7 research outputs found

    Filtrations induced by continuous functions

    Get PDF
    In Persistent Homology and Topology, filtrations are usually given by introducing an ordered collection of sets or a continuous function from a topological space to Rn\R^n. A natural question arises, whether these approaches are equivalent or not. In this paper we study this problem and prove that, while the answer to the previous question is negative in the general case, the approach by continuous functions is not restrictive with respect to the other, provided that some natural stability and completeness assumptions are made. In particular, we show that every compact and stable 11-dimensional filtration of a compact metric space is induced by a continuous function. Moreover, we extend the previous result to the case of multidimensional filtrations, requiring that our filtration is also complete. Three examples show that we cannot drop the assumptions about stability and completeness. Consequences of our results on the definition of a distance between filtrations are finally discussed

    PP-persistent homology of finite topological spaces

    Get PDF
    Let PP be a finite poset. We will show that for any reasonable PP-persistent object XX in the category of finite topological spaces, there is a P−P- weighted graph, whose clique complex has the same PP-persistent homology as XX

    P-persistent homology of finite topological spaces

    Get PDF
    Let P be a finite poset. We will show that for any reasonable P-persistent object X in the category of finite topological spaces, there is a P− weighted graph, whose clique complex has the same P-persistent homology as X

    Combining persistent homology and invariance groups for shape comparison

    Get PDF
    In many applications concerning the comparison of data expressed by R^m-valued functions defined on a topological space X, the invariance with respect to a given group G of self-homeomorphisms of X is required. While persistent homology is quite efficient in the topological and qualitative comparison of this kind of data when the invariance group G is the group Homeo(X) of all self- homeomorphisms of X, this theory is not tailored to manage the case in which G is a proper subgroup of Homeo(X), and its invariance appears too general for several tasks. This paper proposes a way to adapt persistent homology in order to get invariance just with respect to a given group of self-homeomorphisms of X. The main idea consists in a dual approach, based on considering the set of all G-invariant non-expanding operators defined on the space of the admissible filtering functions on X. Some theoretical results concerning this approach are proven and two experiments are presented. An experiment illustrates the application of the proposed technique to compare 1D-signals, when the invariance is expressed by the group of affinities, the group of orientation-preserving affinities, the group of isometries, the group of translations and the identity group. Another experiment shows how our technique can be used for image comparison

    Networked Data Analytics: Network Comparison And Applied Graph Signal Processing

    Get PDF
    Networked data structures has been getting big, ubiquitous, and pervasive. As our day-to-day activities become more incorporated with and influenced by the digital world, we rely more on our intuition to provide us a high-level idea and subconscious understanding of the encountered data. This thesis aims at translating the qualitative intuitions we have about networked data into quantitative and formal tools by designing rigorous yet reasonable algorithms. In a nutshell, this thesis constructs models to compare and cluster networked data, to simplify a complicated networked structure, and to formalize the notion of smoothness and variation for domain-specific signals on a network. This thesis consists of two interrelated thrusts which explore both the scenarios where networks have intrinsic value and are themselves the object of study, and where the interest is for signals defined on top of the networks, so we leverage the information in the network to analyze the signals. Our results suggest that the intuition we have in analyzing huge data can be transformed into rigorous algorithms, and often the intuition results in superior performance, new observations, better complexity, and/or bridging two commonly implemented methods. Even though different in the principles they investigate, both thrusts are constructed on what we think as a contemporary alternation in data analytics: from building an algorithm then understanding it to having an intuition then building an algorithm around it. We show that in order to formalize the intuitive idea to measure the difference between a pair of networks of arbitrary sizes, we could design two algorithms based on the intuition to find mappings between the node sets or to map one network into the subset of another network. Such methods also lead to a clustering algorithm to categorize networked data structures. Besides, we could define the notion of frequencies of a given network by ordering features in the network according to how important they are to the overall information conveyed by the network. These proposed algorithms succeed in comparing collaboration histories of researchers, clustering research communities via their publication patterns, categorizing moving objects from uncertain measurmenets, and separating networks constructed from different processes. In the context of data analytics on top of networks, we design domain-specific tools by leveraging the recent advances in graph signal processing, which formalizes the intuitive notion of smoothness and variation of signals defined on top of networked structures, and generalizes conventional Fourier analysis to the graph domain. In specific, we show how these tools can be used to better classify the cancer subtypes by considering genetic profiles as signals on top of gene-to-gene interaction networks, to gain new insights to explain the difference between human beings in learning new tasks and switching attentions by considering brain activities as signals on top of brain connectivity networks, as well as to demonstrate how common methods in rating prediction are special graph filters and to base on this observation to design novel recommendation system algorithms

    Dynamical and topological tools for (modern) music analysis

    Get PDF
    Is it possible to represent the horizontal motions of the melodic strands of a contrapuntal composition, or the main ideas of a jazz standard as mathematical entities? In this work, we suggest a collection of novel models for the representation of music that are endowed with two main features. First, they originate from a topological and geometrical inspiration; second, their low dimensionality allows to build simple and informative visualisations. Here, we tackle the problem of music representation following three non-orthogonal directions. We suggest a formalisation of the concept of voice leading (the assignment of an instrument to each voice in a sequence of chords) suggesting a horizontal viewpoint on music, constituted by the simultaneous motions of superposed melodies. This formalisation naturally leads to the interpretation of counterpoint as a multivariate time series of partial permutation matrices, whose observations are characterised by a degree of complexity. After providing both a static and a dynamic representation of counterpoint, voice leadings are reinterpreted as a special class of partial singular braids (paths in the Euclidean space), and their main features are visualised as geometric configurations of collections of 3-dimensional strands. Thereafter, we neglect this time-related information, in order to reduce the problem to the study of vertical musical entities. The model we propose is derived from a topological interpretation of the Tonnetz (a graph commonly used in computational musicology) and the deformation of its vertices induced by a harmonic and a consonance-oriented function, respectively. The 3-dimensional shapes derived from these deformations are classified using the formalism of persistent homology. This powerful topological technique allows to compute a fingerprint of a shape, that reflects its persistent geometrical and topological properties. Furthermore, it is possible to compute a distance between these fingerprints and hence study their hierarchical organisation. This particular feature allows us to tackle the problem of automatic classification of music in an innovative way. Thus, this novel representation of music is evaluated on a collection of heterogenous musical datasets. Finally, a combination of the two aforementioned approaches is proposed. A model at the crossroad between the signal and symbolic analysis of music uses multiple sequences alignment to provide an encompassing, novel viewpoint on the musical inspiration transfer among compositions belonging to different artists, genres and time. To conclude, we shall represent music as a time series of topological fingerprints, whose metric nature allows to compare pairs of time-varying shapes in both topological and in musical terms. In particular the dissimilarity scores computed by aligning such sequences shall be applied both to the analysis and classification of music
    corecore