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P -persistent homology of finite topological spaces

F. Vaccarino, A. Patania, G. Petri

Wednesday 18th February, 2015

Abstract

Let P be a finite partially ordered set, briefly a finite poset. We will
show that for any P -persistent object X in the category of finite topolog-
ical spaces, there is a P− weighted graph, whose clique complex has the
same P -persistent homology as X.

1 Introduction

The study of topological spaces and the related computational methods are
receiving an unprecedented attention from fields as diverse as biology and social
sciences [9], [22], [23], [30] and [31].

The original motivation of this work is to provide a firm mathematical back-
ground for the results obtained in [30, 31], where the authors defined a filtration
of a weighted network directly in terms of edge weights. The rationale behind
this was the observation that embedding a network into a metric space generally
obfuscates most of its interesting structures [29], which become instead evident
when one focuses on the weighted connectivity structures without enforcing a
metric.

Figure 1 illustrates this through the H1 and H2 persistent diagrams for
two different filtrations obtained from a dataset of face-to-face contacts among
children in an elementary school (see the Sociopatterns project [28] for details).

The metrical filtration is obtained in the standard way: given a metric
(weighted shortest path in this case), one constructs a sequence of Rips-Vietoris
complexes by studying the change in the overlap of ε-neighbourhoods of ver-
tices while varying their radius ε (Figure 1 right). The non metrical one relies
instead on associating clique complexes to a series of binary networks obtained
from a progressively descending thresholding on edge weights (Figure 1 left).
The difference between the diagrams of the two filtration is evident: in the first
case, most of the generators have short persistent and are thus distributed along
the diagonal; in the second generators display a range of persistents, including
some very large ones that signal the presence of interesting heterogeneities in
the network structure.

More interestingly, we will see that the attempt at providing a mathemati-
cal formalisation of the approach used in [30] yields a much more general result
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Figure 1: Comparison of results obtained for H1 (top row) and H2 (bottom row) on the
Sociopatterns network with weighted graph filtration (left) and metrical filtration (right as
described in the main text. The colour of dots represents the corresponding generator’s per-
sistent, while the size is proportional to number of simplices composing a chain representative
of the generator’s class (we choose here as representative the standard output of javaplex [19]).

regarding P− persistent homology.

In order to obtain this result, we need to introduce a number of notions. In
the next section (Sec. 2) we briefly define the notion of P−persistence, which
is our main object of study. Subsequently we lay down the vocabulary needed,
introducing finite topological spaces and their equivalence to partially ordered
sets, the relation between simplicial complexes, their associated order complexes
and graphs. Finally, in Section 4.6 we introduce the homology and prove the
theorem in Section 3.13, highlighting how the metrical case is only a specific
and constrained case of the possible network weightings.

2 P -persistence

Let us recall the definition of poset.

Definition 2.1. A partially ordered set, briefly a poset, is a pair P = (P,≤),
where P is a set and ≤ is an order relation on it, i.e. a reflexive, antisymmetric,
and transitive relation on P.
Posets form a category, denoted by P, where morphisms are the order preserving
functions. In this paper we will consider only finite posets.
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Remark 2.1.1. Every poset P is a category on its own, where the objects are
the elements of P , and there is a (unique) morphism x→ y if and only if x ≤ y,
for all x, y ∈ P.

Following Section 2.3 in [9], a P -persistent object is given by the following
definition.

Definition 2.2. Let P be a poset and A an arbitrary category. A P -persistent
object in A is a functor ϕ : P → A. P -persistent objects in A with their natural
transformation form a category, which we will denote, as usual, by AP . Given
two categories A and B, to any functor φ : A → B it corresponds a functor
AP → BP . It is given by ϕ ∈ AP 7→ φ ◦ ϕ. It will be denoted by φP .

As said in the introduction, we are interested in studying persistent objects
in the category of finite topological spaces and in a suitable category of graphs.
Let us then introduce the reader to the categories we are interested in and some
functors relating them.

2.1 Basic categories and functors

We want to start with a few considerations on finite topological spaces i.e. topo-
logical spaces with a finite number of elements, which we can imagine to be given
as some sampling taken from a dataset. Finiteness is not a constraint for our
purposes, since every application will have a finite data space, although possibly
very large.

Finite topological spaces form a subcategory, denoted by Tf , of the category
T of topological spaces and continuous maps.

A T0 space is a topological space such that for any two different points
x and y there is an open set which contains one of these points and not the
other. Two such points will be called topologically distinguishable. It is clear
that this property is highly desirable in order to be able to extract meaningful
information from a topological space.

In this paper we will denote by T 0
f the category of finite T0−spaces.

From here on when we write topological space we will intend finite topolog-
ical space if not elsewhere stated.

2.1.1 Kolmogorov quotient

It may happen that a space we are working with is not T0, but this difficulty is
easy to overcome as it is shown by the following, which is well known, see e.g.
[2] Proposition 1.3.1.

Proposition 2.3. Let X be a finite space not T0. Let X/ ∼ be the Kolmogorov
quotient of X defined by x ∼ y if it does not exists an open set which contains
one of these points and not the other. Then, X/ ∼ is T0 and the quotient map
q : X → x0 is a homotopy equivalence.
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The Kolmogorov quotient X → X/ ∼ induces a functor from the category of
topological spaces to the category of T0−spaces.

Since homology is defined up to weak homotopy equivalence, the Kolmogorov
quotient allows us to restrict our analysis from general topological spaces to
T0−spaces without any loss of information.

2.1.2 Finite T0−spaces are posets

Theorem 2.4. There is an isomorphism of categories:

T 0
f
∼= P

Proof. Let X ∈ T 0
f , for x ∈ X let Ux be the intersection of all the closed sets

in X that contain x. Then we can give in X an order relation in the following
way:

x ≤ y ↔ Ux ⊆ Uy (2.1)

Since X is T0 this relation is a partial order. In this way we have a correspon-
dence X 7→ (X,≤) which induces a functor T 0

f → P.
On the other end, a poset P ∈ P is also a topological space via the Alexandrov
topology. In this topology the closed sets are the lower sets: Γ ⊂ P such that
∀x, y ∈ P with x ∈ Γ and y ≤ x implies that y ∈ Γ. A poset endowed with
this topology satisfies the T0 condition. The assignment of this topology on P
induces a functor P → T 0

f which is left and right inverse of the previous one,
that is:

T 0
f
∼= P (2.2)

We refer the reader to Chapter 1 [2] for details.

Remark 2.4.1. (i) A preordered set is a set endowed with a binary relation
which is reflexive and transitive. A poset is a special kind of preorder obtained
by requiring the relation to be antisymmetric. Preordered sets form a category
Preord the same way as posets. The isomorphism in Theorem 2.4 can be
extended to an isomorphism Tf ∼= Preordf , where the latter is the category of
finite preordered sets.
(ii) Let X ∈ Tf be a T1−space, i.e. for all x, y ∈ X there exist two open sets
A,B ⊆ X such that x ∈ A, y ∈ B and y /∈ A, x /∈ B. Then X has the discrete
topology and the process just described is not very informative because in this
case the poset (X,≤) is discrete.
We will see how to deal with finite metric spaces, that are T1, in the last section
of this paper.

From now on we will identify any X ∈ Tf with the poset associated to its
Kolmogorov quotient i.e., by abuse of notation, we will write

X = (X,≤) = (X/ ∼,≤)

where ≤ is the order relation given in (2.1).
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2.1.3 Simplicial Complexes

The basic idea of a simplicial complex is that of gluing together, in a coherent
way, points, lines, triangles, tetrahedra, and higher dimensional equivalents. We
will give now a more formal definition.

Definition 2.5. An (abstract) simplicial complex is a non empty family Σ of
finite subsets, called faces, of a vertex set V such that σ ⊂ τ ∈ Σ implies that
τ ∈ Σ.

We assume that the vertex set is finite and totally ordered. A face of n+ 1
vertices is called n−face, denoted by [p0, . . . , pn], and n is its dimension. We
set, as usual, the dimension of the empty set as -1 , following Section 2.1 in [20].
A 0−face is a vertex, a 1−face is an edge, a 2−face is a full triangle, a 3−face
is a full tetrahedron, etc.
The dimension of a simplicial complex the highest dimension of the faces in the
complex. We call vertex set V of Σ the union of the one point elements of Σ.
For a simplicial complex Σ and a non negative integer k we denote by Σk its
k − skeleton which is defined as

Σk := {σ ∈ Σ : dimσ ≤ k} (2.3)

The k−skeleton of Σ is a simplicial complex in the obvious way.
Simplicial complexes form a category, S, where a morphism of simplicial com-
plex is called simplicial map and is given by a map on vertices such that the
image of a face is again a face.

We are going to remind some well known relations between simplicial com-
plexes, topological spaces and posets.

Proposition 2.6. There exists a functor O : P → S which associates to every
poset P a simplicial complex, called the order complex.

Proof. For every P ∈ P we can construct a simplicial complex as follows:

[x0, . . . , xk] ∈ O(P ) if and only if x0 < x1 < · · · < xk, for all xj ∈ P .

O(P ) is called the order complex of P .

Definition 2.7. Every simplicial complex can be made into a topological space
by considering it a poset, i.e. Γ ⊆ Σ is closed if and only if Γ is a simplicial
complex. This gives a functor π : S → P ' T 0

f by π(Σ) = (Σ,⊆) the poset with
elements the simplices in Σ and as partial order the inclusion of simplices.
Given a simplicial complex Σ we write O(Σ) := O(π(Σ)). The simplicial com-
plex O(Σ) is called the barycentric subdivision of Σ.
By abuse of notation we will also write O(X) := O(X/ ∼,≤) for all X ∈ Tf via
the isomorphism in Theorem 2.4.

It is well known that Σ and O(Σ), endowed with the Alexandrov topology,
are weakly homotopy equivalent. We refer the interested reader to [2] for further
details.
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2.1.4 Graphs

Definition 2.8. A reflexive graph is a pair G = (V,E), where V is a finite
set whose elements are called vertices and E = ∆V×V ∪ E′ with E′ ⊆

(
V
2

)
,

i.e. is a graph which has an edge (called self-loop) (v, v) for every vertex v ∈
V . Equivalently, reflexive graphs can be seen as one dimensional simplicial
complexes, identifying self-loops and vertices with 0-simplices and edges with
1-simplices. We will denote by G the category with objects reflexive graphs
and morphisms the simplicial maps defined via the given identification with one
dimensional simplicial complexes.

It should be clear that G is isomorphic to the full subcategory of S whose
objects are the one dimensional simplicial complexes.

Remark 2.8.1. It is useful to notice that, since graphs in G are defined as G =
(V,E), then the null graph G∅ = (∅, ∅) is an object in G.

Definition 2.9. A clique in a graph G = (V,E) is a complete subgraph of G

i.e. is a subgraph G′ = (V ′, E′) with V ′ ⊂ V and E′ ⊂ E such that E′ =
(
V ′

2

)
.

Given a graph G ∈ G there is a covariant functor, Cl : G → S, called the
clique functor given by [v0, . . . , vk] ∈ Cl(G) if and only if (vi, vj) ∈ E for all
0 ≤ i 6= j ≤ k..

Note that this is well defined because (v, v) 7→ [v], for all v ∈ V.
Definition 2.10. Given a simplicial complex Σ there is a functor k1 : S → G
where k1(Σ) is the (reflexive) graph corresponding to the 1−skeleton of Σ.

Remark 2.10.1. In general Σ 6= Cl(k1(Σ)). For example if we consider Σ =
{[a], [b], [c], [a, b], [a, c], [b, c]}, this is a simplicial complex but Cl(k1(Σ)) = Σ ∪
{[a, b, c]}.
Definition 2.11. A simplicial complex Σ is called a flag (or a clique complex)
if Σ = Cl(k1(Σ)). flag complexes form a subcategory of S denoted by F .

Remark 2.11.1. It is easy to see that O(X) is a flag complex for all X ∈ Tf .
In particular this implies that, for all Σ ∈ S, the barycentric subdivision O(Σ)
is a flag complex.

Proposition 2.12. The functors Cl : G → F and k1|F : F → G give an
isomorphism G ' F .
Proof. Obvious.

To summarize:

S π //

O◦π

55P ' T 0
f

O // F ∼=

k1

== G

Cl
||

(2.4)
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2.2 P -weighted graphs

Definition 2.13. Let P ∈ P be a poset and G = (V,E) ∈ G a graph, let
us denote by G ∈ S the corresponding one dimensional simplicial complex.
A P − weighted graph is a pair (G,ω), where ω : (G,⊆) → P is a morphism
of posets i.e. a function G→ P, which is continuous in the Alexandrov topology.

Definition 2.14. We define as GP the category of P−weighted graphs, having
objects P−weighted graphs and whose morphisms α : (G,ω) → (H, θ) are
induced by a simplicial map ρ : G → H, such that α(Gv) ⊆ Hv, where for any
v ∈ P , Gv = {x ∈ G |ω(x) ≤ v}.

3 Main results: equivalences and adjunctions

We have the following.

Proposition 3.1. For all P ∈ P, there is a functor ΦP : GP → GP .

Proof. Let (G,ω) ∈ GP . From the definition of Gv we have that Gu ⊆ Gv for
every u ≤ v.
We can associate to (G,ω) ∈ GP a P−persistent object in ϕG ∈ GP , namely
ϕG(v) = Gv with the inclusions maps ϕG(u ≤ v) : Gu ↪→ Gv for all v ∈ P ,
u ∈ Pv. It is easy to check that the correspondence (G,ω) → ϕG is natural in
G. Therefore ΦP is a functor between the two categories.

Proposition 3.2. For all P ∈ P there exists a functor ΨP : GP → GP .

Proof. Choose ϕ ∈ GP , and, for every v ∈ P , set ϕv := ϕ(v) ∈ G.
Let ωϕ :

∐
v∈P ϕv → P be given by ωϕ|ϕv = v. It is easy to check that

the correspondence ϕ 7→ (
∐
v∈P ϕv, ω

ϕ) is natural in ϕ, thus giving a functor
ΨP : GP → GP .

Definition 3.3. Let ḠP be the subcategory of GP with the same objects, and
morphisms the maps α : (C,ω)→ (D,ω′) such that for every x ∈ G, ω′(α(x)) =
ω(x). We set Φ̄P as the restriction of ΦP to ḠP .

Remark 3.3.1. It is useful to notice that, actually, ΨP : GP → ḠP . Since
ΨP (ϕ) ∈ Ob(GP ) = Ob(ḠP ) for all ϕ ∈ GP , we just show that ΨP (µ) preserves
weights for every µ : ϕ → τ ∈ GP . Indeed from the definition of the weights
ωϕ, ωτ we have that (ωϕ)−1(u) = ϕu then ΨP (µ)(ϕu) ⊆ τu = (ωτ )−1(u).

Definition 3.4. Let GPι be the subcategory of GP whose objects are ϕ ∈ GP
such that the morphisms ϕ(u ≤ v) : ϕ(u)→ ϕ(v) are inclusions.
We set Ψι

P as the restriction of ΨP to GPι .

Following Carlsson [11] we introduce the concept of one critical P−persistent
object.
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Definition 3.5. Let ϕ ∈ GPι . ϕ is said to be one-critical if for all v ∈ P , for all
(x, y) ∈ Eϕ(a)

∃! mxy = min{u ∈ P |ϕuv(x, y) = (x, y)} (3.1)

The one-critical P -persistent objects form a subcategory of GPι , which will be
denoted by GP1 . We set Ψ1

P as the restriction of ΦP to GP1 .

Remark 3.5.1. It is useful to notice that ΦP : GP → GP1 . Indeed consider
(G,ω) ∈ GP . By definition of ΦP , it is clear that ϕG ∈ GP1 , with mxy = ω(x, y).

Theorem 3.6. The categories GP1 and ḠP are equivalent.

Proof. It is a well known fact in category theory that a functor is an equiva-
lence if and only if it is full, faithful and essentially surjective. Then to prove
the equivalence of category we need to verify that ΦP has these three properties.

Consider (G,ω), (H, θ) ∈ ḠP , and α ∈ homḠP ((G,ω), (H, θ)). The functor
ΦP is essentially surjective if it is surjective on objects up to isomorphism.
Let ϕ ∈ GP1 , then we can construct (G,ω) ∈ ḠP by G :=

⋃
a∈P ϕ(a) and

ω((x, y)) = mxy (see 3.1). It follows that ΦP ((G,ω)) is such that, for all u ∈ P,
one has ϕG(u) = {x ∈ G| ω(x) ≤ u} =

⋃
a∈P ;a≤u ϕ(a) ∼= ϕ(u) by definition of ϕ.

The functor ΦP is full if the map

ΦP ((G,ω), (H, θ)) : homḠP ((G,ω), (H, θ))→ homGP1 (ϕG, ϕH)

is surjective for all (G,ω), (H, θ) ∈ ḠP .
Consider a morphism ρ : ϕG → ϕH in GP1 . Let α : EG → EH be given by
α((x, y)) = ρω(x,y)(x, y), for every (x, y) ∈ EG. Then α is a morphism (G,ω)→
(H, θ) in ḠP , because, since ρω(x,y) : ϕG(ω(x, y)) → ϕH(ω(x, y)), we have that
θ(α((x, y))) = ω(x, y). It is clear that ΦP (α) is ρ by the definitions of ΦP and
α.

As last step, we prove that ΦP is said faithful, i.e. that the map

ΦP ((G,ω), (H, θ)) : homḠP ((G,ω), (H, θ))→ homGP1 (ϕG, ϕH)

is injective for all (G,ω), (H, θ) ∈ ḠP .
Consider α, β ∈ homḠP ((G,ω), (H, θ)) such that Φ(α) = Φ(β). This means that
Φ(α)v = Φ(β)v for all v ∈ P , but this implies that α|Gv = β|Gv for all v ∈ P ,
then α = β.

3.1 Adjunctions

Beside the equivalence in Th.3.6, there are also some results on the relationships
between the other categories involved.

Theorem 3.7. Φ̄P is left adjoint of ΨP , that is

homḠP ((X,ω),ΨP (ϕ)) ∼= homGP (Φ̄P ((X,ω)), ϕ)

8



Proof. Let π : (X,ω) → (
∐
P Xu, ω

ϕX ) given by π(x) = (x, ω(x)) ∈ Xω(x), for
every x ∈ (X,ω). This map is well defined and is actually a morphism in the
category ḠP since ωϕX (π(x)) = ωϕX ( (x, ω(x)) ) = ω(x).
To prove the assumption we will show that, for every α ∈ homḠP ((X,ω),ΨP (ϕ)),
there is a unique morphism in GP , ᾱ : Φ̄P ((X,ω))→ ϕ such that the following
diagram commutes

(X,ω)
π //

α

��

ΨP (Φ̄P ((X,ω)))

ΨP (ᾱ)ww
ΨP (ϕ)

(3.2)

Let α ∈ homḠP ((X,ω), (
∐
P ϕ(u), ωϕ)), then α will be such that ωϕ(α(x)) =

ω(x), for every x ∈ (X,ω). By construction of ωϕ we will have that α(x) ∈
ϕ(ω(x)), and with a little abuse of notation we will write α : x 7→ (α(x), ω(x)).

Let ᾱ : Φ̄P ((X,ω)) → ϕ be the morphism in GP defined through ᾱ|Xu :
Xu → ϕ(u) with ᾱ|Xu(x) = ϕω(x)u(α(x), ω(x)), where ϕω(x)u = ϕ(ω(x) ≤ u) :
ϕ(ω(x))→ ϕ(u).

We still have to show that diagram 3.2 commutes, i.e. ΨP (ᾱ) ◦ π = α. Let
x be an element of (X,ω) with weight ω(x), then π(x) = (x, ω(x)) ∈ Xω(x),
so ᾱ(π(x)) = ϕω(x)ω(x)(α(x), ω(x)) = (α(x), ω(x)). Follows that the diagram
commutes and this proves the adjuction.

There is another adjunction.

Theorem 3.8. Ψι
P is left adjoint of ΦP .

In order to prove this theorem we need some technical lemmata.

Lemma 3.9. There is a natural transformation ε : Ψι
PΦP −→ 1GP .

Proof. Consider (G,ω) ∈ GP , then

GP
ΦP // GPι

ΨιP // GP

(G,ω) � // {Gv} � // (
∐
v∈P Gv, ω

ϕG)

(3.3)

Define now ε(G,ω) as follows:

ε(G,ω) : (
∐
v∈P Gv, ω

ϕG) −→ (G,ω)
(x, u) 7→ x

(3.4)

This map is well defined since ωϕG((x, u)) = u ≥ ω(x) = ω(ε(G,ω)(x, u)).
Consider now (F, τ), and α : (G,ω) → (F, τ) in GP , trivially the following

9



diagram commutes:

(G,ω)
ΨιP ◦ΦP //

α

��

(
∐
v∈P

Gv, ω
ϕG)

ε(G,ω) //

ΨιP (ΦP (α))

��

(G,ω)

α

��
(F, τ)

ΨιP ◦ΦP
// (
∐
v∈P

Fv, ω
ϕF )

ε(F,τ)

// (F, τ)

(3.5)

ε is the natural transformation we were searching for.

Lemma 3.10. There is a natural trasformation η : Ψι
PΦP −→ 1GPι .

Proof. Consider ϕ ∈ GPι , Φ ◦Ψ(ϕ) = (
∐
u≤v φ(u),⊆).

GPι
ΨιP // GP

ΦP // GPι

{ϕ(v),⊆}v∈P � // (
∐
v∈P ϕ(v), ωϕ) � // {

∐
u≤v ϕ(u),⊆}

(3.6)

Define now ηϕ as follows:

ηϕ : ϕ(v) →
∐
u≤v ϕ(u)

x 7→ (x, v)
(3.7)

Consider now θ, and α : ϕ→ θ in GPι , the following diagram commutes:

ϕ(v)
ηϕ //

αv

��

∐
u≤v

ϕ(u)

∐
αu

��
θ(v)

ηθ //
∐
u≤v

θ(u)

(3.8)

where for every (x,w) ∈
∐
u≤v ϕ(u),

∐
αu((x,w)) = (α(x), w).

η is the natural transformation we were searching for.

Proof of Theorem 3.8. We will prove the unit-counit adjunction, with ε and η
the natural transformations defined in Lemma 3.9, and 3.10.

To prove the adjunction we verify that the following compositions are the
identity transformation of the respective categories.

ΦP

idGP

OO
ηΦ // ΦPΨι

PΦP
Φε // ΦP Ψι

P

idGPι

OO
Ψη // Ψι

PΦPΨι
P

εΨ // Ψι
P (3.9)

10



which means that for each (G,ω) in GP and each ϕ in GP ,

1ΨιP (ϕ) = εΨιP (ϕ) ◦Ψι
P (ηϕ) (3.10)

1ΦP ((G,ω)) = ΦP (ε(G,ω)) ◦ ηΦP ((G,ω)) (3.11)

We will start by verifying equation 3.10. Let ϕ ∈ GPι , we know that ηϕ : ϕ −→
ΦP ◦Ψι

P (ϕ) is a natural transformation defined for every v ∈ P by

ηϕ(v) : ϕ(v) −→ ΦP (Ψι
P (ϕ))(v) =

∐
u≤v ϕ(u)

x 7→ (x, v)
(3.12)

Then

Ψι
P (ηϕ) : Ψι

P (ϕ)→ (
∐
v∈P

ΦP (Ψι
P (ϕ))(v), ωΦPΨιP (ϕ)) = (

∐
v∈P

∐
u≤v

ϕ(u), ωΦPΨιP (ϕ)),

where ωΦPΨιP (ϕ)|∐
u≤v ϕ(u) = v. From the definition of ε we gave in Lemma 3.9

we deduce that
εΨιP (ϕ) : Ψι

P ◦ ΦP (Ψι
P (ϕ)) −→ Ψι

P (ϕ).

One has that Ψι
P ◦ΦP (Ψι

P (ϕ)) is the weighted graph (
∐
v∈P

Ψι
P (ϕ)v , ω

ΦPΨιP (ϕ)),

where Ψι
P (ϕ)v = {x ∈ Ψι

P (ϕ)|ωϕ(x) ≤ v} =
∐
u≤v

ϕ(u), and ωΦPΨιP (ϕ)|∐
u≤v ϕ(u) =

v.
εΨιP (ϕ) : (

∐
v∈P

∐
u≤v

ϕ(u), ωΦPΨιP (ϕ)) −→ Ψι
P (ϕ)

((x, u), v) 7→ (x, u)
(3.13)

where Ψι
P (ϕ) = (

∐
v∈P

ϕ(v), ωϕ), with ωϕ|ϕ(v) = v.

Then εΨιP (ϕ) ◦Ψι
P (ηϕ) = 1ΨιP (ϕ) as the following shows:

(
∐
v∈P

ϕ(v), ωϕ)
Ψ(ηϕ)−−−−→ (

∐
v∈P

∐
u≤v

ϕ(u), ωΦPΨιP (ϕ))
εΨι
P

(ϕ)

−−−−→ (
∐
v∈P

ϕ(v), ωϕ)

(x, v) 7→ ((x, v), v) 7→ (x, v)
(3.14)

We verify now identity 3.11. Consider (G,ω) ∈ GP , we have that

ηΦP ((G,ω)) : ΦP ((G,ω))→ ΦP ◦Ψι
P (Φ((G,ω)))

where ΦP ((G,ω))(v) = Gv, with Gv = {x ∈ G|ω(x) ≤ v}. For every v ∈ P , we
find that ηΦP ((G,ω)) is determined by:

ηΦP ((G,ω))(v) : Gv −→
∐
u≤v

Gu

x 7→ (x, v)
(3.15)
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Considering that ε(G,ω) : (
∐
v∈P

Gv, ω
ϕG) 7→ (G,ω), where ωϕG |Gv = v. We

have that ΦP (ε(G,ω)) is defined for every v ∈ P :

ΦP (ε(G,ω))(v) : ΦP (Ψι
P ◦ ΦP ((G,ω)))(v) −→ ΦP ((G,ω))(v) (3.16)

where

ΦP (Ψι
P ◦ΦP ((G,ω)))(v) = {(x, u) ∈

∐
v∈P

Gv s.t. ωϕG((x, u)) = u ≤ v} =
∐
u≤v

Gu

and ΦP ((G,ω))(v) = Gv. This gives the following natural transformation:

Gv
ηΦP ((G,ω))(v)
−−−−−−−−−→

∐
u≤v

Gu
ΦP (ε(G,ω))(v)
−−−−−−−−−→ Gv

x 7−−−−→ (x, v) 7−−−−→ x

(3.17)

which proves that ΦP (ε(G,ω)) ◦ ηΦP ((G,ω)) = 1ΦP ((G,ω)).

3.2 Conclusions and application to homology

Definition 3.11. Let τ ∈ T Pf , the composition HS
i ◦ τ ∈ VectPk will be called

the ith P -persistent homology of τ ∈ T Pf .

We have the following result which states that for any P−persistent object on
the category of finite topological space, there is a P−weighted graph having the
same P−persistent homology.

Proposition 3.12. Let τ ∈ T Pf , then there is θ ∈ ḠP such that

HS
i ◦ τ ∼= Hi ◦ Cl ◦ θ (3.18)

as functors.

Proof. The commutativity of (4.1) implies that the following diagram is com-
mutative:

T Pf // (T 0
f )P

(HS
i )
P

//

(k1◦O)P

��

VectPk

GP
(Hi◦Cl)P

;;
(3.19)

Therefore the statement holds with θ = k1 ◦ O ◦ τ.

The above result implies that P -persistent homology of finite spaces can be
computed as P -persistent homology of graphs. We have then our main result
on P−persistent homology.

Theorem 3.13. Let τ ∈ T Pf be a P -filtration of topological spaces such that
τab : Xa → Xb is injective for all a, b ∈ P with a ≤ b,
Then exists a weighted graph (G,ω) ∈ ḠP such that HS

i ◦ τ ∼= Hi(G,ω).

12



Proof. It follows from Prop.3.12 and Th.3.6.

Remark 3.13.1. Let us consider a metric space (X, d), since X is T1, then it has
discrete topology. Therefore HS

0 is equal to kX , and HS
i = 0 for all i > 0.

It is customary to associate to (X, d) a nice simplicial complex, namely the
Vietoris-Rips complex Xε. which is explicitly defined as Cl(Dε(X)) where Dε

is the graph with V = X, and (x, y) ∈ E if and only if d(x, y) ≤ ε.
Therefore this approach is already included in our analysis.

4 Appendix on Homotopy and homology

4.1 Homology

The basic idea behind algebraic topology is to functorially attach algebraic
objects to topological spaces in order to discern their properties. Homology
theory does so by introducing functors from the category of topological spaces
(or some related category) and continuous maps to the category of modules over
a commutative base ring, such that these modules are topological invariants.
We will first introduce homology over simplicial complexes, which are our main
setting, and then we will proceed to define it over general topological spaces.

4.2 Simplicial homology

Fixed a field k, in the following, by vector space we intend a k−vector space.
Given a simplicial complex Σ of dimension d, for 0 ≤ n ≤ d consider the vector
spaces Cn := Cn(Σ) with basis the set of n-faces in Σ. Elements in Cn are called
n-chains.

The linear maps sending a n-face to the alternate sum of it’s (n − 1)-faces
are called boundaries and share the property ∂n−1 ◦ ∂n = 0.

∂n : Cn −→ Cn−1

[p0, . . . , pn] →
n∑
i=0

(−1)i[p0, . . . , pi−1, pi+1, . . . , pn].

The subspace ker ∂n of Cn is called the vector space of n-cycles and denoted
by Zn := Zn(Σ). The subspace Im ∂n+1 of Cn, is called the vector space of
n-boundaries and denoted by Bn := Bn(Σ).

Remark 4.0.2. From ∂n−1 ◦ ∂n = 0 it follows that Bn ⊆ Zn for all n.

Definition 4.1. The n−th simplicial homology space of Σ, with coefficients in
k, is the vector space Hn := Hn(Σ) := Zn/Bn. We denote by βn := βn(Σ) the
rank of Hn : it is usually called the n-th Betti number of Σ.
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The first Betti numbers of Σ have an easy intuitive meaning: the 0-th Betti
number is the number of connected components of Σ, the first Betti number is
the number of two dimensional (poligonal) holes, the third Betti number is the
number of three dimensional holes (convex polyhedron).

Remark 4.1.1. It easy to check that Cn,Zn,Bn and, therefore, Hn are all func-
tors S → Vectk, where Vectk denotes the category of vector spaces and linear
mappings.

There is plenty of literature on homology and in particular on simplicial
homology, we refer the interested reader to [27]. In particular, one can find
thereby, the proof of the following.

Proposition 4.2. The functors Hi are invariants by homeomorphism and ho-
motopy type.

Definition 4.3. Let G ∈ G be a graph. We now define as the homology space
of G,

Hi(G) := Hi(Cl(G))

.

Proposition 4.4. Let Σ be a simplicial complex. Then, there exists a graph
G ∈ G such that Hi(Σ) = Hi(G).

Proof. The proof is a consequence of Remark 2.7 and 2.11.1. It is sufficient to
consider as G = k1(O(π(Σ))), the 1-skeleton of the barycentric subdivision of
Σ, which is a flag complex.

4.3 Singular homology

Simplicial homology has an analogous for general topological spaces, namely
singular homology, whose definition and properties we briefly recall now. Al-
though we confine ourself into the category of finite topological spaces, the
following definition remains valid for arbitrary topological spaces. We address
the interested reader to [18, 27] for a thorough treatise on these topics.

Let X ∈ Tf be a topological space, the chain spaces Cn are in this case
replaced by the vector spaces CSn freely generated by the set of all continuous
functions from the geometric realization of the standard n-simplex ∆n to X.
The boundaries are then defined in the following way thus making (CSn , ∂

S
n ) a

chain complex.

Definition 4.5. Let σ be a generator of Cn, i.e. a continuous function from
∆n → X. Then the boundary homomorphism ∂Sn can be constructed in the
following way:

∂Sn (σ) =

n∑
i

σ|[v0,...,vi−1,vi+1,...,vn]

where σ|[v0,...,vi−1,vi+1,...,vn] is the restriction of σ to [v0, . . . , vi−1, vi+1, . . . , vn].
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It is easy to verify that ∂Sn ◦∂Sn+1 = 0, thus we can define the homology spaces
as we did for simplicial homology. We will denote the ith singular homology
space by HS

i (X). For general nonsense it is easy to check that HS
i gives a

functor Tf → Vectk.

Theorem 4.6 (Theorem 2.27 in [18]). For any simplicial complex Σ, the sin-
gular homology groups are isomorphic to the simplicial homology groups.

∀i ∈ N HS
i (Σ) ∼= Hi(Σ)

Definition 4.7. Let X,Y ∈ Tf , and let πn(X,x) denote the homotopy group
of the space X at base point x ∈ X.
A map f : X → Y is a weak homotopy equivalence if the following condition are
both verified:

1. f induces an isomorphism of the connected components of X and Y

Π0(f) : Π0(X)→ Π0(Y )

2. for all x ∈ X, and n ≥ 1 is an isomorphism on the homotopy groups

πn(f) : πn(X,x)→ πn(Y, f(x))

There is the following result.

Theorem 4.8 (McCord, [25]). Let X ∈ Tf with X/ ∼ its Kolmogorov quotient,
then O(X/ ∼) ∈ F is weak homotopy equivalent to X.

We refer the interested reader to Chapter 1.4, [2]. In view of this result it
makes sense to set O(X) := O(X/ ∼) for all X ∈ Tf .

Theorem 4.6 and 4.8 together imply that HS
i (X) ∼= Hi(O(X)) for all X ∈ Tf .

Moreover, since O(X) is a flag complex Hi(O(X)) = Hi(Cl(k1(O(X)))),
that is the graph homology of the graph which is the 1-skeleton of O(X). Thus
we can restrict ourselves to the study of the graph homology of k1(O(X)).

In conclusion, the following diagram commutes:

Tf // T 0
f

HS
i //

O
��

Vectk

F
k1 //oo
Cl

Hi

<<

G

Hi

OO (4.1)

Although these observations are interesting per se, they become much more
significant if we consider not only the homological structure of a data space but
also its P -persistent properties.
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