prioritize those edges whose potential is highest,

thereby decrasing the potential, albeit not monotonously, but over a number of rounds. In the P3-game,

on the other hand, Maker can increase the potential of an edge only twice, because dM (e) ∈ {0,1,2} for

all edges e and thus, if Maker claims an edge e = {v, w} that increases dM (e) to one, Breaker has to claim

all edges incident in one vertex of e , say v. So he must decrease e ’s potential to zero, because otherwise

Maker could claim another edge incident in v and thereby construct a P3.

However, this reasoning does not exclude the existence of another potential function strategy distinct

from the work of Glazik.

3.2.2 Counting Argument

We now give a less sophisticated argument to estimate an upper bound for the threshold bias of the P3

game along with a winning strategy for Breaker. First, we compute the maximum number of rounds

played. Let q be the bias. Then, the game lasts for at most T := d
�n

2

�

/(q + 1)e rounds because there

are
�n

2

�

edges in the complete graph on which the game is played and in each round, q + 1 edges are

claimed — q by Breaker and 1 by Maker. After T rounds, every edge is claimed. As in the previous

section, Breaker’s strategy consists of three steps. Let eM ,t = {v, w} be the edge Maker claimed in round

t Breaker’s strategy is as follows:

1. Isolate the vertex of eM ,t that has the lower Maker-degree, i.e., claim every edge incident in that

vertex. If both vertices have Maker-degree 1, pick an arbitrary vertex. In this step, Breaker claims

at most n− 2 edges.

2. For all previously claimed Maker-edges eM ,1, . . . , eM ,t−1 that are disjoint from eM ,t , claim the edge

that connects the two edges eM ,t and eM ,t ′ where t ′ < t . Because for each Maker-edge, Breaker

isolated one vertex, there can be at most one free edge connecting two Maker edges eM ,t and eM ,t ′

for each t ′ < t . If Maker picked an edge that is connected to some other Maker-edge, Maker has

constructed a P2, whose endpoints are blocked due to Breaker’s first step of his strategy.

3. If Breaker has not used up all his edges for the previous two steps, he claims arbitrary edges.

Theorem 3.2 Maker cannot build a P3 if Breaker plays according to the above strategy.

50 CHAPTER 3. PATH GAMES

Proof. To see that the Maker-graph consists of isolated edges and stars, consider two Maker-edges eM ,s

and eM ,t , claimed in round s and t , respectively. Let s < t . If eM ,s ∩ eM ,t =∅, then by part 1 of Breaker’s

strategy, both edges have a vertex each, where all remaining incident edges have been claimed by Breaker.

In round t , the last remaining edge connecting eM ,s and eM ,t is claimed by Breaker in part 2 of his strategy.

If eM ,s = {v, w} and eM ,t = {v, u} intersect in a vertex v, then, in round s , Breaker claimed all unclaimed

edges incident in w in part 1 of his strategy and in round t , he claims all unclaimed edges incident in w.

Thus, Maker cannot build a P3 using eM ,s and eM ,t .

Theorem 3.3 For q > (1+
p

3
2 + o(1))n, the strategy stated above is a winning strategy for Breaker for the

P3-game.

Proof. As in any Maker-Breaker game, the number of rounds is T := d (
n
2)

q+1 e unless Maker wins the game

in an earlier round. In the t -th round, Breaker needs to claim n−2 edges in the first part of his strategy

and t −1 edges in the second part. Thus, the number of edges needed by Breaker increases each round.

If Breaker can ensure that he can play according to this strategy until all the edges are claimed, he wins

the game.

Consider the last round T . If (n−2)+(T −1)< q , i.e. the number of edges that Breaker needs to claim

in the last round is less than q , then Breaker wins. We have

(n− 2)+ (T − 1)< q

⇔ (n− 2)+
¢ �n

2

�

q + 1

¥

− 1< q

⇒ (n− 3)+

�n
2

�

q + 1
< q

⇒ (q + 1)(n− 3)+
�

n
2

�

< q(q + 1)

⇒
�

n
2

�

< q(q + 1)− (q + 1)(n− 3)

⇒
�

n
2

�

< (q + 1)(q − (n− 3)).

Solving this quadratic inequality for q gives q >
p

3n2−6n+4+n−4
2

n→∞−−→
p

3+1
2 n.

Chapter 4

A Streaming Algorithm for the

Longest Path Problem

The longest path problem is the problem of finding a directed or undirected path with maximum length

within a graph. The problem has applications e.g. in genome assembly where a graph is built from the

output of a sequencing machine. A long contiguous path corresponds to a long sequence of the genome

itself. While this is an oversimplification of the genome assembly problem, it might be worth investi-

gating whether or not a path-based genome assembly algorithm would yield good results compared to

the convential ones. Other applications include project planning where one searches for a critical path

within the activity graph, i.e. the sequence of activities that determine the longest overall duration.

Unlike the shortest path problem, which is solvable in polynomial time, the longest path problem is

N P -hard and even finding an nδ approximation for fixed δ > 0 isN P -hard. Because of the hardness

and inapproximability, the most commonly used algorithms are heuristics that perform well in most

cases.

In section 4.2 through section 4.4 we will present approximation algorithms for the problem, in sec-

tion 4.5 and section 4.6 we show two RAM heuristics, and in section 4.10 we present our own approach

for a heuristic within the semi-streaming model, i.e. the memory used by the algorithm is restricted

linearly in the number of vertices. Section 4.15 shows experimental results of our algorithm compared

to various heuristical algorithms.

51

52 CHAPTER 4. A STREAMING ALGORITHM FOR THE LONGEST PATH PROBLEM

4.1 Notation, Hardness, and Polynomial Algorithms for Special

Graph Classes

We let G = (V , E) denote an undirected simple graph with vertex set V and edge set E ⊆
�V

2

�

. m

denotes the number of edges |E | and n the number of vertices |V |. A path P = (v0, v1, . . . , vk) is defined

as a sequence of vertices such that {vi−1, vi} ∈ E for all i ∈ [k] and vi 6= v j for all i 6= j . The length

of P is defined as the number of edges the path traverses, i.e. a path P = (v0, v1, . . . , vk) has length

`(P) = |E[P]|= k where E[P] is the set of edges traversed by P . A path of length k will also be called

a k-path. A k+-path is a path of length at least k.

Problem 4.1 (k-PATH) Input Undirected graph G = (V , E)

Question Does G contain a path of length k?

The k-path problem is the problem of determining whether the input graph contains a path of length k.

This problem is closely related to the HAMILTONIAN PATH problem as we will show in the following

section. The question that naturally arises from this problem is: What is the longest path contained in

G?

Problem 4.2 (LONGEST PATH) Input Undirected graph G = (V , E)

Output Path P = (v0, v1, . . . , vk) where k←max

In later sections of this thesis we also consider the k-CYCLE and LONGEST CYCLE problems, which

are defined analogously. For k ≥ 3, a k-cycle consists of a k-path (v0, . . . , vk) and an edge {v0, vk}.

The focus of this work is on algorithms for the LONGEST PATH problem but k-path and k-cycle occur

as subproblems.

Another version of the longest path problem is the s -t -LONGEST PROBLEM, which is the problem of

finding a longest path between two fixed vertices s and t . Research about heuristics for this version has

been conducted by Scholvin [Sch99].

Lemma 4.3 The k-PATH problem (Problem 4.1) isN P -complete.

Proof. We first show that k-PATH ∈N P . Therefore we construct a polynomial verifier V . Given any

YES-instance I of the k-path problem, there has to be a witness W such that, given (I ,W) the verifier

returns YES. If I is a NO-instance, the verifier returns NO for all possible W .

The witness is an ordered set of vertices P = (v0, . . . , vk) given by an oracle.

4.1. NOTATION, HARDNESS, AND ALGORITHMS FOR SPECIAL GRAPH CLASSES 53

The verifier V then has to check the following:

1. Is E[P]⊆ E?

2. Is P acyclic?

The first step can be done inO (m) time by checking if all pairs of adjacent vertices from P are contained

in E . Thereby it is also ensured that P is connected but not that P does not contain any cycles. To this

end, the second step needs O (n) time for testing if all vertices of V occur in P at most once.

To show that k − PATH is N P -hard there is a fairly obvious reduction from the HAMILTONIAN

PATH problem. This is the problem of determining whether the input graph contains a path that passes

every vertex, i.e. the HAMILTONIAN PATH problem is a special case of k − PATH where k = n − 1.

HAMILTONIAN PATH is one of Karp’s 21N P -complete problems [Kar72].

According to Feder, Motwani, and Subi the problem is notorious for the difficulty of understanding its

approximation hardness [FMS02] because of the wide gap between upper and lower bounds.

There is an approximation algorithm presented by Björklund and Husfeldt [BH03]with an approxima-

tion ratio of O (n(log log n/ log n)2), which we will introduce in section 4.4.

For certain classes of graphs, there are polynomial-time algorithms that can solve the problem exactly.

These classes include grid graphs [KBA12], and trees [Bul+02] the latter result will become useful as

we construct our streaming algorithm in chapter 4. In Algorithm 4.1 we show how to find long paths

in trees efficiently.

In this work we only consider undirected graphs but there are also polynomial time algorithms for

certain directed graphs such as DAGs [SW11, pp. 661–666].

We can find a longest path within a tree by Algorithm 4.1. This algorithm was first presented by Dijkstra

in 1960. A proof of correctness can be found in [Bul+02]. It consists of two depth first searches, the

first of which starting from an arbitrary vertex of a tree, say r , determines the farthest vertex s and the

second DFS starts from s and finds the vertex t whose distance to s is maximal. The (unique) s− t -path

is a longest path within the tree. This algorithm has a running time of O (n). The choice of the path

itself may vary depending on the choice of r if there are multiple paths of maximal length, but the result

is certainly optimal.

54 CHAPTER 4. A STREAMING ALGORITHM FOR THE LONGEST PATH PROBLEM

Algorithm 4.1: Longest Path in trees
Data: Tree T
Result: Longest path P in T

1 choose random r ∈V [T];
2 s := DFS(T , r);
3 t := DFS(T , s);
4 construct path P connecting s and t ;
5 return P ;
6 Procedure DFS(T,r)
7 S := (r);
8 L := S;
9 Mark r as visited;

10 while S = (S1, . . . , Si), i > 0 do
11 v← vi ;
12 if there is an unvisited y ∈N (v) then
13 S = S&y;
14 Mark y as visited;
15 else
16 if |L|< |S | then
17 L← S;

18 S← (S1, . . . , Si−1);

19 return last vertex on L.

4.2 Color Coding

In this section we show that the k-path problem is fixed-parameter tractable by giving an algorithm,

whose running time is polynomial in n for fixed k.

Definition 4.4 (FP T) A parameterized problem is a language L ⊆ Σ∗ ×N over a finite alphabet Σ.

Such a problem is called fixed-parameter tractable, if there is a function f and an algorithm that for each

(x, k) ∈Σ∗×N decides whether (x, k) ∈ L in running time f (k) · poly (|x|).

Note that the running time may be exponential in k or worse. ObviouslyP ⊆FP T since for L ∈P

the function f can be chosen constant resulting in a polynomial running time.

To show that the k-PATH problem is fixed-parameter tractable we give an algorithm presented by Alon,

Yuster, and Zwick [AYZ95].

4.2. COLOR CODING 55

4.2.1 Randomized Algorithm

We show two slightly different approaches of the color coding technique for solving the k-path problem.

First we show a straightforward way, which is improved in the following section.

Simple Version

The color coding technique described in [AYZ95] is a randomized algorithm for the k-path problem.

In the first step the vertices of the input graph are colored randomly with k+1 colors such that the color

of each vertex is chosen uniformly at random from {0, . . . , k} independently of the other vertices. The

resulting coloring does not have to be a valid coloring, i.e. c(v) 6= c(w) f.a. {v, w} ∈ E may be violated.

The simplest way of finding a k-path through color coding is to check whether a path P = (v0, . . . , vk) in

G exists with c(vi) = i f.a. i ∈ {0, . . . , k}. Let A be the event that a fixed k-path in G is colored 0, . . . , k.

Pr [A] =
∏

i∈{0,...,k}
Pr [c(vi) = i] =

∏

i∈{0,...,k}

1
k + 1

= (k + 1)−(k+1) (4.2.1)

Such a path can then be found by removing edges whose vertices are in nonadjacent color classes. In the

resulting graph is a k + 1-partite graph in which a k-path with coloring 0, . . . , k can be found by DFS

starting at all vertices v where c(v) = 0.

Let p = Pr [A], so p = (k + 1)−(k+1).

Since

(1− p)
1
p <

�

e−p�
1
p = e−1 (4.2.2)

the algorithm finds a k-path with probability at least 1− e−1 after 1
p = (k + 1)(k+1) repetitions. The

probability of not finding a k-path in a graph that contains one can be made arbitrarily small by repeated

execution.

Advanced Version

A more sophisticated version of color coding uses colorful paths. A colorful path is a path whose vertices

are colored pairwise distinct. Let B be the event that at least one k-path is colored using all k+1 colors.

There are (k + 1)! ways to color a k-path colorfully.

56 CHAPTER 4. A STREAMING ALGORITHM FOR THE LONGEST PATH PROBLEM

Under the assumption that there exists a k-path,

Pr [B]≥ k + 1!

(k + 1)k+1
≥

Stirling

p

2π(k + 1)
�

k+1
e

�k+1

(k + 1)k+1
=

p

2π(k + 1)
ek+1

≥ e−(k+1) (4.2.3)

Using the argument from (4.2.2), if the algorithm is repeated ek+1 times, a k-path that is contained in

G gets a colorful coloring with probability at least 1− e−1.

Comparing (4.2.1) and (4.2.3), the probability of coloring a k-path colorfully is much higher than col-

oring it 0, . . . , k. Finding such a randomly colored colorful path however is a lot harder than finding

a long path with colors in ascending order. We use a dynamic programming algorithm described in

Algorithm 4.2.

Algorithm 4.2: Find colorful k-path

Data: Graph G = (V , E) with coloring c : V −→ {0, . . . , k}
Result: Colorful k-path p if existent, ; otherwise

1 foreach w ∈V and C ⊆ {0, . . . , k} do
2 P (w,C) = 0
3 P (w,{c(w)}) = 1

4 for i = 1 . . . k do
5 foreach pair (w,C) : P (w,C) = 1∧ |C |= i do
6 if u ∈N (w) exists with c(u) /∈C then
7 P (u,C ∪{c(u)}) = 1

8 if u exists with P (u,{0, . . . , k}) = 1 then
9 p← (u);

10 Cp ←{c(u)};
11 while |p|< k + 1 do
12 find v ∈N (u) \ p with P

�

v,{0, . . . , k} \Cp

�

= 1;
13 p← p&v;
14 Cp ←Cp ∪{c(v)};
15 u← v;

16 return p;
17 else
18 return ;

First, the algorithm computes the 0/1 function P on V × {0, . . . , k} that is defined by the rule that

P (w,C) = 1 if and only if there is a path of length |C | ending in w and using exactly the colors in C . If

there is u such that P (u,{0, . . . , k}), then u can be reached by a colorful path. The actual path p is then

constructed in the following way: if u is the current vertex, we look in u’s neighborhood for a vertex

4.2. COLOR CODING 57

that has not been visited by p and that can be reached by a path using only the remaining colors (i.e.,

colors not on p yet).

We made a modification to the random coloring to find only k-paths containing a vertex v. This is

achieved by coloring the vertices V \{v} like before using only colors [k] and coloring v with c(v) = 0.

Every colorful k-path now must contain v because it is the only vertex of its color.

4.2.2 Derandomization

A naïve way of derandomizing the previous algorithm is considering each subset V ′ ⊆V of size k + 1

and coloring its vertices pairwise distinctly and then search for a colorful path as in Algorithm 4.2 in to

G[V]. This would yield a running time of O (
� n

k+1

�

) = O (2n). This derandomization is impractical due

to the exponential dependency on n.

This section describes a derandomization of the color coding algorithm presented in section 4.2.1 whose

running time is exponential in the length k instead of the number of vertices n.

Definition 4.5 A familyH of functions {1, . . . , n} −→ {1, . . . ,`} is a `-perfect family of hash functions if

for every S ⊆ {1, . . . , n} with |S |= `, there is an h ∈H such that h(x) 6= h(y) for any x, y ∈ S, x 6= y.

If there is a k-path P in the graph, then by using each hash function h ∈H as coloring, we can guarantee

that at least once the k+1 vertices on P will be mapped injectively into {0, . . . , k}, so the path is colored

colorfully.

The construction of this family used by Alon et. al. [AYZ95] is based on the construction from Schmidt

and Siegel [SS90]. Its size is 2(O (k)) log n and can be constructed in polynomial time relative to its size.

Another construction for k-perfect hash families is presented in [Che+07]. Their construction’s size is

O
�

6.4k · n
�

.

Overall, the running time of the derandomized algorithm is O
�

12.8k · n
�

and thus aFP T algorithm

for the k-path problem exists.

For implementation it might be impracitcal to deradomize the algorithm because large constant factors

within the exponent are involved [DF13]. By repeated execution of the randomized algorithm often

enough, the probability of error can be made arbitrarily small.

58 CHAPTER 4. A STREAMING ALGORITHM FOR THE LONGEST PATH PROBLEM

4.3 Gabow and Nie’s Algorithm

The algorithm given by Gabow and Nie [GN08] is an approximation algorithm for the longest cycle

problem in directed and undirected graphs. A long cycle describes a cycle whose length is at least some

integer k that ist part of the input. It has a worst case running time of 2O (k)n log n improving Bodlaen-

der’s bound of O
�

2k k! n
�

[Bod93]. This enables us to find a cycle of logarithmic length in polynomial

time.

The algorithm first performs a depth first search starting at a random vertex r ∈V labeling each vertex

with its respective distance to r . After the DFS is performed, the algorithm searches for long fundamen-

tal cycles containing a specified vertex v within the DFS tree. Such a long cycle is found if the distances

of two vertices in the DFS tree is at least k and these vertices are connected by an edge e = {x, y}. This

is done by finding the lowest common ancestor lca(x, y) of x and y and then linking P [lca(x, y), x]with

{x, y} and P [y, lca(x, y)]. If no such cycle is found then the algorithm calls the color coding algorithm

(Algorithm 4.2) on the input graph. This algorithm finds every k-path containing v. At least one k-path

P = (v0, . . . , vk) can then be extended into a k+ cycle by performing a DFS to find a path from v0 to vk

that contains no vertices of P other than v0 and vk .

Algorithm 4.3: Gabow and Nie’s Algorithm

Data: Graph G = (V , E), vertex v, desired length k
Result: k+ cycle containing v if found, ; otherwise

1 choose random start vertex r ∈V ;
2 T := DFS tree rooted at r ;
3 foreach non tree edge {x, y}= e ∈ E do
4 if |d (x)− d (y)| ≥ k then
5 T ′← T + e ;
6 Find k+ cycle C in T ′;
7 if v ∈C then
8 return C ;

9 Search for k+ cycle C containing v with Color Coding (Algorithm 4.2) and DFS;
10 if long cycle C found then
11 return C ;
12 else
13 return ;;

4.4. BJÖRKLUND AND HUSFELDT’S ALGORITHM 59

4.4 Björklund and Husfeldt’s Algorithm

The algorithm presented by Björklund and Husfeldt [BH03] is a polynomial-time algorithm that finds

paths of lengthΩ((log L/ log log L)2)where L denotes the length of a longest path within the input graph.

The input graph is decomposed into a tree consisting of long cycles and paths connecting those cycles.

In their original paper Björklund and Husfeldt used Bodlaender’s algorithm [Bod93] to find long cycles.

This algorithm has a running time of O
�

2k k!n
�

to find a cycle of length k. In a note at the end of their

paper, the authors remarked that their algorithm’s bound can be improved to Ω((log2 L/ log log L)) by

using the algorithm by Gabow and Nie, described in the previous section, to find long cycles.

4.4.1 The Algorithm

The algorithm starts by constructing a cactus graph that contains cycles and paths. It starts at some

randomly chosen vertex v and searches for a cycle containing this vertex using the algorithm by Gabow

and Nie described in section 4.3. If such a cycle C is found, it is inserted into the block graph along

with an edge {v, w} where w ∈ N (C) and the algorithm is recursively called on G−C to find a cycle

through w. If no cycle is found, the algorithm adds an edge {w, w ′}, where w ′ ∈ N (w) to the block

graph, and searches for a cycle through w ′. The lengths of these cycles are given as parameters to the

algorithm by Gabow and Nie whose running time depends exponentially on the length.

Algorithm 4.4: Björklund and Husfeldt’s Algorithm

Data: Graph G = (V , E), k ∈N
Result: Block Graph B with V [B] =V [G]

1 pick v ∈V uniformly at random
2 while |V [B]|< n do
3 search for k+-cycle C containing v in V [G] \V [B];
4 if C 6= ; then
5 V [B]←V [B]∪V [C];
6 E[B]← E[B]∪ E[C];
7 choose {u, v} randomly where u ∈C , v ∈N (C) \V [B];
8 E[B]← E[B]∪{{u, v}};
9 else

10 V [B]←V [B]∪{v};
11 choose u randomly from N (v) \V [B];
12 E[B]← E[B]∪{{u, v}};
13 v← u;

14 return B;

We now transform B into a weighted tree Tk by replacing paths between vertices that lie on the same

60 CHAPTER 4. A STREAMING ALGORITHM FOR THE LONGEST PATH PROBLEM

cycle by a weighted edge. Let v, w be vertices on some cycle C whose length is `≥ k. The weight that

is attributed to the v, w-edge is the maximum of d (v, w) and `− d (v, w) where d (·, ·) is the distance

between two vertices.

The longest path within the tree Tk can then be found using Algorithm 4.1.

4.4.2 Approximation Ratio

Lemma 4.6 (Björklund and Husfeldt [BH03]) If a connected graph contains a path of length r , then every

vertex is an endpoint of a path of length at least 1
2 r .

The lower bound is given by the following lemma:

Lemma 4.7 (Björklund and Husfeldt [BH03]) If G contains a path of length r ≥ 28 starting in v, then

Tk for

k =
�

2 log r
log log r

�

contains a weighted path of length at least 1
8 k2− 1

4 k − 1.

Using Lemma 4.6 and inserting this k into the expression 1
8 k2 − 1

4 k − 1 leads to a lower bound of

Ω((log L/ log log L)2) and an approximation ratio of

O
�

L(log log L/ log L)2
�

⊆O
�

n(log log n/ log n)2
�

.

Where the approximation ratio is defined by the optimum divided by the length of the path found by

the algorithm. By using Gabow and Nie’s algorithm instead of Bodleaner’s algorithm, the lower bound

can be improved to Ω
�

log L2/ log log L
�

.

Note that this approximation ratio depends on the length of a longest path within the graph compared

to the color coding algorithm in section 4.2, whose approximation ratio depended on the number of

vertices in the input graph. In a graph whose longest path has lengthO (log n) the color coding algorithm

would find an optimal path whereas the algorithm by Björklund and Husfeld would only guarantee an

Ω
�

log2(opt)/ log log(opt)
�

approximation. In graphs with a longest path of length Ω(n) however, the

algorithm by Björklund and Husfeld guarantees a superlogarithmic approximation.

4.5. PONGRÁCZ’S ALGORITHM 61

4.5 Pongrácz’s Algorithm

The below algorithm is based on an idea by Lajos L. Pongrácz presented in [Pon12]. The heuristic has

been slightly modified in order to produce better results at the cost of an increase of runtime by factor

n. The algorithm works in two stages, create and search.

In the first stage each vertex is being labeled with its respective distance to a root vertex, which is chosen

randomly from the graph’s vertex set. The algorithm therefor uses a Breadth First Search as shown in

Algorithm 4.5.

Algorithm 4.5: create

Input: Undirected Graph G = (V , E), root vertex r ∈V
Output: Labeling dr : V →N, dr (v) = d (r, v)

1 Q← (r);
2 X ←;;
3 dr (r)← 0;
4 while Q = (Q1, . . . ,Qk) with k > 0 do
5 v←Q1; Q← (Q2, . . . ,Qk);
6 X ←X ∪{v};
7 foreach u ∈N (v) \X do
8 dr (u)← dr (v)+ 1;
9 Q←Q&u

10 return dr

After labeling each vertex, the algorithm enters its second stage, which constructs a path by choosing

locally optimal neighbors, i.e. incident vertices whose distance is maximal among the neighbors of the

previously chosen vertex. If there is more than one neighbor with maximum distance, the algorithm

picks one of them uniformly at random. If there are no unvisited neighbors, the length of the currently

constructed path is compared with the longest path found so far and the latter is updated if necessary.

Then the algorithm backtracks and continues, until all vertices have been visited.

Two modifications have been made to the second pass of the original algorithm in [Pon12] in order to

improve its results:

1. The labeling step (4.5) is performed starting at each vertex (and then the second step is performed

for each of the labelings) instead of choosing only one labeling with a random start vertex. This

increases the running time of the overall algorithm by a factor of n, but also increases the number

of constructed paths by the same number and can thereby yield longer paths. A similar approach

can be used to start the second stage from each of the vertices and thus increasing the running

62 CHAPTER 4. A STREAMING ALGORITHM FOR THE LONGEST PATH PROBLEM

time by another factor n. This, however, has not shown itself to be useful.

2. In the original algorithm, there was no rule given on how to choose which vertex gets added in

the search stage (Algorithm 4.6) if there is more than one neighbor with maximum distance to the

root. In a naïve implementation the algorithm would choose the same vertex solely depending on

the output of the create stage. This would produce the same results each time the entire algorithm

is executed. Because of this, we implemented a straightforward tie breaker rule which chooses one

of the neighbors with maximum distance uniformly at random to produce varying results in each

iteration and thus increase the number of paths that can be constructed by the algorithm. This

makes it possible to find longer paths by executing the algorithm multiple times.

Algorithm 4.6: search

Input: Undirected Graph G = (V , E), labeling dr : V →N
Output: Path L⊆G

1 choose v ∈V uniformly at random;
2 L← ();
3 S← (v);
4 X ←{v};
5 while S = (S1, . . . , Sk) with k > 0 do
6 if Y ←N (Sk) \X 6= ; then
7 m←maxu∈Y d (u);
8 pick u uniformly at random from {u ∈ Y : d (u) = m};
9 S← S&u;

10 X ←X ∪{u};
11 else
12 if |S |> |L| then
13 L← S;

14 S← (S1, . . . , Sk−1);

15 return L;

Algorithm 4.7: Pongrácz

1 L← ();
2 foreach r ∈V do
3 dr ← create(G, r);
4 P ← search(G, dr);
5 if |P |> |L| then
6 L← P ;

7 return L;

4.6. POHL-WARNSDORF’S ALGORITHM 63

4.6 Pohl-Warnsdorf’s Algorithm

Pohl-Warnsdorf’s algorithm is an extension of Warnsdorf’s rule which will be described in the first

section of this section.

4.6.1 Warnsdorf’s Rule

Figure 4.1: Knight’s tour on a chess board

Warnsdorf’s rule is a heuristic that finds kight’s tours on a chessboard, i.e. a sequence of moves accord-

ing to the rules of chess that visits each square exactly once. The algorithm also works for chessboard

dimensions other than 8× 8 [Con+94]. The chess board can be regarded as a graph in which each

square is a vertex and two vertices are connected if there is a move possible between those vertices. A

tour constructed by Warnsdorf’s rule is a Hamiltonian path. Although the Hamiltonian path prob-

lem is N P -hard, this algorithm constructs such a path in linear time. The algorithm constructs the

Hamiltonian path by starting at an arbitrary vertex and then extending the path recursively by adding

the neighbor that has the fewest unvisited neighbors.

4.6.2 Pohl’s Extension

In [Poh67; PS04] an extension of Warnsdorf’s rule is described. The extension gives a rule on how

to extend the path if there is more than one possible vertex to be added according to Warnsdorf’s rule.

This tiebreak function is given in Algorithm 4.9. The tie break is achieved by considering the next layer,

i.e. the neighbor’s neighbors of the current vertex. The path is then extended with the vertex whose

neighbor has fewest unvisited neighbors.

64 CHAPTER 4. A STREAMING ALGORITHM FOR THE LONGEST PATH PROBLEM

Algorithm 4.8: Warnsdorf’s rule

Data: Graph G = (V , E)
Result: Path P in G

1 foreach vertex v ∈V [G] do
2 P ′← (v);
3 G′←G−{v};
4 while P ′ = (p1, . . . , pi) with i > 0 do
5 v← p1;
6 X ←

¦

x ∈NG(v) | ∀x ′∈NG (v)
: degG′(x

′)≥ degG′(x)
©

;
7 switch |X | do
8 case |X |= 1 do
9 v← x, x ∈X ;

10 P ′← P ′&v;
11 G′←G′−{v};
12 case |X |> 1 do
13 pick v randomly from {v ′ ∈X | v ′ = argminx∈X tiebreak(x)};
14 P ′← P ′&v;
15 G′←G′−{v};
16 case X = ; do
17 if |P ′|> |P | then
18 P ← P ′;

19 P ′← (p1, . . . , pi−1);

20 return P;

Algorithm 4.9: Tiebreak

Data: Graphs G,G′, vertex v ∈V [G]
Result: integer tiebreak(v)

1 tiebreak(v)←minw∈NG (v)
degG′(w);

2 return tiebreak(v);

4.7. STREAMING ALGORITHMS AND THE SEMI-STREAMING MODEL 65

4.7 Streaming Algorithms and the Semi-Streaming Model

In the streaming model, the data is given as a stream that has no particular order. This stream can

represent a tape or hard disk with fast sequential access and very slow random access. The machine that

processes this data has a limited amount of memory, typically logarithmic in the input size. This makes

the model a useful tool in a big data context. Sometimes the processing time per item is also constrained.

This restriction can be useful in a context where the data stream cannot be halted, e.g., in a scenario

where data is recieved from a satellite. Usually, it is desired to have a one-pass algorithm. Where one

pass corresponds to reading the entire data stream once. However, sometimes it is admissable to have a

small constant number of passes but the goal is always to keep the number of passes to a minimum.

The study of graph problems in streaming models started around the beginning of the 21st century,

see [BKS02; Fei+05] for early works. The idea of using a linear amount of memory is due to Muthukr-

ishnan [Mut05]. Up until then, the ‘streaming’ term was associated with sub-linear memory, which is

not enough for many graph problems [Fei+05]. To emphasize the difference, the streaming model with

linear RAM (that we use) is also referred to as the semi-streaming model in the literature.

Since then, many kinds of graph problems have been addressed, such as shortest paths, spanning trees,

connectivity, cuts, matching, and vertex cover. Several lower bounds are known. Most importantly

for us, Feigenbaum et al. [Fei+08] proved that any BFS algorithm computing the first k layers with

probability at least 2
3 , requires more than k

2 passes if staying within O (n · poly log(n)) memory (see

Guruswami & Onak [GO14] for improved lower bounds). This constitutes a substantial hurdle when

transferring existing algorithms into the streaming model. To the best of our knowledge, longest paths

have not been addressed before in a streaming model.

It must be emphasized that streaming techniques also make sense when the graph is of size c ·n ·log(n) if

a streaming algorithm can guarantee to stay within c ′ ·n ·log(n) for c ′ < c . Therefore, we give a memory

guarantee for our algorithm using concrete constants.

4.8 Previous and Related Work

Algorithms for the longest path problem have been studied extensively in the RAM model. We start

by listing algorithms with proven guarantees. Bodlaender [Bod93] and Monien [Mon85] gave algo-

rithms that find a path of length k (if it exists) in O (2k k! n) and O (k! nm) time, respectively. Alon

et al. [AYZ95] introduced the method of color coding and based on that gave an algorithm running in

66 CHAPTER 4. A STREAMING ALGORITHM FOR THE LONGEST PATH PROBLEM

expected time 2O (k)n. There is a recent randomized algorithm by Björklund et al. [Bjö+10] that given

k, finds a path of length k (if it exists) in O (1.66k ·polyn) time (see also [Kou08; Wil09; Bjö14]). Those

works show that the problem is fixed-parameter tractable: a path of length k can be found (if it exists)

in polynomial time, for fixed k. The particular dependence of the running time on k (factorial or ex-

ponential) determines up to which k we stay polynomial and thus determines the length guarantee for

a polynomial-time approximation algorithm.

In Hamiltonian graphs, a path of length Ω(log(n)
log log(n)

2
) can be found with the algorithm by Vishwana-

than [Vis04]; and Feder et al. gave further results for sparse Hamiltonian graphs [FMS02]. Björklund

and Husfeldt [BH03] gave an algorithm that finds a path of length Ω((log(OPT))2

log log(OPT)), where OPT is the

length of a longest path. It works by a decomposition of the graph into paths and cycles. Their technique

subsequently was extended by Gabow [Gab07] and Gabow and Nie [GN08] yielding guarantees for the

length of the path of exp(Ω
Ç

log(OPT)
log log(OPT)) and exp(Ω

p

log(OPT)), respectively. Apart from that, the field

is dominated by heuristics, such as (Pohl-) Warnsdorf [Poh67; PS04] and Pongrácz [Pon12].

The Björklund-Husfeldt algorithm uses color coding as an important subroutine. We implemented and

tested a simple algorithm based on color coding, which gave inferior results and more importantly took

very long time to complete, substantially longer than (Pohl-) Warnsdorf, Pongrácz, or our algorithm.

Thus we refrained from further implementing the Björklund-Husfeldt algorithm. (The original descrip-

tion in [BH03] uses Bodlaender’s algorithm [Bod93], which has an even higher running time than color

coding.) The Gabow-Nie algorithm [GN08] does not use color coding, but at the time of writing was

only available as a short conference version, making it difficult to implement.

Several non-approximability results have been shown by Karger et al. [KMR97]: a constant-factor

approximation is N P -hard; and for any ε > 0, the LPP cannot be approximated with a ratio of

2O (log1−ε(n)), unlessN P ⊆ DTIME(2O (log1/ε(n))), that is, such an approximation is quasi-N P -hard. Baz-

gan et al. showed that the same holds even when restricting to cubic Hamiltonian graphs [BST99].

The LPP is also interesting in directed graphs. For any ε > 0, it is N P -hard to approximate in di-

rected graphs within n1−ε [BHK04]. The best approximation guarantee in the directed case (unless

restricting to special classes of graphs) is still the color coding algorithm that also works in the undi-

rected case [AYZ95]. For special graph classes, there exist exact polynomial-time algorithms, e.g.,

for (undirected) trees (given by Dijkstra around 1960, see [Bul+02] for a proof), for directed acyclic

graphs [SW11, pp. 661-666], for grid graphs [KBA12], and for cactus graphs [UU07; Mar+12].

4.9. PREVIOUS ALGORITHMS 67

4.9 Previous Algorithms

Trees. An algorithm for longest paths in trees was presented by Dijkstra around 1960; a proof of

correctness can be found in [Bul+02]. It consists of two invocations of DFS, the first starting at an

arbitrarily chosen vertex (e.g., chosen uniformly at random), and the second starting at a vertex that is

in the final layer constructed by the first DFS.

Warnsdorf and Pohl-Warnsdorf. Warnsdorf’s rule was originally presented in 1823 and is a DFS that

always picks a neighbor with a minimum number of unvisited neighbors. In case there are multiple such

neighbors to choose from, Pohl gave a refinement [Poh67; PS04]: we restrict to those neighbors which

themselves have a minimum-degree neighbor. Each vertex is used once as the starting point of the DFS,

and the best path found is returned. This gives a total runtime of O (nm).

Pongrácz. This algorithm was announced in 2012 [Pon12] and to the best of our knowledge has not

been thoroughly studied since. We give a technically slightly modified description here. Given a start

vertex r , using BFS we compute for each vertex v its distance to r . Then, starting at a randomly chosen

v, we conduct a DFS that always picks an unvisited neighbor with maximum distance to r . Each vertex

is used once as the start r , and the longest path found is returned. In the original version, for each r ,

also each v is tried (and not just one chosen randomly). In order to stay within O (nm), we decided to

enumerate only one of the two possibilities: either r or v. In preliminary experiments, we found the

choice given here (enumerate all r , pick one v randomly) to be superior. We leave a thorough study of

the different variants of Pongrácz’s algorithm for future work.

4.10 Description of Our Streaming Algorithm

Our algorithm works in two phases: (1) spanning tree construction, (2) spanning tree diameter improve-

ment. Phase (1) is characterized by a parameter τ ∈N and a sequence D = (1, . . . , q1) of degree limits,

where q1 ≥ 2 and Dq1
=∞. For each i ∈ [τ] = {1, . . . ,τ}, a tree Ti is constructed. We start with the

empty graph Ti = (V ,;) and then add edges to Ti over a number of q1 passes. In each pass p ∈ [q1],

we add an edge to Ti iff that does not create any cycle and it does not increase the maximum degree in

Ti beyond Dp . Since Dq1
=∞, we arrive at a spanning tree eventually (recall that we assume all our

input graphs to be connected). The motivation for the degree limit is to favor path-like structures over

clusters of edges. As an extreme example, consider a complete graph. Without degree restriction, it is

possible that a spanning tree is constructed that is a star; whereas with a degree restriction of 2, we find

68 CHAPTER 4. A STREAMING ALGORITHM FOR THE LONGEST PATH PROBLEM

Algorithm 4.10: Streaming Phase (1): Spanning Tree Construction

Input: connected graph G = (V , E) as a stream of edges, parameter τ,
degree limit sequence D = ({D1, . . . , Dq1

)
Output: spanning tree of G

1 foreach i = 1, . . . ,τ do
2 Ti := (V ,;);
3 SpanningTree(Ti);

4 U := (V ,
⋃τ

i=1 E(Ti));
5 find a long path P in U using Warnsdorf’s algorithm;
6 T := (V , E(P));
7 SpanningTree(T);
8 return T ;

a Hamilton path during the first pass.

In order to not just create the same tree τ times, in the first pass, we pick a number r ∈ [m] uniformly

at random (where {e1, . . . , em} is the stream of edges) and ignore any edges with an index smaller than

r . Due to this offset for the first pass, it makes sense (but is not necessary) to use the same degree

limit for the second pass. We will test D = (2,∞) and D = (2,2,3,∞) in experiments. By standard

techniques (keeping track of the connected components), this algorithm can be implemented with a

per-edge processing time of O (n): we can decide in O (1) if the current edge is to be inserted and if so, it

takes O (n) to update connectivity information.

When all trees T1, . . . ,Tτ have been constructed, we build U := (V ,
⋃τ

i=1 E(Ti)) by uniting them. This

graph will in general contain cycles, but it has no more than τn edges. Since we construct U from trees,

it is guaranteed to be connected and to span all the vertices of the input graph. In U , a long path P is

constructed with a RAM algorithm; we use the Warnsdorf algorithm for this task. The final step of the

first phase is to isolate P and then to build a spanning tree T around it using the same technique as for

the trees {T1, . . . ,Tτ}. Since we may assume that the constructions of {T1, . . . ,Tτ} are fed from the same

passes, we thus have 2q1 passes for the first phase. We summarize phase (1) in Algorithm 4.10, which

uses procedure SpanningTree, also given below. For a set X , we write x :=unif X to express that x is

drawn uniformly at random from X .

When phase (1) is concluded, we determine a longest path P in the spanning tree T using the Dijkstra

algorithm (section 4.9). In phase (2), we try to modify this tree in order that it admits longer paths than

P . A number of additional passes is conducted. In order to save time, we developed a criterion based

on which we only consider a fraction of the edges during those passes. We explored the two options: (i)

consider each edge independently with probability n
m+1 (resulting in onlyO (n) edges being considered);

4.11. PROPERTIES OF OUR STREAMING ALGORITHM 69

Procedure SpanningTree(T)

Input: forest T on V , possibly empty
Output: spanning tree on V

1 r :=unif [m];
2 fast-forward the stream to position r ;
3 for p = 1, . . . , q1 do
4 while not at the end of the stream do
5 get next edge vw from the stream;
6 if T + vw is cycle-free and max{degT (v), degT (w)}<Dp then T := T + vw;
7 if |T |= n− 1 then break;

8 rewind the stream to its beginning;

or (ii) skip an edge if both endpoints are on the so-far longest path P . After preliminary experiments,

we decided for option (ii) due to better solution quality at a moderate runtime expense, however we

already give results for one variant of our algorithm using option (i).

For each edge e that is considered and that is not in T , we temporarily add e to T , creating a fundamental

cycle C in T ′ := T + e . We want to go back to a tree. To this end, we have to remove an edge from C .

This edge is chosen so that among all possibilities, the resulting tree has maximum diameter.

It should not be assumed that an edge with both endpoints on P could not yield an improvement.

Intuitively, relative to P it acts like a shortcut, but examples can be found where adding such an edge

(and subsequently removing one edge from the fundamental cycle) improves the diameter of the tree.

Still, criterion (ii) has shown to be effective in practice.

Phase (2) terminates after a preset number of passes q2. We summarize phase (2) in Algorithm 4.11,

where for any graph H , we denote `(H) the length of a longest path in H .

An example run of the Algorithm is shown in Figure 4.2.

4.11 Properties of Our Streaming Algorithm

If the cycle C is of lengthΩ(n), then a naive implementation requiresΩ(n2) to find an edge e ′ to remove

(temporarily remove each edge on the cycle and invoke the Dijkstra algorithm). However, we have:

Theorem 4.8 Phase (2) can be implemented with per-edge processing time O (n).

70 CHAPTER 4. A STREAMING ALGORITHM FOR THE LONGEST PATH PROBLEM

(a) Degree Limit D = 2 (b) Degree Limit D = 3

(c) Degrees Unlimited (d) Union of Trees

(e) Path Found by Warnsdorf’s Algorithm (f) New Spanning Tree Built around Path

(g) Added Edge from Stream

125 3

(h) Depths of Trees Extending from Fundamental Cycle

(i) Remove Edge from the Cycle (j) New Longest Path

Figure 4.2: Example run of the Algorithm’s Steps.

4.11. PROPERTIES OF OUR STREAMING ALGORITHM 71

Algorithm 4.11: Streaming Phase (2): Improvement

Input: connected graph G as a stream of edges, spanning tree T , pass limit q2
Output: a (long) path in G

1 compute longest path P in T with Dijkstra algorithm;
2 for q2 times do
3 rewind the stream to its beginning;
4 while not at the end of the stream do
5 get next edge e = {v, w} from stream;
6 if v ∈V (P) and w ∈V (P) then discard and continue with next iteration;
7 T ′ := T + e ;
8 compute fundamental cycle C in T ′;
9 `∗ :=max f ∈E(C)\{e} `(T

′− f);
10 if `∗ > `(P) then
11 pick any e ′ from the set { f ∈ E(C) \ {e} : `(T ′− f) = `∗};
12 T := T ′− e ′;
13 update P with longest path in T ;

14 return P ;

Proof. An O (n) bound is clear for all lines of Algorithm 4.11, except line 9 and line 11. Denote

`′ := max
f ∈E(C)\{e}

max{`(P) : P is path in T ′− f and e ∈ E(P)}

and let R′ ⊆ E(C) \ {e} be the set of edges where this maximum is attained. Then the following impli-

cations hold: `′ ≤ `(P) =⇒ `∗ ≤ `(P) and `′ > `(P) =⇒ `′ = `∗. This is because if a longest path in

T ′− f is supposed to be longer than P , it must use e (since otherwise it would be a path in T). Hence

it suffices to determine `′, and if `′ > `(P), to find an element of R′.

Denote C = (v1, . . . , vk) the fundamental cycle for some k ∈N written so that e = v1vk . When com-

puting `′, we can restrict to paths in T ′ of the form

(. . . , vs , vs−1, . . . , v1, vk , vk−1, . . . , vt , . . .) (4.11.1)

for 1 ≤ s < t ≤ k, where vs is the first and vt is the last common vertex, respectively, of the path and

C . For each i , let Ti be the connected component of vi in T − E(C), i.e., Ti is the part of T that is

reachable from vi without using the edges of C . Denote `(Ti) the length of a longest path in Ti that

starts at vi and denote ci := `(Ti)+ i − 1 and ai := `(Ti)+ k − i . Then a longest path entering C at vs

and leaving it at vt , as in (4.11.1), has length exactly cs + at . Hence we have to determine a pair (s , t)

such that cs + at is maximum (this maximum value is `′); we call such a pair an optimal pair. If the so

72 CHAPTER 4. A STREAMING ALGORITHM FOR THE LONGEST PATH PROBLEM

1 compute c1, . . . , ck−1 and {a2, . . . ,ak} using DFS;
2 M := 0; L := 0;
3 for i = 1, . . . , k − 1 do
4 if ci >M then
5 M := ci ;
6 s := i ;

7 if M + ai+1 > L then
8 L :=M + ai+1;
9 t := i + 1;

10 return (s , t);

determined value `′ is not greater than `(P), then nothing further has to be done (the edge e cannot

give an improvement). Otherwise, having constructed our optimal pair (s , t), we pick an arbitrary edge

(e.g., uniformly at random) from {vi vi+1 : s ≤ i < t}, which are the edges between vs and vt on C . We

show that the following algorithm computes the value `′ and an optimal pair in O (n).

The total of computations in line 1 can be done by DFS inO (n), and the loop inO (k)≤O (n). We prove

that the final (s , t) is optimal. For fixed t , the best possible length cs + ct is obtained if t is combined

with an s < t where cs ≥ c j for all j < t . In the algorithm, for each t (when t = i + 1 in the loop)

we combine at with the maximum max j<t c j (stored in the variable M). Thus, when the algorithm

terminates, L= `′ and cs + ct = `
′.

Corollary 4.9 Our streaming algorithm (with the two phases as in Algorithm 4.10 and Algorithm 4.11)

can be implemented with a per-edge processing time of O (n).

We turn to the memory requirement. Denote b the amount of RAM required to store one vertex or

one pointer (e.g., b = 32bit or b = 64bit) and call n · b one unit.

Theorem 4.10 Our streaming algorithm (with the two phases as in Algorithm 4.10 and Algorithm 4.11)

conducts at most 2q1+q2 passes. Moreover, the algorithm can be implemented such that the RAM requirement

is at most (max{4τ, 2τ+ 4} · n+ c) · b with a constant c.

Proof. The construction of each of the initial trees T1, . . . ,Tτ can be fed from the same passes, so we

obtain those τ trees within at most q1 passes. After isolating the path P , we need at most q1 more

passes to get back to a spanning tree. A bound of q2 for phase (2) is obvious. We turn to the memory

requirement.

4.12. TEST INSTANCES 73

Phase (1). All the adjacency lists of one tree together require 2 units, plus 1 unit for an array of pointers

to each of the lists. We need 1 additional unit per tree to store connectivity information during tree

construction. This amounts to 4τ units for the main data structures at any time so far, plus a few extra

bits required for bookkeeping (loop variables, etc) that are covered by the constant c . The graph U

can be stored in 2τ+1 units (adjacency lists plus pointer array). For the Warnsdorf algorithm, we need

1 unit to store DFS information (e.g., store the DFS tree as a predecessor relation) and 1 unit for the best

path so far. To determine the next vertex to visit (according to Warnsdorf’s rule), we need ∆b ≤ nb

bits, where ∆ is the maximum degree in the graph. This amounts to 2τ + 4 units for the main data

structures for the Warnsdorf algorithm on U . The rest of phase (1) is clearly covered by this as well.

Phase (2). We need 3 units to store the tree, 1 unit to store the longest path so far, 1 unit for the funda-

mental cycle, and 1 unit for DFS. This amounts to 6 units during this phase plus bookkeeping, which

is covered by the stated bound.

Remark 4.11 On a graph with average degree d , the Warnsdorf, Pohl-Warnsdorf, and Pongrácz algorithms

each requires at least (d + 3) · nb bits of memory.

Proof. Since those algorithms perform special variants of DFS (and Pongrácz also BFS), we cannot re-

strict them to sequential access and thus we have to load the instance into RAM as adjacency lists.1

Hence, d +1 units are required to store the graph. Two more units must be allotted to store DFS infor-

mation and the longest path found so far, in the case of Pongrácz need one more unit for the distance

information.

Corollary 4.12 Not counting the additive constant c from Theorem 4.10, the RAM algorithms require
d+3

max{4τ, 2τ+4} times more RAM than our streaming algorithm, on a graph with average degree d . For τ = 2,

this ratio is d+3
8 .

4.12 Test Instances

Connected Random. We denote this model by G ∗(n, p). A graph is constructed by starting with a

random tree on n vertices (via a randomly chosen Prüfer sequence) and then adding further edges as

in G (n, p). The average degree in such a graph is slightly larger than n p due to the n − 1 initial tree

edges.

1This is unless we invoke external-memory techniques, which is unexplored for the LPP at this time.

74 CHAPTER 4. A STREAMING ALGORITHM FOR THE LONGEST PATH PROBLEM

Chains. Parameters for a chain graph are n, p, and k, with n being a multiple of k. We create k graphs

G1, . . . ,Gk , the clusters, according to G ∗(n, p), each on n/k vertices. Then we insert an edge vi wi with

randomly chosen vi ∈V (Gi) and wi ∈V (Gi+1) for each 1 ≤ i < k, making sure that wi 6= vi+1. Such

graphs pose a particular challenge to DFS-based LPP algorithms, since if the DFS visits the connecting

point to the next cluster (wi or vi) too early, it will eventually miss out on a large number of vertices in

the current cluster.

Preferential Attachment and Small World. Preferential attachment graphs are created as per the

Barabási-Albert model [BA99]: parameters are n, n0, d ∈N, where n is total the number of vertices, n0

is the size of the initial tree, and in each step the new vertex is connected by d new edges. This model

guarantees connectedness. Small world graphs are created as per the Watts-Strogatz model [WS98], with

a small modification. Parameters are n, d ∈N, with d even, and 0≤β≤ 1. We start with a ring lattice

where each vertex is connected to each d/2 vertices on either side, then each edge {v, w} with v and

w not being next to each other on the ring is replaced with a random edge {v, u} with probability β

(the rewiring probability). Our modification (not to rewire certain edges) guarantees that the result is

Hamiltonian (and in particular connected).

These two models were chosen since they yield very different degree distributions: for preferential

attachment, we have a power-law and there exist a few hubs, i.e., vertices with high degree. In the small

world model on the other hand, vertices tend to have similar degree.

Hyperbolic Geometric. Hyperbolic geometric graphs are a very interesting new class of graphs, for

which efficient generators were given by von Looz et al. [Loo+15]. The graphs are constructed in hy-

perbolic space of constant negative curvature. Vertices correspond to points that are randomly inserted

into this space, and an edge between two vertices is inserted if the corresponding points are within a

certain distance from each other. This model has been shown to exhibit many features of complex

real-world networks. We refer to [Kri+10; Loo+15] for details. Parameters are number of vertices

n, average degree d , and the exponent γ of the power-law degree distribution. We use the generator

implementation from [Loo+15]. Connectedness is ensured by initializing the graph with a random

tree.

4.13. EXPERIMENTAL SETUP 75

4.13 Experimental Setup

All algorithms were implemented using C++14 and each graph stream is realized as a std::vector of

pairs of 32 bit integers. We keep those vectors in RAM for the sake of faster running times and hence

more experiments conducted — but it is guaranteed that we access those vectors only sequentially and

all other data structures are O (n). Our implementation also allows to process graphs stored in a file on

disk, without copying the contents of the file into RAM (it is accessed via a std::ifstream). Using the

Valgrind tool Massif,2 we verified that RAM consumption of our algorithm is indeed independent of

the number of edges. For each instance, the stream of edges is randomized once and the order does not

change between passes or between the invocations of the algorithms. Each implementation concludes

immediately when a Hamilton path is found.

For each random graph model under consideration, we test three settings: n = 16 000 and nominal

average degree d = 14 (sparse); n = 16 000 and nominal average degree d = 3
p

n (dense); and n = 100 000

and nominal average degree d = 10 (large). (Note that chain and hyperbolic graphs will have a slightly

larger average degree than the given d due to the additional tree that is used to guarantee connected-

ness.) The dense graphs have Ω(n4/3) edges and are thus beyond the theoretical RAM capacity of the

semi-streaming model. More on the practical side, note that by Corollary 4.12 (not counting the small

additive constant), even for average degree d = 14, the RAM algorithms require more than two times

more memory than ours when configured with τ ≤ 2. Due to lack of space we skip the details for sparse

and dense small world graphs, and we only use a selection of algorithms for the large graphs.

We run Warnsdorf, Pohl-Warnsdorf, Pongrácz, the simple randomized DFS, and different variants of

our algorithm on 100 randomly generated instances for each parameter set (only 50 instances for large

graphs in order to save time) and record the length of the path that is found and the running time. Vari-

ants of our algorithm are denoted in the form τ/q1/q2, where τ is the number of trees in the beginning,

q1 is the maximum number of passes used to construct a spanning tree using degree limiting, and q2

is the number of improvement passes. In order to save time, for fixed τ and q1, we obtain results for

τ/q1/0 up to τ/q1/q2 by running τ/q1/q2 and recording intermediate results.

Solution quality is analyzed in terms of relative solution quality. For an instance I and algorithm A,

denote `(A, I) the length of the path delivered by A on I . Then we define ρ(A, I) := `(A,I)
maxA′ `(A′,I)

∈

[0,1], where A′ runs over all algorithms under investigation. That is the result of A divided by the best

result on any of the algorithms. Clearly, one algorithm per instance will always have relative solution

2http://valgrind.org/docs/manual/ms-manual.html

http://valgrind.org/docs/manual/ms-manual.html

76 CHAPTER 4. A STREAMING ALGORITHM FOR THE LONGEST PATH PROBLEM

quality 100%.

4.14 Data and Discussion

Tables with detailed experimental data can be found in section 4.15. The column labeled “`” gives

statistics (mean value µ and standard deviation σ) for the lengths of the paths found and is intended as

a general orientation in which range our solutions are located. The column labeled “wins” counts how

many times this algorithm delivered the best solution, i.e., how many times it achieved relative solution

quality ρ = 100%. Detailed statistics are given for the relative performance in the following columns:

mean value, standard deviation, minimum, 5th and 10th percentile, and median. We use percentile

notation everywhere: P0 for the minimum, P5 and P10 for the 5th and 10th percentile, and P50 for the

median. In the final two columns, we give the running time in seconds. The algorithm marked with

a star (2/4/3∗) uses the randomized criterion for skipping edges in the improvement phase, whereas all

other variants of our algorithm use the path criterion as stated in Algorithm 4.11. In the following, we

distill the data from the tables into several observations and conclusions.

• The fact that the simple randomized DFS algorithm (denoted “DFS” in the tables) delivers clearly

inferior results in many cases is an indication that at least those instances are not “too easy”.

• Warnsdorf and Pohl-Warnsdorf are generally best, except for chain graphs. For many of the in-

stances, they find a Hamilton path, and then they are very fast, sometimes below one second.

Note that this advantage could easily be removed by making the graphs non-Hamiltonian, e.g.,

by connecting two additional vertices as leafs to the same vertex.

• Warnsdorf and Pohl-Warnsdorf are close to each other in terms of solution quality, but unsurpris-

ingly the former is faster.

• In terms of the average path length µ(`), for each set of parameters there is one algorithm that

delivers at least 0.84 · n, i.e., 84% of a Hamilton path. It follows that a good relative performance

also means a good absolute performance.

• Our strongest variant, 2/4/3, with the exception of preferential attachment graphs, always deliv-

ers a relative solution quality of at least 71%. For preferential attachment, we record a minimum

of 49% in Table 4.3. In terms of the 5th percentile, i.e., after removing the 5% worst cases, and

omitting preferential attachment graphs, our minimum relative solution quality is 83%. In terms

of the 10th percentile and including preferential attachment graphs, we still have at least 71%. In

4.14. DATA AND DISCUSSION 77

terms of mean and median, we have at least 83%.

• Regarding running time, we compare our variant 2/4/3 with Warnsdorf, which is the fastest

RAM algorithm, not counting the simple randomized DFS. Clearly, we cannot compete in cases

where Warnsdorf finds a Hamilton path within a second, but as remarked before, this advantage

of Warnsdorf could easily be removed by making the graph non-Hamiltonian. Apart from those

cases, in the sparse and dense sets, the biggest difference is for sparse hyperbolic graphs, where

Warnsdorf only needs about 56% of our running time on average. For dense chains, we are faster

than Warnsdorf. For the large set, our variant 2/4/1 has similar running times as Warnsdorf,

while delivering at least 71% in terms of P10, and when excluding preferential attachment graphs

it delivers 82% in terms of P5. More than one improvement pass here only gives incremental gain,

so in order to save time on large graphs, the variant 2/4/1 is recommended over 2/4/2 or 2/4/3.

• Using τ = 2 has a clear advantage over τ = 1, in particular compare 1/2/0 with 2/2/0 in terms of

` in Table 4.1 and Table 4.2.

• The degree-limiting technique yields substantial improvements. For q1 = 2 (i.e., for variants of the

form τ/2/q2), we use the sequence D = (2,∞), i.e., in the first pass we limit the degree to 2 and in

the second pass we have no limit. In the configuration with q1 = 4 we use D = (2,2,3,∞). Com-

paring for example 1/2/0 with 1/4/0 with respect to ` in Table 4.2 for preferential attachment

and hyperbolic graphs, we see that 1/2/0 delivers roughly 50− 60% length on average compared

to 1/4/0. Comparing 2/2/3 with 2/4/3 in particular with respect to P0, P5, and P10 for preferen-

tial attachment graphs in Table 4.1, we see that q1 = 4 brings an improvement even on top of the

improvement gained by using τ = 2 and by the improvement phase.

• The improvement phase (phase (2)) can bring further improvements, in particular with respect

to P0. This is seen for example by comparing 2/4/0 with 2/4/3 for preferential attachment and

hyperbolic graphs in Table 4.1.

• Comparing the runtimes of 2/2/3 and 2/4/3 over all tables, we find that consistently the former is

slower, while delivering inferior solutions. The same goes for 1/4/3 and 2/4/3; here the difference

in running time is very high for preferential attachment graphs. This shows that a lack of effort

in phase (1) can make phase (2) substantially slower. An explanation is that more improvement

steps have to be carried out.

• Comparing 2/4/3 with 2/4/3∗, we find the former being consistently better in terms of solution

quality, but requiring up to roughly 30% more time.

78 CHAPTER 4. A STREAMING ALGORITHM FOR THE LONGEST PATH PROBLEM

• Our biggest advantage (using 2/4/3) over the other algorithms is for chain graphs.

In particular, we conclude from those observations that none of the three features (namely using mul-

tiple trees, degree-limiting, and improvement) should be missed. The combination of all those features

makes our algorithm competitive.

4.15 Tables of Experimental Data

On the following pages please find tables of results for the experiments as discussed in section 4.14. By

µ we denote the mean value and by σ the standard deviation. By Pi we denote the i th percentile, in

particular P0 is the minimum and P50 is the median. By `we denote the path length and by ρ the relative

performance. Running times t (last two columns) are in seconds. For further explanations, please see

section 4.14.

4.15. TABLES OF EXPERIMENTAL DATA 79

Table 4.1: Sparse Set: n = 16 000 and d = 14

` ρ in % t

graph class algo µ σ wins µ σ P0 P5 P10 P50 µ σ

chain
k = 125
l = 128
p = 0,11
n = 16 000
m ≈ 127 044

1/2/0 3 032 645 0 20 4 11 12 13 21 26 2
1/2/3 13 435 606 0 89 4 79 80 82 91 185 34
1/4/0 3 947 222 0 26 1 22 24 24 26 23 0
1/4/3 14 150 55 0 94 1 93 93 93 94 141 4
2/2/0 10 985 1 336 0 73 9 17 58 64 75 46 4
2/2/3 14 522 373 7 96 2 91 92 93 97 129 18
2/4/0 11 683 617 0 77 4 63 68 73 78 48 4
2/4/3 15 062 122 93 100 0 98 100 100 100 103 3
2/4/3∗ 14 346 283 0 95 2 86 90 94 96 92 4
Pon 14 518 52 0 96 1 95 95 95 96 110 4
War 10 598 304 0 70 2 66 67 68 70 86 2
PW 10 539 306 0 70 2 65 67 68 70 131 3
DFS 9 255 165 0 61 1 59 60 60 61 38 1

pref. attach.
n0 = 7
d = 14
n = 16 000
m = 111 957

1/2/0 464 137 0 3 1 1 2 2 3 35 6
1/2/3 6 653 1 212 0 42 8 27 27 28 43 437 23
1/4/0 748 105 0 5 1 3 4 4 5 29 0
1/4/3 8 281 122 0 52 1 50 50 51 52 394 8
2/2/0 12 712 2 350 0 79 15 15 43 58 85 47 3
2/2/3 13 000 1 859 0 81 12 36 53 65 86 169 71
2/4/0 13 743 1 825 0 86 11 18 66 76 90 46 4
2/4/3 14 060 1 100 0 88 7 55 73 79 91 133 44
2/4/3∗ 13 817 1 265 0 86 8 51 69 75 90 104 3
Pon 13 565 28 0 85 0 84 84 85 85 113 4
War 16 000 0 100 100 0 100 100 100 100 0 0
PW 16 000 0 100 100 0 100 100 100 100 0 0
DFS 12 385 27 0 77 0 77 77 77 77 41 1

hyperbolic
d = 14
γ = 3
n = 16 000
m ≈ 128 185

1/2/0 586 185 0 4 1 1 2 2 4 33 22
1/2/3 9 791 826 0 61 5 49 50 54 62 337 38
1/4/0 968 144 0 6 1 4 5 5 6 25 0
1/4/3 10 987 145 0 69 1 67 67 67 69 290 8
2/2/0 12 822 1 808 0 80 11 37 47 62 84 46 4
2/2/3 14 099 1 013 0 88 6 67 71 77 90 130 41
2/4/0 13 732 941 0 86 6 56 72 78 88 46 5
2/4/3 14 646 509 0 92 3 77 84 86 93 108 19
2/4/3∗ 14 303 587 0 89 4 69 82 85 91 97 3
Pon 14 373 106 0 90 1 87 89 89 90 117 5
War 15 997 5 92 100 0 100 100 100 100 61 38
PW 15 998 4 94 100 0 100 100 100 100 83 52
DFS 12 908 22 0 81 0 80 80 81 81 40 1

80 CHAPTER 4. A STREAMING ALGORITHM FOR THE LONGEST PATH PROBLEM

Table 4.2: Dense Set: n = 16 000 and d = 3
p

n

` ρ in % t

graph class algo µ σ wins µ σ P0 P5 P10 P50 µ σ

chain
k = 125
l = 128
p = 0,21
n = 16 000
m ≈ 222 351

1/2/0 3 749 860 0 24 6 11 13 15 26 25 2
1/2/3 14 633 438 0 94 3 86 87 89 95 200 52
1/4/0 4 666 314 0 30 2 24 27 27 30 23 1
1/4/3 15 079 34 0 97 0 97 97 97 97 144 4
2/2/0 11 646 755 0 75 5 57 62 70 77 49 5
2/2/3 15 248 251 12 98 2 92 95 96 99 139 26
2/4/0 11 864 867 0 77 5 40 67 69 78 50 6
2/4/3 15 489 67 88 100 0 99 100 100 100 112 5
2/4/3∗ 14 715 135 0 95 1 91 93 94 95 99 5
Pon 15 034 39 0 97 0 96 96 97 97 165 10
War 10 420 313 0 67 2 63 64 65 67 126 5
PW 10 380 315 0 67 2 62 64 65 67 208 6
DFS 9 348 142 0 60 1 58 59 59 60 52 3

pref. attach.
n0 = 13
d = 26
n = 16 000
m = 207 843

1/2/0 639 176 0 4 1 2 2 2 4 32 5
1/2/3 8 783 1 238 0 55 8 34 39 43 56 721 67
1/4/0 1 037 151 0 6 1 4 5 5 6 27 1
1/4/3 10 576 113 0 66 1 64 65 65 66 604 16
2/2/0 14 248 1 587 0 89 10 26 72 83 92 50 3
2/2/3 14 534 969 0 91 6 59 80 85 93 182 80
2/4/0 14 878 720 0 93 5 65 84 91 94 51 4
2/4/3 15 102 422 0 94 3 80 88 93 95 139 33
2/4/3∗ 15 004 450 0 94 3 73 88 91 95 111 4
Pon 14 754 18 0 92 0 92 92 92 92 165 13
War 16 000 0 100 100 0 100 100 100 100 0 0
PW 16 000 0 100 100 0 100 100 100 100 0 0
DFS 13 923 14 0 87 0 87 87 87 87 55 4

hyperbolic
d = 26
γ = 3
n = 16 000
m ≈ 224 369

1/2/0 737 242 0 5 2 1 2 3 5 29 5
1/2/3 11 818 852 0 74 5 60 62 67 75 458 59
1/4/0 1 304 188 0 8 1 6 6 7 8 25 1
1/4/3 12 885 122 0 81 1 78 79 80 81 369 13
2/2/0 13 867 1 090 0 87 7 48 69 80 89 49 4
2/2/3 14 998 480 0 94 3 81 87 90 95 139 38
2/4/0 14 299 554 0 89 3 64 84 89 90 50 4
2/4/3 15 237 210 0 95 1 88 93 95 96 119 16
2/4/3∗ 14 727 423 0 92 3 77 87 89 93 101 4
Pon 14 971 77 0 94 0 91 93 93 94 169 10
War 16 000 0 100 100 0 100 100 100 100 0 0
PW 16 000 0 100 100 0 100 100 100 100 0 0
DFS 13 769 19 0 86 0 86 86 86 86 55 3

4.15. TABLES OF EXPERIMENTAL DATA 81

Table 4.3: Large Set: n = 100 000 and d = 10

` ρ in % t

graph class algo µ σ wins µ σ P0 P5 P10 P50 µ σ

chain
k = 1 000
l = 100
p = 0,01
n = 100 000
m ≈ 599 468

2/4/0 69 738 8 809 0 82 8 35 69 72 84 2 345 387
2/4/1 84 335 3 661 0 99 0 98 99 99 99 3 997 395
2/4/2 84 884 3 511 0 100 0 100 100 100 100 5 334 603
2/4/3 84 909 3 500 50 100 0 100 100 100 100 6 591 833
War 68 212 2 071 0 80 4 76 77 77 79 3 587 192

pref. attach.
n0 = 5
d = 10
n = 100 000
m = 499 979

2/4/0 80 190 8 064 0 82 8 49 58 71 86 2 612 778
2/4/1 80 380 7 681 0 82 8 51 59 71 86 4 385 1 308
2/4/2 80 510 7 459 0 82 8 53 60 71 86 5 974 1 957
2/4/3 80 606 7 322 0 83 7 54 60 71 86 7 465 2 660
War 97 685 52 50 100 0 100 100 100 100 4 110 588

hyperbolic
d = 10
γ = 3
n = 100 000
m ≈ 599 680

2/4/0 84 202 4 582 0 85 5 60 76 82 87 2 641 358
2/4/1 88 147 3 772 0 89 4 68 82 86 91 3 978 591
2/4/2 88 426 3 519 0 90 4 70 82 87 91 5 015 858
2/4/3 88 494 3 400 0 90 3 71 83 87 91 5 963 1 076
War 98 710 84 50 100 0 100 100 100 100 3 910 294

small world
d = 10
β= 0,3
n = 100 000
m = 500 000

2/4/0 86 928 4 924 0 89 5 68 80 83 91 2 441 401
2/4/1 90 810 4 038 0 93 4 76 86 89 95 3 457 531
2/4/2 91 171 3 758 0 94 4 78 86 89 95 4 275 837
2/4/3 91 253 3 590 0 94 4 79 87 89 95 5 072 1 148
War 97 212 44 50 100 0 100 100 100 100 3 357 223

82 CHAPTER 4. A STREAMING ALGORITHM FOR THE LONGEST PATH PROBLEM

Chapter 5

A Randomized Approximation for the

Set Multicover Problem in

Hypergraphs

5.1 Introduction

We consider the b -MULTICOVER problem in hypergraphs, where a hypergraphH = (V ,E) consisting

of a finite set V of vertices, a set of (hyper) edges E ⊆ 2V , and b ∈ N are given as input. The b -

MULTICOVER problem is the problem of finding a minimum cardinality set of edges C ⊆ E such that

each vertex v ∈V is covered by at least b edges. The special case b = 1 is the SETCOVER problem, which

is a classical combinatorial problem that is part of Karp’s 21N P -complete problems [Kar72]. Because

of the hardness of the special case, the more general version is also N P -hard and thus, we cannot

give an exact polynomial time algorithm unless P = N P . Instead, we present an approximation

algorithm based on an integer programming formulation of the problem, using both deterministic and

randomized rounding along with an additional repair step.

83

84 CHAPTER 5. A RANDOMIZED APPROXIMATION FOR SET MULTICOVER

Hypergraph Approximation ratio

— H (`) [Vaz13, pp. 112–116]
bounded ` H (`)− 1

6 [FK05]
— δ [HH86; PSW93]

—
�

1−
� c

n

�
1
δ

�

·δ for const. c > 0. [PSW97]

` ∈ O
�

max
n

(nb)
1
5 , n

1
4

o�

�

1− 11(∆−b)
72`

�

·δ [EMS16]

b ≥ 2 and δ ≥ 3 max
�

148
149δ,

�

1− (b−1)e
δ
4

94`

�

δ

�

[Gor+21]

b ≥ 2, δ ≥ 3, and ` ∈ O
�

n
1
2

�

max
�

19
24δ,

�

1− (b−1)e
δ+1

2

32`

�

δ

�

(this thesis)

Table 5.1: Fundamental results and approximations for SET MULTICOVER problem

5.2 Definitions and Preliminaries

LetH = (V ,E) be a hypergraph, V and E is the set of vertices and hyperedges, respectively. We denote

the number of vertices ofH by n := |V |. For every vertex v ∈V we define the vertex degree of v as

d (v) := |{E ∈ E | v ∈ E}| and Γ (v) := {E ∈ E | v ∈ E} the set of edges incident in v. The maximum

vertex degree is∆ :=maxv∈V d (v). Let ` denote the maximum cardinality of a hyperedge from E . It is

convenient to order the vertices and edges, i.e., V = {v1, . . . , vn} and E = {E1, . . . , Em}, and to identify

the vertices and edges by their indices.

Let us now give a formal definition of the multicover problem.

Problem 5.1 (SET MULTICOVER) Let H = (V , E) be a hypergraph and (b1, . . . , bn) ∈ Nn
≥2. We call

C ⊆E a set multicover if every vertex i ∈V is contained in at least bi hyperedges of C . SET MULTICOVER

is the problem of finding a set multicover with minimum cardinality.

For the concentration of a random variable around its mean we will use the famous bounded differences

inequality due to C. McDiardmid in the analysis of our algorithm:

Theorem 5.2 ([McD89]) Let X = (X1,X2, . . . ,Xn) be a family of independent random variables with Xk

taking values in a set Ak for each k. Suppose that the real-valued function f defined on A1×· · ·×An satisfies

| f (x)− f (x ′)| ≤ ck for every pair of vectors x and x ′ that differ only in the k-th coordinate. Then for any

t > 0,

Pr [f (X)≥E[f (X)]+ t]≤ exp

�

−2t 2

∑n
k=1 c2

k

�

.

5.3. THE RANDOMIZED ROUNDING ALGORITHM 85

5.3 The Randomized Rounding Algorithm

LetH = (V ,E) be a hypergraph with maximum vertex degree∆ and maximum edge size `. An integer

(linear) programming formulation of SET MULTICOVER problem is the following:

ILP(b) :

minimize
∑m

j=1 x j ,

subject to
∑m

j=1 ai j x j ≥ bi for all i ∈ [n],

x j ∈ {0,1} for all j ∈ [m],

where A= (ai j)i∈[n], j∈[m]
∈ {0,1}n×m is the vertex-edge incidence matrix ofH and b= (b1, b2, . . . , bn)

is the positive integer vector that was given as part of the input. We define b :=mini∈[n] bi and we set

δ := ∆− b + 1. The linear programming relaxation LP(b) of ILP(b) is given by allowing x j ∈ [0,1]

for all j ∈ [m]. Let Opt, resp. Opt∗ be the value of an optimal solution to ILP(b), resp. LP(b). Let

(x∗1 , . . . , x∗m) be the optimal solution for LP(b). So Opt∗ =
∑m

j=1 x∗j and Opt∗ ≤Opt.

Lemma 5.3 ([PSW93]) Let bi , d , ∆, n ∈ N with 2 ≤ bi ≤ d − 1 ≤ ∆− 1, i ∈ [n] and let x j ∈ [0,1],

j ∈ [d] such that
∑d

j=1 x j ≥ bi . Then, at least bi of the x j satisfy x j ≥
1
δ .

In the next lemma we show that the bi − 1 largest values of the LP solution are at least 2
δ+1 . This will

later ensure that the rounded LP solution delivers a feasible b − 1 set cover.

Lemma 5.4 As in the previous lemma, let bi , d , ∆, n ∈N with 2≤ bi ≤ d − 1≤∆− 1, i ∈ [n] and let

x j ∈ [0,1], j ∈ [d] such that
∑d

j=1 x j ≥ bi . Then, at least bi − 1 of the x j values satisfy x j ≥
2

δ+1 and there

exists one additional x j , which fulfills x j ≥
1
δ .

Proof. Without loss of generality, let x1 ≥ x2 · · · ≥ xbi
≥ · · · ≥ xd . We have

bi − 2≥
bi−2
∑

j=1

x j and (d − bi + 2)xbi−1 ≥
d
∑

j=bi−1

x j . (5.3.1)

Thus,

bi − 2+(∆− b + 2)xbi−1

b¶bi
≥ bi − 2+(∆− bi + 2)xbi−1

∆¾d
≥ bi − 2+(d − bi + 2)xbi−1

(5.3.1)
≥

bi−2
∑

j=1

x j +
d
∑

j=bi−1

x j

86 CHAPTER 5. A RANDOMIZED APPROXIMATION FOR SET MULTICOVER

=
d
∑

j=1

x j

≥ bi . (assumption of the lemma)

So

bi − 2+(∆− bi + 2)xbi−1 ≥ bi

⇔ (∆− bi + 2)xbi−1 ≥ 2

⇔ (δ + 1)xbi−1 ≥ 2 (definition of δ)

⇔ xbi−1 ≥
2

δ + 1
.

Recall that the indices are chosen in such a way that the values are descending. Thus, we have x j ≥

xbi−1 ≥
2

δ+1 for all j ∈ [bi − 1] and Lemma 5.3 gives xbi
≥ 1

δ .

In this section we present an algorithm using randomized rounding and afterwards repairing the solu-

tion to meet feasibility.

Algorithm 5.1: SET b -MULTICOVER
Input : HypergraphH = (V , E) with maximum degree∆ and maximum hyperedge size `.

Let bi ∈N≥2 for i ∈ [n] , b :=mini∈[n] bi , and δ =∆− b + 1.
Output: set MultiCover C

1 C ←;, λ← δ+1
2 , and α← (b−1)δe

δ+1
2

16`
2 Obtain an optimal solution x∗ ∈ [0,1]m by solving the LP(b) relaxation
3 C1←{E j ∈ E | x∗j ≥

1
λ }, C2←{E j ∈ E |

1
λ > x∗j ≥

1
δ }, and C3←{E j ∈ E | 0< x∗j <

1
λ }

4 C ←C1
5 if |C1| ≥ α ·Opt∗ then
6 return C ←C1 ∪C2
7 else
8 foreach E j ∈C3 do
9 add E j to C with probability λx∗j

10 Repair the cover C (if necessary) as follows: Include arbitrary edges from C3, incident in vertices
i ∈ [n] not covered by bi edges, to C until all vertices are fully covered.

11 return C

We now give a brief explanation of the algorithm SET b -MULTICOVER, (Algorithm 5.1). We start with

an empty set C, which will be extended to a feasible set multicover. First, we solve the LP-relaxation

LP(b), this can be done in polynomial time using polynomial-time LP solvers. Note that the execution

5.4. ANALYSIS OF THE ALGORITHM 87

time of the subsequent steps is dominated by the first one, therefore Algorithm 5.1 is polynomial. Let

α= (b−1)δe
δ+1

2

16` . The choice of the actual set cover depends on the following two cases.

If |C1| ≥ α ·Opt∗: We choose all edges of the two sets C1 and C2 as set cover C and terminate. Recall

that by Lemma 5.4, C =C1 ∪C2 is a feasible set multicover.

If |C1|<α ·Opt∗: We use LP-based randomized rounding, every edge of C3 is independently added to

the cover with probability δ+1
2 x∗j . In order to guarantee feasibility, we eventually proceed with a

step of repairing in which additional edges are added.

5.4 Analysis of the Algorithm

First, we consider the case |C1| ≥ α ·Opt∗.

Theorem 5.5 Let H be a hypergraph with maximum vertex degree ∆ and maximum edge size `. Let

α = (b−1)δe
δ+1

2

16` as defined in Algorithm 5.1. If |C1| ≥ α ·Opt∗, the algorithm achieves an approximation

factor of (1− (b−1)e
δ+1

2

32`)δ with respect to Opt∗.

Proof. With the definition of the sets C1 and C2, we have

δ ·Opt∗ =
m
∑

j=1

δx∗j ≥
∑

j ,E j∈C1

δx∗j +
∑

j ,E j∈C2

δx∗j

≥ δ
λ
|C1|+ |C2| (using the definion of C1,C2)

=
2δ
δ + 1

|C1|+ |C2| (since λ=
δ + 1

2
)

=
2δ
δ + 1

|C1|+(|C | − |C1|) (since C =C1 ∪C2)

=
δ − 1
δ + 1

|C1|+ |C |

δ¾3
≥ 1

2
|C1|+ |C |

≥ 1
2
α ·Opt∗+ |C |. (assumption of the theorem)

Hence, by the choice of α, we get

|C | ≤ δ ·Opt∗− α
2

Opt∗ =

1−
(b − 1)e

δ+1
2

32`

!

δ ·Opt∗.

88 CHAPTER 5. A RANDOMIZED APPROXIMATION FOR SET MULTICOVER

Next, we consider the case |C1|<α ·Opt∗.

Let X1, . . . ,Xm be {0,1}-random variables defined as follows:

X j =











1 if the edge E j was added to the cover before repairing

0 otherwise.

Note that the X1, . . . ,Xm are independent random variables for a given x∗ ∈ [0,1]m . For all i ∈ [n] we

define the {0,1}- random variables Yi as follows:

Yi =











1 if the vertex vi is fully covered before repairing

0 otherwise.

We denote by X :=
∑m

j=1 X j and Y :=
∑n

i=1 Yi the size of the cover and the number of vertices fully

covered before the step of repairing, respectively. At this step by Lemma 5.4, at most one more edge

for each vertex is needed to be fully covered. The cover denoted by C obtained by Algorithm 5.1 is

bounded by

|C | ≤X + n−Y. (5.4.2)

Our goal in the next lemma is to estimate the expectation of the random variable X and the expectation

and variance of the random variable Y for the proof of Theorem 5.7. This is a restriction of Lemma 4

in [EMS16] to the last case in Algorithm 5.1.

Lemma 5.6 Let ` and∆ be the maximum size of an edge, resp. the maximum vertex degree, not necessarily

constants. Let α > 0 and λ= δ+1
2 as in Algorithm 5.1. In case |C1|<α ·Opt∗, we have

(i) E[Y]≥ (1− e−λ)n.

(ii) E[X]≤ λOpt∗.

(iii) (b−1)n
α` <Opt∗.

(iv) E[|C |]≤
�

λ
δ +

1
16

�

δ ·Opt∗

Proof. (i) Let i ∈ [n]. If |C1 ∩ Γ (vi)| ≥ bi , then the vertex vi is fully covered and Pr[Yi = 0] = 0.

Otherwise, we get |C1 ∩ Γ (vi)|= bi − 1 and
∑

E j∈(Γ (vi)∩C3)
x∗j ≥ 1 by Lemma 5.4. Recall that each

E j ∈C3 is chosen indepentently with probability λx∗j . Therefore the event Yi , i.e., that the vertex

5.4. ANALYSIS OF THE ALGORITHM 89

vi is not fully covered is true if and only if none of the incident E j are added. We have

Pr[Yi = 0] =
∏

E j∈(Γ (vi)∩C3)

(1−λx∗j)

≤
∏

E j∈(Γ (vi)∩C3)

e−λx∗j (1+ x ¶ e x f.a. x ∈R with x =−λx∗j)

= e
−λ

∑

E j ∈(Γ (vi)∩C3)
x∗j

≤ e−λ. (using
∑

E j∈(Γ (vi)∩C3)
x∗j ≥ 1) (5.4.3)

Thus,

E[Y] =
n
∑

i=1

Pr[Yi = 1] =
n
∑

i=1

(1−Pr[Yi = 0])

(5.4.3)
≥

n
∑

i=1

(1− e−λ)

= (1− e−λ)n.

(ii) Using the LP relaxation and the definition of the sets C1 and C3, we have X j = 1 for all E j ∈ C1

and E[X j] = Pr[X j = 1] = λx∗j for all E j ∈C3. We get

E[X] =E





m
∑

j=1

X j



= |C1|+
∑

E j∈C3

λx∗j

≤
∑

E j∈C1

λx∗j +
∑

E j∈C3

λx∗j (using λx∗j ≥ 1 f.a. E j ∈C1)

≤ λ
∑

E j∈E
x∗j

= λ ·Opt∗.

(iii) Consider H̃ , the hypergraph induced by C1. In H̃ , we have

∑

i∈V

d (i) =
∑

E j∈C1

|E j |,

which holds for any hypergraph. Since the minimum vertex degree in H̃ is b − 1 (with b =

90 CHAPTER 5. A RANDOMIZED APPROXIMATION FOR SET MULTICOVER

mini∈[n] bi as defined earlier), we have

(b − 1)n ≤
∑

i∈V

d (i) =
∑

E∈C1

|E j | ≤ `|C1|.

Therefore
(b − 1)n

`
≤ |C1|.

With |C1|<α ·Opt∗, we obtain
(b − 1)n
α`

<Opt∗.

(iv) By (iii), we have n < α`
b−1 Opt∗. By plugging in the definition of α, we get ne−λ < δ

16 Opt∗. Now

we can bound the expectation of |C |:

E[|C |]
(5.4.2)
≤ E[X]+ n−E[Y]

(ii),(i)
≤ λOpt∗+ ne−λ

≤
�

λ

δ
+

1
16

�

δ ·Opt∗.

Theorem 5.7 LetH be a hypergraph with maximum vertex degree ∆ and maximum edge size ` where

`≤ (∆
3
2 eλ)

−1p
n. Let α= (b−1)δe

δ+1
2

16` as in Algorithm 5.1. In case |C1|<α ·Opt∗, the algorithm returns a

set multicover C with

|C |< 19
24
δ ·Opt

with probability at least 1− exp(−2)≈ 0.86 in polynomial time.

We will use Theorem 5.2 and the following lemma to estimate the cardinality of the cover at the end of

the algorithm.

Lemma 5.8 Let D = `∆. Then Pr
�

|C | ≥E[|C |]+D
p

m
�

≤ exp(−2).

Proof. For j ∈ [m], let X̂ j = 1 if and only if the edge E j is contained in the partial set b -multicover

after repairing. Consider the function f (X1, . . . ,Xm) :=
∑m

j=1 X̂ j . Then we have for any two vectors

x = (x1, . . . , xk , . . . , xm) and x ′ = (x1, . . . , x ′k , . . . , xm) that only differ in the k-th coordinate

| f (x1, . . . , xk , . . . , xm)− f (x1, . . . , x ′k , . . . , xm)| ≤ 1≤D

5.4. ANALYSIS OF THE ALGORITHM 91

for all k ∈ [m]. Thus, we can use the bounded differences inequality (Theorem 5.2) with ck := D for

all k ∈ [m] and t =D
p

m and have

Pr
�

|C | ≥E[|C |]+D
p

m
�

≤ exp

−2
�

D
p

m
�2

∑m
k=1 D2

!

= exp(−2). (5.4.4)

Proof of Theorem 5.7. First, we prove that D
p

m ≤ δ
16 Opt∗. For the hypergraphH , we have m ≤∆n.

By rearranging Lemma 5.6 (iii), we obtain n < α`
b−1 Opt∗, then we plug in the definition of α and get

n <
eλδ
16

Opt∗. (5.4.5)

Therefore

D
p

m
m¶∆n
≤ `∆

p
∆
p

n

=∆
3
2 `
p

n
Choice of `
≤ ∆

3
2

�

∆
3
2 eλ
�−1p

n
p

n

= e−λn
(5.4.5)
≤ δ

16
Opt∗. (5.4.6)

So we have

Pr
�

|C |>
�

λ

δ
+

1
8

�

δOpt∗
�

= Pr
�

|C |>
�

λ

δ
+

1
16

�

δOpt∗+
1
16
δ ·Opt∗

�

(iv),(5.4.6)
≤ Pr

�

|C |>E[|C |]+D
p

m
�

≤ exp(−2). (by (5.4.4))(5.4.7)

For δ ≥ 3, δ+1
2δ +

1
8 ≥

19
24 , so

Pr
�

|C | ≤ 19
24
δ ·Opt∗

�

δ¾3
≥ Pr

�

|C | ≤
�

δ + 1
2δ

+
1
8

�

δ ·Opt∗
�

= Pr
�

|C | ≤
�

λ

δ
+

1
8

�

δ ·Opt∗
�

(5.4.7)
≥ (1− exp(−2))≈ 0.86.

92 CHAPTER 5. A RANDOMIZED APPROXIMATION FOR SET MULTICOVER

Bibliography

[AYZ95] Noga Alon, Raphael Yuster, and Uri Zwick. “Color-Coding”. In: Journal of the ACM 42.4

(1995), pp. 844–856. DOI: 10.1145/210332.210337.

[BA99] Albert-László Barabási and Réka Albert. “Emergence of Scaling in Random Networks”.

In: Science 286.5439 (1999), pp. 509–512. DOI: 10.1126/science.286.5439.509.

[Bar01] Reuven Bar-Yehuda. “Using Homogeneous Weights for Approximating the Partial Cover

Problem”. In: Journal of Algorithms 39.2 (2001), pp. 137–144. DOI: 10.1006/jagm.2000.

1150.

[Bec08] József Beck. Combinatorial games: tic-tac-toe theory. Cambridge University Press, 2008.

[Bec81] József Beck. “Van der Waerden and Ramsey Type Games”. In: Combinatorica 1.2 (1981),

pp. 103–116. DOI: 10.1007/BF02579267.

[Bec82] József Beck. “Remarks on Positional Games. I”. In: Acta Mathematica Hungarica 40.1-2

(1982), pp. 65–71. DOI: 10.1007/BF01897304.

[Bec85] József Beck. “Random Graphs and Positional Games on the Complete Graph”. In: Random

Graphs ’83. Ed. by Michał Karoński and Andrzej Ruciński. Vol. 118. North-Holland Math-

ematics Studies. North-Holland, 1985, pp. 7–13. DOI: 10.1016/S0304-0208(08)73609-

0.

[BH03] Andreas Björklund and Thore Husfeldt. “Finding a Path of Superlogarithmic Length”.

In: SIAM Journal on Computing 32.6 (2003), pp. 1395–1402. DOI: 10 . 1137 /

S0097539702416761.

[BHK04] Andreas Björklund, Thore Husfeldt, and Sanjeev Khanna. “Approximating Longest Di-

rected Paths and Cycles”. In: Proceedings of the 31st International Colloquium on Automata,

Languages and Programming, Turku, Finland, July 2004 (ICALP 2004). 2004, pp. 222–233.

DOI: 10.1007/978-3-540-27836-8_21.

93

https://doi.org/10.1145/210332.210337
https://doi.org/10.1126/science.286.5439.509
https://doi.org/10.1006/jagm.2000.1150
https://doi.org/10.1006/jagm.2000.1150
https://doi.org/10.1007/BF02579267
https://doi.org/10.1007/BF01897304
https://doi.org/10.1016/S0304-0208(08)73609-0
https://doi.org/10.1016/S0304-0208(08)73609-0
https://doi.org/10.1137/S0097539702416761
https://doi.org/10.1137/S0097539702416761
https://doi.org/10.1007/978-3-540-27836-8_21

94 BIBLIOGRAPHY

[Bjö+10] Andreas Björklund et al. Narrow Sieves for Parameterized Paths and Packings. 2010. arXiv:

1007.1161.

[Bjö14] Andreas Björklund. “Determinant Sums for Undirected Hamiltonicity”. In: SIAM Journal

on Computing 43.1 (2014). Conference version at FOCS 2010., pp. 280–299. DOI: 10.

1137/110839229.

[BKS02] Ziv Bar-Yossef, Ravi Kumar, and D. Sivakumar. “Reductions in Streaming Algorithms,

with an Application to Counting Triangles in Graphs”. In: Proceedings of the 13th An-

nual ACM-SIAM Symposium on Discrete Algorithms, San Francisco, CA, USA, January 2002

(SODA 2002). 2002, pp. 623–632. DOI: 10.5555/545381.545464.

[BŁ00] Małgorzata Bednarska and Tomasz Łuczak. “Biased Positional Games for which Random

Strategies are Nearly Optimal”. In: Combinatorica 20.4 (2000), pp. 477–488. DOI: 10.

1007/s004930070002.

[Bod93] Hans L. Bodlaender. “On Linear Time Minor Tests with Depth-First Search”. In: Journal

of Algorithms 14 (1993). Conference version at WADS 1989., pp. 1–23. DOI: 10.1006/

jagm.1993.1001.

[Bol84] Béla Bollobás. “The evolution of sparse graphs”. In: Graph theory and combinatorics (1984),

pp. 35–57.

[BS11] József Balogh and Wojciech Samotij. “On the Chvátal-Erdős Triangle Game”. In: Electronic

Journal of Combinatorics 18.1 (2011), P72. DOI: 10.37236/559.

[BST99] Cristina Bazgan, Miklos Santha, and Zsolt Tuza. “On the Approximation of Finding A(no-

ther) Hamiltonian Cycle in Cubic Hamiltonian Graphs”. In: Journal of Algorithms 31.1

(1999). Conference version at STACS 1998., pp. 249–268. DOI: 10.1006/jagm.1998.

0998.

[Bul+02] R.W. Bulterman et al. “On Computing a Longest Path in a Tree”. In: Information Processing

Letters 81.2 (2002), pp. 93–96. DOI: 10.1016/S0020-0190(01)00198-3.

[CE78] Václav Chvátal and Paul Erdős. “Biased Positional Games”. In: Algorithmic Aspects of Com-

binatorics. Elsevier, 1978, pp. 221–229. DOI: 10.1016/s0167-5060(08)70335-2.

[Che+07] Jianer Chen et al. “Improved Algorithms for Path, Matching, and Packing Problems”.

In: Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms.

SODA ’07. New Orleans, Louisiana: Society for Industrial and Applied Mathematics,

2007, pp. 298–307. DOI: 10.5555/1283383.1283415.

https://arxiv.org/abs/1007.1161
https://doi.org/10.1137/110839229
https://doi.org/10.1137/110839229
https://doi.org/10.5555/545381.545464
https://doi.org/10.1007/s004930070002
https://doi.org/10.1007/s004930070002
https://doi.org/10.1006/jagm.1993.1001
https://doi.org/10.1006/jagm.1993.1001
https://doi.org/10.37236/559
https://doi.org/10.1006/jagm.1998.0998
https://doi.org/10.1006/jagm.1998.0998
https://doi.org/10.1016/S0020-0190(01)00198-3
https://doi.org/10.1016/s0167-5060(08)70335-2
https://doi.org/10.5555/1283383.1283415

BIBLIOGRAPHY 95

[Con+94] Axel Conrad et al. “Solution of the Knight’s Hamiltonian Path Problem on Chess-

boards”. In: Discrete Applied Mathematics 50.2 (1994), pp. 125–134. URL: http://www.

sciencedirect.com/science/article/pii/0166218X9200170Q.

[CT16] Dennis Clemens and Tuan Tran. “Creating Cycles in Walker-Breaker Games”. In: Discrete

Mathematics 339.8 (2016), pp. 2113–2126. DOI: 10.1016/j.disc.2016.03.007.

[DF13] Rod Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity. Springer

Publishing Company, Incorporated, 2013. DOI: 10.1007/978-1-4471-5559-1.

[EMS16] Mourad El Ouali, Peter Munstermann, and Anand Srivastav. “Randomized Approxi-

mation for the Set Multicover Problem in Hypergraphs”. In: Algorithmica 74.2 (2016),

pp. 574–588. DOI: 10.1007/s00453-014-9962-9.

[ES73] Paul Erdős and John L. Selfridge. “On a Combinatorial Game”. In: Journal of Combinato-

rial Theory, Series A 14.3 (1973), pp. 298–301. DOI: 10.1016/0097-3165(73)90005-8.

[Esp+14] Lisa Espig et al. Walker-Breaker Games. 2014. arXiv: 1401.5538.

[Fei+05] Joan Feigenbaum et al. “On Graph Problems in a Semi-Streaming Model”. In: Theoretical

Computer Science 348 (2005). Conference version at ICALP 2004., pp. 207–216. DOI: 10.

1016/j.tcs.2005.09.013.

[Fei+08] Joan Feigenbaum et al. “Graph Distances in the Data-Stream Model”. In: SIAM Journal on

Computing 38 (2008), pp. 1709–1727. DOI: 10.1137/070683155.

[FK05] Toshihiro Fujito and Hidekazu Kurahashi. “A Better-Than-Greedy Algorithm for k-

Set Multicover”. In: International Workshop on Approximation and Online Algorithms.

Springer. 2005, pp. 176–189. DOI: 10.1007/11671411_14.

[FMS02] Tomás Feder, Rajeev Motwani, and Carlos Subi. “Approximating the Longest Cycle Prob-

lem in Sparse Graphs”. In: SIAM Journal on Computing 31.5 (2002), pp. 1596–1607. DOI:

10.1137/S0097539701395486.

[Gab07] Harold N. Gabow. “Finding Paths and Cycles of Superpolylogarithmic Length”. In: SIAM

Journal on Computing 36.6 (2007), pp. 1648–1671. DOI: 10.1137/S0097539704445366.

[Gla19] Christian Glazik. “Positional and Detection Games”. PhD thesis. Christian-Albrechts-

Universität zu Kiel, 2019. URL: https://macau.uni-kiel.de/receive/macau_mods_

00000127.

[GN08] Harold N. Gabow and Shuxin Nie. “Finding Long Paths, Cycles and Circuits”. In: Pro-

ceedings of the 19th International Symposium on Algorithms and Computation, Gold Coast,

Australia, December 2008 (ISAAC 2008). 2008, pp. 752–753. DOI: 10.1007/978-3-540-

92182-0_66.

http://www.sciencedirect.com/science/article/pii/0166218X9200170Q
http://www.sciencedirect.com/science/article/pii/0166218X9200170Q
https://doi.org/10.1016/j.disc.2016.03.007
https://doi.org/10.1007/978-1-4471-5559-1
https://doi.org/10.1007/s00453-014-9962-9
https://doi.org/10.1016/0097-3165(73)90005-8
https://arxiv.org/abs/1401.5538
https://doi.org/10.1016/j.tcs.2005.09.013
https://doi.org/10.1016/j.tcs.2005.09.013
https://doi.org/10.1137/070683155
https://doi.org/10.1007/11671411_14
https://doi.org/10.1137/S0097539701395486
https://doi.org/10.1137/S0097539704445366
https://macau.uni-kiel.de/receive/macau_mods_00000127
https://macau.uni-kiel.de/receive/macau_mods_00000127
https://doi.org/10.1007/978-3-540-92182-0_66
https://doi.org/10.1007/978-3-540-92182-0_66

96 BIBLIOGRAPHY

[GO14] Venkatesan Guruswami and Krzysztof Onak. “Superlinear Lower Bounds for Multipass

Graph Processing”. In: Electronic Colloquium on Computational Complexity (2014). Con-

ference version at CCC 2013. DOI: 10.1109/CCC.2013.37.

[Gor+21] Abbass Gorgi et al. “Approximation Algorithm for the Multicovering Problem”. In: Jour-

nal of Combinatorial Optimization (2021), pp. 1–18. DOI: 10.1007/s10878-020-00688-

9.

[GS18] Christian Glazik and Anand Srivastav. A new Bound for the Maker-Breaker Triangle Game.

2018. arXiv: 1812.01382 [math.CO].

[Hef+09] Dan Hefetz et al. “A Sharp Threshold for the Hamilton Cycle Maker-Breaker Game”. In:

Random Structures & Algorithms 34 (Jan. 2009), pp. 112–122. DOI: 10.1002/rsa.20252.

[Hef+14] Dan Hefetz et al. Positional Games. Birkhäuser Basel, 2014. DOI: 10.1007/978-3-0348-

0825-5.

[HH86] Nicholas G Hall and Dorit S Hochbaum. “A Fast Approximation Algorithm for the Mul-

ticovering Problem”. In: Discrete Applied Mathematics 15.1 (1986), pp. 35–40. DOI: 10.

1016/0166-218X(86)90016-8.

[Kar72] Richard M. Karp. “Reducibility among Combinatorial Problems”. English. In: Complexity

of Computer Computations. Ed. by Raymond E. Miller, James W. Thatcher, and Jean D.

Bohlinger. The IBM Research Symposia Series. Springer US, 1972, pp. 85–103. DOI: 10.

1007/978-1-4684-2001-2_9.

[KBA12] Fatemeh Keshavarz-Kohjerdia, Alireza Bagherib, and Asghar Asgharian-Sardroudb. “A

linear-time algorithm for the Longest Path Problem in Rectangular Grid Graphs”. In: Dis-

crete Applied Mathematics 160.3 (2012), pp. 210–217. DOI: 10.1016/j.dam.2011.08.010.

[KMR97] David Karger, Rajeev Motwani, and G.D.S. Ramkumar. “On Approximating the Longest

Path in a Graph”. In: Algorithmica 18 (1997), pp. 82–98. DOI: 10.1007/BF02523689.

[Kou08] Ioannis Koutis. “Faster Algebraic Algorithms for Path and Packing Problems”. In: Pro-

ceedings of the 35th International Colloquium on Automata, Languages and Programming,

Reykjavik, Iceland, July 2008 (ICALP 2008). 2008, pp. 575–586. DOI: 10.1007/978-3-

540-70575-8_47.

[Kri+10] Dmitri Krioukov et al. “Hyperbolic Geometry of Complex Networks”. In: Physical Re-

view E 82 (2010). DOI: 10.1103/PhysRevE.82.036106.

[Kri14] Michael Krivelevich. “Positional Games”. In: Proceedings of the International Congress of

Mathematicians (ICM 2014) 4 (2014), pp. 355–379. URL: https://www.mathunion.org/

fileadmin/ICM/Proceedings/ICM2014.4/ICM2014.4.pdf.

https://doi.org/10.1109/CCC.2013.37
https://doi.org/10.1007/s10878-020-00688-9
https://doi.org/10.1007/s10878-020-00688-9
https://arxiv.org/abs/1812.01382
https://doi.org/10.1002/rsa.20252
https://doi.org/10.1007/978-3-0348-0825-5
https://doi.org/10.1007/978-3-0348-0825-5
https://doi.org/10.1016/0166-218X(86)90016-8
https://doi.org/10.1016/0166-218X(86)90016-8
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1016/j.dam.2011.08.010
https://doi.org/10.1007/BF02523689
https://doi.org/10.1007/978-3-540-70575-8_47
https://doi.org/10.1007/978-3-540-70575-8_47
https://doi.org/10.1103/PhysRevE.82.036106
https://www.mathunion.org/fileadmin/ICM/Proceedings/ICM2014.4/ICM2014.4.pdf
https://www.mathunion.org/fileadmin/ICM/Proceedings/ICM2014.4/ICM2014.4.pdf

BIBLIOGRAPHY 97

[KSS16] Lasse Kliemann, Christian Schielke, and Anand Srivastav. “A Streaming Algorithm for the

Undirected Longest Path Problem”. In: 24th Annual European Symposium on Algorithms

(ESA 2016). 2016, 56:1–56:17. DOI: 10.4230/LIPIcs.ESA.2016.56.

[Kus+17] Christopher Kusch et al. “Random Strategies are Nearly Optimal for Generalized van der

Waerden Games”. In: Electronic Notes in Discrete Mathematics 61 (2017), pp. 789–795. DOI:

10.1016/j.endm.2017.07.037.

[Kus+19] Christopher Kusch et al. “On the Optimality of the Uniform Random Strategy”. In: Ran-

dom Structures & Algorithms 55.2 (2019), pp. 371–401. DOI: 10.1002/rsa.20829.

[Loo+15] Moritz von Looz et al. Fast generation of complex networks with underlying hyperbolic ge-

ometry. 2015. arXiv: 1501.03545.

[Mar+12] Minko Markov et al. “A Linear Time Algorithm for Computing Longest Paths in Cactus

Graphs”. In: Serdica Journal of Computing 6.3 (2012). URL: http://serdica- comp.

math.bas.bg/index.php/serdicajcomputing/article/view/158.

[McD89] Colin McDiarmid. “On the Method of Bounded Differences”. In: Surveys in combinatorics

141.1 (1989), pp. 148–188. DOI: 10.1017/CBO9781107359949.008.

[Mon85] Burkhard Monien. “How to Find Long Paths Efficiently”. In: Annals of Discrete Mathe-

matics 25 (1985), pp. 239–254. URL: https://digital.ub.uni-paderborn.de/hs/

content/titleinfo/42079.

[MS14] Tobias Müller and Miloš Stojaković. “A Threshold for the Maker-Breaker Clique Game”.

In: Random Structures & Algorithms 45.2 (2014), pp. 318–341. DOI: 10.1002/rsa.20489.

[Mut05] Muthu Muthukrishnan. “Data Streams: Algorithms and Applications”. In: Foundations

and Trends in Theoretical Computer Science 1.2 (2005), 67 pages. Preliminary version avail-

able since 2003.

[Poh67] Ira Pohl. “A Method for Finding Hamilton Paths and Knight’s Tours”. In: Communications

of the ACM 10.7 (1967), pp. 446–449. DOI: 10.1145/363427.363463.

[Pon12] Lajos L. Pongrácz. A Greedy Approximation Algorithm for the Longest Path Problem in Undi-

rected Graphs. 2012. arXiv: 1209.2503v2.

[PS04] Ira Pohl and Larry Stockmeyer. “Pohl-Warnsdorf — Revisited”. In: Proceedings of the In-

ternational Conference on Intelligent Systems and Control, Honolulu, Hawaii, USA, August

2004 (ISC 2004). 2004. URL: https://users.soe.ucsc.edu/~pohl/Papers/Pohl_

Stockmeyer_full.pdf.

https://doi.org/10.4230/LIPIcs.ESA.2016.56
https://doi.org/10.1016/j.endm.2017.07.037
https://doi.org/10.1002/rsa.20829
https://arxiv.org/abs/1501.03545
http://serdica-comp.math.bas.bg/index.php/serdicajcomputing/article/view/158
http://serdica-comp.math.bas.bg/index.php/serdicajcomputing/article/view/158
https://doi.org/10.1017/CBO9781107359949.008
https://digital.ub.uni-paderborn.de/hs/content/titleinfo/42079
https://digital.ub.uni-paderborn.de/hs/content/titleinfo/42079
https://doi.org/10.1002/rsa.20489
https://doi.org/10.1145/363427.363463
https://arxiv.org/abs/1209.2503v2
https://users.soe.ucsc.edu/~pohl/Papers/Pohl_Stockmeyer_full.pdf
https://users.soe.ucsc.edu/~pohl/Papers/Pohl_Stockmeyer_full.pdf

98 BIBLIOGRAPHY

[PSW93] David Peleg, Gideon Schechtman, and Avishai Wool. “Approximating Bounded 0-1 Integer

Linear Programs”. In: The 2nd Israel Symposium on Theory and Computing Systems. IEEE

Computer Society. 1993, pp. 69–70. DOI: 10.1109/ISTCS.1993.253482.

[PSW97] David Peleg, Gideon Schechtman, and Avishai Wool. “Randomized Approximation of

Bounded Multicovering Problems”. In: Algorithmica 18.1 (1997), pp. 44–66. DOI: 10.

1007/BF02523687.

[Sch15] Christian Schielke. “An Experimental Study of RAM and Streaming Algorithms for the

Longest Path Problem”. MA thesis. Kiel University, 2015.

[Sch99] John K. Scholvin. “Approximating the Longest Path Problem with Heuristics: A Survey”.

MA thesis. University of Illinois at Chicago, 1999.

[SS05] Miloš Stojaković and Tibor Szabó. “Positional Games on Random Graphs”. In: Random

Structures & Algorithms 26.1–2 (2005), pp. 204–223. DOI: 10.1002/rsa.20059.

[SS90] Jeanette P. Schmidt and Alan Siegel. “The Spatial Complexity of Oblivious k-probe Hash

Functions”. In: SIAM J. Comput. 19.5 (1990), pp. 775–786. DOI: 10.1137/0219054.

[ST19] Miloš Stojaković and Nikola Trkulja. “Hamiltonian Maker–Breaker Games on Small

Graphs”. In: Experimental Mathematics (2019), pp. 1–10. DOI: 10.1080/10586458.2019.

1586599.

[SW11] Robert Sedgewick and Kevin Wayne. Algorithms. Addison-Wesley Professional, 2011.

ISBN: 9780321573513.

[UU07] Ryuhei Uehara and Yushi Uno. “On Computing Longest Paths in Small Graph Classes”.

In: International Journal of Foundations of Computer Science 18.5 (2007). DOI: 10.1142/

S0129054107005054.

[Vaz13] Vijay V. Vazirani. Approximation Algorithms. Springer Science & Business Media, 2013.

DOI: 10.1007/978-3-662-04565-7.

[Vis04] Sundar Vishwanathan. “An Approximation Algorithm for Finding Long Paths in Hamil-

tonian Graphs”. In: Journal of Algorithms 50.2 (2004). Conference version at SODA 2000.,

pp. 246–256. DOI: 10.1016/S0196-6774(03)00093-2.

[Wil09] Ryan Williams. “Finding Paths of Length k in O∗(2k) Time”. In: Information Processing

Letters 109 (2009), pp. 315–318. DOI: 10.1016/j.ipl.2008.11.004.

[WS98] Duncan J. Watts and Steven H. Strogatz. “Collective Dynamics of ‘Small-World’ Net-

works”. In: Nature 393 (1998), pp. 440–442. DOI: 10.1038/30918.

https://doi.org/10.1109/ISTCS.1993.253482
https://doi.org/10.1007/BF02523687
https://doi.org/10.1007/BF02523687
https://doi.org/10.1002/rsa.20059
https://doi.org/10.1137/0219054
https://doi.org/10.1080/10586458.2019.1586599
https://doi.org/10.1080/10586458.2019.1586599
https://doi.org/10.1142/S0129054107005054
https://doi.org/10.1142/S0129054107005054
https://doi.org/10.1007/978-3-662-04565-7
https://doi.org/10.1016/S0196-6774(03)00093-2
https://doi.org/10.1016/j.ipl.2008.11.004
https://doi.org/10.1038/30918

Erklärung

Hiermit erkläre ich,

• dass die Abhandlung – abgesehen von der Beratung durch den Betreuer – nach Inhalt und Form

die eigene Arbeit ist,

• dass die Arbeit weder ganz noch zum Teil schon einer anderen Stelle im Rahmen eines Prüfungs-

verfahrens vorgelegen hat, veröffentlicht worden ist oder zur Veröffentlichung eingereicht wurde,

• dass die Arbeit unter Einhaltung der Regeln guter wissenschaftlicher Praxis der Deutschen For-

schungsgemeinschaft entstanden ist,

• dass mir kein akademischer Grad entzogen wurde.

99

	Introduction
	The Triangle-Game in Uniform Hypergraphs
	Path Games
	A Streaming Algorithm for the Longest Path Problem
	A Randomized Approximation for the Set Multicover Problem in Hypergraphs

	The Triangle-Game in Uniform Hypergraphs
	Positional Games
	Previous and Related Work
	Upper and Lower Bounds for the Threshold Bias of the Kn3-Triangle Game
	A New Breaker Strategy for the Kn3-Triangle Game
	Breaker's Strategy
	Controlling Critical Rounds
	Bounding the Increase in the Overall Potential
	Proof of the Main Result

	Extension to k-Uniform Hypergraphs

	Path Games
	Path-Maker-Breaker and Walker-Breaker Games
	The P3-Game
	Potential Function Based Approach
	Counting Argument

	A Streaming Algorithm for the Longest Path Problem
	Notation, Hardness, and Polynomial Algorithms for Special Graph Classes
	Color Coding
	Randomized Algorithm
	Derandomization

	Gabow and Nie's Algorithm
	Björklund and Husfeldt's Algorithm
	The Algorithm
	Approximation Ratio

	Pongrácz's Algorithm
	Pohl-Warnsdorf's Algorithm
	Warnsdorf's Rule
	Pohl's Extension

	Streaming Algorithms and the Semi-Streaming Model
	Previous and Related Work
	Previous Algorithms
	Description of Our Streaming Algorithm
	Properties of Our Streaming Algorithm
	Test Instances
	Experimental Setup
	Data and Discussion
	Tables of Experimental Data

	A Randomized Approximation for the Set Multicover Problem in Hypergraphs
	Introduction
	Definitions and Preliminaries
	The Randomized Rounding Algorithm
	Analysis of the Algorithm

