
Journal of Computer Science and Cybernetics, V.35, N.1 (2019), 57–68

DOI 10.15625/1813-9663/35/1/12935

ON THE PERFORMANCE OF A SIMPLE APPROXIMATION
ALGORITHM FOR THE LONGEST PATH PROBLEM

NGUYEN THI PHUONG1,∗, TRAN VINH DUC1, LE CONG THANH
2

1Hanoi University of Science and Technology
2
Institute of Mathematics, VAST
∗phuongnt.math@gmail.com

�

Abstract. The longest path problem is known to be NP-hard. Moreover, it cannot be approximated

within a constant ratio, unless P = NP. The best known polynomial time approximation algorithms

for this problem essentially find a path of length that is the logarithm of the optimum.

In this paper we investigate the performance of an approximation algorithm for this problem in

almost every case. We show that a simple algorithm, based on depth-first search, finds on almost

every undirected graph G = (V,E) a path of length more than |V | − 3
√
|V | log |V | and so has

performance ratio less than 1 + 4
√

log |V |/|V |.1

Mathematics Subject Classification (2010): 68Q17.

Keywords. Path; Hamiltonian path; Approximation algorithm and performance ratio.

1. INTRODUCTION

A well-known problem in graph theory is the longest path problem on graphs (finite,
simple, loopless and undirected), write LPath for short, i.e., the problem of finding in a
given graph G = (V,E) a sequence v0v1v2 . . . vk with the largest number of distinct vertices
from V such that vi−1vi ∈ E for 1 ≤ i ≤ k. This problem is known to be NP-hard [11] and
so cannot be solved in polynomial time unless P = NP. From practical requirements, the
approximate approach to LPath is an effective solution. However, the problem LPath is also
known to be NP-hard even in approximate solutions [16].

For convenience, we recall the concept of the performance of an approximation algorithm.
The terminology and notation follow that in [11].

Performance ratios of an approximation algorithm

We are interested in the performance of approximation algorithms in the worst case and
also in the almost every case. To formalize this approach, we settle on a general form for our
guarantees, in terms of ratios, which was useful for comparison purpose and which seems to
express nearness to optimality in a reasonable way. It is well-known that the performance
guarantee for an approximation algorithm in the worst case is expressed by the absolute
performance ratio (see [11]). The analogy to the performance guarantee in the almost every
case is called almost sure performance ratio, which was defined by Thanh [20].

1Here and elsewhere we write the logarithm to the base 2 simply log.

c© 2019 Vietnam Academy of Science & Technology

mailto:phuongnt.math@gmail.com

58 NGUYEN THI PHUONG, TRAN VINH DUC, LE CONG THANH

Let Π be an optimization problem with instance set IΠ. We use OPTΠ(I) to denote
the value of an optimal solution for an instance I ∈ IΠ. And let AΠ be an approximation
algorithm for Π. We use AΠ(I) to denote the value of the feasible solution found by AΠ

when applied to I.

If Π is a minimization (respectively, maximization) problem and I is any instance in IΠ,
then the performance ratio RAΠ

(I) of an approximation algorithm AΠ on an instance I is
defined by

RAΠ
(I) =

AΠ(I)

OPTΠ(I)

(
respectively,

OPTΠ(I)

AΠ(I)

)
.

The absolute performance ratio RAΠ
of an approximation algorithm AΠ for a problem Π is

given by

RAΠ
= inf

{
r ∈ R : RAΠ

(I) ≤ r for any instance I ∈ IΠ

}
,

where R is the set of all real numbers.

Thus the absolute performance ratio is always a rational number greater than or equal 1
and is close to 1 when the feasible solution found by the approximation algorithm on any
instance is close to optimal.

In order to compute an almost every case performance, one must first assume some
probability distribution on the instances. Because our aim is to consider the almost every
case performance of approximation algorithms for optimization problems in graph theory,
now we simply define the “almost sure performance ratio” of an approximation algorithm
for such an optimization problem Π that each instance has a discrete structure, and the set

I(n)
Π of all instances of “size” n is finite and |I(n)

Π | −→∞ as n−→∞. We turn I(n)
Π into a

probability space by taking its elements to be equiprobable. For example, if the instances of

Π are labelled graphs, namely IΠ is the set G of all graphs with labelled vertices, then I(n)
Π

can be Gn, the set of all graphs with n labelled vertices. In this case, the uniform probability

distribution on the set Gn is given by probability 1/2(n2), the probability of a graph of Gn,
and each G= (V,E) ∈ Gn can be considered as a random graph, in which the edges for E
are chosen independently with probability 1/2.

First, given a property P, we say that the property P holds for almost every instance of
the problem Π if

Pr
[
I ∈ I(n)

Π : P holds for I
]
−→1 as n−→∞.

We now define the almost sure performance ratio Ra.s.
AΠ

of an approximation algorithm AΠ

as follows

Ra.s.
AΠ

= inf
{
r ∈ R : RAΠ

(I) ≤ r for almost every instance I ∈ IΠ

}
.

Thus the assertion “Ra.s.
AΠ

= r” is equivalent to the usual statement that the algorithm
AΠ on an instance I of the problem Π has the performance ratio RAΠ

(I) ≤ r+ o(1) with high
probability, i.e.,

Pr
[
I ∈ I(n)

Π : RAΠ
(I) ≤ r + o(1)

]
−→1 as n−→∞.

In particular, the assertion “Ra.s.
AΠ

= 1” means that the algorithm AΠ finds on almost every
problem instance a feasible solution that is extremely close to optimal.

ON THE PERFORMANCE OF A SIMPLE APPROXIMATION ALGORITHM 59

Essentially, the absolute performance ratio is the performance guarantee of an approxima-
tion algorithm in any case and so even in the worst case, while the almost sure performance
ratio describes the performance behaviour of the algorithm on almost every problem instance.
The performance analysis of approximation algorithms for some fundamental problems in
graph theory has been discussed by Thanh [20, 21, 22] and shows that the performance of
algorithms in almost every case is generally much better than their worst-case performance.

Related work

A classical problem in graph theory with numerous applications is the most well-known
NP-complete Hamiltonian path problem, i.e., the problem of deciding whether a graph con-
tains a Hamiltonian path, that is, a path in which every vertex of the graph appears exactly
once. On the existence of a Hamiltonian path, several models of random graphs, in which
almost every graph contains Hamiltonian path, have been studied (see [7]); in the general
case, it has been shown that almost every graph (in the class G) contains a Hamiltonian
path.

The most natural optimization version of the Hamiltonian path problem is the longest
path problem (LPath). Even when a graph does not contains a Hamiltonian path, it makes
sense in several applications to search for a longest path. However, finding a longest path
seems to be more difficult than deciding whether a graph contains a Hamiltonian path.
Indeed, unless P = NP, the problem of finding a path of length n − nε for any ε < 1 is
NP-hard, where n is the number of vertices of the input graph [16]. Moreover, the problem
LPath cannot even be approximated within a constant ratio [16].

Until recently, there are several known approaches to these problems. In individual
cases, when the input is restricted to some small classes of graphs, there are only a few
known polynomial algorithms for the longest path problem, and these were restricted to
trees [9], block graphs [24], bipartite permutation graphs [25], ptolemaic graphs [19], and
interval graphs [14]. The Hamiltonian path problem can be solved polynomially on proper
interval graphs [4], interval graphs [2, 15], and cocomparability graphs [10]. In particular,
for the Hamiltonian path problem on the class of graphs having many edges, namely the
class of graphs G such that |E(G)| ≥ M0(n) for some M0(n), where n = |V (G)|, Angluin
and Valiant [1] gave a polynomial algorithm which finds on almost every graph in the class
for M0(n) = cn log n a Hamiltonian path, and this result was improved by Shamir [18] whose
algorithm worked for M0(n) = (n/2){log n+(4+ε) log log n}, ε > 0. Finally Bollobás, Fenner
and Frieze [8] constructed an algorithm for M0(n) = (n/2)(log n+ log log n+ cn), cn →∞,
which is about best possible. However, the algorithms described in [1] and [18] require the
input graph to have its adjacency lists given in a random order. Thus these algorithms can
be viewed as randomized algorithms that work well on random inputs while the algorithm
in [8] is a deterministic algorithm that works well on random inputs.

In general case, when the input is the class of all graphs, there is an algorithm for solving
the Hamiltonian path problem with polynomial expected running time [8], and even better
with linear expected running time [23]. By the approximate approach to the longest path
problem, the best known approximation algorithms for this problem essentially find paths of
logarithmic length. Specifically, the first approximation algorithms are due to Monien [17]
and Bodlaender [6], which find paths of length Ω(logL/log logL), where L is the length of
the longest path in the input graph. Next Alon, Yuster and Zwick [3] presented an algorithm
that finds a path of length Ω(logL). Later Björklund and Husfeldt [5] gave an algorithm

60 NGUYEN THI PHUONG, TRAN VINH DUC, LE CONG THANH

that finds a path of length Ω
(
(logL/ log logL)2

)
. The best approximation algorithm known

is of Gabow and Nie [12, 13]. Their algorithm finds a path of length exp
(
Ω(
√

logL)
)
.

Our result
In this work, for the problem LPath on general graphs, we consider the performance

behaviour of an approximation algorithm in almost every case. We show that a simple al-
gorithm ODFSLPath, based on depth-first search, finds on almost every undirected graph
G = (V,E) a path of length more than |V | − 3

√
|V | log |V | and so has performance ratio

RODFSLPath
(G) < 1+4

√
log |V |/|V |. This implies that the algorithm has almost sure perfor-

mance ratio Ra.s.
ODFSLPath

= 1. Thus the simple algorithm ODFSLPath finds on almost every
problem instance a feasible solution that is extremely close to optimal.

2. PRELIMINARIES

Let n be a natural number. We shall consider the set Gn of all graphs with vertex set

V = {1, 2, . . . , n}. Clearly Gn has 2(n2) elements (i.e., graphs). For the sake of convenience,
we write the set Gn as follows

Gn = {Gi | i = 1, 2, . . . , N}, where N := 2(n2),

and view this set as a probability space in which all graphs have equal probability, namely

1/2(n2). Then all graph variants occur as random variables on Gn, so we may talk about their
expectation and variance.

In this section, in order to present a simple algorithm for the longest path problem and
analyse its almost every case behaviour, we will discover features on the vertex degrees of
almost every graph, namely low bounds for the minimum vertex degree of the subgraph
induced by a subset of vertices of a graph.

Given a graph G = (V,E) with a subset V ′ ⊆ V . For each n′, where n′ := |V ′|, we use
the number b =

⌊
n′/2−

√
n′ log n′

⌋
as a threshold for the degree of a vertex in the subgraph

G[V ′] of G induced by V ′.

For the induced subgraph G[V ′] of G, let ηk(G[V ′]) denote the number of vertices of
degree k for each k, 0 ≤ k < n′, and let η≤b(G[V ′]) denote the number of vertices of degree
not greater than b. As we noted above, the values ηk(G[V ′]) and η≤b(G[V ′]) occur as random
variables on Gn. We shall consider the following random variables

ηn,n′,k := ηk(G[V ′]) and ηn,n′,≤b := η≤b(G[V ′]).

Lemma 1. For 0 < n′ ≤ n, it holds that

E
[
ηn,n′,≤b

]
=

n′

2n′−1

b∑
k=0

(
n′ − 1

k

)
.

Proof. By the definition of the variables ηn,n′,k and ηn,n′,≤b, we have

ηn,n′,≤b =
b∑

k=0

ηn,n′,k.

ON THE PERFORMANCE OF A SIMPLE APPROXIMATION ALGORITHM 61

Therefore, by linearity of expectation, we obtain

E
[
ηn,n′,≤b

]
= E

[
b∑

k=0

ηn,n′,k

]
=

b∑
k=0

E
[
ηn,n′,k

]
,

where by the definition of expectation

E
[
ηn,n′,k

]
=

1

N

N∑
i=1

ηk(Gi),

and so

E
[
ηn,n′,≤b

]
=

1

N

b∑
k=0

N∑
i=1

ηk(Gi). (1)

In order to calculate the last sum, for each 0 ≤ k ≤ b, we consider a bipartite graph BN,n′

with vertex classes Gn and V ′ (V ′={v1, v2, . . . , vn′}) in which Gi and vj are adjacent vertices
if only if degGi[V ′](vj) = k. Now, for each vertex vj ∈ V ′, let gk(vj) denote the number
of graphs Gi in Gn such that degGi[V ′](vj) = k. Then, by the definition of the bipartite
graph BN,n′ , essentially ηk(Gi) = degBN,n′ (Gi) and gk(vj) = degBN,n′ (vj), and so

N∑
i=1

ηk(Gi) =
n′∑
j=1

gk(vj).

Furthermore, note that the equality degGi[V ′](vj) = k holds if only if in Gi the vertex vj has
exactly k neighbours from V ′ (the vertex vj can have other neighbours from V \ V ′). Hence
for each vj , 1 ≤ j ≤ n′, we find that

gk(vj) = 2(n2)−(n′−1) ·
(
n′ − 1

k

)
.

In fact, by the above note, there are 2(n2)−(n′−1) graphs Gi in Gn such that degGi[V ′](vj) = k

by some way of choosing k neighbours in V ′ for vj ; there are
(
n′−1
k

)
ways of choosing k

neighbours in V ′ for vj ; and different ways of choosing k neighbours for vj give different
graphs. Finally, for each 0 ≤ k ≤ b, we may calculate that

N∑
i=1

ηk(Gi)= n′2(n2)−(n′−1) ·
(
n′ − 1

k

)
=

n′N

2n′−1

(
n′ − 1

k

)
.

This and (1) imply the required equality. �

We now determine an upper bound for the above expectation.

Lemma 2. If log6 n ≤ n′ ≤ n and if n is sufficiently large, then

E
[
ηn,n′,≤b

]
<

2

log3 n
.

62 NGUYEN THI PHUONG, TRAN VINH DUC, LE CONG THANH

Proof. Since b + 1 =
⌊
n′/2−

√
n′ log n′

⌋
+ 1 < n′/2 and also

(
n′−1
k

)
<
(
n′

b

)
for each k,

0 ≤ k ≤ b, by Lemma 1 we have

E
[
ηn,n′,≤b

]
=

n′

2n′−1

b∑
k=0

(
n′ − 1

k

)
<

n′

2n′−1
(b+ 1)

(
n′ − 1

b

)
<
n′2

2n′

(
n′

b

)
. (2)

In order to estimate
(
n′

b

)
we write the number b in the form b = n′

2 − β, where β satisfies√
n′ log n′ ≤ β <

√
n′ log n′ + 1. Thus(

n′

b

)
=

n′!

b!(n′ − b)!
=

n′!(
n′

2 − β
)
!
(
n′

2 + β
)
!
.

Now by using the following inequalities

2xx+1/2e−x < x! < 2
√

2xx+1/2e−x,

which are immediate from Stirling’s formula for the factorial, we easily estimate

(
n′

b

)
as

follows (
n′

b

)
<

n′ n
′+1/2

√
2
(
n′

2 − β
)n′/2−β+1/2(n′

2 + β
)n′/2+β+1/2

=
2n

′+1/2

√
n′
(
1− 2β

n′

)n′/2−β+1/2(
1+ 2β

n′

)n′/2+β+1/2

<
2n

′+1

√
n′
(
1− 2β

n′

)n′/2−β(
1+ 2β

n′

)n′/2+β

=
2n

′+1

√
n′
(
1− 2β

n′

)n′/2−β(
1+ 2β

n′

)n′/2−β(
1+ 2β

n′

)2β
=

2n
′+1

√
n′
(
1− 4β2

n′2

)n′/2−β(
1 + 2β

n′

)2β .
Furthermore, applying the inequalities

(
1 − 1

y

)y−1
>

1

e
with y =

n′2

4β2
and

(
1 +

1

z

)z+1
> e

with z =
n′

2β
, respectively, to the terms

(
1 − 4β2

n′2
)n′/2−β

and
(
1 +

2β

n′
)2β

, and also since
√
n′ log n′ ≤ β <

√
n′ log n′ + 1, we have(
n′

b

)
<

2n
′+1

√
n′e2β2/(n′+2β)

<
2n

′+1

√
n′e2n′ logn′/(n′+2

√
n′ logn′+2)

=
2n

′+1

√
n′e2 logn′/(1+2

√
(logn′)/n+2/n′)

=
2n

′+1

√
n′e2 lnn′ log e/(1+2

√
(logn′)/n′+2/n′)

≤ 2n
′+1

√
n′e2 lnn′ =

2√
n′
· 2n

′

n′2
.

ON THE PERFORMANCE OF A SIMPLE APPROXIMATION ALGORITHM 63

This and (2) imply the required inequality. �

Now, by Lemma 2, we may obtain the following essential result.

Theorem 3. Given a graph G= (V,E) with V ′⊆V such that log6n ≤ n′ := |V ′| ≤ n := |V |.
Then the minimum degree of the induced subgraph G[V ′] of almost every graph G can be
bounded from below as follows

Pr
[
G ∈ Gn : δ(G[V ′]) > n′/2−

√
n′ log n′

]
> 1− 1

log2 n
,

when n is sufficiently large.

Proof. Applying Markov’s inequality Pr
[
ξ < t ·E [ξ]

]
> 1−1/t to the random variable ηn,n′,≤b

and by choosing t = log2 n, we obtain

Pr
[
ηn,n′,≤b < log2 n · E

[
ηn,n′,≤b

]]
> 1− 1

log2 n
.

Now by Lemma 2 we have

Pr

[
ηn,n′,≤b <

2

log n

]
> 1− 1

log2 n
.

Since 2/ log n < 1 when n is sufficiently large, we find that

Pr
[
ηn,n′,≤b = 0

]
> 1− 1

log2 n
,

implying the required assertion of the theorem by the definitions of the variable ηn,n′,≤b and
of the minimum degree of a graph. �

This result is the basis of the probabilistic analysis of our approximation algorithm for
the longest path problem.

3. A SIMPLE ALGORITHM FOR THE LONGEST PATH

In this section we consider a simple approximation algorithm for the longest path problem
(LPath). The algorithm is based on the well-known depth-first search (DFS) for traversing
a given graph and performs the same search without backtracking. So we can say that this
algorithm is an onward depth-first search; therefore, we denote it by ODFSLPath. Thus our
algorithm ODFSLPath starts at an arbitrary vertex and explores as far as possible along
the first branch traversed by DFS, i.e., the branch from the starting vertex to the first
backtracking one. The principle of the algorithm ODFSLPath is quite simple: to go onward,
from neighbour to neighbour, while this is possible.

This section is devoted to analyze the performance behaviour of the algorithmODFSLPath.
For convenience we describe ODFSLPath as follows.

ODFSLPath = “On input graph G:

1. Pick arbitrarily a vertex of G and mark it.

64 NGUYEN THI PHUONG, TRAN VINH DUC, LE CONG THANH

2. Repeat the following until no further marking is possible: pick arbitrarily a vertex
among unmarked neighbours of the vertex marked just previously, and mark it.

3. Output the path formed by the sequence of marked vertices.”

First note that the algorithm ODFSLPath indeed runs in polynomial time. The main
question is the following: which rule should we use for picking a vertex at each step to be
marked? For ODFSLPath to run correctly on every input graph G = (V,E) with the above
assumption that its vertices are labelled by natural numbers, V = {1, 2, . . . , n}, we can
simply stipulate that at each step usual choice is to pick the vertex with the smallest label.

Let’s analyze the performance behaviour of the algorithm ODFSLPath in almost every
case. We estimate the length of the path found by Algorithm ODFSLPath on almost every
input graph G, namely the value ODFSLPath(G).

Theorem 4. The value ODFSLPath(G) of the solution found by Algorithm ODFSLPath on
almost every input graph G can be bounded from below as follows

Pr
[
G ∈ Gn : ODFSLPath(G) > n− 3

√
n log n

]
> 1− 1

log n
,

when n is sufficiently large.

Proof. We consider the behaviour of Algorithm ODFSLPath on every graph G = (V,E) ∈ Gn
satisfying the following property concerning the minimum degree of the induced subgraph

(D) δ(G[V ′]) > n′/2−
√
n′ log n′,

for each V ′ ⊆ V such that log6n ≤ n′ := |V ′| ≤ n := |V |.

In order to estimate the value ODFSLPath(G), the computation process of ODFSLPath

on this input graph G is divided into successive stages. In the kth stage, k = 1, 2, . . . , the
iteration step 2 is executed starting from the last marked vertex in the previous stage. Let `k
be the number of vertices marked in the kth stage. The number `k is determined by using
property (D) with some subset V ′=: Vk. Now, by induction on k, we show that

`k =

⌈
n− 2

√
n log n

2k

⌉
. (3)

In the first stage, since the graph G satisfies property (D) with V ′ = V1 = V , then
every vertex of G has degree more than n/2−

√
n log n . Therefore, after marking the vertex

at step 1, denoted by v0, the iteration step 2 is repeated at least
⌈
n/2−

√
n log n

⌉
times

and so we have determined the sequence of vertices marked here that v11, v12, . . . , v1`1 with
`1 =

⌈
(n− 2

√
n log n)/2

⌉
. In fact, property (D) with V ′ = V ensures that, while the number

of marked vertices is still no more than
⌈
n/2−

√
n log n

⌉
, the vertex marked just before

that time has at least one unmarked neighbour (even in the worst situation that all marked
vertices are its neighbours).

Next, assume formula (3) holds for t. Let vk1, vk2, . . . , vk`k (denoted by vk1-vk`k) be the
sequence of vertices marked in the kth stage, k = 1, 2, . . . , t. We will prove (3) for t+ 1, by
using property (D) with V ′ = Vt+1 such that

Vt+1 = V \ {v0, v11-v1`1 , v21-v2`2 , . . . , vt1-vt`t−1}

ON THE PERFORMANCE OF A SIMPLE APPROXIMATION ALGORITHM 65

(Vt+1 contains vt`t , the last vertex marked in the tth stage) and so

|Vt+1| = n− (1 + `1 + `2 + · · ·+ `t − 1) = n−
t∑

k=1

`k ≥ n−
(
n− 2

√
n log n

)
·
t∑

k=1

1

2k

= n−
(
n− 2

√
n log n

)(
1− 1

2t

)
=
n− 2

√
n log n

2t
+ 2
√
n log n.

Note that, since |Vt+1| ≥ log6 n when n is sufficiently large, property (D) with V ′ = Vt+1 is
satisfied. Therefore

δ(G[Vt+1]) > |Vt+1|/2−
√
|Vt+1| log |Vt+1|

≥ n− 2
√
n log n

2t+1
+
√
n log n−

√
|Vt+1| log |Vt+1|

≥ n− 2
√
n log n

2t+1
(since |Vt+1| ≤ n).

Hence, by the same argument as above, the iteration step 2 is executed starting from the
vertex vt`t marked last in the tth stage and is repeated at least

⌈
(n− 2

√
n log n)/2t+1

⌉
ti-

mes. Thus we have determined the sequence of vertices marked in the (t + 1)th stage that
vt+11, vt+12, . . . , vt+1`t+1 with `t+1 =

⌈
(n− 2

√
n log n)/2t+1

⌉
. This is the claim.

Furthermore, for each k = 1, 2, . . . , from Theorem 3 it follows that

Pr
[
G ∈ Gn : ODFSLPath on G marks `k vertices in the kth stage

]
>1− 1

log2 n
,

where `k =
⌈
(n− 2

√
n log n)/2k

⌉
. Now, by connecting initial blog nc stages, we have

Pr
[
G ∈ Gn : ODFSLPath on G initially marks ` vertices

]
>1− 1

log n
,

where ` = 1 + `1 + `2 + · · ·+ `blognc. Consequently, by definition ODFSLPath(G) namely is
the length of the path found by Algorithm ODFSLPath on G, we obtain

Pr
[
G ∈ Gn : ODFSLPath(G) ≥ `− 1

]
> 1− blog nc

log2 n
≥ 1− 1

log n
. (4)

Finally, by formula (3) we have

`− 1 ≥
(
n− 2

√
n log n

) blognc∑
k=1

1

2k
=
(
n− 2

√
n log n

)(
1− 1

2blognc

)

> n− 2
√
n log n−

(
n− 2

√
n log n

) 1

2logn−1
= n− 2

√
n log n− 2 + 4

√
log n

n

> n− 3
√
n log n.

This inequality and (4) imply the proof. �

66 NGUYEN THI PHUONG, TRAN VINH DUC, LE CONG THANH

Thus, by definition, Theorem 4 shows that the simple algorithm ODFSLPath finds
on almost every input graph G = (V,E) a path of length ODFSLPath(G) more than
|V | − 3

√
|V | log |V |.

Now, by this theorem we estimate the performance ratio of Algorithm ODFSLPath on
almost every case.

Theorem 5. The performance ratio RODFSLPath
(G) of Algorithm ODFSLPath on almost

every graph instance G of the problem LPath can be bounded from above as follows

Pr

[
G ∈ Gn : RODFSLPath

(G) < 1 + 4

√
log n

n

]
> 1− 1

log n
,

when n is sufficiently large.

Proof. It is clear that, for any graph G ∈ Gn, a longest path has the length OPTLPath(G)
satisfying OPTLP(G) ≤ n − 1. Therefore, on every graph G considered in Theorem 4 such
that ODFSLPath(G) > n − 3

√
n log n, the performance ratio RODFSLPath

(G) of Algorithm
ODFSLPath satisfies

RODFSLPath
(G) =

OPTLPath(G)

ODFSLPath(G)
<

n− 1

n− 3
√
n log n

< 1 + 4

√
log n

n
,

when n is sufficiently large. Hence the proof is completed by Theorem 4. �

Obviously, by definition, on almost every input G = (V,E) Algorithm ODFSLPath has
performance ratio RODFSLPath

(G) less than 1 + 4
√

log |V |/|V | and thus almost sure perfor-
mance ratio Ra.s.

ODFSLPath
= 1. However, as any approximation algorithm for the problem

LPath, Algorithm ODFSLPath has absolute performance ratio RODFSLPath
=∞. Such asser-

tion can be obtained by showing some graph G ∈ Gn on which RODFSLPath
(G) = r(n) (even

on which RODFSLPath
(G) = n−1) such that r(n) −→∞ as n −→∞, and so RODFSLPath

=∞
by definition. This is easy shown and is left to the reader.

Thus we have the following main consequence.

Corollary 6. Algorithm ODFSLPath has the performance ratios satisfying:

(i) RODFSLPath
=∞.

(ii) RODFSLPath
(G)< 1 + 4

√
log |V |
|V | on almost every input graph G=(V,E).

(iii) Ra.s.
ODFSLPath

= 1.

Finally we may conclude that the longest path problem LPath is known to be NP-hard,
even in approximate solutions. More precisely, from the worst case point of view, the problem
LPath cannot be solved by a polynomial approximation algorithm with absolute performance
ratio less than∞, unless P = NP. Moreover, the best known polynomial time algorithms for
the problem LPath only find solutions with logarithmic optimal value. However, although
this problem is hard, it is only in rare worst cases; from the almost every case point of view,
the simple algorithm ODFSLPath finds on almost every problem instance a solution that is
extremely close to optimal.

ON THE PERFORMANCE OF A SIMPLE APPROXIMATION ALGORITHM 67

ACKNOWLEDGMENT

This research is funded by the Hanoi University of Science and Technology (HUST) under
the project number T2017-PC-075.

REFERENCES

[1] D. Angluin and L.G. Valiant, “Fast probabilistic algorithm for Hamiltonian circuits and matc-
hings”, Journal of Computer and System Sciences, vol. 18, no. 2, pp. 155–193, 1979.

[2] S.R. Arikati and C.P. Rangan, “Linnear algorithm for optimal path cover problem on interval
graphs”, Inform. Process. Lett., vol. 35, no. 3, pp. 149–153, 1990.

[3] N. Alon, R. Yuster, and U. Zwick, “Color-coding”, J. ACM, vol. 42, pp. 844–856, 1995.

[4] A.A. Bertossi, “Finding Hamiltolian circuits in proper interval graphs”, Inform. Process. Lett.,
vol. 17, pp. 97–101, 1983.

[5] A. Björklund and T. Husfeldt. “Finding a path of superlogarithmic length”, SIAM Journal on
Computing, vol. 32, pp. 1395–1402, 2003.

[6] H.L. Bodlaender, “On linear time minor tests with depth-first search”, J. Algorithms, vol. 14,
pp. 1–23, 1993.

[7] B. Bollobás, Random Graphs, 2nd Edition. Cambridge University Press, 2001.

[8] B. Bollobás, T.I. Fenner and A.M. Frieze, “An algorithm for finding Hamilton paths and cycles
in random graphs”, Combinatorica, vol. 7, pp. 327–341, 1987.

[9] R.W. Bulterman, F.W. van der Sommen, G. Zwaan, T. Verhoeff, A.J.M. van Gasteren, and
W.H.J. Feijen, “On computing a longest path in a trees”, Inform. Process. Lett., vol. 81, pp.
93–96, 2002.

[10] P. Damaschke, J.S. Deogun, D. Kratsch, and G. Stener, “Finding Hamiltolian paths in cocom-
parability graphs using the bump number algorithm”, Order, vol. 8, no. 4, pp. 383–391, 1991.

[11] M.R. Garey and D.S. Johnson, Computers and Intractability - A Guide to the NP-completeness.
W.H. Freeman, 1979.

[12] H.N. Gabow, “Finding paths and cycles of superpolylogarithmic length”, SIAM Journal on
Computing, vol.36, pp. 1649–1671, 2007.

[13] H.N. Gabow and S. Nie, “Finding long paths, cycles and circuits”, 19th Annual International
Symp. on Algorithms and Computation, LNCS 5369, Gold Coast, Australia, December 15-
17, 2008. pp. 752–763.

[14] K. Ioannidou, G.B. Mertzios, and S.D. Nikolopoulos, “The longest path problem has a polyno-
mial solution on interval graphs”, Algorithmica, vol. 61, pp. 320–341, 2011.

[15] J.M. Keil, “Finding Hamiltonian circuits in interval graphs”, Inform. Process. Lett., vol. 20,
pp. 201–206, 1983.

[16] D. Karger, R. Motwani, and G.D.S. Ramkumar, “On approximating the longest path in a
graph”, Algorithmica, vol. 18, pp. 82–98, 1997.

[17] B. Monien, “How to find long paths efficiently”, Annals of Discrete Mathematics, vol. 25, pp.
239–254, 1985.

[18] E. Shamir, “How many random edges make a graph Hamiltonian?”, Combinatorica, vol. 3, pp.
123–132, 1983.

68 NGUYEN THI PHUONG, TRAN VINH DUC, LE CONG THANH

[19] Y. Takahara, S. Teramoto, and R. Uehara, “Longest path problems on ptolemaic graphs”,
IEICE Trans. Inform. System., vol. E91-D, pp. 170–177, 2008.

[20] L.C. Thanh, “On the approximability of Max-Cut”, Vietnam J. Math., vol. 34, no. 4, pp.
389–395, 2006.

[21] L.C. Thanh, “Performance analysis of greedy algorithms for Max-IS and Min-Maxl-Match”,
Vietnam J. Math., vol. 36, no. 3, pp. 327–336, 2008.

[22] L.C. Thanh, “Minimum connected dominating sets in finite graphs”, Vietnam J. Math., vol.
38, no. 2, pp. 157–168, 2010.

[23] A. Thomason, “A simple linear expected time algorithm for finding a Hamilton path”, Discrete
Math., vol. 75, pp. 373–379, 1989.

[24] R. Uehara and Y. Uno, “Efficient algorithms for the longest path problem”, 15th Annual
International Symp. on Algorithms and Computation, LNCS 3314, Hong Kong, China,
December 20-22, 2004. pp. 871–883.

[25] R. Uehara and G. Valiente, “Linear structure of bipartite permutation graphs and the longest
path problem”, Inform. Process. Lett., vol. 103, pp. 71–77, 2007.

Received on August 06, 2018
Revised on December 18, 2018

	INTRODUCTION
	PRELIMINARIES
	A SIMPLE ALGORITHM FOR THE LONGEST PATH

