79 research outputs found

    On particle filters in radar target tracking

    Get PDF
    The dissertation focused on the research, implementation, and evaluation of particle filters for radar target track filtering of a maneuvering target, through quantitative simulations and analysis thereof. Target track filtering, also called target track smoothing, aims to minimize the error between a radar target's predicted and actual position. From the literature it had been suggested that particle filters were more suitable for filtering in non-linear/non-Gaussian systems. Furthermore, it had been determined that particle filters were a relatively newer field of research relating to radar target track filtering for non-linear, non-Gaussian maneuvering target tracking problems, compared to the more traditional and widely known and implemented approaches and techniques. The objectives of the research project had been achieved through the development of a software radar target tracking filter simulator, which implemented a sequential importance re-sampling particle filter algorithm and suitable target and noise models. This particular particle filter had been identified from a review of the theory of particle filters. The theory of the more conventional tracking filters used in radar applications had also been reviewed and discussed. The performance of the sequential importance re-sampling particle filter for radar target track filtering had been evaluated through quantitative simulations and analysis thereof, using predefined metrics identified from the literature. These metrics had been the root mean squared error metric for accuracy, and the normalized processing time metric for computational complexity. It had been shown that the sequential importance re-sampling particle filter achieved improved accuracy performance in the track filtering of a maneuvering radar target in a non-Gaussian (Laplacian) noise environment, compared to a Gaussian noise environment. It had also been shown that the accuracy performance of the sequential importance re-sampling particle filter is a function of the number of particles used in the sequential importance re-sampling particle filter algorithm. The sequential importance re-sampling particle filter had also been compared to two conventional tracking filters, namely the alpha-beta filter and the Singer-Kalman filter, and had better accuracy performance in both cases. The normalized processing time of the sequential importance re-sampling particle filter had been shown to be a function of the number of particles used in the sequential importance re-sampling particle filter algorithm. The normalized processing time of the sequential importance re-sampling particle filter had been shown to be higher than that of both the alpha-beta filter and the Singer-Kalman filter. Analysis of the posterior Cramér-Rao lower bound of the sequential importance re-sampling particle filter had also been conducted and presented in the dissertation

    Estimation of temporal and spatio-temporal nonlinear descriptor systems

    Get PDF
    As advances in the remote sensing of fluid flows forge ahead at an impressive rate, we face an increasingly compelling question of how best to exploit this progress. Light detection and ranging (LIDAR) measurement equipment still presents the problems of having only radial (line-of-sight) wind speed measurements (Cyclops' dilemma). Substantial expanses of unmeasured flow still remain and range weighting errors have a considerable influence on LIDAR measurements. Clearly, more information needs to be extracted from LIDAR data and an estimation problem naturally arises. A key challenge is that most established estimation techniques, such as Kalman filters, cater for systems that are finite-dimensional and described by ordinary differential equations (ODEs). By contrast, many fluid flows are governed by the Navier-Stokes equations, which are nonlinear partial differential-algebraic equations (PDAEs). With this motivation in mind, this thesis proposes a novel statistical signal processing framework for the model-based estimation of a class of spatio-temporal nonlinear partial differential-algebraic equations (PDAEs). The method employs finite-dimensional reduction that converts this formulation to a nonlinear DAE form for which new unscented transform-based filtering and smoothing algorithms are proposed. Gaussian approximations are derived for differential state variables and more importantly, extended to algebraic state variables. A mean-square error lower bound for the nonlinear descriptor filtering problem is obtained based on the posterior Cramér-Rao inequality. The potential of adopting a descriptor systems approach to spatio-temporal estimation is shown for a wind field estimation problem. A basis function decomposition method is used in conjunction with a pressure Poisson equation (PPE) formulation to yield a spatially-continuous, strangeness-free, reduced-order descriptor flow model which is used to estimate unmeasured wind velocities and pressure over the entire spatial region of interest using sparse measurements from wind turbine-mounted LIDAR instruments. The methodology is validated for both synthetic data generated from large eddy simulations of the atmospheric boundary layer and real-world LIDAR measurement data. Results show that a reconstruction of the flow field is achievable, thus presenting a validated estimation framework for potential applications including wind gust prediction systems, the preview control of wind turbines and other spatio-temporal descriptor systems spanning several disciplines

    Bayesian algorithms for mobile terminal positioning in outdoor wireless environments

    Get PDF
    [no abstract

    Performance Analysis of Bearings-only Tracking Problems for Maneuvering Target and Heterogeneous Sensor Applications

    Get PDF
    State estimation, i.e. determining the trajectory, of a maneuvering target from noisy measurements collected by a single or multiple passive sensors (e.g. passive sonar and radar) has wide civil and military applications, for example underwater surveillance, air defence, wireless communications, and self-protection of military vehicles. These passive sensors are listening to target emitted signals without emitting signals themselves which give them concealing properties. Tactical scenarios exists where the own position shall not be revealed, e.g. for tracking submarines with passive sonar or tracking an aerial target by means of electro-optic image sensors like infrared sensors. This estimation process is widely known as bearings-only tracking. On the one hand, a challenge is the high degree of nonlinearity in the estimation process caused by the nonlinear relation of angular measurements to the Cartesian state. On the other hand, passive sensors cannot provide direct target location measurements, so bearings-only tracking suffers from poor target trajectory estimation accuracy due to marginal observability from sensor measurements. In order to achieve observability, that means to be able to estimate the complete target state, multiple passive sensor measurements must be fused. The measurements can be recorded spatially distributed by multiple dislocated sensor platforms or temporally distributed by a single, moving sensor platform. Furthermore, an extended case of bearings-only tracking is given if heterogeneous measurements from targets emitting different types of signals, are involved. With this, observability can also be achieved on a single, not necessarily moving platform. In this work, a performance bound for complex motion models, i.e. piecewisely maneuvering targets with unknown maneuver change times, by means of bearings-only measurements from a single, moving sensor platform is derived and an efficient estimator is implemented and analyzed. Furthermore, an observability analysis is carried out for targets emitting acoustic and electromagnetic signals. Here, the different signal propagation velocities can be exploited to ensure observability on a single, not necessarily moving platform. Based on the theoretical performance and observability analyses a distributed fusion system has been realized by means of heterogeneous sensors, which shall detect an event and localize a threat. This is performed by a microphone array to detect sound waves emitted by the threat as well as a radar detector that detects electromagnetic emissions from the threat. Since multiple platforms are involved to provide increased observability and also redundancy against possible breakdowns, a WiFi mobile ad hoc network is used for communications. In order to keep up the network in a breakdown OLSR (optimized link state routing) routing approach is employed

    Sequential estimation of intrinsic activity and synaptic input in single neurons by particle filtering with optimal importance density

    Get PDF
    This paper deals with the problem of inferring the signals and parameters that cause neural activity to occur. The ultimate challenge being to unveil brain’s connectivity, here we focus on a microscopic vision of the problem, where single neurons (potentially connected to a network of peers) are at the core of our study. The sole observation available are noisy, sampled voltage traces obtained from intracellular recordings. We design algorithms and inference methods using the tools provided by stochastic filtering that allow a probabilistic interpretation and treatment of the problem. Using particle filtering, we are able to reconstruct traces of voltages and estimate the time course of auxiliary variables. By extending the algorithm, through PMCMC methodology, we are able to estimate hidden physiological parameters as well, like intrinsic conductances or reversal potentials. Last, but not least, the method is applied to estimate synaptic conductances arriving at a target cell, thus reconstructing the synaptic excitatory/inhibitory input traces. Notably, the performance of these estimations achieve the theoretical lower bounds even in spiking regimes.Postprint (published version

    The use of fake algebraic Riccati equations for co-channel demodulation

    Get PDF
    Copyright © 2003 IEEEThis paper describes a method for nonlinear filtering based on an adaptive observer, which guarantees the local stability of the linearized error system. A fake algebraic Riccati equation is employed in the calculation of the filter gain. The design procedure attempts to produce a stable filter at the expense of optimality. This contrasts with the extended Kalman filter (EKF), which attempts to preserve optimality via its linearization procedure, at the expense of stability. A passivity approach is applied to deduce stability conditions for the filter error system. The performance is compared with an EKF for a co-channel frequency demodulation application.Einicke, G.A.; White, L.B.; Bitmead, R.R

    Online Natural Gradient as a Kalman Filter

    Full text link
    We cast Amari's natural gradient in statistical learning as a specific case of Kalman filtering. Namely, applying an extended Kalman filter to estimate a fixed unknown parameter of a probabilistic model from a series of observations, is rigorously equivalent to estimating this parameter via an online stochastic natural gradient descent on the log-likelihood of the observations. In the i.i.d. case, this relation is a consequence of the "information filter" phrasing of the extended Kalman filter. In the recurrent (state space, non-i.i.d.) case, we prove that the joint Kalman filter over states and parameters is a natural gradient on top of real-time recurrent learning (RTRL), a classical algorithm to train recurrent models. This exact algebraic correspondence provides relevant interpretations for natural gradient hyperparameters such as learning rates or initialization and regularization of the Fisher information matrix.Comment: 3rd version: expanded intr

    Statistical modelling of algorithms for signal processing in systems based on environment perception

    Get PDF
    One cornerstone for realising automated driving systems is an appropriate handling of uncertainties in the environment perception and situation interpretation. Uncertainties arise due to noisy sensor measurements or the unknown future evolution of a traffic situation. This work contributes to the understanding of these uncertainties by modelling and propagating them with parametric probability distributions
    • …
    corecore