
A Streaming Algorithm for the Undirected
Longest Path Problem∗

Lasse Kliemann1, Christian Schielke2, and Anand Srivastav3

1 Kiel University, Faculty of Engineering, Department of Computer Science,
Kiel, Germany
lki@informatik.uni-kiel.de

2 Kiel University, Faculty of Engineering, Department of Computer Science,
Kiel, Germany
csch@informatik.uni-kiel.de

3 Kiel University, Faculty of Engineering, Department of Computer Science,
Kiel, Germany
asr@informatik.uni-kiel.de

Abstract
We present the first streaming algorithm for the longest path problem in undirected graphs. The
input graph is given as a stream of edges and RAM is limited to only a linear number of edges at
a time (linear in the number of vertices n). We prove a per-edge processing time of O(n), where
a naive solution would have required Ω(n2). Moreover, we give a concrete linear upper bound on
the number of bits of RAM that are required.

On a set of graphs with various structure, we experimentally compare our algorithm with
three leading RAM algorithms: Warnsdorf (1823), Pohl-Warnsdorf (1967), and Pongrácz (2012).
Although conducting only a small constant number of passes over the input, our algorithm
delivers competitive results: with the exception of preferential attachment graphs, we deliver at
least 71% of the solution of the best RAM algorithm. The same minimum relative performance
of 71% is observed over all graph classes after removing the 10% worst cases. This comparison
has strong meaning, since for each instance class there is one algorithm that on average delivers
at least 84% of a Hamilton path. In some cases we deliver even better results than any of the
RAM algorithms.

1998 ACM Subject Classification G.2.2 [Graph Theory] Graph Algorithms

Keywords and phrases Streaming Algorithms, Undirected Longest Path Problem, Graph Al-
gorithms, Combinatorial Optimization

Digital Object Identifier 10.4230/LIPIcs.ESA.2016.56

1 Introduction

Let G = (V,E) be an undirected, simple, and finite graph (all our graphs are of this type).
A path of length k in G is a sequence of k distinct vertices (v1, . . . , vk) such that vivi+1 ∈ E
for each 1 ≤ i < k. (We write uv or vu for the undirected edge {u, v} between vertices
u and v.) In the longest path problem (LPP), we ask for a path in G that has maximum
length among all the paths in G. This problem is NP-hard as seen easily by a reduction from
the Hamilton cycle problem. A long line of research has investigated its approximability,

∗ Supported by German Research Foundation (DFG), Grant SR7/15-1 Algorithmic Foundations for
Genome Assembly.

© Lasse Kliemann, Christian Schielke, and Anand Srivastav;
licensed under Creative Commons License CC-BY

24th Annual European Symposium on Algorithms (ESA 2016).
Editors: Piotr Sankowski and Christos Zaroliagis; Article No. 56; pp. 56:1–56:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62922302?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.ESA.2016.56
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

56:2 A Streaming Algorithm for the Undirected Longest Path Problem

and several polynomial-time heuristics and algorithms with proven worst-case guarantee
are known. With increasing size of the input graph, not only the time complexity of an
algorithm becomes important but also its space complexity. For large graphs G, e. g., graphs
that occur in genome assembly, it is not realistic anymore to assume that G can be fully
stored in (fast) random-access memory (RAM). Instead we should assume that it can only be
accessed efficiently in a sequential manner. The graph streaming model formalizes this. Here,
the graph is given as a sequence e1, . . . , em of its edges, and access is only provided in the
form of passes: a pass means each edge in the sequence is presented to the algorithm once.
RAM is restricted to O(n · poly log(n)) bits, so essentially we can store a number of edges
linear in the number n of vertices. Besides the solution quality, the most important property
of a streaming algorithm is the number of passes that it has to conduct in order to obtain a
good solution. To be practical, this number should be a small constant. This model does not
only make sense when the input is stored on a disk or remote server, but also in the context
of memory hierarchies, where cache RAM is several magnitudes faster than main RAM.

The standard graph search techniques breadth-first search (BFS) and depth-first search
(DFS) cannot be done in the streaming model within a constant number of passes [13].
However, all relevant existing algorithms for the LPP use some form of graph search and/or
require super-linear data structures (as in the dynamic programming part for color coding [1]).
We therefore take a different approach that will never have to do a graph search on a graph
with more than a linear number of edges and moreover does not require more than a linear
amount of RAM for additional data structures.

1.1 Our Contribution
We give a streaming algorithm for the longest path problem in undirected graphs with a
proven per-edge processing time of O(n). Our algorithm works in two phases, which we
outline here briefly and explain in detail in Section 3. In the first phase, global information
on the graph is gathered in form of a constant number of spanning trees1 T1, . . . , Tτ . This is
possible in the streaming model since roughly speaking, for a spanning tree we can ‘take edges
as they come’. A spanning tree can be constructed in just one pass – we however use multiple
passes and limit the maximum degree during the first passes in order to favor path-like
structures and avoid clusters of edges. Experiments clearly indicate that this degree-limiting
is essential for solution quality. The spanning trees fit into RAM, since we consider τ as
constant (we will in fact have τ = 1 or τ = 2 in the experiments). After construction of the
τ trees, they are merged into one graph U by taking the union of their edges. Then we use
standard algorithms to determine a long path P in U , isolate P , and finally add enough
edges around P to obtain a tree T .

Then, in the second phase, we conduct further passes during which we test if the exchange
of single edges of T can improve the longest path in it. (A longest path in a tree can be found
by conducting DFS two times [10]; the length of a longest path in a tree is its diameter.) The
main challenge in the second phase is to quickly determine which edges should be exchanged.
We show that this decision can be made in linear time, hence yielding a per-edge processing
time of O(n).

An experimental study is conducted on randomly generated instances with different struc-
ture, including ones created with the recently published generator for hyperbolic geometric

1 For simplicity, we always assume that our input graphs are connected, but it would be easy to adapt
our algorithm to the general case.

L. Kliemann, C. Schielke, and A. Srivastav 56:3

random graphs [30]. Different variants of our streaming algorithm are compared with four
RAM algorithms: Warnsdorf and Pohl-Warnsdorf (two related classical heuristics [24, 25]),
Pongrácz (a recently published heuristic [26]), and a simple randomized DFS. Experiments
show that although we never do more than 11 passes, results delivered by our algorithm
are competitive. We deliver at least 71% of the best result delivered by any of the tested
RAM algorithms, with the exception of preferential attachment graphs. By considering low
percentiles, we observe a similar quality without any restriction on the graph class. This
is a good result also in absolute terms, since we observe that for each graph class and set
of parameters, there is one algorithm that on average gives a path of length 0.84 · n, i. e.,
84% of a Hamilton path. On some graph classes, we outperform any of the tested RAM
algorithms, which makes our algorithm interesting even outside of the streaming setting. A
detailed discussion of results is given in Section 7.

1.2 Previous and Related Work
Algorithms for the LPP have been studied extensively in the RAM model. We start listing
algorithms with proven guarantees. Bodlaender [9] and Monien [22] gave algorithms that
find a path of length k (if it exists) in O(2kk!n) and O(k!nm) time, respectively. Alon
et al. [1] introduced the method of color coding and based on that gave an algorithm running
in expected time 2O(k)n. There is a recent randomized algorithm by Björklund et al. [7] that
given k, finds a path of length k (if it exists) in O(1.66k · polyn) time (see also [19, 32, 5]).
Those works show that the problem is fixed-parameter tractable: a path of length k can be
found (if it exists) in polynomial time, for fixed k. The particular dependence of the running
time on k (factorial or exponential) determines up to which k we stay polynomial and thus
determines the length guarantee for a polynomial-time approximation algorithm.

In Hamiltonian graphs, a path of length Ω
((log(n)

log log(n)
)2) can be found with the algorithm

by Vishwanathan [29]; and Feder et al. gave further results for sparse Hamiltonian graphs [11].
Björklund and Husfeldt [6] gave an algorithm that finds a path of length Ω

((log(opt))2

log log(opt)
)
,

where opt is the length of a longest path. It works by a decomposition of the graph into
paths and cycles. Their technique subsequently was extended by Gabow [14] and Gabow
and Nie [15] yielding guarantees for the length of the path of exp

(
Ω
(√ log(opt)

log log(opt)
))

and
exp(Ω(

√
log(opt))), respectively. Apart from that, the field is dominated by heuristics, such

as (Pohl-)Warnsdorf [24, 25] and Pongrácz [26].
The Björklund-Husfeldt algorithm uses color coding as an important subroutine. We

implemented and tested a simple algorithm based on color coding, which gave inferior
results and more importantly took very long time to complete, substantially longer than
(Pohl-)Warnsdorf, Pongrácz, or our algorithm. Details will be given in the full version. Thus
we refrained from further implementing the Björklund-Husfeldt algorithm. (The original
description in [6] uses Bodlaender’s algorithm [9], which has an even higher running time
than color coding.) The Gabow-Nie algorithm [15] does not use color coding, but at the time
of writing was only available as a short conference version, making it difficult to implement.

Several non-approximability results have been shown by Karger et al. [17]: a constant-
factor approximation is NP-hard; and for any ε > 0, the LPP cannot be approximated with
a ratio of 2O(log1−ε(n)), unless NP ⊆ DTIME(2O(log1/ε(n))), that is, such an approximation is
quasi-NP-hard. Bazgan et al. showed that the same holds even when restricting to cubic
Hamiltonian graphs [4].

The LPP is also interesting in directed graphs. For any ε > 0, it is NP-hard to approximate
in directed graphs within n1−ε [8]. The best approximation guarantee in the directed case

ESA 2016

56:4 A Streaming Algorithm for the Undirected Longest Path Problem

(unless restricting to special classes of graphs) is still the color coding algorithm that also
works in the undirected case [1]. For special graph classes, there exist exact polynomial-
time algorithms, e. g., for (undirected) trees (given by Dijkstra around 1960, see [10] for
a proof), for directed acyclic graphs [27, pp. 661-666], for grid graphs [18], and for cactus
graphs [28, 21].

The study of graph problems in streaming models started around the beginning of the
21st century, see [2, 12] for early works. The idea of using a linear amount of memory is
due to Muthukrishnan [23]. Up to then, the ‘streaming’ term was associated with sub-linear
memory, which is not enough for many graph problems [12]. To emphasize the difference,
the streaming model with linear RAM (that we use) is also referred to as the semi-streaming
model in the literature.

Since then, many kinds of graph problems have been addressed, such as shortest paths,
spanning trees, connectivity, cuts, matching, and vertex cover. Several lower bounds are
known. Most importantly for us, Feigenbaum et al. [13] proved that any BFS algorithm
computing the first k layers with probability at least 2/3, requires more than k/2 passes if
staying within O(n · poly log(n)) memory (see Guruswami and Onak [16] for improved lower
bounds). This constitutes a substantial hurdle when transferring existing algorithms into
the streaming model. To the best of our knowledge, longest paths have not been addressed
before in a streaming model.

It must be emphasized that streaming techniques also make sense when the graph is of
size c ·n · log(n) if a streaming algorithm can guarantee to stay within c′ ·n · log(n) for c′ < c.
Therefore, we give a memory guarantee for our algorithm using concrete constants.

1.3 Ongoing and Future Work
A major practical motivation for this work is the genome assembly problem. There, a
graph is built based on the output of a sequencing machine, and long paths in this graph
correspond to large sub-sequences of the genome. However, there the graphs are usually
directed. Therefore, our next step will be the extension of our algorithm to directed graphs
and the integration of it into existing genome assembly software.

In a separate line of research, we will try to give a streaming algorithm for the LPP
(undirected or directed) with a proven worst-case guarantee on the length of the path
and number of passes. At this time, it is unclear if any of the established theoretical
techniques, such as color coding and Björklund-Husfeldt-type decompositions, are feasible in
the streaming model.

Outline. We briefly describe three known RAM algorithms in Section 2. In Section 3, all
the details of our algorithm are explained. In Section 4 we analyze its theoretical properties.
The experimental studies takes place in Section 5 to Section 8.

2 Previous Algorithms

Trees. An algorithm for longest paths in trees was presented by Dijkstra around 1960; a
proof of correctness can be found in [10]. It consists of two invocations of DFS, the first
starting at an arbitrarily chosen vertex (e. g., chosen uniformly at random), and the second
starting at a vertex that is in the final layer constructed by the first DFS.

Warnsdorf and Pohl-Warnsdorf. Warnsdorf’s rule was originally presented in 1823 and is
a DFS that always picks a neighbor with a minimum number of unvisited neighbors. In case

L. Kliemann, C. Schielke, and A. Srivastav 56:5

there are multiple such neighbors to choose from, Pohl gave a refinement [24, 25]: we restrict
to those neighbors which themselves have a minimum-degree neighbor. Each vertex is used
once as the starting point of the DFS, and the best path found is returned. This gives a
total runtime of O(nm).

Pongrácz. This algorithm was announced in 2012 [26] and to the best of our knowledge
has not been thoroughly studied since. We give a technically slightly modified description
here. Given a start vertex r, using BFS we compute for each vertex v its distance to r. Then,
starting at a randomly chosen v, we conduct a DFS that always picks an unvisited neighbor
with maximum distance to r. Each vertex is used once as the start r, and the longest path
found is returned. In the original version, for each r, also each v is tried (and not just one
chosen randomly). In order to stay within O(nm), we decided to enumerate only one of the
two possibilities: either r or v. In preliminary experiments, we found the choice given here
(enumerate all r, pick one v randomly) to be superior. We leave a thorough study of the
different variants of Pongrácz’s algorithm for future work.

3 Description of Our Streaming Algorithm

Our algorithm works in two phases: (1) spanning tree construction, (2) spanning tree
diameter improvement. Phase (1) is characterized by a parameter τ ∈ N and a sequence
D = (D1, . . . , Dq1) of degree limits, where q1 ≥ 2 and Dq1 =∞. For each i ∈ [τ] = {1, . . . , τ},
a tree Ti is constructed. We start with the empty graph Ti = (V, ∅) and then add edges to Ti
over a number of q1 passes. In each pass p ∈ [q1], we add an edge to Ti iff that does not create
any cycle and it does not increase the maximum degree in Ti beyond Dp. Since Dq1 =∞,
we arrive at a spanning tree eventually (recall that we assume all our input graphs to be
connected). The motivation for the degree limit is to favor path-like structures over clusters
of edges. As an extreme example, consider a complete graph. Without degree restriction, it
is possible that a spanning tree is constructed that is a star; whereas with a degree restriction
of 2, we find a Hamilton path during the first pass.

In order to not just create the same tree τ times, in the first pass, we pick a number
r ∈ [m] uniformly at random (where e1, . . . , em is the stream of edges) and ignore any edges
with an index smaller than r. Due to this offset for the first pass, it makes sense (but is not
necessary) to use the same degree limit for the second pass. We will test D = (2,∞) and
D = (2, 2, 3,∞) in experiments. By standard techniques (keeping track of the connected
components), this algorithm can be implemented with a per-edge processing time of O(n):
we can decide in O(1) if the current edge is to be inserted and if so, it takes O(n) to update
connectivity information.

When all trees T1, . . . , Tτ have been constructed, we unite them into a graph U :=
(V, ⋃τi=1 E(Ti)). This graph will in general contain cycles, but it has no more than τn edges.
Since we construct U from trees, it is guaranteed to be connected and to span all the vertices
of the input graph. In U , a long path P is constructed with a RAM algorithm; we use the
Warnsdorf algorithm for this task. The final step of the first phase is to isolate P and then
to build a spanning tree T around it using the same technique as for the trees T1, . . . , Tτ .
Since we may assume that the constructions of T1, . . . , Tτ are fed from the same passes, we
thus have 2q1 passes for the first phase. We summarize phase (1) in Algorithm 1, which uses
procedure SpanningTree, also given below. For a set X, we write x :=unif X to express that
x is drawn uniformly at random from X.

When phase (1) is concluded, we determine a longest path P in the spanning tree T
using the Dijkstra algorithm (Section 2). In phase (2), we try to modify this tree in order

ESA 2016

56:6 A Streaming Algorithm for the Undirected Longest Path Problem

Algorithm 1: Streaming Phase (1): Spanning Tree Construction
Input: connected graph G = (V,E) as a stream of edges, parameter τ ,

degree limit sequence D = (D1, . . . , Dq1)
Output: spanning tree of G

1 foreach i = 1, . . . , τ do
2 Ti := (V, ∅);
3 SpanningTree (Ti);
4 U := (V, ⋃τi=1 E(Ti));
5 find a long path P in U using Warnsdorf’s algorithm;
6 T := (V,E(P));
7 SpanningTree (T);
8 return T ;

Procedure SpanningTree(T)
Input: forest T on V , possibly empty
Output: spanning tree on V

1 r :=unif [m];
2 fast-forward the stream to position r;
3 for p = 1, . . . , q1 do
4 while not at the end of the stream do
5 get next edge vw from the stream;
6 if T + vw is cycle-free and max {degT (v),degT (w)} < Dp then T := T + vw;
7 if |T | = n− 1 then break;
8 rewind the stream to its beginning;

that it admits longer paths than P . A number of additional passes is conducted. In order to
save time, we developed a criterion based on which we only consider a fraction of the edges
during those passes. We explored the two options: (i) consider each edge independently
with probability n

m+1 (resulting in only O(n) edges being considered); or (ii) skip an edge if
both endpoints are on the so-far longest path P . After preliminary experiments, we decided
for option (ii) due to better solution quality at a moderate runtime expense. A detailed
comparison of (i) and (ii) is planned for the full version of this work; in our tables in Section 8,
however we already give results for one variant of our algorithm using option (i).

For each edge e that is considered and that is not in T , we temporarily add e to T ,
creating a fundamental cycle C in T ′ := T + e. We want to go back to a tree. To this end,
we have to remove an edge from C. This edge is chosen so that among all possibilities, the
resulting tree has maximum diameter.

It should not be assumed that an edge with both endpoints on P could not yield an
improvement. Intuitively, relative to P it acts like a shortcut, but examples can be found
where adding such an edge (and subsequently removing one edge from the fundamental cycle)
improves the diameter of the tree. Still, criterion (ii) has shown to be effective in practice.

Phase (2) terminates after a preset number of passes q2. We summarize phase (2) in
Algorithm 2, where for any graph H, we denote `(H) the length of a longest path in H.

L. Kliemann, C. Schielke, and A. Srivastav 56:7

Algorithm 2: Streaming Phase (2): Improvement
Input: connected graph G as a stream of edges, spanning tree T , pass limit q2
Output: a (long) path in G

1 compute longest path P in T with Dijkstra algorithm;
2 for q2 times do
3 rewind the stream to its beginning;
4 while not at the end of the stream do
5 get next edge e = vw from stream;
6 if v ∈ V (P) and w ∈ V (P) then discard and continue with next iteration;
7 T ′ := T + e;
8 compute fundamental cycle C in T ′;
9 `∗ := maxf∈E(C)\{e} `(T ′ − f);

10 if `∗ > |P | then
11 pick any e′ from the set {f ∈ E(C) \ {e} ; `(T ′ − f) = `∗};
12 T := T ′ − e′;
13 update P with longest path in T ;

14 return P ;

4 Properties of Our Streaming Algorithm

If the cycle C is of length Ω(n), then a naive implementation requires Ω(n2) to find an edge
e′ to remove (temporarily remove each edge on the cycle and invoke the Dijkstra algorithm).
However, we have:

I Theorem 1. Phase (2) can be implemented with per-edge processing time O(n).

Proof. An O(n) bound is clear for all lines of Algorithm 2, except line 9 and line 11. Denote

`′ := max
f∈E(C)\{e}

max {|P | ; P is path in T ′ − f and e ∈ E(P)}

and let R′ ⊆ E(C) \ {e} be the set of edges where this maximum is attained. Then the
following implications hold: `′ ≤ |P | =⇒ `∗ ≤ |P | and `′ > |P | =⇒ `′ = `∗. This is
because if a longest path in T ′ − f is supposed to be longer than P , it must use e (since
otherwise it would be a path in T). Hence it suffices to determine `′, and if `′ > |P |, to find
an element of R′.

Denote C = (v1, . . . , vk) the fundamental cycle for some k ∈ N written so that e = v1vk.
When computing `′, we can restrict to paths in T ′ of the form

(. . . , vs, vs−1, . . . , v1, vk, vk−1, . . . , vt, . . .) (1)

for 1 ≤ s < t ≤ k, where vs is the first and vt is the last common vertex, respectively, of the
path and C. For each i, let Ti be the connected component of vi in T −E(C), i. e., Ti is the
part of T that is reachable from vi without using the edges of C. Denote `(Ti) the length of
a longest path in Ti that starts at vi and denote ci := `(Ti) + i− 1 and ai := `(Ti) + k − i.
Then a longest path entering C at vs and leaving it at vt, as in (1), has length exactly cs +at.
Hence we have to determine a pair (s, t) such that cs + at is maximum (this maximum value
is `′); we call such a pair an optimal pair. If the so determined value `′ is not greater than |P |,
then nothing further has to be done (the edge e cannot give an improvement). Otherwise,

ESA 2016

56:8 A Streaming Algorithm for the Undirected Longest Path Problem

having constructed our optimal pair (s, t), we pick an arbitrary edge (e. g., uniformly at
random) from {vivi+1 ; s ≤ i < t}, which are the edges between vs and vt on C. We show
that the following algorithm computes the value `′ and an optimal pair in O(n).

1 compute c1, . . . , ck−1 and a2, . . . , ak using DFS;
2 M := 0; L := 0;
3 for i = 1, . . . , k − 1 do
4 if ci > M then
5 M := ci;
6 s := i;
7 if M + ai+1 > L then
8 L := M + ai+1;
9 t := i+ 1;

10 return (s, t);

The total of computations in line 1 can be done by DFS in O(n), and the loop in O(k) ≤ O(n).
We prove that the final (s, t) is optimal. For fixed t, the best possible length cs + ct is
obtained if t is combined with an s < t where cs ≥ cj for all j < t. In the algorithm, for each
t (when t = i+ 1 in the loop) we combine at with the maximum maxj<t cj (stored in the
variable M). Thus, when the algorithm terminates, L = `′ and cs + ct = `′. J

I Corollary 2. Our streaming algorithm (with the two phases as in Algorithm 1 and Al-
gorithm 2) can be implemented with a per-edge processing time of O(n).

We turn to the memory requirement. Denote b the amount of RAM required to store one
vertex or one pointer (e. g., b = 32 bit or b = 64 bit) and call n · b one unit.

I Theorem 3. Our streaming algorithm (with the two phases as in Algorithm 1 and Al-
gorithm 2) conducts at most 2q1 + q2 passes. Moreover, the algorithm can be implemented
such that the RAM requirement is at most (max {4τ, 2τ + 4} · n+ c) · b with a constant c.

Proof. The construction of each of the initial trees T1, . . . , Tτ can be fed from the same
passes, so we obtain those τ trees within at most q1 passes. After isolating the path P , we
need at most q1 more passes to get back to a spanning tree. A bound of q2 for phase (2) is
obvious. We turn to the memory requirement.

Phase (1). All the adjacency lists of one tree together require 2 units, plus 1 unit for an
array of pointers to each of the lists. We need 1 additional unit per tree to store connectivity
information during tree construction. This amounts to 4τ units for the main data structures
at any time so far, plus a few extra bits required for bookkeeping (loop variables, etc) that
are covered by the constant c. The graph U can be stored in 2τ + 1 units (adjacency lists
plus pointer array). For the Warnsdorf algorithm, we need 1 unit to store DFS information
(e. g., store the DFS tree as a predecessor relation) and 1 unit for the best path so far. To
determine the next vertex to visit (according to Warnsdorf’s rule), we need ∆b ≤ nb bits,
where ∆ is the maximum degree in the graph. This amounts to 2τ + 4 units for the main
data structures for the Warnsdorf algorithm on U . The rest of phase (1) is clearly covered
by this as well.

L. Kliemann, C. Schielke, and A. Srivastav 56:9

Phase (2). We need 3 units to store the tree, 1 unit to store the longest path so far, 1 unit
for the fundamental cycle, and 1 unit for DFS. This amounts to 6 units during this phase
plus bookkeeping, which is covered by the stated bound. J

I Remark. On a graph with average degree d, the Warnsdorf, Pohl-Warnsdorf, and Pongrácz
algorithms each requires at least (d+ 3) · nb bits of memory.

Proof. Since those algorithms perform special variants of DFS (and Pongrácz also BFS), we
cannot restrict them to sequential access and thus we have to load the instance into RAM as
adjacency lists.2 Hence, d+ 1 units are required to store the graph. Two more units must be
allotted to store DFS information and the longest path found so far, in the case of Pongrácz
need one more unit for the distance information. J

I Corollary 4. Not counting the additive constant c from Theorem 3, the RAM algorithms
require d+3

max {4τ, 2τ+4} times more RAM than our streaming algorithm, on a graph with average
degree d. For τ = 2, this ratio is d+3

8 .

5 Test Instances

Connected Random. We denote this model by G∗(n, p). A graph is constructed by starting
with a random tree on n vertices (via a randomly chosen Prüfer sequence) and then adding
further edges as in G(n, p). The average degree in such a graph is slightly larger than np due
to the n− 1 initial tree edges.

Chains. Parameters for a chain graph are n, p, and k, with n being a multiple of k. We
create k graphs G1, . . . , Gk, the clusters, according to G∗(n, p), each on n/k vertices. Then we
insert an edge viwi with randomly chosen vi ∈ V (Gi) and wi ∈ V (Gi+1) for each 1 ≤ i < k,
making sure that wi 6= vi+1. Such graphs pose a particular challenge to DFS-based LPP
algorithms, since if the DFS visits the connecting point to the next cluster (wi or vi) too
early, it will eventually miss out on a large number of vertices in the current cluster.

Preferential Attachment and Small World. Preferential attachment graphs are created as
per the Barabási-Albert model [3]: parameters are n, n0, d ∈ N, where n is total the number
of vertices, n0 is the size of the initial tree, and in each step the new vertex is connected by
d new edges. This model guarantees connectedness. Small world graphs are created as per
the Watts-Strogatz model [31], with a small modification. Parameters are n, d ∈ N, with d
even, and 0 ≤ β ≤ 1. We start with a ring lattice where each vertex is connected to each d/2
vertices on either side, then each edge vw with v and w not being next to each other on the
ring is replaced with a random edge vu with probability β (the rewiring probability). Our
modification (not to rewire certain edges) guarantees that the result is Hamiltonian (and in
particular connected).

These two models were chosen since they yield very different degree distributions: for
preferential attachment, we have a power-law and there exist a few hubs, i. e., vertices with
high degree. In the small world model on the other hand, vertices tend to have similar degree.

2 This is unless we invoke external-memory techniques, which is unexplored for the LPP at this time.

ESA 2016

56:10 A Streaming Algorithm for the Undirected Longest Path Problem

Hyperbolic Geometric. Hyperbolic geometric graphs are a very interesting new class of
graphs, for which efficient generators were recently given by von Looz, Staudt, Meyerhenke,
and Prutkin [30]. They are constructed in hyperbolic space of constant negative curvature.
Vertices correspond to points that are randomly inserted into this space, and an edge between
two vertices is inserted if the corresponding points are within a certain distance from each
other. This model has been shown to exhibit many features of complex real-world networks.
We refer to [20, 30] for details. Parameters are number of vertices n, average degree d, and
the exponent γ of the power-law degree distribution. We use the generator implementation
from [30]. Connectedness is ensured by initializing the graph with a random tree.

6 Experimental Setup

Each algorithm was implemented in C++14. Each graph stream is realized as a std::vector
of pairs of 32 bit integers. We keep those vectors in RAM for the sake of faster running
times and hence more experiments conducted – but it is guaranteed that we access those
vectors only sequentially and all other data structures are O(n). Our implementation also
allows to process graphs stored in a file on disk, without copying the contents of the file
into RAM (it is accessed via a std::ifstream). Using the Valgrind tool Massif,3 we verified
that RAM consumption of our algorithm is indeed independent of the number of edges.
For each instance, the stream of edges is randomized once and the order does not change
between passes or between the invocations of the algorithms. Each implementation concludes
immediately when a Hamilton path is found.

For each random graph model under consideration, we test three settings: n = 16,000
and nominal average degree d = 14 (sparse); n = 16,000 and nominal average degree d = 3

√
n

(dense); and n = 100,000 and nominal average degree d = 10 (large). (Note that chain and
hyperbolic graphs will have a slightly larger average degree than the given d due to the
additional tree that is used to guarantee connectedness.) The dense graphs have Ω(n4/3)
edges and are thus beyond the theoretical RAM capacity of the semi-streaming model. More
on the practical side, note that by Corollary 4 (not counting the small additive constant),
even for average degree d = 14, the RAM algorithms require more than two times more
memory than ours when configured with τ ≤ 2. Due to lack of space we skip the details for
sparse and dense small world graphs, and we only use a selection of algorithms for the large
graphs. The study of larger and more instances is deferred to the full version, due to time
constraints.

We run Warnsdorf, Pohl-Warnsdorf, Pongrácz, the simple randomized DFS, and different
variants of our algorithm on 100 randomly generated instances for each parameter set (only
50 instances for large graphs in order to save time) and record the length of the path that
is found and the running time. Variants of our algorithm are denoted in the form τ/q1/q2,
where τ is the number of trees in the beginning, q1 is the maximum number of passes used
to construct a spanning tree using degree limiting, and q2 is the number of improvement
passes. In order to save time, for fixed τ and q1, we obtain results for τ/q1/0 up to τ/q1/q2
by running τ/q1/q2 and recording intermediate results.

Solution quality is analyzed in terms of relative solution quality. For an instance I and
algorithm A, denote `(A, I) the length of the path delivered by A on I. Then we define
ρ(A, I) := `(A,I)

maxA′ `(A′,I) ∈ [0, 1], where A′ runs over all algorithms under investigation. That

3 http://valgrind.org/docs/manual/ms-manual.html

http://valgrind.org/docs/manual/ms-manual.html

L. Kliemann, C. Schielke, and A. Srivastav 56:11

is the result of A divided by the best result on any of the algorithms. Clearly, one algorithm
per instance will always have relative solution quality 100%.

7 Data and Discussion

Tables with detailed experimental data can be found in section 8. The column labeled ‘`’
gives statistics (mean value µ and standard deviation σ) for the lengths of the paths found
and is intended as a general orientation in which range our solutions are located. The column
labeled ‘wins’ counts how many times this algorithm delivered the best solution, i. e., how
many times it achieved relative solution quality ρ = 100%. Detailed statistics are given for
the relative performance in the following columns: mean value, standard deviation, minimum,
5th and 10th percentile, and median. We use percentile notation everywhere: P0 for the
minimum, P5 and P10 for the 5th and 10th percentile, and P50 for the median. In the final
two columns, we give the running time in seconds. The algorithm marked with a star (2/4/3∗)
uses the randomized criterion for skipping edges in the improvement phase, whereas all other
variants of our algorithm use the path criterion as stated in Algorithm 2. In the following,
we distill the data from the tables into several observations and conclusions.

The fact that the simple randomized DFS algorithm (denoted ‘DFS’ in the tables) delivers
clearly inferior results in many cases is an indication that at least those instances are not
‘too easy’.
Warnsdorf and Pohl-Warnsdorf are generally the best, except for chain graphs. For many
of the instances, they find a Hamilton path, and then they are very fast, sometimes below
one second. Note that this advantage could easily be removed by making the graphs
non-Hamiltonian, e. g., by connecting two additional vertices as leafs to the same vertex.
Warnsdorf and Pohl-Warnsdorf are close to each other in terms of solution quality, but
unsurprisingly the former is faster.
In terms of the average path length µ(`), for each set of parameters there is one algorithm
that delivers at least 0.84 ·n, i. e., 84% of a Hamilton path. It follows that a good relative
performance also means a good absolute performance.
Our strongest variant, 2/4/3, with the exception of preferential attachment graphs, always
delivers a relative solution quality of at least 71%. For preferential attachment, we record
a minimum of 49% in Table 3. In terms of the 5th percentile, i. e., after removing the 5%
worst cases, and omitting preferential attachment graphs, our minimum relative solution
quality is 83%. In terms of the 10th percentile and including preferential attachment
graphs, we still have at least 71%. In terms of mean and median, we have at least 83%.
Regarding running time, we compare our variant 2/4/3 with Warnsdorf, which is the
fastest RAM algorithm, not counting the simple randomized DFS. Clearly, we cannot
compete in cases where Warnsdorf finds a Hamilton path within a second, but as remarked
before, this advantage of Warnsdorf could easily be removed by making the graph non-
Hamiltonian. Apart from those cases, in the sparse and dense sets, the biggest difference
is for sparse hyperbolic graphs, where Warnsdorf only needs about 56% of our running
time on average. For dense chains, we are faster than Warnsdorf. For the large set, our
variant 2/4/1 has similar running times as Warnsdorf, while delivering at least 71% in
terms of P10, and when excluding preferential attachment graphs it delivers 82% in terms
of P5. More than one improvement pass here only gives incremental gain, so in order to
save time on large graphs, the variant 2/4/1 is recommended over 2/4/2 or 2/4/3.
Using τ = 2 has a clear advantage over τ = 1, in particular compare 1/2/0 with 2/2/0 in
terms of ` in Table 1 and Table 2.

ESA 2016

56:12 A Streaming Algorithm for the Undirected Longest Path Problem

The degree-limiting technique yields substantial improvements. For q1 = 2 (i. e., for
variants of the form τ/2/q2), we use the sequence D = (2,∞), i. e., in the first pass we
limit the degree to 2 and in the second pass we have no limit. In the configuration with
q1 = 4 we use D = (2, 2, 3,∞). Comparing for example 1/2/0 with 1/4/0 with respect to
` in Table 2 for preferential attachment and hyperbolic graphs, we see that 1/2/0 delivers
roughly 50− 60% length on average compared to 1/4/0. Comparing 2/2/3 with 2/4/3 in
particular with respect to P0, P5, and P10 for preferential attachment graphs in Table 1,
we see that q1 = 4 brings an improvement even on top of the improvement gained by
using τ = 2 and by the improvement phase.
The improvement phase (phase (2)) can bring further improvements, in particular with
respect to P0. This is seen for example by comparing 2/4/0 with 2/4/3 for preferential
attachment and hyperbolic graphs in Table 1.
Comparing the runtimes of 2/2/3 and 2/4/3 over all tables, we find that consistently
the former is slower, while delivering inferior solutions. The same goes for 1/4/3 and
2/4/3; here the difference in running time is very high for preferential attachment graphs.
This shows that a lack of effort in phase (1) can make phase (2) substantially slower. An
explanation is that more improvement steps have to be carried out.
Comparing 2/4/3 with 2/4/3∗, we find the former being consistently better in terms of
solution quality, but requiring up to roughly 30% more time.
Our biggest advantage (using 2/4/3) over the other algorithms is for chain graphs.

In particular, we conclude from those observations that none of the three features (namely
using multiple trees in the beginning, degree-limiting, and improvement) should be missed.
The combination of all those features makes our algorithm competitive.

8 Tables of Experimental Data

On the following pages please find tables of results for the experiments as discussed in
Section 7. By µ we denote the mean value and by σ the standard deviation. By Pi we denote
the ith percentile, in particular P0 is the minimum and P50 is the median. By ` we denote
the path length and by ρ the relative performance. Running times t (last two columns) are
in seconds. For further explanations, please see Section 7.

Acknowledgments. We thank the German Research Foundation (DFG) for financial support
through Grant SR7/15-1 Algorithmic Foundations for Genome Assembly within Priority
Programme 1736 Algorithms for Big Data. We thank Ole Kliemann for substantially
improving our C++ implementation and helpful discussions.

L. Kliemann, C. Schielke, and A. Srivastav 56:13

Table 1 Sparse Set: n = 16,000 and d = 14.

` ρ in % t

graph class algo µ σ wins µ σ P0 P5 P10 P50 µ σ

chain
k = 125
l = 128
p = 0.11
n = 16,000
|E| ≈ 127,044

1/2/0 3,032 645 0 20 4 11 12 13 21 26 2
1/2/3 13,435 606 0 89 4 79 80 82 91 185 34
1/4/0 3,947 222 0 26 1 22 24 24 26 23 0
1/4/3 14,150 55 0 94 1 93 93 93 94 141 4
2/2/0 10,985 1,336 0 73 9 17 58 64 75 46 4
2/2/3 14,522 373 7 96 2 91 92 93 97 129 18
2/4/0 11,683 617 0 77 4 63 68 73 78 48 4
2/4/3 15,062 122 93 100 0 98 100 100 100 103 3
2/4/3∗ 14,346 283 0 95 2 86 90 94 96 92 4
Pon 14,518 52 0 96 1 95 95 95 96 110 4
War 10,598 304 0 70 2 66 67 68 70 86 2
PW 10,539 306 0 70 2 65 67 68 70 131 3
DFS 9,255 165 0 61 1 59 60 60 61 38 1

pref. attach.
n0 = 7
d = 14
n = 16,000
|E| = 111,957

1/2/0 464 137 0 3 1 1 2 2 3 35 6
1/2/3 6,653 1,212 0 42 8 27 27 28 43 437 23
1/4/0 748 105 0 5 1 3 4 4 5 29 0
1/4/3 8,281 122 0 52 1 50 50 51 52 394 8
2/2/0 12,712 2,350 0 79 15 15 43 58 85 47 3
2/2/3 13,000 1,859 0 81 12 36 53 65 86 169 71
2/4/0 13,743 1,825 0 86 11 18 66 76 90 46 4
2/4/3 14,060 1,100 0 88 7 55 73 79 91 133 44
2/4/3∗ 13,817 1,265 0 86 8 51 69 75 90 104 3
Pon 13,565 28 0 85 0 84 84 85 85 113 4
War 16,000 0 100 100 0 100 100 100 100 0 0
PW 16,000 0 100 100 0 100 100 100 100 0 0
DFS 12,385 27 0 77 0 77 77 77 77 41 1

hyperbolic
d = 14
γ = 3
n = 16,000
|E| ≈ 128,185

1/2/0 586 185 0 4 1 1 2 2 4 33 22
1/2/3 9,791 826 0 61 5 49 50 54 62 337 38
1/4/0 968 144 0 6 1 4 5 5 6 25 0
1/4/3 10,987 145 0 69 1 67 67 67 69 290 8
2/2/0 12,822 1,808 0 80 11 37 47 62 84 46 4
2/2/3 14,099 1,013 0 88 6 67 71 77 90 130 41
2/4/0 13,732 941 0 86 6 56 72 78 88 46 5
2/4/3 14,646 509 0 92 3 77 84 86 93 108 19
2/4/3∗ 14,303 587 0 89 4 69 82 85 91 97 3
Pon 14,373 106 0 90 1 87 89 89 90 117 5
War 15,997 5 92 100 0 100 100 100 100 61 38
PW 15,998 4 94 100 0 100 100 100 100 83 52
DFS 12,908 22 0 81 0 80 80 81 81 40 1

ESA 2016

56:14 A Streaming Algorithm for the Undirected Longest Path Problem

Table 2 Dense Set: n = 16,000 and d = 3√n.

` ρ in % t

graph class algo µ σ wins µ σ P0 P5 P10 P50 µ σ

chain
k = 125
l = 128
p = 0.21
n = 16,000
|E| ≈ 222,351

1/2/0 3,749 860 0 24 6 11 13 15 26 25 2
1/2/3 14,633 438 0 94 3 86 87 89 95 200 52
1/4/0 4,666 314 0 30 2 24 27 27 30 23 1
1/4/3 15,079 34 0 97 0 97 97 97 97 144 4
2/2/0 11,646 755 0 75 5 57 62 70 77 49 5
2/2/3 15,248 251 12 98 2 92 95 96 99 139 26
2/4/0 11,864 867 0 77 5 40 67 69 78 50 6
2/4/3 15,489 67 88 100 0 99 100 100 100 112 5
2/4/3∗ 14,715 135 0 95 1 91 93 94 95 99 5
Pon 15,034 39 0 97 0 96 96 97 97 165 10
War 10,420 313 0 67 2 63 64 65 67 126 5
PW 10,380 315 0 67 2 62 64 65 67 208 6
DFS 9,348 142 0 60 1 58 59 59 60 52 3

pref. attach.
n0 = 13
d = 26
n = 16,000
|E| = 207,843

1/2/0 639 176 0 4 1 2 2 2 4 32 5
1/2/3 8,783 1,238 0 55 8 34 39 43 56 721 67
1/4/0 1,037 151 0 6 1 4 5 5 6 27 1
1/4/3 10,576 113 0 66 1 64 65 65 66 604 16
2/2/0 14,248 1,587 0 89 10 26 72 83 92 50 3
2/2/3 14,534 969 0 91 6 59 80 85 93 182 80
2/4/0 14,878 720 0 93 5 65 84 91 94 51 4
2/4/3 15,102 422 0 94 3 80 88 93 95 139 33
2/4/3∗ 15,004 450 0 94 3 73 88 91 95 111 4
Pon 14,754 18 0 92 0 92 92 92 92 165 13
War 16,000 0 100 100 0 100 100 100 100 0 0
PW 16,000 0 100 100 0 100 100 100 100 0 0
DFS 13,923 14 0 87 0 87 87 87 87 55 4

hyperbolic
d = 26
γ = 3
n = 16,000
|E| ≈ 224,369

1/2/0 737 242 0 5 2 1 2 3 5 29 5
1/2/3 11,818 852 0 74 5 60 62 67 75 458 59
1/4/0 1,304 188 0 8 1 6 6 7 8 25 1
1/4/3 12,885 122 0 81 1 78 79 80 81 369 13
2/2/0 13,867 1,090 0 87 7 48 69 80 89 49 4
2/2/3 14,998 480 0 94 3 81 87 90 95 139 38
2/4/0 14,299 554 0 89 3 64 84 89 90 50 4
2/4/3 15,237 210 0 95 1 88 93 95 96 119 16
2/4/3∗ 14,727 423 0 92 3 77 87 89 93 101 4
Pon 14,971 77 0 94 0 91 93 93 94 169 10
War 16,000 0 100 100 0 100 100 100 100 0 0
PW 16,000 0 100 100 0 100 100 100 100 0 0
DFS 13,769 19 0 86 0 86 86 86 86 55 3

L. Kliemann, C. Schielke, and A. Srivastav 56:15

Table 3 Large Set: n = 100,000 and d = 10.

` ρ in % t

graph class algo µ σ wins µ σ P0 P5 P10 P50 µ σ

chain
k = 1,000
l = 100
p = 0.01
n = 100,000
|E| ≈ 599,468

2/4/0 69,738 8,809 0 82 8 35 69 72 84 2,345 387
2/4/1 84,335 3,661 0 99 0 98 99 99 99 3,997 395
2/4/2 84,884 3,511 0 100 0 100 100 100 100 5,334 603
2/4/3 84,909 3,500 50 100 0 100 100 100 100 6,591 833
War 68,212 2,071 0 80 4 76 77 77 79 3,587 192

pref. attach.
n0 = 5
d = 10
n = 100,000
|E| = 499,979

2/4/0 80,190 8,064 0 82 8 49 58 71 86 2,612 778
2/4/1 80,380 7,681 0 82 8 51 59 71 86 4,385 1,308
2/4/2 80,510 7,459 0 82 8 53 60 71 86 5,974 1,957
2/4/3 80,606 7,322 0 83 7 54 60 71 86 7,465 2,660
War 97,685 52 50 100 0 100 100 100 100 4,110 588

hyperbolic
d = 10
γ = 3
n = 100,000
|E| ≈ 599,680

2/4/0 84,202 4,582 0 85 5 60 76 82 87 2,641 358
2/4/1 88,147 3,772 0 89 4 68 82 86 91 3,978 591
2/4/2 88,426 3,519 0 90 4 70 82 87 91 5,015 858
2/4/3 88,494 3,400 0 90 3 71 83 87 91 5,963 1,076
War 98,710 84 50 100 0 100 100 100 100 3,910 294

small world
d = 10
β = 0.3
n = 100,000
|E| = 500,000

2/4/0 86,928 4,924 0 89 5 68 80 83 91 2,441 401
2/4/1 90,810 4,038 0 93 4 76 86 89 95 3,457 531
2/4/2 91,171 3,758 0 94 4 78 86 89 95 4,275 837
2/4/3 91,253 3,590 0 94 4 79 87 89 95 5,072 1,148
War 97,212 44 50 100 0 100 100 100 100 3,357 223

ESA 2016

56:16 A Streaming Algorithm for the Undirected Longest Path Problem

References
1 Noga Alon, Raphael Yuster, and Uri Zwick. Color-coding. Journal of the ACM, 42(4):844–

856, 1995. doi:10.1145/210332.210337.
2 Ziv Bar-Yossef, Ravi Kumar, and D. Sivakumar. Reductions in streaming algorithms, with

an application to counting triangles in graphs. In Proceedings of the 13th Annual ACM-
SIAM Symposium on Discrete Algorithms, San Francisco, CA, USA, January 2002 (SODA
2002), pages 623–632, 2002. URL: http://dl.acm.org/citation.cfm?id=545464.

3 Albert-László Barabási and Réka Albert. Emergence of scaling in random networks. Science,
286(5439):509–512, 1999. doi:10.1126/science.286.5439.509.

4 Cristina Bazgan, Miklos Santha, and Zsolt Tuza. On the approximation of finding a(nother)
Hamiltonian cycle in cubic Hamiltonian graphs. Journal of Algorithms, 31(1):249–268, 1999.
Conference version at STACS 1998. doi:10.1006/jagm.1998.0998.

5 Andreas Björklund. Determinant sums for undirected Hamiltonicity. SIAM Journal
on Computing, 43(1):280–299, 2014. Conference version at FOCS 2010. doi:10.1137/
110839229.

6 Andreas Björklund and Thore Husfeldt. Finding a path of superlogarithmic length. SIAM
Journal on Computing, 32(6):1395–1402, 2003. doi:10.1137/S0097539702416761.

7 Andreas Björklund, Thore Husfeldt, Petteri Kaski, and Mikko Koivisto. Narrow sieves for
parameterized paths and packings, 2010. URL: http://arxiv.org/abs/1007.1161.

8 Andreas Björklund, Thore Husfeldt, and Sanjeev Khanna. Approximating longest directed
paths and cycles. In Proceedings of the 31st International Colloquium on Automata, Lan-
guages and Programming, Turku, Finland, July 2004 (ICALP 2004), pages 222–233, 2004.
doi:10.1007/978-3-540-27836-8_21.

9 Hans L. Bodlaender. On linear time minor tests with depth-first search. Journal of Al-
gorithms, 14:1–23, 1993. Conference version at WADS 1989. doi:10.1006/jagm.1993.
1001.

10 R.W. Bulterman, F.W. van der Sommen, G. Zwaan, T. Verhoeff, A.J.M. van Gasteren,
and W.H.J. Feijen. On computing a longest path in a tree. Information Processing Letters,
81(2):93–96, 2002. doi:10.1016/S0020-0190(01)00198-3.

11 Tomás Feder, Rajeev Motwani, and Carlos Subi. Approximating the longest cycle problem
in sparse graphs. SIAM Journal on Computing, 31(5):1596–1607, 2002. doi:10.1137/
S0097539701395486.

12 Joan Feigenbaum, Sampath Kannan, Andrew McGregor, Siddharath Suri, and Jian Zhang.
On graph problems in a semi-streaming model. Theoretical Computer Science, 348:207–216,
2005. Conference version at ICALP 2004. doi:10.1016/j.tcs.2005.09.013.

13 Joan Feigenbaum, Sampath Kannan, Andrew McGregor, Siddharath Suri, and Jian Zhang.
Graph distances in the data-stream model. SIAM Journal on Computing, 38:1709–1727,
2008. doi:10.1137/070683155.

14 Harold N. Gabow. Finding paths and cycles of superpolylogarithmic length. SIAM Journal
on Computing, 36(6):1648–1671, 2007. doi:10.1137/S0097539704445366.

15 Harold N. Gabow and Shuxin Nie. Finding long paths, cycles and circuits. In Proceedings of
the 19th International Symposium on Algorithms and Computation, Gold Coast, Australia,
December 2008 (ISAAC 2008), pages 752–753, 2008. doi:10.1007/978-3-540-92182-0_
66.

16 Venkatesan Guruswami and Krzysztof Onak. Superlinear lower bounds for multipass graph
processing. Electronic Colloquium on Computational Complexity, 2014. Conference version
at CCC 2013. URL: http://eccc.hpi-web.de/report/2013/002/.

17 David Karger, Rajeev Motwani, and G.D.S. Ramkumar. On approximating the longest
path in a graph. Algorithmica, 18:82–98, 1997. doi:10.1007/BF02523689.

http://dx.doi.org/10.1145/210332.210337
http://dl.acm.org/citation.cfm?id=545464
http://dx.doi.org/10.1126/science.286.5439.509
http://dx.doi.org/10.1006/jagm.1998.0998
http://dx.doi.org/10.1137/110839229
http://dx.doi.org/10.1137/110839229
http://dx.doi.org/10.1137/S0097539702416761
http://arxiv.org/abs/1007.1161
http://dx.doi.org/10.1007/978-3-540-27836-8_21
http://dx.doi.org/10.1006/jagm.1993.1001
http://dx.doi.org/10.1006/jagm.1993.1001
http://dx.doi.org/10.1016/S0020-0190(01)00198-3
http://dx.doi.org/10.1137/S0097539701395486
http://dx.doi.org/10.1137/S0097539701395486
http://dx.doi.org/10.1016/j.tcs.2005.09.013
http://dx.doi.org/10.1137/070683155
http://dx.doi.org/10.1137/S0097539704445366
http://dx.doi.org/10.1007/978-3-540-92182-0_66
http://dx.doi.org/10.1007/978-3-540-92182-0_66
http://eccc.hpi-web.de/report/2013/002/
http://dx.doi.org/10.1007/BF02523689

L. Kliemann, C. Schielke, and A. Srivastav 56:17

18 Fatemeh Keshavarz-Kohjerdia, Alireza Bagherib, and Asghar Asgharian-Sardroudb. A
linear-time algorithm for the longest path problem in rectangular grid graphs. Discrete
Applied Mathematics, 160(3):210–217, 2012. doi:10.1016/j.dam.2011.08.010.

19 Ioannis Koutis. Faster algebraic algorithms for path and packing problems. In Pro-
ceedings of the 35th International Colloquium on Automata, Languages and Program-
ming, Reykjavik, Iceland, July 2008 (ICALP 2008), pages 575–586, 2008. doi:10.1007/
978-3-540-70575-8_47.

20 Dmitri Krioukov, Fragkiskos Papadopoulos, Maksim Kitsak, Amin Vahdat, and Marián
Boguñá. Hyperbolic geometry of complex networks. Physical Review E, 82, 2010. doi:
10.1103/PhysRevE.82.036106.

21 Minko Markov, Mugurel Ionuţ Andreica, Krassimir Manev, and Nicolae Ţăpuş. A linear
time algorithm for computing longest paths in cactus graphs. Serdica Journal of Computing,
6(3), 2012. URL: http://serdica-comp.math.bas.bg/index.php/serdicajcomputing/
article/view/158.

22 Burkhard Monien. How to find long paths efficiently. Annals of Discrete Mathem-
atics, 25:239–254, 1985. URL: https://digital.ub.uni-paderborn.de/hs/content/
titleinfo/42079.

23 Muthu Muthukrishnan. Data streams: Algorithms and applications. Foundations
and Trends in Theoretical Computer Science, 1(2):67 pages, 2005. URL: http://algo.
research.googlepages.com/eight.ps.

24 Ira Pohl. A method for finding Hamilton paths and knight’s tours. Communications of the
ACM, 10(7):446–449, 1967. doi:10.1145/363427.363463.

25 Ira Pohl and Larry Stockmeyer. Pohl-Warnsdorf – revisited. In Proceedings of the In-
ternational Conference on Intelligent Systems and Control, Honolulu, Hawaii, USA, Au-
gust 2004 (ISC 2004), 2004. URL: https://users.soe.ucsc.edu/~pohl/Papers/Pohl_
Stockmeyer_full.pdf.

26 Lajos L. Pongrácz. A greedy approximation algorithm for the longest path problem in
undirected graphs, 2012. URL: http://arxiv.org/abs/1209.2503v2.

27 Robert Sedgewick and Kevin Wayne. Algorithms. Addison-Wesley Professional, 2011.
28 Ryuhei Uehara and Yushi Uno. On computing longest paths in small graph classes.

International Journal of Foundations of Computer Science, 18(5), 2007. doi:10.1142/
S0129054107005054.

29 Sundar Vishwanathan. An approximation algorithm for finding long paths in Hamiltonian
graphs. Journal of Algorithms, 50(2):246–256, 2004. Conference version at SODA 2000.
doi:10.1016/S0196-6774(03)00093-2.

30 Moritz von Looz, Christian L. Staudt, Henning Meyerhenke, and Roman Prutkin. Fast
generation of complex networks with underlying hyperbolic geometry, 2015. URL: http:
//arxiv.org/abs/1501.03545.

31 Duncan J. Watts and Steven H. Strogatz. Collective dynamics of ’small-world’ networks.
Nature, 393:440–442, 1998. doi:10.1038/30918.

32 Ryan Williams. Finding paths of length k in O∗(2k) time. Information Processing Letters,
109:315–318, 2009. doi:10.1016/j.ipl.2008.11.004.

ESA 2016

http://dx.doi.org/10.1016/j.dam.2011.08.010
http://dx.doi.org/10.1007/978-3-540-70575-8_47
http://dx.doi.org/10.1007/978-3-540-70575-8_47
http://dx.doi.org/10.1103/PhysRevE.82.036106
http://dx.doi.org/10.1103/PhysRevE.82.036106
http://serdica-comp.math.bas.bg/index.php/serdicajcomputing/article/view/158
http://serdica-comp.math.bas.bg/index.php/serdicajcomputing/article/view/158
https://digital.ub.uni-paderborn.de/hs/content/titleinfo/42079
https://digital.ub.uni-paderborn.de/hs/content/titleinfo/42079
http://algo.research.googlepages.com/eight.ps
http://algo.research.googlepages.com/eight.ps
http://dx.doi.org/10.1145/363427.363463
https://users.soe.ucsc.edu/~pohl/Papers/Pohl_Stockmeyer_full.pdf
https://users.soe.ucsc.edu/~pohl/Papers/Pohl_Stockmeyer_full.pdf
http://arxiv.org/abs/1209.2503v2
http://dx.doi.org/10.1142/S0129054107005054
http://dx.doi.org/10.1142/S0129054107005054
http://dx.doi.org/10.1016/S0196-6774(03)00093-2
http://arxiv.org/abs/1501.03545
http://arxiv.org/abs/1501.03545
http://dx.doi.org/10.1038/30918
http://dx.doi.org/10.1016/j.ipl.2008.11.004

	Introduction
	Our Contribution
	Previous and Related Work
	Ongoing and Future Work

	Previous Algorithms
	Description of Our Streaming Algorithm
	Properties of Our Streaming Algorithm
	Test Instances
	Experimental Setup
	Data and Discussion
	Tables of Experimental Data

