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Networked Data Analytics: Network Comparison And Applied Graph
Signal Processing

Abstract
Networked data structures has been getting big, ubiquitous, and pervasive. As our day-to-day activities
become more incorporated with and influenced by the digital world, we rely more on our intuition to provide
us a high-level idea and subconscious understanding of the encountered data. This thesis aims at translating
the qualitative intuitions we have about networked data into quantitative and formal tools by designing
rigorous yet reasonable algorithms. In a nutshell, this thesis constructs models to compare and cluster
networked data, to simplify a complicated networked structure, and to formalize the notion of smoothness
and variation for domain-specific signals on a network. This thesis consists of two interrelated thrusts which
explore both the scenarios where networks have intrinsic value and are themselves the object of study, and
where the interest is for signals defined on top of the networks, so we leverage the information in the network
to analyze the signals. Our results suggest that the intuition we have in analyzing huge data can be transformed
into rigorous algorithms, and often the intuition results in superior performance, new observations, better
complexity, and/or bridging two commonly implemented methods. Even though different in the principles
they investigate, both thrusts are constructed on what we think as a contemporary alternation in data
analytics: from building an algorithm then understanding it to having an intuition then building an algorithm
around it.

We show that in order to formalize the intuitive idea to measure the difference between a pair of networks of
arbitrary sizes, we could design two algorithms based on the intuition to find mappings between the node sets
or to map one network into the subset of another network. Such methods also lead to a clustering algorithm
to categorize networked data structures. Besides, we could define the notion of frequencies of a given network
by ordering features in the network according to how important they are to the overall information conveyed
by the network. These proposed algorithms succeed in comparing collaboration histories of researchers,
clustering research communities via their publication patterns, categorizing moving objects from uncertain
measurmenets, and separating networks constructed from different processes.

In the context of data analytics on top of networks, we design domain-specific tools by leveraging the recent
advances in graph signal processing, which formalizes the intuitive notion of smoothness and variation of
signals defined on top of networked structures, and generalizes conventional Fourier analysis to the graph
domain. In specific, we show how these tools can be used to better classify the cancer subtypes by considering
genetic profiles as signals on top of gene-to-gene interaction networks, to gain new insights to explain the
difference between human beings in learning new tasks and switching attentions by considering brain
activities as signals on top of brain connectivity networks, as well as to demonstrate how common methods in
rating prediction are special graph filters and to base on this observation to design novel recommendation
system algorithms.
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ABSTRACT

NETWORKED DATA ANALYTICS: NETWORK COMPARISON AND
APPLIED GRAPH SIGNAL PROCESSING

Weiyu Huang

Alejandro Ribeiro

Networked data structures has been getting big, ubiquitous, and pervasive. As our day-to-day ac-
tivities become more incorporated with and influenced by the digital world, we rely more on our
intuition to provide us a high-level idea and subconscious understanding of the encountered data.
This thesis aims at translating the qualitative intuitions we have about networked data into quan-
titative and formal tools by designing rigorous yet reasonable algorithms. In a nutshell, this thesis
constructs models to compare and cluster networked data, to simplify a complicated networked
structure, and to formalize the notion of smoothness and variation for domain-specific signals on
a network. This thesis consists of two interrelated thrusts which explore both the scenarios where
networks have intrinsic value and are themselves the object of study, and where the interest is for
signals defined on top of the networks, so we leverage the information in the network to analyze
the signals. Our results suggest that the intuition we have in analyzing huge data can be trans-
formed into rigorous algorithms, and often the intuition results in superior performance, new
observations, better complexity, and/or bridging two commonly implemented methods. Even
though different in the principles they investigate, both thrusts are constructed on what we think
as a contemporary alternation in data analytics: from building an algorithm then understanding it to
having an intuition then building an algorithm around it.

We show that in order to formalize the intuitive idea to measure the difference between a pair of
networks of arbitrary sizes, we could design two algorithms based on the intuition to find map-
pings between the node sets or to map one network into the subset of another network. Such
methods also lead to a clustering algorithm to categorize networked data structures. Besides, we
could define the notion of frequencies of a given network by ordering features in the network
according to how important they are to the overall information conveyed by the network. These
proposed algorithms succeed in comparing collaboration histories of researchers, clustering re-
search communities via their publication patterns, categorizing moving objects from uncertain
measurmenets, and separating networks constructed from different processes.
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In the context of data analytics on top of networks, we design domain-specific tools by leveraging
the recent advances in graph signal processing, which formalizes the intuitive notion of smooth-
ness and variation of signals defined on top of networked structures, and generalizes conventional
Fourier analysis to the graph domain. In specific, we show how these tools can be used to bet-
ter classify the cancer subtypes by considering genetic profiles as signals on top of gene-to-gene
interaction networks, to gain new insights to explain the difference between human beings in
learning new tasks and switching attentions by considering brain activities as signals on top of
brain connectivity networks, as well as to demonstrate how common methods in rating prediction
are special graph filters and to base on this observation to design novel recommendation system
algorithms.

vi



Contents

Acknowledgement iii

ABSTRACT v

Notations xi

1 Introduction 1
1.1 Network Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Applied Graph Signal Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Published Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

I Network Comparison 13

2 Network Comparison via Correspondence 14
2.1 Pairwise Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2 High Order Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3 Dissimilarity Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3.1 Metrics in The Space of Dissimilarity Networks . . . . . . . . . . . . . . . . . 28
2.4 Proximity Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.4.1 Metrics in The Space of Proximity Networks . . . . . . . . . . . . . . . . . . . 33
2.4.2 Duality between Dissimilarity and Proximity Networks . . . . . . . . . . . . 35

2.5 Comparison of Coauthorship Networks . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.5.1 Quinquennial Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.5.2 Biennial Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3 Persistent Homology Lower Bounds on Network Distances 46
3.1 Networks and Simplicial Complexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.1.1 Representation of High Order Networks as Filtrations . . . . . . . . . . . . . 48
3.1.2 Persistent Homologies and Persistence Diagrams . . . . . . . . . . . . . . . . 51

3.2 Persistence Bounds on Network Distances . . . . . . . . . . . . . . . . . . . . . . . . 54
3.2.1 Persistence Bounds on k-order Distances . . . . . . . . . . . . . . . . . . . . . 60

3.3 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.4 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

vii



3.4.1 Classification of Synthetic Networks . . . . . . . . . . . . . . . . . . . . . . . . 65
3.4.2 Comparison of Coauthorship Networks . . . . . . . . . . . . . . . . . . . . . . 69
3.4.3 Engineering Communities with Different Research Interests . . . . . . . . . . 71

4 Frequency Representation of Networks by Persistent Homology 72
4.1 Homospectrum of Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.1.1 Case Study: Homospectrums of Exemplifying Networks . . . . . . . . . . . . 78
4.2 Filtering of Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.2.1 Case Study: Filtering of Exemplifying Networks . . . . . . . . . . . . . . . . . 83
4.3 Stability of Network Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5 Clustering of Networks based on Distance Bounds 89
5.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.1.1 Dendrograms as Ultrametrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.1.2 Chain, Upper and Lower Chain Costs . . . . . . . . . . . . . . . . . . . . . . . 93

5.2 Axioms of Value and Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.2.1 Minimum Separation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.3 Admissible Ultrametrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.4 Extremal Ultrametrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.4.1 Hierarchical Clustering given Extremal Confidence Level . . . . . . . . . . . 111
5.4.2 Other Constructions of Axiom of Transformation . . . . . . . . . . . . . . . . 114

5.5 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
5.5.1 Clustering of Moving Points by Snapshots . . . . . . . . . . . . . . . . . . . . 116
5.5.2 Clustering of Networks via Distance Bounds . . . . . . . . . . . . . . . . . . . 120

6 Network Comparison via Embeddings and Interiors 125
6.1 Embeddings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
6.2 Interiors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

6.2.1 Distances between Networks Extended to Their Interiors . . . . . . . . . . . 142
6.2.2 Sampling of Interiors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

6.3 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
6.3.1 Effect of Adding Interiors in Network Comparison . . . . . . . . . . . . . . . 146
6.3.2 Identification of Generative Models . . . . . . . . . . . . . . . . . . . . . . . . 149
6.3.3 Unweighted Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
6.3.4 Large Scale Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

II Applied Graph Signal Processing 155

7 Graph Signal Processing 156
7.1 Graph Signals and Shift Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
7.2 Graph Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
7.3 Frequency Representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

viii



8 Diffusion Filtering and Application to Cancer Subtype Classification 159
8.1 Norms and Diffusion Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
8.2 Superposition Distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
8.3 Diffusion Distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

8.3.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
8.4 Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
8.5 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

8.5.1 Classification of Synthetic Signals on Networks . . . . . . . . . . . . . . . . . 176
8.5.2 Ovarian Cancer Histology Classification . . . . . . . . . . . . . . . . . . . . . 178
8.5.3 Handwritten Digit Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

9 Graph Filter and Motor Learning Task 184
9.1 Brain Signals during Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
9.2 Brain Network Frequencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

9.2.1 Artificial Functional Brain Networks . . . . . . . . . . . . . . . . . . . . . . . . 190
9.2.2 Spectral Properties of Brain Networks . . . . . . . . . . . . . . . . . . . . . . . 191
9.2.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

9.3 Frequency Decomposition of Brain Signals . . . . . . . . . . . . . . . . . . . . . . . . 197
9.3.1 Temporal Variation of Graph Frequency Components . . . . . . . . . . . . . 198
9.3.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

9.4 Frequency Signatures of Task Familiarity . . . . . . . . . . . . . . . . . . . . . . . . . 200
9.4.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

10 Graph Filter and Attention Switching 205
10.1 Brain Graphs and Brain Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
10.2 Graph Surrogate Signals and Graph Wavelets . . . . . . . . . . . . . . . . . . . . . . 209

10.2.1 Generation of Graph Surrogate Signals . . . . . . . . . . . . . . . . . . . . . . 209
10.2.2 Wavelets and Slepians on the Graph . . . . . . . . . . . . . . . . . . . . . . . . 210

10.3 A Brain GSP Case Study: Deciphering the Signatures of Attention Switching . . . . 213
10.4 Perspectives for Brain GSP: Studying Functional Dynamics . . . . . . . . . . . . . . 218

10.4.1 Resolving Excursions in Alignment or Liberality Regimes . . . . . . . . . . . 218
10.4.2 Combining Graph Excursions with Fourier Analysis . . . . . . . . . . . . . . 220
10.4.3 Probing Excursions within a Sub-graph with Slepians . . . . . . . . . . . . . 222

11 Recommendation System 224
11.1 Collaborative Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
11.2 NN from a Graph SP Perspective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

11.2.1 Graph-SP Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
11.2.2 Higher Order Graph Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
11.2.3 Mirror Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232

11.3 LF from a Graph-SP Perspective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
11.3.1 Searching Sparse Frequency Coefficients . . . . . . . . . . . . . . . . . . . . . 235

ix



11.3.2 Sampling Bandlimited Graph Signals . . . . . . . . . . . . . . . . . . . . . . . 237
11.4 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

11.4.1 Complexity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240
11.4.2 High-Order NN Graph Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
11.4.3 MiFi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
11.4.4 Sampling Bandlimited Graph Signals . . . . . . . . . . . . . . . . . . . . . . . 247
11.4.5 More Rounds of Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248

12 Conclusion 255

x



Notations

NX Pairwise network on the node set X
rX(x0, x1) Same as r1

X(x0, x1); relationship between pair of nodes
rk

X(x0:k) Relationship between tuples x0, x1, . . . , xk; if necessary
dk

X(x0:k), pk
X(x0:k) Dissimilarity or proximity between tuples

NK
X , DK

X , PK
X High order network, dissimilarity network, proximity network

N K, DK, PK Space of K-order network, dissimilarity network, and proximity network
o(x0:k) Number of unique elements in the tuple
π, ω Maps between set of nodes

Γk
X,Y(C), Γk

X,Y(π) Difference between the network measured by C or π

dk
N , dk

D , dk
P k-order network distance by correspondence, default is k = 1

dN ,p, dD,p, dP ,p p-norm high order network distance

φ, ψ Simplex in the form of [x0:k]

Φk = ∑i βiφi k-chain with coefficients βi

∂k : Φk 7→ Ψk−1 Boundary operator
L and L Simplicial complex and filtration
Hk k-order homological features

Qk and Q̃k k-order persistent diagram and extended persistent diagram
Q = {q} Collection of points q in Qk with birth time qb and death time qd
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Chapter 1

Introduction

Data is getting big, but more than big it is getting pervasive. As our lives become more dependent
and integrated with the digital infrastructure, more aspects of our life get measured and recorded.
This pervasiveness leads to the emergence of novel types of signals for which existing analytic
tools cannot be applied easily. Networked data falls in this category. In the past two decades
we have realized the importance of network models in understanding problems as disparate as
knowledge bases in artificial intelligence, collaboration networks in the social sciences, and brain
and gene networks in bioengineering. Yet, the analysis of these networks is largely based on
heuristics and lags far behind the availability of tools to analyze more conventional signals such
as time series and images. The goal of my thesis is to advance the field of network analytics which
is concerned with the development of formal tools to analyze network data.

Often, networks have intrinsic value and are themselves the object of study. Other times, the
network defines an underlying notion of proximity, but the object of interest is signals defined
on top of this graph. In this thesis I propose to study both types of networked data. In the
former space my goal is to develop tools for network discrimination based on the definition and
evaluation of proper distances between networks. In the latter space my research is on exploring
the application of graph signal processing tools to find insights that would be absent with other
tools. My specific goal is to study the applicability to recommendation system and brain imaging
analytics. A description of these two research directions is offered in the following.

1.1. Network Comparison

The purpose of this part of my thesis is to develop network discrimination tools that can be
applied to network comparison problems that appear in neuroscience, biology, and the social
sciences [1, 2, 3, 4]. As a prototypical example consider neurodegenerative diseases for which
ultimate causes remain unknown but for which proximate causes are alterations in the pattern
of brain connectivity. Memory, cognitive, coordination, and behavioral changes associated with
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Parkinson’s, Alzheimer’s, and Huntington’s diseases have all been associated with patterns of
brain activity that have distinct markers when compared with the activity patterns of healthy in-
dividuals [5, 6]. Knowing these alterations in brain connectivity is not only useful to foster our
understanding of these disorders but also as a diagnostic tool. Changes in connectivity allow
differentiation of disorders that appear with similar symptoms – an example being the discrim-
ination between Alzheimer’s and frontotemporal dementia [7] – and can also be used for early
diagnosis as patterns start to change before patients exhibit clear symptoms. The outcome of
these research effort is a network discrimination tool that can solve this diagnostic question and
other similar questions such as discerning collaboration mores of research communities [8] and
predicting the mortality of an emergent virus by studying the shape of its evolutionary tree [9].

The problem of defining distances between networks is not complicated if nodes have equal labels
in both networks [10, 11, 12]. The problem, however, becomes very challenging if a common label-
ing doesn’t exist in both networks, as we need to consider all possible mappings between nodes
of each network. This complexity has motivated the use of network features as alternatives to the
use of distances. Examples of features that have proved useful in particular settings are clustering
coefficients [13], neighborhood topology [14], betweenness [15], motifs [16], wavelets [17], as well
as graphlet degree distributions or signatures [18, 19, 20]. Although feature analysis is often effec-
tive, it is application-dependent, utilizes only a small portion of the information conveyed by the
networks, and networks not isomorphic may still have zero dissimilarity as measured by features.
These drawbacks can be overcome with the definition of valid metric distances that are be uni-
versal, depend on all edge weights, and are null if and only if the networks are isomorphic [21].
We point out that one can think of defining distances between networks as a generalization of the
graph isomorphism problem [22] where the question asked is whether two networks are the same
or not. When defining network distances we also want a measure of how far the networks are and
we want these measure to be symmetric and satisfy the triangle inequality [21]. In Chapter 2 we
address the problem to construct metric distances in the space of network.

Moreover, in Chapter 2 we also consider high order networks that describe relationships between
elements of tuples and address the problem of constructing valid metric distances between them.
Most often, networks are defined as structures that describe interactions between pairs of nodes
[23, 24]. This is an indisputable appropriate model for networks that describe binary relationships,
such as communication or influence, but not so appropriate for problems in which binary, ternary,
or n-ary relationships in general, have different implications. This is, e.g., true of coauthorship
networks where we count the number of joint publications by groups of scholars. Papers written
by pairs of authors capture information that can be used to identify important authors and study
mores of research communities. However, there is extra information to be gleaned from collabora-
tions between triplets of authors, or even single author publications. The importance of capturing
tuple proximities between groups of nodes other than pairs has been recognized and exploited in
multiple domains including coverage analysis in sensor networks [25, 26, 27], cognitive learning
and memory [28], broadcasting in wireless networks [29], image ranking [30], three-dimensional
object retrieval and recognition [31], and group relationship structure in social networks [32].
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Figure 1: Network filtering based on persistent homology enables us to remove unimportant
features to preserve the defining attributes represented by the network.

The metric distances between high order networks defined in Chapter 2 can be applied to com-
pare networks with small number of nodes and succeed in identifying collaboration patterns of
coauthorship networks. However, because they have to consider all possible node correspon-
dences (Definition 1), network distances are difficult to compute when the number of nodes in
the networks is large. The goal of Chapter 3 is to develop network discrimination methods that
are computable in networks with large numbers of nodes. These discrimination methods are con-
structed by drawing a parallel between high order networks and algebraic topology filtrations.
Homological features of filtrations are then used to compare high order networks and shown to
provide lower bounds for the actual network distances. Although distance lower bounds suffer
from some of the same problems associated with feature comparisons, they nonetheless have im-
portant properties. Among them, we know that a large lower bound entails a large distance and
that we can use lower bounds to estimate distance intervals because upper bounds are easy to de-
termine. The idea of using persistent homology to get lower bounds is related to the development
of size theory – e.g. [33] – and the consideration of multidimensional persistent Betti numbers, see
e.g. [34]. Besides, the discrete approach examined in this manuscript is not restrictive but closely
related with continuous approaches considered in previous work such as [35].

In defining the network distance lower bounds via persistent homology, we realize that important
features in a given network have a lasting homology while an unimportant feature tends to be
more ephemeral in homology. Therefore, persistent homology introduces a natural notion of
frequency for information in the network, and can be used to filter out irrelevant information
to keep the most significant features. In Chapter 4 we explore how to filter a network to make
it simpler while keeping its signatures. Intuitively, for the network describing the point cloud
structure on the left of Figure 1, because most points form a ring structure, we would expect the
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filtered network to form a simpler and less twisting ring, like the right of Figure 1. In Chapter
4, we follow results in Chapter 3 to advocate the use of persistent homology [36, 37, 38] in such
network filtering operation. It is known that more persistent homological features are more likely
associated with true features, rather than artifacts of sampling or noise [38]. We leverage such
charactersitic to define the frequency, spectrum, and the filter operation on networks. Our main
contributions are: (i) We can define valid transforms from networks to homology frequency, and
from homology frequency back to networks (Theorem 7), (ii) The difference between the original
network and its filtered network is small (Theorem 8), and (iii) If we apply filter onto a pair of
networks, the distance between the filtered networks well preserves the original distance between
the pair (Theorem 9).

From the network distances defined in Chapter 2, we could evaluate network distance lower
bound by using homological features of the corresponding network from results in Chapter 3. In
the same time, network upper bounds can be easily obtained by using specific correspondence
between the node spaces of the two networks. These two observations combined imply that we
have both lower and upper bounds – computationally efficient – of the actual network distances,
which are unknown due to computational intractability. In principal, we could cluster the space
of networks using these bounds. Motivated by this, in Chapter 5 we study the clustering problem
where distances between points are uncertain but known to be in an interval with lower and
upper bounds. We use axiomatic approach by first defining reasonable requirements that any
clustering methods in such problem should satisfy, and exploring which methods are reasonable.
Clustering via distance intervals is a particular case of the problem of clustering with uncertain
observations where the unpredictability is given by the distance intervals. Clustering methods
that attempt to take uncertainty into consideration include the construction of models to replicate
the properties of uncertainties in the data [39, 40, 41], the consideration of multiple observations
of points given in a Euclidean space [42, 43, 44, 45], and the uncertainty exclusive clustering
methods [46, 39, 47]. The work in Chapter 5 differs in that we investigate situations where the
only available information are the upper and lower bounds of the dissimilarities. Since distance
intervals can be constructed from partial information in the uncertain samples, distance intervals
can be considered as a more crude observation.

It has been proved in [48] that single linkage [49, Ch. 4] is the unique hierarchical clustering
method that satisfies three reasonable axioms. These results were later extended to asymmetric
networks not necessarily metric, and the number of axioms required for unicity results reduced
to only two [48, 21]. In the case of metric spaces the two properties that are imposed as axioms in
[21] can be intuitively stated as:

(A1) Axiom of Value. Two nodes form a single cluster determined by their distance.

(A2) Axiom of Transformation. A metric space that is uniformly dominated by another metric space
should have clusters that are uniformly dominated.

The goal of Chapter 5 is to extend the axiomatic construction of hierarchical clustering in [48, 21]
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Figure 2: An example where different networks result in identical multi-dimensional scaling re-
sults. We emphasize that the number of dimension used in multi-dimensional scaling would not
distinguish networks since the triangle inequality property for relationships between nodes in the
networks is violated. Such a caveat would be solved by inducing semimetrics in the space defined
by the given networks, as we develop throughout Section 6.2.

for clustering based on distance intervals. To adapt condition (A1) we introduce a confidence
parameter which is intended to assign different relative trusts to lower and upper bounds and
require that: (A1) The nodes in a network with two nodes are clustered at the convex combination
of the interval extremes dictated by the confidence parameter. Condition (A2) are then adapted
correspondingly to fit in the realm of confidence parameter for distance intervals. The contribu-
tions of Chapter 5 are: (i) To define the combine-and-cluster and cluster-and-combine methods that
satisfy axioms (A1) and (A2). (ii) To prove that these methods are extremal across all methods that
satisfy axioms (A1) and (A2). (iii) To demonstrate the practical applicability of the methods in the
clustering of moving points via snapshots and the clustering of coauthorship networks denoting
collaboration between researchers.

Finally, instead of searching mappings among nodes between networks as in the methods I de-
veloped, network discrimination problems can also be solved by considering that each network
represents a space. Under such setup, network distances can be evaluated as the difference be-
tween the first network and the embedding of the second network onto the space defined by the
first network. Prior work indicates that multi-dimensional scaling (MDS) yields good approxima-
tion of embedding distance when relationships satisfy triangle inequality [50, 51, 52]. However,
we observed that MDS results are suboptimal since different networks may have identical MDS
results, as illustrated in Figure 2. In Chapter 6 we propose to mitigate such issue by constructing
interiors of networks, i.e. adding more points in the network that preserve the property of the
original networks. Having the ability to extend networks into their interiors, we extend different
networks and compute partial embedding distances between their extensions. In principle, dis-
tances between two networks and their respective extensions need not be related. In Section 6.2.1
we show that a restriction in the embedding of the extended networks renders them identical.
The most important theoretical results is that we are able to show that the embedding distance
that results from this restriction is the same embedding distance between the original networks. In
Chapter 6 we exploit the interiors and embeddings to approximate the computation of embedding
distances using the MDS techniques in [51] but applied to networks extended to their interiors.
The definition of an interior improves the quality of MDS distance approximations.
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1.2. Applied Graph Signal Processing

In the network discrimination part of my thesis, networks are themselves the interest of analy-
sis. In this second thrust, the network serves as an underlying topology describing proximities
between vertices and the subject of study is a signal supported on the network [53, 54]. The pur-
pose of this part of my thesis is to develop domain specific network analysis tools by leveraging
the information entailed by the network in order to make apparent the presence of features that
would otherwise remain occult.

As an example, consider the core task of a recommendation system which is the estimation of
the rating that a user would give to a certain item. Traditionally, ratings are considered as a two
dimensional matrix and the main techniques used to solve the prediction problem are matrix com-
pletion [55] and collaborative filtering [56]. These methods rely on the fact that while the number
of users of the system may be large there is a much smaller number of tastes. While empirical ob-
servations say that this is largely true, the inherent noise in available rankings limits the precision
of these tools. My approach to this problem is to use ratings and meta-information to construct
a network of similarities between items. The ratings given by each user can then be viewed as a
graph signal. It further follows that the ratings given by the same user should be similar if the
evaluated items are highly alike with respect to the similarity measure in the constructed net-
work. The information can also be used to construct an underlying network entailing proximities
between user tastes, and the ratings for each item could be considered as a graph signal defined
on top of this network – the exact dual by switching the roles of items and users –, and the ratings
given for the same item should be similar if the users who assess them possess similar tastes. In
either case, the estimation of rankings can be formulated as a low pass filtering problem. The
signal that we are given is highly variable because many ratings are missing. The signal that we
want is a low frequency signal where similar nodes have similar ratings.

The emerging field of graph signal processing (GSP) addresses the problem of analyzing and
extracting information from data defined not in regular domains such as time or space, but on
more irregular domains that can be conveniently represented by a graph. The fundamental GSP
concepts that we utilize to analyze brain signals are the graph Fourier transform (GFT) and the
corresponding notions of graph frequency components and graph filters. These concepts are gen-
eralizations of the Fourier transform, frequency components, and filters that have been used in
regular domains such as time and spatial grids [57, 58, 59]. As such, they permit the decompo-
sition of a graph signal into pieces that represent different levels of variability. We can define
low graph frequency components representing signals that change slowly with respect to brain
networks, and high graph frequency components representing signals that change swiftly with
respect to the connectivity networks. This is crucial because low and high temporal variability
have proven to be important in the analysis of neurological disease and behavior [60, 61]. GFT-
based decompositions permit a similar analysis of variability across regions of the brain for a
fixed time – a sort of spatial variability measured with respect to the connectivity pattern. We
review a recent study [62] that such a decomposition can be used to explain individual cognitive
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differences, as illustrated in Figures 76 and 78, and offer other perspectives to apply graph signal
processing to functional brain analytics. The theory of GSP has been growing rapidly in recent
years, with development in areas including sampling theory [63, 64], stationarity [65, 66] and un-
certainty [67, 68, 69, 70], filtering [71, 72, 73], directed graphs [74], and dictionary learning [75].
Applications have been spanning many areas including neuroscience [76, 77], imaging [78, 79],
medical imaging [80], video [81], online learning [82], and rating prediction [83, 84, 85, 86, 87].

After introducing notations and definitions of GSP in Chapter 7, we start the Part II in Chapter 8
by first considering signals supported on graphs and addressing the challenge of defining a notion
of distance between these signals that incorporates the structure of the underlying network. We
want these distances to be such that two signals are deemed close if they are themselves close –
in the examples in the previous paragraph we have gene expression or brain activation patterns
that are similar –, or if they have similar values in adjacent or nearby nodes – the expressed genes
or the active areas of the brain are not similar but they effect similar changes in the gene network
or represent activation of closely connected areas of the brain. We define here the diffusion and
superposition distances and argue that they inherit this functionality through their connection
to diffusion processes. Besides, in Chapter 8 we illustrate that both distances are well behaved
with respect to small perturbations in the underlying network and demonstrate their value in two
practical scenarios; the classification of ovarian cancer types from gene mutation profiles and the
classification of handwritten arabic digits.

Advances in neuroimaging techniques such as magnetic resonance imaging (MRI) have provided
opportunities to measure human brain structure and function in a non-invasive manner [88].
Diffusion-weighted MRI allows to measure major fiber tracts in white matter and thereby map
the structural scaffold that supports neural communication. Functional MRI (fMRI) takes an
indirect estimate of the brain approximately each second, in the form of blood oxygenation level-
dependent (BOLD) signals. An emerging theme in computational neuroimaging is to study the
brain at the systems level with such fundamental questions as how it supports coordinated cog-
nition, learning, and consciousness.

Shaped by evolution, the brain has evolved connectivity patterns that often look haphazard yet
are crucial in cognitive processes. The apparent importance of these connectomes, has motivated
the emergence of network neuroscience as a clearly defined field to study the relevance of network
structure for cognitive function [89, 90, 91]. The fundamental components in network neuroscience
are graph models [92] where nodes are associated to brain regions and edge weights are associated
with the strength of the respective connections. This connectivity structure can be measured
directly by counting fiber tracts in diffusion weighted MRI or can be inferred from fMRI BOLD
measurements. In the latter case, networks are said to be functional and represent a measure of
co-activation, e.g., the pairwise Pearson correlation between the activation time series of nodes.
Functional connectivity networks do not necessarily represent physical connections although it
has been observed that there is a strong basis of anatomical support for functional networks [93].

Connectomes, structural and functional alike, have been successfully analyzed utilizing a variety
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of tools from graph theory and network science [92]. These analyses have uncovered a variety of
measures that reflect organizational principles of brain networks such as the presence of commu-
nities where groups of regions are more strongly connected between each other than with other
communities [93, 94]. Network analysis has also been related to behavioral and clinical mea-
sures by statistical methods or machine learning tools to study development, behavior, and ability
[95, 96, 97].

As network neuroscience expands from understanding connectomes into understanding how con-
nectomes and functional brain activity support behavior, the study of dynamics has taken center
stage. In addition, there is a rise of interest in analyzing and understanding dynamics of functional
signals and with them, network structure. Such changes happen at different timescales, from years
– e.g., in developmental studies [98] – down to seconds within a single fMRI run of several min-
utes [99], or following tasks such as learning paradigms [97, 62, 76]. So far, common approaches
include examining changes in network structure (e.g., reflecting segregation and integration) [100]
or investigating time-resolved measures of the underlying functional signals [101, 102, 103]. In the
case of developmental studies, the evolution of structural networks is important, but large-scale
anatomical changes do not occur in the shorter time scales that are involved in behavior and ability
studies. In the latter case, the notion of a dynamic network itself makes little sense and the more
pertinent objects of interest are the dynamic changes in brain activity signals [62, 76]. Inasmuch
as brain activity is mediated by physical connections, the underlying network structure must be
taken into account when studying these signals. Tools from the emerging field of GSP are tailored
for this purpose. We have applied such tools to analyze fMRI signals on top of the brain networks
denoting functional connectivity (Chapter 9) as well as the brain networks quantifying structural
connectivity (Chapter 10).

For brain networks denoting functional similarity between pairs of brain regions as in Chapter 9,
we applied graph frequency analysis to a group of subjects try to learn a visual task. The most
important observations are: (i) In terms of changes throughout the learning process, at the start
of the task, BOLD signals concentrate on graph high frequency components; at the end of the
task, BOLD signals concentrate on graph low frequency components; such change is significant.
(ii) In terms of contribution to better learning performance, at the start of learning, BOLD signals
concentrating on graph low frequency entail better learning performance; at the end of learning,
BOLD signals concentrating on graph high frequency imply better learning performance; such
change in association is significant as well.

For brain networks denoting structural connectivity between pairs of brain regions as in Chapter
10, I applied graph frequency analysis to a group of subjects in two tasks that require no attention
switching, and active attention switching, respectively. We are interested in the additional time for
subjects to switch their attention, and observed that: higher concentration in graph high frequency
implies slower attention switching. These two results, from both the functional and structural
brain perspectives, illustrate that when subjects are unfamiliar with an task, it is good to have
BOLD measurements to be more concentrated on graph low frequency components.

8



Finally, GSP tools can also be used to predict unknown in modern recommendation systems.
Widespread deployment of Internet technologies has generated massive enrollment of online cus-
tomers in web services, propelling the emergence of recommendation systems to assist customers
in making decisions [104, 105]. Recommendation systems use ratings that customers have given
to specific products they have consumed to predict the ratings that similar users would give to
similar products. In making these predictions, recommendation systems exploit product similari-
ties and the closeness of user preferences, both of which can be inferred from information that is
exogenous or endogenous to the system. The most popular exogenous information approach is
content filtering, which starts by defining a set of features that characterize users and items and
then uses those to perform predictions on the unrated items [104, 105]. The most popular en-
dogenous information approach is collaborative filtering, which relies on past user behavior and
carries out predictions without defining a priori set of features. Although collaborative filtering
comes with certain disadvantages (in particular when rating new products or users), it typically
requires less assumptions than content filtering and yields a superior performance in real datasets
[105]. As a result, it has emerged as the central approach for recommendation systems.

The two main techniques to design collaborative filtering algorithms are nearest neighbors (NN)
estimators and latent linear factor (LF) models. User-based NN schemes work under the assump-
tion that users who are similar tend to give similar ratings for the same product and proceed in
two phases. In the first phase they use a pre-specified similarity metric to compute a similarity
score for each pair of users. To avoid over-fitting and simplify computations, only similarities
that exceed a threshold are considered, thereby producing a sparse graph of user similarity scores
[106]. In the second phase, the unknown ratings for a particular user are obtained by combining
the ratings that similar users have given to the unrated items as dictated by the similarity graph.
Likewise, item-based NN approaches work under the assumption that similar products receive
similar ratings and create a product similarity graph to assign ratings to unrated products.

LF approaches bypass notions of user or product similarity by posing the existence of a num-
ber of latent factors that generate the user-item rating function. The main difference relative to
content-filtering approaches is that here the factors are not defined a priori, but inferred from the
available ratings. Although nonlinear latent factor models exist, the linear models based on ma-
trix factorization (aka matrix completion methods [107]) combine tractability with good practical
performance [105]. In particular, by arranging the available ratings in a matrix form with one of
the dimensions corresponding to users and the other one to items, LF schemes typically carry
out a low-rank singular value decomposition (SVD) that jointly maps users and items to a latent
factor linear space of reduced dimensionality [105]. The rating user-item function is then modeled
simply as inner products in the reduced subspace defined by the SVD.

The goal of Chapter 11 is to reinterpret collaborative filtering algorithms using tools from GSP
and designs new and more general recommendation schemes, but equally relevant unveils im-
portant connections between collaborative filtering and GSP. More precisely, we show that NN
can be viewed as algorithms that obtain the ratings by processing the available information with
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a graph filter. Moreover, matrix factorization methods can be reinterpreted as interpolation al-
gorithms that, given a subset of signal observations (ratings), recover the full signal under the
assumption that the ratings are bandlimited in a particular spectral domain. This interpretation
not only provides a better understanding on the differences and similarities between the two
approaches, but it also opens the door to the design of more advanced algorithms leading to a
better recommendation accuracy. In a nutshell, the contributions of Chapter 11 are: (i) To demon-
strate how the standard collaborative filtering approaches based on NN and LF can be interpreted
as particular types of GSP algorithms that model the rating signal as bandlimited. (ii) To ex-
ploit this interpretation to design more general algorithms for NN and LF. (iii) To show that the
proposed methods indeed produce significant improvement regarding rating prediction accuracy
in the publicly available MovieLens 100k dataset [108]. (iv) To identify and discuss interesting
observations found when using this GSP approach, which can be leveraged in the design of fu-
ture recommendation system algorithms. Relative to existing contributions dealing with graph
SP schemes for two-dimensional rating prediction [83, 109, 87], the work in this paper is more
comprehensive, provides novel insights and puts forth new algorithms. More specifically, in the
context of LF models, [83] formulates a low-rank matrix completion problem augmented with a
regularizer term that promotes smoothness of the predicted ratings on the similarity graph. In
comparison, our work proposes a bandlimited sampling implementation, where we separate the
estimation of the frequency components (singular vectors) from the estimation of frequency coef-
ficients (singular values) of the rating matrix; this separation allows for more general interpolators
and reduces the computational complexity, see Section 11.4.1. In the context of NN prediction,
[109] uses a pre-determined low-pass graph filter to predict ratings. In comparison, this work pos-
tulates more flexible graph filters, finds the optimal (band-stop) filter coefficients in the training
phase, and introduces graph filters that operate in both the user and the item domain. Finally,
[87], which was published after the submission of this manuscript, uses similarity graphs and
graph SP to extract local spatial features from the observed ratings, and then feeds the extracted
features into a recurrent neural network to diffuse entries to reconstruct the rating matrix. Our
work uses graph SP to find the optimal higher order band-stop filter via training, and to separate
the estimation of singular vectors from the estimation of singular values of the rating matrix.

1.3. Published Results

My Ph.D. work on network theory and applied graph signal processing has resulted in the pub-
lication of 10 journals papers in the Institute of Electrical and Electronic Engineers (IEEE) IEEE
Transactions on Signal Processing [8, 76, 110, 111, 112, 113], IEEE Journal on Selected Topics
in Signal Processing [114], IEEE Transaction on Signal and Information Processing over Net-
works [115], Nature Human Behavior [62], and Neurology [116]. A tutorial paper featuring
work in this thesis appeared in the Proceedings of IEEE [117]. The work has also been dis-
seminated at pertinent conferences where a total of 13 articles have been accepted for presentation
[118, 119, 120, 121, 85, 122, 123, 84, 124, 125, 126, 127, 128].
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Network Comparison

11



Chapter 2

Network Comparison via
Correspondence

The main problem addressed in this chapter is the construction of metric distances between high
order networks. Formal definitions of high order networks are presented (Section 2.2) as a gen-
eralization of pairwise networks (Section 2.1). Dissimilarity networks (Section 2.3) and proximity
networks (Section 2.4) are specific high order networks where relationship functions are intended
to encode dissimilarities or proximities between members of tuples. Dissimilarity networks are
characterized by the order increasing property which states that tuples become more dissimilar
when members are added to a group. Proximity networks abide to the order decreasing property
which states that tuples becomes less similar when adding nodes to the group. Two families of
proper metric distances are then defined in the respective space of dissimilarity (Section 2.3.1)
and proximity (Section 2.4.1) networks modulo permutation isomorphisms. These distances are
built as generalizations of the pairwise distances in [21], which are themselves generalizations
of the Gromov-Hausdorff distance between metric spaces [129, 130]. We also establish a duality
between dissimilarity and proximity networks and the different metrics (Section 2.4.2). We use
the proximity network distances defined in the chapter to compare the coauthorship networks
of two popular signal processing researchers and show that they succeed in discriminating their
collaboration patterns (Section 2.5).

2.1. Pairwise Networks

Conventionally, a network is defined as a pair NX = (X, r1
X), where X is a finite set of nodes

and r1
X : X2 = X × X → R+ is a function that may encode similarity or dissimilarity between

elements. For points x, x′ ∈ X, values of this function are denoted as r1
X(x, x′). We assume that

r1
X(x, x′) = 0 if and only if x = x′ and we further restrict attention to symmetric networks where

r1
X(x, x′) = r1

X(x′, x) for all pairs of nodes x, x′ ∈ X. The set of all such networks is denoted as N .
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When defining a distance between networks we need to take into consideration that permutations
of nodes amount to relabelling nodes and should be considered as same entities. We therefore
say that two networks NX = (X, r1

X) and NY = (Y, r1
Y) are isomorphic whenever there exists a

bijection π : X → Y such that for all points x, x′ ∈ X,

r1
X(x, x′) = r1

Y(π(x), π(x′)). (2.1)

Such a map is called an isometry. Since the map π is bijective, (2.1) can only be satisfied when
X is a permutation of Y. When networks are isomorphic we write NX ∼= NY. The space of
networks where isomorphic networks NX ∼= NY are represented by the same element is termed
the set of networks modulo isomorphism and denoted by N mod ∼=. The space N mod ∼=
can be endowed with a valid metric [21]. The definition of this distance requires introducing the
prerequisite notion of correspondence [131, Def. 7.3.17].

Definition 1 A correspondence between two sets X and Y is a subset C ⊆ X×Y such that ∀ x ∈ X, there
exists y ∈ Y such that (x, y) ∈ C and ∀ y ∈ Y there exists x ∈ X such that (x, y) ∈ C. The set of all
correspondences between X and Y is denoted as C(X, Y).

A correspondence in the sense of Definition 1 is a map between node sets X and Y so that every
element of each set has at least one correspondent in the other set. Correspondences include
permutations as particular cases but also allow for the mapping of a single point in X to multiple
correspondents in Y or, vice versa. Most importantly, this allows definition of correspondences
between networks with different numbers of elements. We can now define the distance between
two networks by selecting the correspondence that makes them most similar as we formally define
next.

Definition 2 Given two networks NX = (X, r1
X) and NY = (Y, r1

Y) and a correspondence C between the
node spaces X and Y define the network difference with respect to C as

Γ1
X,Y(C) := max

(x1,y1),(x2,y2)∈C

∣∣∣r1
X(x1, x2)− r1

Y(y1, y2)
∣∣∣ . (2.2)

The network distance between networks NX and NY is then defined as

d1
N (NX , NY) := min

C∈C(X,Y)

{
Γ1

X,Y(C)
}

. (2.3)

For a given correspondence C ∈ C(X, Y) the network difference Γ1
X,Y(C) selects the maximum dis-

tance difference |r1
X(x1, x2)− r1

Y(y1, y2)| among all pairs of correspondents – we compare r1
X(x1, x2)

with r1
Y(y1, y2) when the points x1 and y1, as well as the points x2 and y2, are correspondents.

The distance in (2.3) is defined by selecting the correspondence that minimizes these maximal
differences. The distance in Definition 2 is a proper metric in the space of networks modulo iso-
morphism. It is nonnegative, symmetric, satisfies the triangle inequality, and is null if and only
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if the networks are isomorphic [21]. For future reference, the notions of metric and pseudometric
are formally stated next.

Definition 3 Given a space S and an isomorphism ∼=, a function d : S × S → R is a metric in S
mod ∼= if for any a, b, c ∈ S the function d satisfies:

(i) Nonnegativity. d(a, b) ≥ 0.

(ii) Symmetry. d(a, b) = d(b, a).

(iii) Identity. d(a, b) = 0 if and only if a ∼= b.

(iv) Triangle inequality. d(a, b) ≤ d(a, c) + d(c, b).

The function is a pseudometric in S mod ∼= if for any a, b, c ∈ S the function d satisfies (i), (ii), (iv),
and

(iii’) Relaxed identity. d(a, b) = 0 if a ∼= b.

A metric d in S mod ∼= gives a proper notion of distance. Since zero distances imply elements
being isomorphic, the distance between elements reflects how far they are from being isomorphic.
Pseudometrics are relaxed since elements not isomorphic may still have zero distance measured
by the pseudometrics. The distance in Definition 2 is a metric in space N mod ∼=. Observe that
since correspondences may be between networks with different number of elements, Definition
2 defines a distance d1

N (NX , NY) when the node cardinalities |X| and |Y| are different. In the
particular case when the functions r1

X satisfy the triangle inequality, the set of networks N reduces
to the set of metric spaces M. In this case the metric in Definition 2 reduces to the Gromov-
Hausdorff (GH) distance between metric spaces. The distances d1

N (NX , NY) in (2.3) are valid
metrics even if the triangle inequalities are violated by r1

X or r1
Y [21].

In this chapter we consider high order networks where the specification of functions rk
X : Xk+1 →

R+ are meant to encode similarities or dissimilarities between node (k+ 1)-tuples. The goal of this
chapter is to devise generalizations of Definition 2 to high order networks and to prove that they
define valid metrics in the space of high order networks modulo isomorphism; see Definitions 11,
12, 14, and 15.

2.2. High Order Networks

A network of order K over the node space X is defined as a collection of K + 1 relationship
functions {rk

X : Xk+1 → R+}K
k=0 from the space Xk+1 of (k + 1)-tuples to the nonnegative reals,

NK
X =

(
X, r0

X , r1
X , . . . , rK

X

)
. (2.4)

A network of order K can be considered as a weighted complete hypergraph [132, 133] whose
weights for all hyperedges of elements of all (k + 1) tuples with 0 ≤ k ≤ K are defined.
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When some nodes are repeated in the point collection x0:k := (x0, x1, . . . , xk) ∈ Xk+1, the relation-
ship function rk

X(x0:k) entails the same information as the relationship function between the largest
non-repeating subtuple of x0:k. In future definitions, it would be important to take the number
of distinct elements of a tuple into consideration. We formalize this property by introducing the
notion of the rank of tuples as we formally specify next.

Definition 4 The rank s(x0:k) of a given tuple x0:k is the number of unique elements in the tuple.

It follows from Definition 4 that the rank s(x, x) = 1 and that the rank s(x′, x, x′) = 2. Moreover,
the relationship function between a tuple x0:k is identical to the relationship functions of subtuples
of x0:k that have same rank as s(x0:k) since they imply same information. This remark along with
a symmetry property makes up the formal definition of high order networks that we introduce
next.

Definition 5 NK
X =

(
X, r0

X , r1
X , . . . , rK

X
)

is a K-order network if the following two properties holds:

Symmetry. For any 0 ≤ k ≤ K and any point collections x0:k, we have that

rk
X(x[0:k]) = rk

X(x0:k), (2.5)

where x[0:k] = ([x0], [x1], . . . , [xk]) is a reordering of x0:k := (x0, x1, . . . , xk).

Identity. For any 0 ≤ k ≤ K and tuple x0:k, any of its subtuple xl0 :lk̃
with s(x0:k) = s(xl0 :lk̃

) satisfies

rk
X(x0:k) = rk̃

X(xl0 :lk̃
). (2.6)

The set of all high order networks of order K is denoted as N K.

For point collections x0:k, values of their k-order relationship functions are denoted as rk
X(x0:k) and

are intended to represent a measure of similarity or dissimilarity for members of the group. In
particular, the zeroth order function r0

X encodes relative weights of different nodes and the first
order function r1

X represents the pairwise information discussed in Section 2.1. Observe however
that pairwise networks are not particular cases of networks of order 1 because a network of order
K not only requires the definition of relationships between (K + 1)-tuples but also of relationships
between (k + 1)-tuples for all integers 0 ≤ k ≤ K. A network of order 0 is one in which only
node weights are given, a network of order 1 is one in which weights and pairwise relationships
are defined, a network of order 2 adds relationships between triplets and so on. Examples for
the identity property includes r2

X(x, x) = r1
X(x) and r3

X(x′, x, x′) = r2
X(x, x′). We assume that

relationship values are normalized so that 0 ≤ rk
X(x0:k) ≤ 1 for all k and x0:k. As in the case of

pairwise networks we consider K-order networks NK
X and NK

Y to be equivalent for their k-order
relationship functions if rk

X is a permutation of rk
Y as we formally define next.
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Definition 6 We say that two networks NK
X and NK

Y are k-isomorphic if there exists a bijection π : X → Y
such that for all x0:k ∈ Xk+1 we have

rk
Y(π(x0:k)) = rk

X(x0:k), (2.7)

where we use the shorthand notation rk
Y(π(x0:k)) := rk

Y(π(x0), π(x1), . . . , π(xk)). The map π is called a
k-isometry.

When networks NK
X and NK

Y are k-isomorphic we write NK
X
∼=k NK

Y . The space of K-order networks
modulo k-isomorphism is denoted by N K mod ∼=k. For each nonnegative integer 0 ≤ k ≤ K,
the space N K mod ∼=k of networks of order K modulo k-isomorphism can be endowed with a
pseudometric. The definition of this family of pseudometrics is a generalization of Definition 2 as
we formally state next.

Definition 7 Given networks NK
X and NK

Y , a correspondence C between the node spaces X and Y, and an
integer 0 ≤ k ≤ K define the k-order network difference with respect to C as

Γk
X,Y(C) := max

(x0:k ,y0:k)∈C

∣∣∣rk
X(x0:k)− rk

Y(y0:k)
∣∣∣ , (2.8)

where the notation (x0:k, y0:k) stands for (x0, y0), (x1, y1), . . . , (xk, yk). The k-order network distance be-
tween networks NK

X and NK
Y is then defined as

dk
N (NK

X , NK
Y ) := min

C∈C(X,Y)

{
Γk

X,Y(C)
}

. (2.9)

We further define the K-order distance vector as the K+ 1 dimensional vector dK
N (NK

X , NK
Y ) =

[
d0
N (NK

X , NK
Y ), . . . ,

dK
N (NK

X , NK
Y )
]T that groups the k-order distances in (2.9).

Both, Definition 2 and Definition 7 consider correspondences C that map the node space X onto
the node space Y, compare dissimilarities, and set the network distance to the comparison that
yields the smallest value in terms of maximum differences. The distinction between them is
that in (2.2) we compare the values in r1

X(x1, x2) and r1
Y(y1, y2), whereas in (2.8) we compare the

values in each of the k-order relationships rk
X(x0:k) and rk

Y(y0:k) to compute the k-order distances
dk
N (NK

X , NK
Y ) that we group in the vector dK

N (NK
X , NK

Y ). Except for this distinction, Definition 2
and Definition 7 are analogous since Γk

X,Y(C) selects the maximum k-order relationship difference
|rk

X(x0:k)− rk
Y(y0:k)| among all tuples of correspondents – we compare rk

X(x0:k) with rk
Y(y0:k) when

all the points xl ∈ x0:k and yl ∈ y0:k are correspondents. The distance dk
N (NK

X , NK
Y ) is defined by

selecting the correspondence that minimizes these maximal differences.

Notice that, in general, the correspondence C minimizing Γk
X,Y(C) is not necessarily identical to

the correspondence C′ minimizing Γl
X,Y(C

′) for k 6= l. The distance vector dK
N is a vector with each

element measuring the dissimilarity between relationship functions of a specific order, possibly
using different minimizing correspondences. We emphasize that, as in the case of Definition 2,
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Figure 3: An example of two networks being not 1-isomorphic but having zero 1-order network
distance between them. For the given correspondence C, r2

X(x1, x2) = r2
Y(y1, y2), r2

X(x1, x3) =

r2
Y(y1, y2). r2

X(x2, x3) = r2
Y(y2, y2) = r1

Y(y2) where the second equality follows from the iden-
tity property. Moreover, r2

X(x1, x1) = r2
Y(y1, y1), r2

X(x2, x2) = r2
Y(y2, y2), r2

X(x3, x3) = r2
Y(y2, y2).

Γ1
X,Y(C) = 0 witnesses the zero 1-order network distance between N1

X and N1
Y. However these

networks cannot be 1-isomorphic since they possess different number of nodes.

dk
N (NK

X , NK
Y ) and dK

N (NK
X , NK

Y ) are defined even if the numbers of nodes in X and Y are different.
We show in the following proposition that the function dk

N : N K × N K → R+ is, indeed, a
pseudometric in the space of K-order networks modulo k-isomorphism for any integer 0 ≤ k ≤ K.

Proposition 1 Given any nonnegative integer K, for any integers 0 ≤ k ≤ K, the function dk
N : N K ×

N K → R+ defined in (2.9) is a pseudometric in the space N K mod ∼=k.

Proof: To prove that dk
N for any integer 0 ≤ k ≤ K is a pseudometric in the space of K-order net-

works modulo k-isomorphism we prove the (i) nonnegativity, (ii) symmetry, (iii’) relaxed identity,
and (iv) triangle inequality properties in Definition 3.

Proof of nonnegativity property: For any integers 0 ≤ k ≤ K, since |rk
X(x0:k)− rk

Y(y0:k)| is non-
negative Γk

X,Y(C) defined in (2.8) also is. The network distance must then satisfy dk
N (NK

X , NK
Y ) ≥ 0

because it is a minimum of nonnegative numbers. �

Proof of symmetry property: A correspondence C ⊆ X × Y with elements ci = (xi, yi) re-
sults in the same associations as the correspondence C̃ ⊆ Y × X with element c̃i = (yi, xi).
Thus, for any correspondence C and integers 0 ≤ k ≤ K, we have a correspondence C̃ such
that Γk

X,Y(C) = Γk
Y,X(C̃). It follows that the minima in (2.9) must coincide from where it follows

that dk
N (NK

X , NK
Y ) = dk

N (NK
Y , NK

X). �

Proof of relaxed identity property: We need to show that for any integers 0 ≤ k ≤ K if NK
X

and NK
Y are k-isomorphic we must have dk

N (NK
X , NK

Y ) = 0. To see that this is true recall that for
k-isomorphic networks there exists a bijection π : X → Y that preserves distance functions at
order k [cf. (2.7)]. Consider then the particular correspondence Cπ = {(x, π(x)), x ∈ X}. For all
x0 ∈ X there is an element c = (x0, y) ∈ Cπ and for all y0 ∈ Y there is an element c′ = (x, y0) ∈ Cπ

since π is bijective. Thus Cπ is a valid correspondence between X and Y for which (2.7) indicates
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that it must be

rk
Y(y0:k) = rk

Y(π(x0:k)) = rk
X(x0:k), (2.10)

for any (x0:k, y0:k) ∈ Cπ . This implies Γk
X,Y(C) =

∣∣rk
X(x0:k)− rk

Y(y0:k)
∣∣ = 0 for any (x0:k, y0:k) ∈ Cπ .

Since Cπ is a particular correspondence, taking a minimum over all correspondences as in (2.9)
yields

dk
N (NK

X , NK
Y ) ≤ Γk

X,Y(C) = 0. (2.11)

Since dk
N (NK

X , NK
Y ) ≥ 0, as already shown, it must be that dk

N (NK
X , NK

Y ) = 0 when NK
X and NK

Y are
k-isomorphic. �

Proof of triangle inequality: To show that the triangle inequality holds, let the correspondence C1

between X and Z and the correspondence C2 between Z and Y be the minimizing correspondences
in (2.9). We can then write

dk
N (NK

X , NK
Z ) = Γk

X,Z(C1), dk
N (NK

Z , NK
Y ) = Γk

Z,Y(C2). (2.12)

Define a correspondence C between X and Y as the one induced by pairs (x, z) and (z, y) sharing
a common node z ∈ Z,

C := {(x, y) | ∃z ∈ Z with (x, z) ∈ C1, (z, y) ∈ C2} . (2.13)

To show that C is a well defined correspondence we need to show that for every x ∈ X there
exists y0 ∈ Y such that (x, y0) ∈ C and by symmetry for every y ∈ Y there exists x0 ∈ Y such that
(x0, y) ∈ C. To see this, first pick an arbitrary x ∈ X. Because C1 is a correspondence between
X and Z there must exist z0 ∈ Z such that (x, z0) ∈ C1. There must exist y0 ∈ Y such that
(z0, y0) ∈ C2 since C2 is also a correspondence between Y and Z. Therefore, there exists a pair
(x, y0) ∈ T with y0 ∈ Y for any x ∈ X. The second part follows by symmetry and C is a well
defined correspondence. The correspondence C may not be the minimizing correspondence for
the distance dk

N (NK
X , NK

Y ). However since it is a valid correspondence with the definition in (2.9)
we can write

dk
N (NK

X , NK
Y ) ≤ Γk

X,Y(C). (2.14)

By the definition of C in (2.13), the requirement (x0:k, y0:k) ∈ C is equivalent as (x0:k, z0:k) ∈ C1 and
(z0:k, y0:k) ∈ C2 for any 0 ≤ k ≤ K. Further adding and subtracting rk

Z(z0:k) in the absolute value
of Γk

X,Y(C) =
∣∣rk

X(x0:k)− rk
Y(y0:k)

∣∣ and using the triangle inequality of the absolute value yields

Γk
X,Y(C) ≤ max

(x0:k ,z0:k)∈C1
(z0:k ,y0:k)∈C2

{∣∣rk
X(x0:k)− rk

Z(z0:k)
∣∣+ ∣∣rk

Z(z0:k)− rk
Y(y0:k)

∣∣}. (2.15)
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We can further bound (2.15) by taking maximum over each summand,

Γk
X,Y(C) ≤ max

(x0:k ,z0:k)∈C1

∣∣rk
X(x0:k)− rk

Z(z0:k)
∣∣ +

max
(z0:k ,y0:k)∈C2

∣∣rk
Z(z0:k)− rk

Y(y0:k)
∣∣ = Γk

X,Z(C1) + Γk
Z,Y(C2). (2.16)

Substituting (2.14) and (2.12) into (2.16) yields triangle inequality. �

Having proofs all statements, the global proof completes. �

dk
N being a pseudometric implies that two high order networks not k-isomorphic may still have

zero k-order network distance between them. A specific example can be found in Figure 3 where
two 1-order networks not 1-isomorphic have zero dissimilarity measured by the 1-order network
distance. For each integer 0 ≤ k ≤ K, the pseudometric dk

N (NK
X , NK

Y ) defined in Definition 7 in the
space N K mod ∼=k measures dissimilarity between k-order functions rk

X and rk
Y. We can also ask

the question of how different two networks are by considering all their order functions. To that
end we consider K-order networks to be equivalent if rk

X is a permutation of rk
X for all integers

0 ≤ k ≤ K as we formally state next.

Definition 8 We say that two networks of order K, NK
X and NK

Y , are isomorphic if there exists a bijection
π : X → Y such that (2.7) holds for all 0 ≤ k ≤ K and x0:k ∈ Xk+1. The map π is called an isometry.

When networks NK
X and NK

Y are isomorphic we write NK
X
∼= NK

Y . The difference between k-
isomorphism and isomorphism is that the bijection in the latter case preserves relationship func-
tions over all orders whereas only k-order relationship functions are preserved in the former case.
That NK

X
∼= NK

Y implies that NK
X
∼=k NK

Y for all integers 0 ≤ k ≤ K, but the opposite is not
necessarily true.

The space of K-order networks modulo isomorphism is denoted as N K mod ∼=. A family of
pseudometrics measuring the difference between networks over all order functions as a whole can
be endowed in the space N K mod ∼=. The definition of this family of distances can be considered
as an extension of Definition 2 and an aggregation of Definition 7 as we formally state next.

Definition 9 Given networks NK
X and NK

Y , a correspondence C between the node spaces X and Y, and
some p-norm ‖ · ‖p, define the network difference with respect to C as

∥∥∥ΓK
X,Y(C)

∥∥∥
p

:=
∥∥∥∥(Γ0

X,Y(C), Γ1
X,Y(C), . . . , ΓK

X,Y(C)
)T
∥∥∥∥

p
, (2.17)

where for each integer 0 ≤ k ≤ K, Γk
X,Y(C) is the k-order network difference with respect to C defined in

(2.8). The p-norm network distance between NK
X and NK

Y is then defined as

dN ,p(NK
X , NK

Y ) := min
C∈C(X,Y)

{∥∥∥ΓK
X,Y(C)

∥∥∥
p

}
. (2.18)
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The difference between Definition 2, Definition 7 and Definition 9 is that in the case of the network
distance dN ,p(NK

X , NK
Y ), we compare not only relationship functions rk

X(x0:k) and rk
Y(y0:k) but also

all the relationship functions of order not larger than K. The norm over the vector ΓK
X,Y(C) formed

by k-order network differences with respect to C for all integers 0 ≤ k ≤ K is assigned as the
difference between NK

X and NK
Y measured by the correspondence C. The distance dN ,p(NK

X , NK
Y )

is then defined as the minimum of these differences achieved by some correspondence. As in the
cases of Definition 2 and Definition 7, dN ,p(NK

X , NK
Y ) is defined even if the numbers of nodes in

X and Y are different. The function dN ,p : N K ×N K → R+ is a pseudometric in the space of
K-order networks modulo isomorphism as we show in the following proposition.

Proposition 2 Given some p-norm ‖ · ‖p, for any nonnegative integer K the function dN ,p : N K×N K →
R+ defined in (2.18) is a pseudometric in the space N K mod ∼=.

Proof: To prove that dN ,p is a distance in the space of K-order networks modulo isomorphism
we prove the (i) nonnegativity, (ii) symmetry, (iii’) relaxed identity, and (iv) triangle inequality
properties in Definition 3.

Proof of nonnegativity property: Since ‖ΓK
X,Y(C)‖p ≥ 0, the network distance must then satisfy

dN ,p(NK
X , NK

Y ) ≥ 0 as it is a minimum of nonnegative numbers. �

Proof of symmetry property: A correspondence C ⊆ X × Y with elements ci = (xi, yi) results
in the same associations as the correspondence C̃ ⊆ Y × X with element c̃i = (yi, xi). Thus,
for any correspondence C we have a correspondence C̃ such that ΓK

X,Y(C) = ΓK
Y,X(C̃). This im-

plies ‖ΓK
X,Y(C)‖p = ‖ΓK

Y,X(C̃)‖p. It follows that the minima in (2.18) must coincide and therefore
dN ,p(NK

X , NK
Y ) = dN ,p(NK

Y , NK
X). �

Proof of relaxed identity property: We need to show that if NK
X and NK

Y are isomorphic we must
have dN ,p(NK

X , NK
Y ) = 0. To see that this is true recall that for isomorphic networks there exists

a bijection π : X → Y that preserves distance functions at every order [cf. (2.7)]. Consider then
the particular correspondence Cπ = {(x, π(x)), x ∈ X}. We have demonstrated in the proof of
Proposition 1 that Cπ is a valid correspondence between X and Y. The definition of isomorphism
indicates that it must be (2.10) holds true for all 0 ≤ k ≤ K and (x0:k, y0:k) ∈ Cπ . Since Cπ is a
particular correspondence, from (2.18) it follows that

dN ,p(NK
X , NK

Y ) ≤
∥∥∥ΓK

X,Y(C)
∥∥∥

p
. (2.19)

Because rk
X(x0:k) − rk

Y(y0:k) = 0 for any 0 ≤ k ≤ K and any (x0:k, y0:k) ∈ Cπ by (2.10), we have
ΓK

X,Y(C) = 0. ‖ · ‖p being a proper norm implies ‖ΓK
X,Y(C)‖p = 0. Substituting this back into

(2.19) shows dN ,p(NK
X , NK

Y ) ≤ 0. Since dN ,p(NK
X , NK

Y ) ≥ 0, as already shown, it must be that
dN ,p(NK

X , NK
Y ) = 0 when NK

X and NK
Y are isomorphic. �

Proof of triangle inequality: To show that the triangle inequality holds, let the correspondence C1
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between X and Z and the correspondence C2 between Z and Y be the minimizing correspondences
in (2.18). We can then write

dN ,p(NK
X , NK

Z ) =
∥∥ΓK

X,Z(C1)
∥∥

p, dN ,p(NK
Z , NK

Y ) =
∥∥ΓK

Z,Y(C2)
∥∥

p. (2.20)

Define a correspondence C between X and Y in the same way as (2.13). We have demonstrated in
the proof of Proposition 1 that C is a well defined correspondence. Therefore with the definition
in (2.18) we can write

dN ,p(NK
X , NK

Y ) ≤
∥∥ΓK

X,Y(C)
∥∥

p. (2.21)

Moreover, in the proof of Proposition 1 we also showed for any 0 ≤ k ≤ K,

Γk
X,Y(C) ≤ Γk

X,Z(C1) + Γk
Z,Y(C2). (2.22)

This implies the vector ΓK
X,Z(C1)+ ΓK

Z,Y(C2) is elementwise no smaller than the vector ΓK
X,Y(C). The

definition of p-norm ‖x‖p =
(

∑K
k=0 |xi|p

)1/p guarantees that the value of ‖x‖p is monotonically
nondecreasing on each element xi in x = (x0, x1, . . . , xn)T . Therefore,∥∥∥Γk

X,Y(C)
∥∥∥

p
≤
∥∥∥Γk

X,Z(C1) + Γk
Z,Y(C2)

∥∥∥
p

. (2.23)

We can further bound (2.23) by using the triangle inequality of the p-norm,∥∥∥Γk
X,Y(C)

∥∥∥
p
≤
∥∥∥Γk

X,Z(C1)
∥∥∥

p
+
∥∥∥Γk

Z,Y(C2)
∥∥∥

p
. (2.24)

Substituting (2.21) and (2.20) back into (2.24) yields the triangle inequality. �

Having demonstrated all statements, the global proof completes. �

Observe that in (2.18) we are only allowed to pick one correspondence minimizing ‖ΓK
X,Y(C)‖p

whereas in (2.9) for each k we are able to pick one correspondence minimizing the order specific
Γk

X,Y(C). This establishes a relationship between dN ,p and ‖dK
N ‖p that we show next.

Proposition 3 Given some p-norm ‖ · ‖p, for any nonnegative integer K the function dN ,p defined in
(2.18) is no smaller than ‖dK

N ‖p where dK
N is the vector of distances defined in Definition 7. I.e., for any

pair of K-order networks NK
X , NK

Y , we have that

dN ,p(NK
X , NK

Y ) ≥
∥∥∥dK
N (NK

X , NK
Y )
∥∥∥

p
. (2.25)

Proof: Given K-order networks NK
X , NK

Y , a correspondence C between the node spaces X and Y,
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and an integer 0 ≤ k ≤ K, it follows from (2.9) that

Γk
X,Y(C) ≥ dk

N (NK
X , NK

Y ). (2.26)

This implies that the vector dK
N (NK

X , NK
Y ) is element-wise no greater than ΓK

X,Y(C) from where it
follows that ∥∥∥ΓK

X,Y(C)
∥∥∥

p
≥
∥∥∥dK
N (NK

X , NK
Y )
∥∥∥

p
. (2.27)

Since (2.27) applies for any correspondence C, the minimum of
∥∥∥ΓK

X,Y(C)
∥∥∥

p
achieved by some

correspondence in the set of correspondence C(X, Y) is still no smaller than
∥∥dK
N (NK

X , NK
Y )
∥∥

p,

min
C∈C(X,Y)

{∥∥∥ΓK
X,Y(C)

∥∥∥
p

}
≥
∥∥∥dK
N (NK

X , NK
Y )
∥∥∥

p
. (2.28)

The result in (2.25) follows after noting that the minimum in the left hand side of (2.28) is the
distance dN ,p(NK

X , NK
Y ) in (2.18). �

Definitions 7 and 9 are pseudometrics in the space of high order networks modulo appropriate
isomorphisms. To obtain proper metrics, we restrict attention to subclasses of networks having
specific structures. To do so, observe that the k-order function rk

X of a given network NK
X does not

impose constraints on the l-order function rl
X of the same network except the identity property. In

practical situations, however, it is common to observe that adding nodes to a tuple results in either
increasing or decreasing relationships between elements of the extended tuple. This motivates the
consideration of dissimilarity networks and proximity networks that we undertake in the next two
sections.

2.3. Dissimilarity Networks

In dissimilarity networks the function rk
X(x0:k) encodes a level of dissimilarity between elements

of the x0:k tuple. In this scenario it is reasonable to assume that adding elements to a tuple makes
the group more dissimilar. This restriction along with a generalization of the requirement that
r1

X(x, x′) = 0 if and only if x = x′ in pairwise network makes up the formal definition that we
introducre next.

Definition 10 We say that the K-order network DK
X =

(
X, r0

X , r1
X , . . . , rK

X
)

is a dissimilarity network if for
any order 0 ≤ k ≤ K and tuples x0:k ∈ Xk+1, its relationship function is the summation of a dissimilarity
function and the multiplication of its rank with a small constant ε,

rk
X(x0:k) = dk

X(x0:k) + εs(x0:k) (2.29)
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8/9 + 3ε 4/9 + 3ε
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1/9 + ε
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2/9 + 2ε

5/9 + 2ε

7/9 + 2ε

4/9 + 2ε

4/9 + 2ε

Figure 4: Temporal dynamics for the formation of a research community. The k-order relationship
function in this 2-order dissimilarity network [cf. Definition 10] incorporates the dissimilarity
function – the normalized time instant at which members of a given (k + 1)-tuple write their first
joint publication – and the multiplication of ε with the rank of the tuple. E.g., A writes her first
publication at time 0, and coauthors with B, D, and C at times 2/9, 4/9, and 5/9. She also writes
jointly with B and D at time 4/9.

The dissimilarity terms satisfy the order increasing property so that for any 1 ≤ k ≤ K and x0:k,

dk
X(x0:k) ≥ dk−1

X (x0:k−1), (2.30)

and the constant ε > 0 is a strictly positive value that satisfies

0 < ε ≤ 1− 1
K

max
x̃0:K∈XK+1

dK
X(x̃0:K). (2.31)

The set of all dissimilarity networks of order K is denoted as DK.

To see that the order increasing property (2.30) in Definition 10 is reasonable consider a network
describing the temporal dynamics of the formation of a research community – see Figure 4. The
dissimilarity term in the k-order relationship function in this network marks the normalized time
instant at which members of a given (k + 1)-tuple write their first joint publication. In particular,
the zeroth order dissimilarities d0

X are the normalized time instants when authors publish their
first publication. In Figure 4 authors A, B, C, and D publish their first publications at times 0,
1/9, 5/9, and 3/9. The first order dissimilarities d1

X between pairs denote the normalized times
at which nodes become coauthors. Since authors can’t become coauthors until after they write
their first publication it is certain that d1

X(x, x′) ≥ d0
X(x) and d1

X(x, x′) ≥ d0
X(x′) for all x and x′. In

Figure 4, A and B become coauthors at time 2/9, which occurs after they publish their respective
first publications at times 0 and 1/9. Authors A and D as well as B and D become coauthors at
time 4/9, A and C become coauthors at time 5/9. Authors C and D never write a publication
together.

Second order dissimilarities d2
X for triplets denote the normalized time at which a publication is

coauthored by the three members of the triplet. Since a publication can’t be coauthored by three
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people without being at the same time coauthored by each of the three possible pairs of authors we
must have that d2

X(x, x′, x′′) ≥ d1
X(x, x′), d2

X(x, x′, x′′) ≥ d1
X(x, x′′), and d2

X(x, x′, x′′) ≥ d1
X(x′, x′′)

for all x, x′, and x′′. In Figure 4, authors A, B, and D publish a joint publication at time 4/9, which
is no smaller than the pairwise coauthorship times between each two of the individual authors.
Authors A, B, and C publish a joint publication at time 8/9, which is a time that comes after the
individual paired publications that occur at times 2/9, 5/9, and 7/9. Note that due to symmetry
property a relationship as in (2.30) holds if we remove an arbitrary node from the tuple x0:k, not
necessarily the last.

In pairwise dissimilarity networks we required d1
X(x, x′) = 0 if and only if x = x′. Relationships

between two different nodes are strictly greater than relationships between two nodes that are ac-
tually identical. The multiplication of ε and the rank of the tuples in (2.29) in Definition 10 can
be considered as a generalization. Consider tuples x0:k and (x0:k−1, x0) where every node in x0:k

is unique, the identity property for high order networks forces rk
X(x0:k−1, x0) = rk−1

X (x0:k−1). We
must then have the relationship between k + 1 different elements rk

X(x0:k) being strictly greater
than the relationship between k different elements rk

X(x0:k−1, x0) = rk−1
X (x0:k−1). This is because

dk
X(x0:k) ≥ dk−1

X (x0:k−1) follows from (2.30) and εs(x0:k) = (k + 1)ε > kε = εs(x0:k−1) follows
from the definition of ranks. Therefore, the multiplication of ε and the rank of tuples in (2.29) in
Definition 10 forces that adding a new element to a tuple makes the set strictly more dissimilar than
it was. Or equivalently, removing an element from a tuple makes the set strictly less dissimilar
than it was. The requirement for ε as in (2.31) ensures that the highest relationship in the network
maxx̃0:K∈XK+1 dK

X(x̃0:K) + εs(x̃0:K) is bounded above by 1. The rank correction term εs(x0:k) is a
technical modification to distinguish between full rank (proper) k-tuples and rank deficient (de-
generate) tuples. In practice it can be set to a sufficiently small value compared to dissimilarities
or completely ignored. Since distances up to order 2 are defined and relationship functions can
be decomposed, the network in Figure 4 is a dissimilarity network of order 2.

2.3.1. Metrics in The Space of Dissimilarity Networks

When the input networks in Definition 7 are dissimilarity networks we refer to the k-order distance
as the k-order dissimilarity network distance. We state this formally in the following definition
for future reference.

Definition 11 Given dissimilarity networks DK
X , DK

Y ∈ DK we say that the k-order distance dk
N (DK

X , DK
Y ) =

dk
D(DK

X , DK
Y ) of Definition 7 is the k-order dissimilarity network distance between DK

X and DK
Y .

Since DK ⊆ N K, the function dk
D : DK × DK → R+ is a pseudometric in the space of K-order

dissimilarity networks modulo k-isomorphism. The restriction, however, makes dk
D not only a

pseudometric but a well-defined metric in the space DK mod ∼=k of dissimilarity networks of
order K modulo k-isomorphism. We show this in the following theorem.

Theorem 1 The k-order dissimilarity network distance function dk
D : DK ×DK → R+ of Definition 11 is

a metric in the space DK mod ∼=k for all 1 ≤ k ≤ K.
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Proof : The proof of Proposition 1 has demonstrated dk
D is a pseudometric in the space DK

mod ∼=k. To prove that dk
D is a metric in the same space we need to show the missing part

in the (iii) identity property in Definition 3.

Proof of the second part of the identity property: We want to prove dk
D(DK

X , DK
Y ) = 0 must imply

that DK
X and DK

Y are k-isomorphic. If dk
D(DK

X , DK
Y ) = 0, there exists a correspondence C such that

rk
X(x0:k) = rk

Y(y0:k) for any (x0:k, y0:k) ∈ C. Define a function π : X → Y that associates x with an
arbitrary y chosen from the set that form a pair with x in C,

π : x 7→ y0 ∈ {y | (x, y) ∈ C}. (2.32)

Since C is a correspondence the set {y | (x, y) ∈ C} is nonempty for any x implying that π is well-
defined for any x ∈ X. Therefore rk

X(x0:k) = rk
Y(π(x0:k)) for any x0:k. This implies the function π

must be injective. If it were not, there would be a pair of nodes x 6= x′ with π(x) = π(x′) = y for
some y ∈ Y. Hence the k-order relationship function between (x, . . . , x, x′) where the first k − 1
nodes in the tuple are x and the last node is x′ would satisfy

rk
X(x . . . , x, x′) = rk

Y(π(x, . . . , x, x′)) = rk
Y(y, . . . , y), (2.33)

follows from the definition of π. The k-order relationship between the tuple (x, . . . , x) where all
the k nodes are identical would also satisfy

rk
X(x, . . . , x) = rk

Y(π(x, . . . , x)) = rk
Y(y, . . . , y). (2.34)

Combining (2.33) and (2.34) yields

rk
X(x, . . . , x, x′) = rk

X(x, . . . , x). (2.35)

Meanwhile, the identity property for high order networks [cf. Definition 5] implies

rk
X(x, . . . , x, x′) = r2

X(x, x′), rk
X(x, . . . , x) = r1

X(x). (2.36)

Using the fact that for dissimilarity networks, relationship functions are the summations of dis-
similarity functions and the multiplication of ε and ranks, we have that

r2
X(x, x′) = d2

X(x, x′) + 2ε, r1
X(x) = d1

X(x) + ε. (2.37)

Moreover, the order increasing property for dissimilarity functions implie

d2
X(x, x′) ≥ d1

X(x). (2.38)

Substituting the decompositions (2.37) and (2.38) into (2.36) yields

rk
X(x, . . . , x, x′) > rk

X(x, . . . , x). (2.39)
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which contradicts with (2.35) and shows that π must be injective.

Likewise, define the function ω : Y → X that associates y with an arbitrary x chosen from the set
that form a pair with y in C,

ω : y 7→ x0 ∈ {x|(x, y) ∈ C}. (2.40)

It follows by similar arguments that ω must be injective. By applying the Cantor-Bernstein-
Schroeder theorem [134, Section 2.6] to the reciprocal injections π : X → Y and ω : Y → X,
the existence of a bijection between X and Y is guaranteed. This forces X and Y to have same
cardinality and π and ω being bijections. Pick the bijection π and it follows rk

X(x0:k) = rk
Y(π(x0:k))

for all nodes (k + 1)-tuples x0:k ∈ Xk+1. This shows that DK
X
∼=k DK

Y and completes the proof of
the identity statement. �

Having demonstrated all four properties in Theorem 1, the global proof completes. �

Observe that in Theorem 1 we have that dk
D is a proper metric for all k other than 0. This caveat for

d0
D is because we may have two dissimilarity networks DK

X and DK
Y with different number of nodes

but whose zeroth other relationships are equals for all pairs of nodes, i.e., r0
X(x) = r0

Y(y) for all
x ∈ X and y ∈ Y. In this case we we would have d0

D(DK
X , DK

Y ) = 0, however the two dissimilarity
networks are not 0-isomorphic.

Restricting Definition 9 to dissimilarity networks also yields a family of dissimilarity network
distances as next.

Definition 12 Given dissimilarity networks DK
X , DK

Y ∈ DK we say that the p-norm network distance
dN ,p(DK

X , DK
Y ) = dD,p(DK

X , DK
Y ) of Definition 9 is the p-norm dissimilarity network distance between DK

X
and DK

Y .

By restricting our attention to dissimilarity networks instead of general high order networks, dD,p

also becomes a valid metric in the space DK mod ∼= of dissimilarity networks of order K ≥ 1
modulo isomorphism as we state in the following theorem.

Theorem 2 Given some p-norm ‖ · ‖p, for any nonnegative integer K ≥ 1 the function dD,p : DK ×
DK → R+ in Definition 12 is a metric in the space DK mod ∼=.

Proof: The proof of Proposition 2 has demonstrated that dD,p is a pseudometric in the space DK

mod ∼=. To prove that dD,p is a metric in the same space we further demonstrate the missing part
in the (iii) identity property in Definition 3.

Proof of the second part of the identity property: We want to show dD,p(DK
X , DK

Y ) = 0 implying
DK

X and DK
Y being isomorphic. If dD,p(DK

X , DK
Y ) = minC∈C(X,Y) ‖ΓK

X,Y(C)‖p = 0, there exists a
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correspondence C such that

‖ΓK
X,Y(C)‖p = 0. (2.41)

The property of p-norm implies that this correspondence C satisfies Γk
X,Y(C) = 0 for 0 ≤ k ≤ K,

i.e. rk
X(x0:k) = rk

Y(y0:k) for any 0 ≤ k ≤ K and (x0:k, y0:k) ∈ C. Define functions π : X → Y as in
(2.32) and ω : Y → X as in (2.40). The analysis in Proof of Theorem 1 has demonstrated that π

and ω are bijections and that X and Y have same cardinality. Pick the bijection π and it follows
rk

X(x0:k) = rk
Y(π(x0:k)) for any 0 ≤ k ≤ K and all (k+ 1)-tuples x0:k ∈ X. This shows that DK

X
∼= DK

Y
and completes the proof of the identity statement. � �

Further note that since Proposition 3 holds for any pair of networks, the same relationship holds
true for the dissimilarity network distances in Definitions 11 and 12. Observe, however, that the
norm

∥∥dK
D(DK

X , DK
Y )
∥∥

p is not a valid metric because we can have instances in which two dissimi-
larity networks are k-isomorphic for all integers 0 ≤ k ≤ K without being isomorphic.

2.4. Proximity Networks

In proximity networks the relationship functions rk
X(x0:k) denote similarity or proximity between

elements of a tuple. Thus, large values of the proximity function rk
X(x0:k) represent strong relation-

ship whereas small values denote weak relationships – the exact opposite is true of dissimilarity
networks. In this framework it is reasonable to assume that adding elements to a tuple forces the
group to be less similar. This constraint makes up the formal definition we introduce as follows.

Definition 13 We say that the K-order network PK
X =

(
X, r0

X , r1
X , . . . , rK

X
)

is a proximity network if for
any order 0 ≤ k ≤ K and tuples x0:k ∈ Xk+1, its relationship function is the summation of a proximity
term and the multiplication of its rank with −ε,

rk
X(x0:k) = dk

X(x0:k)− εs(x0:k), (2.42)

The proximity terms satisfy the order increasing property that for any 1 ≤ k ≤ K and x0:k,

pk
X(x0:k) ≤ pk−1

X (x0:k−1), (2.43)

and the constant ε > 0 is a strictly positive value that satisfies

0 < ε ≤ 1
K

min
x̃∈XK+1

pK
X(x̃0:K). (2.44)

The set of all proximity networks of order K is denoted as PK.

To see that the order decreasing property (2.43) in Definition 13 is reasonable, consider a network
illustrating the collaborations between authors in a research community – See Figure 5. The k-
order proximity function in this network labels the number of publications between members of
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Figure 5: Collaborations between authors in a research community. The k-order relationship
function in this 2-order network [cf. Definition 13] incorporates the proximity function – the
number of publications between members of a given (k+ 1)-tuples normalized by the total number
of publications – and the multiplication of −ε with the rank of the tuple.

a given (k + 1)-tuple. In specific, the zeroth order proximities p0
X are the numbers of publica-

tions published by authors normalized by the total number of publications. In Figure 5 authors
A, B, C, D publish 11, 9, 2, 5 publications respectively and there are 19 publications in total which
implies p0

X(A) = 11/19, p0
X(B) = 9/19, p0

X(C) = 2/19, p0
X(D) = 5/19. The first order proximities

p1
X represent the number of publications co-published by nodes. Since collaboration for a pair of

authors is also a publication for each of the individuals it is certain that p1
X(x, x′) ≤ p0

X(x) and
p1

X(x, x′) ≤ p0
X(x′) for all x and x′. In Figure 5, A and B collaborate on 4 publications, which is

less than the 11 and 9 publications written by each of the individuals. Authors A and C as well as
A and D coauthor 2 publications in total. Authors C and D never write a publication together.

Second order proximities p2
X for triplets indicate the normalized number of publications coau-

thored by the three members of the triplet. Since a publication with three authors is also a col-
laboration for the three pairs of authors we must have p2

X(x, x′, x′′) ≤ p1
X(x, x′), p2

X(x, x′, x′′) ≤
p1

X(x, x′′), and p2
X(x, x′, x′′) ≤ p1

X(x′, x′′) for all x, x′, and x′′. In Figure 5, authors A, B, and
D cowrite 2 publications, which is no more than the number of pairwise collaborations between
each pair of the authors. Remark that symmetry property inherited from high order networks [cf.
Definition 5] implies (2.43) if we remove an arbitrary node from the tuple x0:k, not necessarily the
last.

In dissimilarity networks we required the relationship within tuple x0:k of unique elements to be
strictly greater than the relationship between the point collection (x0:k−1, x0) where some nodes
are repeating. The multiplication of −ε and ranks in (2.42) in Definition 13 can also be considered
as a generalization. Following the identity property of high order networks, rk

X(x0:k−1, x0) =

rk−1
X (x0:k−1). We must then have the function between k + 1 different elements rk

X(x0:k) being
strictly smaller than the function between k different elements rk

X(x0:k−1, x0) = rk−1
X (x0:k−1). This

is because in the decomposition pk
X(x0:k) ≤ pk−1

X (x0:k−1) follows from (2.43) and −εs(x0:k) =

−(k + 1)ε < −kε = −εs(x0:k−1) follows from the definition of ranks. Therefore, the multiplication
of −ε and rank of tuples in (2.42) in Definition 10 forces that adding a new element to a tuple

28



makes the set strictly less similar than it was. Or equivalently, removing an element from a tuple
makes the set strictly more similar than it was. The requirement for ε as in (2.44) ensures that
the lowest relationship function in the network minx̃0:K∈XK+1 dK

X(x̃0:K)− εs(x̃0:k) is nonnegative.
Again the rank correction term εs(x0:k) is a technical modification and in practice it can be set to
sufficiently small compared to proximities or completely ignored. Since relationships up to order
2 are defined and can be decomposed, the network in Figure 5 is a proximity network of order 2.

2.4.1. Metrics in The Space of Proximity Networks

In the same way that restricting attention to dissimilarity networks transforms the pseudometrics
in Definitions 7 and 9 into metrics, restricting attention to proximity networks also results in the
definitions of proper metrics. We state the restrictions of Definitions 7 and 9 in the following two
definitions.

Definition 14 Given proximity networks PK
X , PK

Y ∈ PK we say that the k-order distance dk
N (PK

X , PK
Y ) =

dk
P (PK

X , PK
Y ) of Definition 7 is the k-order proximity network distance between PK

X and PK
Y .

Definition 15 Given proximity networks PK
X , PK

Y ∈ PK we say that the p-norm network distance dN ,p(PK
X , PK

Y ) =

dP ,p(PK
X , PK

Y ) of Definition 9 is the p-norm proximity network distance between PK
X and PK

Y .

Analogously to the definition of the dissimilarity network distance dk
D of Definition 11, the func-

tion dk
P : PK ×PK → R+ is a proper metric in the space PK mod ∼=k of proximity networks of

order K modulo k-isomorphism for all integers 1 ≤ k ≤ K. Likewise, restricting the function dN ,p

of Definition 9 to proximity networks as Definition 15 results in dP ,p being a proper metric. We
state these facts in the following theorems.

Theorem 3 The k-order proximity network distance function dk
P : PK ×PK → R+ of Definition 14 is a

metric in the space PK mod ∼=k for all k ≥ 1.

Proof: The proof of Proposition 1 has demonstrated that dk
P is a pseudometric in the space PK

mod ∼=k. To prove that dk
P is a metric in the same space we need to show the missing part in the

(iii) identity property in Definition 3.

Proof of the second part of the identity property: Most parts of the proof follow from the proof
of the second part of the identity property for Theorem 1 in the proof of Proposition 1. The only
difference is in demonstrating the function π constructed in (2.32) is injective. Under the same
setup where there exist a pair of nodes x 6= x′ such that π(x) = π(x′) = y for some y ∈ Y, the
k-order relationship between (x, . . . , x, x′) would satisfy

rk
X(x . . . , x, x′) = rk

Y(y, . . . , y) = rk
X(x . . . , x). (2.45)

Meanwhile, the facts of proximities in proximity networks follow order decreasing property
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p2
X(x, x′) ≤ p1

X(x) and r2
X(x, x′) = p2

X(x, x′)− 2ε, r1
X(x) = p1

X(x)− ε from (2.42) implies

r2
X(x, x′) < r1

X(x). (2.46)

Combining (2.46) with the identity property inherited from high order networks [cf. Definition 5]
rk

X(x, . . . , x, x′) = r2
X(x, x′), rk

X(x, . . . , x) = r1
X(x) gives us

rk
X(x, . . . , x, x′) < rk

X(x, . . . , x), (2.47)

which contradicts with (2.45) and shows that π must be injective. The rest of the proof follows.�

�

Theorem 4 Given some p-norm ‖ · ‖p, for any nonnegative integer K ≥ 1 the function dP ,p : PK ×
PK → R+ in Definition 15 is a metric in the space PK mod ∼=.

Proof: The proof of Proposition 2 has demonstrated that dP ,p is a pseudometric in the space PK

mod ∼=. To prove that dP ,p is a metric in the same space we further demonstrate the missing part
in the (iii) identity property in Definition 3.

Proof of the second part of the identity property: We want to show that having dP ,p(PK
X , PK

Y ) = 0
must imply that PK

X being isomorphic to PK
Y . If dD,p(PK

X , PK
Y ) = 0, there exists a correspondence

C such that ‖ΓK
X,Y(C)‖p = 0. The property of p-norm implies that this correspondence C satisfies

rk
X(x0:k) = rk

Y(y0:k) for any 0 ≤ k ≤ K and any (x0:k, y0:k) ∈ C. Define functions π : X → Y as in
(2.32) and ω : Y → X as in (2.40), the analysis in the proof of Theorem 3 has demonstrated that π

and ω are bijections and that X and Y have same cardinality. Pick the bijection π and it follows
rk

X(x0:k) = rk
Y(π(x0:k)) for any 0 ≤ k ≤ K and x0:k ∈ X. This shows that PK

X
∼= PK

Y and completes
the proof of the identity statement. � �

In Theorem 3 we require k ≥ 1 for the same reason as in Theorem 1. We emphasize that dk
P

is a metric in the space of proximity network modulo k-isomorphisms, whereas dP ,p is a metric
in the space of networks modulo isomorphism. Also note that we must have dP ,p(PK

X , PK
Y ) ≥∥∥dK

P (PK
X , PK

Y )
∥∥

p as per Proposition 3 but
∥∥dK
P (PK

X , PK
Y )
∥∥

p is not necessarily a metric.

Remark 1 GH distance is the minimum across correspondences of the maximum difference in dis-
tances between pairs of nodes for a given correspondence. The metric definitions as in Definitions
11, 12, 14, and 15 inherit this property, which means that network distances can be dominated by
a small portion of the networks. Put differently, the proposed distances are more sensitive to a few
large differences in a few edges than to a large number of small differences in a large number of
edges. Analogous consideration can be found in signal processing theory of the tradeoffs between
comparing signals with averages – such as 2-norm comparisons – and comparing signals with
max-min differences – the ∞-norm comparison. When compare networks with different number
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Figure 6: Relationships between authors expressed in terms of dissimilarities constructed from the
proximity network in Figure 5. The k-order relationship function in this 2-order network denotes
the level of dissimilarities between members of a given (k + 1)-tuples. This is a dissimilarity
network that has same order and identical node sets as the proximity network.

of nodes, a max-min comparison is reasonable because it focuses attention in the bottleneck tuple
that makes it impossible to match smaller network onto the larger.

Remark 2 Once endowed with the proposed valid metrics as in Definitions 11, 12, 14, and 15, the
space of dissimilarity networks and the space of proximity networks become metric spaces. This
implies that a number of algorithms that are used to analyze metric spaces can now be used to
analyze high order networks.

2.4.2. Duality between Dissimilarity and Proximity Networks

Proximity and dissimilarity networks have been defined separately for simplicity of presentation,
but they are actually related entities. For any proximity network PK

X with relationship functions
p̂k

X(x0:k), we can construct a dissimilarity network DK
X on the same node space by defining rela-

tionships as d̂
k
X(x0:k) = 1− p̂k

X(x0:k) for all orders k and tuples x0:k. Likewise given a dissimilarity

network DK
X with relationship functions d̂

k
X(x0:k) we can construct a proximity network PK

X by

defining relationships p̂k
X(x0:k) = 1− d̂

k
X(x0:k). We formalize this equivalence through the intro-

duction of dual networks in the following definition.

Definition 16 Given a node space X, the K-order proximity and dissimilarity networks PK
X =

(
X, p̂0

X , p̂1
X , . . . , p̂K

X

)
and DK

X =
(

X, d̂
0
X , d̂

1
X , . . . , d̂

K
X

)
are said duals if and only if

p̂k
X(x0:k) = 1− d̂

k
X(x0:k), (2.48)

for all orders 0 ≤ k ≤ K and tuples x0:k.

It is ready to see that all proximity networks have a dual dissimilarity network and that, con-
versely, all dissimilarity networks have a dual proximity network. To do so we just reinterpret
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(2.48) as a definition and observe that: (i) The decomposition of relationships in the proximity
network implies the valid decomposition of relationships in the dual dissimilarity network, and
vice versa. (ii) The order decreasing property of the proximities in the proximity network implies
the order increasing property of the dissimilarities in the dual dissimilarity network, and vice
versa. An illustration for the construction of a dual dissimilarity network is presented in Figure 6,
where we construct the corresponding dual dissimilarity network for the coauthorship network
considered in Figure 5.

Given dual networks we can compute the distances in definitions 14 and 15 for proximity networks
and the distances in definitions 11 and 12 for the dual dissimilarity networks. These definitions
have been constructed so that the resulting distances are the same, as we formally state in the
following proposition.

Proposition 4 Consider two proximity networks PK
X and PK

Y and their corresponding dual dissimilarity
networks DK

X and DK
Y . The k-order proximity distances dk

P (PK
X , PK

Y ) [cf. Definition 14] and k-order dissim-
ilarity distances dk

D(DK
X , DK

Y ) [cf. Definition 11] coincide for all 0 ≤ k ≤ K,

dk
P (PK

X , PK
Y ) = dk

D(DK
X , DK

Y ). (2.49)

Likewise, the p-norm proximity distance dP ,p(PK
X , PK

Y ) [cf. Definition 15] and p-norm dissimilarity distance
dD,p(DK

X , DK
Y ) [cf. Definition 12] coincide,

dP ,p(PK
X , PK

Y ) = dD,p(DK
X , DK

Y ). (2.50)

Proof: We first prove (2.49) by considering proximity networks PK
X and PK

Y and their corresponding
dual dissimilarity networks DK

X and DK
Y . Let the correspondence C between X and Y be the

minimizing correspondence in dk
P (PK

X , PK
Y ) [cf. Definition 14] so that we can write

dk
P (PK

X , PK
Y ) = Γk

PX ,PY
(C). (2.51)

C may not be the minimizing correspondence for the distance dk
D(DK

X , DK
Y ) [cf. Definition 11], but

since it is a valid correspondence, it holds true that

dk
D(DK

X , DK
Y ) ≤ Γk

DX ,DY
(C). (2.52)

From the definition of duality [cf. (2.48)], we may write

Γk
DX ,DY

(C) = max
(x0:k ,y0:k)∈C

∣∣∣(1− d̂
k
X(x0:k)

)
−
(
1− d̂

k
Y(y0:k)

)∣∣∣. (2.53)

The ones in (2.53) cancel out and therefore,

Γk
DX ,DY

(C) = Γk
PX ,PY

(C). (2.54)
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Substituting (2.51) and (2.52) back to (2.54) implies

dk
P (PK

X , PK
Y ) ≥ dk

D(DK
X , DK

Y ). (2.55)

Let the correspondence C′ between X and Y be the minimizing correspondence in dk
D(DK

X , DK
Y ).

Then C′ is also a valid correspondence for the distance dK
P (PK

X , PK
Y ). By symmetry, we have

dk
D(DK

X , DK
Y ) ≥ dk

P (PK
X , PK

Y ). (2.56)

Combining (2.55) and (2.56) yields the desired result in (2.49).

Next we prove (2.50) by considering PK
X and PK

Y and their corresponding duals DK
X and DK

Y . Let
the correspondence C between X and Y be the minimizing correspondence in dP ,p(PK

X , PK
Y ) [cf.

Definition 12] so that we can write

dP ,p(PK
X , PK

Y ) =
∥∥∥ΓK

PX ,PY
(C)
∥∥∥

p
. (2.57)

C may not be the minimizing correspondence for the distance dD,p(DK
X , DK

Y ) [cf. Definition 12],
but again since it is a valid correspondence, we may write

dD,p(DK
X , DK

Y ) ≤
∥∥∥ΓK

DX ,DY
(C)
∥∥∥

p
. (2.58)

We have demonstrated in proving (2.49) that for any integers 0 ≤ k ≤ K, Γk
DX ,DY

(C) = Γk
PX ,PY

(C).
In vector form, this is ΓK

DX ,DY
(C) = ΓK

PX ,PY
(C). Therefore, the property of p-norm implies that∥∥∥ΓK

DX ,DY
(C)
∥∥∥

p
=
∥∥∥ΓK

PX ,PY
(C)
∥∥∥

p
. (2.59)

Substituting (2.57) and (2.58) back to (2.59) yields

dP ,p(PK
X , PK

Y ) ≥ dD,p(DK
X , DK

Y ). (2.60)

Let the correspondence C′ between X and Y be the minimizing correspondence in dD,p(DK
X , DK

Y ).
Then C′ is also a valid correspondence for dP ,p(PK

X , PK
Y ). By symmetry, we have

dD,p(DK
X , DK

Y ) ≥ dP ,p(PK
X , PK

Y ). (2.61)

Combining (2.60) and (2.61) yields the desired result in (2.50). �

2.5. Comparison of Coauthorship Networks

We apply the metrics defined in Section 2.4.1 to compare second order coauthorship networks
where relationship functions denote the number of publications of single authors, pairs of au-
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Figure 7: Quinquennial coauthorship networks representing research communities centered at
Prof. Georgios Giannakis (GG) or Prof. Martin Vetterli (MV). The size of the nodes is proportional
to the zeroth order proximities, and the width of the links to the first order proximities. Second
order proximities are represented by shading the triangle enclosed by the coauthor triplet. Color
intensity is proportional to the second order proximities.
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Figure 8: Biennial coauthorship networks representing research communities centered at
Prof. Georgios Giannakis (GG).

thors, and triplets. These coauthorship networks are proximity networks because they satisfy
the order decreasing property in Definition 13. Since both, Definition 14 and Definition 15, re-
quire searching over all possible correspondences between the node spaces, we can compute exact
distances for networks with a small number of nodes only. Thus, we consider publications in
the IEEE Transactions on Signal Processing (TSP) in the last decade but restrict attention to the
collaboration networks of Prof. Georgios B. Giannakis (GG) of the University of Minnesota and
Prof. Martin Vetterli (MV) of the École Polytechnique Fédérale de Lausanne. We choose these
authors because their collaboration traits are more developed and stable and we expect their re-
spective collaboration pattern to be steady over the past decade. The goal of the simulation is to
illustrate that network metrics are able to distinguish discernible collaboration patterns. For each
of the authors, GG and MV, we construct networks for the 2004-2008 and 2009-2013 quinquennia.
These networks are referred as GG0408, GG0913, MV0408, and MV0913. For GG we also define
networks for each of the biennia 2004-2005, 2006-2007, 2008-2009, 2010-2011, and 2012-2013. We
denote these networks as GG0405, GG0607, GG0809, GG1011, and GG1213. Lists of publications
are queried from [135].

For each of these authors we consider all of their TSP publications in the period of interest and
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construct proximity networks where the node space X is formed by the author and the respective
set of coauthors. Zeroth order proximities are defined as the total number of publications of
each member of the network, first order proximities as the number of publications coauthored by
pairs, and second order proximities as the number of publications coauthored by triplets. The
constant ε as in Definition 13 is for technical purpose. It can be chosen sufficiently small and for
this reason we ignore it in this section. To make networks with different numbers of publications
comparable we normalize all distances by the total number of publications in the network. With
this construction we have that the zeroth order proximity of GG or MV are 1 in all of their
respective networks. There are publications with more than three coauthors but we don’t record
proximities of order higher than 2.

The quenquennial networks GG0408, GG0913, MV0408, and MV0913 are shown in Figure 7 and
the biennial networks GG0607, GG0809, GG1011, and GG1213 in Figure 8. The size of the nodes is
proportional to the zeroth order distances, and the width of the links to the first order distances.
Second order proximities are represented by shading the triangle enclosed by the coauthor triplet
and the color intensity is proportional to the second order proximities. There are clear differ-
ences in the collaboration patterns. We show here that proximity network distances succeed in
identifying these patterns and distinguish between the coauthorship networks of GG and MV.

2.5.1. Quinquennial Networks

Two dimensional Euclidean embeddings (respect to minimizing the sum of squares of the inter-
point distances) of the k-order proximity network distances dk

P for k ∈ {0, 1, 2} and the proximity
network distance with respect to the 1-norm, dP ,1 are shown in Figure 9. The two GG networks
(diamonds) separate clearly from the two MV networks (circles) either by considering the indi-
vidual k-order distances dk

P or the aggregate distance dP ,1. The distances between the two MV
networks are high but still smaller than the distances between GG networks and MV networks. An
unsupervised classification run across all four distances would assign all four networks correctly.

The k-order network distance dk
P is defined by searching for the correspondence such that the

maximum k-order proximity difference |rk
X(x0:k) − rk

Y(y0:k)| among all tuples of correspondents
is minimized [cf. (2.8) and (2.9)]. For the optimal correspondence C? = argminC∈C(X,Y) Γk

X,Y(C),
define the pair of correspondent tuples that achieve the maximum k-order difference as

(x?0:k, y?0:k) = argmax
(x0:k ,y0:k)∈C?

∣∣∣rk
X(x0:k)− rk

Y(y0:k)
∣∣∣ . (2.62)

The tuple pair (x?0:k, y?0:k) is the bottleneck that prevents making the networks closer to each other.
Examining these bottleneck pairs for each k-order distance reveals what are the differences be-
tween proximity networks to which dk

P is most sensitive about. In general, k-order bottleneck
pairs tend to be pairs of tuples with high proximity values in their respective networks. The opti-
mal correspondence C? map tuples with high proximity as closely as possible. Therefore, network
distances are typically determined by large proximity values in one of the networks that can’t be
matched closely to proximity values in the other network.
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Figure 9: Two dimensional Euclidean embeddings of the k-order proximity network distances
d0
P , d1

P , d2
P and the proximity network distance with respect to the 1-norm, dP ,1, between the

quinquennial networks. In the embeddings, denote MV0408, MV0913 as circles, GG0408, GG0913
as diamonds. GG0408 and GG0913 are colocated regarding d1

P , d2
P .

In the quinquennial coauthorship networks of Figure 7 the bottleneck pair for 0-order distances
d0
P , is formed by nodes with high zero order proximities and d0

P reflects the difference between
their zero order proximities. Since the networks are normalized so that the lead nodes have
size 1, d0

P is determined by their predominant coauthors, i.e., the scholars that collaborated most
prolifically with GG or VM during the period of interest. The distances d0

P between GG and VM
networks are large because these predominant collaborations are different. In GG networks there
are usually groups of 3 to 5 predominant collaborators, whereas in MV networks there are usually
one or two that concentrate a larger fraction of the total number of publications.

Similarly, high first order proximity distances are likely due to one of the following situations: (i)
Large differences between the numbers of publications authored by the predominant collabora-
tors. (ii) Different patterns in the formation of communities – defined here as clusters of pairwise
collaboration. In the latter case large distances arise because it is impossible to match the com-
munities in one network to communities in the other. The distances d1

P between GG and MV
networks are large because the latter contain a smaller number of communities, which are also
more strongly connected than the communities in GG networks.
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Figure 10: Two dimensional Euclidean embeddings of the distances d0
P , d1

P , d2
P , dP ,1 between all

quinquennial and biennial networks. In the embeddings, denote MV0408, MV0913 as circles,
GG0408, GG0913 as diamonds, GG0405, GG0607, GG1011 as up triangles and GG0809, GG1213 as
down triangles. GG0809, GG1213 are colocated regarding d0

P , d1
P , dP ,1. GG0408 and GG0913 have

identical coordinates in d1
P .

In second order distances the bottleneck pair of triplets may reflect one of the following scenarios:
(i) One network has collaboration between four or more authors while the other doesn’t. (ii) There
exist three authors with a strong collaboration between them in one network whereas in the other
network there does not exist collaboration between three authors or, if such collaboration exists,
it is weak. Many publications written by MV are collaborations of three or four scholars and the
predominant coauthor in MV networks appears in at least one collaboration of four scholars. For
GG, his 2004-2008 network has a few collaborations consisting of four scholars however all such
collaborations are weak. His 2009-2013 network has no publications written by four authors.

2.5.2. Biennial Networks

The networks GG0408 and GG0913 have more nodes than the networks MV0408 and MV0913
prompting the possibility that the differences in distances discussed in Section 2.5.2 are just due
to their different number of publications. This is part of the reason, but not all. To see that
this is true we consider the biennial GG collaboration networks. Each of these networks contain
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numbers of publications that are comparable to the number of publications in the quinquennial
MV networks.

Two dimensional Euclidean embeddings of the individual k-order distances dk
P for k ∈ {0, 1, 2}

and the aggregate distance dP ,1 between the 4 quinquennial networks and the 5 biennial networks
are shown in Figure 10. An unsupervised classification run across four distances would assign all
nine networks correctly (d1

P , d2
P ) or two of them incorrectly (d0

P , dP ,1).

We expect more variation in biennial networks because the time for averaging behavior is reduced.
E.g., we may see deviations from usual collaboration patterns due to the presence of exceptional
doctoral students. Still, three of the biennial networks, GG0405, GG0607, GG1011, (up triangles)
and the two quinquennial networks GG0408, GG0913 (diamonds) are close to each other in every
metric used and form a cluster clearly separate from the two five-year networks MV0408 and
MV0913 (circles). This is due to the fact that the distinctive features of GG coauthorship are
well reflected in GG0405, GG0607, GG1011. These features include: (i) Multiple predominant
coauthors, each of whose collaboration with GG does not comprise a dominant portion of GG’s
scholarship during the period. (ii) Multiple small coauthorship communities in which strong
collaborations within each community are rare. (iii) The number of publications with four or more
authors is low. These features contrast with the rather opposite properties of the MV networks.

The networks GG0809 and GG1213 (down triangles) do not cluster nicely with the other five GG
networks. Depending on which distance we consider they may be closest to some of the other
GG networks or to one of the two MV networks. This is because, likely due to random variation,
GG0809 and GG1213 have some features that resemble GG networks and some other features
that resemble MV networks. Fundamentally this happens because of the exceptionally prolific
collaborations with Ioannis Schizas (IS) in the 2008-2009 period and Gonzalo Mateos (GM) in
the 2012-2013 period. In the network GG0809 the IS node commands a significant fraction of
GG publications and creates strong links between collaboration clusters that would be otherwise
separate. Both of these features are more characteristic of MV networks. In GG1213 network the
GM node accounts for half of the publications in which GG is an author. This is, also, a feature
more representative of MV networks than of GG networks.

In summary, proximity network distances capture features of scholar collaboration that permit
discerning networks of different authors even when we consider networks that have very different
numbers of nodes. The zeroth order distance d0

P responds primarily to the number of predominant
coauthors and the proportion of collaboration between predominant coauthors and the central
scholar. The first order distance d1

P is mostly determined by the fraction of collaborations that
involve predominant coauthors and the central scholar as well as the level and number of strong
collaborations within each community in the group. The second order distance d2

P is largely
given by the existence, level, and number of collaborations between four or more scholars and the
appearance of predominant coauthors in a collaboration between four or more scholars.

Remark 3 The proposed metrics successfully identify the distinct collaborative behaviors of Prof. G.
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B. Giannakis and Prof. M. Vetterli from incomplete subsets of their publication datasets. The dis-
tances between Giannkis’s networks (either quinquennial or biennial) are smaller than the dis-
tances between Giannakis’s networks and Vetterli’s networks. This proximity can be used in
author name disambiguration or related problems, e.g., adjudicate the biennial networks to their
rightful author if only the authors of the quinquennial networks are known.

Remark 4 As a comparison, we applied some simple and reasonable methods to compare the
corresponding pairwise networks of the coauthorship networks considered in this section. Motifs
have been shown effective in distinguishing coauthorship networks from different scientific fields
[16]. To compare high order coauthorship networks by motifs, we restrict attention to pairwise
relationships. The dissimilarities between coauthorship networks are assigned as the differences
between the summations of the weighted motifs in their corresponding pairwise networks. Anal-
ysis based on triangle motifs (weighted) results in MV0408, MV0913, GG0408, and GG0809 being
closer to each other and GG0913, GG0405, GG0607, GG1011, and GG1213 being more proximate.
Tetrahedron motif analysis (weighted) results in MV0408, MV0913, GG0408, GG0405, GG0607,
and GG0809 being closer to each other and GG0913, GG1011, and GG1213 being more proximate.
Other simple and common methods to compare pairwise networks yield similar results. Meth-
ods to compare pairwise networks via features give us similar observations as those based on
the metric distances proposed in the chapter. Notice that GG0408 and GG0913 are highly similar
regarding the proposed network distances however their differences are relatively large in terms
of feature comparisons.
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Chapter 3

Persistent Homology Lower Bounds
on Network Distances

In this chapter, we propose to compare networks by considering their respective filtrations and
using the difference between the persistence diagrams of the respective filtrations as a proxy for
their distance; this is related with the universality property studied in [136]. (Section 3.2). This
proposed methodology is substantiated by the fact that we can lower bound the computationally
intractable distance between two high order networks with a tractable distance between their re-
spective persistence diagrams (Theorems 5 and 6 in Section 3.2). These lower bounds are tight
such that there are examples in which the lower bound and the actual distances coincide. Since
persistent homologies can be computed efficiently for large networks (Section 3.3 and [137]), we
can use these lower bounds in, e.g., network classification problems. We do so for artificial net-
works created with different models – random networks, Gaussian kernel proximity networks,
and Euclidean feature networks – and for coauthorship networks constructed from the publica-
tions of a number of journals from engineering and mathematics communities. The proposed
methods succeed in distinguishing networks with different generative models (Section 3.4.1) and
are also effective in discriminating engineering journals from mathematics journals (Section 3.4.2).
We also attempt a more challenging classification problem of three different engineering commu-
nities where we achieve a moderate success (Section 3.4.3).

3.1. Networks and Simplicial Complexes

We introduce elemental notions of computational topology as they apply to the study of high
order networks. We refer authors to [138] for more background and more formal notions on
computational homology. Begin by defining a k-simplex φ = [x0:k] as the convex hull of the set of
points x0:k (see Figure 11) and a simplicial complex L as the collection of simplices such that for
any simplex [x0:k], the convex hull of any subset of x0:k also belongs to L. Figure 12 (a) exemplifies
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Figure 11: Elementary k-simplices for 0 ≤ k ≤ 3.

two triangles connected together as a simplicial complex of dimension 2. It is a simplicial complex
because for any of its simplices, say, [a, b, c], the convex hulls of the subsets of {a, b, c} – which
include the points [a], [b], and [c] as well as the edges [a, b], [b, c], and [a, c] – all belong to the
simplicial complex as well.

An important concept in simplicial complexes is that of a hole without interior. For the simplicial
complex in Figure 12 (a), the area enclosed by [b, d], [d, c], [c, b] is a hole without interior because
the area is not filled. The area enclosed by [a, b], [b, d], [d, a] is not because the interior is filled by the
2-simplex [a, b, d]. Homologies are defined to formalize this intuition and rely on the definitions
of chains, cycles, and boundaries. The k-chain Φk = ∑i βiφi is a summation of k-simplices φi

modulated by coefficients βi whose signs denote orientation. This definition is a generalization
of the familiar definition of chains in graphs. E.g., in Figure 12, [a, b] + [b, d] is a 1-chain that we
can equivalently represent as [a, b]− [d, b]. Further consider a given k-simplex φ = [x0:k] and its
border (k− 1)-simplices defined as the ordered set of elements [x0:l̂:k] = conv{x0:k\xl}, in which
each of the elements is removed in order. The boundary ∂kφ of the simplex φ is the chain formed
by its borders using alternating orientations,

∂kφ =
k

∑
l=0

(−1)l [x0:l̂:k]. (3.1)

According to (3.1), the boundary ∂kφ of a k-simplex is the collection of (k− 1)-simplices. For the
simplices in Figure 11, the boundaries are ∂0[a] = 0, ∂1[a, b] = [b]− [a], ∂2[a, b, c] = [b, c]− [a, c] +
[a, b] and ∂3[a, b, c, d] = [b, c, d]− [a, c, d] + [a, b, d]− [a, b, c].

Having defined chains and boundaries we consider a k-chain Φk = ∑i βiφi and define the chain
boundary ∂kΦk as the summation of the boundaries of its component simplices,

∂kΦk = ∑
i

βi(∂kφi). (3.2)

As per this definition, the boundary of the chain Φ = [a, b] + [b, d] in Figure 12 is ∂kΦ = [a] −
[b] + [b]− [d] = [a]− [d], which matches our intuition of what the chain’s boundary should be.
We can now formally define a k-cycle Ψk as a chain whose boundary is null, i.e., a k-chain for
which ∂kΨ = 0. In Figure 12 the chain Ψ = [a, b] + [b, d] + [d, a] is a cycle because its boundary is
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Figure 12: (a) An example of simplicial complex L which consists of four 0-simplices, five 1-
simplices, and one 2-simplex. (b) A dissimilarity network can be represented as a simplicial
complexes with weights. When the weight of a simplex denotes the time instant the simplex
appears in the nested sequence of simplicial complexes, it yields a valid filtration L.

∂kΨ = [a]− [b] + [b]− [d] + [d]− [a] = 0.

A k-cycle Ψk is a k-homological feature if it cannot be represented as the boundary of a (k + 1)-chain
Φk+1; otherwise Ψk is a k-boundary. We refer readers to [138] for the more formal definition. The
group Hk(L) of k-homological features of a simplicial complex L represents all k-cycles that are
not k-boundaries. I.e., a homological feature appears when a k-cycle Ψk is not among the group
of boundaries ∂k+1Φk+1 of (k + 1)-chains.

For the simplicial complex in Figure 12 (a), the chain Ψ1 = [a, b] + [b, d] + [d, a] is a 1-cycle because
∂1Ψ1 = 0; simultaneously, Ψ1 is also a 1-boundary because ∂2[a, b, d] = [b, d] − [a, d] + [a, b],
which is identical to Ψ1. Therefore, Ψ1 does not represent a homological feature. On the other
hand, the chain Ψ′1 = [b, c] + [c, d] + [d, b] describes a homological feature because it is a cycle
with ∂1Ψ′1 = 0, and not a boundary due to the fact that the 2-simplex [b, c, d] is absent from the
complex. One could also say that Ψ′′1 = [a, b] + [b, c] + [c, d] + [d, a] describes a 1-cycle that is
not a 1-boundary. Nonetheless, because the difference between Ψ′′1 and Ψ′1 is [a, b] + [b, d] + [d, a]
which is a 1-boundary, the cycles Ψ′′1 and Ψ′1 are essentially denote the same homological feature.
Therefore, there only exists one 1-homological feature, which may be represented by chain Ψ′1 or
Ψ′′1 .

Other illustrative examples are shown in Figure 13. The complex (a) has one 1-homological feature
whose one representation is the chain [a, b] + [b, c] + [c, a] and the complex (b) has 1 feature which
can be represented by the chain [a, b] + [b, c] + [c, d] + [d, a]. Complex (c) has 2 features that may
be denoted by chains [a, b] + [b, d] + [d, a] and [b, c] + [c, d] + [d, b] but complex (d) has one feature
because the chain [a, b] + [b, d] + [d, a] is the boundary of the simplex [a, b, d].

3.1.1. Representation of High Order Networks as Filtrations

In the same manner in which a graph represents an unweighted network, a simplicial complex
represents a high order unweighted network. To represent weighted high order networks we
assign a weight to each simplex, but instead of thinking the network as a weighted simplicial
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Figure 13: More examples of simplicial complexes and homologies. The number of 2-homological
features are described below each of the simplicial complex.

complex we think of weights as parameters that indicates the time at which the simplex comes
into existence. Formally, for parameters α ∈ [0, 1] we define a filtration L as a collection of
simplicial complexes Lα such that for any ordered sequence 0 = α0 < α1 < . . . < αm = 1 it holds
∅ = Lα0 ⊆ Lα1 ⊆ . . . ⊆ Lαm = L. The minimum time α at which a simplex becomes an element of
Lα is the birth time of the simplex.

Given a dissimilarity network DK
X , we construct L(DK

X) by assigning the appearing time of simplex
[x0:k] as the relationship rk

X(x0:k) of the corresponding tuple,

[x0:k] ∈ Lα ⇐⇒ rk
X(x0:k) ≤ α. (3.3)

We show next that (3.3) defines a valid filtration.

Proposition 5 The construction L(DK
X) with Lα established from a dissimilarity network DK

X via the
relationship in (3.3) is a well defined filtration.

Proof: For a given α, (3.3) defines a set of simplices Lα. It is clear that the collection of sets Lα is
nested, i.e., that ∅ = Lα0 ⊆ . . . ⊆ Lαm = L holds for any set of birth times 0 = α0 < . . . < αm = 1.
To prove the statement we need to show that the set of simplices Lα is a valid simplicial complex.
To show this it suffices to verify that for any α, all faces of each simplex in Lα also appear no later
than α. Suppose simplex [x0:k] appears before time α for some chosen α, then it must be true that
rk

X(x0:k) ≤ α. For any faces of [x0:k], say [x0:k̃] with k̃ < k, the order increasing property implies
rk̃

X(x0:k̃) ≤ rk
X(x0:k). Therefore,

rk̃
X(x0:k̃) ≤ rk

X(x0:k) ≤ α, (3.4)

which shows that the face [x0:k̃] appears before time or on time α. This means that Lα is a valid
simplicial complex. �

We emphasize that filtrations can’t be defined for an arbitrary high order networks because the
order increasing property is necessary for the proof. For dissimilarity networks that do satisfy the
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Figure 14: Top: filtration of nested simplicial complexes of the dissimilarity network exhibited in
Figure 12 (b). The simplicial complex at each time instant are the collections of all vertices appear-
ing before or on that time. Bottom: 1-persistence diagrams describing 1-persistent homologies for
each of the simplicial complexes detailed in Top. The horizontal axis denotes the birth time of
homological features and the vertical axis represents the death time.
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Figure 15: The 1-persistence diagrams for the filtration induced by each of the dissimilarity net-
works. The maximum death time of any homological features is 1 because hyperedges with
undefined relationships take value 1 implicitly.

order increasing property, Proposition 5 establishes the existence of an equivalent filtration.

Figure 14 (top) shows the construction of the filtration associated with the dissimilarity network
in Figure 12 (b). At time α = 0, there are four nodes because r0

X(a) = r0
X(b) = r0

X(c) = r0
X(d) = 0.

At time α = 0.1, the edge [a, b] starts to appear in the simplicial complex because the relationship
r1

X(a, b) = 0.1. As time gradually increases, more simplices get included in the simplicial complex
at each time instant. At the end of the filtration with α = 1, all simplices in the simplicial complex,
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whose corresponding relationships in the dissimilarity networks are either defined or undefined,
are involved.

3.1.2. Persistent Homologies and Persistence Diagrams

As time advances in a filtration, holes and interiors appear and disappear. Persistent homologies
examine when these homological features appear for the sequence of simplicial complexes in the
filtration. Formally, given a filtration L, its k-dimensional persistence diagram PkL is a collection
of points of the form q = [qb, qd] where qb and qd > qb represent the birth and death time of a
homological feature. I.e., the times qb represent resolutions α = qb at which a feature is added to
the group of k-homological features Hk(Lα) = Hk(Lqb) and the times qd are resolutions α = qd at
which a feature is removed from the group of k-homological features Hk(Lα) = Hk(Lqd). We refer
authors to [138] for more background and more formal definitions on persistent homology, and
refer to [139] for a more comprehensive treatment of persistence and its connection to application.

The persistence diagram for the filtration in Figure 14-(top) is shown in Figure 14-(bottom). In this
diagram the horizontal axis denotes the birth time of 1-homological features (when holes appear)
and the vertical axis represents the death time of 1-homological features (when holes are filled). At
time α = 0, there are no 1-simplices and consequently no 1-holes. The first 1-cycle appears at time
α = 0.5 when the 1-chain [a, b] + [b, c] + [c, d] + [d, a] appears. We mark this event by the addition
of a vertical line in the persistence diagram. A second homological feature appears in the form of
the cycle [a, b] + [b, d] + [d, a] at time α = 0.7. This event is marked by the addition of a second
vertical line in the persistence diagram. This homological feature dies at time α = 0.8 when the
2-simplex [a, b, d] appears and makes the 1-cycle [a, b] + [b, d] + [d, a] a 1-boundary and therefore
no longer a homological feature. This is marked by the addition of the point q1 = (0.7, 0.8)
to the persistence diagram. At this time all simplices with defined relationship functions have
been added to the filtration. This means that the homological feature [a, b] + [b, c] + [c, d] + [d, a]
never becomes a boundary of a 2-simplex. This is marked by adding the point q2 = (0.5, 1) to
the persistence diagram – recall that dissimilarities must be between 0 and 1 by definition. All
undefined simplifies, e.g. [a, c], [a, c, d], [a, b, c, d], are considered to appear at 1 and would not
affect the persistence diagram.

A few more examples are shown in Figure 15. Network (a) contains one feature that appears at
α = 0.5 and stays alive until α = 1. Network (b) also has one feature born at α = 0.5 that never
gets trivialized until α = 1. Network (c) involves two features, born at α = 0.5 and α = 0.7 that
also stay alive until α = 1. Network (d) is the same as the filtration in Figure 14-(top).

We close this section by noting all dissimilarity values between tuples with non-repeating elements
of any dissimilarity network appear in the homological features of the induced filtration.

Proposition 6 Given a dissimilarity network DK
X , any of its k-order dissimilarities between tuples with

unique elements appear either in the death time of the (k − 1)-th dimensional homological features or the
birth time of the k-th dimensional features.
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Proof : Given any tuple x0:k with non-duplicating nodes, (3.4) indicates that the k-simplex φk

defined by the convex hull conv{x0:k} appears strictly after any of its faces conv{x0:ŝ:k} in the
filtration. Suppose φk appears at time α and denote ∂kφk = ∑i βiψ

k−1
i with βi the coefficients, then

each ψk−1
i appears strictly before time α.

Now suppose that the appearance of φk trivializes a (k− 1)-th dimensional homological feature.
This means that φk is the boundary to trivialize the (k− 1)-th dimensional cycle ∂kφk. Since each
face ψk−1

i of φk appears strictly before time α, the cycle ∂kφk results in a homological feature.
The death time of this homological feature is α, or equivalently, the time represented by the
relationship rk

X(x0:k).

On the other hand, if the appearance of φk does not trivialize a (k− 1)-th dimensional homological
feature, then the (k− 1)-cycle ∂kφk is in the collection of simplices appearing before or on time α.
This means that ∂kφk can be represented by a sum of the boundaries of some k-chains Φk

i ,

∂kφk = ∑
i

βi∂kΦk
i (3.5)

with coefficients βi and k-chains Φk
i appearing before or on time α. By the definition of k-chains,

Φi = ∑j β′jψ
k
j with coefficients β′j and k-simplices ψk

j appears before or on time α. Therefore, (3.5)
can be written as ∂kφk = ∑j β′′j ∂kψk

j . Rearranging terms,

∂k

(
∑

j
β′′j ψk

j − φk
)
= 0. (3.6)

This implies that ∑i β′′i ψk
i − φk is a k-cycle. There must be a new cycle formed since φk just ap-

pears. The cycle cannot be trivialized immediately since any (k + 1)-chain Ψk+1 with ∂k+1Ψk+1 =

∑i β′′i ψk
i − φk would involve a simplex [x0:k,l ] for some node xl with tuple x0:k,l consisted of non-

repeating elements where this simplex [x0:k,l ] appears strictly after α. Therefore we have a k-th
dimensional homological feature with birth time α, or equivalently, the time denoted by the rela-
tionship rk

X(x0:k). This concludes the proof. �

Proposition 6 is specific to filtrations induced from dissimilarity networks since it follows from the
fact that adding elements to a tuple results in strictly increasing dissimilarities [cf. Definition 10].
The proposition implies that different networks result in different persistence diagrams except
in the rare cases when a single point in the diagram represents multiple homological features.
Thus, persistence diagrams retain almost all of the dissimilarity values of a given network and are
therefore not unreasonable proxies for network discrimination. We cement these observations in
the next section by proving that differences between persistence diagrams yield lower bounds on
the network distances defined in Section 2.2. We do so after an important remark.

Remark 5 The maximum death time of any homological features in filtrations induced from dis-
similarity networks is 1. This is specific for filtrations constructed from dissimilarity networks
because any hyperedges with undefined relationships in dissimilarity networks all take value 1
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implicitly. In computing the persistence diagram, we can either (i) set the appearance time of
all hyperedges with undefined relationships as 1 before evaluating the persistence diagrams, or
(ii) determine the persistence diagram with no additional care of undefined edges, and then set
the death time of any undead features to 1. These two procedures yield the same persistence
diagrams, except for the first 0-dimensional persistent interval which dies at ∞ and represents the
connected component. We use the latter method in practice because it is computational simpler.

3.2. Persistence Bounds on Network Distances

In this section we use differences between persistence diagrams to compute lower bounds of
network distances. Recall that a persistence diagram PkL(DK

X) is a collection of points of the form
q = [qb, qd] where qb and qd > qb represent the birth and death time of a k-homological feature
[cf. Figure 15]. To compare persistence diagrams PkL(DK

X) and PkL̃(DK
Y ) of networks DK

X and DK
Y

we begin by defining the cost of matching features q ∈ Q and q̃ ∈ Q̃ through the infinity norm
of their difference,

‖q− q̃‖∞ := max
[
|qb − q̃b|, |qd − q̃d|

]
. (3.7)

Further observe that the diagonal of a persistence diagram can be construed to represent an
uncountable number of features with equal birth and death times. Thus, any feature q ∈ Q can be
compared to any of the artificial features of the form q̃ = [q̃, q̃]. Since this feature q̃ can be placed
anywhere in the diagonal of the persistence diagram, we choose to place it in the point that makes
the infinity norm difference smallest. This point is q̃ = [(qb + qd)/2, (qb + qd)/2] which yields
the difference ‖q− q̃‖∞ = |qd − qb|/2. Likewise, artificial features q = [(q̃b + q̃d)/2, (q̃b + q̃d)/2]
can be added for any point q̃ ∈ Q̃. We can then rephrase the comparison in (3.7) so that if it is
more advantageous to compare with artificial diagonal features. This is formally accomplished by
defining the matching cost c(q, q̃) between q and q̃ as

c(q, q̃) := min
[
‖q− q̃‖∞ , (1/2)max

[
|qd − qb| , |q̃d − q̃b|

]]
, (3.8)

The norm ‖q− q̃‖∞ is the cost of directly matching features q and q̃. The term (1/2)max
[
|qd − qb| , |q̃d − q̃b|

is the cost of matching both, q and q̃ to artificial diagonal features. The cost c(q, q̃) of matching
q and q̃ is the smaller of these two.

If the respective collections of features Q and Q̃ contain the same number of elements m = m̃ we
can consider bijections π : Q → Q̃ from Q to Q̃. The bottleneck distance between the persistence
diagrams PkL(DK

X) and PkL̃(DK
Y ) of networks DK

X and DK
Y is then defined as

bk(DK
X , DK

Y ) := min
π:Q→Q̃

max
q∈Q

c(q, π(q)). (3.9)

The distance in (3.9) is set to the pair of features q and q̃ that are most difficult to match across all
possible bijections π.

When the number of points in the persistence diagrams are different we assume without loss of
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generality that m̃ < m. In this case we extend Q̃ by adding m̃ − m diagonal features to define
the set Q̃e := Q̃ ∪ {(q̃i, q̃i)}

m̃−m
i=1 . Since the sets Q and Q̃e contain the same number of elements

bijections π : Q → Q̃ are well defined. We can then modify (3.9) to define a valid comparison
between PkL and PkL̃ when the number of points in the diagrams are possibly different. We do
so in the following formal definition.

Definition 17 Given persistence diagrams PkL(DK
X) and PkL̃(DK

Y ) with sets of points Q and Q̃ having
cardinalities m̃ < m, define the extended set Q̃e := Q̃ ∪ {(q̃i, q̃i)}

m̃−m
i=1 by adding m̃−m artificial diagonal

features. The bottleneck distance between the persistence diagrams PkL(DK
X) and PkL̃(DK

Y ) of networks
DK

X and DK
Y is defined as

bk(DK
X , DK

Y ) := min
π:Q→Q̃e

max
q∈Q

c(q, π(q)), (3.10)

where π ranges over all bijections from Q to Q̃e and the cost c(q, π(q)) is defined in (3.8).

The number of bijections between two sets of points is factorial and it appears that the problem
as in (3.10) is as difficult as the problem of finding the correspondence in evaluating the network
distance. However, the problem in (3.10) is a instantiation of the Linear Bottleneck Assignment
Problem (LBAP) that can be solved efficiently – see Section 3.3 and [140, Algorithm 6.1]. We
emphasize that c(q, q̃) = c(q, q̃′) for any q whenever q̃ and q̃′ are on the diagonal. Therefore,
the locations of diagonal points added to construct Qe are unsubstantial as per their cost. The
definition of bk has been used in [141] to compare three-dimensional surfaces using persistent
homology.

We prove now that the bottleneck distance between the persistence diagrams of the filtrations
induced by two dissimilarity networks is a lower bound of their dissimilarity network distance.

Theorem 5 Let DK
X and DK

Y be two K-order dissimilarity networks. The bottleneck distance between the
k-th dimensional persistence diagrams of the filtrations L(DK

X) and L(DK
Y ) is at most dD,∞(DK

X , DK
Y ) for

any 0 ≤ k ≤ K, i.e.

bk(DK
X , DK

Y ) ≤ dD,∞(DK
X , DK

Y ). (3.11)

Proof: The proof of Theorem 5 relies on the stability theorem for persistence diagrams (also termed
Interleaving Theorem) [142], which state that if the birth times of each simplex in two filtrations
differ by no more than δ, the bottleneck distance between the corresponding persistence diagrams
is no greater than δ as well. In order to prove Theorem 5, we introduce the following notion of
augmented networks. This definition solves the issue when a single node in one network has
multiple correspondents in the other network. In such cases, say, if a in X, has both c and d in Y as
correspondents, we examine the difference between r1

X(a, a) and r1
Y(c, d) in evaluating the network

difference. However r1
X(a, a) = r0

X(a) represents the birth time of [a] while r1
Y(c, d) denotes the
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Figure 16: An example to construct augmented networks. D1
X and D1

Y are 1-order dissimilarity
networks. The augmented network using correspondence C induces A1

X
∼= D1

X . An additional
node a2 and two edges are augmented in A1

Y.

time of appearance of an edge [c, d]. The augmented networks are introduced to resolve this
discrepancy.

Definition 18 Given two K-order dissimilarity networks DK
X and DK

Y and a correspondence C between
their node sets X and Y, the augmented networks AK

X,C and AK
Y,C are a pair of K-order networks defined on

C. Each node ai in AK
X,C and AK

Y,C represents a correspondent pair (xCi , yCi ) in C. Relationship functions
for a0:k with 0 ≤ k ≤ K are defined as

rk
AX

(a0:k) = rk
X(xC0 :Ck ), rk

AY
(a0:k) = rk

Y(yC0 :Ck ). (3.12)

When the underlying correspondence is clear, C is omitted in the subscripts. For a pair of dissim-
ilarity networks DK

X and DK
Y and a correspondence C between X and Y, the augmented networks

AK
X and AK

Y have identical |C| nodes where |C| denotes the number of correspondence pairs in
C. Each node ai in both AK

X and AK
Y represents a correspondent pair (xCi , yCi ) in C. For each

tuple a0:k, its relationship rk
AX

(a0:k) for the network AK
X is the same as the relationship rk

X(xC0 :Ck )

between the tuple xC0 :Ck in DK
X . An example to construct augmented networks is illustrated in

Figure 16. Augmented networks satisfy the following properties.

Fact 1 Given a K-order dissimilarity network DK
X and a correspondence C between the node sets X and Y,

the augmented network AK
X constructed by Definition 18 is a valid K-order network. The induced filtration
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L(AK
X) is a valid filtration and has identical persistence diagrams as L(DK

X), i.e. for any 0 ≤ k ≤ K,

PkL(AK
X) = PkL(DK

X). (3.13)

Proof: We need to prove the (i) symmetry property and (ii) identity property of high order net-
works, (iii) L(AK

X) being a valid filtration, and (iv) L(AK
X) and L(DK

X) having identical persistent
homology.

Proof of the symmetry property: For any tuples a0:k, the symmetry property of dissimilarity net-
work DK

X and the definition of augmented networks imply rk
AX

(a[0:k]) = rk
X(x[C0 :Ck ]

) = rk
X(xC0 :Ck ) =

rk
AX

(a0:k) for any reordering a[0:k]. This shows the symmetry property of AK
X . �

Proof of the identity property: Given a tuple a0:k, if its subtuple al0 :lk̃
have same set of unique

elements as that of a0:k, according to the Definition of augmented networks, we would have that
xC0 :Ck and xCl0

:Clk̃
also possess identical set of unique elements. The identity property of dis-

similarity network DK
X and the definition of augmented networks yield rk

AX
(a0:k) = rk

X(xC0 :Ck ) =

rk̃
X(xCl0

:Clk̃
) = rk̃

AX
(al0 :lk̃

). This shows the identity property of AK
X . �

Proof of L(AK
X) being a valid filtration: The order increasing property of relationship function

in augmented networks holds true due to the fact that

rk
A(a0:k) = rk

X(xC0 :Ck ) ≥ rk−1
X (xC0 :Ck−1) = rk−1

A (a0:k−1). (3.14)

The remaining proof is identical to the proof of Proposition 5. �

Proof of L(AK
X) and L(DK

X) having identical persistence diagrams: First, for each point x ∈ X,
pick one pair (x, y) from the correspondence C to construct C0 that is a subset of C. If we define
a map that maps each pair (x, y) to its first element x, this gives a bijective projection from C0 to
X. Construct AK

C0,X and AK
C,X as the augmented networks using the respective correspondence. It

then follows naturally that AK
C0,X is isomorphic to the original dissimilarity network DK

X and so do
the corresponding filtrations. Denote L := L(AK

C,X) and L0 := L(AK
C0,X) = L(DK

X).

Next, consider the projection of the filtration L onto L0, where each vertex (x, y) in C is mapped to
(x, y0) in C0 who share the first element in the pair. Denote Lα and Lα

0 as the simplicial complexes
that collect simplices appearing before or prior to α in the respective filtration. For each value
of α, the projection defines a retraction of simplicial complexes Lα → Lα

0 . Since the relationship
functions are the same in the augmented network AK

C,X as in the original network AK
C0,X , whenever

a simplex φ appears in Lα, not only its projection appears in Lα
0 at the same time, but all the

simplices connecting vertices of φ and vertices of its projection are also already in Lα
0 . Hence,

as a simplicial map, the projection Lα → Lα
0 is contiguous to the identity of Lα. As a result, the

section Lα
0 → Lα is a homotopy equivalence. Its induced homomorphism at the homology level is

therefore an isomorphism, and consequently the two persistence diagrams are isomorphic. �
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Having demonstrated all statements, the proof completes. �

Back to the proof of Theorem 5. Let δ = dD,∞(DK
X , DK

Y ). From Definitions 9, there exists a
correspondence C between X and Y such that |rk

X(x0:k)− rk
Y(y0:k)| ≤ δ for any k and any pairs of

correspondents (x0:k, y0:k) = (x0, y0), . . . , (xk, yk) ∈ C. Construct the pair of augmented networks
AK

X and AK
Y defined in Definition 18 using this correspondence. It follows from (3.12) that given a

tuple a0:k ∈ C with each node ai representing the correspondent pair (xCi , yCi ) in C,∣∣∣rk
AX

(a0:k)− rk
AY

(a0:k)
∣∣∣ = ∣∣∣rk

X(xC0 :Ck )− rk
Y(yC0 :Ck )

∣∣∣ ≤ δ. (3.15)

Since AK
X and AK

Y have identical nodes, (3.15) implies that any simplices that appear at time α

in the induced filtration L(AK
X) will appear no earlier than α− δ and no later than α + δ in the

induced filtration L(AK
Y). Using the Interleaving Theorem, this yields the bound

bk(AK
X , AK

Y) ≤ δ = dD,∞(DK
X , DK

Y ). (3.16)

From Fact 1, bk(AK
X , AK

Y) = bk(DK
X , DK

Y ). Substituting this into (3.16) concludes the proof. �

When comparing high order networks via their induced persistence diagrams, Theorem 5 pro-
vides justification that the dissimilarity obtained from persistent homologies is a lower bound on
their infinity norm network distance. In particular, Theorem 5 implies that: (i) A large difference
in persistent homologies imply the networks to be highly different. (ii) Lower bounds can be
used to estimate distance intervals because upper bounds are easy to determine using specific
correspondences as per Definition 7.

We note that the differences between persistence diagrams do capture important differences be-
tween networks. E.g., in Figure 15 we can consider network (b) as a modification of network
(a) in which we separate node a into the closely related nodes a and b that have a dissimilarity
r1

X(a, b) = 0.1. The persistence diagrams of these two networks are identical, which is consistent
with the relative proximity of these two networks. Network (c) is more different, because the
addition of the dissimilarity r1

X(b, d) = 0.7 complicates the argument that nodes a and b can be
well represented by a single node as in network (a). Network (d) can be argued to be in between
networks (b) and (c) since the dissimilarity r1

X(a, b, d) = 0.8 implies a sense of added proximity
between nodes a, b, and d. The difference between the persistence diagrams of networks (c) and
(b) is indeed larger than the difference between the diagrams of networks (d) and (b).

Further evidence for the usefulness of the bound in (3.11) follows from the fact that the bound is
tight in some cases. An example of a tight bound is shown in Figure 17. The optimal correspon-
dence C, shown in the figure, yields a network distance dD,∞(D1

X , D1
Y) = 0.1. The coordinates

of the points in the 0-dimension persistence diagrams for L(D1
X) are (0, ∞), (0.12, 0.42), (0.2, 0.32)

and for L(D1
Y) are (0.1, ∞), (0.21, 0.51), (0.25, 0.39). The coordinates of the point in the 1-dimension

persistence diagrams for L(D1
X) are (0.6, 1) and for L(D1

Y) is (0.5, 1). The bottleneck distances be-
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Figure 17: An example where the bottleneck distance between the k-th dimensional persistence
diagrams of the filtrations L(DK

X) and L(DK
Y ) is the same as their ∞-norm network distance for

k ∈ {0, 1}. The optimal correspondence C yields dD,∞(D1
X , D1

Y) = 0.1. The points in the 0-
dimension persistence diagrams for L(D1

X) are with coordinates (0, ∞), (0.12, 0.42), (0.2, 0.32) and
for L(D1

Y) are (0.1, ∞), (0.21, 0.51), (0.25, 0.39). The point in the 1-dimension persistence diagrams
for L(D1

X) is with coordinate (0.6, 1) and for L(D1
Y) is (0.5, 1). The bottleneck distances between

the 0- as well as the 1- dimensional persistence diagrams of the filtrations induced from the two
networks are 0.1.

tween the 0- and 1-dimensional persistence diagrams of the induced filtrations are 0.1; same as
dD,∞(DK

X , DK
Y ).

3.2.1. Persistence Bounds on k-order Distances

Theorem 5 guarantees that the ∞-norm dissimilarity network distance dD,∞ can be tightly bounded
by persistence diagrams. In this section we build on Theorem 5 to show that the k-order network
distance dk

D can also be bounded by persistent methods.

Theorem 6 Given two dissimilarity networks DK
X and DK

Y and an integer 1 ≤ k ≤ K, the bottleneck
distance between the k′-th dimensional persistence diagrams of the filtrations L(DK

X) and L(DK
Y ) is at most

dk
D(DK

X , DK
Y ) for any 0 ≤ k′ < k, i.e.

bk′(DK
X , DK

Y ) ≤ dk
D(DK

X , DK
Y ). (3.17)

Proof: We prove Theorem 6 from Theorem 5. To do that, we leverage the relationship for network
distances as we present next.

Fact 2 Given high order networks NK
X and NK

Y , we have

dk′
N (NK

X , NK
Y ) ≤ dk

N (NK
X , NK

Y ), (3.18)

for 0 ≤ k′ ≤ k− 1 ≤ K, and

dN ,∞(NK
X , NK

Y ) = dK
N (NK

X , NK
Y ). (3.19)
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Proof: We need to prove the two statements in (3.18) and (3.19). Given any 0 ≤ k′ ≤ k ≤ K, it
follows from (2.8) that for any correspondence C between X and Y,

Γk
X,Y(C) = max

(x0:k ,y0:k)∈C

∣∣∣rk
X(x0:k)− rk

Y(y0:k)
∣∣∣ , (3.20)

Γk′
X,Y(C) = max

(x0:k′ ,y0:k′ )∈C

∣∣∣rk′
X(x0:k′)− rk′

Y (y0:k′)
∣∣∣ . (3.21)

For the (x?0:k′ , y?0:k′) ∈ C achieving the maximum difference |rk′
X(x?0:k′)− rk′

Y (y
?
0:k′)| in Γk′

X,Y(C), we can
construct another correspondent pair (x?0:k, y?0:k) such that x?0:k′ is a sub-tuple of x?0:k with identical
set of unique elements and y?0:k′ is a sub-tuple of y?0:k with identical set of unique elements. It
follows from the identity property of high order networks that rk′

X(x?0:k′) = rk
X(x?0:k) and rk′

Y (y
?
0:k′) =

rk
Y(y

?
0:k). This implies that taking the maximum |rk

X(x0:k) − rk
Y(y0:k)| over (x0:k, y0:k) ∈ C cannot

yield a lower difference than |rk′
X(x?0:k′)− rk′

Y (y
?
0:k′)|, i.e.

Γk
X,Y(C) ≥

∣∣∣rk′
X(x?0:k′)− rk′

Y (y
?
0:k′)

∣∣∣ = Γk′
X,Y(C). (3.22)

Since (3.22) holds true for any correspondence C ∈ C(X, Y), the inequality must hold true when
we take the minimum over all correspondences C(X, Y) between X and Y,

min
C∈C(X,Y)

Γk
X,Y(C) ≥ min

C′∈C(X,Y)
Γk′

X,Y(C
′). (3.23)

Substituting the definition of k-order and k′-order network distances into (3.23) yields dk
D ≥ dk′

D ,
concluding the proof of (3.18).

Also, it follows from (2.17) that for any correspondence C between the node sets X and Y, the
network difference between NK

X and NK
Y measured by C is∥∥∥ΓK

X,Y(C)
∥∥∥

∞
= max

k=0,1,...,K

{
Γk

X,Y(C)
}

. (3.24)

From (3.22) we know that for any k′, Γk
X,Y(C) ≥ Γk′

X,Y(C), and therefore for any correspondence

C, maxK
k=0

{
Γk

X,Y(C)
}

= ΓK
X,Y(C). Substituting this into (3.24) and taking a minimum over all

correspondences concludes the proof of (3.19).

Having proven the two statements, the proof completes. �

Fact 2 implies that dk
N increases as the order k becomes higher, and the ∞-norm distance dN ,∞ is

the same as the K-order network distance. The result in Theorem 6 only considers relationship
functions of order k, and to leverage the connection as in Fact 2, we introduce the following notion
of truncated networks.

Definition 19 Given K-order network NK
X = (X, r0

X , . . . , rK
X), its k-order truncated network Nk

X is defined
as Nk

X = (X, r0
X , . . . , rk

X).

53



A k-order truncated network Nk
X has the same node set as its parent network NK

X and collects the
lowest k + 1 order relationship functions of NK

X . Back to the proof of Theorem 6, construct the
k-order truncated networks Dk

X and Dk
Y from DK

X and DK
Y . It follows directly from Theorem 5 that

for any 0 ≤ k′ ≤ k− 1,

bk′(DK
X , DK

Y ) ≤ dD,∞(Dk
X , Dk

Y). (3.25)

Since Dk
X and Dk

Y are valid high order networks, Fact 2 implies that dD,∞(Dk
X , Dk

Y) = dk
D(Dk

X , Dk
Y).

Meanwhile, dk
D(Dk

X , Dk
Y) = dk

D(DK
X , DK

Y ) follows from the facts that Dk
X and DK

X have identical
k-order relationship functions and Dk

Y and DK
Y have same k-order relationship. Finally, for any

k′ ≤ k − 1, the k′-th dimensional persistence diagram of L(Dk
X) is identical to that of L(DK

X)

and the k′-th dimensional persistence diagram of L(Dk
Y) is identical to that of L(DK

Y ), therefore
bk′(Dk

X , Dk
Y) = bk′(DK

X , DK
Y ). Combining these observations, the proof concludes. �

Theorem 6 bounds the k-order network distance by the bottleneck distance between persistence
diagrams of any order k′ < k. We note that best lower bound is not necessarily k′ = k − 1.
Observe that the result in Theorem 6 does not apply for k = 0. This is not a problem because
the 0-order network distances d0

D examine relationships between individual nodes only. Thus, we
can compute the optimal correspondence in Definition 7 by matching each of the relationships
r0

X(x) in the network DK
X to the closest relationship r0

Y(y) in the network DK
X . We emphasize that

the lower bound described in Theorem 6 is also tight since we can find dissimilarity networks
DK

X and DK
Y such that dk

D(DK
X , DK

Y ) equals the bottleneck distance between the k′-th dimensional
persistence diagrams of the filtration L(Dk

X) and L(Dk
Y) for any 0 ≤ k′ ≤ k− 1 ≤ K. See Figure

17 for an illustration where bottleneck distances between the k-dimensional persistence diagrams
coincide with dk

D .

One of the key arguments in the proof of Theorem 2 is the fact that the infinity norm network
distance dN ,∞(NK

X , NK
Y ) and the K-order network distance dK

N (NK
X , NK

Y ) coincide [cf. Fact 2]. This
equality implies that Theorem 5 follows as a particular case of Theorem 6 by setting k = K in (3.17)
and observing that dN ,∞(NK

X , NK
Y ) = dK

N (NK
X , NK

Y ). Do notice that this doesn’t mean that the proof
of Theorem 5 is redundant because Theorem 5 is leveraged in the proof of Theorem 6. However,
the result does imply that the infinity norm distance dN ,∞(NK

X , NK
Y ) does not contain information

beside the one that is contained in the collection of k-order distance dk
N (NK

X , NK
Y ) for k = 0, . . . , K.

Another consequence of Theorem 6 is that we can bound the p-norm network distance dD,p(DK
X , DK

Y )

[cf. Definition 9] for arbitrary p. This can be done using the individual bounds for dk
D(DK

X , DK
Y )

established in (3.17) as we show next.

Corollary 1 Group the k-order dissimilarity network distances in the vector dK
D(DK

X , DK
Y ) :=

[
d0
D(DK

X , DK
Y ),

d1
D(DK

X , DK
Y ), . . . , dK

D(DK
X , DK

Y )
]T . Further define the vector bK(DK

X , DK
Y ) :=

[
d0
D(DK

X , DK
Y ), bk1(DK

X , DK
Y ),

. . . , bkK (DK
X , DK

Y )
]T whose first component is the zero order distance d0

D(DK
X , DK

Y ) and whose other com-
ponents are bottleneck lower bounds with kl < l. The p-norm network distance can be lower bounded
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as ∥∥∥bK(DK
X , DK

Y )
∥∥∥

p
≤
∥∥∥dK
D(DK

X , DK
Y )
∥∥∥

p
≤ dD,p(DK

X , DK
Y ). (3.26)

Proof: The second inequality follows from the fact that a single correspondence is used in dD,p

whereas an order-specific correspondence may be utilized in each k-order distance dk
D [8]. For the

first inequality, bkl (DK
X , DK

Y ) ≤ dl
D(DK

X , DK
Y ) comes from Theorem (6). This implies that the vector

bK(DK
X , DK

Y ) is element-wise smaller or equal to the vector dK
D(DK

X , DK
Y ). �

Corollary 1 shows that the p-norm network distance dD,p can be lower bounded using: (i) The
exact value of the 0-order network distance. (ii) The persistence homology lower bounds in (3.17)
of Theorem 6. The bounds in Corollary 1 are expected to be the most useful when they combine
information gleaned from persistence diagrams of different orders.

Remark 6 The requirement of having the inequality in (2.30) be strict unless all the elements of
x0:k appear in x0:k−1 for the network to be a dissimilarity network [cf. Definition 10] is not always
naturally satisfied in practice. As we have seen, its satisfaction may necessitate the addition of
a small but arbitrary constant to some tuple relationships [cf. Figure 4]. This is not a problem
in practice because Theorems 5 and 6 still holds if this technical condition is violated. The only
modification in the statements is that the respective network distances are not metrics but pseu-
dometrics. What this means is that it is possible to construct pathological examples of networks
that satisfy the order decreasing property not strictly and that have null network distance while
not being isomorphic. These networks are unlikely to appear in practice and, even if they do, the
bounds in Theorems 5 and 6 hold, albeit with a different interpretation.

3.3. Implementation Details

We discuss implementation issues regarding the procedure for evaluating lower bounds, its com-
putational cost, and some heuristic simplifications.

Procedure. To compute distance lower bounds for a dissimilarity network we construct filtrations
and evaluate persistence diagrams. Algorithmic procedures to compute filtrations and persistence
diagrams are discussed in [37, 143]. The bottleneck distances bk(DK

X , DK
Y ) between the persistence

diagrams of different orders 0 ≤ k ≤ K are then evaluated. These distances follow from Definition
17 and are found as solutions of LBAP with costs given by (3.8). If the interest is in the infinity
norm network distances dD,∞, any of the bottlenecks distances is a lower bound [cf. Theorem 5]. If
we are interested in the k-order network distance dk

D , the bottleneck distance between persistence
diagrams of dimension k′ ≤ k − 1 is a lower bound [cf. Theorem 6]. When given a proximity
network we construct the dual network with relationships rk

X(x0:k) = 1− rk
X(x0:k) and proceed as

before.
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Computational cost. The process above involves computation of the persistent homology and eval-
uation of the bottleneck distance. Given a K-order network with n nodes, denote as ñ the total
number of simplices and m as the number of points in the persistence diagram. The complexity of
computing a persistence diagram is akin to matrix multiplication of matrices with size ñ, i.e. the
number of simplices considered [37]. Because the complexity for matrix completion is O(ñ2.373)

[143], computational complexity of evaluating a persistence diagram is also O(ñ2.373). The com-
plexity of evaluating the bottleneck distance using LBAP [cf. (3.10)] is of order O(m2.5 log m)

[140, Algorithm 6.1]. The number of simplices of order k can be as large nk and the number of
points in a persistence diagram as large as the number of simplices. This means that we can have
m = ñ = nK, which yields impractical computational times for orders larger than K = 2. In the
practical examples we consider in Sections 3.4.2 and 3.4.3, the number of simplices ñ is much
smaller than the maximum possible and scales linearly with the number of nodes. This yields
complexity O(n2.373) for computing the persistence diagram and O(n2.5 log n) for the bottleneck
distance.

Undefined tuple relationships. Formally, dissimilarity networks require that all undefined tuple
relationships take value 1. As defined above this is impractical because it would scale the total
number of simplices as ñ = nk. In computations we leave these simplices undefined and let
features die at infinity. As it follows from Remark 5, the death time of these features can be set to
α = 1 to yield the same result that would be obtained from setting undefined tuple relationships
to 1 before computing the persistence diagram.

Elimination of small homological features. We can reduce the number of points in a persistence
diagram by removing points q close to the diagonal. This is justified because: (i) These points
represent ephemeral homological features and are likely to be generated by noise in observations.
(ii) They contribute a small value to the cost in (3.8) and won’t improve the lower bound much
from the trivial nonnegative lower bounds 0 ≤ dD,∞(DK

X , DK
Y ) or 0 ≤ dk

D(DK
X , DK

Y ) that hold for
any distance.

3.4. Applications

We illustrate the usefulness of homology methods through experiments in both synthetic (Section
3.4.1) and real-world data (Sections 3.4.2 and 3.4.3). The objective is to demonstrate that networks
with similar structures and should be alike to each other are indeed similar in their persistent
homologies.

3.4.1. Classification of Synthetic Networks

We consider three types of synthetic weighted pairwise networks. Edge weights in all three
types of networks encode proximities. The first type of networks are with weighted Erdős-Rényi
model [144], where the edge weight between any pair of nodes is a random number uniformly
selected from the unit interval [0, 1]. In the second type of networks, the coordinates of the vertices
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Figure 18: Two dimensional Euclidean embeddings of the networks constructed from three differ-
ent models with different number of nodes with respect to the network metric lower bounds b0

and b1. In the embeddings, red circles denote networks constructed from the Erdős-Rényi model,
blue diamonds represent networks constructed from the unit circle model, and black squares the
networks from the correlation model.

are generated uniformly and randomly in the unit circle, and the edge weights are evaluated
with the Gaussian radial basis function exp(−d(i, j)2/2σ2) where d(i, j) is the distance between
vertices i and j in the unit circle and σ is a kernel width parameter. In all simulations, we set
σ to 0.5. The edge weight measures the proximity between the pair of vertices and takes value
in the unit interval. In the third type of networks, we consider that each vertex i represents
an underlying feature ui ∈ Rd of dimension d, and examine the Pearson’s linear correlation
coefficient ρij between the corresponding features ui and uj for a given pair of nodes i and j. The
weight for the edge connecting the pair is then set as ρij/2 + 0.5, a proximity measure in the unit
interval. The feature space dimension d is set as 30 in all simulations.

We start with networks of equal size |X| = 30 and construct 50 random networks for each afore-
mentioned type. The edges with weights no greater than a threshold τ are removed to create
sparsity. We set τ = 0.2 in all simulations. In order to transform the constructed pairwise net-
works into high order proximity networks, the 0-order proximity for any node is set to 0, i.e.
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Figure 19: Illustrations of the set of death time in 0-dimensional persistence diagrams P0L and the
set of birth time in 1-dimensional persistence diagrams P1L for the filtrations constructed from
the randomly generated networks with number of nodes ranging between 30 and 39. The top 50
networks represent those constructed from the Erdős-Rényi model, the middle 50 networks are
with the unit circle model, and the bottom 50 are with the correlation model.

r0
X(x) := 0 for any x ∈ X. We then use the persistent homology method described in Section 3.3 to

evaluate the dissimilarities between all networks. The persistent homologies are computed using
JavaPlex [145]. Figure 18 (a) and (b) plot the two dimensional Euclidean embeddings [146] of the
network metric lower bounds b0 and b1 between the 0- and 1-dimensional persistence diagrams
respectively. Networks constructed with different models form clear separate clusters with respect
to b1 where networks with Erdős-Rényi model are denoted by red circles, networks with unit cir-
cle model are described by blue diamonds, and correlation model represented as black squares.
The clustering structure is not that clear in terms of b0 but the dissimilarities between networks
constructed from different models are in general much higher than that between networks from
the same model, and an unsupervised classification with one linear boundary in the embedded
space would yield 10 out of 150 errors (6.7%).

Next we consider networks with number of nodes ranging between 30 and 39. Ten networks are
randomly generated for each network type and each number of nodes, resulting in 150 networks
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in total. Figure 18 (c) and (d) illustrate the two dimensional Euclidean embeddings of the network
metric lower bounds b0 and b1 for these networks. Despite the fact that networks with same model
have different number of nodes, dissimilarities between persistent homologies are smaller when
their underlying networks are from the same process. Besides, networks with the correlation
model are highly similar to each other regarding their corresponding persistent homologies, irre-
spective of the sizes of the networks nor the dimension of persistence diagrams. An unsupervised
classification with one linear boundary would yield 6 out of 150 errors (4.0%) for b0 and 7 errors
(4.7%) for b1. The performance of b0 stays relatively unchanged when the number of nodes in
the networks considered reside in a range of nodes. The simulations illustrate the applicability of
persistent homology in identifying the patterns of networks of different processes. Similar results
are obtained when different parameters are used in generating the networks.

Here we give interpretations of why persistent homologies succeed in network discrimination.
Since only pairwise relationships are examined, the bottleneck distance b0 is determined by the
death time of the 0-dimensional persistent homologies. If we consider that nodes connected by an
edge of weight w become members of the same community at time w, the death time in P0L can
be interpreted as the time instant when isolated nodes join the main community of the network.
We focus our attention on the 150 networks with size ranging between 30 and 39. Each row in
Figure 19 (a) represents a network, and plots the death time in the 0-dimensional persistence
diagram P0L of the filtration induced from that network in ascending order from left to right.
The top 50 networks represent those with Erdős-Rényi model, the middle 50 are with the unit
circle model, and the bottom 50 are with the correlation model. Each row in Figure 19 (b) plots
the death time in P0L, in descending order from left to right, of the induced filtration. It is not
a direct mirror of Figure 19 (a) because the size of the networks ranges from 30 to 39 and so
the number of points in the persistence diagrams are different. The time instants when isolated
nodes join the main community in the networks with the correlation model are concentrated in
the interval [0.25, 0.4]. This is due to the fact that the linear correlation coefficient between two
randomly generated feature vectors cannot be too positive nor too negative. Also, networks with
unit circle model are different from those constructed with the Erdős-Rényi model because in the
latter case, the distribution of death time of points in P0L has heavy tail towards 1, which results
from the fact that some points in the unit circle may be far away from the main component and it
requires larger distance for them to join the main component.

For higher order persistent homologies, b1 is only affected by the birth time of the 1-dimensional
persistent homologies, which can be interpreted as the maximum of the three pairwise connections
between three nodes and therefore the time instant when a ‘closely-connected’ community is
formed by the three nodes. Each row in Figure 19 (c) and (d) exhibits the birth time in P1L,
in descending and ascending order from left to right respectively, of the filtration induced from
the corresponding network. The time instants when three nodes in the networks with correlation
model form a closely connected triplet are highly focused in the interval of [0.4, 0.6]. Recall that
edge weight is defined as ρij/2 + 0.5, therefore a edge weight in the interval [0.4, 0.6] implies
very weak correlation (|ρij| ≤ 0.1). This is due to the fact that when the correlation coefficient ρij
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Figure 20: Two dimensional Euclidean embeddings of the networks constructed from quinquen-
nial publications in engineering and mathematics journals with respect to the network metric
lower bounds bk(P0L), bk(P1L), and bk(P2L). In the embeddings, red circles denote networks
constructed from mathematics journals and blue diamonds represent networks from engineering
journals. Networks constructed from publications of TSP are labeled.
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Figure 21: Two dimensional Euclidean embeddings of the networks constructed from annual
publications in TAC, TSP, and TWC with respect to the summation of the metric lower bounds
bk(P0L), bk(P1L), and bk(P2L). In the embeddings, red circles represent TAC, blue diamonds
TSP, and black squares TWC.

between features ui and uj are small and ρik between ui and uk is small, ρjk between uj and uk

also tends to be small. For networks with unit circle model, the time points for many nodes in the
network forming a closely connected triplet are either smaller or larger compared to the Erdős-
Rényi model. This is because if three points in the unit circle are close to each other, all the pairwise
distances between them would not be high; otherwise the minimum inscribed circle of the three
points would possess large radius, resulting in a high value on the maximum of the pairwise
distances. Admittedly, other methods to compare networks may also succeed in distinguishing
networks, after some proper treatment towards the issue of different sizes. Nonetheless, persistent
homology method would be more universal, not only for the reason that it establishes a lower
bound to the actual network metrics, but also since it provides a systematic way to analyze the
formation of communities in a given network.

3.4.2. Comparison of Coauthorship Networks

We apply the lower bounds to compare 2-order coauthorship networks where relationship func-
tions denote the number of publications of single authors, pairs of authors, and triplets. These
coauthorship networks are proximity networks because they satisfy the order decreasing property.
We consider publications in 5 journals from mathematics community: Computational Geometry
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(CG), Discrete Computational Geometry (DCG), J. of Applied Probability, (JAP) J. of Mathematical
Analysis and Applications (JMAA), SIAM J. on Numerical Analysis (SJNA), and 6 journals from
engineering community, all from IEEE: Signal Processing Magazine (SPM), Trans. Automatic Con-
trol (TAC), Trans. Pattern Analysis and Machine Intelligence (TPAMI), Trans. Information Theory,
Trans. Signal Processing (TSP), Trans. Wireless Communication (TWC). For each journal, we con-
struct networks for the 2004-2008 and 2009-2013 quinquennia. For TAC, TSP, and TWC, we also
construct networks for each annual from 2004 to 2013. Lists of publications are queried from [135].

For each of these journals we consider all publications in the period of interest and construct prox-
imity networks where the node set X is formed by all authors of the publications. Zeroth order
proximities are defined as the total number of publications of each member of the network, first
order proximities as the number of publications coauthored by pairs, and second order proximities
as the number of publications coauthored by triplets. To make networks with different numbers
of publications comparable we normalize all relationships by the total number of publications in
the network. The positive constant ε as in Figure 5 is set to 1/1000. There are publications with
more than three coauthors but we don’t record proximities of order higher than 2. By assuming
that networks from the same community or constructed from the same journal have similar col-
laboration patterns, we show here that network metric lower bounds succeed in identifying these
patterns and in distinguishing coauthorship networks from communities with different interests.

Figure 20 shows the two dimensional Euclidean embeddings of the network metric lower bounds
b0, b1 and b2. The 12 engineering networks (blue diamonds) separate clearly from the 10 mathe-
matics networks (red circles) in b1 and b2. The clustering is not that clear in b0 but still networks
from same community tend to be similar to each other. An unsupervised classification with one
linear boundary running across the embeddings would generate errors of 2 (9.09%) to 5 (22.73%)
out of 22 networks. Networks constructed from the same journal tend to be close in the lower
bounds. As an example, the networks of TSP with different quinquennia are marked in the em-
beddings and it is clear that their differences in homologies are considerably low. Such scenarios
are observed for several other journals as well.

We analyze the persistent homology of each of the coauthorship networks to investigate the rea-
son why persistent homologies succeed in network discrimination. Compared to networks from
mathematics communities, networks from engineering communities in general would yield 0-
dimensional persistent homologies with smaller birth time but larger death time, 1-dimensional
homologies with larger birth and death time, and 2-dimensional homologies with larger birth
time. An interpretation of such observations would be that in engineering, there exist more small
communities that never collaborate with each other and it is uncommon to have a “club” of 3 to
5 authors in engineering that a strong collaboration exists between any pairs of the authors in the
“club”; such scenarios are absent for mathematicians.

As a comparison, we applied some simple and reasonable methods to compare the coauthorship
networks considered in this section. Motifs have been shown effective in distinguishing coauthor-
ship networks from different scientific fields [16]. To compare high order coauthorship networks
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by motifs, we restrict attention to pairwise relationships. The dissimilarities between coauthorship
networks are assigned as the differences between the summations of the weighted motifs in their
corresponding pairwise networks. Analysis based on triangle motifs (weighted) results in a clear
cluster between networks from CG, DCG, JAP and another cluster between networks from TSP,
TWC, but cannot distinguish other networks very well. Tetrahedron motif analysis (weighted)
results in three clear clusters: networks from CG, DCG, JAP, networks from JMAA, SJNA, SPM,
TPAMI, and networks from TSP, TWC. Other simple and common methods to compare pairwise
networks yield similar results. Methods to compare networks via features give us similar obser-
vations as those based on the persistent methods; feature methods would generate 6 to 8 errors in
classifications.

3.4.3. Engineering Communities with Different Research Interests

The network metric lower bounds succeed in distinguishing the different collaboration patterns in
engineering and mathematics communities. We now illustrate that the lower bounds are also able
to identify distinctive features of engineering communities with different research interests. To
see this we consider the networks constructed from annual publications of TAC, TSP, and TWC.

Figure 21 shows the two dimensional Euclidean embeddings of the networks with respect to the
summation of the lower bounds b0, b1, and b2. We expect more variations in annual networks
because the time for averaging behavior is reduced. Besides, it is hard to argue that intrinsic
and obvious differences exist in the collaboration patterns in automatic control, signal processing,
and wireless communication communities. Still, networks constructed from the same journal but
different annuals tend to be close to each other and form clustering structures. An unsupervised
classification with one linear boundary in the embeddings run across the summation of lower
bounds would generate 4 (20%) errors out of 20 networks in all three classification problems
considered. The less obvious clustering structure formed by networks from different journals in
Figure 21 (c) compared to (a) and (b) also suggests that the collaboration patterns in research
communities of signal processing and wireless communication are more similar compared to that
of automatic control.
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Chapter 4

Frequency Representation of
Networks by Persistent Homology

Leveraging on the association between networks and persistent homology in Section 3, in this
chapter we propose to define homofrequency of tuples in the network as the duration of the homo-
logical feature generated by the tuples (Definition 21 in Section 4.1). Tuples forming a long-lasting
homological feature – a high homofrequency – represent a core feature in the network that should
not be considered as noise. On the other hand, tuples that generate a short-lasting homolog-
ical feature – a low homofrequency – denote an unimportant feature in the network that are
more likely to be noise. The homospectrum of a network collects all of its homofrequencies and
the corresponding homological generators. This definition of homospectrums enable us to easily
distinguish networks generated from different processes (Section 4.1.1). The first key theoretical
result is that we can recover a network from its homospectrum (Definition 22 and Theorem 7). In
other words, homospectrums offer a different representation of the same information represented
in the network space. The dual space, formed by homospectrums and networks, behaves like
frequency domain and time domain in classical signal processing. With such definition of ho-
mofrequencies, we can then define homofilters to remove undesired homofrequencies and keep the
homofrequencies of our interest (Section 4.2). The filtering can be applied in the homospectrum
domain (Definition 23) as well as directly in the network domain (Definition 24). We illustrate
that as expected, h-lowpass filter enables us to remove the unimportant features and keep the
core representation in a point cloud data (Section 4.2.1). Another important aspect about defining
frequency via homological features is that the difference between the original network and the
filtered network using h-highpass filter is small (Theorem 8 in Section 4.3). In fact, such difference
is no larger than the duration of the longest-lasting homological features removed during filtering.
In time-series filtering, Parseval’s theorem in Fourier transform guarantees that the energy in the
filtered signal is mostly preserved, if we only remove frequencies with small absolute frequency
coefficients. Theorem 8 has similar interpretation, with the duration of the homological features
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Figure 22: From dissimilarity networks to homospectrums through persistence diagrams. Persis-
tence diagrams are constructed from the dissimilarity networks, with generators for each homo-
logical feature being recorded. For each order k, homofrequency sk denotes the duration of the
homological feature. The aggregation of homofrequencies for all homological features forms the
homospectrum.

denote the “energy”. Besides, if we apply filter onto a pair of networks, the difference between
the original network distance and the distance between the filtered networks is no greater than
the longest duration removed (Theorem 9).

4.1. Homospectrum of Networks

The appearance and disappearance of homological features induce a natural notion of duration,
i.e. the difference between the disappearance time of a homological feature and the corresponding
appearance time of the feature. This observation motivates us to represent the unstructured infor-
mation encoded by the network by the more organized information of durations of homological
features. In classical signal processing, a time-series can be represented by coefficients in Fourier
frequency domain, where low frequencies denote small temporal variation and high frequencies
represent large variation. In homological signal processing, a network can be represented by its
homospectrums, in which high homofrequencies indicate perennial homological features and high
homofrequencies represent ephemeral homological features.

To formalize such intuition, we need to slightly adapt the definition of persistent homology as in
classical topology. The reason for this is because the birth and death time of persistent homology
only capture the relationship values of the nodes, but do not capture which nodes are included in
the relationship. For that purpose, we include the generators of each homological feature as we
formally state the next.

Definition 20 Given a filtration L, its k-dimensional extended persistence diagram Qk is a collection of
points of the form q = [qb, qd], each associated with a tuple (Gb,Gd) where qb and qd > qb represent the
birth and death time of a homological feature, Gb = {x0:k} denotes the collection of simplices that exhibit the
birth of the homological feature, and Gd = x0:k+1 denotes the simplex which kills the homological feature.
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As per Definition 20, for each point in the persistence diagram, the time qb represents the reso-
lution α = qb at which the k-homological features generated by the simplices in the collection Gb

start to appear, and the time qd describes resolution α = qd at which the feature is no longer a
homological feature due to the addition of the simplex Gd = x0:k+1. For the same example as in
Figure 14, there are still two points, [0.5, 1] and [0.7, 0.8] in the 1-persistence diagram, but each of
them is associated with a tuple denoting their generators. In specific, the point [0.5, 1] is associ-
ated with ({[a, b], [b, c], [c, d], [d, a]}, [b, c, d]) denoting its birth at resolution 0.5 is due to the cycle
formed by [a, b], [b, c], [c, d], and [d, a] and its death at resolution 1 is due to the simplex [b, c, d].
In fact, the actual death generator in this case is inessential as it represents the maximum dis-
similarity, i.e. the simplex actually does not exist. Similarly, the point [0.7, 0.8] is associated with
({[a, b], [b, d], [d, a}, [a, b, d]). Compared to persistence diagram, extended diagram also records the
generators for each of the homological features.

With the extended persistence diagram, we would be able to define the homofrequencies as the
difference between the death time and birth time of each homological feature, as we state the next.

Definition 21 Given a point q in the k-dimensional extended persistence diagram Qk, its homofrequency
sk(q) is qd − qb. The k-homospectrum Sk = {sk} collects the homofrequency of all k-dimensional homo-
logical feature. The K-order homospectra SK = {Sk}K−1

k=0 collects all k-homospectrums up to order K − 1.
Denote the space of all K-order homospectras as SK and the h-transform from networks to homospectrums
as Z : D̃K → SK.

The homofrequency for a certain homological feature represents how short the homological fea-
ture exists in the filtration. The lower the homofrequency, the shorter the duration where the
homological feature exists. On the other hand, the higher the homofrequency, the longer the
existence. As for networks representing the temporal dynamics for the formation of a research
community as in Figure 4, a homological feature denoting high 1-homofrequency describes a
number of authors, who each pair started collaboration a while ago but only recently start to
collaborate together or never collaborate together; in other words, it describes a “hole” in the
community that last a relatively long time. On the other hand, a homological feature denoting
low 1-homofrequency describes a group of researchers, who start to write publications together
shortly after their pairwise initial collaboration; in other words, it describes a “hole” in the com-
munity that gets filled very soon. It can be seen that a network up to order K can have K + 1
different notions of homofrequency: starting from 0-homofrequency, describing when different
communities join together, then 1-homofrequency, quantifying holes within communities. An il-
lustrating example describing how we construct the homofrequency of networks, via persistence
diagram, is demonstrated in Figure 22. Inherited from the extended persistence diagram, each
homofrequency records the associated generator tuple. This enables the recovery of the original
network from the homospectrums, as we state next.

Definition 22 Given a homospectra SK = {Sk}K−1
k=0 , its corresponding dissimilarity network DK

X is recov-
ered as follows. Starting with F0, for each homofrequency, build the dissimilarity in DK

X using the birth and
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death time [qb, qd] as well as the generators (Gb,Gd) recorded, where the dissimilarities for all simplices in
Gb not defined yet are set to qb, and the dissimilarity for the simplex in Gd is set to qd. Iterate this process
over all s0 and then iterate over all Sk up to K− 1. If a tuple x0:k appears in the birth generators of multiple
k-homological features, its dissimilarity dk

X(x0:k) is set as the smallest of the birth times of the features.

The inverse h-spectrum from homospectrums to networks is denoted as Z−1 : SK → D̃K.

The network is recovered in a bottom-up fashion. For each homological feature, there is only one
simplex in the death generator Gd, and the dissimilarity for that simplex is set to the death time
of the homological feature. Each homological feature may have multiple simplices in the birth
generator Gb, and those that have not been defined are set to the birth time of the homological
feature. The condition for a tuple appearing in multiple birth generators ensures order increasing
property to be satisfied. The main result in this section is that it is able to prove that Z−1 is well
defined for dissimilarity networks, as we state next.

Theorem 7 The transform Z−1 defined in Definition 22 is a well-defined inverse map of Z defined in
Definition 21, i.e. for any dissimilarity network DK

X ∈ DK, we have Z−1 ◦ Z(DK
X) = DK

X .

Proof: To prove Theorem 7, we first demonstrate that all tuples with recorded dissimilarity exist
in the generators of extended persistence diagram, as we state next.

Lemma 1 Given a dissimilarity network DK
X , any of its tuples with recorded dissimilarity and with unique

elements appear either in the death generator Gd of a (k− 1)-th dimensional homological feature or the birth
generator Gb of the k-th dimensional features.

Proof : Given any tuple x0:k with unique nodes, Definition 10 indicates that the k-simplex φk

defined by the convex hull conv{x0:k} appears strictly after any of its faces conv{x0:ŝ:k} in the
filtration. Suppose φk appears at time α and denote ∂kφk = ∑i βiψ

k−1
i with βi the coefficients, then

each ψk−1
i appears strictly before time α.

Now suppose that the appearance of φk trivializes a (k− 1)-th dimensional homological feature.
This means that φk is the boundary to trivialize the (k− 1)-th dimensional cycle ∂kφk. Since each
face ψk−1

i of φk appears strictly before time α, the cycle ∂kφk results in a homological feature.
The death time of this homological feature is α, or equivalently, the time represented by the
relationship rk

X(x0:k). This indicates that x0:k is the death generator of the homological feature.

On the other hand, if the appearance of φk does not trivialize a (k− 1)-th dimensional homological
feature, then the (k− 1)-cycle ∂kφk is in the collection of simplices appearing before or on time α.
This means that ∂kφk can be represented by a sum of the boundaries of some k-chains Φk

i ,

∂kφk = ∑
i

βi∂kΦk
i (4.1)
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with coefficients βi and k-chains Φk
i appearing before or on time α. By the definition of k-chains,

Φi = ∑j β′jψ
k
j with coefficients β′j and k-simplices ψk

j appears before or on time α. Therefore, (4.1)
can be written as ∂kφk = ∑j β′′j ∂kψk

j . Rearranging terms,

∂k

(
∑

j
β′′j ψk

j − φk
)
= 0. (4.2)

This implies that ∑i β′′i ψk
i − φk is a k-cycle. There must be a new cycle formed since φk just ap-

pears. The cycle cannot be trivialized immediately since any (k + 1)-chain Ψk+1 with ∂k+1Ψk+1 =

∑i β′′i ψk
i − φk would involve a simplex [x0:k,l ] for some node xl with tuple x0:k,l consisted of non-

repeating elements where this simplex [x0:k,l ] appears strictly after α. Therefore we have a k-th
dimensional homological feature with birth time α, or equivalently, the time denoted by the rela-
tionship rk

X(x0:k). Consequently, x0:k is in the birth generator of the homological feature formed.

Finally, combining the observations with the fact that the death and birth generators of all homo-
logical features are recorded in the extended persistence diagram concludes the proof. �

Back to the proof of Theorem 7, since network homofrequency also records the birth and death
generators, all non-trivial tuples can be found in the birth and/or the death generators of network
homofrequency as well. We reconstruct the network starting from the 0-homofrequency. Since the
birth generators of 0-persistent homology is just a 0-simplex, i.e. a single node, and from Lemma
1, all 0-simplices can be found in generators, we could perfectly recover all single nodes and
their corresponding dissimilarities in the form of d0

X(x). Besides dissimilarities of all single nodes
coming from the birth generators of 0-persistent homology, the death generators of 0-persistent ho-
mology unveils information about some of the edges. Consequently, we could recover some edges
and their corresponding dissimilarities in the form of d1

X(x, x′). Only examining the generators
of 0-persistent homology could not recover all edges. Nonetheless, from Lemma 1, all 1-simplices
can be found in generators. Those edges do not appear in the death generators of 0-persistent
homology must appear in the birth generators of some 1-persistent homological features. As a
result, we could recover the remaining edges uncovered during investigating 0-persistent homol-
ogy, and their corresponding dissimilarities. After examining the death generators of 0-persistent
homological features and and the birth generators of 1-persistent homological features, we will
recover all edges and their corresponding dissimilarities. Following the same approach, after ex-
amining the death generators of 1-persistent homological features and and the birth generators of
2-persistent homological features, we will perfectly recover all triangles and their corresponding
dissimilarities in the form of d2

X(x, x′, x′′). Iterating by increasing order of homological features
would eventually recover all dissimilarities defined in the original network. �

The result as in Theorem 7 justifies the definition of homofrequency and homospectrum, i.e.
a network could be equally represented in the network domain as well as in homospectrum.
Compared to networks which depend on the underlying node space and labelling, homospectrum
provides a universal description and also has the advantage that there is an implied ordering
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(a) 50 nodes, Erdős-Rényi model
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(d) 50 nodes, Erdős-Rényi model
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(b) 50 nodes, unit circle model
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(e) 50 nodes, unit circle model
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(c) 50 nodes, correlation model
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(f) 0 nodes, correlation model

Figure 23: The average homospectrums of the networks constructed from three different models
with same number of nodes. For each network model, we generate 50 random networks with
50 nodes. We evaluate the 0-frequency and 1-frequency for all networks, where homofrequency
coefficients are computed up to resolution of 0.001. The average of such homofrequency coeffi-
cients across all networks is examined and visualized. Networks generated from different models
exhibit highly distinguishable patterns in their homospectrums.

of frequencies. Theorem 7 only applies for dissimilarity networks, because simplices in relaxed
dissimilarity network may generate homological features that are killed in the same time, resulting
in information lost in the homospectrums. We will illustrate how the homospectrum looks like
for exemplifying networks as next.

4.1.1. Case Study: Homospectrums of Exemplifying Networks

In this section, we illustrate the homospectrums of networks generated from difference processes.
To that end we consider: (i) Weighted Erdős-Rényi random networks [144] with connection prob-
ability p = 0.5 and edge weights random and uniformly chosen from the unit interval [0, 1].
(ii) Random geometric networks where nodes are placed at random in the unit circle and edge
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weights are of the form exp(−d(i, j)2/2σ2), where d(i, j) is the distance between vertices i and
j in the unit circle and φ2 is a kernel width parameter. We set σ2 = 0.5. (iii) Random feature
networks where edge weights are determined by the Pearson correlation coefficient ρij between a
pair of corresponding features ui, uj ∈ Rd. Features are randomly chosen standard white Gaus-
sian vectors in a space of dimension d = 10 and edge weights are chosen as dX(i, j) = (1 + ρij)/2.
Observe that in all three cases edge weights measure the relationship between pairs of vertices
and take values in the unit interval. In order to transform the constructed pairwise networks into
high order dissimilarity networks, the 0-order relationship for any node is set to 0, i.e. d0

X(x) := 0
for any x ∈ X.

We start by considering random networks with same number of nodes. For each network model,
we generate 50 random networks with 50 nodes. For each network, we evaluate its 0-homospectrum
and 1-homospectrum according to Definition 21. In theory, homospectrum is a collection of points
in the unit interval. In practice, we break the interval [0, 1] into τ equally-sized bins, and count
the number of homological features with duration in that bin. This yields homofrequency coeffi-
cients up to resolution of 1/τ. We used τ = 1000 in this chapter. We then evaluate the average
of such homofrequency coefficients across all networks, illustrated in Figure 23. It can be seen
that networks generated from different models exhibit highly distinguishable patterns in their ho-
mospectrums. For 0-homofrequency, most 0-frequency for networks generated from Erdős-Rényi
models lie in the interval between [0, 0.15]. Networks generated from unit the circle model tend
to have more short-lived homofrequency, as it is more likely for nodes to represent points that are
very close on the unit circle and form highly proximate relationships. Networks generated from
correlation model, on the other hand, have most of their 0-frequency in the interval [0.1, 0.3]; this is
likely because edge weights denote correlations between features and therefore tend to be neither
too high nor too low. For 1-frequency, Erdős-Rényi networks yield an almost flat homospectrum,
likely due to the fact that edge weights are uniformly distributed in the unit interval. Networks
generated from the unit circle model have more short-lived homofrequency and some long-lived
homofrequency. This is likely due to the reason that the points on the unit circle can form clusters
that are either very close or very far. The 1-frequency for networks generated from correlation
model forms a bell shape. The main takeaway message here is that networks constructed from
different models yield highly distinguishable patterns in both of their 0-frequency spectrum and
1-frequency spectrum. Consequently, network homofrequency captures distinguishing features
from the underlying networks.

Next we consider networks constructed according to the models with different number of nodes.
For each network model, we generate 50 random networks with the number of nodes ranging from
51 to 100. Similar as in the previous case, we evaluate the 0-homofrequency and 1-homofrequency
with homofrequency coefficients computed up to resolution of 0.001. We compute the average
homospectrum across networks generated from the same model – although different number of
nodes – and illustrate them in Figure 24. Compared to networks with same number of nodes as in
Figure 23, homofrequency coefficients here tend to be larger and more varied. This is unexpected
as we consider different number of nodes and more nodes. Still, networks generated from different
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(a) 50 to 100 nodes, Erdős-Rényi model
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(d) 50 to 100 nodes, Erdős-Rényi model
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(b) 50 to 100 nodes, unit circle model
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(e) 50 to 100 nodes, unit circle model
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(c) 50 to 100 nodes, correlation model
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(f) 50 to 100 nodes, correlation model

Figure 24: The average homospectrums of the networks constructed from three different models
with different number of nodes. For each network model, we generate 50 random networks with
the number of nodes ranging from 51 to 100. We evaluate the 0-frequency and 1-frequency for all
networks, where homofrequency coefficients are computed up to resolution of 0.001. Compared
to networks with same number of nodes as in Figure 23, homofrequency coefficients here tend
to be larger and more varied, due to the fact that different number of nodes and more nodes
are considered here. Still, networks generated from different models yield very distinguishable
homospectrums, and such pattern is robust with the number of nodes in the networks.

models yield very distinguishable homospectrum, and such pattern is not altered by the number
of nodes in the networks. We emphasize that this observation also indicates that networks –
defined potentially on different number of nodes – have underlying features preserved in their
homospectrums – defined always on the interval [0, 1]. Therefore, when we study networks of
different sizes, instead of examining their nodal domains which are not comparable, we can study
their homospectrum, which provides a universal notion to compare networks of arbitrary sizes.
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Figure 25: Filter f on the space of dissimilarity networks is constructed by first establishing the
homospectrums via Z , then applying filtering F on the homospectrums, and finally recovering to
the network space via Z−1.
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Figure 26: The resulting network filtering applied towards the dissimilarity network in Figure
22 with F0(s0) = 0 for any s0 ≤ 2/9 and F0(s0) = 1 otherwise and F1 = F0. In filtered ho-
mospectrums, lasting homological features with duration greater than 2/9 are kept; ephemeral
homological features with duration smaller or equal to 2/9 are all removed. In the network space,
this corresponds to remove everything except the two nodes with small dissimilarities on them
respectively as well as the triangle which generates a 1-order homological feature at 5/9.

4.2. Filtering of Networks

Since homospectrums enable frequencies to be defined for networks, it is natural to explore if we
can define operations on the frequency domain so that important features can be extracted while
unimportant characteristics removed. We do so through network filtering, and we define such
operation first in the homospectrum space as next.

Definition 23 Given a homospectra SK = {Sk}K−1
k=0 , a filter in the homospectrum space F : SK → SK

is a collection of transfer function is a mapping F = [F0, F1, . . . , FK−1] where each transfer function Fk :
[0, 1]→ {0, 1}, such that in the filtered homospectrum Fk(Sk), the birth time qb of the homological features
with homofrequency sk satisfying Fk(sk) = 0 are set to the corresponding death time qd.

Because each FK collects K − 1 homospectrums, filtering applied upon FK has K − 1 different
transfer functions, each Fk corresponding to the one to be applied to the k-homospectrum Fk.
Unlike conventional filtering in signal processing where the transfer function can be of arbitrary
shape, the output of the transfer function Fk is binary. As a result, Fk(sk) = 1 implies the homolog-
ical feature with homofrequency sk will be preserved. On the other hand, Fk(sk) = 0 implies the
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homological feature with the homofrequency sk will die the same time as the homological feature
gets generated. Note that despite the homological feature has duration 0, having the generators
and the birth and death time of the feature enables the corresponding tuples to be recovered.
Using the map Z and its inverse map Z−1, we can define the filtering applied onto networks
directly.

Definition 24 Given a relaxed dissimilarity network DK
X and a filter in the homospectrum space F, the

filtered network is f (DK
X) = Z−1 ◦ F ◦ Z(DK

X), where maps Z and Z−1 are defined in Definitions 21 and
22, respectively.

Networks can be filtered directly in the node space by f via the homospectrums and the pre-
specified transfer functions F, as illustrated in Figure 25. We emphasize that the transfer functions
F are agnostic to the node set X to be specified and can be set without any knowledge about the
network. An illustrating example of network filtering applied towards the dissimilarity network
in Figure 22 with F0(s0) = 0 for any s0 ≤ 0.25 and F0(s0) = 1 otherwise and F1 = F0 is shown
in Figure 26. In the filtered homospectrums, homological features with duration greater than 0.25
are kept; ephemeral homological features are removed. In the network space, this corresponds
to set the dissimilarities of the four periphery nodes to the smaller of the edges joining each of
them, and to set the dissimilarity of the edges between top and bottom parts – except the one
joining nodes with dissimilarities 0.1 and 0.2 – to the dissimilarity of their enclosing triangles.
What remains unchanged can be interpreted as the core features of the original network: (i) two
nodes with small dissimilarities on themselves but large dissimilarity between them, and (ii) two
communities each composed of three nodes with relatively large difference between their pair-
wise dissimilarities and the dissimilarity between the three of them. Other information in the
original network can be treated as unimportant detailed features and are removed in the filtering
process.

Still, the filtered network has all tuples in the original network. We could remove unimportant
tuple x0:k if (i) it does not appear in the (k− 1)-order death generators of any homological features,
and (ii) the k-order birth generators in which it appears get their birth time set to the death time
of the respective homological features. These two conditions imply that the homological features
in which the tuple contribute were removed in the network filtering process as in Definition 23.
The result of such trivial-feature-removal applied onto the filtered network in the previous case is
presented as the rightmost presentation in Figure 26, where the remaining structure leaves only
the two nodes and the two triangles.

Remark 7 The extended persistent diagram and the recording of generators in the homospec-
trums are for network filtering. None of these are required in the sole presentation of homospec-
trums. Therefore, if we are not interested in applying network filtering, homospectrums can be
generated via persistent diagrams Pk without recording the generators.
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(a) Point cloud (b) Homo-highpass filtered 1 (c) Homo-highpass filtered 2 (d) Homo-bandpass filtered
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Figure 27: Homofrequency filters can be applied towards the point cloud to extract the points
contributing to the most important feature of the point cloud. (a) Top: Initial point cloud. Bottom:
1-homospectrum of the dissimilarity network formed from the point cloud. (b) Resultant point
cloud and 1-homospectrum after filtering with a h-highpass filter with cut-off homofrequency 0.5.
(c) Point cloud and 1-homospectrum after filtering with a h-highpass filter with cut-off homofre-
quency 0.15. (d) Point cloud and 1-homospectrum after a h-bandpass filter.

4.2.1. Case Study: Filtering of Exemplifying Networks

In this section, we illustrate the network filtering upon a network representing distance between
point clouds. Given X as a point cloud in a plane, for a tuple x0:k ∈ X, its relationship dk

X(x0:k)

represents the smallest d such that the k + 1 circles centered at points x0, . . . , xk with radius d/2
have pairwise intersections between all pairs. Note that it does require all k + 1 circles have a
common intersection. This is the so-called Vietoris-Rips complex in algebraic topology [147, 148].
We then normalize relationships such that they lie in the unit interval.

As the example illustrated in Figure 27 (a), the point cloud forms the shape of a Mickey Mouse
face, consisted of a large circle at the bottom and two smaller circles at the top, and many points
around the face. The 1-homospectrum of the point cloud, as presented in the lower part of Figure
27 (a), composes of five 1-homological features. The generators for the features are plotted on the
original point cloud with different colors denoting homofrequencies: three of the circles corre-
spond to the circles of the Mickey Mouse face, two of the circles denote lower homofrequencies.
Each point in the point cloud will generate a 0-homofrequency, and therefore we do not present
0-homospetrum for simplicity. Recall 1-homofrequency indicates the length of an 1-homological
feature in the filtration, and a higher homofrequency implies that the homological feature ex-
ists for a longer duration. It can be seen that the more important 1-homological features in this
example are the three circles form the Mickey Mouse face.

If we apply a h-highpass filter F with F0(s0) = 0 for all s0, F1(s1) = 1 if s1 ≥ 0.5, and F1(s1) = 0
otherwise, we will only keep the most lasting homofrequency and result in only the large bottom
circle in the original point cloud, as in Figure 27 (b). In this example, we remove points that
contribute to trivial homological features in all orders. Notice h-highpass filter preserves the core
feature and removes noise. Similarly, If we apply a h-highpass filter F′ with F′0(s0) = 0 for all s0,
F′1(s1) = 1 if s1 ≥ 0.15, and F′1(s1) = 0 otherwise, we will remove the unimportant 1-homological
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features and nodes not contributing to the lasting 1-homofrequencies. This yields the point cloud
which forms the Mickey Mouse face, as in Figure 27 (c). Finally, we can also apply a h-bandpass
filter F′′ with F′′0 (s0) = 0 for all s0, F′′1 (s1) = 1 if 0.15 ≤ s1 ≤ 0.5, and F′′1 (s1) = 0 otherwise, to
screen out points contributing to the two smaller circles consisting the ears of the Mickey Mouse,
as in Figure 27 (d). The results are robust to the exact cut-off homofrequencies applied as well as
perturbation to the original point cloud. The takeaway message from the case study is that the
network filtering developed in Definitions 23 and 24 can be used in practical scenarios to extract
the features of our interest, by using different types of homofrequency filter and choosing different
cut-off homofrequencies.

4.3. Stability of Network Filtering

We have been considering the h-highpass filter to filter out features in the network that are unim-
portant while preserves the core features. In this section, we formalize such intuition by specifying
that the difference between the original network and the filtered network is small. To do that, we
need a measure of closeness of networks. In Section 2, we have defined a valid metric in the space
of networks. Our main result in this section is that the network distance in terms of dk

D between
the original network and the filtered network defined in Definition 24 is small for all k, as we state
next.

Theorem 8 Given a dissimilarity network DK
X , the filtered network f (DK

X) using the filtering F on the
homospectrums with Fk(sk) = 1 for any sk ≥ δ and any 0 ≤ k ≤ K− 1 satisfies

dk
D(DK

X , f (DK
X)) ≤ δ, (4.3)

for any 0 ≤ k ≤ K− 1.

Proof: Denote the filtered network f (DK
X) as the tuple (X′, d0

X′ , . . . , dK
X′) and the homospectrum of

DK
X′ as S′K. We use q = [qb, qd] to denote birth and death time of homological features of DK

X , and
q̃ = [q̃b, q̃d] to denote birth and death time of DK

X′ . Since X′ = X, It suffices to show that

|dk
X′(x0:k)− dk

X(x0:k)| ≤ δ (4.4)

for any x0:k. Once that is established, we can construct a specific correspondence C∗ = {(x, x) |
x ∈ X}, and demonstrate Γk

X,X′(C
∗) ≤ δ for any k. The specific C∗ may not be the optimal

correspondence, but it yields dk
D(DK

X , DK
X′) ≤ Γk

X,X′(C
∗) ≤ δ for any k and completes the proof.

To show (4.4), consider an arbitrary tuple x0:k. From Lemma 1, it will appear in the birth gener-
ators of some k− 1-homological features or the death generator of a k-homological feature in the
homospectrum SK. The filtering applied will not remove any simplices from any homological fea-
ture, and as a result x0:k will continue to appear in the birth generators of some k− 1-homological
features or the death generator of a k-homological feature in the homospectrum S′K. First suppose
x0:k appears in the death generator of a k-homological feature with death time qd. One tuple
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can only kill one homological feature, so there will be only one such qd. Filtering applied will
not change the death time of the feature. Moreover, the recovery step from S′K to DK

X′ will just
construct dk

X′(x0:k) = qd, and therefore dk
X′(x0:k) = dk

X(x0:k) satisfies the condition.

Now consider that x0:k appears in the birth generators of some k− 1-homological features. In the
recovery step from S′K to DK

X′ , if the dissimilarity dk
X′(x0:k) has been set, then x0:k must also appear

in the death generator of some k-homological feature. This means turns the situation back to the
case considered before and will yield dk

X′(x0:k) = dk
X(x0:k). What remains to show are scenarios

where x0:k appears in the birth generators of some k− 1-homological features and does not appear
in the death generators of any k-homological features. Without loss of generality, suppose x0:k

appears in the birth generator Gb corresponding to a k− 1-homological feature with birth time qb

and death time qd, as well as the birth generator G ′b corresponding to a k− 1-homological feature
with birth time q′b and death time q′d, and nothing else. This implies the dissimilarity of the tuple
can be written as

dk
X(x0:k) = min{qb, q′b}. (4.5)

We show that by contradiction. Suppose dk
X(x0:k) < min{qb, q′b}. This implies that dk

X(x0:k) does
not appear in qb nor q′b, and from Lemma 1, it must appear in other generators, which contradicts
our assumption. On the other hand, suppose dk

X(x0:k) > min{qb, q′b}. Without loss of generality,
suppose min{qb, q′b} = qb, this means that the homological feature with birth time at qb in fact has
been generated before the appearance of x0:k in the filtration, and therefore x0:k should not be in
Gb; again, it contradicts the assumption and completes (4.5).

Now, if the duration of the first feature qd − qb ≤ δ in SK, the filtering process will set the birth
time in S′K as q̃b := qd and q̃d = qd, which yields q̃d− q̃b = 0 ≤ δ. If the duration of the first feature
qd − qb > δ in SK, nothing will happen in the filtering process, which leaves q̃b = qb. In any case,
which can write

qb ≤ q̃b ≤ qb + δ. (4.6)

Similarly, examining the second feature yields us

q′b ≤ q̃′b ≤ q′b + δ. (4.7)

The recovery process from GK to DK
X′ as done in Definition 22 constructs the dissimilarity dk

X′(x0:k)

as the smallest of the birth times of the features, i.e.

dk
X′(x0:k) = min{q̃b, q̃′b}. (4.8)

Now, combining (4.5), the first inequality of (4.6) and (4.7), and (4.8) together, we have

dk
X(x0:k) = min{qb, q′b} ≤ min{q̃b, q̃′b} = dk

X′(x0:k). (4.9)
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Simultaneously, combining (4.5), the second inequality of (4.6) and (4.7), and (4.8) yields

dk
X′(x0:k) = min{q̃b, q̃′b} ≤ min{qb + δ, q′b + δ} ≤ min{qb, q′b}+ δ = dk

X(x0:k) + δ. (4.10)

Finally, combining (4.9) and (4.10) implies the interleaving inequality

dk
X(x0:k) ≤ dk

X′(x0:k) ≤ dk
X(x0:k) + δ. (4.11)

This interleaving inequality proves (4.4). Since (4.4) holds for all simplices, the proof completes.
�

The result in Theorem 8 states that if the homological features we filter out are all short-lasting,
i.e. low h-frequencies, than the difference between the filtered network and the original network
is small. More specifically, the difference is no greater than the maximum duration of all removed
homological features. This result justifies the consideration of short-lasting homological features
as unimportant, because they generate small changes if removed from the network, and the con-
sideration of long-lasting features as the core, due to the great change in the network if they are
removed. In time-series filtering, Parseval’s theorem in Fourier transform guarantees that the en-
ergy in the filtered signal is mostly preserved, if we only remove frequencies with small absolute
frequency coefficients. Here, in network filtering, Theorem 8 has similar interpretation, with the
duration of the homological features represents the “energy” of the tuples generating the features.
We could also demonstrate that if we only remove short-lasting features, the distance between a
pair of networks is not quiet different from the distance between the pair of their filtered networks,
as we state the next.

Theorem 9 Given a pair of dissimilarity networks DK
X and DK

Y with their distance dk
D(DK

X , DK
Y ), the

filtered network f (DK
X) of DK

X using the filtering F on the homospectrums with Fk(sk) = 1 for any sk ≥ δ

and the filtered network f ′(DK
Y ) of DK

Y using the filtering F′ on the homospectrums with F′k(sk) = 1 for
any sk ≥ δ′ satisfies

dk
D( f (DK

X), f ′(DK
Y )) ≤ dk

D(DK
X , DK

Y ) + max{δ, δ′}. (4.12)

for any 0 ≤ k ≤ K− 1.

Proof: Denote the filtered networks f (DK
X) and f (DK

Y ) as the tuples (X′, d0
X′ , . . . , dK

X′) and (Y′, d0
Y′ , . . . , dK

Y′).
For a specific k, from Definition 7, there exists a valid correspondence C such that for any pairs of
tuples x0:k and y0:k with (x0:k, y0:k) ∈ C, we can write

dk
Y(y0:k)− dk

D(DK
X , DK

Y ) ≤ dk
X(x0:k) ≤ dk

Y(y0:k) + dk
D(DK

X , DK
Y ). (4.13)
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From the interleaving inequalities as in (4.11), we can write

dk
X(x0:k) ≤ dk

X′(x0:k) ≤ dk
X(x0:k) + δ, (4.14)

dk
Y(y0:k) ≤ dk

Y′(y0:k) ≤ dk
Y(y0:k) + δ′. (4.15)

Combining the first inequality in (4.13), the first inequality in (4.14), and the second inequality in
(4.15) yields us

dk
Y′(y0:k)− δ′ − dk

D(DK
X , DK

Y ) ≤ dk
Y(y0:k)− dk

D(DK
X , DK

Y ) ≤ dk
X(x0:k) ≤ dk

X′(x0:k). (4.16)

Besides, combining the second inequality in (4.13), the second inequality in (4.14), and the first
inequality in (4.15) yields us

dk
X′(x0:k)− δ ≤ dk

X(x0:k) ≤ dk
Y(y0:k) + dk

D(DK
X , DK

Y ) ≤ dk
Y′(y0:k) + dk

D(DK
X , DK

Y ). (4.17)

Therefore, combining the observations in (4.16) and (4.17) yields us∣∣∣dk
X′(x0:k)− dk

Y′(y0:k)
∣∣∣ ≤ dk

D(DK
X , Dk

Y) + max{δ, δ′}. (4.18)

Since (4.18) holds true for any pairs of tuples x0:k and y0:k with (x0:k, y0:k) ∈ C, X = X′, and
Y = Y′, it holds for the pair of tuples that cannot be matched well. From (2.8), we have

Γk
X′ ,Y′(C) ≤ dk

D(DK
X , Dk

Y) + max{δ, δ′}. (4.19)

The correspondence C is a valid one between X′ and Y′. Although it may not be the most optimal
one, we can still write dk

D(DK
X′ , DK

Y′) ≤ dk
D(DK

X , Dk
Y) + max{δ, δ′}. The inequality holds for all k

and completes the proof. �

Theorem 9 guarantees that in comparing a pair of networks, if we remove the short-lasting ho-
mological features in each of the networks, the distance between the filtered networks is close
to the distance between the original networks. In specific, the distance between the pair of fil-
tered networks is no greater than the original distance, plus the duration of the most long-lasting
features that get removed. This provides us a way to simplify the networks before comparing
the networks. We note that the result presented in Theorem 9 is not a direct consequence from
Theorem 8, because the direct application of Theorem 8 could only give us

dk
D( f (DK

X), f ′(DK
Y )) ≤ dk

D(DK
X , DK

Y ) + δ + δ′. (4.20)
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Chapter 5

Clustering of Networks based on
Distance Bounds

In this chapter, we begin by visiting necessary definition of hierarchical clustering, dendrograms,
ultrametrics, and chains (Section 5.1). We then state formally the axioms of value and transforma-
tion (Section 5.2). We further demonstrate that the two axioms combined yield another intuitive
property that no pairs should be clustered together at a resolution smaller than a given threshold
(Section 5.2.1). Within this axiomatic framework we construct the combine-and-cluster and cluster-
and-combine methods (Section 5.4). Both of these methods rely on single linkage but differ on the
chain cost that is measured to determine if nodes are clustered or not. In combine-and-cluster
pairwise distances are estimated by the convex combination of lower and upper bounds and the
cost of a chain is the maximum resulting distance. In cluster-and-combine we compute separate
chain costs for the lower and upper bounds that are then reduced to their convex combination. We
then introduced our main theoretical contribution of the chapter by showing that combine-and-
cluster and cluster-and-combine provide bounds on all methods that are admissible with respect
to the axioms of value and transformation (Section 5.4). This enables us to characterize the space
of admissible methods for metric spaces with dissimilarities specified by intervals and draw con-
nections with admissible methods for metric spaces (Section 5.4.1). Practical values of the methods
in synthetic scenarios (Section 5.5.1) and real world settings (Section 5.5.2) are presented.

5.1. Preliminaries

We consider a space MX quantifying dissimilarity to be a pair (X, dX) where X is a finite set
of nodes and dX : X × X → R+ measures dissimilarities between pairs. In specific, dX(x, x′)
between nodes x ∈ X and x′ ∈ X is assumed to be nonnegative for all pairs x, x′, is symmetric
such that dX(x, x′) = dX(x′, x). As a common consideration for clustering problem, we consider
dX(x, x′) = 0 if and only if the nodes coincide with x = x′. The interest of study in this chapter
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Figure 28: An example of metric space where dissimilarities between pairs of nodes are given in
lower and upper bounds. The intuition of clustering is ambiguous because the notion of proximity
is no longer clear, e.g. the pair a, b has the smallest distance lower bound whereas the pair c, d has
the smallest average of their distance lower and upper bounds. It is not clear which of the two
pairs is more proximate.

is not on the dissimilarity space MX , but in scenarios where observation of dX(x, x′) is not exact
but given in a confidence interval. Formally, we consider IX as the triplet (X, dX , d̄X) where
d̄X : X× X → R+ is an upper bound of the original dissimilarity and dX : X× X → R+ is a lower
bound of the dissimilarity. Given a pair of nodes x, x′ ∈ X, we therefore have the relationship
0 < dX(x, x′) ≤ dX(x, x′) ≤ d̄X(x, x′). The bounds d(x, x′) as well as d̄(x, x′) are symmetric, i.e.
d(x, x′) is the same as d(x′, x) and similarly for d̄(x, x′).

An example dissimilarity space with distance given by intervals is shown in Figure 28. The set of
nodes is X = {a, b, c, d} with distance upper and lower bounds represented by values adjacent to
each edge. The lower bound dX(a, b) of distance, e.g. from a to b is 1, is smaller than the distance
upper bound d̄X(a, b) = 7. The smallest nontrivial case contains two nodes p and q with distance
lower bound d(p, q) = d as well as upper bound d̄(p, q) = d̄ ≥ d > 0 is described in Figure 29.
This special space appears often in the proceeding discussion of the chapter, and we define the
two-node space ∆2(d, d̄) with parameters d and d̄ as

∆2(d, d̄) := ({p, q}, d, d̄). (5.1)

A clustering of the set X denotes a partition OX of X, i.e. a collection of pairwise disjoint sets
OX = {T1, T2, . . . , TJ} with Ti ∩ Tj = ∅ for any i 6= j are required to cover X, ∪J

j=1Tj = X. The sets
T1, . . . , TJ are named the clusters of OX . An equivalence relation ∼ on X is a binary relation such
that for all x, x′, x′′ ∈ X we have that (1) x ∼ x, (2) x ∼ x′ if and only if x′ ∼ x, and (3) x ∼ x′

and x′ ∼ x′′ would imply x ∼ x′′. A partition OX = {T1, T2, . . . , TJ} of X always induces and is
induced by an equivalence relation ∼OX on X where for all x, x′ ∈ X we have that x ∼OX x′ if and
only if x and x′ is clustered to the same set Sj for some j.
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Figure 29: Two-node space ∆2(d̄, d) and the Axiom of Value: nodes in a two-node space cluster at
the convex combination of the distance upper and lower bounds.

In this chapter we focus on hierarchical clustering methods [48, 21]. The output of hierarchical
clustering methods is not a single partition OX but a nested collection OX of partitions OX(δ) of
X indexed by the resolution parameter δ ≥ 0. In the language of equivalence relation defined
previously, for a given OX , we say that two nodes x and x′ are equivalent at resolution δ with
notation x ∼OX(δ)

x′ if and only if nodes x and x′ are in the same cluster of OX(δ). The nested
collection OX is named a dendrogram and is required to satisfy the following property [48]:

(D1) Boundary conditions. For δ = 0 the partition OX(0) clusters each x ∈ X into a separate single-
ton and for some δ∞ sufficiently large OX(δ∞) clusters all elements into a single set.

(D2) Hierarchy. As δ increases clusters can be combined but not separated. I.e., for any δ < δ′,
any given pair of nodes x, x′ with x ∼OX(δ)

x′ would satisfy x ∼OX(δ′) x′.

(D3) Right continuity. For all δ ≥ 0, there exists an τ > 0 such that OX(δ
′) = OX(δ) for any

δ′ ∈ [δ, δ + τ].

The interpretation of a dendrogram is that of a structure which yields different clustering results
at different resolutions. At resolution δ = 0 each node is in a cluster of its own. As the resolution
parameter δ increases, nodes start forming clusters. Based on the condition (D2), nodes become
more clustered since once they join together in a cluster at some resolution, they stay together in
the same cluster for all larger resolutions. Denote D as the space of all dendrograms, hierarchical
clustering method upon distance intervals is defined as a function W : I → O from the space
I to the space of dendrograms O such that the underlying space X is preserved. For the triplet
IX = (X, dX , d̄X), we denote OX =W(X, dX , d̄X) as the output ofW .

5.1.1. Dendrograms as Ultrametrics

Dendrograms are difficult to analyze. A more convenient representation is acquired when den-
drograms are identified with finite ultrametric spaces. An ultrametric on the space X is a metric
uX : X × X → R+ satisfying the strong triangle inequality such that any points x, x′, x′′ ∈ X, the
ultrametrics uX(x, x′′), uX(x, x′), and uX(x′, x′′) satisfy the relationship

uX(x, x′′) ≤ max
(
uX(x, x′), uX(x′, x′′)

)
. (5.2)
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Ultrametric spaces are particular cases of metric spaces since (5.2) would imply the usual trian-
gle inequality uX(x, x′′) ≤ uX(x, x′) + uX(x′, x′′). We investigate ultrametrics because a structure
preserving bijective mapping between dendrograms and ultrametrics can be established [48]. Con-
sider the map Π : O → U from the space of dendrograms to the space of ultrametrics: given a
dendrogram OX over a finite set X, the output Π(OX) = (X, uX) with uX(x, x′) for any pair of
nodes x, x′ ∈ X is defined as the smallest resolution at which x and x′ are clustered together

uX(x, x′) := min
{

δ > 0 : x ∼OX(δ)
x′
}

. (5.3)

The map Ω : U → O is constructed such that for a given ultrametric space (X, uX) and any
resolution δ ≥ 0, the equivalence relationship ∼uX(δ)

is defined as

x ∼uX(δ)
x′ ⇔ uX(x, x′) ≤ δ. (5.4)

Denote the cluster result at δ as OX(δ) := {X mod ∼uX(δ)
} where nodes belonging to the same

equivalence class is clustered together. The output of the map is then Ω(X, uX) := OX . It is
shown [48] that the maps defined above preserve structures in the respective space as we state in
the following theorem.

Theorem 10 The maps Π : O → U and Ω : U → O are both well defined. Moreover, Π ◦ Ω is the
identity on U and Ω ◦Π is the identity on O.

Given the equivalence between dendrograms and ultrametrics demonstrated by Theorem 10 we
can consider hierarchical clustering methods W as inducing ultrametrics in node spaces X based
on distance intervals dX and d̄X and reinterpret the method W as a map W : I → U from the
space of dissimilarity spaces given confidence intervals to the space of ultrametrics. The outcome
of a hierarchical clustering method constructs an ultrametric in the same space X even when the
original observation is given as distance intervals of dissimilarity. We say that two clustering
methods W1 and W2 being equivalent with notation W1 ≡ W2 if and only if W1(I) = W2(I) for
any I ∈ I .

5.1.2. Chain, Upper and Lower Chain Costs

The notions of chain and chain cost are substantial in hierarchical clustering. Given a dissimilarity
space with distance intervals (X, d, d̄) and a pair of nodes x, x′ ∈ X, a chain from x to x′ is any
ordered sequence of nodes in X,

[x = x0, x1, . . . , xl−1, xl = x′], (5.5)

which begins with x and ends at x′. We denote C(x, x′) as one such chain and say C(x, x′) connects
x to x′. Given two chains C(x, x′) and C(x′, x′′) such that the end point x′ of the first chain is the
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Figure 30: Axiom of Transformation. If IX can be mapped to IY using a α-distance-reducing map
π [cf. (5.13) and (5.14)], then for every resolution δ nodes clustered together in OX(δ) must also
be clustered in DY(δ).

same as the starting point of the second, we define the concatenated chain C(x, x′) ] C(x′, x) as

[x = x0, x1, . . . , xl−1, xl = x′ = x′0, x′1, . . . , x′l′ = x′′]. (5.6)

It follows from (5.6) that the concatenation operation ] is associative such that
(
C(x, x′)]C(x′, x′′)

)
]

C(x′′, x′′′) = C(x, x′) ]
(
C(x′, x′′) ] C(x′′, x′′′)

)
. For the chain C(x, x′), we define its upper cost and

lower cost respectively as

max
i|xi∈C(x,x′)

d̄X(xi, xi+1), max
i|xi∈C(x,x′)

dX(xi, xi+1), (5.7)

i.e. the maximum distance upper or lower bounds encountered as traversing the chain in order.
The minimum upper chain cost c̄(x, x′) and the minimum lower chain cost c(x, x′) between x and x′ is
then defined respectively as the minimum upper and lower cost among all chains connecting x to
x′,

c̄X(x, x′) := min
C(x,x′)

max
i|xi∈C(x,x′)

d̄X(xi, xi+1), (5.8)

cX(x, x′) := min
C(x,x′)

max
i|xi∈C(x,x′)

dX(xi, xi+1). (5.9)

Here, we note that the distance upper bound d̄(x, x′) may also be unknown for some pairs of
nodes. Under that scenario, one can handle unknown upper bounds with a preset global upper
bound d̄ to represent them. If this upper bound is large, it will likely have a minimal effect in the
clusters that are found by the algorithm because these links are unlikely to be part of the chains
of minimum cost that we define in (5.8). The minimum upper chain cost c̄X(x, x′) and lower
chain cost cX(x, x′) are different in general, however they are equal in the degenerate case where
distance lower bounds and upper bounds coincide with dX(x, x′) = d̄X(x, x′) := dX(x, x′) for any
x, x′ ∈ X. In this case, the minimum cost c̄X(x, x′) = cX(x, x′) are important in the construction of
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the single linkage [48]. In specific, single linkage ultrametric uSL
X (x, x′) between x and x′ is

uSL
X (x, x′) = c̄X(x, x′) = cX(x, x′) = min

C(x,x′)
max

i|xi∈C(x,x′)
dX(xi, xi+1). (5.10)

In terms of single linkage dendrogram SLX , for a given resolution δ, the equivalence classes at
resolution δ is

x ∼SLX(δ)
x′ ⇔ c̄X(x, x′) = cX(x, x′) ≤ δ. (5.11)

It can be seen that c̄X is the result of applying single linkage towards the node set X equipped
with dissimilarity d̄X despite the fact that d̄X may not be a valid metric; similar result holds
for cX . In the degenerative case where distance lower bounds and upper bounds coincide, it
is equivalent to consider metric spaces (X, dX). It has been shown [48] that single linkage is the
unique hierarchical clustering method fulfilling axioms (A1) and (A2) discussed in Section 5.2 plus
a third axiom stating that the clusters cannot be formed at resolutions smaller than the minimum
distance in the space. In the case when the dissimilarity dX(x, x′) are only given in an interval
[dX(x, x′), d̄X(x, x′)], the space of methods satisfying axioms (A1) and (A2) and their analogous
ones becomes richer, as we explain throughout the chapter.

5.2. Axioms of Value and Transformation

To study hierarchical clustering methods in metric spaces where observations of dissimilarities
between pairs are given in distance intervals, we translate natural concepts into the axioms of
value and transformation, described in this section. We say a hierarchical clustering methodW is
admissible if and only if it satisfies both the the axioms of transformation and value.

The Axiom of Value is achieved by considering the two-node space ∆2(d, d̄) defined in (5.1) and
described in Figure 29. In the degenerate special case where d = d̄ := d(p, q), it is apparent that
the resolution at which nodes p and q are first clustered together should be d(p, q). In general
scenarios where the dissimilarity d(p, q) is given in an interval [d, d̄] with d < d̄, it is reasonable to
consider different resolutions at which nodes p and q start to be in the same cluster. In specific,
we say that nodes p and q form a single cluster first at resolution δ := αd̄ + (1− α)d, the convex
combination of the upper and lower bounds d̄ and d. Property of hierarchical clustering then
indicates nodes p and q are clustered together at any resolution δ ≥ αd̄ + (1− α)d. The parameter
α controls the level of confidence in examining the distance intervals. A higher value of α implies
a more conservative consideration, where in the extreme case with α = 1, nodes p and q are
clustered together at the distance upper bound d̄; a lower value of α suggests a more liberal
examination, and in the other extremal scenario with α = 0, nodes p and q considered to be in
the same cluster as long as the resolution is no smaller than their distance lower bound d. Since
a hierarchical clustering method is a map W from metric distance intervals to dendrograms, we
formalize this intuition as the following requirement.

(A1) Axiom of Value. Given a value 0 ≤ α ≤ 1, the dendrogram Op,q = W(∆2(d, d̄)) produced
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by applying W to the two-node space ∆2(d, d̄) is such that Op,q(δ) =
{
{p}, {q}

}
for 0 ≤ δ <

αd̄ + (1− α)d and Op,q(δ) =
{
{p, q}

}
otherwise.

One may argue that clustering nodes p and q at any monotone increasing function of αd̄+(1− α)d
would be admissible. Nonetheless, the current formulation implies that the clustering resolution
parameter δ is expressed in the same units as the distance intervals. From Theorem 10, we can
rewrite the Axiom of Value by referring to properties of the output ultrametrics.

(A1) Axiom of Value. Given a value 0 ≤ α ≤ 1, the ultrametric output ({p, q}, up,q) = W(∆2(d, d̄))
resulted from applyingW upon the two-node space ∆2(d, d̄) satisfies that

up,q(p, q) = αd̄ + (1− α)d. (5.12)

The second requirement on the space of desired methods W formalizes the intuition for the
behavior ofW when considering a transformation w.r.t. the distance upper and lower bounds on
the underlying space X; see Figure 30. Consider two dissimilarity spaces with observations given
by distance intervals IX = (X, dX , d̄X) and IY = (Y, dY, d̄Y) and denote OX = W(X, dX , d̄X) and
DY =W(Y, dY, d̄Y) as the corresponding dendrogram outputs. If we can map all the nodes of the
triplet (X, dX , d̄X) into nodes of (Y, dY, d̄Y) such that the combination of lower and upper bounds
for any pair of nodes is not increased, we expect the latter distance intervals to be more clustered
than the former one at any given resolution. Intuitively, nodes in IY are less dissimilar with respect
to each other, and therefore at any resolution δ in the respective dendrograms, we expect that for
nodes that are clustered in IX , their corresponding nodes in Y are also clustered in IY. In order
to formalize this intuition, we introduce the following notion that given two dissimilarity spaces
with observations given by distance intervals IX = (X, dX , d̄X) and IY = (Y, dY, d̄Y) and a value
0 ≤ α ≤ 1, the map π : X → Y is called α-distance-reducing if for any x, x′ ∈ X, it holds that

αd̄X(x, x′) + (1− α)dX(x, x′) ≥ αd̄Y(π(x), π(x′)) + (1− α)dY(π(x), π(x′)); (5.13)

αc̄X(x, x′) + (1− α)cX(x, x′) ≥ αc̄Y(π(x), π(x′)) + (1− α)cY(π(x), π(x′)). (5.14)

A mapping is α-distance-reducing if both the combinations of distance bounds and chain costs is
non-increasing. Notice that, in the degenerate case where distance lower and upper bounds coin-
cide, uSL

X (x, x′) := c̄X(x, x′) = cX(x, x′) is the output of applying single linkage upon the dissim-
ilarity space. Therefore (5.13) becomes identical as the requirement dX(x, x′) ≥ dY(π(x), π(x′)),
from which the condition in (5.14) that cX(x, x′) ≥ cY(π(x), π(x′)) follows directly. In general
cases where distance bounds do not coincide, (5.14) does not follow from (5.13) and therefore we
need to state both of them. The Axiom of Transformation introduced next is a formal statement
of the intuition above.

(A2) Axiom of Transformation. Consider IX = (X, dX , d̄X) and IY = (Y, dY, d̄Y) and a α-dissimilarity-
reducing map π : X → Y. The method W satisfies the axiom of transformation if the dendro-
grams OX = W(X, dX , d̄X) and OY = W(Y, dY, d̄Y) satisfy for any δ ≥ 0, x ∼OX(δ)

x′ implies
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Figure 31: Combine-and-cluster clustering. Nodes x and x′ are clustered together at resolution δ if
there exists a chain such that the maximum convex combination of distance bounds d̂X(xi, xi+1) =
αd̄X(xi, xi+1) + (1− α)dX(xi, xi+1) is no greater than δ [cf. (5.32)]. Of all methods that satisfy the
Axioms of Value and Transformation, combine-and-cluster clustering yields the largest ultrametric
between any pair of nodes.

π(x) ∼OY(δ)
π(x′).

Rewrite the Axiom of Transformation as in the properties of the output ultrametrics yields the
following statement.

(A2) Axiom of Transformation. Consider IX = (X, dX , d̄X) and IY = (Y, dY, d̄Y) and a given α-
distance-reducing map π : X → Y. For any pair of nodes x, x′ ∈ X, the output ultrametrics
uX =W(X, dX , d̄X) and uY =W(Y, dY, d̄Y) satisfy

uX(x, x′) ≥ uY(π(x), π(x′)). (5.15)

In summary, Axiom (A1) states that the units of the resolution parameter δ are the same as that of
the distance intervals and specifics our tendency in believing lower or upper bounds. Axiom (A2)
states that if we reduce both the distance lower and upper bounds, clusters may be combined but
cannot be separated. These axioms are an adaption of the axioms proposed in [48, 149] for the
degenerate case of dX = d̄X which is equivalent to finite metric spaces, and the axioms proposed
in [21] for asymmetric networks.

5.2.1. Minimum Separation

In this subsection we build another intuition on clustering. In the degenerate case where distance
lower and upper bounds coincide, it is intuitive that no clusters should be formed at resolutions
smaller than the smallest dissimilarity in the metric space. To formalize such intuitive idea, defin-
ing separation of a given metric space (X, dX) as the minimum positive distance,

sep(X, dX) := min
x 6=x′

dX(x, x′), (5.16)

the ultrametrics resulting from any reasonable hierarchical clustering then need to satisfy uX(x, x′) ≥
sep(X, dX) for any pair of nodes x 6= x′ ∈ X. This requirement is stated as an axiom in consider-
ation of clustering methods for metric spaces in [48, 149]. The separation can also be represented
in terms of chain costs

sep(X, dX) := min
x 6=x′

min
C(x,x′)

max
i|xi∈C(x,x′)

dX(xi, xi+1). (5.17)
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Eq. (5.16) and (5.17) are equivalent because for the optimal pair of nodes ẋ and ẋ′, the optimal
chain C?(ẋ, ẋ′) would just be the connection [ẋ, ẋ′] between them. However, they are different
when distance are given in an interval. For general scenarios where the distance upper and lower
bounds differ, the α investigated in the Axiom of Value states when nodes in a two-node space
should be clustered together. It provides a way to combine the distance bounds and represents
where our belief lies in the distance interval. We would expect a measure defined using α carry an
analogous notion of separation in metric spaces. To do that, we define α-separation tα

X(x, x′) be-
tween two different nodes x, x′ ∈ X in a metric space with distances given by intervals (X, dX , d̄X)

as

tα
X(x, x′) = αc̄X(x, x′) + (1− α)cX(x, x′). (5.18)

In words, we search for the optimal chain C(x, x′) minimizing the upper chain cost, look for the
optimal chain C′(x, x′) minimizing the lower chain cost, and take the convex combination of these
chain costs. The α-separation for (X, dX , d̄X) is then defined as the minimum of tα

X(x, x′) for all
nodes x 6= x′

sepα(X, dX , d̄X) := min
x 6=x′

tα
X(x, x′). (5.19)

In the degenerate case we would have sepα(X, dX , d̄X) = sep(X, dX) for any α. Following the no-
tion of separation, for resolutions 0 ≤ δ < sepα(X, dX , d̄X), no nodes should be clustered together.
In the language of ultrametrics, this implies that we must have uX(x, x′) ≥ sepα(X, dX , d̄X) for any
pair of different nodes x 6= x′ ∈ X as we state in the next property.

(P1) Property of Minimum Separation. For (X, dX , d̄X), the output ultrametric (X, uX) =W(X, dX , d̄X)

of the hierarchical clustering method W needs to satisfy that the ultrametric uX(x, x′) between
any two different points x and x′ cannot be smaller than the α-separation sepα(X, dX , d̄X), i.e.

uX(x, x′) ≥ sepα(X, dX , d̄X) ∀x 6= x′. (5.20)

Equivalently, the output dendrogram is such that for resolutions δ < sepα(X, dX , d̄X), each node
is in its own block. We note that (P1) does not requires that a cluster with more than one node
is formed at resolution sepα(X, dX , d̄X) but states that achieving this minimum resolution is a
prerequisite condition for the emergence of clusters. Property of Minimum Separation does not
only provide intuition in more complicated scenarios than two-node spaces, but is also substantial
for later developments in the chapter; see, e.g. the proof of Theorem 12.

Notice that if we apply the Property of Minimum Separation (P1) onto the two-node space ∆2(d, d̄),
we must have up,q(p, q) ≥ sepα({p, q}, d, d̄) = αd̄+ (1− α)d, which means that (P1) and the Axiom
of Value (A1) are compatible requirements. We can therefore construct two alternative axiomatic
formulations where admissible methods are required to satisfy the Axiom of Transformation (A2)
as well as (P1), or (A2) as well as (A1). As we demonstrate in the following theorem that (P1)
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is implied by (A2) and (A1). Therefore, both two formulations are equivalent to requiring the
fulfillment of axioms (A1) and (A2).

Theorem 11 If a hierarchical clustering method satisfies the Axiom of Value (A1) and Axiom of Transfor-
mation (A2), it satisfies the Property of Minimum Separation (P1).

Proof: To prove Theorem 11, for any (X, dX , d̄X) and 0 ≤ α ≤ 1, we would like to define a two-
node space ({p, q}, d̄, d). Moreover, given a pair of distinct nodes x 6= x′ ∈ X, we would like to
find a α-distance-reducing map πx,x′ : X → {p, q} from X to the space of two nodes. In order to
achieve that, denote ẋ and ẋ′ as the pair achieving sepα(X, dX , d̄X). For this pair of nodes, define

η := min
C(ẋ,ẋ′)

max
i|xi∈C(ẋ,ẋ′)

dX(xi, xi+1), (5.21)

and similarly for η̄ such that αη̄ + (1 − α)η is the same as sepα(X, dX , d̄X). To construct a α-
distance-reducing map πx,x′ , first define πx,x′(x) = p and πx,x′(x′) = q; then their α-separation in
the respective node space satisfies

tα
X(x, x′) ≥ tα

X(ẋ, ẋ′) =: tα
p,q(πx,x′(x), πx,x′(x′)). (5.22)

Now, for x̃ different from ẋ and ẋ′, πx,x′(x̃) can take p or q arbitrarily. To see why this is valid,
consider x̃ 6= x̃′, where at least one of the nodes is neither x nor x′, if πx,x′(x̃) = πx,x′(x̃′), then
πx,x′ is α-distance-reducing. This follows because tα

X(x̃, x̃′) ≥ 0 =: tα
p,q(πx,x′(x̃), πx,x′(x̃′)), which

is (5.14). Moreover,

αd̄X(x̃, x̃′) + (1− α)dX(x̃, x̃′) ≥ tα
X(x̃, x̃′), (5.23)

dp,q(πx,x′(x̃), πx,x′(x̃′)) = d̄p,q(πx,x′(x̃),πx,x′(x̃′)) = 0, (5.24)

would yield us d̂X(x̃, x̃′) ≥ 0 =: d̂p,q(πx,x′(x̃), πx,x′(x̃′)), the condition in (5.13). On the other hand,
if πx,x′(x̃) 6= πx,x′(x̃′),

tα
X(x̃, x̃′) ≥ tα

X(ẋ, ẋ′) =: tα
X(πx,x′(x̃), πx,x′(x̃′)), (5.25)

which follows from the definition of ẋ and ẋ′ as well as the construction of the two-node space
∆2(η̄, η). This is the requirement in (5.14). Besides, notice

αd̄ + (1− α)d = sα
p,q(πx,x′(x̃), πx,x′(x̃′)). (5.26)

Combining (5.23), (5.25) and (5.26) yields the condition in (5.13),

d̄X(x̃, x̃′) + (1− α)dX(x̃, x̃′) ≥ αd̄ + (1− α)d. (5.27)

This shows that πx,x′ is always a α-distance-reducing map.
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Figure 32: Cluster-and-combine clustering. Nodes x and x′ are clustered together at resolution δ if
there exists a chain such that the maximum convex combination αc̄X(xi, xi+1) + (1− α)cX(xi, xi+1)
of minimum upper and lower chain costs is no greater than δ [cf. (5.38)]. Of all methods that sat-
isfy the Axioms of Value and Transformation, cluster-and-combine clustering yields the smallest
ultrametric between any pair of nodes.

Denote ({p, q}, up,q) = W(∆2(η̄, η)) as the ultrametric space obtained when apply the W to the
two-node space ∆2(η̄, η). SinceW satisfies the Axiom of Value (A1), we must have

up,q(p, q) = sepα({p, q}, η, η̄) = sepα(X, dX , d̄X). (5.28)

Meanwhile, consider the α-distance-reducing map constructed above and observe thatW satisfies
the Axiom of Transformation (A2), and therefore for the given pair of distinct nodes x, x′ ∈ X,

uX(x, x′) ≥ up,q(πx,x′(x), πx,x′(x′)) = up,q(p, q). (5.29)

Since we can construct a α-distance-reducing mapping πx,x′ for any pair of nodes x 6= x′ ∈ X,
combining (5.28) and (5.29) yields

uX(x, x′) ≥ up,q(p, q) = sepα(X, dX , d̄X), ∀x, x′ ∈ X. (5.30)

This is the definition of the Property of Minimum Separation (P1). �

5.3. Admissible Ultrametrics

Consider a specific dissimilarity space with distances given by intervals IX = (X, dX , d̄X) ∈ I .
Given a value 0 ≤ α ≤ 1, one particular clustering method satisfying axioms (A1) and (A2) can be
established by examining the α-combined dissimilarity

d̂X(x, x′) := αd̄X(x, x′) + (1− α)dX(x, x′), (5.31)

for any pair of nodes x, x′ ∈ X. Though d̂X does not necessarily satisfy the triangle inequality
as the original dissimilarity distance dX , it is symmetric; therefore the α-combined dissimilarity
effectively reduces the problem to clustering of symmetric data, a case where the single linkage
method defined in (5.10) is shown to satisfy axioms analogous to (A1) and (A2) [48]. Based on this
observation, we define the combine-and-cluster methodWCO with output (X, uCO

X ) =WCO(X, AX)
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between a pair x and x′ as

uCO
X (x, x′) := min

C(x,x′)
max

i|xi∈C(x,x′)
d̂X(xi, xi+1). (5.32)

An illustration of the combine-and-cluster clustering method is shown in Figure 31. For a given
pair of nodes x and x′, we look for chains C(x, x′) connecting them. For a considered chain we
examine each of its link, connecting say xi with xi+1, and investigate the convex combination of the
distance bounds, i.e. the value of d̂X(xi, xi+1) = αd̄X(xi, xi+1) + (1− α)dX(xi, xi+1). The maximum
value across all links in this chain is then recorded. The combine-and-cluster ultrametric uCO

X (x, x′)
between points x and x′ is the minimum of this value across all possible chains connecting x and
x′. We prove that the output uCO

X is a valid ultrametric and the methodWCO satisfies axioms (A1)
and (A2) as next.

Proposition 7 Given any value of 0 ≤ α ≤ 1, the combine-and-cluster method WCO is valid and admis-
sible. I.e., uCO

X defined by (5.32) is an ultrametric for all IX = (X, dX , d̄X) andWCO satisfies axioms (A1)
and (A2).

Proof: One way to see the validity of the ultrametric uCO
X (x, x′) is because that it is the result of

applying single linkage hierarchical clustering on the symmetric dissimilarity d̂X(x, x′). Nonethe-
less, here we give a direct verification. The fact that uCO

X (x, x′) = 0 if and only if x = x′ follows
directly from that d̂X(x̃, x̃′) > 0 for any distinct nodes which results from the requirements on the
bounds 0 < d̄X(x̃, x̃′) and α > 0. The symmetry property uCO

X (x, x′) = uCO
X (x′, x) is because the

definition only depends on d̂X(x̃, x̃′) which is symmetric on x̃ and x̃′. To verify the strong triangle
inequality in (5.2), let C′(x, x′) and C′′(x′, x′′) be the chains that achieve the minimum in (5.32) for
uCO

X (x, x′) and uCO
X (x′, x′′), respectively. The maximum convex combination in the concatenated

chain C(x, x′′) = C′(x, x′)]C′′(x′, x′′) does not exceed the maximum cost in each of the individual
chains. Therefore, despite that C(x, x′′) may not be the optimal chain in (5.32), it suffices to bound
uCO

X (x, x′′) ≤ max
(
uCO

X (x, x′), uCO
X (x′, x′′)

)
as the strong triangle inequality (5.2).

To see that the Axiom of Value (A1) is satisfied for any considered value 0 ≤ α ≤ 1, pick an
arbitrary two-node space ∆2(d, d̄) and denote ({p, q}, uCO

p,q ) = WCO(∆2(d, d̄)) as the output of
applying cluster-and-combine clustering method to ∆2(d, d̄). Since every possible chain from p to
q must include a link from p to q, applying the definition in (5.32) implies

uCO
p,q (p, q) = αd̄ + (1− α)d, (5.33)

from which axiom (A1) is satisfied.

To verify the fulfillment of axiom (A2), consider (X, dX , d̄X), (Y, dY, d̄Y), a given value 0 ≤ α ≤ 1,
and a α-distance-reducing map π : X → Y. Let (X, uCO

X ) = WCO(X, dX , d̄X) and (Y, uCO
Y ) =

WCO(Y, dY, d̄Y) be the outputs of applying the combine-and-cluster clustering methods onto them.
For any pair of nodes x, x′ ∈ X, denote C?

X(x, x′) = [x = x0, x1, . . . , xl−1, xl = x′] as the optimal

89



chain in (5.32) and therefore we can write

uCO
X (x, x′) = max

i|xi∈C?
X(x,x′)

d̂X(xi, xi+1). (5.34)

Consider the mapped chain CY(π(x), π(x′)) = [π(x) = π(x0), . . . , π(xl) = π(x′)] in the node
space Y under the map π. Since π is α-distance-reducing, we have

d̂Y(π(xi), π(xi+1)) ≤ d̂X(xi, xi+1), (5.35)

for any xi ∈ C?(x, x′). Combining (5.34) and (5.35) yields

max
π(xi)∈CY(π(x),π(x′))

d̂Y(π(xi), π(xi+1)) ≤ uCO
X (x, x′). (5.36)

Since CY(π(x), π(x′)) is a particular chain connecting π(x) and π(x′), the optimal chain cost can
only be smaller. Hence,

uCO
Y (π(x), π(x′)) ≤ max

π(xi)∈CY(π(x),π(x′))
d̂Y(π(xi), π(xi+1)). (5.37)

Finally, substituting (5.37) into (5.36) demonstrates that uCO
Y (π(x), π(x′)) ≤ uCO

X (x, x′), which is
the requirement (5.15) in the statement of Axiom of Transformation (A2). �

In combine-and-cluster clustering, nodes x and x′ belong to the same cluster at resolution δ when-
ever we can find a single chain such that the maximum convex combination of distance bounds
is no greater than δ. In cluster-and-combine clustering, we switch the order of operations and
investigate chains, potentially different, connecting x and x′, with one chain focusing on the
distance upper bounds and the other chain examining the distance lower bounds, before com-
bining the upper and lower estimations. To state this definition regarding ultrametrics, consider
IX = (X, dX , d̄X) and 0 ≤ α ≤ 1. We define the cluster-and-combine method WCL with output
(X, uCL

X ) =WCL(X, dX , d̄X) as

uCL
X (x, x′) := min

C(x,x′)
max

i|xi∈C(x,x′)

(
αc̄X(xi, xi+1) + (1− α)cX(xi, xi+1)

)
, (5.38)

where recall c̄X and cX is the minimum upper and lower chain costs defined in (5.8) and (5.9). An
illustration of the cluster-and-combine clustering method is described in Figure 32. For any pair of
nodes, we consider the minimum upper chain cost c̄X(x, x′) as the value maxi|xi∈C(x,x′) d̄X(xi, xi+1)

fulfilled by the chain C′(x, x′) and the minimum lower chain cost cX(x, x′) achieved using the
chain C′′(x, x′). The convex combination αc̄X(x, x′) + (1− α)cX(x, x′) is then recorded and the
output of the cluster-and-combine clustering method is the result by applying single linkageWSL

[cf. (5.10)]. The single linkage is applied towards αc̄X(x, x′) + (1 − α)cX(x, x′) because convex
combination of ultrametrics is a metric but not necessarily an ultrametric. Using the shorthand
notation ĉX(x, x′) = αc̄X(x, x′) + (1− α)cX(x, x′), the output ultrametric of cluster-and-combine
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clustering is
uCL

X (x, x′) := min
C(x,x′)

max
i|xi∈C(x,x′)

ĉX(xi, xi+1). (5.39)

As the case for combine-and-cluster clustering method, we demonstrate that the output uCL
X is a

valid ultrametric and that the methodWCL satisfies axioms (A1) and (A2) next.

Proposition 8 The combine-and-cluster method WCL is valid and admissible given 0 ≤ α ≤ 1. I.e., uCL
X

defined by (5.38) is an ultrametric for all IX = (X, dX , d̄X) andWCL satisfies axioms (A1) and (A2).

Proof: Because uCL
X is the output of single linkage to the symmetric dissimilarity αc̄X(x, x′) + (1−

α)cX(x, x′), uCL
X is a ultrametric.

To see that axiom (A1) is fulfilled, pick an arbitrary two node space ∆2(d, d̄) and denote ({p, q}, uCO
p,q ) =

WCO(∆2(d, d̄)) as the output of applying combine-and-cluster clustering method to ∆2(d, d̄). It
then follows that c̄p,q(p, q) = d̄ and cp,q(p, q) = d. Also, because every possible chain from p to q
must include a link from p to q, the definition in (5.38) becomes uCL

p,q(p, q) = αd̄ + (1− α)d, which
shows that axiom (A1) is satisfied.

To verify axiom (A2), consider arbitrary points x, x′ ∈ X and denote C?(x, x′) the chain achieving
minimum cost in (5.39),

uCL
X (x, x′) = max

i|xi∈C?(x,x′)
ĉX(xi, xi+1), (5.40)

Examine the transformed chain CY(π(x), π(x′)); since the map π is α-distance-reducing, it satisfies
ĉY(π(xi), π(xi+1)) ≤ ĉX(xi, xi+1) [cf. (5.14)] for any link. Therefore, we can write

max
i|π(xi)∈CY(π(x),π(x′))

ĉY(π(xi), π(xi+1))

≤ max
i|xi∈C?(x,x′)

ĉX(xi, xi+1).
(5.41)

Further observe that uCL
Y (π(x), π(x′)) cannot exceed the cost in the given chain CY(π(x), π(x′)).

Hence,
uCL

Y (π(x), π(x′)) ≤ max
i|xi∈C?(x,x′)

ĉX(xi, xi+1) = uCL
X (x, x′), (5.42)

where the equality follows from (5.40). This shows uCL
X satisfies axiom (A2) as in (5.15) and

concludes the proof. �

5.4. Extremal Ultrametrics

Given that we have constructed two admissible methods satisfying axioms (A1)-(A2), it is natural
to ask whether these two constructions are the only possible ones, and if not, whether they are
special with respect to other satisfying methods. We prove in this section the important character-
ization that any method W satisfying axioms (A1)-(A2) yields ultrametrics that lie between uCL

X
and uCO

X . The characterization can be considered as a generalization of Theorem 18 in [48] for
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Figure 33: Network of equivalence classes at a given resolution. Each shaded subset of nodes
represent an equivalence class. The Axiom of Transformation establishes the relationship between
the clustering of nodes in the original network and the clustering of nodes in the network of
equivalence classes.

metric spaces.

Theorem 12 Consider an admissible clustering methodW satisfying axioms (A1)-(A2). For an arbitrary
IX = (X, d̄X , dX) and 0 ≤ α ≤ 1, denote (X, uX) = W(IX) the output of applyingW onto IX . Then for
any pair of nodes x, x′ ∈ X,

uCL
X (x, x′) ≤ uX(x, x′) ≤ uCO

X (x, x′), (5.43)

where uCL
X (x, x′) and uCO

X (x, x′) denote the cluster-and-combine and combine-and-cluster ultrametrics de-
fined in (5.38) and (5.32).

Proof of uCL
X (x, x′) ≤ uX(x, x′): By Theorem 11, W satisfying (A1)-(A2) implies that it also sat-

isfies (P1). To show the first inequality in (5.43), consider the cluster-and-combine clustering
equivalence relation ∼CLX(δ)

at resolution δ using x ∼CLX(δ)
x′ if and only if uCL

X (x, x′) ≤ δ. De-
fine the space Z := X mod ∼CLX(δ)

where points in X belonging to the same equivalence class
are represented by a single node in Z and the map πδ : X → Z that maps each point of X to
its equivalence class. Points x and x′ are mapped to the same point under πδ if and only if they
belong to the same equivalence class at δ, i.e.

πδ(x) = πδ(x′) ⇐⇒ uCL
X (x, x′) ≤ δ. (5.44)

We define the dissimilarity space with distances given by intervals IZ := (Z, d̄Z, dZ) by equipping
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Z with distance bounds as

dZ(z, z′) := min
x∈π−1

δ (z),x′∈π−1
δ (z′)

cX(x, x′), (5.45)

and similarly for d̄Z(z, z′). The distance lower bounds dZ(z, z′) compares all the minimum lower
chain costs cX(x, x′) between a member of the equivalence class z and a member of the equivalence
class z′ and sets dZ(z, z′) to the value corresponding to the pair yielding the lowest minimum lower
chain cost. The distance upper bounds d̄Z(z, z′) are constructed similarly; see Figure 33. Observe
that follows from the construction, the map πδ is α-distance-reducing such that for any x, x′ ∈ X

d̂X(x, x′) ≥ d̂Z(πδ(x), πδ(x′)), (5.46)

ĉX(x, x′) ≥ ĉZ(πδ(x), πδ(x′)). (5.47)

To see this, when x and x′ are co-clustered at resolution δ, d̂Z(πδ(x), πδ(x′)) = ĉZ(πδ(x), πδ(x′)) =
0. Otherwise, if they are mapped to different equivalent classes, we can write

dX(x, x′) ≥ cX(x, x′) ≥ min
x∈π−1

δ (z),x′∈π−1
δ (z′)

cX(x, x′)

= dZ(πδ(x), πδ(x′)),
(5.48)

and similarly d̄X(x, x′) ≥ d̄Z(πδ(x), πδ(x′)). Eq. (5.46) then follows from these two inequalities.
Besides, we can also write

cX(x, x′) ≥ min
x∈π−1

δ (z),x′∈π−1
δ (z′)

cX(x, x′)

= dZ(πδ(x), πδ(x′)) ≥ cZ(πδ(x), πδ(x′)),
(5.49)

and similarly c̄X(x, x′) ≥ c̄Z(πδ(x), πδ(x′)). The convex combination of these two inequalities is
identical to Eq. (5.47). This completes the proof that πδ is α-distance-reducing.

Consider a clustering method W satisfying axioms (A1)-(A2) and write (Z, uZ) = W(IZ) as the
output of applyingW upon IZ. To apply (P1) we investigate the α-separation of IZ as next.

Fact 3 The α-separation of IZ is

sepα(IZ) > δ. (5.50)

Proof: Suppose the contrary is true, i.e. sepα(IZ) ≤ δ, then there exists a pair of distinct nodes
z 6= z′ ∈ Z such that the convex combination of their distance bounds satisfies

α min
C(z,z′)

max
i|zi∈C(z,z′)

d̄Z(zi, zi+1) + (1− α) min
C̃(z,z′)

max
i|zi∈C̃(z,z′)

dZ(zi, zi+1) ≤ δ. (5.51)

Denote C? as the optimal chain in minimizing minC(z,z′) maxi|zi∈C(z,z′) d̄Z(zi, zi+1) and C̃? as the
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Figure 34: The illustration in the proof of Fact 4. The alphabets adjacent to edges denote the
corresponding minimum upper and lower chain costs. Given that αā + (1− α)aδ, αb̄ + (1− α)b ≤
δ, and αē + (1 − α) f ≤ δ, there exists a pair of nodes ẋ ∈ {x, x̃} and ẋ′ ∈ {x′, x̃′} such that
αc̄X(ẋ, ẋ′) + (1− α)cX(ẋ, ẋ′) ≤ δ.

chain in minC̃(z,z′) maxi|zi∈C̃(z,z′) dZ(zi, zi+1), (5.51) then becomes

α max
i|zi∈C?(z,z′)

d̄Z(zi, zi+1) + (1− α) max
i|zi∈C̃?

(z,z′)
dZ(zi, zi+1) ≤ δ. (5.52)

From the definitions of dZ given by (5.45) and d̄Z, we can find four nodes x, x̃, x′, x̃′ with πδ(x) =
πδ(x̃) = z, πδ(x′) = πδ(x̃′) = z′, and two chains C?(x, x′) and C̃?

(x̃, x̃′) which are mapped to
C?(z, z′) and C̃?

(z, z′) under πδ such that

α max
i|xi∈C?(x,x′)

c̄X(xi, xi+1) + (1− α) max
i|xi∈C̃?

(x̃,x̃′)
cX(xi, xi+1) ≤ δ. (5.53)

Because c̄X is a valid ultrametric, we can write

c̄X(x, x′) ≤ max
{

c̄X(x, x1), c̄X(x1, x′)
}
≤ max

{
c̄X(x, x1), c̄X(x1, x2), c̄X(x2, x′)

}
≤ · · · ≤ max

i|xi∈C?(x,x′)
c̄X(xi, xi+1).

(5.54)

Similarly cX(x̃, x̃′) ≤ maxi|xi∈C̃?
(x̃,x̃′) cX(xi, xi+1). Substituting these two bounds into (5.53) implies

αc̄X(x, x′) + (1− α)cX(x̃, x̃′) ≤ δ. (5.55)

Further observe that because x and x̃ belong to the same cluster (z) as well as x′ and x̃′ belong to
the same cluster (z′) at resolution δ, we know that αc̄X(x, x′)+ (1− α)cX(x, x′) ≤ δ and αc̄X(x̃, x̃′)+
(1− α)cX(x̃, x̃′) ≤ δ. To reach a contradiction we use the following fact.

Fact 4 There exists a pair ẋ ∈ {x, x̃} and ẋ′ ∈ {x′, x̃′} such that

αc̄X(ẋ, ẋ′) + (1− α)cX(ẋ, ẋ′) ≤ δ. (5.56)
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Proof: Define the following shorthand notations, ā := c̄X(x, x̃), b̄ := c̄X(x′, x̃′), ē := c̄X(x, x′),
f̄ := c̄X(x̃, x̃′), ḡ := c̄X(x, x̃′), h̄ := c̄X(x′, x̃). Similarly define a, b, e, f , g, h; see Figure 34. The
problem then becomes: given αā + (1− α)a ≤ δ, αb̄ + (1− α)b ≤ δ, and αē + (1− α) f ≤ δ, we
would like to prove that at least one of the following holds: αē + (1− α)e ≤ δ, α f̄ + (1− α) f ≤ δ,
αḡ + (1− α)g ≤ δ, or αh̄ + (1− α)h ≤ δ. We show the fact by examining which is the maximum
one out of ā, b̄, ē and which is the maximum one out of a, b, f .

Firstly, in scenarios where ē = max{ā, b̄, ē}, it follows from the strong triangle inequality of c̄X that
f̄ ≤ ē. Therefore,

α f̄ + (1− α) f ≤ αē + (1− α) f ≤ δ, (5.57)

which shows the desired result. The proof for cases with f = max{a, b, f } follows by symmetry.
Therefore, what remain are scenarios where neither ē = max{ā, b̄, ē} nor f = max{a, b, f }.

Secondly, in scenarios where ā = max{ā, b̄, ē} and a = max{a, b, f }, we have ē ≤ ā and e ≤ a
where the latter follows from the strong triangle inequality of c̄X . Consequently

αē + (1− α)e ≤ αā + (1− α)a ≤ δ, (5.58)

which shows the desired result. The proof for cases with b̄ = max{ā, b̄, ē} and b = max{a, b, f }
follows by symmetry.

Thirdly, consider ā = max{ā, b̄, ē} and b = max{a, b, f }. If ē ≤ b̄, because e ≤ b by the strong
inequality of cX , we have

αē + (1− α)e ≤ αb̄ + (1− α)b ≤ δ, (5.59)

which is the desired result. Otherwise, if b̄ ≤ ē, we can write ḡ ≤ max{b̄, ē} = ē and g ≤
max{a, f }. Therefore,

αḡ + (1− α)g ≤ αē + (1− α)max{a, f }. (5.60)

Utilizing the fact ē ≤ ā in (5.60) yields

αḡ + (1− α)g ≤ max
{

αā + (1− α)a, αē + (1− α) f
}
≤ δ, (5.61)

which shows the desired result. The proof for b̄ = max{ā, b̄, ē} and a = max{a, b, f } follows by
symmetry. We have proven the statement under all cases, and the proof of Fact 4 is complete. �

Continuing with the proof of Fact 3, since there exists a pair of nodes ẋ ∈ {x, x̃} and ẋ′ ∈ {x′, x̃′}
with αc̄X(ẋ, ẋ′) + (1− α)cX(ẋ, ẋ′) ≤ δ, the fact uCL

X (x, x′) ≤ δ contradicts the assumption π(ẋ) =
z 6= z′ = π(ẋ′). Therefore, the assumption that (5.50) is false cannot hold. The opposite must be
true. �
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Back to the main proof of uCL
X (x, x′) ≤ uX(x, x′), recall that (Z, uZ) = W(Z, dZ, d̄Z). Since the α-

separation of Z satisfies (5.50), (P1) implies for any pair of nodes z 6= z′, uZ(z, z′) > δ. Also observe
that because π is α-distance-reducing and W satisfies (A2), we must have uX(x, x′) ≥ uZ(z, z′).
This inequality, combined with uZ(z, z′) > δ enables us to conclude that when x and x′ are
mapped to different equivalence classes,

uX(x, x′) ≥ uZ(z, z′) > δ. (5.62)

Notice that from (5.44), x and x′ are mapped to different equivalence classes if and only if
uCL

X (x, x′) > δ. Therefore, we can claim that uCL
X (x, x′) > δ implies uX(x, x′) > δ. Because

this statement is true for any δ > 0, it induces that uCL
X (x, x′) ≤ uX(x, x′) for any x 6= x′ ∈ X as

the first inequality in (5.43). �

Proof of uX(x, x′) ≤ uCO
X (x, x′): To show the second inequality in (5.43), first notice that for any

distinct nodes xi 6= xj ∈ X, we can construct a two-node space ∆i,j =
(
{p, q}, dX(xi, xj), d̄X(xi, xj)

)
and a mapping πi,j : {p, q} → X with πi,j(p) = xi and πi,j(q) = xj such that πi,j is α-distance-
reducing. To demonstrate this, we need to verify conditions (5.13) and (5.14). Eq. (5.13) follows
because d̄X(πi,j(p), πi,j(q)) = d̄p,q(p, q), dX(πi,j(p), πi,j(q)) = dp,q(p, q) and therefore the convex
combination of the distance bounds also coincide. To see (5.14), using the relationships between
distance bounds and minimum chain costs, we can write

c̄X(πi,j(p), πi,j(q)) ≤ d̄X(πi,j(p), πi,j(q)),

cX(πi,j(p), πi,j(q)) ≤ dX(πi,j(p), πi,j(q)),

dp,q(p, q) = cp,q(p, q), d̄p,q(p, q) = c̄p,q(p, q).

(5.63)

Therefore, have

c̄X(πi,j(p), πi,j(q)) ≤ c̄p,q(p, q), cX(πi,j(p), πi,j(q)) ≤ cp,q(p, q), (5.64)

from which the requirement of convex combination in (5.14) follows directly. BecauseW satisfies
(A1), the output ultrametric ({p, q}, up,q) of applyingW onto ∆i,j implies

up,q(p, q) = αd̄p,q(p, q) + (1− α)dp,q(p, q) = d̂X(xi, xj), (5.65)

Moreover,W satisfies (A2), and therefore

uX(xi, xj) ≤ up,q(p, q) = d̂X(xi, xj). (5.66)

Observe that when xi = xj, (5.66) also holds because both sides on the inequality is zero. Conse-
quently, (5.66) holds true for any points xi, xj ∈ X. Now, consider the nodes x and x′ and denote
C?(x, x′) as the chain yielding the minimum cost in (5.32),

uCO
X (x, x′) = max

i|xi∈C?(x,x′)
d̂X(xi, xi+1). (5.67)
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Substituting the inequality (5.66) in (5.67) yields

uCO
X (x, x′) ≥ max

i|xi∈C?(x,x′)
uX(xi, xi+1). (5.68)

Finally, because uX is a valid ultrametric, as in (5.54), we can bound uX(x, x′) ≤ maxi|xi∈C?(x,x′) uX(xi, xi+1).
Combining with (5.68) yields uCO

X (x, x′) ≥ uX(x, x′) as the second inequality in (5.43). �

From Theorem 12, cluster-and-combine clustering uCL
X applied to IX = (X, dX , d̄X) yields a mini-

mal ultrametric among outputs by all methods satisfying axioms (A1)-(A2). Combine-and-cluster
clustering uCO

X yields a uniformly maximal ultrametric.

Remark 8 Theorem 12 resembles the results obtained for asymmetric clustering in [21] where two
methods are obtained and shown to be extremal with respect to similar axioms. The difference
is that in Theorem 12, dissimilarity bounds represent the uncertain but symmetric relationship
between the pair. In asymmetric networks, all observations are certain but the relationship from
node x to x′ is asymmetric and may not be the same as the relationship from node x′ to x. These
differences manifest on the selection of a different axiom of value where instead of clustering
at the larger of the two relationships, we cluster at the convex combination of distance bounds
αd̄ + (1− α)d [cf. (5.12)]

Remark 9 Theorem 12 states that the extremal clustering methods satisfying the axioms are con-
structed via single linkage clustering. However, this does not necessarily imply that all methods
satisfying the axioms need to be constructed via single linkage clustering. Single linkage cluster-
ing has a tendency toward what is called “chaining”, and can produce irregularly shaped clusters.
But, it is also good at combining close observations that other methods might leave separate [150],
as we illustrate in Section 5.5.2 using coauthorship networks. Besides, in the chapter we do not set
out to design methods based on single linkage. Rather, we define reasonable axioms with respect
to which single linkage based clustering methods are extremal.

Remark 10 In the problem formulation we assume 0 < dX(x, x′) ≤ d̄X(x, x′) for any pair x 6= x′,
because such consideration ensures that valid ultrametrics can be established when α = 0 and
therefore the validity of Propositions 7 and 8. We note that we can relax the constraint to only
assume dX(x, x′) ≥ 0. Under such considerations, the main result in Theorem 12 holds; besides,
same results as in Propositions 7 and 8 can be established for 0 < α ≤ 1.

Remark 11 We note that different from the dissimilarity bounds dX and d̄X , α is a global parame-
ter preset by the user to the algorithm. It is possible to consider the framework where a different
confidence parameter αX(x, x′) is used for each edge. In specific, the clustering algorithm is then
constructed for the tuple (X, dX , d̄X , αX) where αX(x, x′) is the confidence parameter for the edge
joining x and x′. If we modify the definition of distance-reducing mappings in (5.13) and (5.14)
to replace α by αX(x, x′) and αY(π(x), π(x′)), we can consider the clustering problem by building
axioms almost identical as those presented in the chapter. It can be shown that most results, in-
cluding Theorem 11, Propositions 7 and 8, and the second part uX(x, x′) ≤ uCO

X (x, x′) in Theorem
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12 follow using the same proof technique. The first part uCL
X (x, x′) ≤ uX(x, x′) in Theorem 12

cannot be derived using the same proof technique. We anticipate similar result to hold as well,
but leave detailed consideration to future works.

5.4.1. Hierarchical Clustering given Extremal Confidence Level

In the previous section, we consider admissible clustering methods given as an arbitrary value
0 ≤ α ≤ 1. In this subsection, we investigate the special cases given α at the extreme points,
i.e. α ∈ {0, 1}. Starting with α = 1, this means we are the most conservative and believe the
distance between two points x and x′ being their distance upper bound d̄X(x, x′). The output of
the combine-and-cluster clustering methods can then be written as

uCO
X (x, x′) = min

C(x,x′)
max

i|xi∈C(x,x′)
d̄X(xi, xi+1), (5.69)

which is the same as applying single linkage clustering WSL [cf. (5.10)] onto distance upper
bounds d̄X . On the other hand, the output of the cluster-and-combine clustering methods is

uCL
X (x, x′) = min

C(x,x′)
max

i|xi∈C(x,x′)
c̄X(xi, xi+1), (5.70)

with c̄X the minimum upper chain costs defined in (5.8). Notice that c̄X is also the output of
applying single linkage clustering WSL onto the distance upper bounds. Moreover, because c̄X is
a valid ultrametric, minC(x,x′) maxi|xi∈C(x,x′) c̄X(xi, xi+1) is the same as c̄X(x, x′). Combining these
observations, it follows that

uCL
X (x, x′) = uSL

X (x, x′) = uCO
X (x, x′). (5.71)

When α = 0, meaning that we are the most liberate and believe the distance between two points
x and x′ being their distance lower bound dX(x, x′), a similar analysis would follow. We can
now utilize Theorem 12 and (5.71) to prove the uniqueness of admissible hierarchical clustering
methods abiding (A1)-(A2), given that the confidence level α is at the extremes, i.e. α ∈ {0, 1}.

Corollary 2 Consider a clustering methodW satisfying axioms (A1)-(A2). For arbitrary IX = (X, d̄X , dX),
denote (X, uX) =W(IX) the output of applyingW onto IX . When α = 1,W ≡ WSL(d̄X) is the same as
the singe linkage clustering [cf. (5.10)] onto the distance upper bounds; when α = 0,W ≡ WSL(dX).

Proof: When α = 1, because W satisfies the hypotheses of Theorem 12, (5.43) is true for any
distinct nodes x, x′ ∈ X. But by (5.71), cluster-and-combine and combine-and-cluster ultrametrics
coincide; as a result (5.43) can be written as

uSL
X (x, x′) ≤ uX(x, x′) ≤ uSL

X (x, x′). (5.72)

It follows that uX(x, x′) = uSL
X (x, x′) for any pair of nodes x, x′. ThereforeW ≡ WSL(d̄X). Similar
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cX(x, x′)

c̄X(x, x′)
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X (x, x′)

0 1

⇒

Figure 35: Summary of admissible hierarchical clustering methods for dissimilarity spaces with
distances given by intervals. Given a pair of nodes x 6= x′ ∈ X, in dissimilarity space, single
linkage clustering ultrametric uSL

X (x, x′) is the unique output satisfying (A1)-(A2). In general
scenarios, there exists a family of admissible clustering methods (the blue region on the right).
When the confidence level is at the extreme points (α ∈ {0, 1}), singe linkage clustering ultrametric
c̄X(x, x′) and cX(x, x′) are the respective unique method (red and green points). For a given
confidence level 0 < α < 1, cluster-and-combine output uCO

X (x, x′) and combine-and-clustering
output uCL

X (x, x′) are the extremal on all admissible methods.

derivation holds for α = 0. �

Restrict attention to the metric spaceM ⊂ I of the form (X, dX). A further application of Corol-
lary 2 implies singe linkage clustering is the unique admissible methods as next.

Corollary 3 Let W : M → U be a hierarchical clustering method. If W satisfies axioms (A1) and (A2)
thenW ≡ WSL.

The uniqueness results claimed by Corollaries 2 and 3 can be considered as generalization of the
uniqueness statement of single linkage clustering for metric space in [48, Theorem 18]. When we
take the most conservative belief and consider distance between points as their distance upper
bounds d̄X , the only admissible method is the single linkage clustering applied onto the upper
bounds d̄X . On the other hand, when we are the most liberate and trust the information conveyed
in the distance lower bounds dX , single linkage clustering applied onto dX is the unique admissible
method. In metric space (X, dX) with dX := d̄X = dX , irrespective of our belief of α, the unique
clustering method is the single linkage clustering applied onto dX . Therefore, we can summarize
the space of admissible hierarchical clustering in Figure 35. The unique clustering method WSL

in metric spaces becomes a space of admissible methods when distances are given by intervals.
When the confidence interval is at the extreme points (α ∈ {0, 1}), the uniqueness of admissible
methods is provided by Corollary 2. For general confidence level 0 < α < 1, the admissible
methods are not unique; cluster-and-combine as well as combine-and-clustering methods provide
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Figure 36: Admissible hierarchical clustering methods given other possible construction of Axiom
of Transformation discussed in Section 5.4.2. On the left, axiom (A2’) is a weaker requirement
compared to (A2) and therefore (A1)-(A2’) yields a larger set of admissible clustering methods. In
specific, combine-and-cluster output uCO

X (x, x′) is still a global maximum but uCL
X (x, x′) may no

longer be a global minimum. In the middle and on the right, axioms (A2d) as well as (A2c) are
a stronger requirements compared to (A2) and therefore their respective combination with (A1)
gives a smaller set of admissible clustering methods.

uniformly minimal and maximal bounds, which is established in Theorem 12. We note that,
given a specific confidence level α, the output of the admissible methods do not differ much –
see examples in Section 5.5. This indicates that seemingly weak conditions established by the
intuitive axioms in fact well describe the space of admissible hierarchical clustering algorithms.
We emphasize, though, that the focus of the chapter is to study the space of admissible methods
under the axioms, and not to state that other methods not satisfying the axioms are unreasonable.
Other clustering algorithms, e.g. dbscan [151] and hierarchical dbscan [152], are very useful and
should be considered as reasonable as well. We expect that the generalization of these density
based clustering algorithms to distance bounds would satisfy the described axioms, but leave it
for future work.

5.4.2. Other Constructions of Axiom of Transformation

In Axiom of Transformation (A2), we require the output ultrametric to satisfy uX(x, x′) ≥ uY(π(x), π(x′))
when the map π is α-distance-reducing, i.e. satisfying (5.13) and (5.14). Even though we jus-
tify that Eqs. (5.13) and (5.14) are equivalent to the natural condition on the map π such that
dX(x, x′) ≥ dY(π(x), π(x′)) when restrict attention onto metric spacesM, some readers may find
such requirement on I is not highly intuitive and are curious to see what would work for other
constructions of axiom of transformation. In this section, we consider other generalizations of
axiom of transformation and the admissible clustering methods induced by them. We focus on
presenting results and omit proofs.

We start by considering the following construction.
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(A2’) Axiom of Transformation (Alternative). Consider IX = (X, dX , d̄X) and IY = (Y, dY, d̄Y) and a
given map π : X → Y such that

dX(x, x′) ≥ dY(π(x), π(x′)), d̄X(x, x′) ≥ d̄Y(π(x), π(x′)), (5.73)

for any nodes x 6= x′. The ultrametrics uX = W(X, dX , d̄X) and uY = W(Y, dY, d̄Y) are said to
satisfy the axiom of transformation (alternative) if uX(x, x′) ≥ uY(π(x), π(x′)).

Note that the requirement on the map (5.73) would imply π is a α-distance-reducing map. Hence,
because compared to (A2), (A2’) implies the same output uX(x, x′) ≥ uY(π(x), π(x′)) under a
stricter requirement on π, (A2’) is a weaker condition than (A2) and therefore the admissible
clustering methods satisfying (A1)-(A2’) would be richer. In specific, as illustrated on the left of
Figure 36, combine-and-cluster output uCO

X (x, x′) and cluster-and-combine output uCL
X (x, x′) are

still admissible; uCO
X (x, x′) is a global maximum but we could not verify that uCL

X (x, x′) is still a
global minimum. There might be other admissible methods yielding output uX(x, x′) which is
smaller than uCL

X (x, x′).

In (A2), we say a map is α-distance-reducing if it satisfies both (5.13) and (5.14). Investigate the
construction for maps that satisfy only a single requirement of them yields the two possible ways
to construct different axioms of transformation as we state next.

(A2d) Axiom of Transformation (Distance). Consider IX , IY, 0 ≤ α ≤ 1, and a map π : X → Y such
that

d̂X(x, x′) ≥ d̂Y(π(x), π(x′)) (5.74)

for any x 6= x′. The outputs uX and uY are said to satisfy the axiom of transformation (distance)
if uX(x, x′) ≥ uY(π(x), π(x′)).

(A2c) Axiom of Transformation (Chain Costs). Consider IX , IY, 0 ≤ α ≤ 1, and a map π : X → Y
such that

ĉX(x, x′) ≥ ĉY(π(x), π(x′)), ∀x 6= x′ ∈ X (5.75)

The outputs uX and uY are said to satisfy the axiom of transformation (chain costs) if uX(x, x′) ≥
uY(π(x), π(x′)).

For (A2c), even though the requirement in (5.75) is with respect to the combination of minimum
chain costs and is different from distance bounds as in (5.74), it can be shown that single linkage
clusteringWSL is still the only admissible method satisfying (A1)-(A2c) when we restrict attention
onto metric spaces.

Compared to (A2), both (A2d) and (A2c) induce the same output uX(x, x′) ≥ uY(π(x), π(x′))
under weaker requirements on π. Consequently, both (A2d) and (A2c) are more stringent condi-
tions than (A2). This implies that, compared to the the admissible clustering methods satisfying
(A1)-(A2), the admissible methods satisfying (A1)-(A2d) as well as methods satisfying (A1)-(A2c)
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would be smaller. Indeed, as illustrated in the middle of Figure 36, for the axioms (A1)-(A2d),
combine-and-cluster output uCO

X (x, x′) is admissible but cluster-and-combine output uCL
X (x, x′) is

not. In analogy, as on the right of Figure 36, for the axioms (A1)-(A2c), uCL
X (x, x′) is admissible

but uCO
X (x, x′) is not.

We focus our analysis on axioms (A1)-(A2) because we believe uCL
X (x, x′) and uCO

X (x, x′) are rea-
sonable clustering methods in dissimilarity space with distance given by intervals and should be
included. Besides, we would like to have a statement in Theorem 11 for minimum separation and
an observation as provided in Corollary 2 that when α ∈ {0, 1}, the admissible methods would be
unique given by the single linkage clustering methods applied onto the distance upper or lower
bounds.

5.5. Applications

We illustrate the usefulness of clustering theory developed in previous sections through numerical
experiments in both synthetic scenario (Section 5.5.1) and real world dataset (Section 5.5.2).

5.5.1. Clustering of Moving Points by Snapshots

We consider the clustering of n hierarchically clustered points moving in a two-dimensional plane
with the initial coordinate of the i-th point represented by p0

i ∈ R2. Points are moving in the
plane and we have T snapshots with pt

i ∈ R2 denoting the coordinate of the i-th point at the
t-th snapshot. We assume that the directions of movement of points are completely random and
therefore model the observation as pt

i := pt−1
i + ε for any i and time index 1 ≤ t ≤ T, where

ε ∈ R2 is a two-dimensional independent zero-mean Gaussian random variable with covariance
matrix φ2I. Having no knowledge about the starting coordinates, we would like to cluster points
based on observations {pt

i}i=1,...,n,t=1,...,T . To do so, we consider the node set X where xi ∈ X
denotes the i-th point pi, and use dt

X(xi, xj) = ‖pt
i − pt

j‖2 to represent the distance between the
i-th and the j-th points at the t-th snapshot. Then we define dissimilarity space with distances
given by intervals (X, dX , d̄X) such that given a pair of nodes xi 6= xj, we set the distance lower
bound dX(xi, xj) = min1≤t≤T dt

X(xi, xj) as the minimum distance between the pair at all snapshots.
Similarly, we define the distance upper bound d̄X(xi, xj) = max1≤t≤T dt

X(xi, xj) as the maximum
distance between the pair among all snapshots. Clustering methods are then applied upon the
triplet (X, dX , d̄X).

As an example, we consider n = 64 points whose initial coordinates form a hierarchically clustered
structure as in Figure 37 (a), and investigate T = 10 snapshots of these moving points. We apply
cluster-and-combine clustering WCL and combine-and-cluster clustering WCO onto the distance
bounds (X, dX , d̄X). Figure 39 (a) and (b) show the output dendrograms of cluster-and-combine
and combine-and-cluster methods, respectively. The variance parameter φ2 of movement ε is set
as 0.45 and the confidence level α as 0.5. We use two-digit to represent each node, as exemplified
in Figure 37 (a). The first digit represent the quadrant where the point locates: A denotes the 16
points in the upper right quadrant, B denotes the 16 points in the upper left quadrant, C denotes
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Figure 37: Synthetic experiment of clustering of moving points based on multiple snapshots.
(a) Initial positions of points, which correspond to a hierarchically clustered structure. Points
are labeled using two digits, where the first digit denotes the quadrant and the second digit
denotes the relative location within each quadrant. (b) A typical classification result of applying
uncertainty k-means onto the dataset by considering each snapshot as a sample for that uncertain
point. (c) A typical classification result of applying uncertainty k-medians onto the dataset by
considering each snapshot as a sample for that uncertain point. (d) Out of 20 random realizations,
count of realizations with desired results produced by the proposed clustering methods, with
respect to different level of perturbation.

the 16 points in the lower left quadrant, and D denotes the 16 points in the lower right quadrant.
For each of the 16 points in a given quadrant, points in the four clusters are represented by the
second digit as a, b, c, d, or w, x, y, z, or 1, 2, 3, 4, or 6, 7, 8, 9. Points coming from the same
cluster are plotted with the same color in Figure 39 (a) and (b). It can be seen that both WCL and
WCO yield the desired output: (i) at macro scale, there are four major clusters A, B, C, D, and (ii)
at micro scale, each major cluster consists of four clusters of points represented by a, b, c, d, and
w, x, y, z, and 1, 2, 3, 4, and 6, 7, 8, 9, respectively. The fact that limited differences exist between
the two dendrograms mean that the space of all hierarchical cluster methods is not rich (Theorem
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(a) Cluster-and-combine dendrogram
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(b) Combine-and-cluster dendrogram

Figure 38: Resulting dendrograms of cluster-and-combine method (a) and combine-and-cluster
method (b) applied upon the triplet (X, dX , d̄X) in the coauthorship network clustering. Each
node in the dendrograms represents a coauthorship network constructed from a journal during
a quinquennium. The difference between the output dendrograms of the two methods is small.
Besides, cooperation pattern in engineering community is different from that in math community;
within engineering community, Signal Processing, Information Theory, and Wireless Communi-
cation have different collaboration traits from Automatic Control and Pattern Recognition.

12).

As a benchmark for hierarchical clustering results, we consider the mean distance between any
pair of nodes d̃X(x, x′) = 1

T ∑T
t=1 dt

X(x, x′) and apply single linkage upon (X, d̃X). Figure 39 (c)
shows the resulting dendrogram, which fails to identify the clustering structure correctly: (i) at
micro scale, the small cluster Ca, Cb, Cc, Cd and the cluster C6, C7, C8, C9 are not identified prop-
erly, (ii) at macro scale, the larger clusters C and D are not classified as expected. This indicates
that synthesizing distance bounds, as in the proposed methods, improves the clustering result
compared to only using mean distance. Besides hierarchical clustering, the problem of clustering
moving points can also be casted as clustering points with uncertainty where the location at each
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snapshot can be considered as a sample for that point. Despite the fact that clustering points
with distance intervals use a subset of information in the location samples, we evaluate the clus-
tering results of previously proposed methods: uncertainty k-means and uncertainty k-medians
[46, 39, 47]. For each random initialization in k-means and k-medians, we tune the number of
clusters k to make the final clustering output have as close to 16 clusters as possible. We tried 30
different random initializations for each method. For uncertainty k-means, no initialization gives
perfect classification of the 16 clusters. The percentage of points misclassified averaged across
the realizations is 10.83%, while the median misclassification percentage across the realizations is
10.94%; a typical classification result is shown in Figure 37 (b). For uncertainty k-median, 1 out
of 30 initializations gives perfect classification of the 16 clusters. The average percentage of points
misclassified across the realizations is 8.33%, while the median across the realizations is 7.81%; a
typical classification result is shown in Figure 37 (c).

Three supplementary tests are designed to strengthen the experiment. Firstly, to test the stability
of the methods with respect to the parameter α. We examine the resulting dendrograms of the two
methods by varying α from 0 to 1. For this specific example, parameter with 0 ≤ α ≤ 0.75 yields
desired major clusters A, B, C, D at the macro scale; parameter with 0 ≤ α ≤ 0.65 makes major
cluster consisting of four clusters of points represented by a, b, c, d, and w, x, y, z, and 1, 2, 3, 4, and
6, 7, 8, 9, respectively. This indicates that the results are stable within a relatively wide range of α.
The actual stable range may change with respect to specific scenarios, but we expect stability to the
parameter to hold in general. We expect theoretical result regarding stability can be established,
and leave it for future work. Secondly, to examine the robustness of the clustering methods to
the initial position of points as well as movement, we generate 50 sets of initial coordinates and
the movement perturbations of these points. Out of the 50 sets, combine-and-cluster method
yields 36 (72%) desired macro scale results – four major clusters A, B, C, D, and 33 (66%) desired
micro scale results – each major cluster consisting of four clusters of points; cluster-and-combine
method yields 37 (74%) desired macro scale results and 35 (70%) desired micro scale results. The
benchmark method, single linkage applied upon the mean distance, yield 27 (54%) desired macro
scale results and 25 (50%) desired micro scale results. This shows that the clustering results as well
as the comparison illustrated in the figures are generalizable. Thirdly, to study the impact of noise
on the performance of the clustering results, we apply both the methods to random realizations
of perturbations with different variance φ2. For each φ2, we count the number of realizations such
that the resulting dendrograms are as expected, and plot the counts with respect to φ2 in Figure
37 (d). For reference, the average distance between adjacent points coming from same cluster in
Figure 37 (a) is 2. Both proposed methods yield desired results in most cases for φ2 ≤ 0.5, in
both macro and micro scales. Performance begins to deteriorate with higher variance φ2. If we
use the ratio between the distance of adjacent points and the variance φ2 of perturbation as a
rough estimate of signal-to-noise ratio, the methods yield good results with higher than 2/0.4 = 5
signal-to-noise ratio. In the experiment studied, the proposed methods exhibit some robustness
to uncertainty in measurements.
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5.5.2. Clustering of Networks via Distance Bounds

In this section, we go back to the motivating starting point of this work – clustering of networks.
We achieve that by estimating the lower and upper bound of valid distance metrics in the space of
networks, and apply the clustering methods proposed in this chapter. The problem of comparing
and clustering networks is interesting on its own [153, 16]. In Section 2, we have defined network
distances. The metric distances defined here have been applied to compare networks with small
number of nodes and have succeeded in identifying collaboration patterns of different researchers
[8]. However, because they have to consider all possible node correspondences, network distances
are difficult to compute when the number of nodes in the networks is large. To resolve such
problem, we mapped networks to filtrations of simplicial complexes and demonstrated that the
difference between the homological features of their respective filtration can be used as a lower
bound of dN [121]. Computational of homological features is fast [137], which enables efficient
estimation of the network distance lower bound.

On the other hand, ΓZ,W(C) in (2.8) for any correspondence C witnesses an upper bound on the
distance dN . Therefore, given a set of networks X where the i-th element denotes a network Ni, we
can evaluate the upper and lower bounds of network distance dN (Ni, Nj) for any pair of networks
Ni and Nj in X to yield a metric in the space of networks where distances are given by intervals
(X, dX , d̄X). Clustering methods examined in the chapter can then be applied towards the triplet
to categorize networks.

As an example of network clustering, we consider coauthorship networks, where dissimilarity be-
tween nodes denote a preset number (the number of publication by the most prolific author in the
network) minus the number of publications between pairs of authors. We consider publications in
5 journals from mathematics community: Computational Geometry (CG), Discrete Computational
Geometry (DCG), J. of Applied Probability, (JAP) J. of Mathematical Analysis and Applications
(JMA), SIAM J. on Numerical Analysis (JNA), and 6 journals from engineering community, all
from IEEE: Signal Processing Magazine (SPM), Trans. Automatic Control (TAC), Trans. Pattern
Analysis and Machine Intelligence (TPA), Trans. Information Theory, Trans. Signal Processing
(TSP), Trans. Wireless Communication (TWC). For each journal, we construct two networks for
the 2004-2008 and 2009-2013 quinquennia. Lists of publications are queried from Engineering
Village1.

For each of these journals we consider all publications in the period of interest and construct
networks where the node set Z is formed by all authors of the publications. To make networks
with different numbers of publications comparable, we normalize all dissimilarities by the number
of publications of the most prolific author in that network. By assuming that networks from the
same community or constructed from the same journal have similar collaboration patterns, we
show that the network clustering tools proposed here succeed in clustering research communities
with similar research interests.

1http://www.engineeringvillage.com/search/quick.url
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In order to cluster the networks, for each pair of coauthorship networks NZ and NW , we need
to construct the distance lower bound dN (NZ, NW) and the distance upper bound d̄N (NZ, NW).
The lower bounds are constructed using bottleneck distances between persistence diagrams estab-
lished in our previous contribution [121, 76]. For the upper bound, denote the set of authors in the
networks NZ and NW as Z and W respectively. In theory, any correspondence C ⊆ Z×W would
witness an upper bound. However, to achieve good performance, the correspondence cannot be
chosen arbitrarily. In specific, for each author z ∈ Z in NZ, we record her normalized number of
publications as sZ(z); similarly, for each author w ∈ W in NW , we record her normalized number
of publications as sW(w). The correspondence C is constructed in two steps. Firstly, starting with
C = ∅, for each z ∈ Z, we add (z, w?) to C where w? = argminw∈W |sZ(z)− sW(w)|. If multiple
authors in W yield the same discrepancy, a single author w is chosen randomly from the candi-
date set. Secondly, for each w ∈ W, we add (z?, w) to C where z? = argminz∈Z |sZ(z)− sW(w)|.
The correspondence C constructed in this way is guaranteed to be a valid correspondence. The
difference between the network ΓZ,W(C) with respect to this correspondence C defined in (2.8) is
then used as the distance upper bound d̄N (NZ, NW).

We apply the proposed methods upon the metric distance bounds (X, dX , d̄X) between these coau-
thorship networks with confidence level α = 0.5. Figure 38 shows the two dendrograms corre-
sponding to the two methods, where networks are labeled based on their journal names and the
quinquennia they are constructed from (1 means 2004 - 2008, and 2 means 2009 - 2013). The two
dendrograms are not highly different from each other, indicating again that the space of all ad-
missible methods satisfying the axioms is not rich. Many interesting observations emerge from
the figures: Firstly, there is a difference in its collaboration pattern between networks constructed
from engineering journals (blue and cyan leafs in the dendrograms) and networks constructed
from math journals (red and magenta leafs in the dendrograms). SPM1 is the only network that
fall into the wrong cluster. Part of the reason is that SPM is a Magazine, and the collaboration
pattern is slightly different from Transactions in engineering community. Both the dendrograms
appear to be left-branching; the main reason is because networks from engineering journals are
similar to each other in both the distance lower and upper bounds, whereas the networks from
the mathematical journals are more different from each other in the distance bounds. Secondly,
TSP, TIT, and TWC have similar collaboration patterns (blue leafs), which is different from the
collaboration pattern in TAC, TPA (cyan leafs). This demonstrates the value of hierarchical clus-
tering onto networks: cooperation pattern in engineering community is different from that in math
community, and within engineering community, TSP, TIT, and TWC have different collaboration
traits from TAC and TPA. Thirdly, compared to TSP, TIT, and TWC, there is more discrepancy
between the networks of TAC and TPA constructed from different quinquennia. Fourthly, out of
all 5 Transactions from engineering community, TPA is more different in collaboration patterns.
Finally, despite the fact that networks from math community are more different to each other
compared to networks from engineering community, the collaboration pattern in math journals in
quinquennium 2004 - 2008 (mostly red leafs) are similar to each other, and are different from the
pattern in math journals in quinquennium 2009 - 2013 (mostly magenta leafs). Clustering results
using both distance upper and lower bounds are slightly better than the results using only the
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lower bound we investigated in previous contribution [121].

The proposed methods yield clustering structures only based on the upper and lower bound of
actual network distance. No direct comparison can be made with other methods. Nonetheless, we
compare the result with clustering using uncertainty in the feature space. To do so, we consider
each network representing an uncertain point in a two-dimensional plane with the respective axis
denoting the normalized number of publications, and the number of coauthors. Each actual author
in this network denotes one sample in this space, with the coordinate in the two-dimensional plane
denoting the number of publication and the number of coauthors of this author. We can then apply
uncertainty k-means and uncertainty k-medians to cluster networks using this features. Setting
k = 2, these exclusive clustering methods based on uncertainty would yield two cluster structures,
one representing networks from engineering community, and the other denoting networks from
math community; the cluster structures only misclassify SPM1. Methods to compare networks
via uncertain features give us similar observations as those based on the proposed hierarchical
clustering using distance bounds, despite the facts that these approaches use different information
in the networks and originate from very different perspectives.
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D8D9D6D7DwDxDyDzD1D4D2D3DaDbDdDcCaCcCdCbC6C7C8C9C1C4C3C2CwCxCyCzAaAdAbAcA1A2A4A3A6A7A8A9AwAxAyAzBaBbBcBdB6B7B9B8BwBzBxByB1B2B4B3

(a) Cluster-and-combine dendrogram

D8D9D6D7D1D4D2D3DwDxDyDzDaDbDdDcCaCcCdCbC6C7C8C9C1C4C3C2CwCxCyCzAaAdAbAcA1A2A4A3A6A7A8A9AwAxAyAzBaBbBcBdB6B7B9B8BwBzBxByB1B2B4B3

(b) Combine-and-cluster dendrogram

D8D9D6D7D1D4D2D3DwDxDyDzCaCcCdC6C7C8C9CbC1C4C2C3CwCxCyCzDaDbDdDcAaAdAbAcA1A2A4A3A6A7A8A9AwAxAyAzBaBbBcBdB6B7B9B8BwBzBxByB1B2B4B3

(c) Benchmark 1: dendrogram via mean distance

Figure 39: Resulting dendrograms of (a) cluster-and-combine method and (b) combine-and-
cluster method applied upon the triplet (X, dX , d̄X) in the synthetic experiment. (c) Bench-
mark dendrogram: single linkage applied upon the mean distance between any pair of nodes
d̃X(x, x′) = 1

T ∑T
t=1 dt

X(x, x′).

109



Chapter 6

Network Comparison via
Embeddings and Interiors

The idea of an embedding distance d(A, B) is to analyze how much we have to modify network
A to make it a subset of network B. This is an asymmetric relationship. In particular, having
d(A, B) = 0 means that network A can be embedded in network B but the opposite need not
be true. In this chapter, we first define network embeddings and a corresponding notion of par-
tial embedding distances. Partial embedding distances define an embedding metric d such that
d(A, B) = 0 if and only if A can be embedded in B. We attempt to use the MDS techniques in [51]
to approximate the computation of embedding distances but observe that the methodology yields
sub-optimal results – see Figure 40 for an illustration of why this is not unexpected. To improve
these results we observe that when edge dissimilarities satisfy triangle inequality, an Euclidean
interior is implicitly defined. In the case of arbitrary networks this is not true and motivates the
definition of the interior of a network that we undertake in Section 6.2. The chapter then provides
a definition of the interior of a network. The interior of a set of nodes is the set of points that
can be written as convex combinations of the nodes. When the network forms a metric space, the
dissimilarity between a pair of points in the interior is the distance on the shortest path between
the pair. When the dissimilarities in the network do not form a metric space, e.g. representing
travel time between nodes, such construction would yield conflict. The problem can be solved by
defining the dissimilarity between a pair of points as the travel time on the shortest path between
the pair. Having the ability to extend networks into their interiors, we extend different networks
and compute partial embedding distances between their extensions. In principle, distances be-
tween two networks and their respective extensions need not be related. In Section 6.2.1 we show
that a restriction in the embedding of the extended networks renders them identical. Therefore,
we define embeddings for extended networks such that points in one of the original networks –
prior to extension – can only be embedded into original points of the other network. We show that
the embedding distance that results from this restriction is the same embedding distance between
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the original networks.

The definition of interior is somewhat arbitrary, however because of the identical network distance
under embedding, the practical implication of interior definition is justified. We point out that a
network extension is a dense set that includes all the convex combinations of sets of points. To
make interior extensions practical we consider samplings of the interior in Section 6.2.2. It is not
difficult to show that the embedding distance between a pair of networks extended to samples of
their interiors is also identical to the embedding distance between the original pair of networks –
if the restriction in the mapping of original nodes is retained.

We exploit these definitions to approximate the computation of embedding distances using the
MDS techniques in [51] but applied to networks extended to their interiors. The definition of an
interior improves the quality of MDS distance approximations. We illustrate this fact in Section 6.3
with illustrative examples and also demonstrate the ability to discriminate networks with different
generative models.

6.1. Embeddings

A related notion to metric space defined in Definition 3 is that of an isometric embedding. We say
that a map π : X → Y is an isometric embedding from NX = (X, rX) to NY = (Y, rY) if (2.1) holds
for all points x, x′ ∈ X. Since rX(x, x′) = rY(π(x), π(x′)) for any x, x′ ∈ X, rX(x, x′) > 0 for x 6= x′

and rY(y, y) = 0, the map π is injective. This implies that the condition can only be satisfied when
NX = (X, rX) is a sub-network of NY = (Y, rY). Such a map is called an isometric embedding.
When NX can be isometrically embedded into NY, we write NX v NY. Related to the notion of
isometric embedding is the notion of an embedding metric that we state next.

Definition 25 Given a space S and an isometric embeddingv, a function d : S ×S → R is an embedding
metric in S if for any a, b, c ∈ S the function d satisfies:

(i) Nonnegativity. d(a, b) ≥ 0.

(ii) Embedding identity. d(a, b) = 0 if and only if a v b.

(iii) Triangle inequality. d(a, b) ≤ d(a, c) + d(c, b).

As is the case with correspondences, mappings also allow definition of associations between net-
works with different numbers of elements. We use this to define the distance from one network
to another network by selecting the mapping that makes them most similar as we formally define
next. In this chapter, we focus the case with K = 2 and remove the superscript K for the ease of
notation.

Definition 26 Given two networks NX = (X, rX), NY = (Y, rY), and a map π : X → Y from node space
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X to the node space Y, define the network difference with respect to π as

∆X,Y(π) := max
x,x′∈X

∣∣∣rX(x, x′)− rY(π(x), π(x′))
∣∣∣. (6.1)

The partial embedding distance from NX to NY is defined as

dPE(NX , NY) := min
π:X→Y

{
∆X,Y(π)

}
. (6.2)

Both, Definition 2 and Definition 26 consider a mapping between the node space X and the node
space Y, compare dissimilarities, and set the network distance to the comparison that yields the
smallest value in terms of maximum differences. The distinction between them is that in (2.2)
we consider correspondence, which requires each point in any node spaces (X or Y) to have a
correspondent in the other node space, whereas in (6.1) we examine mappings, which only require
all points in node space X to have one correspondent in the node set Y. Moreover, in (2.2), a node
x ∈ X may have multiple correspondents, however, in (6.1), a node x ∈ X can only have exactly
one correspondent. Except for this distinction, Definition 2 and Definition 26 are analogous since
∆X,Y(π) selects the difference |rX(x1, x2)− rY(y1, y2)| among all pairs. The distance dPE(NX , NY)

is defined by selecting the mapping that minimizes these maximal differences. We show in the
following proposition that the function dPE : N ×N → R+ is, indeed, an embedding metric in
the space of networks.

Proposition 9 The function dPE : N ×N → R+ defined in (6.2) is an embedding metric in the space N .

Proof : To prove that dPE is an embedding metric in the space of networks, we prove the (i)
nonnegativity, (ii) embedding identity, and (iii) triangle inequality properties in Definition 25.

Proof of nonnegativity property: Since |rX(x, x′) − rY(π(x), π(x′))| is nonnegative, ∆X,Y(π)

defined in (6.1) also is. The partial embedding distance must then satisfy dPE(NX , NY) ≥ 0 because
it is a minimum of nonnegative numbers. �

Proof of embedding identity property: First, we need to show that if NX can be isometrically
embedded into NY, we must have dPE(NX , NY) = 0. To see that this is true recall that for isometric
embeddable networks, there exists a mapping π : X → Y that preserves distance functions (2.1).
Then, under this mapping, we must have ∆X,Y(π) = 0. Since π is a particular mapping, taking a
minimum over all mappings as in (6.2) yields

dPE(NX , NY) ≤ ∆X,Y(π) = 0. (6.3)

Since dPE(NX , NY) ≥ 0, it must be that dPE(NX , NY) = 0 when NX can be isometrically embedded
into NY.

Second, we need to prove dPE(NX , NY) = 0 must imply that NX can be isometrically embed-
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ded into NY. If dPE(NX , NY) = 0, there exists a mapping π : X → Y such that rX(x, x′) =

rY(π(x), π(x′)) for any x, x′ ∈ X. This implies that π is an isometric embedding and therefore NX

can be isometrically embedded into NY. �

Proof of triangle inequality: To show that the triangle inequality, let the mapping π between X
and Z and ω between Z and Y be the minimizing mappings in (6.2). We can then write

dPE(NX , NZ) = ∆X,Z(π), dPE(NZ, NY) = ∆Z,Y(ω). (6.4)

Since both π and ω are mappings, ω ◦ π would be a valid mapping from X to Y. The mapping
ω ◦ π may not be the minimizing mapping for the distance dPE(NX , NY). However since it is a
valid mapping with the definition in (6.2) we can write

dPE(NX , NY) ≤ ∆X,Y(ω ◦ π). (6.5)

Adding and subtracting dZ(π(x), π(x′)) in the absolute value of ∆X,Y(ω ◦π) = maxx,x′∈X
∣∣rX(x, x′)−

rY(ω(π(x)), ω(π(x′)))
∣∣ and using the triangle inequality of the absolute value yields

∆X,Y(ω ◦ π) ≤ max
x,x′∈X

{∣∣rX(x, x′)− dZ(π(x), π(x′))
∣∣+ ∣∣∣dZ(π(x), π(x′))− rY

(
ω
(
π(x)

)
, ω
(
π(x′)

))∣∣∣}.

(6.6)
We can further bound (6.6) by taking maximum over each summand,

∆X,Y(ω ◦ π) ≤ max
x,x′∈X

∣∣rX(x, x′)− dZ(π(x), π(x′))
∣∣

+ max
x,x′∈X

∣∣∣dZ(π(x), π(x′))− rY
(
ω
(
π(x)

)
, ω
(
π(x′)

))∣∣∣. (6.7)

The first summand in (6.7) is nothing different from ∆X,Z(π). Since π(x), π(x′) ∈ Z, the second
summand in (6.7) can be further bounded by

max
x,x′∈X

∣∣∣dZ(π(x), π(x′))− rY
(
ω
(
π(x)

)
, ω
(
π(x′)

))∣∣∣
≤ max

z,z′∈Z

∣∣dZ(z, z′)− rY
(
ω(z), ω(z′)

)∣∣ = ∆Z,Y(ω).
(6.8)

These two observations implies that

∆X,Y(ω ◦ π) ≤ ∆X,Z(π) + ∆Z,Y(ω). (6.9)

Substituting (6.4) and (6.5) into (6.9) yields triangle inequality. �

Having proven all statements, the global proof completes. �

The embedding distance dPE(NX , NY) from one network NX to another network NY is not a metric
due to its asymmetry. We can construct a symmetric version from dPE(NX , NY) by taking the
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maximum from the embedding distance dPE(NX , NY) and dPE(NY, NX). This would give us a
valid metric distance in N mod ∼=. A formal definition and theorem are shown next.

Definition 27 Given two networks NX = (X, rX), NY = (Y, rY), define the embedding distance between
the pair as

dE(NX , NY) := max {dPE(NX , NY), dPE(NY, NX)} . (6.10)

where partial embedding distances dPE(NX , NY) and dPE(NX , NY) are defined in Definition 26.

Theorem 13 The function dE : N ×N → R+ defined in (6.10) is a metric in the space N mod ∼=.

Proof: To prove that dE is a metric in the space of networks modulo isomorphism, we prove the (i)
nonnegativity, (ii) symmetry, (iii) identity, and (iv) triangle inequality properties in Definition 3.

Proof of nonnegativity property: Since dPE(NX , NY) as well as dPE(NY, NX) are both nonnegative,
the embedding distance must then satisfy dE(NX , NY) ≥ 0. �

Proof of symmetry property: Since dE(NX , NY) = dE(NY, NX) = max{dPE(NX , NY), dPE(NY, NX)},
the symmetry property follows directly. �

Proof of identity property: First, we need to show that if NX and NY are isomorphic, we must
have dE(NX , NY) = 0. To see that this is true recall that for isomorphic networks there exists a
bijective map π : X → Y that preserves distance functions (2.1). This implies π is also an injection,
and we can find an injection ω : Y → X that preserves distance functions (2.1). Then, under the
injection π, we must have ∆X,Y(π) = 0. Since π is a particular mapping, taking a minimum over
all mappings as in (6.2) yields

dPE(NX , NY) ≤ ∆X,Y(π) = 0. (6.11)

Since dPE(NX , NY) ≥ 0, as already shown, it must be that dPE(NX , NY) = 0 when NX are iso-
morphic to NY. Similarly, we can show that dPE(NY, NX) = 0, which combines with previous
observation implies that dE(NX , NY) = 0.

Second, we need to prove dE(NX , NY) = 0 must imply that NX and NY are isomorphic. By the
definition of embedding distance, dE(NX , NY) = 0 means dPE(NX , NY) = 0 and dPE(NY, NX) = 0.
The observation dPE(NX , NY) = 0 implies that there exists a mapping π : X → Y such that
rX(x, x′) = rY(π(x), π(x′)) for any x, x′ ∈ X. Moreover, this also implies the function π must be
injective. If it were not, there would be a pair of nodes x 6= x′ with π(x) = π(x′) = y for some
y ∈ Y. By the definition of networks, we have that

rX(x, x′) > 0, rY(π(x), π(x′)) = rY(y, y) = 0, (6.12)
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which contradicts the observation that rX(x, x′) = rY(π(x), π(x′)) for any x, x′ ∈ X and shows
that π must be injective. Following similar derivation, the fact dPE(NY, NX) = 0 implies that there
exists an injective mapping ω : Y → X such that rY(y, y′) = rX(ω(y), ω(y′)) for any y, y′ ∈ Y. By
applying the Cantor-Bernstein-Schroeder Theorem (also known as Cantor-Bernstein or Schroeder-
Bersteirn) [134, Section 2.6] to the reciprocal injections π : X → Y and ω : Y → X, the existence of
a bijection between X and Y is guaranteed. This forces X and Y to have same cardinality and π

and ω being bijections. Pick the bijection π and it follows rX(x, x′) = rY(π(x), π(x′)) for all nodes
x, x′ ∈ X. This shows that NX ∼= NY and completes the proof of the identity statement. �

Proof of triangle inequality: To show that the triangle inequality holds, from the definition of
embedding distance, we have that

dE(NX , NY) = max {dPE(NX , NY), dPE(NY, NX)} . (6.13)

Since partial embedding distance is a valid embedding metric, it satisfies triangle inequality in
Definition 25, therefore, we can bound (6.13) by

dE(NX , NY) ≤ max
{

dPE(NX , NZ) + dPE(NZ, NY), dPE(NY, NZ) + dPE(NZ, NX)
}

. (6.14)

To further bound (6.14) we utilize the relationship as next.

Fact 5 Given real numbers a, b, c, d, it holds that

max{a, c}+ max{b, d} ≥ max{a + b, c + d}. (6.15)

Proof: If a ≥ c and b ≥ d, the inequality holds since the left hand side is a + b and the right hand
side is also a + b. Similarly, if c ≥ a and d ≥ b, the inequality also holds. What remains to consider
are scenarios of a ≥ c, d ≥ b as well as c ≥ a, b ≥ d. Since the order is irrelevant, it suffices to
consider the first scenario with a ≥ c, d ≥ b. Under this scenario, the statement becomes

a + d ≥ max{a + b, c + d}. (6.16)

It follows that the state is correct following the assumption. Since we have considered all scenarios,
the proof concludes. �

Back to the proof of triangle inequality, applying Fact 5 onto (6.14) yields

dE(NX , NY) ≤max
{

dPE(NX , NZ), dPE(NZ, NX)
}
+ max

{
dPE(NY, NZ), dPE(NZ, NY)

}
. (6.17)

Substituting the definition of dE(NX , NZ) and dE(NZ, NY) into (6.17) yields

dE(NX , NY) ≤ dE(NX , NZ) + dE(NZ, NY), (6.18)

115



1 1

11

3 3

11

5 5

11

NX a

c b

NY a

c b

NZ a

c b

-6 -4 -2 0 2 4 6
-1

0

1

ac b

-6 -4 -2 0 2 4 6
-1

0

1

ac b

-6 -4 -2 0 2 4 6
-1

0

1

ac b

Figure 40: An example where different networks result in identical multi-dimensional scaling
results. We emphasize that the number of dimension used in multi-dimensional scaling would
not distinguish networks since the triangle inequality property for relationships between nodes
in the networks is violated. Such a caveat would be solved by inducing semimetrics in the space
defined by the given networks, as we develop throughout Section 6.2.

which is the triangle inequality and completes the proof. �

Having proven all statements, the global proof completes. �

Since embedding distances between two networks generate a well-defined metric, they provide
a means to compare networks of arbitrary sizes. In comparing the embedding distance in (6.10)
with the network distance in (2.3) we see that both find the bottleneck that prevents the networks
to be matched to each other. It is not there surprising to learn that they satisfy the relationship
that we state in the following proposition.

Proposition 10 The network distance dN (NX , NY) defined in (2.3) can also be written as

dN (NX , NY) = min
π:X→Y
ω:Y→X

max {∆X,Y(π), ∆Y,X(ω), δX,Y(π, ω)} , (6.19)

where the network differences ∆X,Y(π) and ∆Y,X(ω) with respect to mappings π and ω are defined in (6.1)
and δX,Y(π, ω) measures how far the mappings π and ω are from being the inverse of each other, and is
defined as

δX,Y(π, ω) = max
x∈X,y∈Y

|rX(x, ω(y))− rY(π(x), y)| . (6.20)

A direct consequence of Proposition 10 is that the embedding distance (6.10) is a lower bound of
the network distance (2.3).

Proof: Denote d′N (NX , NY) to represent minπ:X→Y,ω:Y→X max{∆X,Y(π), ∆Y,X(ω), δX,Y(π, ω)}. In
order to prove the statement, we show that given any networks NX and NY, we have that (i)
d′N (NX , NY) ≤ dN (NX , NY) and that (ii) dN (NX , NY) ≤ d′N (NX , NY).

Proof of d′N (NX , NY) ≤ dN (NX , NY): From the definition of dN (NX , NY), there exists a corre-
spondent C such that |rX(x, x′) − rY(y, y′)| ≤ dN (NX , NY) for any (x, y), (x′, y′) ∈ C. Define a
function π : X → Y that associates x with an arbitrary y chosen from the set that form a pair with
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x in C,

π : x 7→ y0 ∈ {y | (x, y) ∈ C}. (6.21)

Since C is a correspondence the set {y | (x, y) ∈ C} is nonempty for any x implying that π is
well-defined for any x ∈ X. Hence,

∣∣rX(x, x′)− rY(π(x), π(x′))
∣∣ ≤ dN (NX , NY), (6.22)

for any x, x′ ∈ X. Since (6.22) is true for any x, x′ ∈ X, it also true for the maximum pair, and
therefore

∆X,Y(π) = max
x,x′∈X

∣∣rX(x, x′)− rY(π(x), π(x′))
∣∣ ≤ dN (NX , NY). (6.23)

Define a function ω : Y → X that associates y with an arbitrary x chosen from the set that form a
pair with y in C,

ω : y 7→ x0 ∈ {x | (x, y) ∈ C}. (6.24)

Following the similar argument as above would yield us

∆Y,X(ω) ≤ dN (NX , NY). (6.25)

Finally, recall that δX,Y(π, ω) is defined as maxx∈X,y∈Y |rX(x, ω(y)) − rY(π(x), y)|. In the same
time, we have (x, ω(y)) ∈ C as well as (π(x), y) ∈ C, and therefore

max
x∈X,y∈Y

|rX(x, ω(y))− rY(π(x), y)| ≤ dN (NX , NY). (6.26)

Taking a maximum on both sides of inequlities (6.23), (6.25), and (6.26) yields

max{∆X,Y(π), ∆Y,X(ω), δX,Y(π, ω)} ≤ dN (NX , NY). (6.27)

The specific π and ω may not be the minimizing mappings for the left hand side of (6.27).
Nonetheless, they are valid mappings and therefore taking a minimum over all mappings yields
the desired inequality d′N (NX , NY) ≤ dN (NX , NY). �

Proof of dN (NX , NY) ≤ d′N (NX , NY): From the definition of d′N (NX , NY), there exists a pair of
mappings π : X → Y and ω : Y → X such that

|rX(x, x′)− rY(π(x), π(x′))| ≤ d′N (NX , NY), (6.28)

|rX(ω(y), ω(y′))− rY(y, y′)| ≤ d′N (NX , NY), (6.29)

|rX(x, ω(y))− rY(π(x), y)| ≤ d′N (NX , NY), (6.30)
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for any x, x′ ∈ X and y, y′ ∈ Y. Define a correspondence by taking the union of the pairs associated
by π and ω such that

C = {(x, π(x)) | x ∈ X} ∪ {(ω(y), y) | y ∈ Y} . (6.31)

Since π(x) is defined for any x and ω(y) is defined for any y, C is a well-defined correspondence.
Notice that any pair (x, y) ∈ C in the correspondence would be one of the following two forms:
(x, π(x)) or (ω(y), y). Therefore, for any pairs (x, y), (x′, y′) ∈ C, they must be from one of the
following three forms (i) (x, π(x)), (x′, π(x′)), (ii) (ω(y), y), (ω(y′), y′), or (iii) (x, π(x)), (ω(y), y).
If they are in the form (i), from (6.28), we can bound the difference between the respective rela-
tionship as

∣∣rX(x, x′)− rY(y, y′)
∣∣ ≤ d′N (NX , NY). (6.32)

If the pairs are in the form (ii), (6.29) also implies the correctness of (6.32). Finally, if the pairs
are in the form (iii), (6.32) would be established from (6.30). Consequently, (6.32) holds for
any (x, y), (x′, y′) ∈ C. Therefore, they must also hold true for the bottleneck pairs achieving
the maximum ΓX,Y(C) in (2.2) which implies that ΓX,Y(C) ≤ d′N (NX , NY). The specific corre-
spondence C may not be the minimizing one in defining dN (NX , NY). Nonetheless, they are
valid mappings and therefore taking a minimum over all mappings yields the desired inequality
dN (NX , NY) ≤ d′N (NX , NY). �

Since we have proven the two inequalities, it follows that dN ≡ d′N and this completes the proof
of the statement. �

Corollary 4 Function dE is a lower bound with dN in (2.3), i.e.

dE(NX , NY) ≤ dN (NX , NY), (6.33)

for any networks NX and NY.

Proof: The network distance dN (NX , NY) would be no smaller than the right hand side of (6.19),
if we remove the term δX,Y(π, ω) in the maximum, i.e.

dN (NX , NY) ≥ min
π:X→Y,ω:Y→X

max {∆X,Y(π), ∆Y,X(ω)} . (6.34)

The right hand side of (6.34) would become smaller if we take the respective minimum for map-
pings π and ω before taking the maximum, yielding us

dN (NX , NY) ≥ max
{

min
π:X→Y

∆X,Y(π), min
π:Y→X

∆Y,X(ω)

}
. (6.35)

From (6.2) and (6.10) in Definitions 27 and 26, it is not hard to observe that the right hand side of
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Figure 41: An example of induced space with points defined in the original network. We would
like to induce a space (SX , sX) such that SX includes infinite number of points formed by the
convex of the original points a, b, and c, and sX is a semimetric for any pair of points in SX . We
want to induce the semimetric from the original network such that sX(a, b) = rX(a, b), sX(a, c) =
rX(a, c), and sX(b, c) = rX(b, c). Middle points, e.g. e, can be considered as the entity represents
50% of a and 50% of b. An important observation is that any points in the space, e.g. m, can be
written as a convex combination representing the proportion of their contents from original nodes
– (ma, mb, mc) with ma + mb + mc = 1.

(6.35) is max{dPE(NX , NY), dPE(NY, NX)} =: dE(NX , NY), yielding the desired result dE(NX , NY) ≤
dN (NX , NY). �

The relationships in Proposition 10 and Corollary 4 are extensions of similar analyses that hold
for the Gromov-Hausdorff distance between metrics spaces, [154, 155]. As in the case of metric
spaces, these results imply that the embedding distance dE(NX , NY) can be used to lower bound
the network distance dN (NX , NY) [cf. (6.33)]. This value is in addition to the ability of the partial
embedding distance dPE(NX , NY) of Definition 26 to measure how far the network X is to being a
subnetwork of network Y.

In the comparison of surfaces and shapes, the partial embedding distance dPE(NX , NY) has the at-
tractive property of being approximable using multidimensional scaling techniques [50, 52]. Our
empirical analysis shows that the use of analogous techniques to estimate dPE(NX , NY) for arbi-
trary networks yields sub-optimal results and that this is related to how far the dissimilarities in
NX and NY are from satisfying the triangle inequality – see the example in Figure 40 and the nu-
merical analysis in Section 6.3. To improve the accuracy of multidimensional scaling estimates we
propose to define the interior of a network by defining a space where dissimilarities between any
pair of points represented by a convex combination of nodes in the given networks are defined
(Section 6.2). We will further demonstrate that the proposed definition of the interior of a network
is such that the partial embedding distances between networks with interiors are the same as the
partial embedding distances between the corresponding original networks (Theorems 14 and 15).
Empirical demonstrations will show that the comparison of networks with interiors using MDS
techniques yields better results that are comparable to those obtained when comparing shapes
and surfaces (Section 6.3). From an intuitive perspective, MDS fails mostly when networks do
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not satisfy triangle inequality. Because points in MDS approximation satisfy metric requirements,
all information in a given network that deviates from triangle inequality is completely ignored.
This will impact performance as the ignored information may be the unique feature distinguishing
networks. Adding more points in a given network will add more points whose relationships (i)
satisfy triangle inequality, and (ii) partly represent the relationships that do not satisfy triangle
inequality in the original network. This helps mitigate the incompatibility of non-metric relation-
ships in networks and MDS approximation, and therefore is expected to result in more accurate
approximation that better represents true relationships in the networks.

6.2. Interiors

We provide a different perspective to think of networks as semimetric spaces where: (i) There are
interior points defined by convex combinations of given nodes. (ii) Dissimilarities between these
interior points are determined by the dissimilarities between the original points. To substantiate
the formal definition below (Definition 28) we discuss the problem of defining the interior of a
network with three points. Such network is illustrated in Figure 41 where nodes are denoted as
a, b, and c and dissimilarities are denoted as rX . Our aim is to induce a space (VX , vX) where
the dissimilarities in the induced space are vX : VX ×VX → R+. We require that VX preserve the
distance of original points in NX such that vX(a, b) = rX(a, b), vX(a, c) = rX(a, c), and vX(b, c) =
rX(b, c).

Points inside the network are represented in terms of convex combinations of the original points
a, b, and c. Specifically, an arbitrary point m in the interior of the network is represented by the
tuple (ma, mb, mc) which we interpret as indicating that m contains an ma proportion of a, an mb

proportion of b, and an mc proportion of c. Points e, f , and g on Figure 41 contain null proportions
of some nodes and are interpreted as lying on the edges. Do notice that although we are thinking
of m as a point inside the triangle, a geometric representation does not hold.

First we consider the case that the triangle inequality is satisfied by rX . For two arbitrary points
p represented by the tuple (pa, pb, pc) and m represented by the tuple (ma, mb, mc) in the original
network, to evaluate the dissimilarity between p and m using known dissimilarities in the original
network, we need to find a path consisting of vectors parallel to the edges in the network that
go to m from p. Specifically, denote wab as the proportion transversed in the direction from
a to b in the path; see Figure 42 for illustration. For a positive value wab, compared to p, m
becomes more similar to b by wab units and less similar to a by −wab units; for a negative wab,
compared to p, m becomes more similar to a and less similar to b. Proportion transversed in other
directions, e.g. from a to c and from b to c, are denoted as wac and wbc, respectively. For the path
transversing wab from a to b, wac from a to c, and wbc from b to c, the dissimilarity can be denoted
as |wab|rX(a, b) + |wac|rX(a, c) + |wbc|rX(b, c). There may be many different paths from p to m, as
illustrated in Figure 42. Out of all paths, only the one yielding the smallest distance should be
considered. This means the dissimilarity vX(p, m) between p and m can be defined by solving the
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Figure 42: Comparing arbitrary points inside the space induced from networks of three nodes.
Given a pair of nodes p and m in the induced space, we need to find paths from p to m that are
consisted of vectors parallel to the direction of original nodes in the networks, e.g. a to b, a to c,
and/or b to c. We assume the direction of original nodes in the networks have unit amount of
transformation. Potential choices of paths from p to m include: p to m via q1, via q2, or via q3. Of
them, the path p to m via q1 has the smallest amount of transformation traversed along the path.
There are paths in the form which involves vectors p to q2, q2 to q4, and q4 to m; such paths would
not give the optimal solution to (6.39).

following problem,
min |wab| rX(a, b) + |wac| rX(a, c) + |wbc| rX(b, c)

s. t. ma = pa − wab − wac,

mb = pb + wab − wbc,

mc = pc + wac + wbc.

(6.36)

The constraints make sure that the path starts with tuple (ma, mb, mc) and ends with tuple (pa, pb, pc).
This is like the definition of Manhattan distance. In fact, if Manhattan was a triangle with three
endpoints and the roads in Manhattan were in a triangle grid, then the distance between any pair
of points in Manhattan would be evaluated as in (6.36).

When relationships in rX do not satisfy triangle inequality, e.g. rX(a, b) + rX(b, c) < rX(a, c),
however, the construction in (6.36) is problematic since the optimal solution in (6.36) would yield
vX(a, c) = rX(a, b) + rX(b, c), which violates our requirement that vX(a, c) should be the same as
rX(a, c). The problem arises because each segment in a given path contains two pieces of informa-
tion – the proportion of transformation, and the dissimilarity created of such transformation. E.g.
for the path segment pq1 in Figure 42, it represents w?

ab units of transformation from a to b, and
also denotes a dissimilarity between p and q1 as |w?

ab|rX(a, b). The two pieces of information unite
when rX is a metric, however, create conflicts for dissimilarities in a general network. To resolve
such an issue, we could separate the amount of transformation from the dissimilarity incurred
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due to transformation. Firstly, we find the path with the smallest amount of transformation

min |wab|+ |wac|+ |wbc|

s. t. ma = pa − wab − wac,

mb = pb + wab − wbc,

mc = pc + wac + wbc.

(6.37)

Then, for the optimal path w?
ab, w?

ac, and w?
bc in (6.37), define the dissimilarity as the distance

transversed on the path, i.e.

vX(p, m) = |w?
ab| rX(a, b) + |w?

bc| rX(b, c) + |w?
ac| rX(a, c). (6.38)

The problem in (6.37) can always be solved since it is underdetermined due to the facts that
ma +mb +mc = pa + pb + pc = 1. It traces back to (6.36) when relationships in network are metrics.
Moreover, it satisfy our requirement vX(a, b) = rX(a, b), vX(a, c) = rX(a, c), and vX(b, c) = rX(b, c)
for any networks. Regarding our previous example of a triangle-shaped Manhattan with three
endpoints, suppose relationships in the network denote the amount of travel time between the
endpoints. These relationship may not necessarily satisfy triangle inequalities. Suppose roads in
Manhattan form a triangle grid, the problem in (6.37) is finding the shortest path between a pair
of locations in Manhattan. The dissimilarity in (6.38) describes the travel time between this pair of
locations using the shortest path.

Given any network with arbitrary number of nodes, we define the induced space as a generaliza-
tion to the case for nodes with three nodes we developed previously.

Definition 28 Given a network NX = (X, rX) with X = {1, 2, . . . , n}, the induced space (VX , vX) is
defined such that the space VX is the convex hull of X with VX = {m = (m1, m2, . . . , mn) | mi ≥
0, ∑i∈X mi = 1}. Given a pair of nodes m, p ∈ VX , the path yielding the smallest amount of transformation
from p to m is obtained through the problem{

w?
ij

}
= argmin ∑

i,j∈X,i<j

∣∣wij
∣∣

s. t. mi = pi − ∑
j∈X,j>i

wij + ∑
j∈X,j<i

wji, ∀i
(6.39)

The distance between p and m is then the distance traversed proportional to the original relationships
weighted by the path,

vX(p, m) = ∑
i,j∈X,i<j

∣∣∣w?
ij

∣∣∣ rX(i, j). (6.40)

In scenarios where the optimal solution {w?
ij} is not unique, the induced relationship vX(p, m) is defined

using the one yielding the smallest vX(p, m) out of minimizing paths solving (6.39)..
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Figure 43: An example where the optimal solution in (6.39) is not unique. There are two paths
from p to m, via q1 or via q2, which have the same objective cost in (6.39). The induced relationship
vX(p, m) is defined using the path that has the smallest weighted sum.

The induced space VX is the convex hull constructed by all nodes i ∈ X. Each node in the induced
space m ∈ VX can be represented as a tuple (m1, m2, . . . , mn) with ∑i∈X mi = 1 where mi represents
the percentage of m inheriting the property of node i ∈ X. To come up with distance between pairs
of points p, m ∈ VX with the respective tuple representation (p1, p2, . . . , pn) and (m1, m2, . . . , mn),
we consider each edge in the original space X, e.g. from i to j, represents one unit of cost to
transform i into j. All edges are considered similarly with one unit of cost to transform the starting
node into the ending node. We want to find the smallest amount of cost to transform p into m.
This is solved via (6.39), which is always solvable since the problem is underdetermined due to the
facts that ∑i∈X mi = ∑i∈X pi = 1. This gives us the optimal path with weights {w?

ij} meaning that
the most cost-saving transformation from p into m is to undertaking w?

ij unit of transformation
along the direction of transforming i into j. The distance in the induced space vX(p, m) is then
the distance traversed proportional to the original relationships weighted by the path defined in
(6.40). It is possible that the solution in (6.39) is not unique (see Figure. 43 for an example where
two paths have the same objective cost). In these scenarios, the induced relationship vX(p, m) is
defined using the path that has the smallest weighted sum ∑i<j |w?

ij|rX(i, j). We need the path to
firstly minimize the problem in (6.39) and then use (6.40) as a tie-breaker, because if we use (6.40)
as the only criteria, the scenario discussed in the paragraph before (6.37) violating our requirement
will happen. Back to our illustration of travel distance and travel time in Manhattan, if there exist
multiple paths yielding the shortest travel distance between a pair of locations in Manhattan, the
dissimilarity between this pair of locations is then defined as the shortest travel time among these
paths.

Proposition 11 The space (VX , vX) induced from NX = (X, rX) defined in Definition 28 is a semimetric
space in VX . Moreover, the induced space preserves relationships: when p, m ∈ X, vX(p, m) = rX(p, m).
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Proof: To prove that space (VX , vX) induced from NX = (X, rX) is a semimetric space, we prove
the (i) nonnegativity, (ii) symmetry, (iii) identity properties in Definition 3 and (iv) vX(p, m) =

rX(p, m) when p, m ∈ X.

Proof of nonnegativity property: Since rX(i, j) > 0 for any different nodes in the original
networks i, j ∈ X, i 6= j, |w?

ij|rX(i, j) ≥ 0 in (6.40). Therefore, the induced distance vX(p, m) =

∑i 6=j |w?
ij|rX(i, j) ≥ 0. �

Proof of symmetry property: Given a pair of nodes p, m ∈ VX , we would like to demonstrate that
vX(p, m) = vX(m, p). Denote {w?

ij} as the collection of units of transformation along the direction
from i to j in the original network. These vectors together make up the path from p to m with
smallest amount of transformation. By definition, {w?

ij} is the optimal solution to (6.39). Denote
{v?ij} as the collection of units of transformation along the direction from i to j which makes up the
path from m to p with the smallest amount of transformation. By definition, {v?ij} is the optimal
solution to the following problem{

v?ij
}
= argmin ∑

i,j∈X,i<j

∣∣vij
∣∣

s. t. pi = mi − ∑
j∈X,j>i

vij + ∑
j∈X,j<i

vji, ∀i
(6.41)

Comparing (6.39) with (6.41), it is easy to observe that if we take vij = −wij for any i < j, the
two problems becomes identical. Therefore, for the optimal solutions, we have the relationship
v?ij = −w?

ij for any i < j. By definition in (6.40), this implies the two relationships are the same

vX(p, m) = ∑
i,j∈X,

i<j

∣∣∣w?
ij

∣∣∣ rX(i, j) = ∑
i,j∈X,

i<j

∣∣∣v?ij∣∣∣ rX(i, j) = vX(m, p),
(6.42)

and completes the proof. �

Proof of identity property: First we want to show that if m and p are identical points, their
induced relationship vX(p, m) = 0. In such scenario, m and p must have same tuple representation
(m1, . . . , mn) and (p1, . . . , pn) with mi = pi for any i ∈ X. In this case, it is apparent that the
optimal solution {w?

ij} in (6.39) is w?
ij = 0 for any i 6= j. Therefore, vX(p, m) = 0 shows the first

part of the proof for identity property.

Second, we need to prove vX(p, m) = 0 must imply that p and m are the same. By definition
in (6.40), the induced relationship can be written vX(p, m) = ∑i 6=j |w?

ij|rX(i, j), where the original
relationship is always positive with rX(i, j) > 0 for any i 6= j. Therefore, vX(p, m) = 0 must imply
that |w?

ij| = 0 given any i 6= j. Combining this observation with the constraints in (6.39) imply
that pi = mi for any i ∈ X. Therefore, p and m are identical point in the induced space, and this
completes the proof. �
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Proof of the property that vX(p, m) = rX(p, m) when p, m ∈ X: When both p, m ∈ X, the
respective tuple representation in the space is p = (p1, . . . , pn) with pi = 1 if i = p and pi = 0
otherwise, and m = (m1, . . . , mn) with mi = 1 if i = m and mi = 0. It is apparent that the path
with the smallest amount of transformation from p into m is the exact vector from p to m. Here
we give a geometric proof using Figure 11. The induced space is the (n− 1)-simplex with interior
defined. Nodes p and m correspond to the vertices in the simplex with their coordinates given by
the tuple representations p = (p1, . . . , pn) and m = (m1, . . . , mn). The problem in (6.39) searches
for the shortest path in the simplex joining p to m. It is then apparent that the shortest path should
be the edge joining then; consequently w?

pm = 1 for the edge and w?
ij = 0 for any other edges ij.

Taking this observation into (6.40) implies that vX(p, m) = rX(p, m) and concludes the proof. �

Having proven all statements, the global proof completes. �

The semimetric established in Proposition 11 guarantees that the points in the induced space with
their dissimilarity vX(p, m) are well-behaved. We note that semimetric is the best property we can
expect, since the triangle inequality may not be satisfied even for the dissimilarities in the original
networks. Next we show that the embedding distance is preserved when interiors are considered.

6.2.1. Distances between Networks Extended to Their Interiors

Since semimetrics are induced purely from the relationships in the original network, a pair of
networks NX and NY can be compared by considering their induced space, as we state next.

Definition 29 Given two networks NX = (X, rX) and NY = (Y, rY) with their respective induced space
(VX , vX) and (VY, vY), for a map π : VX → VY from the induced space VX to the induced space VY such
that π(x) ∈ Y for any x ∈ X, define the network difference with respect to π as

∆VX ,VY (π) := max
x,x′∈VX

∣∣∣vX(x, x′)− vY(π(x), π(x′))
∣∣∣. (6.43)

The partial embedding distance from NX to NY measured with respect to the induced spaces is then defined
as

dPE, V(NX , NY) := min
π:VX→VY |π(x)∈Y,∀x∈X

{
∆VX ,VY (π)

}
. (6.44)

The partial embedding distance dPE, V(NX , NY) with respect to the induced space in (6.44) is
defined similarly as the partial embedding distance dPE(NX , NY) in (6.2) however considers the
mapping between all elements in the induced spaces. Observe that we further require that the
embedding satisfy π(x) ∈ Y for any x ∈ X. This ensures the original nodes of network X are
mapped to original nodes of network Y. The restriction is incorporated because it makes the
embedding distance dPE, V(NX , NY) with respect to the induced spaces identical to the original
embedding distance dPE(NX , NY) as we state next.
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Figure 44: An example of regular sample pair (QX , r̂X) and (QY, r̂Y), where QX =
{a, b, c, x1, x2, x3, x4, x5, x6, q} collects original points and induced points that are combination of
one-third of original nodes, and QY = {u, v, y1, y2}. Here we illustrate a specific mapping π̂ with
π̂(a) = π̂(b) = u and π̂(c) = v; it is apparent that π(x) ∈ QY for any x ∈ QX . Note that
Q̃X = QX \ {q} also form a regular sample pair with QY.

Theorem 14 The function dPE, V : N ×N → R+ defined in (6.44) is an embedding metric in the space
N and yields the same distance as the function dPE defined in (6.2),

dPE, V(NX , NY) = dPE(NX , NY), for all NX , NY. (6.45)

The statement in Theorem 14 justifies comparing networks via their respective induced space.
Similar as in Definition 27, defining max{dPE, V(NX , NY), dPE, V(NY, NX)} would yield a met-
ric in the space N mod ∼= and this maximum is the same as dE defined in (6.10). Since the
induced spaces incorporate more information of the original networks while at the same time
dPE, V(NX , NY) = dPE(NX , NY), an approximation to dPE, V(NX , NY) via the induced space would
be a better approximation to dPE(NX , NY). It may appear that the evaluation of the induced space
is costly. However, we demonstrate in the next subsection that the partial embedding distances
have a nice property that if we sample a number of points in the induced spaces respectively
according to the same rule, the distance between the sampled induced space is the same as the
original distance. Despite that the definition of interiors of networks is somewhat arbitrary, its
practical usefulness can be justified from Theorem 14.

6.2.2. Sampling of Interiors

In this section, we consider a practical scenario where we only take several samples in the induced
space. We show that comparing the combination of nodes in the respective original networks
and sampled nodes in the induced space would yield the same result as comparing the original
networks. Given a network NX = (X, rX), our aim is to define a sampled induced space (QX , r̂X)

where QX ⊃ X includes more nodes compared to X. An example is in Figure 45, where the
original node space is given by {a, b, c}, and one version of sampled induced node space is QX =

{a, b, c, e, f , g}, the union of the original nodes and the nodes in the midpoints of the edges in
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Figure 45: The caveat illustrated in Figure 40 where different networks results in identical multi-
dimensional scaling results could be solved by considering the induced sample space where we
utilize the same predetermined sampling strategy – taking midpoints for all edges – in the net-
work. Multi-dimensional scaling by adding interiors would distinguish different networks. The
dissimilarities between nodes a and f are not illustrated in the respective induced network due to
space limit.

the original networks. The distance in the sampled induced space r̂X : QX × QX → R+ should
preserve the distance of original points in X. A natural choice for r̂X is the restriction of the
distance vX defined for the induced space VX : i.e. given any pair of points x, x′ ∈ QX , let
r̂X(x, x′) := vX(x, x′). Our key observation for such construction is that if the nodes in the induced
spaces of a pair of networks are sampled according to the same strategy, then the distance between
the sampled induced space is identical to the original distance. We start by formally describing
what do we mean by a pair of networks sampled according to the same rule as next.

Definition 30 Given a pair of networks NX = (X, rX) and NY = (Y, rY), their respective sampled space
(QX , r̂X) and (QY, r̂Y) form a regular sample pair, if for any mapping π̂ : X → Y in the original node
set, we have π(x) ∈ QY for any x ∈ QX , where π : VX → VY is the map induced from π̂ such that
π : x 7→ π(x) whose the i-th element in the tuple representation [π(x)]i is

[π(x)]i = ∑
j∈X

1 {π̂(j) = i} xj, (6.46)

and for any mapping ω̂ : Y → X in the original node set, we have ω(y) ∈ QX for any y ∈ QY where
ω : VY → VX is the map induced from ω̂ such that the j-th element in the tuple representation of ω(y) is

[ω(y)]j = ∑
i∈Y

1 {ω̂(i) = j} yi. (6.47)

In the definition, 1{π̂(j) = i} is the indicator function such that it equals one if π̂ maps j ∈ X to
i ∈ Y and 1{π̂(j) = i} = 0 otherwise. The notation [π(x)]i denotes the proportion of π(x) coming
from i-th node in Y. It is easy to see that π in (6.46) is well-defined. Firstly, [π(x)]i ≥ 0 for any
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i ∈ Y, and

∑
i∈Y

[π(x)]i = ∑
i∈Y

∑
j∈X

1 {π̂(j) = i} xj = ∑
j∈X

xj = 1, (6.48)

ensuring π(x) is in the induced convex hull space VY. Secondly, for any j ∈ X in the original
nodespace, its mapping π(j) would have the tuple representation with [π(j)]i = 1{π̂(j) = i},
a node in the original node space of Y. Consequently, for any j ∈ X, we have that π(j) ∈ Y.
Combining these two observations imply that π : VX → VY is well-defined. Similarly, ω induced
from ω̂ is also well-defined from VY to VX . Definition 30 states that for any point x in QX , no
matter how we relate points in QX to points in QY, the mapped node π(x) should be in the
induced sample space QY. An example of regular sample pair is illustrated in Figure 44, where
QX = {a, b, c, x1, x2, x3, x4, x5, x6, q} is the collection of original node space and points that are
combination of one-third of original nodes and QY = {u, v, y1, y2}. Figure 44 exemplifies the
scenario for a specific mapping π̂ with π̂(a) = π̂(b) = u and π̂(c) = v; it is apparent that
π(x) ∈ QY for any x ∈ QX . We note that Q̃X = QX \ {q} also form a regular sample pair with QY.
A pair of networks NX and NY can be compared by evaluating their difference in their respective
sampled induced space as next.

Definition 31 Given two networks NX = (X, rX) and NY = (Y, rY) with their respective sampled in-
duced space (QX , r̂X) and (QY, r̂Y), for a map π : QX → QY such that π(x) ∈ Y for any x ∈ X, define
the difference with respect to π as

∆QX ,QY (π) := max
x,x′∈QX

∣∣∣r̂X(x, x′)− r̂Y(π(x), π(x′))
∣∣∣. (6.49)

The partial embedding distance from NX to NY measured with respect to the sampled induced spaces is then
defined as

dPE, Q(NX , NY) := min
π:QX→QY |π(x)∈Y,∀x∈X

{
∆QX ,QY (π)

}
. (6.50)

Our key result is that dPE, Q(NX , NY) is the same as the partial embedding distance dPE(NX , NY)

defined in (6.2) when the sampled space form a regular sample pair.

Theorem 15 When the sampled spaces QX and QY form a regular sample pair, the function dPE, Q :
N ×N → R+ defined in (6.49) is an embedding metric in the space N . Moreover, it yields the same
distance as the function dPE defined in (6.2), i.e.

dPE, Q(NX , NY) = dPE(NX , NY), (6.51)

for any networks NX and NY.

The statement in Theorem 15 gives proper reasoning for differentiating networks via their sampled
induced space. Similar as previous treatments, we could define max{dPE, Q(NX , NY), dPE, Q(NY, NX)}
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Start with a network 

Perform MDS w.r.t relationships in the 
network, e.g. each node             is now 

denoted by               in a 2-d space

Make MDS results mean-centered 
e.g.                                     

Make MDS results having more points on 
each positive axis, e.g.
if 

Rotate and scale MDS results, with 
perform SVD                         , then
                                     , where

Use moments of MDS results, e.g.
                              as features representing the network   

Compare networks 
based on features

Add points in the interior and 
corresponding relationship 
functions as in Definition 7

Figure 46: Flow chart of the embedding algorithm, where mαβ = ∑x∈X yα
xzβ

x denotes the moment
of the two-dimensional points. Starting with a network NX = (X, rX), MDS is performed with
respect to the relationship functions in the network. Post-processing is conducted to make MDS
results mean-centered, along the same direction, having unit scale, and having more points on
each positive axis. Network comparison is then conducted by using moments of the MDS results
as features.

as a metric in the space N mod ∼=. Since the sampled induced spaces incorporate more informa-
tion of the original networks, an approximation to dPE, Q(NX , NY) via the sampled induced space
would be a better approximation to dPE(NX , NY). Moreover, since we can construct the sampled
induced space following some predetermined strategy – taking midpoints for all edges in the net-
works, comparing networks via their sampled induced space is plausible in terms of complexity.
Figure 45 illustrate the same network considered in Figure 40 where the multi-dimensional scaling
based on the sampled induced points would succeed in distinguishing networks that are different.
We illustrate the practical usefulness of such methods in the next section.

6.3. Application

We illustrate the value of adding interiors in performing network comparisons. A flowchart for
the proposed method is available in Figure 46. For each network NX = (X, rX), we add interiors
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Figure 47: Example of the usefulness of considering the interior of networks. We consider 10
networks in the form (a) where γ = 1, 2, . . . , 10. Approximations of network embedding distances
are evaluated. Sub-figure (b) illustrates heat-map of the actual embedding distance dE defined in
Definition 27 where the indices in both horizontal and vertical directions denote γ in the networks.
Sub-figures (c) and (d) denote the heat-maps of distance approximation with and without interiors
being added to networks before approximation, respectively. When interiors are considered by
adding midpoints of edges, e.g. nodes e, f , and g in (a), network distance approximations (c) yield
more desired results, especially for γ ≤ 5 where the relationships in the original networks fail to
satisfy triangle inequality.

to the network and the corresponding relationship functions. Then we perform MDS with respect
to the relationship in the network, such that each node x ∈ X is represented by a point in the
multi-dimensional space. The post-processing steps described in [50, 51] are detailed in Figure 46
for the completeness of the algorithm, where it makes the MDS results mean-centered, along the
same direction, have unit scale, and have more points on each positive axis.

6.3.1. Effect of Adding Interiors in Network Comparison

We consider a small scale experiment to illustrate the effect of adding interiors in facilitating net-
work comparisons. Specifically, we consider networks with three nodes in which the dissimilarity
between b and c is fixed to rX(b, c) = 11 and the dissimilarities between a and b and between a
and c are set to rX(a, b) = rX(a, c) = γ, which we choose to vary within the set {1, . . . , 10}; see
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Figure 47-(a). According to this selection, the networks with γ ∈ {6, . . . , 10} satisfy the triangle
inequality and the networks with γ ∈ {1, . . . , 5} do not.

For this small network the actual embedding distances dE in Definition 27 can be evaluated and are
visualized in Figure 47-(b). Figures 47-(c) and 47-(d) illustrate distance estimates using moments
of embedded points in the projected space [50] – the procedure is summarized in the flowchart in
Figure 46 – with interiors included and not included, respectively. It is apparent that the addition
of interiors yields better estimates of network distances. This improvement is very marked for net-
works that violate the triangle inequality. Using MDS techniques without the addition of interiors
fails to distinguish networks with γ ∈ {1, . . . , 5}. The addition of interiors permits identification
of the differences between these networks except for γ = 3 and γ = 4. Interestingly, the addition
of interiors is also helpful when the triangle inequality holds, although the improvements is not
as marked.

We also evaluate the approximation results when we add more points to the network. For exam-
ple, add network interiors in the form of (ma, mb, mc) with ma, mb, mc ∈ {0, 1/3, 2/3, 1}, or in the
form of (ma, mb, mc) with ma, mb, mc ∈ {0, 1/4, 1/2, 3/4, 1}. We found that the adding thirds or
quarters points do not provide superior performance compared to just adding middle points as
in Figure 47 (c). This is potentially due to the reason that the benefit of adding more points start
to saturate. Therefore, for the better tradeoff between efficiency and quality of approximation, it
may be sufficient to just add middle points.

6.3.2. Identification of Generative Models

As an example application we consider the problem of classifying networks with different num-
bers of nodes according to their generative models. To that end we consider: (i) Weighted Erdős-
Rényi random networks [144] with connection probability p = 0.5 and edge weights random and
uniformly chosen from the unit interval [0, 1]. (ii) Random geometric networks where nodes are
placed at random in the unit circle and edge weights are of the form exp(−d(i, j)2/2σ2), where
d(i, j) is the distance between vertices i and j in the unit circle and σ2 is a kernel width parame-
ter. We set σ2 = 0.5. (iii) Random feature networks where edge weights are determined by the
Pearson correlation coefficient ρij between a pair of corresponding features ui, uj ∈ Rd. Features
are randomly chosen standard white Gaussian vectors in a space of dimension d = 5 and edge
weights are chosen as rX(i, j) = (1 + ρij)/2. Observe that in all three cases edge weights measure
the relationship between pairs of vertices and take values in the unit interval.

We start with networks of equal size |X| = 25 and construct 20 random networks for each afore-
mentioned type. We then use the MDS method in Figure 46 [50, 51] to approximate the embedding
network distance dE defined in Definition 27. To evaluate the effectiveness of considering interi-
ors of networks described in Section 6.2, we add midpoints for all edges in a given network;
it is apparent that any pair of networks with interiors defined in this way would form a regular
sample pair. Approximations of the embedding network distance dE between these networks with
midpoints added are then evaluated. Figure 48 (a) and (b) plot the two dimensional Euclidean em-
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Figure 48: Two dimensional Euclidean embeddings of the networks constructed from three dif-
ferent models with different number of nodes with respect to the approximation to the network
embedding distance. In the embeddings, red circles denote networks constructed from the Erdős-
Rényi model, blue diamonds represent networks constructed from the unit circle model, and black
squares the networks from the correlation model.

beddings [146] of the network metric approximations with and without interiors, respectively1.
In both figures we see the emergence of clusters corresponding to each generative model, but
the clusters are more clear when interiors are added – random networks are denoted by red
circles, geometric networks with blue diamonds, and feature networks with black squares. For
a formal performance evaluation we conduct unsupervised hierarchical clustering with Ward’s
linkage [156] method upon the approximated embedding network distance dE; results are drawn
using linear boundaries on the corresponding figures. There are 4 misclassifications when no in-
teriors are added but only one misclassification after addition of interiors. This is an error rate of
1/60 ≈ 1.67%. Similar results are obtained with the use of other unsupervised learning methods.

We further consider mixes in which the number of nodes ranges in the integer set {20 . . . , 25}.
Four networks are randomly generated for each type and each number of nodes, resulting in 60

1The visualization embeddings minimize the sum of squares of the inter-point distances. Visualizations look similar
for other common choices of embedding distortion measures.
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Figure 49: Two dimensional Euclidean embeddings of unweighted graphs generated with stochas-
tic block models, with interiors added to the weighted networks. (a) Graphs with 150 nodes, S = 2
clusters, in-diagonal connecting probability p = 0.2, and three different off-diagonal connecting
probability q = 0.05 (red circles), q = 0.1 (blue diamonds), q = 0.2 (black squares). (b) Graphs
with 150 nodes, S = 3 clusters, in-diagonal connecting probability p = 0.5, and three different
off-diagonal connecting probability q = 0.1 (red circles), q = 0.2 (blue diamonds), q = 0.4 (black
squares). In each figure, ten graphs are generated for each type of models.

networks in total. Interiors are examined similarly as before by adding midpoints for all edges in
a given network. Figure 48 (c) and (d) illustrate the two dimensional Euclidean embeddings of
the network metric approximations with and without interiors respectively. Despite the fact that
networks with the same model have different number of nodes, dissimilarities between network
distance approximations are smaller when their underlying networks are from the same process.
As in comparison in Figure 47, considering interiors result in a more distinctive clustering pattern.
An unsupervised classification would yield 2 out of 60 errors (3.33%) for networks with interiors
added and 6 errors (10%) without interiors.

These results illustrate that: (i) Comparing networks by using embedding distances succeeds in
identifying networks with different generative models. (ii) Adding interiors to networks to form
regular sample pairs as in Section 6.2 would yield better approximations to the actual network
distances. We must observe that other methods would exhibit similar success in this classification
task. Weighted motifs [16] yields 1 misclassification for networks with constant size and 4 mis-
classifications for networks of varying sizes. Comparison with persistent homologies [76] yields
no errors for networks with constant sizes and 3 errors for networks with varying sizes. This
means alternative methods are comparable although they seem to be worse when networks of
different sizes are considered. We will see in Section 6.3.4 that this is indeed the case. This is as
expected because the strength of embedding distances is precisely on the possibility of embedding
a network into another network of a larger size.
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6.3.3. Unweighted Networks

The framework proposed in the manuscript is designed for weighted networks where relation-
ships between nodes in a network are nonnegative values. In this section, we illustrate how the
framework can also be adapted to evaluate distances between unweighted graphs. An unweighted
graph is defined as a pair UX = (X, ux), where X is a finite set of nodes and uX : X × X → {0, 1}
denotes the existence of an edge when taking the value uX(x, x′) = 1. In this section we consider
unweighted graphs generated with stochastic block models, where vertices in X form S different
clusters Oτ , that are mutually exclusive with Oτ ∩Oτ′ = ∅ for any 1 ≤ τ, τ′ ≤ T, and collectively
exhaustive with ∪T

τ=1Oτ = X. For any pair of nodes x, x′ ∈ X in the same cluster with x, x′ ∈ Oτ ,
the block stochastic model sets the probability of existence of a link to P [uX(x, x′) = 1] = p. For
nodes x and x′ from different clusters with x ∈ Oτ , x′ ∈ Oτ′ and τ 6= τ′, the probability of ex-
istence of link is P [uX(x, x′) = 1] = q. In general, p � q so that nodes are more likely to be
connected if they belong to the same cluster.

Given an unweighted graph UX , we construct a weighted network using shortest paths: For any
x, x′ ∈ X, the weighted relationship rX(x, x′) is computed as the number of links traversed from x
to x′ in the unweighted graph. The relationship rX constructed in this way satisfies the definition
of networks in Section 2.1. We can then apply the proposed framework onto these constructed
networks to evaluate the distance between the corresponding unweighted graphs. Despite the fact
that networks constructed using shortest paths would satisfy metric requirements, we could still
add interior points of networks to improve the quality of metric approximation. In the following
experiment, we do find that adding interiors points to constructed networks yield slightly better
clustering structure of graphs generated from different block stochastic models.

We consider block stochastic model unweighted graphs with |X| = 150 nodes, S = 2 clusters,
and in-cluster connection probability p = 0.2. The inter-cluster connection probability varies in
the set q ∈ {0.05, 0.1, 0.2}. For each different inter cluster probability we generate 10 unweighted
graphs. Each unweighted graph is transformed into weighted network using shortest paths and
the MDS approximation in Figure 49 is applied to evaluate distances between networks. Figure 49
(a) illustrates the two dimensional Euclidean embedding of the network distance approximations
for the unweighted graphs generated using different q, where graphs with q = 0.05 are denoted
by red circles, graphs with q = 0.1 are described by blue diamonds, and graphs with q = 0.2
represented as black squares. Graphs generated with different off-diagonal connecting probabil-
ities form clear clusters in the distance approximations. In a separate experiment we consider
unweighted graphs with |X| = 150 nodes, S = 3 clusters and in-cluster connection probability
p = 0.5. We vary the inter-cluster connection probability in the set q ∈ {0.1, 0.2, 0.4}. We see in
Figure 49 that the distance approximation succeeds again in distinguishing unweighted networks
generated from different stochastic block models – networks with q = 0.1 are red circles, q = 0.2
are blue diamonds, and q = 0.4 are black squares. Again, the distance approximation succeeds in
distinguishing unweighted networks generated from different stochastic block models.
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Figure 50: Two dimensional Euclidean embeddings of networks constructed from three differ-
ent models with different number of nodes with respect to the approximation of the network
embedding distance. (a) Midpoints added in interiors. (b) Randomly selected midpoints added
to interiors using the framework presented in Section 6.3.4. In the embeddings, red circles de-
note networks constructed from the Erdős-Rényi model, blue diamonds represent networks con-
structed from the unit circle model, and black squares the networks from the correlation model;
the sizes of the symbols in the embedding are proportional to number of nodes in corresponding
networks.

6.3.4. Large Scale Networks

We consider the same setup of Section 6.3.2 but range the number of nodes in the network from
20 to 100. Figure 50 (a) illustrates the result of comparing networks with interiors added. The
clustering of nodes is not as marked as in Figure 48 but still noticeable. For the most part,
distances between networks coming from the same generative model are smaller than distances
between networks generated by different processes. An unsupervised classification would yield 7
out of 60 errors (11% error rate) for networks with interiors added. The error rate raises to 15%
if we use network distance approximations when interiors are not added. Of particular note, the
weighted motif method [16] and the persistent homology method [76] do not yield clear clustering
results. Misclassifications are in the order of 30%.

The proposed method would have difficulty when the number of nodes in a given network is in
the range of thousands, for the reason that the number of added nodes in the interior of a given
network is proportional to the number of edges in the network. An important observation here is
that adding some point in the interior is helpful even if filling all of the interiors is intractable. Thus,
a reasonable heuristic for large-scale networks is to add interior points in some randomly selected
edges. Figure 50 (b) illustrates the result of classifying generative models when the number of
interior points is limited to be the same as the number of nodes in the network. Network sizes vary
between 20 and 1,000 nodes. The wide range of number of nodes makes the clustering structure
less clear but we still see three clusters representing the three generating models. Unsupervised
classification yields 13 out of 60 errors (21%) for networks with randomly chosen interiors added.
The error rate raises to 26% if we use network distance approximations without interiors added.
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The methods in [16] and [76] do not yield meaningful clustering structures, with misclassification
rate higher than 40%; essentially these alternative methods do not recover different generative
models used in constructing the networks.
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Part II

Applied Graph Signal Processing
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Chapter 7

Graph Signal Processing

Graph signal processing considers a directed graph G with a set of N nodes or vertices N and a
set of links E , such that if node n is connected to m, then (i, j) ∈ E . The (incoming) neighborhood
of n is defined as the set of nodes Ni = {j | (j, i) ∈ E} connected to n. For any given graph we
define the adjacency matrix A as a sparse N× N matrix with non-zero elements Aj,i if and only if
(i, j) ∈ E . The value of Aj,i captures the strength of the connection from i to j.

7.1. Graph Signals and Shift Operator

The focus of GSP is not on analyzing G, but graph signals defined on the set of nodesN . Formally,
each of these signals can be represented as a vector z = [z1, ..., zN ]

> ∈ RN where the n-th element
represents the value of the signal at node n. Since this vectorial representation does not convey
explicitly the topology of G, the graph is endowed with a sparse graph-shift operator that captures
the local structure of G. Typical choices for this shift operator are the adjacency matrix [57, 58],
and the graph Laplacian [59],

Lij = −Aij, Lii =
n

∑
j=1

Aij. (7.1)

To facilitate the connections with NNM, in this work we chose as shift the adjacency matrix
A; however, our results can be easily generalized for other choices too. We assume henceforth
that S is diagonalizable, so that S = VΛV−1 with Λ = diag(λ) ∈ CN×N being diagonal and
V = [v1, v2, . . . , vN ]. When S is symmetric we have that V is real and unitary, which implies
V−1 = V>. The intuition behind looking at S as an operator is to represent a transformation that
can be computed locally at the nodes of the graph. More rigorously, if z′ is defined as z′ = Sz,
then node n can compute y′n provided that it has access to the value of ym at m ∈ Nn.

Note that for classical time signals the adjacency network can be set to S = Sdc, where Sdc is the
adjacency matrix of the directed chain graph, whose entries all zero except for [Sdc]1,N and the
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N − 1 entries [Sdc]i+1,i, which are all one.

7.2. Graph Filters

Graph filters are a particular class of linear graph-signal operators that can be represented as
matrix polynomials of the shift operator S [57]

H :=
L−1

∑
l=0

hlS
l . (7.2)

For a given input z, the output of the filter is simply z′ = Hz. The filter coefficients are collected
into h := [h0, . . . , hL−1]

>, with L − 1 denoting the filter degree. Graph filters are of particular
interest because they represent linear transformations that can be implemented distributedly with
L− 1 exchanges of information among neighbors [157].

7.3. Frequency Representations

The eigendecomposition of S is used to define the frequency representation of graph signals and
filters as stated next.

Definition 32 Consider a signal z ∈ RN and a graph shift operator S = VΛV−1 ∈ R. Then, the vectors

z̃ = V−1z and z = Vz̃ (7.3)

form a Graph Fourier Transform (GFT) pair [59, 57].

There are several reasons that justify the association of the GFT with the Fourier transform.
Mathematically, it is just a matter of definition that if the vectors vk are of the form vk =

[1, ej2πk/n, . . . , ej2πk(n−1)/n]>, the GFT and iGFT in Definition 32 reduce to the conventional time
domain Fourier and inverse Fourier transforms. More deeply, it is not difficult to see that if the
graph G is a cycle, the vectors vk in are of the form vk = [1, ej2πk/n, . . . , ej2πk(n−1)/n]>. Since cycle
graphs are representations of discrete periodic signals, it follows that the GFT of a time signal is
equivalent to the conventional discrete Fourier transform.

The GFT encodes a notion of variability for graph signals akin to one that the Fourier transform en-
codes for temporal signals [57, 58]. Specifically, the smaller the distance between λp and |λmax| in
the complex spectrum, the lower the frequency it represents. This idea is based on defining the to-
tal variation of a graph signal z as TV(z) = ‖z−Sz/λmax(S)‖1, with smoothness being associated
to small values of TV. Then, given a (λp, vp) pair, one has that TV(vp) = ‖(1− λp/λmax(S))vp‖1,
which provides an intuitive way to order the different frequencies. This statement holds true for
real and complex and eigenvalues and eigenvectors.

Definition 33 Consider a graph shift operator S = VΛV−1 ∈ RN×N , a graph filter H = ∑L−1
l=0 hlAl ,

and form the Vandermonde matrix Ψ ∈ CN×L with Ψp,l = λl−1
p . Then, the frequency response h̃ ∈ CN of
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the filter is

H := Vdiag(h̃)V−1 where h̃ = Ψh (7.4)

and Ψ is the GFT for filters [57] with

Ψ :=


1 λ0 · · · λn−1

0
...

...
. . .

...
1 λn−1 · · · λn−1

n−1

 . (7.5)

From the previous definitions is follows readily that if z′ = Hz, then z̃′ = diag(h̃)z̃. In words,
graph filters are orthogonal operators in the frequency domain.
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Chapter 8

Diffusion Filtering and Application
to Cancer Subtype Classification

We begin this chapter with a brief introduction of basic concepts in graph theory and metric ge-
ometry followed by a formal description of diffusion dynamics in networks (Section 8.1). This
preliminary discussion provides the necessary elements for a formal definition of the superpo-
sition and diffusion distances. In Section 8.2 we define the superposition distance between two
signals with respect to a given graph and a given input norm. To determine this distance the
signals are diffused in the graph, the input norm of their difference is computed for all times,
and the result is discounted by an exponential factor and integrated over time. We show that the
superposition distance is a valid metric between vectors supported in the node set of a graph.

The diffusion distance with respect to a given graph and a given input norm is introduced in
Section 8.3 as an alternative way of measuring the distance between two signals in a graph. In this
case the diffused signals are also exponentially discounted and integrated over time but the input
norm is taken after time integration. The diffusion distance is shown to also be a valid metric in
the space of signals supported on a given graph and is further shown to provide a lower bound
for the superposition distance. Different from the superposition distance, the diffusion distance
can be reduced to a closed form expression with computational cost dominated by one matrix
inversion. The superposition distance requires numerical integration of the time integral of the
norm of a matrix exponential.

We further address stability with respect to uncertainty in the specification of the network (Sec-
tion 8.4). Specifically, we prove that when the input norm is either the 1-norm, the 2-norm, or
the infinity-norm a small perturbation in the underlying network transports linearly to a small
perturbation in the values of the superposition and diffusion distances. In Section 8.5 we demon-
strate that the diffusion and superposition distances can be applied to classify signals in graphs
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with better accuracy than comparisons that utilize traditional vector distances. We illustrate the
differences using synthetic data (Section 8.5.1) and establish the practical advantages through the
classification of ovarian cancer histologies from gene mutation profiles of different patients (Sec-
tion 8.5.2). In Section 8.5.3, we utilize diffusion in label propagation process in semi-supervised
learning and present its benefit through the classification of handwritten digits.

8.1. Norms and Diffusion Dynamics

In some of our proofs we encounter norms induced in the vector space of matrices Rn×n by norms
defined in the vector space Rn. For a given vector norm ‖ · ‖ : Rn → R+ the induced matrix norm
‖ · ‖ : Rn×n → R+ is defined as

‖A‖ := sup
‖x‖=1

‖Az‖. (8.1)

I.e., the induced norm of matrix A is equal to the maximum achievable vector norm when mul-
tiplying A by a vector with unit norm. Apart from satisfying the three requirements in the def-
inition of norms, induced matrix norms are compatible and submultiplicative [158, Section 2.3].
That they are submultiplicative means that for any given pair of matrices A, B ∈ Rn×n the norm
of the product does not exceed the product of the norms,

‖AB‖ ≤ ‖A‖ ‖B‖. (8.2)

That they are compatible means that for any vector z ∈ Rn and matrix A ∈ Rn×n it holds,

‖Az‖ ≤ ‖A‖ ‖z‖. (8.3)

I.e., the vector norm of the product Az does not exceed the product of the norm of the vector z
and the induced norm of the matrix A.

Compared to metric spaces defined in Definition 3, norms are more stringent than metrics because
they require the existence of a null element with null norm. However, whenever a norm is defined
on a vector space V it induces a distance in the same space as we formally state next [131, Section
1].

Lemma 2 Given any norm ‖ · ‖ on some vector space V, the function d : V × V → R+ defined as
d(x, y) := ‖y− x‖ for all pairs x, y ∈ V is a metric.

Consider the graph G with Laplacian matrix L and a vector x. For a given constant α > 0, define
the time-varying vector x(t) ∈ Rn as the solution of the linear differential equation

d x(t)
d t

= −α L x(t), x(0) = x. (8.4)

The differential equation in (8.4) represents heat diffusion on the graph G because −L can be
shown to be the discrete approximation of the continuous Laplacian operator used to describe
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the diffusion of heat in physical space [159]. The given vector x = x(0) specifies the initial
temperature distribution and x(t) represents the temperature distribution at time t. The constant
α is the thermal conductivity – which depends on the units used to measure the weights on the
graph – and controls the heat diffusion rate. Larger α results in faster changing r(t). The solution
of (8.4) is given by

r(t) = e−α L t r, (8.5)

where, for an arbitrary matrix A ∈ Rn×n, the matrix exponential eA is defined as [160]

eA =
∞

∑
k=0

1
k!

Ak. (8.6)

Direct substitution is enough to confirm that indeed x(t) = e−αLtx is a solution of (8.4). The
expression in (8.5) allows us to compute the temperature distribution at any point in time given
the initial heat configuration x and the structure of the underlying network through its Laplacian
L. Notice that as time grows, x(t) settles to an isothermal equilibrium – all nodes have the same
temperature – if the graph is connected.

It is instructive to rewrite (8.4) componentwise. If we focus on the variation of the i-th component
of x(t), it follows that (8.4) implies

d xi(t)
d t

=
n

∑
j=1

α Aij
(
xj(t)− xi(t)

)
. (8.7)

(8.7) is describing the flow of heat through edges of the graph. The flow of heat on an edge
grows proportionally with the temperature differential xj(t)− xi(t) as well as with the proximity
Aij. Nodes with larger proximity tend to equalize their temperatures faster, other things being
equal. In particular, two initial vectors x(0) = x and y(0) = y result in similar temperature
distributions across time if they are themselves similar – all xi and yi components are close –, or
if they have similar initial levels at nodes with larger proximity – each component xi need not be
similar to si itself but might be similar to the component yj of a neighboring node for which the
edge weight Aij is large. This latter fact suggests that the diffused vectors x(t) and y(t) define a
notion of proximity between x and y associated with the underlying graph structure. We exploit
this observation to define distances between signals supported on graphs in the following two
sections.

8.2. Superposition Distance

Given a graph G with Laplacian matrix L, an input vector norm ‖ · ‖, and two signals x, y ∈ Rn

defined in the node space V , we define the superposition distance dL
sps(x, y) between x and y as

dL
sps(x, y) :=

∫ +∞

0
e−t

∥∥∥e−α L t(x− y)
∥∥∥ dt, (8.8)
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where α > 0 corresponds to the diffusion constant in (8.4). As we mentioned in the discussion
following (8.7), the distance dL

sps(x, y) defines a similarity between x and y that incorporates the
underlying network structure. Indeed, notice that the term inside the input norm corresponds
to the difference x(t)− y(t) between the vectors that solve (8.4) for initial conditions x and y [cf.
(8.5)]. This means that we are looking at the difference between the temperatures x(t) and y(t) at
time t, which we then multiply by the dampening factor e−t and integrate over all times. These
temperatures are similar if x and y are similar, or, if x and y have similar values at similar nodes.
The dampening factor gives more relative importance to the differences between x(t) and y(t) for
early times. This is necessary because after prolonged diffusion times the network settles into an
isothermal equilibrium and the structural differences between x and y are lost.

Exploiting the same interpretation, we can define the superposition norm of a vector z ∈ Rn for a
given graph with Laplacian matrix L and a given input norm ‖ · ‖ as

‖z‖L
sps :=

∫ +∞

0
e−t

∥∥∥e−α L tz
∥∥∥ dt. (8.9)

Although we are referring to dL
sps(x, y) as the superposition distance between x and y and ‖z‖L

sps as
the superposition norm of z we have not proven that they indeed are valid definitions of distance
and norm functions. As it turns out, they are. We begin by showing that ‖ · ‖L

sps is a valid norm
as we claim in the following proposition.

Proposition 12 The function ‖ · ‖L
sps in (8.9) is a valid norm on Rn for every Laplacian L and every input

norm ‖ · ‖.

Proof: As stated in Section 8.1, we need to show positiveness, positive homogeneity and subad-
ditivity of ‖ · ‖L

sps. To show positive homogeneity, utilize the positive homogeneity of the input
norm and the linearity of integrals to see that for every vector z ∈ Rn and scalar β, it holds

‖βz‖L
sps =

∫ +∞

0
e−t ‖e−α L tβz‖dt

= |β|
∫ +∞

0
e−t ‖e−α L tz‖dt = |β|‖z‖L

sps.
(8.10)

In order to show subadditivity, pick arbitrary vectors x, y ∈ Rn and use the subadditivity of the
input norm ‖ · ‖ and the linearity of integrals to see that

‖x + y‖L
sps =

∫ +∞

0
e−t ‖e−α L t(x + y)‖dt

≤
∫ +∞

0
e−t
(
‖e−α L tx‖+ ‖e−α L ty‖

)
dt = ‖x‖L

sps + ‖y‖L
sps,

(8.11)

To show positiveness, first observe that for every z ∈ Rn we have that ‖z‖L
sps ≥ 0 since for

every time t the argument of the integral in the definition (8.9) is the product of two nonnegative
terms, an exponential and a norm which itself satisfies the positiveness property. The fact that
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‖~0‖L
sps = 0 is an immediate consequence of the definition (8.9). Hence, we are only left to show

that ‖z‖L
sps 6= 0 for z 6= 0. To show this, it suffices to prove that the argument of the integral in

(8.9) is strictly positive for every time t which is implied by the fact that the matrix e−α L t is strictly
positive definite for every t. To see why this is true, notice that −α L t is a real symmetric matrix,
thus, it is diagonalizable and has real eigenvalues. Consequently, the eigenvalues of e−α L t are the
exponentials of the eigenvalues of −α L t which are strictly positive. �

If the superposition norm is a valid norm as shown by Proposition 12 it induces a valid metric
as per the construction in Lemma 2. This induced metric is the superposition distance defined in
(8.8) as we show in the following corollary.

Corollary 5 The function dL
sps in (8.8) is a valid metric on Rn for every Laplacian L and every input norm

‖ · ‖.

Proof: Since dL
sps(x, y) = ‖x− y‖L

sps for all vectors x, y ∈ Rn and ‖ · ‖L
sps is a well-defined norm [cf.

Proposition 12], Lemma 2 implies that dL
sps is a metric on Rn. �

The distance dL
sps incorporates the network structure to compare two signals r and s supported

in a graph with Laplacian L. As a particular case the edge set E of the underlying graph G may
be empty. In this case, the Laplacian L = 0 is identically null and we obtain from (8.8) that
d0

sps(x, y) = ‖y− x‖. This is consistent with the fact that when no edges are present, the network
structure adds no information to aid in the comparison of r and s and the superposition distance
reduces to the standard distance induced by the input norm. The same effect is obtained when
the thermal conductivity α is set to zero.

The computational cost of evaluating the superposition distance is significant in general. To eval-
uate dL

sps(x, y) we approximate the improper integral in (8.8) with a finite sum and evaluate the
norm of the matrix exponential

∥∥e−α L t(y− x)
∥∥ at the points required by the appropriate dis-

cretization. Notice that the decaying exponential modulation in (8.8) renders the first time points
more relevant for the approximation, thus, a finer discrete time grid should be used for smaller
times. An alternative notion of distance for graph-supported signals that is computationally more
tractable comes in the form of the diffusion distance that we introduce in the next section.

8.3. Diffusion Distance

Given an arbitrary graph G with Laplacian L, an input vector norm ‖ · ‖ and two signals x, y ∈ Rn

defined in the node space V , the diffusion distance dL
diff(x, y) between x and y is given by

dL
diff(x, y) :=

∥∥∥∥∫ +∞

0
e−t e−α L t(y− x)dt

∥∥∥∥ , (8.12)

with α > 0 corresponding to the diffusion constant in (8.4). As in the case of the superposition
distance in (8.8), the diffusion distance incorporates the graph structure in determining the prox-
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imity between x and y through the solutions x(t) and y(t) of (8.4) for initial conditions x and y
[cf. (8.5)]. The difference is that in the diffusion distance the input norm of the difference between
x(t) and y(t) is taken after discounting and integration, whereas in the superposition distance
the input norm is applied before discounting and integration. An interpretation in terms of heat
diffusion is that the diffusion distance compares the total (discounted) energy that passes trough
each node. The superposition distance compares the energy difference at each point in time and
integrates that difference over time. Both are reasonable choices. Computational aspects aside,
whether the superposition or diffusion distance is preferable depends on the specific application.

A definite advantage of the diffusion distance is that the matrix integral in (8.12) can be resolved to
obtain a closed solution that is more amenable to computation. To do so, notice that the primitive
of the matrix exponential e−te−αLt = e−(I+αL)t is given by −(I + αL)−1e−(I+αL)t to conclude that
(8.12) is equivalent to

dL
diff(r, s) =

∥∥∥(I + αL)−1(x− y)
∥∥∥ . (8.13)

As in the case of the superposition distance of Section 8.2 a vector norm can be defined based on
the same heat diffusion interpretation used to define the distance in (8.12). Therefore, consider a
given a graph with Laplacian L and a given input norm ‖ · ‖ and define the diffusion norm of the
vector z ∈ Rn as

‖z‖L
diff :=

∥∥∥∥∫ +∞

0
e−t e−α L tz dt

∥∥∥∥ =
∥∥∥(I + αL)−1z

∥∥∥ , (8.14)

where the second equality follows from the same primitive expression used in (8.13).

The superposition distance is a proper metric and the superposition norm is a proper norm. We
show first that ‖ · ‖L

diff is a valid norm as we formally state next.

Proposition 13 The function ‖ · ‖L
diff in (8.14) is a valid norm on Rn for every Laplacian L and every

input norm ‖ · ‖.

Proof: To prove the validity of ‖ · ‖L
diff we need to show positiveness, positive homogeneity and

subadditivity; see Section 8.1. Positive homogeneity follows directly from the positive homogene-
ity of the input norm, i.e. for any vector v ∈ Rn and scalar β we have that

‖βv‖L
diff = ‖(I + αL)−1βz‖ = |β|‖(I + αL)−1z‖ = |β|‖z‖L

diff. (8.15)

In order to show subadditivity, pick arbitrary vectors z, z′ ∈ Rn and use the subadditivity of the
input norm ‖ · ‖ to see that

‖z + z′‖L
diff = ‖(I + αL)−1(z + z′)‖

≤ ‖(I + αL)−1z‖+ ‖(I + αL)−1z′‖ = ‖z‖L
diff + ‖z

′‖L
diff.

Given the positiveness property of the input norm ‖ · ‖, to show positiveness of the diffusion
norm ‖ · ‖L

diff it is enough to show that (I + αL)−1z 6= ~0 for all vectors zt ∈ Rn different from
the null vector. This is implied by the fact that (I + αL)−1 is a positive definite matrix. To see
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why (I + αL)−1 is positive definite, first notice that L is positive semidefinite as stated in Section
8.1. Consequently, αL is also positive semidefinite since α > 0 and I + αL is positive definite since
every eigenvalue of I+ αL is a unit greater than the corresponding eigenvalues of αL, thus, strictly
greater than 0. Finally, since inversion preserves positive definiteness, the proof is completed. �

From Proposition 12 and Lemma 2 it follows directly that that the diffusion distance defined in
(8.12) is a valid metric as we prove next.

Corollary 6 The function dL
diff in (8.12) is a valid metric on Rn for every Laplacian L and every input

norm ‖ · ‖.

Proof: Since dL
diff(x, y) = ‖y− x‖L

diff for all vectors x, y ∈ Rn and ‖ · ‖L
diff is a well-defined norm

[cf. Proposition 13], Lemma 2 implies that dL
diff is a metric on Rn. �

As in the case of the superposition norm and distance, the diffusion norm and distance reduce
to the input norm and its induced distance when the set edge is empty. In that case we have
L = 0 and it follows from the definitions in (8.14) and (8.12) that ‖z‖L

diff = ‖z‖
0
diff = ‖z‖ and that

dL
diff(r, s) = d0

diff(x, y) = ‖y− x‖.

The superposition and diffusion distance differ in the order in which the input norm and time
integral are applied. It is therefore reasonable to expect some relationship to hold between their
values. In the following proposition we show that the diffusion distance is a lower bound for the
value of the superposition distance.

Proposition 14 Given any graph G with Laplacian L, any two signals r, s ∈ Rn defined in V and any
input vector norm ‖ · ‖, the diffusion distance dL

diff(x, y) defined in (8.12) is a lower bound on the superpo-
sition distance dL

sps(x, y) defined in (8.8)

dL
sps(x, y) ≥ dL

diff(x, y). (8.16)

Proof: Since the exponential e−t in (8.8) is nonnegative, we may replace it with its absolute value
to obtain

dsps(x, y) =
∫ +∞

0
|e−t| ‖e−α L t(y− x)‖dt

=
∫ +∞

0
‖e−te−α L t(y− x)‖dt, (8.17)

where we used the positive homogeneity property of the input norm to write the second equality.
Further using the subadditivity property of the input norm we may write

dsps(x, y) ≥
∥∥∥∥∫ +∞

0
e−te−α L t(y− x)dt

∥∥∥∥ . (8.18)
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Figure 51: Example of an underlying graph used to compute the superposition and diffusion
distances. Three signals r, g and y are compared taking a value of 1 in the red, green, and yellow
nodes respectively, and zero everywhere else.
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Figure 52: Heat maps of the diffused signals for r, g, and y as diffusion evolves for every node in
the network in Figure 51. Darker colors represent stronger signals. The heat maps of g and y are
more similar, entailing smaller diffusion and superposition distances.

The right hand side of (8.18) is the definition of the diffusion distance ddiff(x, y) in (8.12). Making
this substitution in (8.18) yields (8.16). �

For applications in which the superposition distance is more appropriate, the diffusion distance
is still valuable because, as it follows from Proposition 14, it can be used as a lower bound on the
superposition distance. This lower bound is useful because computing the diffusion distance is
less expensive than computing the superposition distance.

8.3.1. Discussion

In order to illustrate the superposition and diffusion distances and their difference with the stan-
dard vector distances, consider the undirected graph in Figure 51 where the weight of each undi-
rected edge is equal to 1. Define three different vectors supported in the node space and having
exactly one component equal to 1 and the rest equal to 0. The vector r has its positive component
for node x1, colored in red, the vector g has its positive for node x6, colored in green, and the
vector y has its positive component for node x7, colored in yellow.

For the traditional vector metrics, the distances between each of the vectors r, g and y are the
same. In the case when, e.g., the `2 distance is used as input metric, we have that ‖r − g‖2 =

‖g − y‖2 = ‖y − r‖2 =
√

2. In the case of the `1 and `∞ distances we have that ‖r − g‖1 =
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‖g − y‖1 = ‖y − r‖1 = 2 and ‖r − g‖∞ = ‖g − y‖∞ = ‖y − r‖∞ = 1. However, by observing
the network in Figure 51, it is intuitive that signals g and y should be more alike than they are
to r since they affect nodes that are closely related. E.g., if we think of the vectors r, g and y as
signaling faulty nodes in a communication network, it is evident that the impact of nodes x6 and
x7 failing would disrupt the communication between the right and left components of the graph,
whereas the failure of x1 would entail a different effect. This intuition is captured by the diffusion
and superposition distances. Indeed, if we fix α = 1 and we use the `2 norm as input norm to the
diffusion distance, we have that the distance between the vectors that signal faults at x6 and x7 are
[cf. (8.13)]

dL
diff(g, y) = ‖(I + L)−1(g− y)‖2 = 0.418, (8.19)

where L is the Laplacian of the graph in Figure 51. However, the diffusion distances from these
green and yellow vectors to the red vector that signals a fault at node x1 are

dL
diff(r, g) = ‖(I + L)−1(r− g)‖2 = 0.664,

dL
diff(r, y) = ‖(I + L)−1(r− y)‖2 = 0.698. (8.20)

The distances in (8.20) are larger than the distance in (8.19) signaling the relative similarity of the
g and y vectors with respect to the r vector. The differences are substantial – almost 60% increase
–, thus allowing identification of g and y as somehow separate from r. Further observe that the
distance between r and g is slightly smaller than the distance between r and y. This is as it should
be, because node x1 is closer to node x6 than to node x7 in the underlying graph.

Repeating the exercise, but using the superposition distance instead [cf. (8.8)], we obtain that
dL

sps(r, g) = 0.701, dL
sps(r, y) = 0.742, and dL

sps(g, y) = 0.456. Although the numbers are slightly
different, the qualitative conclusions are the same as those obtained for the diffusion distance. We
can tell that g and y are more like each other than they are to r, and we can tell that g is slightly
closer to r than y is. Also note that the diffusion distances are smaller than the superposition
distances between the corresponding pairs, i.e., dL

sps(r, g) ≥ dL
diff(r, g), dL

sps(r, y) ≥ dL
diff(r, y), and

dL
sps(g, y) ≥ dL

diff(g, y). This is consistent with the result in Proposition 14.

To further illustrate the intuitive idea behind the diffusion and superposition distances, Figure
52 plots the evolution of the diffused signals r(t), g(t) and y(t) for each of the respective initial
conditions r, g, and y. At time t = 0 each of the signals is concentrated at one specific node. The
signals are, as a consequence, equally different to each other. At very long times, the signals are
completely diffused and therefore indistinguishable. For intermediate times, the signal distribu-
tions across nodes for the green and yellow signals are more similar than between the green and
red or yellow and red signals. This difference between the evolution of the diffused signals results
in different values for the superposition and diffusion distances.

Remark 12 Computation of the diffusion distance using the closed form expression in (8.13) re-
quires the inversion of the n× n identity plus Laplacian matrix followed by multiplication with
the difference vector y− x. The cost of this computation is of order n3, but is much smaller when
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Figure 53: Histogram of the absolute value of the normalized difference, i.e. |dL′(g, r) −
dL(g, r)|/‖∆‖2, for the diffusion and superposition distances. For this particular network and
perturbations, the difference is considerably lower than the theoretical upper bound of 2.

the matrix L is sparse, as is typically the case. Further observe that most computations can be
reused when computing multiple distances, because the vectors change, but the matrix inverse
(I + αL)−1 stays unchanged.

8.4. Stability

The superposition and diffusion distances depend on the underlying graphs through their Lapla-
cian L. It is therefore important to analyze how a perturbation of the underlying network impacts
both distances. We prove in this section that these distances are well behaved with respect to
perturbations of the underlying graph. I.e., we show that if the network perturbation is small, the
change in the diffusion and superposition distances is also small. We think of a perturbation of
a given network as noise added to its edge weights, thus, we quantify the network perturbation
as the matrix p-norm of the difference between the Laplacians of the original and perturbed net-
works. We focus our analysis on the most frequently used norms where p ∈ {1, 2, ∞}. We begin
with a formal statement for the case of the superposition distance defined by (8.8).

Proposition 15 Given any graph with Laplacian L, an input `p norm ‖ · ‖p with p ∈ {1, 2, ∞}, and
bounded signals x and y on the network with ‖x‖p ≤ γ and ‖y‖p ≤ γ, if we perturb the network such
that the resulting Laplacian L′ = L + ∆ where the perturbation ∆ is such that ‖∆‖p ≤ δ‖L‖p < 1, then∣∣∣dL′

sps(x, y)− dL
sps(x, y)

∣∣∣ ≤ 2γ‖L‖pδ. (8.21)

Proof: The following lemma is central to the proof of Proposition 15.

Lemma 3 Given the Laplacian L for some undirected network, the matrix exponential of nonpositive mul-
tiples of the Laplacian e−τL with τ ≥ 0 is a doubly stochastic matrix.
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Proof: Since L = D − A, all off-diagonal components of −τL are nonnegative, making −τL a
Metzler matrix [161]. Since the exponentials of Metzler matrices are nonnegative [161, Theorem
8.2], we are guaranteed that all elements of e−τL are nonnegative. From the power series of matrix
exponentials, we have

e−τL =
∞

∑
k=0

1
k!
(−τL)k = I− τL +

τ2L2

2
− τ3L3

3!
+ · · · . (8.22)

If we are able to show that all rows and columns of Lk add up to 0 for any integer k ≥ 1, then we
know that all rows and columns of ∑∞

k=1(−τL)k/k! also add up to 0. Therefore, when we add the
identity matrix to this summation to obtain the exponential e−τL as in (8.22) we are guaranteed
that the rows and columns sum up to 1. Combining this with the non negativity of e−τL implies
doubly stochasticity, as wanted. To see that the rows and columns of Lk indeed add up to 0 for
any integer k ≥ 1, denote by 1 and 0 the vectors of all-ones and all-zeros, respectively. Then, by
the definition of the graph Laplacian, it follows that 1TL = L1 = 0 which immediately implies
that 1TLk = Lk1 = 0 for all k ≥ 1. �

We now use Lemma 3 to show Proposition 15. Given the definition of L′, from (8.8) we have that

dL′
sps(x, y) =

∫ ∞

0
e−t
∥∥∥e−(L+∆)t(y− x)

∥∥∥
p

dt, (8.23)

where without loss of generality we assume α = 1. If α 6= 1, then αL′ defines a Laplacian and we
can think of the distance dαL′

sps(x, y) where the new α parameter is equal to 1. If we focus on the
input norm ‖ · ‖p inside the integral in (8.23), we may add and subtract e−Lt(x− y) to obtain∥∥∥e−(L+∆)t(x− y)

∥∥∥
p
=
∥∥∥(e−(L+∆)t − e−Lt

)
(x− y) + e−Lt(x− y)

∥∥∥
p

≤
∥∥∥(e−(L+∆)t − e−Lt

)
(x− y)

∥∥∥
p
+
∥∥∥e−Lt(x− y)

∥∥∥
p

, (8.24)

where we used the subadditivity property of the input norm. To further bound the first term on
the right hand side of (8.24) we apply the compatibility property of p-norms (8.3) followed by the
subadditivity property to obtain that∥∥∥(e−(L+∆)t − e−Lt

)
(x− y)

∥∥∥
p
≤
∥∥∥e−(L+∆)t − e−Lt

∥∥∥
p
‖(x− y)‖p

≤
∥∥∥e−(L+∆)t − e−Lt

∥∥∥
p

(
‖x‖p + ‖y‖p

)
. (8.25)

In order to bound the first term on the right hand side of (8.25), we use a well-known result in
matrix exponential analysis [160, 162] that allows us to write the difference of matrix exponentials
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in terms of an integral,

∥∥∥e−(L+∆)t − e−Lt
∥∥∥

p
=

∥∥∥∥∫ t

0
e−L(t−τ)∆e−(L+∆)τdτ

∥∥∥∥
p

≤
∫ t

0

∥∥∥e−L(t−τ)∆e−(L+∆)τ
∥∥∥

p
dτ

≤ ‖∆‖p

∫ t

0

∥∥∥e−L(t−τ)
∥∥∥

p

∥∥∥e−(L+∆)τ
∥∥∥

p
dτ, (8.26)

where the first inequality follows from subadditivity of the input p-norm and the second one from
submultiplicativity (8.2).

We now bound each of the three terms on the right hand side of (8.26). For the first term,
‖∆‖p ≤ δ‖L‖p by assumption. From Lemma 3, the doubly stochasticity of e−L(t−τ) implies that
‖e−L(t−τ)‖1 = ‖e−L(t−τ)‖∞ = 1. For p = 2, notice that −L(t − τ) is a negative semi-definite
matrix with an eigenvalue at 0. Since the eigenvalues of e−L(t−τ) are equal to the exponentials
of the eigenvalues of −L(t− τ), it follows that the largest eigenvalue of e−L(t−τ) is 1 and hence
‖e−L(t−τ)‖2 = 1. For the term

∥∥∥e−(L+∆)τ
∥∥∥

p
, notice that L + ∆ = L′ is in itself a Laplacian, meaning

that we can follow the aforementioned argument and upper bound this term by 1. Substituting
these bounds in (8.26) and solving the integral yields∥∥∥e−(L+∆)t − e−Lt

∥∥∥
p
≤ δ‖L‖p t. (8.27)

Further substitution in (8.25) combined with the fact that ‖x‖p ≤ γ and ‖y‖p ≤ γ, results in∥∥∥(e−(L+∆)t − e−Lt
)
(x− y)

∥∥∥
p
≤ 2γδ‖L‖p t. (8.28)

By substituting this result in (8.24) and inputing the resultant inequality in the integral in (8.23)
we conclude that

dL′
sps(x, y) ≤

∫ ∞

0
te−t2γδ‖L‖pdt +

∫ ∞

0
e−t
∥∥∥e−Lt(x− y)

∥∥∥
p

dt. (8.29)

Notice that the rightmost summand in (8.29) is exactly equal to dL
sps(x, y) [cf. (8.8)]. Thus, solving

the integral in the first summand we get that

dL′
sps(x, y)− dL

sps(x, y) ≤ 2γδ‖L‖p. (8.30)

Following the same methodology but starting from the definition of dL′
sps(x, y), it can be shown

that

dL
sps(x, y)− dL′

sps(x, y) ≤ 2γδ‖L‖p. (8.31)

Finally, by combining (8.30) and (8.31), we obtain (8.21), concluding the proof. �
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Proposition 15 guarantees that for any two vectors, the difference between their superposition
distances computed based on different underlying graphs is bounded by a term which is bilinear
in a bound on the magnitude of the input vectors γ and a bound on the difference between the
Laplacians of both underlying graphs ‖∆‖p ≤ δ‖L‖p. This implies that vanishing perturbations
on the underlying network have vanishing effects on the distance between two signals defined on
the network.

Similarly to the case of the superposition distance, perturbations have limited effect on the diffu-
sion metric defined in (8.12) as shown next.

Proposition 16 For the same setting described in Proposition 15, we have that∣∣∣dL′
diff(x, y)− dL

diff(x, y)
∣∣∣ ≤ 2γ‖L‖pδ + o(δ). (8.32)

Proof: In the proof of Proposition 16 we use two lemmas. The first one is similar to Lemma 3 and
shows that (I + L)−1 is doubly stochastic.

Lemma 4 Given the Laplacian L for some undirected network, the inverse of the Laplacian plus identity
matrix (I + L)−1 is a doubly stochastic matrix.

Proof: Since all the off-diagonal entries of I + L are less than or equal to zero, I + L is a Z-matrix
[163]. Moreover, due to the fact that all eigenvalues of I + L have positive real parts, I + L is
an M-matrix. Since the inverse of an M-matrix is elementwise nonnegative [164], (I + L)−1 is
a nonnegative matrix. Thus, to show doubly stochasticity, we only need to prove that all rows
and columns of (I + L)−1 add up to 1. Recall that 1 and 0 stand for the vectors of all-ones and
all-zeros, respectively, and that L1 = 0 [cf. (7.1)] Thus, we may write (I + L)1 = 1 from which we
have that

1 = (I + L)−1 (I + L)1 = (I + L)−1 1, (8.33)

showing that all the rows of (I + L)−1 sum up to 1. Similarly, it can be shown that all the columns
of (I + L)−1 sum up to 1, concluding the proof. �

The second lemma is a statement about the stability of inverse matrices.

Lemma 5 If A is nonsingular and ‖A−1∆‖p < 1, then A + ∆ is nonsingular and it is guaranteed that

∥∥∥(A + ∆)−1 −A−1
∥∥∥

p
≤
‖∆‖p‖A−1‖2

p

1− ‖A−1∆‖p
. (8.34)

Proof: See [158, Theorem 2.3.4]. �
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We now use Lemmas 4 and 5 to show Proposition 16. Given the definition of L′, from (8.13) we
have that

dL′
diff(x, y) =

∥∥∥(I + L + ∆)−1(x− y)
∥∥∥

p
. (8.35)

As in the proof of Proposition 15, we can assume that α = 1 without loss of generality. Subtracting
and adding (I + L)−1(x− y) from (8.35) and applying the subadditivity property of the p-norm
implies

dL′
diff(x, y) ≤

∥∥∥((I + L + ∆)−1 − (I + L)−1
)
(x− y)

∥∥∥
p
+
∥∥∥(I + L)−1(x− y)

∥∥∥
p

, (8.36)

where the second term in the sum is exactly dL
diff(x, y) [cf. (8.13)]. Therefore we may write

dL′
diff(x, y)− dL

diff(x, y) ≤
∥∥((I + L + ∆)−1 − (I + L)−1)(x− y)

∥∥
p. (8.37)

By applying compatibility of p-norms (8.3) followed by the subadditivity property we obtain that

dL′
diff(x, y)− dL

diff(x, y) ≤
∥∥((I + L + ∆)−1 − (I + L)−1)∥∥

p ‖(x− y)‖p (8.38)

≤
∥∥((I + L + ∆)−1 − (I + L)−1)∥∥

p

(
‖x‖p + ‖y‖p

)
Given that I + L is nonsingular we have to show that ‖(I + L)−1∆‖p < 1 in order to be able to
apply Lemma 5 with A = (I + L) and further bound (8.38).

Due to doubly stochasticity [cf. Lemma 4], we have that ‖(I + L)−1‖1 = ‖(I + L)−1‖∞ = 1.
Moreover, ‖(I + L)−1‖2 = 1 comes from the fact that the smallest eigenvalue of (I + L) and hence
the largest eigenvalue of (I + L)−1 is equal to 1. Consequently, we may write

‖(I + L)−1∆‖p ≤ ‖(I + L)−1‖p‖∆‖p < 1, (8.39)

for p ∈ {1, 2, ∞}, as wanted, where the first inequality follows from submultiplicativity (8.2).
Hence, applying Lemma 5 with A = (I + L) yields

∥∥(I + L + ∆)−1 − (I + L)−1∥∥
p ≤
‖∆‖p‖(I + L)−1‖2

p

1− ‖(I + L)−1∆‖p
. (8.40)

Recalling that ‖(I + L)−1‖p = 1 for any p ∈ {1, 2, ∞} allows us to further bound (8.40) to obtain

∥∥(I + L + ∆)−1 − (I + L)−1∥∥
p ≤

‖∆‖p

1− ‖∆‖p
≤

δ‖L‖p

1− δ‖L‖p
, (8.41)

where we used that ‖∆‖p ≤ δ‖L‖p < 1 for the last inequality.

Utilizing the Taylor series of 1/(1− δ‖L‖p) and substituting (8.41) into (8.38) combined with the
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Type 1 Type 2 Type 3

Figure 54: (a) The three-cluster network on which signals to be classified are defined. The width
of the links is proportional to the weights of the corresponding edges. (b) Sample signals for the
three types considered. Type 1 signals have stronger presence in the blue cluster, type 2 in the red,
and type 3 in the green cluster.

fact that ‖s‖p ≤ γ and ‖r‖p ≤ γ we have that

dL′
diff(x, y)− dL

diff(x, y) ≤
∞

∑
n=1

2γ(δ‖L‖p)
n = 2γ‖L‖pδ + o(δ). (8.42)

In a similar manner but starting from the definition of dL
diff(x, y), it can be shown that

dL
diff(x, y)− dL′

diff(x, y) ≤ 2γ‖L‖pδ + o(δ). (8.43)

Finally, by combining (8.42) and (8.43), we obtain (8.32) and the proof concludes. �

In contrast to Proposition 15, the bound in (8.32) contains higher order terms that depend on the
magnitude of the perturbation. Hence, since the other terms of the bound in (8.32) tend to zero
super linearly, we may divide (8.32) by δ‖L‖p and compute the limit as the perturbation vanishes

lim
δ→0

∣∣∣dL′
diff(x, y)− dL

diff(x, y)
∣∣∣

δ‖L‖p
≤ 2γ, (8.44)

which implies that for small perturbations the difference in diffusion distances grows linearly.

When constructing the underlying graph to compare signals in a real-world application, noisy
information can be introduced. This means that the similarity weight between two nodes in the
underlying graph contains inherent error. Propositions 15 and 16 show that the superposition and
diffusion distances are impervious to these minor perturbations.

In order to illustrate the stability results presented, consider again the underlying network in
Figure 51. We perturb this network by multiplying every edge weight – originally equal to 1
– by a random number uniformly picked from [0.95, 1.05] and then compute the diffusion and
superposition distances between vectors r and g with the perturbed graph as underlying network.
For these illustrations we pick the input norm to be `2 and observe that γ = 1 given the definitions
of r and g. In Figure 53 we plot histograms of the absolute value of the difference in the distances
when using the original and the perturbed graphs as underlying networks normalized by the
norm of the perturbation for 1000 repetitions of the experiment. From (8.21) we know that this

155



value should be less than 2 for the superposition distance and from (8.44) we know this should
also be the case for the diffusion distance for vanishing perturbations. Indeed, as can be seen from
Figure 53, all perturbations are below the threshold of 2 by a considerable margin. This stability
property is essential for the practical utility of the diffusion and superposition distances as seen
in the next section.

Remark 13 In Propositions 15 and 16 we focus our analysis on the input norms ‖ · ‖p for p ∈
{1, 2, ∞} because these norms lead to the simple bounds in (8.21) and (8.32). The simplicity of
these bounds is derived from the fact that ‖e−Lt‖p ≤ 1 and ‖(I + L)−1‖p ≤ 1 for the values of
p previously mentioned. For other matrix norms satisfying (8.2) and (8.3), including all induced
matrix norms, the equivalence of norms guarantees that bounds analogous to those in (8.21) and
(8.32) must exist with more involved constant terms.

8.5. Applications

We illustrate the advantages of the superposition and diffusion distances developed in Sections
8.2 and 8.3 respectively through numerical experiments in both synthetic (Section 8.5.1) and real-
world data (Sections 8.5.2 and 8.5.3).

8.5.1. Classification of Synthetic Signals on Networks

The diffusion and superposition distances lead to better classification of signals on networks com-
pared to traditional vector distances such as the Euclidean `2 metric. Consider the network pre-
sented in Figure 54 (left) containing three clusters – blue, red, and green – where nodes within
each cluster are highly connected and there exist few connections between nodes in different clus-
ters. This network was generated randomly, where an undirected edge between a pair of nodes in
the same cluster is formed with probability 0.4 and its weight is picked uniformly between 1 and
3. In addition, three edges were added with weight 1 between random pairs of nodes in different
clusters. We consider three types of signals on this network. The strength of all signals is equal
to 1 on three nodes in the network and 0 on the remaining ones. Among the three nodes with
value 1 for the first type of signals, two of them are randomly selected from the blue cluster and
the remaining one is randomly chosen from the other clusters. Similarly, for the second type of
signals, exactly two out of the three nodes with positive value belong to the red cluster and the
remaining one is chosen randomly between the blue and green clusters. Finally, the third type of
signal has two positive values on the green cluster and the third value randomly chosen from the
rest of the network. Sample signals for each type are illustrated in Figure 54 (right) where positive
signal values are denoted by larger nodes.

We generate ten signals of each type and measure the distance between them with the superpo-
sition, diffusion, and `2 metrics. For the superposition and diffusion metrics we use `2 as input
norm and α = 1. The use of each metric generates a different metric space with the thirty signals
as the common underlying set of points. In order to illustrate these higher dimensional spaces,
in Figure 55 (left) we present heat maps of the distance functions, where darker colors represent
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Figure 55: Heat maps (left) and 2D multi dimensional scaling (MDS) [146] representations (right)
for the metric spaces generated by the `2 (top), diffusion (middle) and superposition (bottom)
distances. The diffusion and superposition metrics perfectly classify the signals into the three
types while `2 does not reveal any clear classification.

closer signals. It is clear that for the diffusion and superposition distances, three blocks containing
ten points each appear along the diagonal in exact correspondence with the three types of signals.
In contrast, the heat map corresponding to the `2 metric does not present any clear structure. To
further illustrate these implications, in Figure 55 (right) we present 2D multi dimensional scaling
(MDS) [146] representations of the three metric spaces. The points corresponding to type 1 signals
are represented as blue circles, type 2 as red circles, and type 3 as green circles. The MDS repre-
sentations for diffusion and superposition are fundamentally different from the one obtained for
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Figure 56: Histology classification of ovarian cancer patients based on k nearest neighbors with re-
spect to the `2 and diffusion distances of their genetic profile. (a) Light bars denote the error when
patients are classified using the `2 distance while the dark bars denote the error when diffusion
distance is used for different k-NN classifiers. The diffusion distance reduces the classification
error consistently across classifiers. (b) Accuracy of serous subtype vs. endometrioid subtype.
Classifiers using diffusion (green) are closer to the top right corner, i.e. perfect classification, than
those using the `2 distance (blue).

`2. For the latter, the circles of different colors are spread almost randomly on the plane, with no
clear clustering structure. For diffusion and superposition, in contrast, signals of different colors
are clearly separated so that any clustering method is able to recover the original signal type.

8.5.2. Ovarian Cancer Histology Classification

We demonstrate that the diffusion distance can provide a better classification of histology subtypes
for ovarian cancer patients than the traditional `2 metric. To do this, we consider 240 patients di-
agnosed with ovarian cancer corresponding to two different histology subtypes [165]: serous and
endometrioid. Our objective is to recover the histology subtypes from patients’ genetic profiles.

For each patient i, her genetic profile consists of a binary vector zi ∈ {0, 1}2458 where, for each
of the 2458 genes studied, zi contains an 1 in position k if patient i presents a mutation in gene k
and 0 otherwise. One way of building a metric in the space of 240 patients is by quantifying the
distance between patients i and j as the `2 distance between their genetic profiles,

d`2(i, j) = ‖zi − zj‖2. (8.45)

In this approach, every gene is considered orthogonal to each other and compared separately
across patients. An alternative approach is to take into account the relational information across
genes when comparing patients. In order to do so, we apply the diffusion distance on an un-
derlying gene-to-gene network built based on publicly available data [166]. In order to build
this network, we first extract the pairwise gene-gene interactions from [166] using the NCI Nature
database. After normalization, every edge weight is contained between 0 and 1, which we inter-
pret as a probability of interaction between genes. We assign to each path the probability obtained
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by multiplying the probabilities in the edges that form the path. For every pair of genes in the
network, we compute a similarity value between them corresponding to the maximum probabil-
ity achievable by a path that links both genes. Finally, we apply normalization and thresholding
operations to obtain the gene-to-gene network that we use in our experiments. Observe that the
gene-to-gene network contains accepted relations between genes in humans in general and is not
patient dependent, hence, it defines a common underlying network for all subjects being com-
pared. Thus, denoting as L the Laplacian of the gene-to-gene network and using the `2 as input
norm we compute the diffusion distances between patients i and j as [cf. (8.13)]

dL
diff(i, j) = ‖(I + αL)−1(zi − zj)‖2, (8.46)

where α was set to 15, however, results are robust to this particular choice. Given that in Sec-
tion 8.5.1 we obtained similar performance between the diffusion and superposition distances,
combined with the fact that the latter is computationally expensive, we do not implement the
superposition distance in this data set.

In order to evaluate the classification power of both approaches – `2 and diffusion distance –
we perform 240-fold cross validation for a k nearest neighbors (k-NN) classifier. More precisely,
for a particular patient, we look at the k nearest patients as given by the metric being evaluated
and assign to this patient the most common cancer histology among the k nearest patients. We
then compare the assigned histology with her real cancer histology and evaluate the accuracy of
the classifier. Finally, we repeat this process for the 240 women considered and obtain a global
classification accuracy of both approaches.

In Figure 56 (left) we show the reduction in histology classification error when using the diffusion
distance (8.46) compared to using the `2 distance (8.45) when comparing genetic profiles. The four
groups of bars correspond to classifiers built using different numbers of neighbors k ∈ {1, 3, 5, 7}.
Notice that the reduction in error is consistent across all classifiers analyzed with an average
improvement of over 21% in the error rates, unveiling the value of incorporating the network
information in the classification process.

To further analyze the obtained results, in Figure 56 (right) we present the accuracy obtained for
the serous subtype versus the accuracy obtained for the endometrioid subtype for different clas-
sifiers based on the diffusion (green) and `2 (blue) distances. Points on the top right corner of the
plot are ideal, obtaining perfect classification for both subtypes. When using diffusion, accuracies
shift towards the ideal position since the accuracies for the serous subtypes increase by 20% to
40% whereas the accuracies for endometrioid subtypes decrease by less than 5%. Furthermore,
among the 240 patients analyzed, there are 196 of them with endometrioid subtype and only 44
with serous subtype. Hence, a nearest neighbor classifier based on an uninformative distance
would tend to have a high classification accuracy for the former but a low one for the latter. This
is the case for the `2 metric. The diffusion distance, in contrast, by exploiting the gene-to-gene
interaction can overcome this limitation.
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Figure 57: Two instances of handwritten threes (top) which are interpreted as fives by the clas-
sical k-NN approach and their corresponding diffused image (bottom). Diffusion averages out
irregularities, achieving higher classification accuracy.
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Figure 58: Error rates for three binary classification problems of written digits given by the tradi-
tional and diffused k-NN approaches. The error is reduced by diffusion in the three cases.
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8.5.3. Handwritten Digit Recognition

Diffusion distance can be instrumental in the classification of digits via semi-supervised learn-
ing. To illustrate this, consider the well-known MNIST handwritten digit database [167]. Each
observation consists of a square gray-scaled image of a handwritten digit with 28 × 28 pixels.
Consequently, we can think of each observation as a vector x ∈ R784 where the value of each
component corresponds to the intensity of the associated pixel. A subset of these images – the
training set – are labeled, i.e. we know the digit that the image represents. The rest of the images
– the testing set – are unlabeled and our objective is to correctly identify the digits they represent.

K nearest neighbors is a simple conventional approach used to solve this problem. In order to
implement it, we first compute the `2 pairwise distance between all the vectors x representing the
images. Then, to obtain the estimated label of an image in the testing set, we look at the labels
of the k closest images among those in the training set and assign the most popular label to the
image in the testing set. We repeat this procedure for each image in the testing set until all of
them have an assigned label.

An alternative k-NN approach can be designed using diffusion by defining a network whose
nodes are the handwritten digits. To do this, we draw an edge – with weight 1 – between two
digits if the `2 pairwise distance between the corresponding vectors is less than a threshold τ. We
can interpret a digit in this network as a signal on top of the network with value 1 at the node that
corresponds to that digit and 0 everywhere else. Aggregating the data as in X = [x1, x2, . . . , xn]

where n is the total number of observations (either labeled or unlabeled) as well as the number of
vertices in this network such that each column in X corresponds to the pixels of one digit, the i-th
original handwritten digit corresponding to node i in the network can be thought as the weighted
average Xei of all the digits in the network where the weights are given by the i-th canonical
vectors ei, i.e., all entries of ei are zero except the ith one, which is 1. The diffused representation
of the i-th handwritten digit is computed as a weighted average of all the digits in the network
where the weights are given by (I+L)−1ei [cf. (8.14)]. Using such a network, the diffusion distance
between two images of handwritten digits, say the image i and j can be computed as

dL
diff(i, j) = ‖X(I + αL)−1(ei − ej)‖2, (8.47)

We can then train a k-NN classifier based on the diffusion distance and compare the results with
the conventional k-NN based on the `2 distance without diffusion.

In Figure 58 we present the attribution error comparison between both approaches when perform-
ing a binary attribution task between hard-to-distinguish digits: 3 vs. 5, 3 vs. 8, and 5 vs. 8. For
each of these cases, we use the entire MNIST training set and testing set with k ∈ {3, 5, 7}. It is im-
mediate to see that the diffusion approach outperforms the traditional k-NN in the three tasks. To
see why this is the case, in Figure 57 (top) we present two handwritten images that correspond to
3 but are misclassified as 5 by the traditional k-NN method. In Figure 57 (bottom) we present their
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diffused representations. It is clear that diffusion averages out irregularities found in particular
handwritten digits and drives them towards a canonical representation of the number 3.

If we replicate the comparison for a ten class classification problem, i.e. for all digits between
0 and 9, diffusion still improves the accuracy by reducing the error rates from 4.43% to 4.21%
(training set of 8600 digits, testing set of 1400 digits and k = 3). The results using k ∈ {5, 7} are
very similar where we see the outperformance of diffusion distances. Moreover, further accuracy
improvements can be obtained by combining the traditional and the diffused k-NN methods by
choosing the most popular label among the k nearest neighbors in the traditional approach and
the k + 1 nearest neighbors in the diffused approach. The error rate is further reduced to 3.93%.
We pick k neighbors from one approach and k + 1 from the other to obtain an odd total number
of neighbors, reducing the possibility of ties.

Notice that this application of the diffusion distance is fundamentally different from the one
presented in Section 8.5.2. In the ovarian cancer case, the nodes in the network represented genes
and each signal on the network represented a patient. On the contrary, in the current case, both
the nodes in the network and the signals compared represent handwritten digits. This approach
can be used in general for label propagation problems in graphs.
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Chapter 9

Graph Filter and Motor Learning
Task

We begin the chapter with the introduction of basic notions of graphs and graph signals. We start
by describing two different experiments involving the learning of different visual-motor tasks
by different sets of participants (Section 9.1). We visualize the decomposed graph frequencies
relating to the functional brain network (Section 9.2). We find that high graph frequencies of
functional networks concentrate on visual and sensorimotor modules of the brain – the two brain
areas well-known to be associated with motor learning [168, 169]. This motivates us to consider
graph frequencies other than low frequency components, whereas the PCA-oriented approach
has been focusing on low frequencies. We also describe the construction of a simple model to
establish artificial networks with a few network descriptive parameters (Section 9.2.1). We observe
that the model is able to mimic the properties of actual functional brain networks and we use
them to analyze spectral properties of the brain networks (Section 9.2.2). The paper then utilizes
graph frequency decomposition to visualize and investigate brain activities with different levels
of spatial variation (Section 9.3). It is noticed that the decomposed signals associated to different
graph frequencies exhibit different levels of temporal variation throughout learning (Section 9.3.1).
Finally, we also define learning capabilities of subjects, and examine the importance of brain
frequencies at different task familiarity by evaluating their respective correlation with learning
performance at different task familiarities (Section 9.4). We find as learning progresses, we favor
different levels of graph frequency components.

9.1. Brain Signals during Learning

We considered two experiments in which subjects learned a simple motor task [170, 171, 172]. In
the experiments, fourty-seven right-handed participants (29 female, 18 male; mean age 24.13 years)
volunteered with informed consent in accordance with the University of California, Santa Barbara
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Session 1 Session 2 Session 3 Session 4

MIN Sequences 50 110 170 230
MOD Sequences 50 200 350 500
EXT Sequences 50 740 1430 2120

Figure 59: Relationship between training duration, intensity, and depth for the first experimental
framework. The values in the table denote the number of trials (i.e., “depth”) of each sequence
type (i.e., “intensity”) completed after each scanning session (i.e., “duration”) averaged over the
20 participants.

Internal Review Board. After exclusions for task accuracy, incomplete scans, and abnormal MRI,
38 participants were retained for subsequent analysis.

Twenty individuals participated in the first experimental framework. The experiment lasted 6
weeks, in which there were 4 scanning sessions, roughly at the start of the experiment, at the end
of the 2nd week, at the end of the 4th week, and at the end of the experiment, respectively. During
each scanning session, individuals performed a discrete sequence-production task in which they
responded to sequentially presented stimuli with their dominant hand on a custom response box.
Sequences were presented using a horizontal array of 5 square stimuli with the responses mapped
from left to right such that the thumb corresponded to the leftmost stimulus. The next square in
the sequence was highlighted immediately following each correct key press; the sequence was
paused awaiting the depression of the appropriate key if an incorrect key was pressed. Each
participant completed 6 different 10-element sequences. Each sequence consists of two squares
per key. Participants performed the same sequences at home between each two adjacent scanning
sessions, however, with different levels of exposure for different sequence types. Therefore, the
number of trials completed by the participants after the end of each scanning session depends on
the sequence type. There are 3 different sequence types (MIN, MOD, EXT) with 2 sequences per
type. The number of trials of each sequence type completed after each scanning session averaged
over the 20 participants is summarized in Figure 59. During scanning sessions, each scan epoch
involved 60 trials, 20 trials for each sequence type. Each scanning session contained a total of 300
trials (5 scan epochs) and a variable number of brain scans depending on how quickly the task
was performed by the specific individual.

Eighteen subjects participated in the second experimental framework. The experiment had 3
scanning sessions spanning the three days. Each scanning session lasted roughly 2 hours and
no training was performed at home between adjacent scanning sessions. Subjects responded to a
visually cued sequence by generating responses using the four fingers of their nondominant hand
on a custom response box. Visual cues were presented as a series of musical notes on a pseudo-
musical staff with four lines such that the top line of the staff mapped to the leftmost key pressed
with the pinkie finger. Each 12-note sequence randomly ordered contained three notes per line.
Each training epoch involved 40 trials and lasted a total of 245 repetition times (TRs), with a TR
of 2,000 ms. Each training session contained 6 scan epochs (240 trials) and lasted a total of 2,070
scan TRs.
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Figure 60: (a) Total variation TV(vk) and (b) weighted zero crossings ZC(vk) of the graph Lapla-
cian eigenvectors for the brain networks averaged across participants in the 6 week training ex-
periment. (c) and (d) present the values for the 3 day experiment. In both cases, the Laplacian
eigenvectors associated with larger indexes vary more on the network and cross zero relatively
more often, confirming the interpretation of the Laplacian eigenvalues as notions of frequencies.
Besides, note that total variation increases relatively linearly with indexes.

In both experiments participants were instructed to respond promptly and accurately. Repetitions
(e.g., “11”) and regularities such as trills (e.g., “121”) and runs (e.g., “123”) were excluded in all se-
quences. The order and number of sequence trials were identical for all participants. Participants
completed the tasks inside the MRI scanner for scanning sessions.

Reordering with fMRI was conducted using a 3.0 T Siemens Trio with a 12-channel phased-array
head coil. For each functional run, a single-shot echo planar imaging sequence that is sensitive to
blood oxygen level dependent (BOLD) contrast was utilized to obtain 37 (the first experiment) or
33 (the second experiment) slices (3mm thickness) per repetition time (TR), an echo time of 30 ms,
a flip angle of 90◦, a field of view of 192 mm, and a 64 × 64 acquisition matrix. Image preprocess-
ing was performed using the Oxford Center for Functional Magnetic Resonance Imaging of the
Brain (FMRIB) Software Library (FSL), and motion correction was performed using FMRIB’s linear
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Figure 61: Absolute magnitude at each of the n cortical structures averaged across participants in
the 6 week experiment and averaged across all frequency components in (a) the set of low graph
frequencies {vk}

KL−1
k=0 , (b) the set of middle graph frequencies {vk}

KL+KM−1
k=KL

, and (c) the set of high

graph frequencies {vk}n−1
k=KL+KM

. (d)-(f) presents the average absolute magnitudes for the 3 day
experiment. Only brain regions with absolute magnitudes higher than a fixed threshold (0.015) are
colored. The magnitudes at different brain regions across the datasets are significantly similar in
the low and high graph frequencies (correlation coefficients 0.5818 and 0.6616, respectively). The
brain regions with high magnitude values significantly overlap with the visual and sensorimotor
modules, in which more than 60% of values greater than the threshold belong to the visual and
sensorimotor modules.

image registration tool. The whole brain is parcellated into a set of n = 112 regions of interest that
correspond to the 112 cortical and subcortical structures anatomically identified in FSL’s Harvard-
Oxford atlas. The choice of parcellation scheme is the topic of several studies in resting-state [173],
and task-based [174] network architecture. The question of the most appropriate delineation of
the brain into nodes of a network is open and is guided by the particular question one wants to
ask. We use Harvard-Oxford atlas here because it is consistent with previous studies of task-based
functional connectivity during learning [171, 170]. The threshold in probability cutoff settings of
Harvard Oxford atlas parcellation is 0 so that no voxels were excluded.

For each individual fMRI dataset, we estimate regional mean BOLD time series by averaging
voxel time series in each of the n regions. We evaluate the magnitude squared spectral coherence
[175] between the activity of all possible pairs of regions to construct n× n functional connectivity
matrices A. Besides, for each pair of brain regions i and j, we use t-statistical testing to evalu-
ate the probability pi,j of observing the measurements by random chance, when the actual data
are uncorrelated [176]. In the 3 day dataset, the value of all elements with no statistical signif-
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icance (pi,j > 0.05) [177] are set to zero; the values remain unchanged otherwise. In the 3 day
experiment, a single brain network is constructed for each participant. Thresholding is applied
because the networks are for the entire span of the experiment and many entries in A would be
close to zero without threshold correction. In the 6 week experiment, due to the long duration of
the experiment, we build a different brain network per scanning session, per sequence type for
each subject. Because each network describes the functional connectivity for one training session
given a subject, not many entries will be removed even in the presence of threshold correction;
consequently, no thresholding is applied for the 6 week dataset. We normalize the regional mean
BOLD observations x̂(t) at any sample time t and consider x(t) = x̂(t)/‖x̂(t)‖2 such that the total
energy of activities at all structures is consistent at different t to avoid extreme spikes due to head
motion or drift artifacts in fMRI.

9.2. Brain Network Frequencies

In this section, we analyze the graph spectrum brain networks of the dataset considered. For the
brain network A of each subject, we construct its Laplacian L = D − A, and evaluate the total
variation TV(vk) defined as

TV(vk) = vH
k Lvk = λk. (9.1)

for each eigenvector vk. Figure 60 (a) and (c) plot the total variation of all graph eigenvectors
averaged across participants of the 6 week training experiment and 3 day experiment, respectively.
In both experiments, the Laplacian eigenvectors associated with larger indexes fluctuate more on
the network. Another observation is that with respect to graph frequency indices 0 < k < 100, the
total variation increases almost linearly.

Besides total variation, the number of zero crossings is used as a measure of the smoothness of
signals with respect to an underlying network [59]. Since brain networks are weighted, we adapt
a slightly modified version – weighted zero crossings – to investigate the given graph eigenvector
vk

ZC(vk) =
1
2 ∑

i 6=j
AijI {vk(i)vk(j) < 0} . (9.2)

In words, weighted zero crossings evaluate the weighted sum of the set of edges connecting a
vertex with a positive signal to a vertex with a negative signal. Figure 60 (b) and (d) demonstrate
the weighted zero crossings of all graph eigenvectors averaged across subjects of the 6 week and
3 day experiments, respectively. The weighted zero crossings increase almost proportionally with
graph frequency index k until they eventually level off for 0 ≤ k ≤ 100. For k greater than
100, though, eigenvectors associated with higher graph frequencies exhibit lower weighted zero
crossings.

It would be interesting to examine where the associated eigenvectors lie anatomically, and the
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relative strength of their values. To facilitate the presentation, we consider three sets of eigenvec-
tors, {vk}

KL−1
k=0 , {vk}

KL+KM−1
k=KL

and {vk}n−1
k=KL+KM

, and compute the absolute magnitude at each of
the n cortical and subcortical regions averaged across participants and across all graph frequen-
cies belonging to each of the three sets. Figure 61 presents the average magnitudes for the two
experimental frameworks considered in the paper using BrainNet [178], where brain regions with
absolute magnitudes lower than a fixed threshold are not colored. Throughout the paper, the
parameter KL is set as 40 and KM is set as 32. This combination yields three roughly equally-sized
components with one piece corresponding to the 40 lowest graph frequencies and another piece
corresponding to the 40 highest frequencies. The results presented in the paper are robust with the
choice of parameters: we examined the results for KL and KM in the range of 32 to 42, inclusive,
and found similar observations as the ones presented. To demonstrate that, Figure 62 presents the
range of correlation coefficients calculated between the frequency ranges selected for this paper
and all frequency ranges for KL and KM between 32 and 42, inclusive, giving 120 correlation values
for each box plot. The correlation coefficients reported are a quantification of similarity measure
when we examine the similarity between two vectors, given as the absolute magnitudes passing
the given threshold across all brain regions. An investigation of cosine similarity gives high simi-
larities as well. We have also conducted robustness testing in our analysis of learning rate (Section
9.4) and have plotted our results obtained from using all 121 possible frequency ranges (Figure
70) and have quantified the robustness of parameters in Figure 69.

9.2.1. Artificial Functional Brain Networks

An approach to analyze the complex networks is to define a model to generate artificial networks
[179, 180]. The main motivation of an artificial network model is to use them to analyze complex
brain networks. Examples of such models include the Barabási-Albert model for scale free net-
works [181] and recent developments and insights on weighted network models [180]. Here we
present a framework to construct artificial networks that can be used to mimic the functional brain
networks with only a few parameter inputs. The model is related to weighted block stochastic
model [182], but involves more aspects like individual variance and analyzes links independent of
their connectivity strength to other brain regions. The output of the method would be a symmetric
network with edge weights between 0 and 1 without self-loops.

To begin, suppose the desired network has two clusters of nodes V1 and Vo. The algorithm
requires the average edge weight µ1 for connections between nodes of the first cluster V1, average
edge weight µo for links between nodes of the other cluster Vo, and average edge weight µ1o for
inter-cluster connections. To reflect the fact that the edge weights on some links are independent
of their joining vertices, for each edge within V1, with probability pε < 1, its weight is randomly
generated with respect to uniform distribution U [0, 1] between 0 and 1, and with probability
1− pε, its weight is randomly generated with respect to uniform distribution U [µ1 − δ, µ1 + δ].
The parameter pε determines the percentage of edges whose weights are selected irrespective of
their actual locations To further simulate the observation that different participants may possess
distinctive brain networks, if the edge weight is randomly generated from a uniform distribution
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Figure 62: Box plots demonstrating the robustness of parameters chosen for different frequency
ranges for the absolute magnitudes across brain regions for (a) 6 week and (b) 3 day experiments.
Each box plot presents the correlation coefficients between the frequency range selected for this
paper and all frequency ranges for KL and KM between 32 and 42, inclusive.

U [µ1 − δ, µ1 + δ], it is then perturbed by Au ∼ U [−uε/2, uε/2] where uε controls the level of
perturbation. The edge weights for connections within cluster Uo are generated similarly: with
probability 1 − pε, the edge weight is randomly chosen from the uniform distribution U [µo −
δ, µo + δ] before being contaminated by Au ∼ U [−uε/2, uε/2]. The edge weights for connections
between clusters U1 and Uo are formed analogously using µ1o. The method presented here can be
easily generalized to analyze brain networks with more regions of interest, i.e. by specifying sets
of regions of interest and by detailing the expected correlation values on each type of connection
between different regions.

Remark 14 At one extreme we can make each node i belonging to a different set Vi = {i}. Then
the method requires the inputs of expected weights for all nodes, or alternatively speaking, the
expected network. At the other extreme, there is only one set of nodes V , and then the method
is highly akin to a network with edge weights completely randomly generated. Any construction
of interest would have some prior knowledge regarding the community structure. Therefore, the
method proposed here can be used to see if the network constructed with the specific choice of
community structure highly simulate the key properties of the actual network, and can be used
to examine the evolution of community structure in the brain throughout the process to master a
particular task.

9.2.2. Spectral Properties of Brain Networks

In this section, we analyze graph spectral properties of brain networks. Given the graph Lapla-
cian, we examine the fluctuation of its eigenvectors on different types of connections in the brain
network [169]. More specifically, given an eigenvector vk, its variation on the visual module is
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Figure 63: Spectral property of brain networks in the 6 week experiment. (a) Left: Averaged to-
tal variation of eigenvectors vk for 6 different types of connections of the brain averaged across
all eigenvectors associated with low graph frequencies vk ∈ {vk}

KL−1
k=0 , across all participants

and scan sessions. Middle: Across all eigenvectors associated with mid-range graph frequencies
vk ∈ {vk}

KL+KM−1
k=KL

. Right: Across all eigenvectors with high graph frequencies vk ∈ {vk}n−1
k=KL+KM

.
(b) Median total variations of brain networks across participants of different scanning sessions and
different sequence types with respect to the level of exposure of participants to the sequence type
at the scanning session. Relationship between training duration, intensity, and depth is summa-
rized in Figure 59. Value of 1 on the x-axis in the figures refers to minimum exposure to sequences
(all 3 sequence types of the first session), and value of 10 on the x-axis denotes the maximum ex-
posure to sequences (EXT sequence types of the fourth session). An association between spectral
property of brain networks and the level of exposure is clearly observed (average correlation coef-
ficient 0.8164). (c) Median total variations evaluated upon artificial networks. Spectral properties
of actual brain networks can be closely simulated using a few parameters. The main text gives
all correlation values for similarity between variance among subjects and between correlations of
training intensity.

defined as

TVvisual(vk) =
∑i,j∈Vv,i 6=j Aij(vk(i)− vk(j))2

∑i,j∈Vv,i 6=j Aij
, (9.3)
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where Vv denotes the set of nodes belonging to the visual module. The measure TVvisual(vk)

computes the difference for signals on the visual module for each unit of edge weight. To fa-
cilitate interpretation, we only consider three sets of eigenvectors {vk}

KL−1
k=0 , {vk}

KL+KM−1
k=KL

, and
{vk}n−1

k=KL+KM
. We then compute the visual module total variation TVL

visual averaged over eigen-

vectors {vk}
KL−1
k=0 , and TVM

visual as well as TVH
visual similarly. Besides TVvisual, we also examine the

level of fluctuation of eigenvectors on edges within the motor module, denoted as TVmotor, and on
connections belonging to brain modules other than the visual and motor module TVothers. Further,
there are links between two separate brain modules, and to assess the variation of eigenvectors on
those links, we define total variations between the visual and motor modules

TVvisual-motor(vk) =
∑i∈Vv,j∈Vm Aij(vk(i)− vk(j))2

∑i∈Vv,j∈Vm Aij
, (9.4)

where Vm denotes the set of nodes belonging to the motor module. Total variations TVvisual-others

between the visual and other modules, and total variations TVmotor-others between the motor and
other modules are defined analogously. We chose to study visual and motor modules separately
from other brain modules because of their well-known associations with motor learning [168, 169].

Figure 63 (a) presents boxplots of the variation for eigenvectors of different graph frequencies
measured over different types of connections across participants, at the start of the six week
training. Despite that total variation of eigenvectors should increase with their frequencies, the
variation on the other module TVL

others of eigenvectors associated with low frequencies are higher
than TVH

others (pass t-test with p < 0.0001). This observation is discussed in detail in Section 9.2.3.

Next we study how the graph spectral properties of brain networks evolve as participants become
more familiar with the tasks. Figure 63 (b) illustrates the median of the variation for eigenvectors
of different graph frequencies measured over different types of connections across subjects, at
10 different levels of exposure in the six week training. As participants become more acquainted
with the assignment, their brain networks display lower variation in the visual and motor modules
and higher variation in the other modules for low and middle graph frequencies, and the exact
opposite is true for high graph frequencies. The association with training intensity is statistically
significant (average correlation coefficient r = 0.8164).

9.2.3. Discussion

Firstly, we examine why we see a decrease in zero crossings of graph frequencies when k is
greater than 100 in Figure 60. A detailed analysis shows this is because the functional brain
networks are highly connected with nearly homogeneous degree distribution, and consequently
each high graph frequency tends to have a value with high magnitude at one vertex of high degree
and similar values at other nodes, resulting in a smaller global zero crossings for eigenvectors
associated with very high frequencies.

Secondly, in terms of the visualization of graph frequencies in Figure 61, the most interesting find-
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Figure 64: Distribution of decomposed signals for the 6 week experiment. (a) Absolute magnitudes
for all brain regions with respect to xL – brain signals varing smoothly across the network –
averaged across all sample points for each individual and across all participants at the first scan
session of the 6 week dataset. (b) With respect to xM and (c) with respect to xH – signals rapidly
fluctuating across the brain. (d), (e), and (f) are averaged xL, xM and xH at the last scan session
of the 6 week dataset, respectively. Only regions with absolute magnitudes higher than a fixed
threshold are colored.

Figure 65: Distribution of decomposed signals for the 3 day experiment. (a), (b), and (c) are the
absolute magnitudes for all brain regions with respect to xL, xM and xH, averaged across all sample
points for each subject and across participants in the 3 day experiment, respectively. Regions with
absolute value less than a threshold are not colored.

ing relates to the eigenvectors associated with high graph frequencies. The magnitudes at differ-
ent brain regions for high frequencies are significantly similar across the two datasets investigated
(correlation coefficient 0.6616). There are very few noticeable brain regions in which the absolute
magnitude highlighted in the first dataset is not likewise highlighted in the second. Given the dif-
ferent experiment setups, it would not be uncommon to observe large variations across datasets.
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Figure 66: Temporal adaptations of spatial variations. Boxplots showing differences in temporal
adaptabilities between brain activities with smooth (pink), moderate (red) and rapid (maroon)
spatial variations, measured over the complete experiment for 6 week (a) and 3 day (c), and
individual training sessions for 6 week (b) and 3 day (d) experiments. We measured the temporal
adaptations using the variance of the averaged activities over the complete experiment or with
individual training sessions. Compared to activities with moderate spatial variations, smooth
(95% sessions pass t-test with p < 0.01) and rapid (65% sessions pass t-test with p < 0.005) spatial
variations have significantly higher temporal adaptations.

However, the fact that we see the majority of brain regions similarly highlighted in the two experi-
ments solidifies our understanding that eigenvector decomposition captures general signatures, as
opposed to task-specific realizations. Additionally, brain regions with high magnitude values are
highly alike (greater than 60% overlap) to the visual and sensorimotor cortices [183]. This is likely
to be a consequence of the fact that visual and motor regions are more strongly connected with
other structures, and hence an eigenvector with a high magnitude on visual or motor structures
would result in high global spatial variation. The eigenvectors of low graph frequencies are more
spread across the networks, resulting in low global variations. The middle graph frequencies are
less interesting – the magnitudes at most regions (greater than 90%) do not pass the threshold,
and little associations (correlation coefficient 0.3529) can be found between the eigenvectors of the
6 week and 3 day experiments.

Thirdly, to better interpret the meaning of variations for specific types of connections, we construct
artificial networks as described in Section 9.2.1 with visual and motor modules as regions of
interest, and consider other modules to be brain regions other than visual and motor modules. We
observe that there are three contributing factors that cause the variation within a specific module
to become higher for higher eigenvectors and to become lower for lower eigenvectors: (i) Increases
in the average edge weight for connections within the module, (ii) Increments in the average edge
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weight for links between this module to other module, and (iii) Escalation in the average edge
weight for associations within the other module. This can also be observed by analyzing closely
the definition of total variation. If a module is highly connected, in order for the eigenvector
associated with a low graph frequency to be smooth on the entire network, it has to be smooth on
the specific module, resulting in a low value in the variation of an eigenvector associated with a
low graph frequency with respect to the module of interest. Similarly, the increase in the variation
of connections between two modules, e.g. between visual and other modules are resulted from:
(i) The growth in the average edge weight for connections between visual and other modules, or
(ii) The augmentation of average weight for links within the other module. The graph spectral
properties as in Figure 63 (a) are observed because (i) visual and motor modules are themselves
highly connected, and (ii) visual module is also strongly linked with motor module.

Finally, in analyzing the evolution of graph spectral properties as participants become more famil-
iar with the tasks, following the interpretations based on artificial network analysis, this evolution
in graph spectral properties of brain networks is mainly caused by the decrease in values of
connections within visual and motor modules and between the visual and motor modules. An
interesting observation is that the values in the variation of eigenvectors associated with high fre-
quencies decline with respect to the visual module much faster than that of motor module, even
though the visual module is more strongly connected throughout training compared to the motor
module. A deep analysis using artificial networks shows that this results from the following three
factors: (i) Though more strongly connected compared to the motor module, connections within
the visual module weaken very quickly, (ii) The motor module is more closely connected with the
other module than the link between the visual module to the other module, and (iii) Association
levels within the other module stay relatively constant. Therefore, as participants become more
exposed to the tasks, compared to the visual module, the motor module becomes more strongly
connected. The graph spectral properties of actual brain networks and their evolution can be
closely imitated using artificial networks as plotted in Figure 63 (c). The artificial network created
for our analysis best imitated the real brain networks with parameters pε of 0.10, uε of 0.10, and
δ of 0.01. The average edge weights µ for visual (v), motor (m), other (o), and inter-connecting
regions are µv = 0.6028, µm = 0.4902, µo = 0.3098, µvm = 0.3985, µvo = 0.3181, and µmo = 0.3271.
The correlation coefficients of association with training intensity between real and artificial net-
works for low, medium, and high graph frequencies are 0.6436, 0.7187 and 0.8457, respectively.
Additionally, the variation among participants in real dataset can be closely mimicked using arti-
ficial network model we proposed, with correlation coefficients 0.9338, 0.9660, and 0.9486 for low,
medium, and high graph frequencies, respectively. The analysis for the three day training dataset
is highly similar (correlation coefficients 0.9834, 0.9186, and 0.9674 for low, medium, and high
graph frequencies, respectively) and for this reason we do not present and analyze it separately
here.
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9.3. Frequency Decomposition of Brain Signals

The previous sections focus on the study of brain networks and their graph spectral properties.
In this section, we investigate brain signals from a GSP perspective, and analyze the brain signals
by examining the decomposed graph signals xL, xM, and xH with respect to the underlying brain
networks. We compute the absolute magnitude of the decomposed signal xL for each brain region
averaged across all sample signals for each individual during a scan session and then averaged
across all participants. Similar aggregation is applied for xM and xH.

Figure 64 presents the distribution of the decomposed signals corresponding to different levels
of spatial variations for the first scan session (top row) and the last scan session (bottom row)
in the 6 week experiment. Figure 65 exhibits how the decomposed signals are distributed across
brain regions in the 3 day experiment. Brain regions with absolute magnitudes lower than a fixed
threshold are not colored.

9.3.1. Temporal Variation of Graph Frequency Components

We analyze temporal variation of decomposed signals with respect to different levels of spatial
variations. To this end, we evaluate the variance of the decomposed signals over multiple temporal
scales – over days and minutes – for the two experiments. We describe the method specifically for
xL for simplicity and similar computations were conducted for xM and xH. At the macro timescale,
we average the decomposed signals xL for all sample points within each scanning session with
different sequence type, and evaluate the variance of the magnitudes of the signals [60] across
all the scanning sessions and sequence types. For the 6 week experiment, there are 4 scanning
sessions and 3 different sequence types, so the variance is with respect to 12 points. For the 3
day experiment, there are 3 scanning sessions and only 1 sequence type, so the variance is for 3
points. As for the micro or minute-scale, we average the decomposed signals xL for all sample
points within each minute, and evaluate the variance of the magnitudes of the averaged signals
across all minute windows for each scanning session with different sequence types. The evaluated
variance is then averaged across all participants of the experiment of interest.

Figure 66 displays the variance of the decomposed signals xL, xM and xH at two different temporal
scales of the two experiments. For the 6 week dataset, 3 session-sequence combinations, with the
number proportional to the level of exposure of participants to the sequence (1-MIN refers to MIN
sequence at session 1, 5 denotes MIN sequence at session 4, 9 entails EXT sequence at session 3)
are selected out of the 12 combinations in total for a cleaner illustration, but all the other session-
sequence combinations exhibit similar properties.

9.3.2. Discussion

A deep analysis of Figs. 64 and 65 yields many interesting aspects of graph frequency decomposi-
tion. First, for xL, the magnitudes on adjacent brain regions tend to possess highly similar values,
resulting in a more evenly spread brain signal distribution, where as for xH, neighboring sig-
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nals can exhibit highly dissimilar values; this corroborates the motivation to use graph frequency
decomposition to segment brain signals into pieces corresponding to different levels of spatial
fluctuations. Second, decomposed signals for a specific level of variation, notedly xH, are highly
similar with respect to different scan sessions in an experiment as well as with respect to the two
experiments with different sets of participants. The correlation coefficient between datasets for
high graph frequencies is 0.6469. Third, recall that we normalize the brain signals at every sample
point for all subjects, and for this reason signals xL, xM and xH would be similarly distributed
across the brain if nothing interesting happens at the decomposition. However, in both Figs. 64
and 65, it is observed that many brain regions possess magnitudes higher than a threshold in
xL (∼ 60% pass) and xH (∼ 20% pass) while not many brain regions pass the thresholding with
respect to xM (∼ 3% pass). It has long been understood that the brain combines some degree of
disorganized behavior with some degree of regularity and that the complexity of a system is high
when order and disorder coexist [1]. xL varies smoothly across the brain network and therefore
can be regarded as regularity (order), whereas xH fluctuates rapidly and consequently can be
considered as randomness (disorder). This evokes the intuition that graph frequency decompo-
sition segments a brain signal x into pieces xL and xH, which reflect order and disorder (and are
therefore more interesting), as well as the remaining xM.

For the variance analysis, it is expected for the low graph frequency components (smooth spatial
variation) to exhibit the smallest temporal variations, exceeded by medium and then high coun-
terparts. Nonetheless, it is observed that brain activities with smooth spatial variations exhibit the
most rapid temporal variation. Because it has been shown that temporal variation of observed
brain activities is associated with better performance in tasks [60], this indicates a stronger con-
tribution of low graph frequency components during the learning process. Furthermore, since
the measurements were normalized such that the total energy of overall brain activities stayed
constant at different sampling points, the rapid temporal changes of low graph frequency com-
ponents should be accompanied by fast temporal variation of some other components, which are
found to be high frequency components in all cases. Because these results were consistent for
all of the temporal scales and datasets that we examined, and the association between temporal
variability and positive performance has been established [61], we concluded that brain activities
with smooth or rapid spatial variations offer greater contributions during learning. The graph
frequency signatures at different stages of learning is analyzed in the next section.

9.4. Frequency Signatures of Task Familiarity

Given that the decomposed signals exhibit interesting perspectives, it is natural to probe whether
the signals corresponding to different levels of spatial variations associate with learning. To this
end, we first describe how learning rate is evaluated. Given a participant, for each sequence
completed, we defined the movement time M as the difference between the time of the first
button press and the time of the last button press during a single sequence. We then estimate
the participant’s learning rate by fitting an exponential function (plus a constant) using the robust
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‖xL‖2 ‖xM‖2 ‖xH‖2

6 week experiment (linear scale) −0.3155 0.0897 0.4125
6 week experiment (logarithm scale) −0.5409 0.3992 0.3565

3 day experiment −0.9873 0.8443 0.9605

Figure 67: Pearson correlation coefficients between the number of trials (level of task familiarity)
and R values, defined as correlations between learning rate parameters and the norm of the de-
composed signal of interest. More obvious adaptability between decomposed signals and learning
across training is observed for xL and xH, with decreasing association with exposure to tasks for
the former and increasing importance for the latter.
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Figure 68: Scatter plots in which each point is for a specific training session (level of task familiar-
ity), depicting the R value defined here as correlations between learning rate parameters and the
norm of the decomposed signal of interest (Pink points in the Left: xL, Red points in the Middle:
xM, and Maroon points in the Right: xH). Top row: 6 week experiment with number of trials
described in linear scale. Middle row: 6 week experiment withe number of trials evaluated in
logarithm scale. We examine 6 week experiment by ordering the number of trials in both linear
and logarithm scales to alleviate the fact that number of trials are densely distributed towards
small values. Bottom row: 3 day experiment in which the number of trials is represented by the 3
scanning sessions in the experiment.

outlier correction [184] to the sequence of movement times M

M = c1et/κ + c2. (9.5)

where t is a sequence representing the time index, κ is the exponential drop-off parameter (which
we call the “learning rate parameter”) used to describe the early and fast rate of improvement,
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and c1 and c2 are nonnegative constants. Their sum c1 + c2 is an estimation of the starting speed
of the participant of interest prior to training, while the parameter c2 entails the fastest speed
to complete the sequence attained by that participant after extended training. A negative value
of κ indicates a decrease in movement time M(t), which is thought to indicate that learning is
occurring [185]. We chose exponential because it is viewed as the most statistically robust choice
[186]. Further, the approach that we used has the advantage of estimating the rate of learning
independent of initial performance or performance ceiling.

We evaluate the learning rate for all participants at each scanning session, and then compute the
correlation between the norm ‖xL‖2 of the decomposed signal corresponding to low spatial vari-
ation and the learning rates across subjects. The correlation (R value) between the norms ‖xM‖2

as well as ‖xH‖2 and learning rates are also calculated. Figure 68 plots the Pearson correlation
coefficients at all scanning sessions of the two experiments considered. The horizontal axis de-
notes the level of exposure of participants to the sequence – which day in the 3 day experiment
and how many number of trials participants have completed at the end of the scanning session
in the 6 week experiment. Points are densely distributed for small number of trials in the 6 week
experiment, so to mitigate this effect, we also plot the points by taking the logarithm of numbers
of trials completed. We emphasize that due to normalization at each sampling point, the corre-
lation values would all be 0 if graph frequency decomposition segments brain signals into three
equivalent pieces. There are scan sessions where the correlation is of particular interest, however
the most noteworthy observation is the change of correlation values with the level of exposure for
participants.

In general, for xL corresponding to smooth spatial variation, we see a gradually decreasing trend
in correlation with learning as training progresses. Although not all training sessions can be
fit to this pattern (i.e. trials 500 and 740), it is still visible that the correlation with learning is
above zero (≈ 0.25) at the start of the training when participants perform the task for the first
time and gradually shifts to below zero (≈ −0.25) at the end of the experiment when individuals
are highly familiar with the sequence. For xH corresponding to vibrant spatial variation, its
correlation with learning is below zero (≈ −0.2) at the start of the training, and gradually increases
throughout training until it is above zero (≈ 0.25) at the end of the experiment, with the exception
of trials 500 and 740. This is the exact opposite of xL. For xM, correlation between its norm ‖xM‖2

with learning rate generally increases with the intensity of training. However, this trend is not
as obvious compared to other decomposition counterparts, and there are a greater number of
sessions that cannot be fit to this pattern. The correlation between the number of trials and R
values is summarized in Figure 67. For robustness testing, we conduct similar analysis using the
120 other sets of parameters described in Section 9.2. The plots (similar to Figure 68) for the R
values resulting from all parameter choices are presented in Figure 70 and the correlation between
the number of trials and the average R value from considering all parameter choices is summarized
in Figure 69. Again, similar observations are found in different experiments involving different
learning tasks and different sets of participants.
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‖xL‖2 ‖xM‖2 ‖xH‖2

6 week experiment (linear scale) −0.2944 0.0486 0.3808
6 week experiment (logarithm scale) −0.5334 0.3872 0.3189

3 day experiment −0.9880 −0.9238 0.9976

Figure 69: Pearson correlation coefficients for robustness testing, as comparable to Figure 67. Each
correlation coefficient is between the number of trials (level of task familiarity) and the average R
value obtained at each trial. As such, each trial contains 121 R values for the different frequency
ranges considered for KL and KM between 32 and 42, inclusive. Each R value is defined as the
correlation between learning rate parameters and the norm of the decomposed signal of interest
for a given frequency range.
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Figure 70: Robustness testing to show similar trends as observed in Figure 68. Each box is for a
specific training session (level of task familiarity), depicting the R values obtained from changing
the frequency ranges of KL and KM between 32 and 42, inclusive. As such, the R value is defined
here as correlations between learning rate parameters and the norm of the decomposed signal of
interest for a specific frequency range. Each box contains R values for 121 different combinations
of frequency ranges.

9.4.1. Discussion

This result further implies that the most association between learning or adaptability during the
training process comes from the brain signals that either vary smoothly (xL, regularity) or rapidly
(xH, randomness) with respect to the brain network. Therefore, the graph frequency decompo-
sition could be used to capture more informative brain signals by filtering out non-informative
counterparts, most likely associated with middle graph frequencies. Besides, the positive asso-
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ciation between ‖xL‖2 and learning rates as well as the negative association between ‖xH‖2 and
learning rates at the start of training indicates that it favors learning to have more smooth, spread,
and cooperative brain signals when we face an unfamiliar task. As we gradually become familiar
with the task, the smooth and cooperative signal distribution becomes less and less important,
and there is a level of exposure when such signal distribution becomes destructive instead of
constructive. We note that the task in the 3 day experiment is more difficult compared to that of
the 6 week experiment, and therefore the time when the cooperative signal distribution starts to
become detrimental (the point where the regression line intercepts the horizontal line of R value
equaling 0) is also comparable in the two experiments, describing a certain level of familiarity to
the task. When we become highly familiar with the task, it is better and favors further learning to
have varied, spiking, and competitive brain signals.

In the dataset evaluated here, we utilize the average coherence between time series at pairs of
brain cortical and subcortical regions during the training as the network. Hence, a concentration
of brain activities towards low graph frequencies would imply that activities on brain regions that
are generally cooperative are indeed similar. Simultaneously, the interpretation of concentration
of brain activities towards high graph frequencies is that brain activities on brain regions that
are generally cooperative are in fact dissimilar. In terms of learning, one possible explanation is
that there are two different stages in learning: we start by grasping the big picture of the task
to perform relatively well, and then we refine the details to perform better and to approach our
limits.

Because the graph frequency analysis method presented in this paper applies to any setting where
signals are defined on top of a network structure representing proximities between nodes, it would
be interesting in future to use this method to investigate other types of signals and networks in
neuroscience problems. As an example, in situations given fMRI measurements on structural
networks, concentration of signals in low graph frequency components would imply functional
activities do behave according to the structural networks.

Besides, it has been understood that learning is different when one is unfamiliar or familiar with
a particular task – it is easy to improve performance at first exposure due to the fact that one is
far from their performance ceiling. It would therefore be interesting to utilize graph frequency
decomposition to further analyze the difference between learning scenarios at different stages
of familiarity, e.g. adaptability at first exposure and creativity when one fully understands the
components of the specific tasks.
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Chapter 10

Graph Filter and Attention Switching

In this chapter, we broadly cover how GSP can be applied for an elegant and principled analysis of
brain activity. In Section 10.1, we start by constructing a graph from structural connectivity—the
backbone of the brain—and considering brain activity as graph signals. Then, in Section 10.2, we
follow the definitions of graph spectrum analysis introduced in Chapter 7 to introduce a number
of graph signal operations that are particularly useful for processing the activity time courses mea-
sured at the nodes of the graph; i.e., filtering in terms of anatomically-aligned or -liberal modes,
randomization preserving anatomical smoothness, and localized decompositions that can incor-
porate additional domain knowledge. In the following sections, we review a recent study in [62]
demonstrating the relevance of these GSP tools as an integrated framework to consider structure
and function: in the context of an attention task, we discuss the potential of GSP operations to
capture cognitively relevant brain properties (Section 10.3). We also provide avenues for utilizing
GSP tools in the structure-informed study of functional brain dynamics (Section 10.4), through
the extraction of significant excursions in a particular structure/function regime (Section 10.4.1),
and by more elaborate uses of GSP building blocks that can broaden the analysis to the temporal
frequency domain, or narrow it down to a localized subset of selected regions (Section 10.4.2).

10.1. Brain Graphs and Brain Signals

Following the notations defined in Chapter 7, the brain regions encoded in the nodes of V are
macro-scale parcels of the brain that our current understanding of neuroscience deems anatom-
ically or functionally differentiated. There are various parcellations in use in the literature that
differ mostly in their level of resolution [188, 1]. As an example, the networks that we study
here consist of N = 82 regions from the Desikan-Killiany anatomical atlas [189] combined with
the Harvard-Oxford subcortical parcels [190]. A schematic representation of a few labeled brain
regions is shown in Figure 71 (left).

The entries Aij of the adjacency matrix A measure the strength of the axonal connection between
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Brain atlas Tractography Brain graph

Figure 71: Estimating brain graphs. Knowledge from an anatomical atlas based on anatomical
features such as gyri and sulci (left) is combined with MRI structural connectivity extracted from
diffusion-weighted MRI (middle), which can then be used to estimate the brain graph (right).
[Adapted from [187]].

region i and region j. This strength is a simple count of the number of streamlines that connect the
regions, and can be estimated with diffusion spectrum imaging (DSI) [191]. In specific, MRI allows
the acquisition of detailed structural information about the brain. The brain graph investigated in
the present article was acquired on a Siemens 3.0T Tim Trio with a T1-weighted anatomical scan.
Twenty-eight healthy individuals volunteered for the experiment. We followed a parallel strategy
for data acquisition and construction of streamline adjacency matrices as in [191]. First, DSI scans
sampled 257 directions using a Q5 half-shell acquisition scheme with a maximum b-value of 5,000
and an isotropic voxel size of 2.4 mm. We utilized an axial acquisition with repetition time (TR)
= 5 s, echo time (TE)= 138 ms, 52 slices, field of view (FoV) (231, 231, 125 mm). We acquired a
three-dimensional SPGR T1 volume (TE = minimal full; flip angle = 15 degrees; FOV = 24 cm) for
anatomical reconstruction. Second, diffusion spectrum imaging (DSI) was performed to establish
structural connectivity. DSI data were reconstructed in DSI Studio using q-space diffeomorphic
reconstruction (QSDR)[192]. QSDR computes the quantitative anisotropy in each voxel, which is
used to warp the brain to a template QA volume in Montreal Neurological Institute (MNI) space.
Then, spin density functions were again reconstructed with a mean diffusion distance of 1.25 mm
using three fiber orientations per voxel. Fiber tracking was performed in DSI studio with an angu-
lar cutoff of 35◦, step size of 1.0 mm, minimum length of 10 mm, spin density function smoothing
of 0.0, maximum length of 400 mm, and a QA threshold determined by diffusion-weighted imag-
ing (DWI) signal in the colony-stimulating factor. Deterministic fiber tracking using a modified
FACT algorithm was performed until 1,000,000 streamlines were reconstructed for each individ-
ual. Third, each anatomical scan was segmented using FreeSurfer[193], and parcellated using the
connectome mapping toolkit [194]. A parcellation scheme including N = 87 regions was regis-
tered to the B0 volume from each subject’s DSI data. The B0 to MNI voxel mapping produced
via QSDR was used to map region labels from native space to MNI coordinates. To extend region
labels through the grey-white matter interface, the atlas was dilated by 4mm [195]. We used FSL to
nonlinearly register the individual T1 scans to MNI space. By combining parcellation and stream-
line information, we constructed subject-specific structural connectivity matrices, whose elements
represent the number of streamlines connecting two different regions [196], divided by the sum
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Figure 72: Example brain activity signals. (A) For an example subject, the heat map of BOLD
magnitude activity across brain regions (vertically) and time points (horizontally). Brain activity
signals can be considered as a two-dimensional matrix, indexed in both the temporal and spatial
domains. From the temporal perspective, there are certain time instances (e.g., in this case, be-
tween 30 and 40 seconds and between 70 and 80 seconds) when BOLD magnitudes are in general
stronger than for others. From the spatial perspective, signals on most brain regions change in
the same direction, but there are certain brain regions where their changes do not follow the main
trend. As we will see, low and high graph frequency components, respectively, can be used to
extract these two different pieces of information. (B) For the same subject, distribution of fMRI
BOLD values for each brain region (horizontally) across all time points. Different brain regions
exhibit different levels of variability, but in general, the wide variance of BOLD signals complicates
data analysis. For each brain region, edges of the box denote 25th and 75th percentiles respec-
tively; whiskers extend to the extreme points not considered to be outliers; circles denote outliers,
which are values beyond 1.5 times the interquartile range away from the edges of the box.

of their volumes [187]. This process yields the weighted adjacency matrix A ∈ RN×N for each
individual considered here. Inter-subject variability of structural connectivity has demonstrated
clinical value as it has been reliably associated with neurological [116, 197] and psychological [198]
disorders.

Besides structural connectivity, it is also possible to acquire brain activity signals x ∈ RN such that
the value of the ith component xi quantifies neuronal activity in brain region i. In specific, To derive
the studied brain activity signals, functional MRI (fMRI) runs were acquired during the same
scanning sessions as the DSI data on a 3.0T Siemens Tim Trio whole-body scanner with a whole-
head elliptical coil by means of a single-shot gradient-echo T2* (TR = 1500 ms; TE = 30 ms; flip
angle = 60◦; FOV = 19.2 cm, resolution 3mm x 3mm x 3mm). Preprocessing was performed using
FEAT [199], and included skull-stripping with BET [200] to remove non-brain material, motion
correction with MCFLIRT [199], slice timing correction (interleaved), spatial smoothing with a
6mm 3D Gaussian kernel, and high-pass temporal filtering to reduce low-frequency artifacts.
We also performed EPI unwrapping with fieldmaps in order to improve subject registration to
standard space. Native image transformation to a standard template was completed using FSL’s
affine registration tool, FLIRT [199]. Subject-specific functional images were co-registered to their
corresponding high-resolution anatomical images via a Boundary Based Registration technique
[201] and were then registered to the standard MNI-152 structural template via a 12-parameter
linear transformation. Finally, we extracted region-averaged BOLD signals using the same atlas
as for the structural analysis. At the end of this pipeline, we are thus left with a signal matrix
X ∈ RN×T for each subject, reflecting the activity levels of all brain regions over time.
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BOLD signals for all the N studied brain regions are acquired over T successive time points, and
therefore, we define the matrix X ∈ RN×T such that its jth column codifies brain activity at time
j. An example of such a brain signal matrix is provided in Figure 72A, with the corresponding
distribution of values for each brain region illustrated in Figure 72B.

Brain activity signals carry dynamic information that is not only useful for the study of pathology
[197, 202, 203], but also enables us to gain insight into human cognitive abilities [204, 205, 206].
Whereas physical connectivity can be seen as a long-term property of individuals that changes
slowly over the course of years, brain activity signals display meaningful fluctuations at second
or sub-second time scales that reflect how different parts of the brain exchange and process in-
formation in the absence of any external stimulus, and how they are recruited to meet emerging
cognitive challenges. There is increasing evidence that differences in activation patterns across
individuals tightly relate to behavioral variability [207, 208, 209, 76].

To the extent that brain activity signals are generated on top of the physical connectivity sub-
strate, brain graphs and brain signals carry complementary information and should be studied in
conjunction. This has been a challenge in neuroscience due to the unavailability of appropriate
methods for performing this joint analysis. Here, we advocate for the use of GSP tools, as detailed
in the following section.

10.2. Graph Surrogate Signals and Graph Wavelets

In this section, we generalize surrogate signals used to evaluate the significance of obtained results
as well as wavelet transforms to graph domains.

10.2.1. Generation of Graph Surrogate Signals

A pivotal aspect in any research field is to assess the significance of obtained results through
statistical testing. More precisely, one aims to invalidate the null hypothesis, which expresses the
absence of the effect of interest. Standard parametric tests such as the well-known t-test assume
independent and identically distributed Gaussian noise, which makes a weak null hypothesis
for most applications. Non-parametric tests such as the permutation test provide a powerful al-
ternative by mimicking the distribution of the empirical data. For correlated data, the Fourier
phase-randomization procedure [210] has been widely applied as it preserves temporal autocor-
relation structure under stationarity assumptions. This standard method can be applied to the
temporal dimension of our graph signals:

Y = XVH
F ΘtimeVF, (10.1)

where and VF is the Fourier matrix, the diagonal of Θtime contains random phase factors accord-
ing to the windowing function Θ(λl) = exp(j2πθl), with θl realizations1 of a random variable
uniformly distributed in the interval [0, 1]. From the surrogate signals, one can then compute a

1In practice, some additional constraints are added such as preservation of Hermitian symmetry.
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Figure 73: Graph signal processing for brain imaging. (A) Structural connectivity from diffusion-
weighted MRI, as seen in the form of a sagittal brain view (top) or of an adjacency matrix where
the weights represent the strength of the structural connections (bottom), is used to build a graph
representing the brain’s wiring scaffold. (B) Through the eigendecomposition of the Laplacian
(left plot) or adjacency (right plot) matrix, this structural graph can be analyzed in the spectral
domain. The smallest Laplacian eigenvalues (or most positive adjacency eigenvalues) (labeled
in blue) are associated with low-frequency modes on the graph (C, top brain views), while the
largest Laplacian eigenvalues (or most negative adjacency eigenvalues) (labeled in red) are as-
sociated with high-frequency modes (C, bottom brain views). Together, these modes define the
graph Fourier transform. Functional MRI data measured at the nodes of the graph (D) can be
decomposed using these modes, and transformed by means of graph signal processing tools (E).

test statistic and establish its distribution under the null hypothesis by repeating the randomiza-
tion procedure; i.e., the power spectrum density of the surrogate data is dictated by the empirical
data. Note that in this setting, the spatial features of null realizations are identical to the ones of
the actual data, while temporal non-stationary effects are destroyed.

The phase randomization procedure can be generalized to the graph setting [211] by considering
the GFT. In particular, the graph signal can be decomposed on the GFT basis and then, the graph
spectral coefficients can be randomized by flipping their signs. Assuming that the random sign
flips are stored on the diagonal of Θgraph, we can formally write the procedure as:

Y = VΘgraphV>X. (10.2)

This procedure generates surrogate graph signals in which the smoothness as measured on the
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graph is maintained, but in which the non-stationary spatial effects is destroyed. The temporal
properties of null realizations are identical to those observed in the actual data.

10.2.2. Wavelets and Slepians on the Graph

The wavelet transform is another fundamental tool of signal processing [212] providing localized,
multiscale decompositions. Several designs have been proposed to generalize this concept to
graphs, such as approaches in the vertex domain [213, 214, 215], based on diffusion processes [216,
217], or using the spectral domain [218, 219, 220]. The latter design builds upon the GFT and has
been applied for multiscale community mining [221] or to investigate uncertainty principles [67,
68, 69, 70].

Here, we detail a more recent design of a localized decomposition for graph signals that is based
on a generalization of Slepian functions [222] and that can deal with additional domain knowl-
edge. Let us consider the problem of retrieving a signal x ∈ RN that is maximally concentrated
within a subset of nodes from the graph at hand, while at the same time setting a maximal
bandwidth on the solution. As the global concentration of a signal is given by x>x, we end up
maximizing

µ =
x̃>V̄>MV̄x̃

x̃>x̃
, (10.3)

where M is the diagonal selectivity matrix with elements Mi,i = 0 or 1 to respectively exclude, or
include, a node into the sub-graph of interest, and V̄ ∈ RN×M is a trimmed GFT matrix where
only low-frequency basis vectors are kept. The interpretation here is that we aim at finding the
linear combination of band-limited graph spectral coefficients enabling the best localization of the
signal within the sub-graph. Note that the sub-graph is selected using prior information, and not
optimized over.

If we define the concentration matrix as C = V̄>MV̄, then the problem amounts to solving its eigen-
decomposition, and {p̃k}, k = 0, 1, . . . , M− 1, are the weighting coefficients obtained as solutions.
We assume that they are ordered in decreasing eigenvalue amplitude (µ0 > µ1 > . . . > µM−1), so
that p̃0 is the optimal (maximally concentrated) solution. From the set of coefficients, the Slepian
matrix can then be retrieved as:

P = V̄P̃, (10.4)

where P ∈ RN×M and each column contains one of the Slepian vectors pk. Slepian vectors are
not only orthonormal within the whole set of nodes (p>k pl = δk−l), but also orthogonal over the
chosen subset (p>k Mpl = µkδk−l).

Now, in order to make Slepian vectors more amenable to the application of GSP tools, let us
consider an alternative optimization criterion in which the modified concentration matrix is given
as C2 = Λ̄1/2CΛ̄1/2, with Λ̄ ∈ RM×M the trimmed diagonal matrix of eigenvalues. The new
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quantity to optimize then reads:

ξ =
x̃>Λ̄1/2V̄>MV̄Λ̄1/2x̃

x̃>x̃
. (10.5)

The set of solution Slepian vectors are still orthonormal, but this time, they satisfy p>k Mpl =

ξkδk−l . Observe that, when using the Laplacian matrix as our graph shift operator, if all nodes
are selected as the subset of interest (M = I) while enabling a full bandwidth (Λ̄ = Λ, V̄ = V),
then we fall back on the classical Laplacian embedding case discussed in Chapter 7, and as such,
this modified criterion can be seen as a generalization of Laplacian embedding (i.e., a modified
embedded distance criterion) under user-defined bandwidth and selectivity constraints.

Analogously to the GFT setting, solution Slepian vectors of increasing eigenvalue ξk can then be
regarded as building blocks of increasing graph frequency, but within the chosen sub-graph, i.e.,
of increasing localized frequency. The conceptual difference between both optimization schemes
is illustrated in an example dataset of leopard mesh in Figure 74, where the sub-graph is the
head of the leopard as shown in Figure 74A. Four of the Slepian vectors derived from (10.5) are
shown with their localized frequency ξ, their energy concentration µ computed from (10.3), and
their embedded distance λ = p>Lp. The leftmost example denotes a low frequency on the whole
graph, with very weak signal within the selected sub-graph, and thus both low localized frequency
and energy concentration. The second Slepian vector shows fairly uniform negative signal within
the sub-graph, resulting in a quite large energy concentration, but a very low localized frequency.
The last two examples reflect Slepian vectors that are both strongly concentrated (high µ) and of
high localized frequency (high ξ).

If Laplacian embedding is performed on the full graph (Figure 74C, left plot), the resulting eigen-
vectors linearly span the graph frequency spectrum (black line). If the energy concentration crite-
rion is used for generating Slepian vectors (middle plot), there is a well-defined transition point
past which Slepian vectors become strongly concentrated within the selected subset of nodes. If
the modified embedded distance criterion is used (right plot), then, past a point where Slepian
vectors become concentrated within the subset (around 600 in this example), they also linearly
span the localized graph frequency space.

As a result, it becomes possible to apply similar GSP tools as for the GFT, but for a decomposi-
tion that can be tailored in terms of localization by utilizing different subgraphs, and the choice
of the bandwidth. In fact, the Slepian matrix can be seen as an alternative set of basis vectors,
themselves obtained as a linear combination of Laplacian eigenvectors under the localized con-
centration constraint. For example, the temporal signal matrix X at hand can be projected on the
Slepian building blocks as P>X, and if we define the diagonal matrix ΓL as a localized low-pass
filter by setting [ΓL]i,i = 1 if ξi < ξ̂L (low localized frequency) and µi > ε (concentrated solution),
or 0 otherwise, the locally filtered output signal would be given by:

YΓL = PΓLP>X. (10.6)
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Figure 74: Illustration of Slepian vectors and their properties. (A) Within the considered graph
(a leopard mesh), the head is selected as the subset of nodes of interest. (B) Example Slepian
vectors obtained from the modified embedded distance optimization criterion (10.5). In each
case, alongside localized frequency (ξ), embedded distance (λ), and energy concentration (µ) are
also shown. (C) For a bandwidth M = 1000 and Laplacian embedding (left), energy concentration
(middle) or modified embedded distance (right) optimizations, sorting of the obtained eigenvalues
(respectively λ, µ or ξ).

10.3. A Brain GSP Case Study: Deciphering the Signatures of Attention Switching

We now discuss how the aforementioned GSP methods can be applied in the context of functional
brain imaging. Figure 75 is reproduced from [62]; Figures 76A and B are adapted from [62].
To do so, we focus on the data whose acquisition was described in Section 10.1, Callouts. For
each volunteer, fMRI recordings were obtained when performing a Navon switching task, where
local-global perception is assessed using classical Navon figures [223]. Local-global stimuli were
comprised of four shapes – a circle, cross, triangle, or square – that were used to build the global
and local aspects of the cues (see Figure 75A for examples).

A response (button press) to the local shape was expected from the participants in the case of
white stimuli, and to the global shape for green ones. Two different block types were considered
in the experiment: in the first one (Figure 75B), the color of the presented stimuli was always the
same, and the subjects thus responded consistently to the global or to the local shapes. In the
second block type (Figure 75C), random color switches were included, so that slower responses
were expected. The difference in response time between the two block types, which we refer to as
switch cost, quantifies the behavioral ability of the subjects.

To study the association between brain signal and attention switching, we decomposed the func-
tional brain response into two separate components: one representing alignment with structural
connectivity (i.e., the regions that activate together are also physically wired), and one describing
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Figure 75: Cognitive task requiring perceptual switching. (A) Example stimuli based on Navon
local-global features. Subjects were trained to respond to the larger (or “global”) shapes if the
stimulus was green and to the smaller (or “local”) shapes if it was white. (B) An example of the
non-switching condition for responses. Subjects viewed a sequence of images and were instructed
to respond as quickly and as accurately as possible. (C) An example of the switching condition
between stimuli requiring global and local responses. Here, trials with a red exclamation mark
are switches from the previous stimulus.

liberality (i.e., the areas that exhibit high signal variability with respect to the underlying graph
structure). To do so, we performed graph signal filtering (Section 7.2) with two different filtering
matrices: (1) ΨAl, so that YΨAl = VΨAlV>X is the transformed (low-pass filtered) functional data
in which only the 10 lowest frequency modes are expressed at each time point; and (2) ΨLib, for
which YΨLib only represents the temporal expression of the 10 largest frequency modes (high-pass
filtering). At a given time point, the filtered functional signal varies in sign across brain regions.
Thus, to derive a subject-specific scalar quantifying alignment or liberality, we considered the
norms of those signals as measures of concentration, which were eventually averaged across all
temporal samples of a given subject. We used the `2 norm because it provides an interpretation
of energy for each graph frequency component; other reasonable choices of norm, including the
`1 norm, yield similar results. Also, presented results are obtained using the adjacency matrix as
the graph shift operator, but similar findings were recovered using the Laplacian matrix instead
(see Callout 3).

To relate signal alignment and liberality to cognitive performance of the participants, we com-
puted partial Pearson’s correlation between our concentration measures and switch cost (median
additional response time during switching task blocks compared to non-switching task blocks).
Age and motion were included as covariates to remove their impact from the results. Regarding
alignment, there was no significant association (p > 0.35; Figure 76A). In other words, the extent
with which functional brain activity was in line with the underlying brain structural connectivity
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Figure 76: Switch cost correlates with the concentration in liberal signal. (A) Switch cost does
not significantly relate to the concentration of the low-frequency functional signal component
(alignment). (B) A lower concentration of graph high-frequency components is associated with
a lower switch cost, that is, with faster attention switching. (C) The correlation between switch
cost and liberal signal concentration is much stronger in the actual data than in null realizations,
irrespective of whether the statistical randomization is performed in the graph domain (denoted
as ’G’ in the figure), in the temporal domain (denoted as ’T’ in the figure), or jointly performed
in both (denoted as ’G-T’ in the figure). Blue, cyan and purple data points denote the correlation
coefficients obtained from surrogate signals under the three null models, while the red rectangle
indicates the real correlation coefficient (ρ = 0.59). ρ, partial Pearson’s correlation coefficient; p,
p-value.

did not relate to cognitive abilities in the assessed task. However, we observed a significant pos-
itive correlation between liberal signal concentration and switch cost (ρ = 0.59, p < 0.0015; see
Figure 76B). Thus, the subjects exhibiting most liberality in their functional signals were also the
ones for whom the attention switching task was the hardest. We verified that the high-frequency
modes involved in those computations were not solely localized to a restricted set of nodes by
evaluating the distribution of the average decomposed signal across all brain regions. When av-
eraged across all time points and subjects, 27 brain regions had their decomposed signals higher
than 1.5 times the mean of the distribution (approximately 3), confirming that a wide area of the
brain was spanned by high-frequency modes. From these results, one can see that a GSP frame-
work may provide a way to disentangle brain signals that exhibit different levels of association
with attention switching.

To more thoroughly examine the significance of the association between liberal signals and switch
cost, we performed a null permutation test by generating graph surrogate signals as described in
Section 10.2.1. Specifically, we generated 100 graph surrogate signals by randomly flipping the
signs stored on the diagonal of Θgraph, as in (10.2). Then, we evaluated the association between
the null surrogate signals and switch cost. As seen in Figure 76C (case ‘G’), the actual correlation
coefficient between liberal signal concentration and switch cost (denoted by the red rectangle) is
significantly larger than when computed on any of the null graph surrogate signals. We also
performed the same process using phase randomization in the time domain to generate surrogate
signals (see Figure 76C, case ‘T’), which preserves the temporal stationarity assumption, and com-
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Figure 77: Results carry over to alternative graph shift operator – graph Laplacian (A) Switch
cost correlates with the concentration in liberal signal and not aligned signal using Laplacian
as a shift operator; results are similar as in Figure 76A and B. Horizontal brain views depicting
excursion occurrence across brain nodes with Laplacian for alignment (B) and liberality (C); results
are similar as in Figure 79B.

bining phase randomization in the time domain and randomly flipping the signs of graph spectral
coefficients (Figure 76C, case‘G-T’). Again, the actual correlation coefficient between liberal signal
concentration and switch cost was significantly larger than for any of the null realizations.

To confirm that the graph frequency decomposition framework is insensitive to the level of reso-
lution used in the considered parcellation, we examined the data recorded during the same exper-
iment, on the same subjects, but at a higher resolution (N = 262 different brain regions). In other
words, we considered the same experiment, but defined the network differently by having each
node of V consisting of a smaller volume of the brain. We followed the same graph frequency de-
composition, using the adjacency matrix as graph shift operator, on this finer graph. We observed
that the results still held, as switch cost did not significantly relate to the concentration of the
low-frequency signal component (ρ = 0.3408, p = 0.0759), whereas a lower concentration of the
high-frequency component was associated with faster attention switching (ρ = 0.4232, p = 0.0249).
Here and above, the results were also robust to the number of largest/smallest frequency compo-
nents used in the decomposition.

In sum, in this section we reviewed a recent study [62] demonstrating that individuals whose
most liberal fMRI signals were more aligned with white matter architecture could switch atten-
tion faster. In other words, relative alignment with anatomy is associated with greater cognitive
flexibility. This observation complements prior studies of executive function that have focused on
node-level, edge-level, and module-level features of brain networks [224, 225]. The importance of
this finding illustrates the usefulness of GSP tools in extracting relevant cognitive features.

Up to this point, we have been dealing with a graph frequency decomposition considered at the
level of the whole brain. However, GSP tools also allow us to independently evaluate separate
nodes, or sets of nodes, from the graph at hand. In the present case, this flexibility permits a more
in-depth study of which brain regions are specifically responsible for the observed association
between liberality and switch cost. For this purpose, we considered 9 different, previously defined
functional brain systems [191], each of which included a distinct set of regions. We assessed,
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Figure 78: Pinpointing the brain systems involved in attention switching. (A) Separate partial
correlation assessments between switch cost and alignment (blue) or liberality (red) signal con-
centration on the brain areas belonging to different functional systems, using age and motion as
covariates. Systems are ordered in decreasing liberality correlation coefficient order. Liberality
concentrations of subcortical and fronto-parietal systems exhibit the highest and most significant
contributions to the association with switch cost. Liberality concentrations of other systems and
alignment concentrations of any system exhibited no significant association (p > 0.05). (B) A
lower concentration of graph high-frequency components in the subcortical system is associated
with faster attention switching. (C) A lower concentration of graph high-frequency components
in the fronto-parietal system is associated with faster attention switching.

separately for each system, the correlation between switch cost and alignment or liberality. In
the former case (alignment), there was no significant association, whereas in the latter (liberality),
the relationship seen in Figure 76B could be narrowed down to two significant contributors: the
subcortical and the fronto-parietal systems (Figure 78). Those results highlight the ability of GSP
tools to not only decompose signals in the graph frequency domain, but also in the graph spatial
domain (examining different nodes in the graph). Combining those two analytical axes enables us
to gather deeper insights into functional brain activity and its relation to cognition.

Multiple graph shift operators could be used to decompose graph signals. Most of the material
presented in this work uses the adjacency matrix as graph shift operator, but results remain very
similar if the Laplacian matrix is used instead. More specifically, we reevaluated the association
with switch cost illustrated in Figure 76, and the set of brain regions most frequently undergoing
alignment or liberality excursions as displayed in Figure 79B, using the Laplacian matrix as graph
shift operator. Figure 77, presented below, illustrates the similarity in the obtained results. There
exist other types of graph shift operators, e.g. the normalized Laplacian, for which results can
also be expected to remain relatively similar.

10.4. Perspectives for Brain GSP: Studying Functional Dynamics

10.4.1. Resolving Excursions in Alignment or Liberality Regimes

We now illustrate, on the same data as above, how GSP tools can be applied to provide insights
into the dynamics of functional brain activity. For every subject, we generated 1000 null signal
matrices using the strategy outlined in (10.2) (graph domain randomization). We combined this
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Figure 79: Significant excursions of aligned and liberal functional signals across regions. (A)
For all 82 nodes, percentage of significant excursions for alignment (top panel, light and dark blue
box plots) or liberality (bottom panel, red and orange box plots) across subjects. The horizontal
dashed line denotes chance level (α = 5%), and light gray vertical dashed lines separate the box
plots from different regions. Light colors denote regions from the left side of the brain, and
dark colors from the right side. (B) For alignment (left box) and liberality (right box), horizontal
and sagittal brain views depicting excursion occurrence across brain nodes. A larger amount of
significant excursions is denoted by a bigger and redder sphere. Left on the brain slices stands for
the right side of the brain.

operator (Θgraph) with the alignment/liberality filtering operations, to generate null data for the
aligned and liberal signal components. Formally, we thus computed a null realization as Y =

VΘgraphΨAlV>X or Y = VΘgraphΨLibV>X, respectively. At an α-level of 5%, we then used the
generated null data to threshold the filtered signals, in order to locate significant signal excursions
– particular moments in time when entering a regime of strong alignment, or liberality, with
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the underlying brain structure. In doing so, we considered absolute graph signals. Presented
results are obtained using the adjacency matrix as graph shift operator, but similar findings were
recovered using the Laplacian matrix (see Callout 3).

Figure 79A highlights the percentage of time points showing significant excursions for the aligned
(light blue and dark blue box plots) and liberal (red and orange box plots) signal components
across brain regions. An excursion percentage value of 5% (horizontal dashed line) denotes
chance level. Such a case was, for instance, observed for the paracentral and posterior cingu-
late areas (nodes 11 and 14), both in terms of aligned and liberal signal contributions. As null
data realizations were generated in the graph domain, this observation means that those nodes
did not show signal fluctuations going beyond what could be accounted for by the underlying
spatial smoothness of the brain’s structural graph.

Most brain regions did display very significant excursion percentages: considering alignment,
occipital (nodes 21-25), parietal (nodes 18 and 19) and temporal (nodes 29-33) regions were the
strongest contributors, while for liberality, key areas were located in temporal (nodes 29-33), sub-
cortical (nodes 34, 36-39) or frontal (nodes 1-9) regions. Figure 79B displays the anatomical location
of the main contributing regions. Qualitatively similar findings were also obtained when resorting
to a finer parcellation of the brain (N = 262 regions; see Supplementary Figure 1). The observation
that the majority of brain nodes show frequent moments of strong alignment or liberality with
respect to brain structure is consistent with current knowledge on spontaneous brain dynamics,
since an alternation between time points with and without global similarity to the structural scaf-
fold has previously been documented from second-order connectivity analyses [226, 227]. A GSP
approach can also reveal these subtle relationships, with the added advantage of conserving a
frame-wise temporal resolution.

To better grasp the signal features at the root of alignment or liberality excursions, we compared
the outcomes obtained using the graph surrogate method to the ones generated with the more
classical Fourier phase-randomization procedure to generate null data, or to the outcomes re-
sulting from the combination of those two surrogate approaches (see Supplementary Figure 2).
Excursions in terms of liberality with respect to brain structure were not resolved anymore un-
der those two other null models, for which null realizations conserve similar stationary temporal
properties. This implies that the liberal signal component can be explained by stationary temporal
features. On the other hand, alignment excursions remained, in particular when including graph
domain randomization. Thus, the aligned signal component relates to spatial features that cannot
be explained by stationary smoothness alone.

10.4.2. Combining Graph Excursions with Fourier Analysis

Other ingredients from the GSP pallet can be appended to the pipeline we have introduced, in
order to further expand our understanding of brain activity. For example, to examine whether
alignment and liberality would change along frequency, referring this time to the temporal frequency
of the signal, we simply combined our null and alignment/liberality operators with the classical
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Figure 80: Further disentangling functional brain signals by more elaborate GSP building
blocks. (A) Percentage of significant excursions for key functional brain systems across temporal
frequency sub-bands in the case of the aligned (left graph) or liberal (right graph) signal contribu-
tions. Two-tailed 95% confidence intervals are displayed for each curve, and the horizontal dashed
line represents the excursion chance level (α = 5%). (B) As a quantification of local alignment,
percentage of significant excursions for all brain nodes when applying the graph Slepian design
with bandwidth M = 80. Color coding reflects the functional system to which a region belongs,
and for a given region, the left box plot stands for the left side of the brain.

Fourier decomposition highlighted in Chapter 7, and computed the percentage of significant ex-
cursions for all the functional brain systems introduced in [191] (Figure 80A). For alignment (left
graph), different systems were observed to vary in terms of excursion occurrence, with dorsal at-
tention and auditory areas as primary contributors while subcortical and somatosensory regions
stood at around chance level. Interestingly, in a few cases, alignment with the structural brain scaf-
fold appeared to be maximized at particular frequencies: for instance, the dorsal attention, ventral
attention and auditory systems showed more frequent excursions in the 0.15− 0.2Hz range.

Regarding liberality (right graph), almost all systems showed similar excursion percentages, with
the exception of the default mode network (gray line), whose regions appeared to more rarely
diverge from the activation patterns expected from structural connectivity. In addition, excursions
further decreased close to chance level in the 0.15− 0.2Hz range, while at the same time, posi-
tive peaks could be seen, amongst others, for the fronto-parietal and cingulo-opercular systems.
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This antagonistic relationship between those functional brain systems could be the reflection of
a hallmark feature of brain activity: the anti-correlation between the default mode (also known
as task-negative) and so called task-positive networks [228]. The GSP approach enables, a more
accurate characterization of these networks in terms of both temporal and graph frequencies.

10.4.3. Probing Excursions within a Sub-graph with Slepians

Finally, another way to dig deeper into the functional signals is to consider them at a local scale,
rather than at the whole-brain level. For this purpose, we computed a basis of Slepian vectors
through the process detailed in Section 10.2.2 (using the modified embedded distance optimiza-
tion criterion). We started from the eigendecomposition of the Laplacian matrix, and iteratively
focused the analysis on a subset of nodes being part of only one given functional brain system.
Every time, we derived M = 80 Slepian vectors, and used the 10 lowest localized frequency (i.e.,
with lowest ξi), concentrated (i.e., satisfying µi > ε) elements of this new basis to extract the
part of the functional signals aligned with local structural brain features, generate null data, and
quantify significant excursions.

As can be seen in Figure 80B, some nodes stand out as undergoing particularly frequent excursions
in terms of local alignment to brain structure. This is for example seen for regions from the visual
(nodes 23-25) and auditory (nodes 31-33) systems, reflecting the presence of moments when there
is strong alignment of the functional signals with the underlying structure at the local scale of the
considered system, which is encoded in the Slepian basis. We note that the same nodes already
showed high excursion percentages in Figure 79A, where alignment was assessed at the global
(not local) level, and thus, what was captured by this less focused analysis may have largely
involved local alignment with structure. Conversely, there are also many cases in which regions
exhibited frequent global alignment with the structural scaffold, without displaying it at the local
scale (for example, nodes 18-19). In such cases, global alignment to structure instead reflects
cross-network interactions. Overall, surrogate analyses are conducted from three aspects in the
preceding subsections (vanilla as in Section 10.4.1, combined with Fourier analysis as in Section
10.4.2, and combined with Slepians sub-graph as in Section 10.4.3). Some consistent observations
inherited from the surrogate analysis itself are found across the subsections, while some different
results reflect the different perspectives and features of the respective approach.
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Chapter 11

Recommendation System

The organization of the chapter is as follows. Section 11.1 introduces the problem formulations
for collative filtering, and summarizes the GSP tools that are relevant for a recommendation sys-
tem setup. Section 11.2 reinterprets NN approaches under a GSP perspective, showing that NN
predictors can be viewed as a graph band-stop filter, and proposes novel methods for recommen-
dation systems including higher order band-stop graph filters in either the user-based network or
the item-based network, and higher order band-stop graph filters on a joint user-item network.
Section 11.3 reinterprets LF from a GSP perspective, showing that LF schemes can be viewed as
reconstruction algorithms that give rise to bandlimited rating prediction signals. It also presents
novel GSP-inspired methods to interpolate the sampled ratings under the assumption of graph
bandlimitedness. Numerical experiments comparing the performance of the proposed methods
and illustrating their practical relevance are presented in Section 11.4 using the MovieLens 100k
dataset.

11.1. Collaborative Filtering

Consider a recommender system setup with U users indexed by u, and I items indexed by i. The
rating that user u would give to item i is represented by the unobserved variable Ȳui, but only
a few of these ratings are available; see Figure 81. Available ratings are denoted as Yui and we
further denote as Su ⊆ {1, . . . , I} the set of items that have been rated by user u, as Ti ⊆ {1, . . . , U}
the set of users that have rated item i, and as R ⊆ {1, . . . , U}× {1, . . . , I} the set of user-item pairs
with available ratings. Although ratings are typically recorded as nonnegative scores, they are
usually converted to mean centered scores. To center them around the user mean we define the
average score of user u as µu := (1/|Su|)∑i∈Su Yui and define the user mean centered ratings

XU
ui := Yui − µu = Yui −

(
1/|Su|

)
∑

i∈Su

Yui. (11.1)
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Figure 81: The ratings that users would give to items are represented by the unobserved ratings
X̄ (left). Available ratings represented by X (middle) form a small proportion of the unobserved
ratings X̄. Collaborative filtering aims to exploit the observed ratings X to determine estimates X̂
(right) of the unobserved ratings. This is a sampling and reconstruction problem, where, unlike
conventional formulations, signals of interest are supported in an irregular domain. The ratings
xi given by all users for a certain item i is a signal on top of the graph B representing similarities
between users. The goal of this paper is to exploit these similarity graphs in reconstructing the
estimates X̂.

To center around the item mean we define the average score of item i as νi := (1/|Ti|)∑u∈Ti
Yui

and define the item mean centered ratings

XI
ui := Yui − νi = Yui −

(
1/|Ti|

)
∑

u∈Ti

Yui. (11.2)

We can also center around both the item and user mean by defining the average score of all entries
as ρ := (1/|R|)∑(u,i)∈R Yui to construct the user-item mean centered ratings

XUI
ui := Yui −

µuνi
ρ

= Yui −
µuνi

(1/|R|)∑(u,i)∈R Yui
. (11.3)

Distinguishing user, item, and user-item mean centered scores is important in practice but is not
conceptually relevant. Throughout Sections 11.2 and 11.3 we use Xui and X̄ui to denote observed
and unobserved mean centered scores without making specific assumptions on whether they are
centered around user means, item means or user-item means. The distinction is important in the
practical implementations in Section 11.4.

Observed mean centered ratings can be collected either into the rating matrix X ∈ RU×I , or
into the rating vector x = vec(X) ∈ RUI . Additionally, vectors xu = [Xu,1, ..., Xu,I ]

> ∈ RI and
xi = [X1,i, ..., XU,i]

> ∈ RU represent the ratings by the u-th user and i-th item, respectively. We
adopt the convention that Xui = 0 for all the ratings that have not been observed, since zero entries
in the mean-centered Xui denote lack of information. Analogously, we collect the unobserved
mean centered ratings into the matrix X̄ ∈ RU×I . Although X̄ is represented as a full matrix,
many of its entries are not available. The goal of a recommender system is to compute estimates
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X̂ui of the unobserved ratings X̄ui. We state this problem for future reference:

Problem 1 (Collaborative Filtering) Given the observed ratings in the matrix X, determine estimates X̂
of the full rating matrix X̄.

Problem 1 is a sampling and reconstruction problem which differs from conventional formulations
in that the signals of interest are supported in an irregular domain; see Figure 81. If one represents
such an irregular domain by a graph, Problem 1 can then be addressed as the sampling and
reconstruction of a graph signal [63, 64]. Interestingly, ratings X can be considered as signals either
on a graph representing similarity between users, on a graph denoting similarity between items,
or, on a graph representing similarity between user-item pairs.

Formally let B ∈ RU×U be a matrix whose entry Buv measures the similarity between the pair of
users (u, v). This similarity matrix can be determined in different ways but one that is commonly
used in practice is to compute Pearson correlations restricted to items that have been rated by
pairs of users [229]. Specifically, define the set Suv := Su ∩ Sv containing items rated by both
users u and v. Further define the mean intersection score µuv = (1/|Suv|)∑i∈Suv Yui and use it to
compute the correlation coefficient

ΣU
uv := (1/|Suv|) ∑

i∈Suv

(Yui − µuv)(Yvi − µuv). (11.4)

The graph B that measures similarities between user preferences is defined by normalizing via
individual user variances,

B :=
[
diag−1/2

(
ΣU
)]

ΣU
[
diag−1/2

(
ΣU
)]
− I, (11.5)

where we have subtracted the identity matrix to zero the diagonal elements of B.

Similarly, we can define a matrix C ∈ RI×I whose Cij entry measures the similarity between the
pair of items (i, j). We define the set Tij := Ti ∩ Tj containing users that rated both items i and j,
the mean intersection score νij = (1/|Tij|)∑u∈Tij

Yui and use it to compute the correlation

ΣI
ij := (1/|Tij|) ∑

u∈Tij

(Yui − νij)(Yui − νij). (11.6)

The graph C that measures similarities between items is then defined by [cf. (11.5)]

C :=
[
diag−1/2

(
ΣI
)]

ΣI
[
diag−1/2

(
ΣI
)]
− I, (11.7)

The definitions of B and C in (11.4) and (11.6) yield symmetric matrices with entries Buv ∈ [−1, 1]
and Cij ∈ [−1, 1]. Alternative choices for Buv and Cij include cosine similarities, adjusted cosine
similarities [230], or the percentage of items rated by both u and v [85]. As in the case of mean
centered ratings, the specific form of the matrices B and C is important in Section 11.4 but is not
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germane to Sections 11.2 and 11.3.

11.2. NN from a Graph SP Perspective

The main idea behind NN predictors is that when estimating the rating Xui, only the ratings Xvi

from users v that are highly similar to u should be used. To do so, denote Kui as the set of k users
who are the most similar to u (largest value of Buv) and have rated the item i. Leveraging these
definitions, the unknown ratings are predicted as

X̂ui =
∑v∈Kui

BuvXvi

∑v∈Kui
Buv

. (11.8)

As in user-based collaborative filtering, with Kiu denoting the set of k items which are the most
similar to i and have been rated by user u, the unknown ratings can be predicted using the item
similarity scores as

X̂ui =
∑j∈Kiu CijXuj

∑j∈Kiu Cij
. (11.9)

11.2.1. Graph-SP Interpretation

The goal in this section is to show that the user-based (item-based) NN methods presented can be
viewed as the application of a band-stop graph filter to an input rating signal. To be more precise,
let us focus on the generation of x̂i, i.e., the predicted ratings for item i, using the ratings from
other users and the similarities among them.

The major step is to construct the user-similarity network, which will serve as the adjacency
matrix used in the graph filter. To this end, we start with the matrix B given in (11.5). Then, in
order to account for the fact that ratings from users who do not rate i should not be considered
when predicting i, we remove any edges starting from v if Xvi is unknown. This implies that the
similarity network, which will be denoted as Bi, will depend on the particular item i. The final
steps are to keep only the edges corresponding to the k most similar users and normalize each
row so that the resultant matrix is right stochastic [cf. the denominator in (11.8)]. Mathematically,
this implies that the matrix Bi ∈ RU×U is defined as

[Bi]uv =

{
Buv/ ∑v′∈Kui

Buv′ if v ∈ Kui

0 if v /∈ Kui
, (11.10)

where we recall that Kui contains the k users that are the most similar to u and have rated item i.
An example of this procedure using the MovieLens 100k dataset is illustrated in Figure 82, where
the top network represents the original B and the subsequent plots represent Bi for several items,
where edge weights are proportional to the width of the edges. For the case of the user-similarity
network for item i = 1, we observe that the edges starting from u3 and u4 that were present in B
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are absent in B1, because users u3 and u4 have not rated item i. In the case of B2 we observe that
the edges (u3, u2) and (u4, u3) present in B have been removed because k = 2 and their respective
edge weight was small (their edge widths are small in the visualization).

Once the item-specific adjacency matrix Bi is defined, the predicted ratings are simply given by

x̂i = Bixi, (11.11)

cf. (11.8). In words, the estimated ratings are obtained after applying the graph filter H = Bi of
order one to the input signal xi.

Prediction in the frequency domain

We now analyze the behavior of (11.11) in the frequency domain, to conclude that H = Bi acts
a band-stop graph filter. Given a certain item i, consider the eigen-decomposition for the user-
similarity network S = Bi = ViΛV−1

i . Since the set of diagonalizable matrices is dense and Bi is
constructed from real (noisy) data, matrix Bi is typically diagonalizable. Even if it were not, one
could always add an arbitrarily small perturbation to Bi and render it diagonalizable. Denote the
GFT of the known input signal as x̃i = V−1

i xi, and the GFT of the predicted rating as ˜̂xi = V−1
i x̂i.

The two GFTs are related via

˜̂xi =V−1
i x̂i =V−1

i Bixi =V−1
i ViΛV−1

i (Vi x̃i)=Λx̃i. (11.12)

Therefore, the frequency response of the filter implementing NN is diag(b̃i) = diag(h̃) = Λ and
the p-th frequency coefficient of the predicted output is [ ˜̂xi]p = λp[x̃i]p. Since the selection of
the k nearest neighbors introduces some non-symmetries, λp will also have an imaginary part.
Recall that λmax(Bi) is always 1 because of right stochasticity and the Perron–Frobenius theorem,
and that eigenvectors can be ordered according to TV(vp) = |λp − 1|; see [58] and the related
discussion after Definition 1. As a result smooth (low-frequency) eigenvectors are signals where
‖vq−Bivq‖2 ≈ 0; i.e., full rating signals where users that are similar tend to agree. In practice, the
imaginary part of λp tends to be small. This is not surprising since Bi is constructed by removing
some of the edges of the (mostly) symmetric matrix B, followed by a renormalization to make it
right stochastic. The normalization by a diagonal positive-valued matrix does not introduce an
imaginary part. To understand the effect of the edge removal, one can see the eigenvalues of the
resultant matrix as those of an originally symmetric matrix (which are always real valued) slightly
perturbed with a complex part associated with the potential presence of non-symmetries.

To gain further intuition on the spectral behavior of (11.12), we examine the frequency response
of Bi for the MovieLens 100k database. Specifically, for each Bi, we order its eigenvalues accord-
ing to |λp − 1|, and record the frequency response for low, middle, and high frequencies. The
I frequency responses obtained using this procedure are then averaged across Bi, giving rise to
the single transfer function depicted in Figure 84 (a). The horizontal axis represents the index p
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of the frequency (assuming that the order satisfies |λp − λmax| ≤ |λp+1 − λmax|) and the vertical
axis denotes the corresponding frequency response of the examined filters. To help visualization,
the scale in the horizontal axis is not homogeneous and only the real part of the eigenvalues is
shown (the imaginary part is small). The main finding is that the frequency response is zero for
more than 90% of the frequencies, implying that the predicted signal will be graph bandlimited.
This results from the way the (graph) matrix Bi is constructed in (11.10): NN graphs typically
have many zeros and a clusterizable structure, which leads itself to a low rank matrix represen-
tation. Another observation of interest is that the frequencies not rejected by the filter and that
are present in the predicted output are the ones associated with the first eigenvectors (low val-
ues of p) and the last eigenvectors (high values of p). The first eigenvectors represent signals
of small total variation, while the last ones are associated with signals of high variation. Since
the diagonal elements of each matrix Bi are zero, the sum of the eigenvalues is zero, with the
eigenvalues associated with low frequencies being positive, and those associated with signals of
large total variation being negative. To corroborate this, Figure 85 shows the low-pass and high-
pass components of a rating profile x. The low-pass components represent signals where similar
users tend to have similar ratings, providing the big picture for the predicted rating. Differently, the
high-pass component focuses on the differences between users with similar taste for the particular
item. With this interpretation one can see (11.12) as a filter that eliminates the irrelevant features
(middle frequencies), smoothes out the similar components (low frequencies) and preserves the
discriminative features (high frequencies). This band-stop behavior where both high and low
graph frequencies are preserved is not uncommon in image processing (image de-noising and
image sharpening, respectively) [231], and have been observed in brain signal analytics as well
[114, 62].

Item-based NN

Following similar steps, an item-based NN predictor can also be casted as a band-stop graph filter.
In this case, the input signal is xu ∈ RI and the user-specific adjacency matrix Cu is found after
setting to zero the entries in [C]ij corresponding to items not rated by user u and normalizing each
of the rows; see Figure 83. The prediction for user u generated by the item-based NN in (11.9)
can be alternatively written as x̂u = Cuxu. That is, a graph filter of order one with g0 = 0 and
g1 = 1. After ordering the eigenvalues of Cu according to |λp − λmax(Cu)|, it also holds true that
item-based NN has a band-stop frequency response, with eigenvectors associated with small |λp|
being rejected. To assess this behavior in real data, the frequency response of G = Cu (averaged
across all u) is visualized in Figure 84 (d). There exist certain Cu with some rows being entirely
zero, making their largest eigenvalue being strictly less than 1 in the figure. We show in the next
section that we can generalize the idea in collaborative filtering, and design other types of band
stop filters with similar frequency response.
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11.2.2. Higher Order Graph Filters

Since NN predictors can be understood as the implementation of a band-stop graph filter of order
one, our proposal here is, using S = Bi as the shift, to design other types of band-stop graph
filters H(S) to perform rating predictions. Consider first H = B2

i , whose frequency response
is diag(h̃) = Λ2. The fact of Bi being a band-stop filter implies that many of the entries of its
frequency response h̃i are zero. As a result, B2

i has a band-stop behavior too and the same holds
true for any positive power of Bi. Figure 86 (a) shows this for the filter H = B2

i and H = B3
i

corresponding to the MovieLens 100k database. Since all powers of Bi are band-stop operators,
the unknown ratings predicted with graph filters of the form

x̂i = Hxi with H =
L

∑
l=0

hlB
l
i , (11.13)

will also give rise to bandlimited signals. Hence, predictions in (11.13) are generalizations of the
traditional NN method in (11.11), which estimates x̂i using a filter H = Bi of order one. This
graph-frequency interpretation can be complemented by understanding the effect of Bi on the
graph vertex domain. To do so, note that B0

i xi = xi coincides with the original signal, Bixi is an
average of the ratings given by one-hop neighbors, B2

i xi is an average of elements in nodes that
interact via intermediate common neighbors, and, in general, Bl

ix
i describes interactions between

l-hop neighbors. Therefore, on top of relying on the ratings of highly similar users to make
predictions, the powers of the matrix Bl

i in the graph filter in (11.13) also account for chains of
users with similar taste, exploiting them to generate enhanced predictions.

Compared to classical NN, the filter coefficients h are not known a priori, and therefore need to
be learned from a training set. Moreover, h0 is irrelevant since B0

i xi = xi and therefore would not
be helpful in predictions. Then, the filter coefficients are found by solving

min
h

∑
(u,i)∈R

∣∣∣∣∣
[(

L

∑
l=1

hlB
l
i

)
xi

]
u

− Xui

∣∣∣∣∣
2

. (11.14)

where we recall that R contains the indexes of the available ratings. To avoid overfitting, (11.14)
can be augmented with a regularizer

min
h

∑
(u,i)∈R

∣∣∣∣∣
[(

L

∑
l=1

hlB
l
i

)
xi

]
u

− Xui

∣∣∣∣∣
2

+ r‖h‖2
2, (11.15)

where r is a regularization parameter that can be tuned by cross-validation on the training set.
Note that formulations in (11.14) and (11.15) are least squares problems that, using the Moore–
Penrose pseudo inverse, admit “closed form” solutions.

Mimicking the previous steps, we can use the following generalized item-based NN scheme to
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predict user ratings

x̂u = Gxu, with G =
Q

∑
q=0

gqCq
u. (11.16)

The filter above has more degrees of freedom than its order-one counterpart in Section 11.2.1, and
accounts for chains of similar items to improve prediction accuracy. The vector of filter coefficients
g is found by solving

min
g ∑

(u,i)∈R

∣∣∣∣∣∣
[(

Q

∑
q=1

gqCq
u

)
xu

]
i

− Xui

∣∣∣∣∣∣
2

+ r‖g‖2
2. (11.17)

in the training set.

Remark 15 (Selecting the filter order) An important task when designing the graph filters in
(11.15) and (11.17) is to decide the number of taps L and Q. Large values of L and Q can cap-
ture higher-order dependencies and reduce the error on the training set, but they increase the
complexity of the training and prediction phases as well as the the risk of overfitting. From an op-
timization point of view, a common way to deal with this tradeoff is to set a large value for L and
Q and augment the cost with a regularizer penalizing the `1 norm of the filter coefficients. Such
a norm serves as a proxy of the `0 pseudo norm (which adds a fixed cost for each new coefficient
that is activated), is convex, and comes with advanced solvers that allow for an efficient (low cost)
optimization [232]. Better (more accurate) non-convex surrogates can be used, at the expense of
increasing the complexity of the training phase. Alternatively, one can cast the optimization from
a statistical perspective and modify the formulation to account for the complexity of the model
using criteria such as the Akaike information criterion (AIC) or the Bayesian information criterion
(BIC); see, e.g., [233].

11.2.3. Mirror Filtering

The graph filter in (11.13) relies on chains of up to L users with similar taste to make a prediction
for a certain item. The same holds true for the estimator in (11.16), which in this case exploits
chains of items. Since the original collaborative filtering (Problem 1) depends both on users and
items, combining these two filters is a natural generalization. One can think of first passing the
rating matrix X through a filter H on user-similarity and then passing the filtered rating matrix
HX through another filter G on item-similarity to yield the final prediction HXG>. We term such
cascade of filters as Mirror Filtering (MiFi). Note that the particular order in which the filters are
applied is inconsequential, since matrix multiplication is associative. More formally, we propose
MiFi as a generalization of the NN method to operate in the joint graph. The predicted ratings
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are obtained as

X̂ui =
[
HXG>

]
ui

, with

H =
L

∑
l=0

hlB
l
i and G =

Q

∑
q=0

gqCq
u. (11.18)

In contrast with the previous section, the filter coefficients h0 and g0 will play an important role in
(11.18). The reason being that setting h0 = g0 = 0 would force all the terms of the form Bl

iXC>u to
depend on both Bi and Cu, preventing the possibility of having terms of the form Bl

iX or X(Cq
u)
>.

At an intuitive level, MiFi uses ratings Xvj to predict X̂ui if either exists a path of similar users
from v to u or a path or similar items from j to i. The cost is that more filter coefficients L + Q
need to be found.

To that end, the training problem that yields the filter coefficients h and g is

min
h,g

∑
(u,i)∈R

∣∣∣∣∣∣
( L

∑
l=0

hlB
l
i

)
X

(
Q

∑
q=0

gqCq
u

)>
ui

− Xui

∣∣∣∣∣∣
2

+ r
(
‖h‖2

2+‖g‖2
2

)
. (11.19)

Preprocessing steps can also be applied to compute efficiently Bl
iXCq

u for the user-item pairs (u, i)
of interest and different orders l and q. The main difference with respect to the formulations in
(11.15) and (11.17) is that the problem in (11.19) is bilinear on h and g. For a fixed h, (11.19) is
a least squares problem on g, and the same holds true for a fixed g. Hence, a natural approach
is to use a computationally efficient alternating least squares scheme to (approximately) solve
(11.19). Initialization plays an important role for alternating least squares problems. Let h(0) be
the optimal coefficients when g is set as g0 = 1 and gq = 0 for q 6= 0; similarly, let g(0) be the
optimal coefficients when h is set as h0 = 1 and hl = 0 for l 6= 0. Our simulations show that using
h(0) or g(0) as initial points, leads to solutions with good prediction performance.

An alternative to bypass the bilinearity on the filter coefficients is to reformulate (11.19) using the
vectorial representation of the ratings. To this end, note first that (∑L

l=0 hlBl
i)X(∑

Q
q=0 gqCq

u)
> can

be rewritten as (∑Q
q=0 gqCq

u)⊗ (∑L
l=0 hlBl

i)x. Defining now the Kronecker shift as Sui := Cu ⊗ Bi,
it can be shown that our MiFi can be written as a graph filter on Sui and, hence, we can estimate
the filter coefficients h⊗ that minimize

min
h⊗

∑
r∈R

∣∣∣∣∣
[(

L⊗

∑
l=0

h⊗l Sl
ui

)
x

]
r

− xr

∣∣∣∣∣
2

+ r‖h⊗‖2
2, (11.20)

where r ∈ {1, . . . , U} × {1, . . . , I} represents the index of a certain user-item pair. The problem
above is not bilinear, and has a similar form as those in Section 11.2.2. Note, however, that the
number of coefficients L⊗ can be significantly larger than L + Q. Since the filter coefficients must
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be learned during the training phase, the increase in dimensionality can lead to problems related
to estimation accuracy and overfitting. Simulations will corroborate this point for the Movie-
Lens 100k database, showing that the predictor based on (11.19) enjoys a estimation performance
superior to that of (11.20) .

Remark 16 As done in classical NN methods, we considered graph filters that use shift operators
Bi and Cu. Such shifts have been adjusted according to the item and user of interest, and normal-
ized to make them stochastic (normalization-then-filtering). An alternative generalization can be
carried out by using the correlation matrices B and C as shifts, so that the prediction filters are

∑l hlBl and ∑q gqCq. This would require performing adjustment and normalization after filtering
(filtering-then-normalization). We focused on the first formulation because it is closer to the (orig-
inal) setup considered in NN methods and gives rise to better prediction accuracy. In any case,
under minor modifications our algorithms can also handle the second formulation.

11.3. LF from a Graph-SP Perspective

Latent factor models try to approximate the rating user-item matrix by identifying a few latent
features (factors) and then characterize both users and items in terms of these factors. In the
linear case, this amounts to project the original user ratings xu and item ratings xi into a feature
vector space of dimension F. The ratings are then obtained as inner products in such a space.
Since in collaborative filtering the features are not known a priori but learned from the data, the
SVD decomposition plays a key role in identifying the latent factors as well as the underlying
mapping. To be more specific, let us rely on the SVD factorization to write the rating matrix as
X = Wdiag(σ)Z>. Next, use the singular vectors to define φu(W) (the u-th row of W) as the
feature profile of user u and φi(Z) (the i-th row of Z) as the feature profile of item i. With these
notational conventions, any rating Xui can be obtained as Xui = ∑F

f=1 σf [φu(W)] f [φi(Z)] f , with
the f -th singular value σf representing the weight of factor f in explaining the rating. While the
value of F is related to the rank of the rating matrix, in real scenarios one expects F to be small,
so that X is (or can be approximated as) a low-rank matrix.

Low-rankness can be achieved by computing the SVD and keeping only the largest singular val-
ues. A major hurdle to implement this approach is that the computation of the SVD requires
full knowledge of X, but in the context of collaborative filtering only the rating values in R are
known. This implies that one must solve instead the problem of minimizing rank(X̂) subject to
X̂ui = Xui, ∀ (u, i) ∈ R. Since the rank function renders the problem non-convex, a widely used
approach is to relax the rank using the nuclear-norm [107] and set X̂ as the solution to

min
X̂

‖X̂‖∗

s. t. |X̂ui − Xui|2 ≤ ε, ∀ (u, i) ∈ R,
(11.21)

where a tolerance ε to account for potential observation noise in the known ratings has been
included too. Note also that an additional advantage of (11.21) is that it can be easily augmented
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to incorporate additional sources of (a priori) information [83].

11.3.1. Searching Sparse Frequency Coefficients

The underlying idea behind LF is to model the ratings as a matrix X = Wdiag(σ)Z> with rank
F = ‖σ‖0 small. The goal in this section is to interpret LF from a graph SP perspective, showing
that LF predictors also give rise to bandlimited signals.

To that end, let us consider the graph shift operators given by the user-to-user and item-to-item
covariance matrices

D =
1
I

XX> and E =
1
U

X>X. (11.22)

Since the shifts S = D and S = E are symmetric, they admit an orthonormal eigen-decomposition
as

D = VΛDV> and E = UΛEU>. (11.23)

For the shift S = D, the frequency representation of the ratings for a given item xi is therefore
given by x̃i = V>xi and the matrix collecting the frequency representations for all item signals is
[x̃1, ..., x̃I ] = V>X. Similarly, for S = E the frequency representation of xu is given by x̃u = U>xu,
with matrix [x̃1, ..., x̃U ] = U>X> collecting the frequency signal for all users. Notice that the two
GFTs can be applied jointly, giving rise to the joint (two-dimensional) frequency representation of
the user-item rating matrix as

X̃ = V>XU. (11.24)

The previous matrix can be vectorized to yield

x̃ = vec
(

V>XU
)
= U> ⊗V>x. (11.25)

The equation shows that the if the ratings are expressed in the vector form x, the unitary matrix
U> ⊗V> represents the associated GFT. This also implies that one can view x ∈ RUI as a signal
defined on a shift S ∈ RUI×UI that has U ⊗ V as eigenvectors. Two natural choices for such a
shift are S = E⊗D, which is the Kronecker graph product graph of the two shifts in (11.22), and
S = E⊗ I + I⊗D, the Cartesian graph product of the shifts in (11.22) illustrated in Figure 87. For
further details on graph SP and product graphs, we refer readers to [58].

Since LF approaches try to approximate the ratings matrix using the SVD factorization X =

Wdiag(σ)Z> with F = ‖σ‖0 small, from the expressions in (11.22)-(11.24) it follows readily that:

(i) The eigenvectors of D and E are the singular vectors of X.

(ii) The corresponding GFTs are V> = W> and U> = Z>.

(iii) The matrix collecting the frequency coefficients in (11.24) is X̃ = diag(σ).

Therefore, since X̃ is diagonal with rank F, vector x̃ ∈ RUI in (11.25) will have at most F non-zero
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entries, with F � UI. In words, LF approaches are essentially modeling the ratings x as a signal
that is bandlimited in a frequency domain associated with the product graph of the covariance shifts
given in (11.22).

From a practical point of view, it is important to notice that since only the subset of ratings in R is
known, unless a priori information exists, the covariance matrices in (11.22) cannot be computed
beforehand. This implies that one can view the LF formulation in (11.21) as a way to search jointly
for a sparse x̃ as well as for the eigenvectors of the user-to-user and item-to-item covariance
matrices. Alternatively, one can try to infer first the covariance graphs, obtain its eigenvectors,
and then look for the spectral coefficients. This is the approach followed in the ensuing section,
but first a remark is in order.

Remark 17 The discussion in this section revealed that LF algorithms that predict the ratings by
minimizing the rank of matrix X̂ are implicitly viewing the columns of X̂ as bandlimited signals
defined on the user-to-user covariance graph S = D and, likewise, the rows of X̂ as bandlimited
signals defined on the item-to-item covariance graph S = E. The key to notice this fact is that
the low-rank matrix completion algorithm aims at expressing the ratings as combinations of a
few of the columns of W and Z, which are the eigenvectors (graph frequencies) of D and E.
Interestingly, this interpretation also holds for any other graph S with the same eigenvectors than
D and E. Those include all the powers (polynomials) of D and E. In the network topology
inference literature, the two more widely used choices in statistics and machine learning are the
covariance graph itself as well as its inverse, the precision graph.

11.3.2. Sampling Bandlimited Graph Signals

Section 11.3.1 revealed that, when interpreted from a graph SP perspective, LF methods build
on two fundamental assumptions: (i) the rating signal x is bandlimited, and (ii) x is defined on
top of a graph which can be obtained by combining the user-to-user and item-to-item covariance
matrices.

As a result, one can reinterpret the prediction carried out by an LF scheme as a sampling and
reconstruction problem (cf. Problem 1): given x, the goal is to recover the full signal x̄; and
the key assumption is that x̄ is bandlimited and can be written as a linear combination of a few
columns of U⊗V. To be rigorous, recall that (11.25) stated that x̃ = U> ⊗V>x and we have that
x̃ = vec(X̃) = vec(diag(σ)). Since only F of the singular values in σ are non-zero, the support
of x̃ will have cardinality F and correspond to the F first diagonal elements of X̃. This readily
implies that only F frequencies will be active, those corresponding the Kronecker product of the
f -th column of U with the f -th column of V. Using � to denote the Khatri-Rao product and UF

to represent the first F columns of U, we then have

x̄ = (UF �VF)x̃F, with x̃F ∈ RF. (11.26)

If the eigenvectors are known, the procedure is clear [63, 64]: Given |R| ≥ F samples of x,
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invert (11.26) to estimate x̃F, and then use the estimate ˆ̃xF to recover the full rating signal as
x̂ = (UF � VF) ˆ̃xF. This interpretation is useful not only to come up with new reconstruction
schemes, but also to apply results from sampling of graph signals to recommender systems. For
example, different papers have shown that when the number of observations is small, the set of
sampled nodes plays a critical role on recovery performance [63, 64]. Consequently, schemes to
select the nodes to be sampled have been developed [63]. This will amount to identifying user-
item pairs that, if known, would contribute to increase the prediction performance. In this context,
one can envision active sampling schemes where some users are exposed to particular items so
that the overall prediction of the recommendation systems improves.

The rest of the section is devoted to leverage the interpretation to present different alternatives
for the LF prediction. The main problem to implement the described approach is that the full
covariances D and E in (11.22), which give rise to V and U, are not known. If the available ratings
are uniformly distributed across users and items, a simple strategy is to replace the covariances
in (11.22) with the approximations ΣU and ΣI presented in (11.4) and (11.6), which rely only on
the ratings that are known. Let V̂ and Û represent the approximated eigenvectors, the recovery
problem to solve in this case is

find x̃F

s. t.
∣∣[ÛF � V̂Fx̃F

]
r − xr

∣∣2 ≤ ε, ∀ r ∈ R,
(11.27)

where the main difference is that the solution in the sampled set is not forced to coincide with the
original observations.

Another interesting alternative is to enlarge the set of active frequencies both inside and outside
the diagonal of X̃. Suppose first that the frequency support F , is small and known, the formulation
is then

find x̃

s. t.
∣∣[Û⊗ V̂x̃

]
r − xr

∣∣2 ≤ ε, ∀ r ∈ R,

x̃ f = 0, f /∈ F ,

(11.28)

and the predicted ratings are simply x̂ = (Û⊗ V̂)x̃∗, with x̃∗ being the solution to (11.28). If F is
not known, a regularizer ‖x̃‖0 penalizing the number of nonzero coefficients can be added to the
optimization. Since the `0 norm is non-convex, the convex surrogate ‖x̃‖1 is used instead to yield

min
x̃
‖x̃‖1

s. t.
∣∣[Û⊗ V̂x̃

]
r − xr

∣∣2 ≤ ε, ∀ r ∈ R.
(11.29)

The above optimization is a classical sparse recovery problem whose performance depends on the
number of observed ratings |R|, the tolerance ε, as well as on the properties (including coherence)
of the so-called sensing matrix Û⊗ V̂ [234].

The last algorithm in this section is inspired by NN. While LF schemes are implicitly considering
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the same user-to-user and item-to-item shifts for all the predictions, NN schemes use a different
graph for each user and item. This can be incorporated to the current sampling setup. Suppose
that the focus is on predicting xr = Xui. Then, let Vi and Uu be the eigenvectors of Bi and Cu,
respectively, and consider the problem [cf. (11.28)]

find x̃

s. t.
∣∣∣[Uu ⊗Vi x̃

]
r
− xr

∣∣∣2 ≤ ε, ∀ r = (u, i) ∈ R,

x̃ f = 0, f /∈ F ,

(11.30)

The main difficulty with this approach is that (11.30) needs to be solved for every r in R. On
the positive side, since matrices Bi and Cu are very sparse and only a few of their eigenvectors
are required (the ones associated with the largest eigenvalues), those eigenvectors can be found
efficiently.

Summarizing, by reinterpreting LF predictors as the recovery of a bandlimited graph signal from
a subset of samples, a number of novel prediction algorithms have been proposed in this section.
All the considered algorithms proceed in two steps. Firstly, the user-to-user and item-to-item
networks are built and their eigenvectors are found. Secondly, using those eigenvectors as input,
the prediction is formulated as a sparse recovery problem. The different algorithms correspond to
different ways to build the similarity shifts as well as different formulations of the sparse recovery.
Clearly, alternative definitions for the shifts and modifications in the sparse optimization are also
worth considering, but left as future work.

11.4. Numerical experiments

The main purpose of this section is to illustrate how the proposed methods (especially those in
Sections 11.2.2 and 11.2.3) improve the rating accuracy in real data. For that purpose we use
the MovieLens 100k dataset [108], which contains ratings from 943 users on 1,682 movies. The
number of available ratings is 100,000, i.e., the 6.3% of the total number of user-item pairs. The
values for the movie ratings belong to the discrete set {1, 2, 3, 4, 5}. The main focus of the analysis
is on band-stop filters and MiFi, since they will give rise to the best performance. We randomly
select 100 ratings as the testing set, and use the rest as training set. The sets containing the indexes
of elements in testing sets and training sets are denoted asRts andRtr, respectively. The networks
and filter coefficients are only trained on the training set. As a performance metric, we use the
global root mean squared error (RMSE) between the actual ratings and predicted ratings in the
testing set, i.e.,

RMSE =

√
∑(u, i) ∈ Rts

∣∣Yui − Ŷui
∣∣2/|Rts|, (11.31)

where Yui is the available non-centered rating and Ŷui is the reconstructed rating scaled back by
adding mean. We will specify the mean centering procedure undertaken for each of the algo-
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rithms. User-based NN, item-based NN, and conventional matrix completion are used as bench-
mark algorithms. To get an estimate for the regularization constant r used in (11.15), (11.17), and
(11.19), we perform cross-validation by splitting the ratings in the training set into ten equally
sized subsets.

11.4.1. Complexity Analysis

Before evaluating the performance, we start by analyzing the computational complexity associated
with the proposed methods, and compare it with that of other traditional methods in rating
prediction. Recall that U denotes the number of users, I the number of items, |R| the total
observed ratings, and k the number of most similar users (items) used to construct the graphs [cf.
(11.8) and (11.9)]. Moreover, we use β to denote the average number of items (users) rated by a
pair of users (items) [cf. (11.10)]. Without loss of generality we suppose that U > I and note that,
in practice, we have that |R| ∼ O(U) and, therefore, |R| � UI. Though there are more items
than users in the MovieLens 100k dataset examined in the paper, for massive dataset it is more
common to have U > I, e.g. Netflix Prize.

Traditional user-based NN methods involve two steps: i) a pre-computation step to obtain the
correlation matrix B in (11.5), and ii) a prediction step to find the unknown ratings [cf. (11.8)].
The computation of B requires U2 evaluations of the expression in (11.4), each of them with an
average complexity of O(β); hence the overall complexity of this step is O(βU2). The prediction
step in (11.8) has a complexity O(k) and needs to be run U times (one per user), resulting in
an overall complexity of O(kU). Since k � U, the joint complexity of the two steps is O(βU2).
Item-based NN methods have a similar complexity.

The user-based high-order NN graph filters proposed in Section 11.2.2 involve three steps: i) a
pre-computation step to obtain Bi in (11.10), ii) a training step to find the filter coefficients [cf.
(11.15)], and iii) a prediction step to find the unknown ratings using a graph filter. [cf. (11.11)].

• For the pre-computation step, after obtaining of B with a complexity of O(U2β), the normal-
ization in (11.10) needs to be implemented for all I items. Since for each row of matrix for the
i-th item, we need to adjust the value in k entries, the resultant complexity is O(IUk). There-
fore, the pre-computation step has overall complexity of O(U2β + UIk) ∼ O((β + k)U2),
comparable with that of NN.

• For the prediction step ∑L
l=1 hlBl

ix
i, notice that the sparse matrix Bi has to be applied to

the input data L times and then implement the linear combination dictated by {hl}L
l=1. As

explained for the case of traditional NN methods, each application of Bi involves O(kU)

operations, so that the overall cost is O(kLU), L times larger than that of NN and with L
being typically small.

• For the training step, we first evaluate [Bl
ix

i]u for all l and xi ∈ R, and then solve the
minimization problem in (11.14). Since Bi is sparse and we are only interested in the u-th
entry of Bl

ix
i, the evaluation across all ratings has complexity O(Lk|R|). The least squares
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minimization has L variables and |R| observations, so that its complexity is O(L2|R|). As a
result, the overall complexity in the training phase is O(L(L + k)|R|), linear in the number
of observed ratings.

Overall, the bottleneck is in the pre-computation step, so that the complexity is O(U2β + UIk) ∼
O((β+ k)U2), which is in the same order than that of NN. To have a better sense of these values in
practical applications, for simulations shown in the subsequent sections we have that U = 943, I =
1682), and the values of k are set to 40 or less. Following the same analysis, the pre-computation
step for Mi-Fi predictors has complexity O(βU2 + βI2 + kUI) ∼ O((β + k)U2), the prediction
step has complexity O(Lk(U + I)) ∼ O(LkU), and the training step has complexity O(L(L +

k)|R|), where the evaluation of (∑l hlBl
i)X(∑q gqCq

u) across ratings (u, i) ∈ R has complexity
O(Lk|R|) and the least square minimization has 2L variables and hence O(L2|R|) complexity.
This means that the complexity is still linear in the number of observed ratings. Again, the
aggregated complexity is O(U2β + I2β + UIk) ∼ O((β + k)U2), the same as that of NN.

The traditional low-rank matrix completion via semidefinite programming has complexity O(max{U, I}4) ∼
O(U4) [55] and [235, Section 11.8]. The bandlimited LF model proposed in Section 11.3.2 requires
running three steps: i) computing the covariance matrix D or E [cf. (11.22)], ii) obtaining of the
eigenvectors V and U [cf. (11.23)], and iii) finding the frequency coefficients [cf. (11.34)]. Obtain-
ing the covariance matrices and their eigenvectors has complexity O(max{U, I}3) ∼ O(U3); lower
complexity is possible with more advanced methods or by considering sparsity, but we examine
the most straightforward implementation here. The problem in (11.34) has dimension UI and
therefore has empirical complexity of O((UI)1.2) [232]. Therefore, the bandlimited sampling pro-
posed in Section 11.3.2 has an overall complexity of O(max{U, I}3) ∼ O(U3), which is an order
of magnitude smaller than that of matrix completion.

11.4.2. High-Order NN Graph Filters

We now look at user-based band-stop graph filters. User mean centering as in (11.1) is used to
remove biases of different users. Also, since the quality of the constructed graph in (11.4) and
(11.5) depends on the cardinality of |Suv|, we set Buv = 0 for any pair of users such that |Suv| is
smaller than a threshold S = 2. Before we start to compare different approaches, the first task is
to assess the best performance that one can achieve in the setup at hand. To this end, we use the
networks Bi learned on the training set and learn the filter coefficients by solving the least squares
problem in (11.15) using not the training but the testing set

min
h

∑
(u,i)∈Rts

∣∣∣∣∣
[(

L

∑
l=1

hlB
l
i

)
xi

]
u

− Xui

∣∣∣∣∣
2

+ r‖h‖2
2. (11.32)

Since the coefficients above are biased towards the data in Rts and all other schemes will be
trained using Rtr, the performance achieved by (11.32) on Rts will serve as a benchmark for all
other schemes. The RMSE across ratings in the testing set Rts using the h trained in (11.32) for
different values of L and r is presented in Table 1. There are several interesting observations.
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Table 1: User-based filtering – limit behavior: RMSE for different number of taps with coefficients
learned on the testing set

Number of taps RMSE RMSE
(r = 0) (r = 0.5)

L = 1 0.9036 0.9036
L = 2 0.8921 0.8921
L = 3 0.8226 0.8735
L = 4 0.8218 0.8643
L = 5 0.8128 0.8593
L = 6 0.8073 0.8572
L = 7 0.8068 0.8560
L = 8 0.7922 0.8554
L = 9 0.8026 0.8550

Table 2: User-based filtering – proper training: RMSE for different number of taps with coefficients
learned on the training set

Number of taps RMSE RMSE
(r = 0) (r learned from cross-validation)

benchmark NN 0.9116
matrix completion 0.8723

L = 1 0.9175 0.9175
L = 2 0.8875 0.8875
L = 3 0.8647 0.8647
L = 4 0.8661 0.8661
L = 5 0.8557 0.8554
L = 6 0.8609 0.8551 (6.20% improvement to NN)

Firstly, the RMSE for both r = 0 and r = 0.5 decreases as the number of filter taps L increases
from 1 to 6, remaining flat for L > 6. This suggests that considering chains of more than 6 users
probably does not improve prediction performance. Secondly, the RMSE with large L and r = 0
is around 0.80, which will be the value considered as the benchmark for algorithms that learn h
in the training set and test their performance in the testing set.

When we solve the actual problem in (11.15) with coefficients learned on the training set Rtr, we
rely on the results in Table 1 to limit the maximum number of taps to 6. The RMSE on the testing
set Rts for different values of L and r is presented in Table 2. The main observations are: i) higher
order filters perform better than the traditional order-one NN filter (a user-based NN filter attains
an RMSE of 0.9116, while for L = 6 and r = 0.5 our method attains an error of 0.8551, which is
an improvement of 6.10%); and ii) the prediction performance, especially that for the case where
r = 0.5, is not much worse than that in Table 1, with the trends being also similar to those in
Table 1. Moreover, when proper regularization is applied, the optimal coefficients learned from
the training set are also close to the coefficients learned from the testing set. User-based filtering
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Table 3: Item-based filtering – limit behavior: RMSE for different number of taps with coefficients
learned on the testing set

Number of taps RMSE RMSE
(r = 0) (r = 0.5)

Q = 1 0.9052 0.9052
Q = 2 0.8787 0.8852
Q = 3 0.8785 0.8829
Q = 4 0.8785 0.8824
Q = 5 0.8660 0.8826
Q = 6 0.8646 0.8827
Q = 7 0.8503 0.8828
Q = 8 0.8485 0.8828
Q = 9 0.8485 0.8828

Table 4: Item-based filtering – proper training: RMSE for different number of taps with coefficients
learned on the training set

Number of taps RMSE RMSE
(r = 0) (r learned from cross-validation)

benchmark NN 0.9053
matrix completion 0.8723

Q = 1 0.9165 0.9165
Q = 2 0.8800 0.8799
Q = 3 0.8909 0.8797 (2.83% improvement to NN)
Q = 4 0.8921 0.8895
Q = 5 0.8958 0.8858
Q = 6 0.9235 0.8854

outperforms conventional matrix completion by 1.97%.

Another interesting observation is that the optimal coefficients learned from either the training set
in (11.15) or the testing set in (11.32) tend to satisfy that ∑L

l=1 hl ' 1, as illustrated in Figure 88
(a). Such a property does not seem to depend on the number of taps used in the filter. This is in
accordance with the classical NN predictor that, being a a graph filter of order L = 1, sets h0 = 0
and h1 = 1.

To gain further insights, the frequency response for the user-based filter with L = 6 and h learned
in Rtr is illustrated in Figure 84 (b). The frequency response resembles that of user-based NN in
Figure 84 (a), with both of them being band-stop filters. The major difference is that the range
of frequencies with non-zero frequency response is now larger, which is the reason potentially
explaining the enhanced prediction performance (an RMSE reduction of 6.10%).

We move now to item-based filters, where item-mean centering as in (11.2) is used to remove
differences between items. Similar as in user-based filtering, we set Cij = 0 in (11.7) for any
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pair of items such that |Sij| is smaller than the threshold S = 2. The first experiment tries to
assess the best performance that we are able to have with the available data. To do so, we use the
networks Cu learned on the training set Rtr and solve a similar least squares problem by finding
the coefficients yielding the best fit for the testing set Rts, i.e.

min
g ∑

(u,i)∈Rts

∣∣∣∣∣∣
[(

Q

∑
q=1

gqCq
u

)
xu

]
i

− Xui

∣∣∣∣∣∣
2

+ r‖g‖2
2. (11.33)

The RMSE across ratings in Rts using g trained in (11.33) for r = 0 and r = 0.5 is listed in
Table 3. Compared to the results for user-based band-stop filters, there are two major differences.
Firstly, the RMSE (for both r = 0 and r = 0.5) stops to improve once the number of filter taps
reach 4. This implies that in predicting the ratings for an item i, only items j connected to i via
at most three intermediate items are informative. Recall that in user-based filtering, paths with
length up to 6 are still helpful. A potential explanation for this phenomenon is that it is easier
to find a path u1u2u3u4u5u6 of 6 users in the network, such that each adjacent pair of users ut

and ut+1 possess highly similar taste; for item-based filtering, however, it is not that easy to find
paths of more than 4 items such that each adjacent pair is conceived as highly similar by most
users. Secondly, the limit RMSE for item-based filtering, 0.8485, is higher compared to its user-
based counterpart, 0.7922, pointing out that for the setup at hand user networks could be more
informative. Regardless of these differences, in both Tables 1 and 3, the RMSE differences between
r = 0 and r = 0.5 are relatively small, indicating that adding a regularizer still yields results close
to the limits.

When we solve the actual problem in (11.17) with coefficients learned on the training set Rtr,
we limit the maximum number of taps to 6. Similar to user-based filtering, the RMSE on the
testing set Rts shown in Table 4 does not deteriorate significantly compared to the limits reported
in Table 3. In fact, results for r = 0.5 are highly similar to the ones listed in Table 3, with
the best RMSE achieving 0.8797, a 2.83% improvement compared to the benchmark item-based
NN. Moreover, when proper regularization is applied, the optimal coefficients learned from the
training set are also close to the coefficients learned from the testing set. In this case we also
observe that ∑Q

q=1 gq ' 1, irrespective of the number of taps Q, as plotted in Figure 88 (b). The
frequency response for the item-based filter with Q = 3 and the optimal coefficients learned from
the training set are illustrated in Figure 84 (e). The frequency response is highly similar to the one
of item-based NN in Figure 84 (d), since both of them are band-stop filters. Item-based filtering
slightly underperforms relative to conventional matrix completion.

11.4.3. MiFi

To investigate the prediction performance of MiFi, user-mean centering as in (11.1) is applied.
The reason for this is because user-based filtering improves performance better than item-based
filtering, and user-based filtering utilizes user-mean centering. We start by assessing its limit
behavior, where we use the networks Bi and Cu learned on the training set Rtr and solve a least
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Table 5: MiFi – limit behavior: RMSE for different number of taps (horizontally for item-based Cq
u

and vertically for user-based Bl
i) with coefficients learned on the testing set

Q = 1 Q = 2 Q = 3 Q = 4

L = 1 0.8513 0.8269 0.8258 0.8259
L = 2 0.8430 0.8200 0.8186 0.8187
L = 3 0.8107 0.7916 0.7910 0.7914
L = 4 0.8087 0.7886 0.7882 0.7885
L = 5 0.8089 0.7884 0.7879 0.7882

Table 6: MiFi – proper training: RMSE for different number of taps (horizontally for item-based
Cq

u and vertically for user-based Bl
i) with coefficients learned on the training set

Q = 1 Q = 2 Q = 3 Q = 4

L = 1 0.8817 0.8653 0.8572 0.8518
L = 2 0.8701 0.8565 0.8523 0.8534
L = 3 0.8561 0.8426 0.8418 0.8430
L = 4 0.8558 0.8426 0.8413 0.8423
L = 5 0.8422 0.8229 (9.10% improvement) 0.8363 0.8381

squares problem similar to (11.19) but finding the coefficients yielding that minimize the error in
the testing set Rts, i.e.

min
h,g

∑
(u,i)∈Rts

∣∣∣∣∣∣
( L

∑
l=0

hlB
l
i

)
X

(
Q

∑
q=0

gqCq
u

)>
ui

− Xui

∣∣∣∣∣∣
2

+r
(
‖h‖2

2 + ‖g‖2
2

)
.

As described in Section 11.2.3, this is a bilinear minimization on g and h. Since user-based filtering
outperforms its item-based counterpart, we use as initialization the optimal filter coefficients h(0)

solving (11.15). We then solve a succession of least-squares problems that alternates between g
and h, and stops when the change in the solution is sufficiently small. In our experiments, 30
iterations seem to be enough.

The RMSE across ratings in Rts using g and h trained in (11.34) for r = 0.5 is listed in Table
5. We observe that the gains associated with increasing L are larger than those when increasing
Q, pointing out that user-based filtering seems to be more important. The results also show that
higher order filters perform better, but there exists a saturation effect. These two observations
corroborate the findings in Section 11.4.2. More importantly, the results also demonstrate that
MiFi outperforms the item-based and user-based graph filter approaches. To elaborate on this, we
move to the case where the coefficients are learned on Rtr, r is learned via cross-validation, and
the solution is tested on Rts. The results for this setup, listed in Table 6, show that the optimal
RMSE is 0.8229, which is achieved for L = 5 and Q = 2. Since the benchmark RMSE was 0.9053
(the better among the benchmarks for user-based NN and item-based NN), this means that a gain
of 9.10% was achieved. Compared to conventional matrix completion, MiFi is superior by 5.66%.
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Equally important, this gain is larger than the combination of the gains observed by user-based
filtering and item-based filtering, which is 1− (1− 6.20%)× (1− 2.83%) = 8.85%. This implies
that MiFi is able to create a synergy between the two filters on the user and item graphs.

As an example, the available rating Xvj is informative in predicting the unknown rating Xui, as
long as their corresponding users u and v are similar and their respective items i and j are similar.
Despite the fact of such a model being very intuitive, the combination of two graph domains has
not been investigated in NN. The reason could be as follows. Traditional NNs (either user-based
or item-based) require input signals xi or xu, where many entries are zeros and non-zero values
correspond to observed ratings; these methods produce output signals Bixi or Cuxu, where all the
values denote predictions. Therefore, if we combine user-based NN with item-based NN directly,
the output of the first NN will be the input of the second NN. However, the output of the first
NN are all predictions whereas the second NN needs input to be observed ratings. It might be
this incompatibility that results in suboptimal performance. Using graph filters, this issue can
be properly addressed by adding more coefficients (including those associated with the identity
matrix h0B0

i and g0C0
u) on both the user-based filter and item-based filter. The frequency response

for the optimal MiFi filter with L = 5 and Q = 2 is visualized in Figure 84 (c) and (f). While the
original frequency response is not band-stop, after removing the effect of h0 and g0 it becomes
again a band-stop filter, reinforcing the idea that, when using the two filters, the role of hl and gq

for l and q different than one is critical. We emphasize that the specific frequency response as in
Figure 84 (b), (c), (e), and (f) is robust to small changes on L and Q.

We also evaluate the performance using the Kronecker shift Sl
ui by solving the problem in (11.20)

and training the coefficients on the training set. The RMSE on testing set achieved is 0.8444,
which is 6.73% better than NN benchmark, 3.20% better than conventional matrix completion,
and 2.61% worse than MiFi. The RMSE decreases as the number of filter taps increases. A
saturation effect on this decrement is observed for L ≥ 10. This suggests that, for the database at
hand, the consideration of more complicated shifts does not help explaining the data; most of the
interactions between chains of users and items can be explained well under the MiFi model.

11.4.4. Sampling Bandlimited Graph Signals

Finally, we examine the performance of sampling bandlimited graph signals by solving (11.29).
We consider (11.29) because the support of frequency F is unknown. The RMSE on the testing
set achieved is 0.8674, which is slightly better than conventional matrix completion by 0.56%.
This shows that the approximated eigenvectors V̂ and Û can be used to represent the actual
eigenvectors well, and therefore the single-step matrix completion can be done separately by first
evaluating the sample eigenvectors V̂ and Û, and then estimating the bandlimited frequency
components x̃. We emphasize that this two-step strategy lowers the complexity significantly, since
the (dominant) sample eigenvectors V̂ and Û can be efficiently found, and (11.29) can be written
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Table 7: RMSE for the proposed methods and some common algorithms in rating predictions as
benchmarks

Round User-based NN Item-based NN Matrix completion User-based proposed Item-based proposed MiFi Bandlimited sampling [87]

1st 0.9116 0.9053 0.8723 0.8551 0.8797 0.8229 0.8674 0.8308
2nd 0.8919 0.8696 0.8772 0.8596 0.8314 0.8287 0.8703 0.8427
3rd 0.9498 0.9404 0.9345 0.9058 0.9282 0.8733 0.9249 0.8445
4th 1.0228 1.0390 0.9938 0.9733 1.0097 0.9391 0.9874 1.0051
5th 0.8788 0.8615 0.8494 0.8478 0.8395 0.8173 0.8517 0.7918

Average 0.9310 0.9232 0.9054 0.8883 0.8977 0.8563 0.9003 0.8630

Table 8: Percentage of RMSE improvements of the proposed methods compared to the benchmark
algorithms

Round
User-based proposed Item-based proposed Bandlimited sampling MiFi MiFi MiFi MiFi

compared to
User-based NN Item-based NN Matrix completion User-based NN Best NN Matrix completion [87]

1st 6.20% 2.83% 0.56% 9.73% 9.10% 5.66% 0.95%
2nd 3.62% 4.39% 0.79% 7.09% 4.70% 5.53% 1.67%
3rd 4.63% 1.30% 1.03% 8.05% 7.14% 6.55% -3.41%
4th 4.84% 2.82% 0.64% 8.18% 8.18% 5.50% 6.57%
5th 3.53% 2.55% -0.27% 7.00% 5.13% 3.78% -3.22%

Average 4.56% 2.78% 0.55% 8.01% 6.85% 5.40% 0.51%

equivalently as

min
x̃ ∑

r∈R

∣∣[Û⊗ V̂x̃
]

r − xr
∣∣2 + α‖x̃‖1, (11.34)

which can be solved with computationally efficient algorithms, see, e.g., [232]. The next experi-
ment relaxes the requirement that the frequency is a diagonal matrix X̃ = diag(σ) to allow some
off-diagonal elements to be non-zero. In specific, we may allow entries X̃tτ to be non-zero if the
location is not far from diagonal with |t− τ| ≤ ∆. This yields the following problem

min
X̃

∥∥vec(X̃)
∥∥

1

s. t.
∣∣∣[ÛX̃V̂

]
ui − Xui

∣∣∣2 ≤ ε, ∀ (u, i) ∈ R,

X̃tτ = 0, if |t− τ| > ∆.

(11.35)

Setting ∆ = 0 would reduce the problem (11.35) back to (11.29). We evaluated the performance of
(11.35) for ∆ = 1 and ∆ = 2, and found that the off diagonal elements X̃tτ with t 6= τ generated
by the solver were zero. In other words, the solution and performance was the same compared to
that of (11.29). This implies that the model in (11.29) captures the key features of our data, with
the estimated sample eigenvectors being close to the actual eigenvectors.

11.4.5. More Rounds of Testing

The results and discussion in the previous sections were based on networks constructed using a
training set with 99,900 ratings and tested using a set with 100 ratings. The reason for splitting
the ratings in such a way was to ensure that the graphs, which are the building blocks of all
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the algorithms in this paper, were very well estimated. However, since we only kept 100 ratings,
which is a small number, for testing, a natural question is whether the reported performance is
very sensitive to that particular testing set. To shed light on that question, in this section we repeat
the experiment five times, each time with a different randomly selected (100 ratings) testing set
and leaving the remaining 99,900 ratings in the training set. As before, the computation of the
graphs and the filter coefficients is carried out using only the ratings in the corresponding training
set.

The RMSE for the proposed methods as well as the benchmark algorithms across the five rounds
of randomization is presented in Table 7, where the first round was the one analyzed in the
previous sections. The RMSE gains relative to the benchmark algorithms are listed in Table 8. The
boxplots illustrating the overall RMSE performance across the five rounds are presented in Figure
89.

As a general conclusion, the results obtained for this setup validate the analysis carried out in
the previous sections. In particular, the proposed graph-SP-inspired methods yield better perfor-
mance compared to the benchmarks: in average user-based higher order filtering is 4.56% better
than user-based NN, item-based higher order filtering is 2.78% better than item-based NN, and
bandlimited sampling is slightly better (0.55%) than low-rank matrix completion. As discussed in
the previous sections, the improvement achieved by higher order graph filters in the user domain
is larger than that achieved by higher order filters in the item domain. Moreover, MiFi is 6.85%
better than both user-based NN and item-based NN, and 5.40% better than matrix completion.
Recently, graph SP has been used to extract features to train a recurrent neural network to improve
matrix completion [87]. Figure 89 reveals that MiFi yields an overall performance similar to that
of the proposed graph-based recurrent neural network. More specifically, Table 8 shows that for
the considered setup the RMSE of MiFi predictors is slightly (0.51%) better than that incurred by
the graph-based recurrent neural network in [87].
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Figure 82: Viewing user-based collaborative filtering as graph filters. The ratings for each item
can be considered as graph signals on a user-to-user network Bi that depends on the specific item
i. For each specific item, edges in B starting from users who have not rated them are removed;
e.g. edges from users u3 and u4 are not present in network B1 and edges from users u2 and u4 are
not present in network B3. Then, given a specific user u, for all the edges coming into u, only the
ones with the k-highest edge weights are kept; e.g. when k = 2, in B2, the edge from u3 to u2 is
removed because its weight is small compared to the edges from u4 to u2 and from u1 to u2 (edge
weights are proportional to the width of the edges). Proper normalization is then applied to make
each Bi right stochastic. NN are a specific type of band-stop graph filter.
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Figure 83: Viewing item-based collaborative filtering as graph filters. As in Figure 82, the ratings
for each user can be considered as graph signals on an item-to-item network that depends on the
specific user. For each user, edges in C starting from items not rated by the user are removed.
Proper normalization is then applied to make each Cu right stochastic.
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Figure 84: Frequency response for the graph filters used in user-based filtering (Top) and used in
item-based filtering (Bottom). The horizontal axis represents the index p of the frequency (lower
frequency with smaller p and higher frequency with larger p) and the vertical axis denotes the
corresponding frequency response of the examined filters. For each Bi, we order its eigenvalues
according to |λp − λmax| ≤ |λp+1 − λmax|, so that lower frequencies (lower values of p) are those
closer to λmax. The frequency response for low, middle, and high frequencies is computed for
different items and sample sets, and the average behavior of such frequency responses is visu-
alized in the top plots. Frequency responses for item-based filtering are prepared similarly and
visualized in the bottom plots; there exist certain Cu with some rows being entirely zero, making
their largest eigenvalues strictly less than 1. (a) Frequency response for user-based NN; (b) Re-
sponse for the best user-based filter trained on training set using user-based networks {Bl

i}6
l=0; (c)

User-based frequency response in the best MiFi. (d) Frequency response for item-based NN; (e)
Response for the best item-based filter trained on training set using item-based networks {Cq

u}3
q=0;

(f) Item-based frequency response in the best MiFi.
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Figure 85: Low-pass and high-pass components of a rating signal x. The low-pass components
represent signals where similar users tend to have similar ratings, which provide the big picture
for the rating profile. The high-pass components represent the differences between users with
similar taste for the particular item, which can be considered as the distinguishing features to
separate the tastes of individual users.
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Figure 86: (a) Frequency response for the square B2
i of graph shifts and (b) frequency response

for the cubic B3
i of shifts. For each Bi, we order its eigenvalues in an increasing way according

to |λp − 1| and respectively record the frequency response λ2
p and λ3

p for low, middle, and high
frequencies. The average behavior of the frequency response across all graph shifts is visualized.
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Figure 87: Viewing the entire rating matrix where the entry for Xui is represented as (u, i) as a
graph signal on the product graph of covariance shifts D and E. Rating prediction problem can
be solved by using graph filters on the product graphs, or using cascade of graph filters on the
respective graphs.
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Figure 88: (a): Sum of the filter coefficients ∑L
l=1 hl for different tap of filters L used in user-based

NN. In both the “Limit behavior test” (Red) and the “Proper training test” (Blue), the sum of
coefficients is close to 1, indicating that without the design of filter banks, NN based collaborative
filtering is indeed the optimal solution. (b): Sum of the filter coefficients ∑Q

q=1 gq for different tap
of filters Q used in item-based NN. Again, in both the “Limit behavior test” (Red) and the “Proper
training test” (Blue), the sum is close to 1.
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Figure 89: Boxplots of the RMSE for the proposed methods and traditional rating prediction
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plot corresponds to the performance of [87] on the third round.
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Chapter 12

Conclusion

The first part of the thesis, Part I from Chapter 2 to Chapter 6, focused on the analysis of the
network themselves. The problems addressed in this part are the comparison of networked data
structures as well as filtering of networks.

Chapter 2 presented methods to compare high order networks, defined as weighted complete
hypergraphs collecting relationship functions between elements of tuples. They can be consid-
ered as generalizations of conventional networks where only relationship functions between pairs
are defined. Important properties between relationships of tuples of different lengths were es-
tablished, particularly when relationships encode dissimilarities or proximities between nodes.
Two families of distances were then introduced in the space of high order networks. The distances
measure differences between networks. We proved that they are valid metrics in the spaces of high
order dissimilarity and proximity networks modulo permutation isomorphisms. Practical impli-
cations were explored by comparing the coauthorship networks of two popular signal processing
researchers. The metrics succeeded in identifying their respective collaboration patterns.

Chapter 3 built on the results in Chapter 2. The goal in Chapter 3 was to find tractable approx-
imations of these network distances. We did so by mapping high order networks to filtrations
of simplicial complexes and showing that the distance between networks can be lower bounded
by the difference between the homological features of their respective filtrations. Practical im-
plications were explored by classifying weighted pairwise networks constructed from different
generative processes and by comparing the coauthorship networks of engineering and mathe-
matics academic journals. The persistent homology methods succeeded in identifying different
generative models, in discriminating engineering and mathematics communities, as well as in
differentiating engineering communities with different research interests.

Chapter 4 was based on the some observations found in Chapter 3. The goal of Chapter 4 was to
establish definitions of frequencies and filtering operations in the space of networks. Homospec-
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trum of a given network collects all such frequencies. Filtering on networks were then defined
by trivializing the relationships of tuples whose generated homological features have certain du-
rations. We illustrated that the original network can be easily recovered from homospectrum,
and therefore, homospectrum offers a different representation of the same information described
in the network. Besides, we illustrated that the difference between the original network and the
filtered network using network filter is bounded and small. Practical implications were explored
by showing the ability of homospectrums to discriminate networks generated by different models,
and by illustrating how we can capture the different features of a point cloud by applying different
types of filter.

Chapter 5 built on results in Chapters 2 and 3. Chapter 5 considered metric space where the exact
dissimilarities between pairs of points are not unknown but known to belong to some interval.
The goal was to study methods for the determination of hierarchical clusters, i.e., a family of
nested partitions indexed by a resolution parameter, induced from the given distance intervals
of the dissimilarities. Our construction of hierarchical clustering methods was based on defining
admissible methods to be those methods that satisfy the axioms of value – nodes in a metric space
with two nodes are clustered together at the convex combination of the upper and lower bounds
determined by a parameter – and transformation – when both distance bounds are reduced, the
output may become more clustered but not less. Two admissible methods were constructed and
are shown to provide universal bounds in the space of admissible methods. Practical implications
were explored by clustering moving points via snapshots and by clustering coauthorship net-
works representing collaboration between researchers from different communities. The proposed
clustering methods succeeded in identifying underlying hierarchical clustering structures via the
maximum and minimum distances in all snapshots, as well as in differentiating collaboration pat-
terns in journal publications between different research communities based on bounds of network
distances.

Chapter 6 started with a different direction from that in Chapter 2. In Chapter 6, we defined
such network distance by searching for the optimal method to embed one network into another
network, proved that such distance is a valid metric in the space of networks modulo permutation
isomorphisms, and examined its relationship with other network metrics. The network distance
defined can be approximated via multi-dimensional scaling, however, the lack of structure in net-
works results in sub-optimal approximations. To alleviate such problem, we considered methods
to define the interiors of networks. We showed that comparing interiors induced from a pair of
networks yields the same result as the actual network distance between the original networks.
Practical implications were explored by showing the ability to discriminate networks generated
by different models.

The second part of the thesis, Part II from Chapter 7 to Chapter 11, focused on signals defined on
top of the networks. We design domain-specific tools to leverage the network structure to analyze
the graph signals, and apply them in cancer subtype classification, brain signal analytics, as well
as rating prediction.
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After introducing prerequisite definitions of graph signal processing including graph Fourier
transform, graph filters, and their interpretations in Chapter 7, in Chapter 8, we defined the dif-
fusion and superposition distances as two metrics to compare signals supported in the nodes of a
network. The similarity between the given vectors is determined by the similarity of the respec-
tive diffusion profiles. The superposition distance computes the instantaneous difference between
the diffused signals and integrates the difference over time. The diffusion distance determines a
distance between the integrals of the diffused signals. We proved that both distances define valid
metrics and that they are stable to perturbations in the underlying network. We utilized numeri-
cal experiments to illustrate their utility in classifying signals in a synthetic network as well as in
classifying ovarian cancer histologies using gene mutation profiles of different patients. We also
utilized diffusion in label propagation process in semi-supervised learning and demonstrate its
benefit through the classification of handwritten digits.

In Chapter 9, we presented methods to analyze functional brain networks and signals from graph
spectral perspectives. Brain network frequency enables the decomposition of brain signals into
pieces corresponding to smooth or rapid variations. We related graph frequency with principal
component analysis when the networks of interest denote functional connectivity. The methods
were utilized to analyze brain networks and signals as subjects master a simple motor skill. We
observed that brain signals corresponding to different graph frequencies exhibit different levels of
adaptability throughout learning. Further, we noticed a strong association between graph spectral
properties of brain networks and the level of exposure to tasks performed, and recognize the most
contributing and important frequency signatures at different levels of task familiarity.

Chapter 10 builds on Chapter 9 but considers structural brain connectivity as the underlying
network. In specific, in Chapter 10, we reviewed graph signal processing for brain imaging data
and discussed their potential to integrate brain structure, contained in the graph itself, with brain
function, residing in the graph signals. We reviewed how brain activity can be meaningfully
filtered based on concepts of spectral modes derived from brain structure. We also derived other
operations such as surrogate data generation or decompositions informed by cognitive systems.
The combined observations in Chapters 9 and 10 shows how GSP offers a novel framework for
the analysis of brain imaging data.

In Chapter 11, we developed new designs for recommendation systems inspired by recent ad-
vances in GSP. Recommendation systems aim to predict unknown ratings by exploiting the in-
formation revealed in a subset of user-item observed ratings. Leveraging the notions of graph
frequency and graph filters, we demonstrated that classical collaborative filtering methods, such
as k-nearest neighbors, can be modeled as a specific band-stop graph filter on networks describing
similarities between users or items. We also demonstrated that linear latent factor models, such as
low-rank matrix completion, can be viewed as bandlimited interpolation algorithms that operate in
a frequency domain given by the spectrum of a joint user and item network. These new interpreta-
tions paved the way to new methods for enhanced rating prediction. For nearest-neighbor-based
collaborative filtering, we developed more general band-stop graph filters, and present a novel
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predictor, called Mirror Filtering, that filters jointly across user and item networks. For latent
factoring, we proposed a low complexity method by exploiting the eigenvector of correlation ma-
trices constructed from known ratings. The performance of our algorithms was assessed in the
MovieLens 100k dataset, showing that our designs reduce the root mean squared error (up to a
9.10% for MiFi) compared to the one incurred by the benchmark approach.
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