
Serdica J. Computing 6 (2012), 287–298

A LINEAR TIME ALGORITHM FOR COMPUTING

LONGEST PATHS IN CACTUS GRAPHS

Minko Markov, Mugurel Ionuţ Andreica∗, Krassimir Manev, Nicolae Ţăpuş

Abstract. We propose an algorithm that computes the length of a longest

path in a cactus graph. Our algorithm can easily be modified to output a

longest path as well or to solve the problem on cacti with edge or vertex

weights. The algorithm works on rooted cacti and assigns to each vertex

a two-number label, the first number being the desired parameter of the

subcactus rooted at that vertex. The algorithm applies the divide-and-

conquer approach and computes the label of each vertex from the labels of

its children. The time complexity of our algorithm is linear in the number

of vertices, thus improving the previously best quadratic time algorithm.

Introduction. Computing the length of a path of maximum length in an
undirected graph is a problem that arises naturally. The graph can have positive
edge weights, in which case the length of any path is the sum of its weights, or
no edge weights, in which case the length of a path is the number of its edges.

ACM Computing Classification System (1998): G.2.2.
Key words: algorithmic graph theory, longest path, cactus graphs.

*The work performed by this author was partially funded by the Romanian National Council
for Scientific Research (CNCS)-UEFISCDI under research grant PD_240/2010 (AATOMMS –
contract no. 33/28.07.2010), from the PN II – RU program, and by the Sectoral Operational
Programme Human Resources Development 2007-2013 of the Romanian Ministry of Labour,
Family and Social Protection through the financial agreement POSDRU/89/1.5/S/62557.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Bulgarian Digital Mathematics Library at IMI-BAS

https://core.ac.uk/display/62660767?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

288 M. Markov, M. I. Andreica, K. Manev, N. Ţăpuş

Both versions are known to be NP-complete [10]. The two major ways to tackle
with NP-completeness are the parameterized approach and the approximation
approach.

It is known that Longest Path is fixed parameter tractable [13]. Recent
research [6] shows that if certain restrictions are imposed on the graph there is
an algorithm that is subexponential in the parameter. For a detailed introduc-
tion to the Parameterized Complexity Theory, see [7]. From the approximation
perspective, the problem is not approximable in polynomial time within a multi-
plicative constant unless P = NP [11]. The approximation algorithm with best
approximation ratio so far has approximation ratio that is, asymptotically, close
to linear [3]. Other relevant results are [4], [1], [16], [9], [8], [12], and [15].

Yet another way to tackle withNP-completeness on graphs is to construct
fast, that is polynomial time, algorithms on restricted graph classes. A linear time
algorithm for Longest Path on edge weighted trees was constructed by Dijkstra
around 1960 (see [5] for description and formal verification). For several decades
the trees were the only natural graph class for which a polynomial time algorithm
for Longest Path was known. Then Uehara and Uno [14] proposed polynomial
time algorithms for that problem on cacti and block graphs, and showed it can
be solved efficiently on graphs with interval representation. Their algorithm on
cacti has O(|V (G)|2) time complexity, the bound being tight, and is based on a
generalization of Dijkstra’s algorithm.

In 2009 Andreica and Ţăpuş proposed [2] a linear time algorithm for
longest paths in cactus graphs. Independently, at precisely the same time Manev
and Markov constructed a linear time algorithm for the same problem on the same
graph class. Those algorithms were remarkably similar and this article contains
the combined effort of both teams. Our algorithm is based on an idea that is
radically different from the idea of Uehara and Uno. First we turn the cactus
into a rooted cactus, which can easily be done in linear time, and then work from
the leaves upwards to the root. Each vertex u of the rooted cactus is associated
with two numbers: the length of a longest path in the subcactus rooted at u and
the length of a longest path in that subcactus having u as one endpoint. We call
that ordered pair, the label of the vertex. Clearly, the desired answer is the first
number in the label of the root. The label of each nonleaf vertex is computed
only from the labels of its children.

1. Background. We consider undirected graphs without multiple edges
or self loops. Let G = (V,E) be a graph. If the vertex set of a graph G is not
named explicitly we denote it by V (G). Likewise, E(G) is the set of the edges.

A Linear Time Algorithm . . . 289

A path in G is a sequence p = u1, e1, u2, e2, . . . , en−1, un, for some n ≥ 1,
of alternating distinct vertices u1, u2, . . . , un and edges e1, e2, . . . , en−1 such that
for 1 ≤ i < n, ei = (ui, ui+1). u1 and un are called the endpoints of p, and the
remaining vertices are the internal vertices of p. If p′ and p′′ are vertex disjoint
paths in G, we denote that by p′ ⊥ p′′. If u is an endpoint of p′, we denote that
by writing p′ is a u-path . If n ≥ 2, by p−u1 we denote the path u2, e2, . . . , en−1,

un. A cycle s in G is a similar sequence of alternating vertices and edges with
the only difference that two vertices, namely u1 and un, coincide, and n ≥ 4. The
length of a path or cycle z is the number of edges in it and is denoted by |z|, the
set of vertices is denoted by V (z), and the set of edges by E(z). For any cycle s

and any vertex u ∈ s, we use the notation s− u with the obvious meaning. Since
we do not consider multigraphs, any path or cycle z can be described uniquely
by listing its distinct vertices in the order they occur in z. Any cycle s has 2|s|
equivalent descriptions. Any of them is the order of the vertices in s.

Let G be a graph and p = u1, u2, . . . , un be a path in G. A subpath
of a path p is a contiguous subsequence of p that is a path. To break p into
subpaths is to define subpaths of p, say p1, p2, . . . , pt, such that the vertices of p

are partitioned among them. There are t − 1 edges in p that are not in any pi,
therefore |p| = t − 1 +

∑t
i=1
|pi|. To cover p with subpaths is to define subpaths

of p, say p1, p2, . . . , ps, such that one endpoint of p1 coincides with one endpoint
of p2, the other endpoint of p2 coincides with one endpoint of p3, etc., the other
endpoint of ps−1 coincides with one endpoint of ps. Clearly, |p| =

∑s
i=1
|pi|.

The concatenation of paths is the opposite of breaking. Let q1, q2, . . . , qk

be pairwise vertex disjoint paths in G, such that qi = ui, . . . , vi, for 1 ≤ i ≤ k. Let
(vi, ui+1) ∈ E(G) for 1 ≤ i ≤ k−1. The concatenation of q1, q2, . . . , qk is the path
q = u1, . . . , v1, u2, . . . , v2, . . . , uk, . . . , vk. Clearly, |q| = k−1+

∑k
i=1
|qi|. The chain

of paths is the opposite of covering. Let q1, q2, . . . , ql, where qi = xi, yi, . . . , zi

for 1 ≤ i ≤ l, be paths in G that are vertex disjoint except that xi+1 = zi

for 1 ≤ i ≤ l − 1. The chain of q1, q2, . . . , ql is the path q = x1, y1, . . . , z1,

y2, . . . , z2, . . . , zl−1, yl, . . . , zl. Clearly, |q| =
∑l

i=1
|qi|.

Let G be a graph and s = v1, v2, . . . , vn be a cycle in it. A path in s is
a path in G such that its vertices form a contiguous subsequence of s. To break
s into paths is to define a set of paths in s, say p1, p2, . . . , pt, 1 ≤ t ≤ n, such
that the vertices of s are partitioned among them. Clearly, |s| = t +

∑t
i=1
|pi|.

With respect to a fixed description of s, the paths can be defined uniquely only by
their lengths. Any sequence of nonnegative integers c = c1, c2, . . . , ct, such that
1 ≤ t ≤ n and t+

∑t
i=1

ci = n is said to define a breaking of s into paths, the paths
being p1 = v1, v2, . . . , vc1+1, etc., pt = vc1+c2+...+ct−1+t, vc1+c2+...+ct−1+t+1, . . . , vn.

290 M. Markov, M. I. Andreica, K. Manev, N. Ţăpuş

A circular array is any array A[1 . . . n] such that n ≥ 3 and A[1] and
A[n] are neighbours in the array. In the context of circular arrays, the distance
between any two positions is defined as follows. For any i, j ∈ {1, 2, . . . , n},
dist(i, j) = max {|i− j|, n − |i− j|}.

A cactus graph, or cactus for short, is a connected graph in which every
edge is in at most one cycle. A cactus G in which one vertex is distinguished
as the root is called a rooted cactus. The root is denoted by root(G). Assume
u = root(G) and u is a vertex in r cycles s1, s2, . . . , sr and there are d + r

connected components after deleting u from G. Those components are called the
minions of u. The d minions that are connected to u by single edges are the tree
minions and the other are the cycle minions. For any minion G′ we write G′ + u

to denote the subgraph of G induced by V (G′) ∪ {u}. Every tree minion is a
rooted cactus, its root being the vertex adjacent to u. The cycle minions are not
rooted. In every cycle minion H i, the path si − u is the basis. The connected
components after removing all the edges of the basis from any cycle minion are
rooted cacti, the roots being the corresponding vertices from that basis. See
Figure on the facing page for illustration. The basis of H1, for instance, is the
path w1

1, w
1
2, . . . , w

1
t1

. For every vertex x ∈ V (G) there is a subcactus rooted at x

that we denote by G[x]. For instance, on Figure , G[w1
2] = H1

2 . The roots of the
tree minions are the tree children of u. The tree children and the vertices in the
bases of the cycle minions are the children of u. On Figure the tree children of
u are v1, . . . , vd, and the children of u are v1, . . . , vd, w1

1, . . . , w1
t1

, . . . , wr
1, . . . ,

wr
tr

. A vertex with no children is a leaf.
For any cactus G and any u ∈ V (G), by longest(G) we denote the length

of any longest path in G and by longest(G,u), the length of any longest u-path
in G. A labeled rooted cactus is a rooted cactus G′ such that every vertex has
a label associated with it. The label of any u ∈ V (G′) is the ordered pair of
nonnegative integers (l1(u), l2(u)) such that l1(u) = longest(G′[u]) and l2(u) =
longest(G′[u], u).

2. The algorithm, its verification, and complexity analysis.

Our main procedure is called Longest Cactus.

Longest Cactus(G: labeled rooted cactus, u: the root of G)
1 (∗ Computes the length of a longest path in G ∗)
2 choose any vertex u ∈ V (G)
3 turn G into a rooted cactus with root u

4 Compute Label(G, u)
5 return l1(u)

A Linear Time Algorithm . . . 291

wr

1
w1

1

Hr

tr

v1 vdv2

u

H
1

w1

t1

srs1

wr

2

H1

1
Hr

1
Hr

2
H1

2

w1

2
wr

tr

H1

t1

H
r

G1 G2 Gd

Fig. 1. The rooted cactus from Compute Label

The procedure Compute Label is the gist of the algorithm. The rooted
cactus it refers to is shown on Figure 1. We use the notation “{}M” for multisets.
The procedure calls another procedure Aux defined below.

Compute Label(G: labeled rooted cactus, u: the root of G)
1 (∗ Computes the label of the root ∗)
2 if u a leaf
3 (l1(u), l2(u))← (0, 0)
4 else

5 let the tree children of u be v1, v2, . . . , vd

6 let the cycle minions of u be H1, . . . , Hr

7 let the basis of H i be wi
1, w

i
2, . . . , w

i
ti

for 1 ≤ i ≤ r

8 for every child a of u do

9 Compute Label(G[a], a)
10 P ← {l2(vi) + 1 | 1 ≤ i ≤ d}M
11 for i← 1 to r do

12 qi ← max {l2(w
i
k) + max {k, ti − k + 1} | 1 ≤ k ≤ ti}

13 Q← {qi | 1 ≤ i ≤ r}M
14 for i← 1 to r do

15 zi ← Aux([0, l2(w
i
1) .. , l2(w

i
ti
)])

16 x ← max {P ∪Q}M
17 y ← second-max {P ∪Q}M
18 z ← max {zi | 1 ≤ i ≤ r}
19 m ← max {l1(a) | a is a child of u}
20 l1(u) ← max {x + y, z,m}
21 l2(u) ← x

292 M. Markov, M. I. Andreica, K. Manev, N. Ţăpuş

Aux(A[1 . . . n]: circular array of nonnegative integers)
1 (∗ Returns the maximum number t such that for some ∗)
2 (∗ i, j ∈ {1, 2, . . . , n}, i 6= j, t = A[i] + A[j] + dist(i, j). ∗)
3 let B[0 . . . n] and C[1 . . . n] be linear arrays of nonnegative integers
4 B[0]← 0
5 for i← 1 to n do

6 B[i]← max {B[i− 1], A[i] − (i− 1)}
7 C[i]← B[i− 1] + A[i] + (i− 1)
8 x← max {C[i] | 1 ≤ i ≤ n}
9 for i← 1 to n do

10 B[i]← max {B[i− 1], A[i] + (i− 1)}
11 C[n]← A[n] + 1
12 for i← n− 1 downto 2 do

13 C[i]← max {C[i + 1], A[i] + n− (i− 1)}
14 y ← max {B[i] + C[i + 1] | 1 ≤ i ≤ n− 1}
15 return max {x, y}

Lemma 1. Whenever the execution of the first for loop (lines 5–7) of
Aux is at line 7 and i ≥ 2, C[i] is assigned max {A[k] + A[i] + i− k | 1 ≤ k < i}.

P r o o f. It is fairly obvious that at line 7 the value B[i− 1] is such that

B[i− 1] =

{

0, if A[k]− (k − 1) ≤ 0 ∀k such that 1 ≤ k < i

max {A[k] − (k − 1) | 1 ≤ k < i}, else

However, A[1] − (1 − 1) cannot be negative, therefore there is at least one non-
negative value in the sequence A[k] − (k − 1), 1 ≤ k < i, so we can say simply
that B[i− 1] at line 7 is B[i− 1] = max {A[k]− k + 1 | 1 ≤ k < i}. It follows that
indeed C[i] is assigned the value max {A[k]− k + 1 | 1 ≤ k < i} + A[i] + i − 1 =
max {A[k] + A[i] + i− k | 1 ≤ k < i}. �

Corollary 1. x is assigned the value

max {A[i] + A[j] + j − i | 1 ≤ i < j ≤ n}

at line 8 of Aux.

Lemma 2. y is assigned the value

max {A[i] + A[j] + n− (j − i) | 1 ≤ i < j ≤ n}

at line 14 of Aux.

A Linear Time Algorithm . . . 293

P r o o f. Consider the for loop at lines 9–10. Since A[1] + (1 − 1) ≥ 0, it
is the case that ∀i, 1 ≤ i ≤ n,B[i] = max {A[k] + (k − 1) | 1 ≤ k ≤ i}, whenever
that for loop terminates.

Now consider the for loop at lines 12–13. Think of the assignment at
line 11 as C[n] = A[n]+n− (n−1). Having that in mind, it is fairly obvious that
after that for loop terminates, it is the case that

C[i] = max {A[k] + n− (k − 1) | i ≤ k ≤ n},∀i, 2 ≤ i ≤ n.

From these two considerations it follows immediately that at line 14, y

is assigned the value max {A[i] + (i− 1) + A[j] + n− (j − 1) | 1 ≤ i < j ≤ n} =
max {A[i] + A[j] + n− (j − i) | 1 ≤ i < j ≤ n}. �

Lemma 3. Procedure Aux is correct.

P r o o f. It follows immediately from Corollary 1 and Lemma 2 that Aux

indeed returns the maximum number t such that for some i, j ∈ {1, 2, . . . , n}, i 6=
j, t = A[i] + A[j] + dist(i, j). �

Lemma 4. Using the naming convention suggested by Figure , for any i

such that 1 ≤ i ≤ r, for any longest u-path p in H i + u,

|p| = max {longest(H i
k, w

i
k) + max {k, ti + 1− k} | 1 ≤ k ≤ ti}

P r o o f. First note that because the graph is a cactus, any u-path p of
positive length in H i + u is the chain of precisely two subpaths, one of them—call
it p′k—a path in s with endpoints u and wi

k for some index k such that 1 ≤ k ≤ ti,
and the other one—call it p′′k—a wi

k-path in H i
k. Clearly, |p| = |p′k| + |p

′′
k|. For

any k, 1 ≤ k ≤ ti, there are two choices for p′k: one with length k and the other
one with length ti + 1 − k. Furthermore, the choice of p′′k does not depend on
the choice of p′k. Obviously, |p| is maximised when p′k and p′′k are maximised
independently. �

Lemma 5. Compute Label computes correctly the label of G[u].

P r o o f. By structural induction on G. The basis is when the root is a
leaf and it obviously holds. Assume Compute Label computes correctly the
label of every child of u. We first prove that l2(u) is computed correctly. Let p

be any longest u-path in G and p′ = p − u. p′ is entirely in some minion of u.
First assume p′ is in some tree minion Gi. In this case p′ is a longest path in Gi

294 M. Markov, M. I. Andreica, K. Manev, N. Ţăpuş

with one endpoint vi. By the induction hypothesis, Combine Label correctly
computes the label of Gi, therefore l2(vi) = |p′|. Note that |p| = |p′|+1, therefore
|p| = l2(vi)+ 1, and the maximum element of the multiset P (line 10) is precisely
l2(vi)+1. Via the assigments at lines 16 and 21, l2(u) is set to l2(vi)+1 and that
equals |p|.

Now assume p′ is in some cycle minion H i. But then p is a longest u-path
in H i+u, so by Lemma 4, |p| = max1≤k≤ti {max {k, ti + 1− k}+ longest(H i

k, w
i
k)}.

By the induction hypothesis longest(H i
k, w

i
k) = l2(w

i
k), therefore the maximum el-

ement of the multiset Q (lines 12 and 13) is precisely |p|. Via the assignments at
lines 16 and 21, l2(u) is set to |p|.

Next we prove that l1(u) is computed correctly. Let q be any longest path
in G. The following five possibilities are exhaustive.

1. u is an internal vertex in q and the endpoints of q are in two different minions
J1 and J2 of u.

2. u is an internal vertex in q and both endpoints of q are in the same minion
of u. This minion must be a cycle minion, say Hj.

3. u is an endpoint of q. In this case u must have a single minion.

4. u 6∈ q and for a single child u′ of u, q is in G[u′].

5. u 6∈ q and there are at least two children of u such that q contains vertices
from the subcacti rooted at them. Clearly, all such children are in the same
cycle minion Hj and they form a subpath in the basis of Hj.

First assume 1 is the case. If both J1 and J2 are tree minions of u, then q is a
concatenation of three paths: q1, q′, and q2, such that qi is a longest root(Ji)-path
in Ji for i = 1, 2, and q′ is the single vertex u. In this subcase |q| = |q1|+ |q2|+ 2.
By the induction hypothesis, |q1| + 1 and |q2| + 1 are two maximum elements in
the multiset P (line 10). Those two values are assigned to x and y (lines 16 and
17) and then their sum is assigned to l1(u) at line 20.

If J1 is a tree minion and J2 is a cycle minion of u, then q is a concatenation
of two paths q1 and q2, such that q1 is a longest root(J1)-path in J1 and q2 is a
longest u-path in J2 + u. In this subcase |q| = |q1| + 1 + |q2|. By the induction
hypothesis, |q1|+ 1 is a maximum element in P . By Lemma 4 and the induction
hypothesis, |q2| is a maximum element in Q. These two values are assigned to x

and y (lines 16 and 17) and their sum is assigned to l1(u) at line 20.
If J1 and J2 are cycle minions of u, then q is the chain of two paths q1

and q2, such that qi is a longest u-path in Ji + u, for i = 1, 2. In this subcase

A Linear Time Algorithm . . . 295

|q| = |q1|+ |q2|. By Lemma 4 and the induction hypothesis, |q1| and |q2| are two
maximum elements in Q. Via lines 16, 17, and 20, the sum of these two values is
assigned to l1(u). Note that x and y cannot possibly be the lengths of paths that
are in the same (cycle) minion.

Now assume 2 is the case. Clearly, q is a longest path in Hj + u that
contains at least one edge of sj . Consider the for loop at lines 14–15 of Compute

Label. Think of the array [0, l2(w
i
1), . . . , l2(w

i
ti
)] as a circular array and apply

Lemma 3. Conclude that after each call to Aux (line 15), zi is a maximum sum
of any two distinct elements of the circular array plus the distance between them.
Clearly, that equals the length of a longest path in H i + u that contains an edge
of si. It follows that at line 18, the value assigned to z is precisely |q|. Therefore,
the value assigned to l1(u) at line 20 is |q|.

Now assume 3 is the case. First assume the only minion of u is a tree one,
namely G1. Let q′ = q−u. Clearly, q′ is a longest v1-path in G1. By the induction
hypothesis, P is {|q′| + 1}M (line 10), so at line 16, x = |q′| + 1, that is |q|, and
at line 17, y = 0. Then at line 20 the value assigned to l1(u) is precisely |q|. Now
assume the only minion of u is a cycle one, namely H1. It is obvious q contains
an edge from s1. Using considerations similar to case 2 above, we conclude that
|q| is assigned to z at line 18, and the value assigned to l1(u) at line 20 is |q|.

Now assume 4 is the case. By the induction hypothesis, l1(u
′) = |q|. So

at line 19, |q| is assigned to m and the value assigned to l1(u) at line 20 is |q|.

Finally, assume 5 is the case. Since q contains a cycle edge sj, we use
considerations similar to case 2 above to conclude that |q| is assigned to z at
line 18, and the value assigned to l1(u) at line 20 is |q|. �

It is trivial to conclude that since Compute Label computes correctly the label
of the whole rooted cactus (Lemma 5), Longest Cactus computes the length
of a longest path in it.

Lemma 6. The recurrence relation

T (1) = Θ(1)

T (n) =
m
∑

i=1

T (ni) + Θ(m)(1)

for any numerical partition n1, n2, . . . , nm of n− 1 has solution T (n) = Θ(n).

P r o o f. We prove that T (n) = O(n) by induction on n. Assume there
are positive constants b and c such that T (n) ≤ c.n− b. Assume the bigger of the

296 M. Markov, M. I. Andreica, K. Manev, N. Ţăpuş

two hidden constants in the “Θ(m)” expression is k. By the induction hypothesis,

T (n) ≤
m
∑

i=1

(c.ni − b) + k.m

= c

m
∑

i=1

(ni)− b.m + k.m

= c(n − 1) + m(k − b)

= c.n − c + m(k − b)

≤ c.n − b, if k − b < 0 and c > b .

The fact that T (n) = Ω(n) is obvious. �

Lemma 7. Compute Label runs in time Θ(|V (G)|).

P r o o f. Assume T (n) denotes the number of elementary operations per-
formed by Compute Label on a cactus with n vertices. Assume m is the
number of the chidren of u and there are ni vertices in the subcactus rooted at
child number i, for 1 ≤ i ≤ m. Then

∑m
i=1

ni = n− 1 since the vertices of G are
partitioned among u and the subcacti rooted at the children of u. Furthermore,
∑m

i=1
T (ni) is the number of elementary operations performed by the recursive

calls of Compute Label (line 9).

It is obvious the execution of lines 10–13 and 16–21 takes time Θ(m).
Note that Aux runs in linear time and conclude the overall running time of the
for loop at lines 14–15 is

Θ(t1 + 1) + Θ(t2 + 1) + . . . + Θ(tr + 1) = Θ

(

r
∑

i=1

ti

)

= Θ(m) .

Therefore, once the recursive calls at line 9 are done, Compute Label works in
Θ(m) time. Apply Lemma 6 to conclude the running time of Compute Label

is Θ(|V (G)|). �

3. Longest paths in weighted cacti. It is easy to see our algorithm
can be modified to compute a longest path as well without violating the linear
running time. Furthermore, it can be modified to compute in linear time the
length of a longest path or the path itself of weighted cacti. In that case, every
vertex or edge x has a nonnegative real weight called w(x), and the length of

A Linear Time Algorithm . . . 297

a path is the sum of the weights of its edges and vertices. [2] describes how to
accomplish the linear time computation on weighted cacti.

4. Conclusions and future work. It is natural to try to extend the
idea of the algorithm that uses labels to more general classes of graphs with tree-
like structure, for instance outerplanar graphs, which means cycles with chords.
The chordless cycles of the cacti allow us to compute in constant time the min-
imum or maximum distance between any two vertices in the cycle, provided the
vertices are indexed in accordance with their order in the cycle. If chords are
present we need additional computation to find these distances, possibly increas-
ing the asymptotic running time.

R EFER EN CES

[1] Alon N., R. Yuster, U. Zwick. Color-coding. J. ACM, 42 (1995), No 4,
844–856.

[2] Andreica M. I., N. Ţăpuş. Central placement of storage servers in tree-like
content delivery networks. In: Proc. of the IEEE Eurocon 2009, ISBN 978-
1-4244-3860-0, 1901–1908. https://mail.cs.pub.ro/~mugurel.andreica/

publications/[eurocon2009]central_placement_storage_servers_

tree-like_CDNs/[eurocon2009]Andreica_Tapus-StorageServers_CDN_

TreeLike.pdf.

[3] Björklund A., T. Husfeldt. Finding a path of superlogarithmic length.
SIAM J. Comput., 32 (2003), No 6, 1395–1402.

[4] Björklund A., T. Husfeldt, P. Kaski, M. Koivisto. Narrow sieves
for parameterized paths and packings. Computing Research Repository,
abs/1007.1161, 2010. http://arxiv.org/abs/1007.1161.

[5] Bulterman R. W., F. W. van der Sommen, G. Zwaan, T. Verhoeff,

A. J. M. van Gasteren, W. H. J. Feijen. On computing a longest path
in a tree. Information Processing Letters, 81 (2002), No 2, 93–96.

[6] Dorn F., F. V. Fomin, D. M. Thilikos. Catalan structures and dynamic
programming in h-minor-free graphs. In: SODA ’08: Proceedings of the nine-
teenth annual ACM-SIAM symposium on Discrete algorithms, Philadelphia,
PA, USA, 2008, Society for Industrial and Applied Mathematics, 631–640.

[7] Downey R. G., M. R. Fellows. Parameterized Complexity. Springer,
1999.

298 M. Markov, M. I. Andreica, K. Manev, N. Ţăpuş

[8] Gabow H. N. Finding paths and cycles of superpolylogarithmic length.
SIAM Journal of Comput., 36 (2007), No 6, 1648–1671. www.cs.colorado.
edu/~hal/u.pdf

[9] Gabow H. N., S. Nie. Finding long paths, cycles and circuits. In: ISAAC
’08: Proceedings of the 19th International Symposium on Algorithms and
Computation, Springer-Verlag, Berlin, Heidelberg, 2008, 752–763.

[10] Garey M., D. Johnson. Computers and Intractability. W. H. Freeman and
Co., New York, USA, 1979.

[11] Karger D. R., R. Motwani, G. D. S. Ramkumar. On approximating
the longest path in a graph. Algorithmica, 18 (1997), No 1, 82–98.

[12] Koutis I. Faster algebraic algorithms for path and packing prob-
lems. In: Proceedings of the 35th international colloquium on Au-
tomata, Languages and Programming, Part I, ICALP ’08, Berlin, Heidel-
berg, 2008, Springer-Verlag, 575–586. http://www.cs.cmu.edu/~jkoutis/

papers/MultilinearDetection.pdf

[13] Monien B. How to find long paths efficiently. Annals of Discrete Math-

ematics, 25 (1985), 239–254.

[14] Uehara R., Y. Uno. On computing longest paths in small graph classes.
International Journal of Foundations of Computer Science, 18 (2007), No 5,
911–930.

[15] Williams R. Finding paths of length k in O∗(2k) time. Information Process-
ing Letters, 109 (2009), No 6, 315–318.

[16] Zhang Z., H. Li. Algorithms for long paths in graphs. Theoretical Computer
Science, 377 (2007), No 1–3, 25–34.

Minko Markov

Krassimir Manev

Department of Computing Systems

Faculty of Mathematics and Informatics

“St. K. Ohridski” University of Sofia

5, J. Bourchier Blvd, P.O. Box 48

1164 Sofia, Bulgaria

e-mail: minkom@fmi.uni-sofia.bg

e-mail: manev@fmi.uni-sofia.bg

Mugurel Ionuţ Andreica

Nicolae Ţăpuş

Computer Science Department

Politehnica University of Bucharest

Splaiul Independenţei 313, sector 6

Bucharest, Romania

e-mail: mugurel.andreica@cs.pub.ro

Received March 21, 2012

Final Accepted June 7, 2012

