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Abstract

As advances in the remote sensing of fluid flows forge ahead at an impressive rate, we

face an increasingly compelling question of how best to exploit this progress. Light

detection and ranging (LIDAR) measurement equipment still presents the problems

of having only radial (line-of-sight) wind speed measurements (Cyclops’ dilemma).

Substantial expanses of unmeasured flow still remain and range weighting errors have

a considerable influence on LIDAR measurements. Clearly, more information needs

to be extracted from LIDAR data and an estimation problem naturally arises. A

key challenge is that most established estimation techniques, such as Kalman filters,

cater for systems that are finite-dimensional and described by ordinary differential

equations (ODEs). By contrast, many fluid flows are governed by the Navier-Stokes

equations, which are nonlinear partial differential-algebraic equations (PDAEs).

With this motivation in mind, this thesis proposes a novel statistical signal pro-

cessing framework for the model-based estimation of a class of spatio-temporal non-

linear partial differential-algebraic equations (PDAEs). The method employs finite-

dimensional reduction that converts this formulation to a nonlinear DAE form for

which new unscented transform-based filtering and smoothing algorithms are pro-

posed. Gaussian approximations are derived for differential state variables and more

importantly, extended to algebraic state variables. A mean-square error lower bound

for the nonlinear descriptor filtering problem is obtained based on the posterior

Cramér-Rao inequality.

The potential of adopting a descriptor systems approach to spatio-temporal esti-

mation is shown for a wind field estimation problem. A basis function decomposition

method is used in conjunction with a pressure Poisson equation (PPE) formulation

to yield a spatially-continuous, strangeness-free, reduced-order descriptor flow model

which is used to estimate unmeasured wind velocities and pressure over the entire

spatial region of interest using sparse measurements from wind turbine-mounted LI-

DAR instruments. The methodology is validated for both synthetic data generated

from large eddy simulations of the atmospheric boundary layer and real-world LIDAR
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measurement data. Results show that a reconstruction of the flow field is achievable,

thus presenting a validated estimation framework for potential applications includ-

ing wind gust prediction systems, the preview control of wind turbines and other

spatio-temporal descriptor systems spanning several disciplines.
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Chapter 1

Introduction

The burgeoning offshore wind energy industry has been fuelling widespread research

efforts to improve the economic efficiency of energy production. The overall cost of

energy is impacted by various factors that are negatively affected by wind unsteadi-

ness. Violent gusts of wind often disrupt construction and maintenance operations.

This forces the maintenance crew to follow a more conservative approach than would

otherwise be required if prior knowledge of oncoming gusts is available. Although

meteorological forecasts do provide averaged wind speeds over large areas, this is of-

ten of insufficient fidelity to obtain finer spatial and faster temporal dynamics of wind

gusts. Wind gusts are a primary cause of extreme and fatigue load and result in a

decreased operational life expectancy and increased maintenance. Construction costs

are increasingly high as heavier and stronger towers are needed [1]. It is therefore

unsurprising that the work in [2] reports on the crucial need to develop technologies

that improve turbine reliability, in clear view of the significant maintenance costs

endured particularly at remote offshore locations.

This has sparked off a keen interest in developing the ability to sample an oncom-

ing wind field using light detection and ranging (LIDAR) instrumentation in order to

maximise energy production and mitigate structural loads. Such wind information is

vital for the preview control of wind turbines and constitutes one of the present con-

trol research challenges as documented in The Impact of Control Technology report

published by the IEEE Control Systems Society [3]. LIDAR equipment now provides
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useful bandwidth and ranging specifications that enable accurate and fast radial veloc-

ity measurements at specific locations away from the turbine [4, 5]. However, LIDAR

equipment only provides radial (line-of-sight) wind speed measurements (Cyclops’

dilemma). Substantial expanses of unmeasured flow still remain and range weighting

errors have a considerable influence on LIDAR measurements. Clearly, more informa-

tion needs to be extracted from LIDAR data. How to exploit such measurements for

oncoming gust detection, or how to employ this information within preview control

schemes, remains unclear [6, 7, 8]. Such controllers would depend on the accuracy of

wind field prediction which therefore require wind flow estimation tools that predict

wind gusts using sparse spatio-temporal wind velocity measurements [9, 4, 10]. This

action prevents the possible blade damage due to strong wind gusts if the blade pitch

is varied accordingly in a timely fashion [6, 7, 11, 12, 13]. The estimation process

should link observations to regions of flow which are not directly measured.

Many fluid flows are described by the Navier-Stokes equations [14]. However, ow-

ing to their intractable nature in the original partial differential-algebraic equation

(PDAE) form, the estimation of spatio-temporal systems described by these equations

remains challenging since most established estimation methods cater for systems that

are finite-dimensional and described by ordinary differential equations (ODEs). Keep-

ing the full descriptor formulation is a particularly attractive consideration since the

resulting pressure field description would become important for other flow applica-

tions, such as air flow for transport vehicles. The difference in pressure across a

vehicle is known to result in pressure drag [15] that in turn makes up 80% of ground

transportation drag [16]. It is estimated that 16% of the total energy consumption in

the US is a consequence of aerodynamic drag [16].

Several strategies can tackle the aforementioned problems, however the literature

treating appropriate methodologies is somewhat fragmented and lacks a principled

approach that caters for different situations. This thesis intends to address this gap

by proposing a new approach to the study of estimation for temporal and spatio-

temporal generalised state-space systems. The methodology presented is applicable

to a variety of situations and delivers a framework that adopts a model-based approach
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to estimation.

The research scope is given in detail together with a clear thesis outline in Section

1.2. The motivation, however, is first put in context by first elaborating on the con-

cepts of descriptor and spatio-temporal models and the associated estimation process

in Section 1.1.

1.1 An introduction to models and estimation

1.1.1 Descriptor system models

The model is a key building block for the analysis of data. The behaviour of an

observable phenomenon may be described in terms of independent variables, such as

space and/or time using a model. The underlying system is usually dynamic, which

means that the current output value depends not only on the present external stimuli,

but also on earlier values [17]. Many complex phenomena, however, are naturally de-

scribed by formulations that extend beyond the traditional purely dynamic or purely

static models [18]. Whenever systems are described by their interconnection of sub-

systems comprising differential equations and algebraic constraints, such situations

naturally arise [19]. For these cases, systems are modelled as a descriptor system,

also known as a differential-algebraic equation (DAE) system, generalised state-space

system, singular system or implicit system [20]. Descriptor system applications are

abundant and include chemical engineering [21, 22], fluid dynamics [23], robotics [24],

electronic network modelling [25], image modelling [26] and economy [27, 18] to name

a few. This general class of models enables modelling several time-evolutionary phe-

nomena such as ordinary state-space equations, combinations of static and dynamic

equations and noncausal systems [18], and has therefore been a topic of research over

recent decades.

Written in semi-explicit formulation, DAEs are systems of equations having the
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form [28]:

ẋ = f(x, z, 𝑡), (1.1a)

0 = g(x, z, 𝑡), (1.1b)

where x ∈ R𝑛𝑥 is a vector of differential state variables, z ∈ R𝑛𝑧 is a vector of alge-

braic state variables, f(·) is the dynamic model function of differential states, g(·) is

a mapping of algebraic equations and 𝑡 denotes time. In general, descriptor systems

differ from systems of ordinary differential equations (ODEs) [29]. In constrained

ODE systems, all process states evolve as differential equations, subject to algebraic

constraints that restrict state evolution. In descriptor systems, however, the evolu-

tion of some states is not described by differential equations. Such states, known as

algebraic, follow an evolution that is entirely governed by the evolution of differen-

tial states, such that all algebraic constraints are obeyed [30]. As a result of this

important difference, a descriptor system cannot be simply handled as a constrained

ODE system [30]. Descriptor systems are generally characterised by their differenti-

ation index, typically defined as the minimum number of differentiations required in

order to obtain an explicit ODE formulation [31]. A more formal definition of the

differentiation index is provided in Appendix A.

1.1.2 Spatio-temporal models

Spatio-temporal systems are systems that evolve over both space and time [32]. As

a result, they are ubiquitous in an array of scientific disciplines including bacterial

and viral infection spread [33, 34], biology [35, 36, 37], neuroscience [38, 39, 40],

environmental science [41, 42, 43, 44], conflict dynamics [45], mobile sensor networks

[46] and image processing [47]. This widespread occurrence has motivated numerous

research works over recent decades in a bid to provide mathematical models that

capture the behaviour of spatio-temporal phenomena, where the data spanning both

space and time should not be treated as statistically independent variables [48]. These

models make up the basis for the simulation, design and analysis of systems.
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The numerous spatio-temporal models that appear in the literature may be gen-

erally grouped into two model classes: geostatistical models [49] and dynamic models

[48, Chapters 7-9]. The former modelling paradigm employs a statistical descrip-

tion, usually as mean and covariance functions, such as underlying Gaussian random

functions [50, 49]. Dynamic models generally consist of differential or difference equa-

tions that explicitly describe the systems’ evolution in space and/or time. Dynamic

models are therefore typically associated with a mechanistic approach to systems,

where estimated parameters usually have a physical meaning or a direct connection

to the system behaviour such as partial differential equations [51]. Both modelling

paradigms may sometimes be interchangeable descriptions of the same process [52].

A number of advantages of dynamic models over geostatistical models are highlighted

in [53], including the more computationally efficient parameter estimation framework

when making use of signal processing tools for dynamic models and the associated

covariance functions that could be representative of models describing unnatural fea-

tures. Additionally, estimation mechanisms related to dynamic models can easily

handle missing or incomplete data. Their amenability to engineering scenarios make

dynamic models the main focus of this thesis.

In numerous circumstances, spatio-temporal processes can only be partially ob-

served and an estimation problem naturally arises. The estimation of internal states

is critical when controlling, monitoring and diagnosing several engineering processes.

A cost-efficient approach to regularly monitor state variables employs model-based

state estimation methods to infer unmeasured and/or rarely measured variables.

State estimators may be designed using stochastic (Bayesian) or deterministic ap-

proaches [54, 55], with the former approach being our main focus throughout this

thesis. In the majority of cases, a system is deterministic and free of any unexplained

events. In such a case, using statistical tools to estimate the states and/or parameters

does not imply that the system is, of itself, stochastic. Rather, exact prediction is

very difficult, measurements are noisy and any non-systematic errors introduced must

be removed. For these situations, a separate model class, known as stochastic models,

naturally describe elements that appear to be random. The concept of uncertainty
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is therefore introduced in the model in the form of a stochasticity without obscuring

the dominant dynamics of the underlying process. Taking for instance groundwa-

ter flow in aquifers [56] and pollution spread [57], these would require inordinate

amounts of deterministic models for their exact prediction. In such circumstances,

the apparent randomness is a result of several factors including climate factors (e.g.

precipitation and wind) and social factors (e.g. urbanisation and market volatility)

that are impossible to model deterministically. For our ultimate purpose of estima-

tion, stochastic models make it possible to approximate the effects for which exact

deterministic models are unavailable.

In this context, whilst models may further our understanding of the underlying

physical phenomena, their strength lies in the predictive ability of what will happen

over the next seconds, hours, days or years, depending on the application. Knowledge

of future events would allow one to anticipate certain situations and act accordingly,

such as adjusting the blade pitch in response to a predicted wind gust in a wind

turbine preview control scheme. Stochastic models, therefore, allow the future to

be predicted with a degree of probability. Taking meteorology as an example, the

wind velocity at a specific spatial location is hard to be exactly predicted in advance,

but if an appropriate stochastic model is available, wind velocity may be predicted

with confidence intervals. In summary, stochasticity therefore provides a measure of

uncertainty. The more the unexplained and unmodelled dynamics in the model, the

higher the uncertainty in the estimates. Consequently, stochastic models allow for

an adequate degree of flexibility in systems characterised by high uncertainties and

is therefore the class of models that will be extensively studied in this work.

A lengthy exposure to nonlinear Bayesian state estimation is given in several

books [58, 59, 60, 61, 62], while more recent progress is described in [63, 64, 30, 65].

Recent efforts also present the emergence of deterministic and random sampling-based

estimation methods as part of research works in the area of unconstrained sequential

estimation. Significant achievements in sigma point and particle filters are discussed

in [66, 67, 68, 69, 70].
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1.1.3 Bayesian state estimation

In mathematical terms, estimation methods are aimed at performing optimal filter-

ing and smoothing which are essentially statistical inversion problems in which the

unknown quantities, for descriptor systems in discrete time 𝑘, are time series values

{X0,X1,X2, . . .}, which are observed using a set of noisy measurements {y1,y2, . . .},

where X𝑘 = (x⊤
𝑘 , z

⊤
𝑘 )⊤ and the superscript ⊤ denotes the transpose operator.

The statistical inversion estimates the hidden states X0:𝐾 = {X0,X1,X2, . . . X𝐾}

using the observed measurements y1:𝐾 = {y1,y2,y3, . . . ,y𝐾}, where the discrete time

steps, denoted by 𝑘, run from 0 to 𝐾. In a Bayesian context, we therefore need to

obtain the joint posterior distribution of all states given all observations. This can in

theory be achieved by applying Bayes’ rule, as follows [65]:

𝑝(X0:𝐾 |y1:𝐾) =
𝑝(y1:𝐾 |X0:𝐾)𝑝(X0:𝐾)

𝑝(y1:𝐾)
, (1.2)

where 𝑝(y1:𝐾 |X0:𝐾) is the likelihood model for the measurements, 𝑝(X0:𝐾) is the prior

distribution given by the descriptor model and 𝑝(y1:𝐾) is a constant of normalisation

given by

𝑝(y1:𝐾) =

∫︁
𝑝(y1:𝐾 |X0:𝐾)𝑝(X0:𝐾) 𝑑X0:𝐾 . (1.3)

A critical disadvantage of this full posterior formulation is that for every new mea-

surement, the full posterior distribution has to be recomputed. For the problem of

dynamic estimation being solved in this thesis, measurements are usually obtained

one at a time. After each measurement, the best possible estimate must be com-

puted. The dimensionality of the full posterior distributions rapidly increases as the

number of time steps increases, leading to a surge in the computational complexity of

every single time step. Irrespective of the available computational power, the compu-

tations would eventually become intractable and without additional information or

approximations, the problem of full posterior computation will still stand.

The aforementioned problem is only an issue if at each time interval, the full
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posterior distribution is computed. If a portion of the marginal state distributions

would suffice, the computations will carry an order of magnitude less [65]. This may

be achieved by restricting the class of dynamic models to probabilistic Markov se-

quences where (i) an initial distribution 𝑝(x0) is specified for x𝑜 at the initial time

interval 𝑘 = 0, (ii) a descriptor model describes the system dynamics together with

the associated uncertainties in terms of a Markov sequence given as transition proba-

bility distributions 𝑝(x𝑘+1|X𝑘) and 𝑝(z𝑘|x𝑘) and (iii) a measurement model describes

the dependence of measurements y𝑘 on the present sate X𝑘 through the conditional

probability distribution of the observation given the states, i.e. 𝑝(y𝑘|X𝑘).

The descriptor system formulation given by equations (1) may therefore be inter-

preted in terms of the following general probabilistic generalised state-space model

given in discrete time:

x0 ∼ 𝑝(x0), (1.4a)

x𝑘+1 ∼ 𝑝(x𝑘+1|X𝑘), (1.4b)

z𝑘 ∼ 𝑝(z𝑘|x𝑘), (1.4c)

y𝑘 ∼ 𝑝(y𝑘|X𝑘). (1.4d)

Since the full joint distribution of states is computationally tedious and unnecessary

for use in real-time scenarios, this thesis considers Bayesian filtering where filtering

distributions computed by the Bayesian filter are the marginal distributions of the

present state X𝑘 given the present and past observations y1:𝑘 = {y1,y2, . . . ,y𝑘}, that

is, 𝑝(X𝑘|y1:𝑘) for 𝑘 = 1, . . . , 𝐾.

All state estimation algorithms make the assumption that the corresponding model

parameters are accurately known. However, if a number of unknown parameters must

be estimated in addition to the states, a joint state-parameter estimation scheme is

required [71]. Estimating and building system models from experimental data is

referred to as system identification and is essential for system emulation, system re-

sponse prediction for various inputs and investigation of various design circumstances

[72]. As a result, the accuracy of the system representation would influence the va-
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lidity of all the simulation, design and analysis and has thus motivated significant

efforts to derive joint state-parameter estimation methods, namely the Markov Chain

Monte Carlo (MCMC) methods [73], expectation-maximisation (EM) algorithms [74]

and their variants.

The EM algorithm requires smoothed state estimates and this thesis therefore also

considers Bayesian smoothing, which computes the marginal state distributions given

an interval y1:𝐾 = {y1,y2, . . . ,y𝐾} of measurements with 𝐾 > 𝑘, that is, 𝑝(X𝑘|y1:𝐾)

for 𝑘 = 1, . . . , 𝐾. The computation of the filtering and smoothing distributions only

need a constant number of computations for each time interval, thereby avoiding

processing a long time series.

1.2 Motivation and thesis organisation

Although the state estimation for linear descriptor systems has been well developed

over the last few decades, the nonlinear descriptor system problem remains an open-

ended research area and the design of observers and filters for such systems is relatively

recent [75]. This is probably due to the complexity of this class of systems [76]. This

section describes the limitations with the present state-of-the-art and proceeds to

highlight a summary of contributions in the thesis organisation.

1.2.1 Research scope and objectives

With high-dimensional estimation problems in mind, this work considers the Kalman

filter [77], which yields closed form solutions for linear Gaussian filtering problems

where by assuming linear Gaussian models, the posterior distribution is exactly Gaus-

sian with no numerical approximation required. Since the Bayesian optimal filtering

equations are typically computationally cumbersome and all problems considered in

this thesis are nonlinear, the unscented Kalman filter (UKF) [78, 79] will be the main

filtering algorithm studied here. The UKF approximates the propagation of densities

as these undergo the nonlinear transformations of observation functions using the

unscented transform, resulting in Gaussian approximations.
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The smoothing problem is tackled using a Rauch-Tung-Striebel-based smooth-

ing algorithm [80], which is a closed form smoothing technique for Gaussian linear

state-space models. For our nonlinear problems, the unscented Rauch-Tung-Striebel

smoother (URTSS) [81, 82] is considered, which is an approximate nonlinear smoother

that corresponds to the UKF method.

Despite the considerable research efforts in the field of state estimation for non-

linear descriptor systems, several voids still remain and a principled methodology

adapted to different classes of systems is lacking in the literature. The main issues

and their implications will now be discussed.

∙ A careful analysis of the recent advances in extending Kalman filtering to nonlin-

ear descriptor systems (e.g. [21, 83, 84, 85] and references therein) show that the

covariance of the algebraic states remains unknown. The statistical properties

of the algebraic states are inherent to the system dynamics and any estimator

should make use of this information to complete the state estimation process

and in turn be utilised through successive computations of the algorithm.

∙ In the Kalman filtering application to nonlinear descriptor systems, the alge-

braic equations are always assumed to be free of any uncertainty. Although

this is typically the case, whenever model reduction schemes are introduced

and model uncertainties exist, treating the algebraic equations deterministically

becomes infeasible and virtually impossible if the effects of model approxima-

tions and uncertainties are to be accounted for. The availability of a stochastic

estimation framework is of paramount importance if such effects are to be ap-

proximated. This motivates further research into the estimation of nonlinear

descriptor systems.

∙ From the literature, it is evident that most of the work has considered the ob-

server and filtering problems for nonlinear DAE systems. For EM algorithms,

however, smoothed estimates are a requirement but to the best of our knowl-

edge, smoothers for nonlinear descriptor systems are not available in the litera-

ture and remain largely unexplored. This would be essential for any state and
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parameter estimation problem that arise for applications requiring a nonlinear

DAE formulation.

∙ The nonlinear PDAE estimation problem has hitherto not been extensively

addressed in the signal processing literature. This general class of systems,

known to accurately describe several physical processes, is a natural description

of the underlying phenomena and easily describes spatial heterogeneity. The

challenge here is to convert the nonlinear PDAE model to one that is amenable

to signal processing techniques in finite-dimensional form whilst retaining the

original physical meaning which would make it a good fit for control purposes.

∙ An important application of nonlinear spatio-temporal descriptor models is fluid

flow. A generalised state-space approach to the estimation of fluid flow still

represents an open problem, both as a consequence of the complexity of the

original Navier-Stokes equations and its pressure field description, as well as

the lack of nonlinear PDAE estimation tools available.

∙ For the nonlinear DAE estimation problem at hand, a filtering error analysis

in terms of the posterior Cramér-Rao bound (PCRB) is lacking in the liter-

ature. Knowing the achievable filtering performance is crucial for estimation

algorithms. The computation of lower bounds is an important error analysis

method that is indicative of performance limitations and would validate any

imposed performance requirements.

1.2.2 Original contributions and thesis outline

In the light of the foregoing, this work addresses the problem of how to create a useful

estimation framework for nonlinear temporal and spatio-temporal descriptor systems

using a model-based approach for estimation. A summary of original contributions is

given throughout the following thesis outline:

∙ Chapter 2 reviews methods that dominate the spatio-temporal model and es-

timation literature with the aim of outlining the context that surrounds this
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current avenue of research. The concepts introduced here describe dynamic

spatio-temporal models and how these are reduced to a tractable form that

may be readily handled by state estimation tools discussed in the same chapter.

This highlights the gaps that form the basis for the novel estimation frameworks

put forward in this thesis.

∙ Chapter 3 proposes filters and smoothers for nonlinear temporal descriptor sys-

tems having deterministic or stochastic algebraic equations. The estimation

methods retain the original DAE formulation for use in the filtering and smooth-

ing algorithms. This paves the way for the spatio-temporal estimation schemes

implemented in later chapters.

The first part of the chapter develops the discrete-time UKF and URTSS algo-

rithms for nonlinear DAE systems having stochastic differential equations and

deterministic algebraic equations. The filtered and smoothed solutions yield

the mean and covariance of both algebraic and differential state estimates. In

addition to differential state sigma points in standard UKF and URTSS formu-

lations, the algebraic state sigma points are also incorporated to ensure con-

sistency in the DAE solution. An electrochemical case study demonstrates the

performance of the proposed filter and smoother.

The second part of the chapter derives a new descriptor form of the discrete-

time UKF and URTSS algorithms having stochastic differential and algebraic

equations. Unlike previous approaches, we propose to compute and exploit both

the mean and the covariance of the algebraic state estimates and ensure that the

sigma points encode the mean and covariance of all differential and algebraic

states. The differential and algebraic state filtering and smoothing distributions

are derived as unscented transform-based Gaussian approximations. The per-

formance of the proposed estimation methods is demonstrated by a numerical

example.

∙ Chapter 4 presents an estimation framework for spatio-temporal nonlinear DAE

systems, where a basis function decomposition method converts this formula-
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tion to a reduced finite-dimensional nonlinear descriptor form. Transforming

the nonlinear PDAE to a DAE requires the consideration of model approxima-

tion effects. By representing the latter effects stochastically, the new unscented

transform-based filtering algorithm derived in Chapter 3 is employed. For im-

portant spatio-temporal applications, an estimation error performance analysis

is a requirement and this is therefore tackled by deriving the mean square error

lower bounds for the nonlinear descriptor filtering case, based on the posterior

Cramér-Rao inequality. The novel methods are successfully implemented and

validated through the accurate estimation of wind flow velocity and pressure

given sparse noisy velocity measurements from realistic atmospheric boundary

layer wind flow data.

∙ Chapter 5 derives a generalised state-space flow model in nonlinear, spatially-

continuous form. The key to obtaining a strangeness-free DAE of differentiation

index 1 is the reformulation of the Navier-Stokes equations using the pressure

Poisson equation (PPE) in conjunction with basis function decomposition. The

latter enables the user to represent the flow field by choosing an appropriate

number and placement of basis functions, or state variables, that is independent

of the number and placement of observations and which allows a computation-

ally efficient estimation procedure. The performance of the proposed reduced-

order model and estimator are validated for both synthetic data obtained using

large eddy simulations of the atmospheric boundary layer and real-world LIDAR

measurement data obtained from a nacelle-mounted LIDAR unit.

∙ Chapter 6 provides a summary of the thesis. The contributions of this work are

placed in the bigger picture and a discussion of future work is presented. The

potential application of the thesis contributions to different real-world problems

is discussed. It is envisaged that the proposed framework contributes towards

further research into estimation and control of spatio-temporal descriptor sys-

tems.
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Chapter 2

Estimation of spatio-temporal models

This chapter gives the background context necessary for the development of estima-

tion schemes for temporal and spatio-temporal descriptor formulations provided in

later chapters. The first portion of this chapter, Section 2.1, reviews various dy-

namic spatio-temporal models and accompanying theoretical properties. Whilst sev-

eral models have been proposed, only the most relevant are discussed, namely the

space-time auto-regressive moving-average (STARMA) model, the coupled map lat-

tice (CML), the integro-difference equation (IDE), the partial differential equation

(PDE) and the partial differential-algebraic equation (PDAE). The strengths and

limitations of each model scheme are described and contrasted. Of particular interest

for our work is the PDAE, which is a general model class which describes fields over

a continuous spatial domain that is appropriate for spatially heterogenous dynamics

and provides an appropriate physical description of the underlying phenomenon.

Section 2.2 is devoted to describing model reduction methods to ultimately obtain

a finite-dimensional representation which facilitates prediction and control schemes.

In this thesis, temporal and spatio-temporal behaviour is represented in a generalised

state-space form, so Section 2.3 treats common methods associated with state estima-

tion for state-space models. Section 2.4 provides a literature review of state estimation

methods for nonlinear descriptor systems ahead of the estimation schemes developed

in Chapter 3. Algorithms which are implemented and investigated throughout this

work are particularly emphasised.
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2.1 Dynamic spatio-temporal models

This section gives a brief overview of the most popular dynamic spatio-temporal

models appearing in the literature, namely, the STARMA, the CML, the IDE, the

PDE and the PDAE models.

2.1.1 Space-time auto-regressive moving-average models

After the successful development of the auto-regressive moving-average (ARMA) class

of models for stochastic temporal processes [86], the ARMA models were extended

throughout the 1970s to include spatial dynamics in the time series evolution, result-

ing in the introduction of space-time ARMA (STARMA) models [87, 88].

STARMA models are essentially linear relationships that are lagged in space and

time. STARMA formulations are obtained by having observations 𝑦𝑘,𝑖 of the random

variable 𝑌𝑘,𝑖 which need to reside at each of the 𝑁 fixed locations (or sites) situated

in the spatial field, over 𝐾 time steps of the discrete time 𝑘. The spatio-temporal

auto-regressive format expresses 𝑦𝑘,𝑖 in terms of a linear combination of previous

measurements at site 𝑖 [88] and neighbouring sites. If an identical relationship is true

for every site, spatial stationarity or homogeneity is said to exist.

In the classical STARMA formulation by [88], a spatial lag operator 𝐿(𝑙) of order

𝑙 is initially defined as follows:

𝐿(0)𝑦𝑘,𝑖 = 𝑦𝑘,𝑖, (2.1)

𝐿(𝑙)𝑦𝑘,𝑖 =
𝑁∑︁
𝑗=1

𝑤
(𝑙)
𝑖𝑗 𝑦𝑘,𝑗, (2.2)

where 𝑤(𝑙)
𝑖𝑗 denotes a set of weights such that

𝑁∑︁
𝑗=1

𝑤
(𝑙)
𝑖𝑗 = 1 (2.3)

for all 𝑖 and 𝑤(𝑙)
𝑖𝑗 ̸= 0 if sites 𝑖 and 𝑗 are 𝑙𝑡ℎ order neighbours. STARMA models are
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typically given in vector form, where the measurements are represented by the vector

y𝑘 = [𝑦𝑘,1 𝑦𝑘,2 · · · 𝑦𝑘,𝑁 ]⊤. The weights 𝑤(𝑙)
𝑖𝑗 may be represented in matrix form as

W(𝑙) ∈ R𝑁×𝑁 . The spatial lag operator for stacked measurements is then given by

𝐿(0)y𝑘 = W(0)y𝑘 = I𝑁y𝑘, (2.4)

𝐿(𝑙)y𝑘 = W(𝑙)y𝑘, for 𝑙 > 0, (2.5)

where I𝑁 denotes the 𝑁 × 𝑁 identity matrix. The STARMA model may therefore

be written in vector form as

y𝑘 =

𝑝∑︁
𝜏=1

𝜆𝜏∑︁
𝑙=0

𝜑𝜏𝑙W
(𝑙)y𝑘−𝜏 −

𝑞∑︁
𝜏=1

𝑚𝜏∑︁
𝑙=0

𝜑𝜏𝑙W
(𝑙)𝜖𝑘−𝜏 + 𝜖𝑘, (2.6)

where 𝜖𝑘 denotes a random normal error vector. This form is known as a STARMA

(𝑝,𝑞) model.

In [89], popular neighbourhood definitions are discussed. A local interaction hy-

pothesis that yields less parameters for estimation is typically assumed. Unrestricted

models were put forward [90], however such spatio-temporal models needed a con-

siderably bigger parameter space which requires lower spatial dimensions and less

observation locations to be included [91]. Despite STARMA models being shown

to outperform univariate ARMA models in forecasting applications [92], researchers

started losing interest in this class of models, mainly as a consequence of their inade-

quate consideration of spatial dependence and heterogeneity of measurements [93, 94].

Over the last decade, however, the increased computational power revived the

potential of STARMA models. The issue of instantaneous spatial correlation was

addressed in [91] by commencing the first summation appearing in both terms of

equation (2.6) from 𝜏 = 0 so that innovations may be representative of a spatial

spread over one sampling interval. Model modifications which allowed the use of

larger data sets enabled heterogeneous model definitions. One example is the toroidal

space definition proposed in [95]. The model dimension still depends on the number

of observations and these aforementioned limitations had sparked the researchers’
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interest to propose alternative modelling schemes. In the 1980s, one such alternative

became known as the coupled map lattice, which was especially popular for its ability

to represent spatio-temporal dynamics of very complex or poorly understood systems.

2.1.2 Coupled map lattices

Various natural phenomena exhibit chaotic and complex spatio-temporal trends [96,

97] that motivated the development of Coupled Map Lattices (CMLs) [98, 99, 100].

The extensive applicability of CMLs is confirmed by the wide spectrum of uses de-

scribed in the literature and has been the model class of choice for studying physical

and chemical processes, including studying Bénard convection [101, 102], modelling

reaction-diffusion dynamics [103], modelling the physics of boiling [104], describing

cloud dynamics [105], modelling open fluid flow [106, 107, 108] and modelling crystal

growth [109, 103]. CMLs were also used for the study of complex spatio-temporal

relationships observed in ecology [110, 111, 112]. Other applications include image

processing [113], computer theory [114] and electroencephalography (EEG) signal

processing [115, 116].

CMLs are part of a more general class of systems known as lattice dynamic systems

[117] and share a number of similarities with cellular automata (CA), with the differ-

ence that the system states are not required to be discrete [118]. CMLs are defined

in discrete space and discrete time. Letting a set of lattice points be 𝑖 = 1, . . . , 𝑁 ,

where every element defines a discrete location in space, and denoting the field by 𝜓𝑘,𝑖

at discrete-time instant 𝑘, the time evolution at site 𝑖 is described by the nonlinear

mapping 𝑀𝑖 : R𝑁 → R, so that 𝜓𝑘+1,𝑖 = 𝑀𝑖𝜓𝑘, where 𝜓𝑘 = [𝜓𝑘,1 𝜓𝑘,2 . . . 𝜓𝑘,𝑁 ]⊤. A

minority of works treat spatial heterogeneity [119], however a spatially homogeneous

behaviour is typically assumed so the standard nonlinear evolution equation becomes

𝜓𝑘+1,𝑖 = 𝑀𝜓𝑘, with the mapping dependence on 𝑖 being omitted.

The mapping 𝑀 clearly governs the behaviour of the CML. A popular mapping

is the nearest neighbour coupling map [96, 120, 100, 121] that consists of a spatial
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coupling function 𝑓𝑐 and a local interaction term 𝑓𝑙. This may be written as

𝜓𝑘+1,𝑖 = 𝑓𝑐(𝜓𝑘,𝑖−1, 𝜓𝑘,𝑖+1) + 𝑓𝑙(𝜓𝑘,𝑖)

=
𝜖

2
(𝑓(𝜓𝑘,𝑖−1) + 𝑓(𝜓𝑘,𝑖+1)) + (1 − 𝜖)𝑓(𝜓𝑘,𝑖) , (2.7)

where 𝜖 ∈ [0, 1] and 𝑓(·) represents a pre-defined nonlinear function, for instance the

logistic map 𝑓 : 𝜓𝑘,𝑖 → 1 − 𝑎𝜓2
𝑘,𝑖. This logistic map [122] is the most commonly used

local map [100], however chaotic behaviour may be represented by numerous other

mappings [123]. Alternative mappings which consider larger neighbourhoods produce

significantly different output patterns and result in ‘global coupling’ [123].

A CML is typically derived using the natural laws obeyed by the system under

study. However, the mapping 𝑀 may not always be determined or derived, in which

case model structure detection and parameter estimation may need to be performed

[124, 118, 125, 126, 127]. Most CMLs described in the literature are deterministic,

but stochastic CMLs, such as that reported to use randomly perturbed lattice points

[126], also exist.

CMLs are therefore dynamic, can represent systems characterised by large uncer-

tainties and carry a meaningful representation of the system’s underlying processes.

Such properties make them very useful for several modelling scenarios, but since they

are built bottom-up on a discrete grid, observations must be taken on a regular lattice.

This may be impossible in certain situations, such as control schemes involving mo-

bile agents. Although heterogeneous CMLs may provide a spatially varying mapping,

parametrising the heterogeneity and choosing the appropriate inference mechanism

to cater for the heterogeneity in parameter estimation is unclear.

2.1.3 Integro-difference equation models

The main weakness of the CML is the discrete spatial lattice construction and the

integro-difference equation (IDE) [128, 129] remedies the situation by employing a

continuous-space representation. The deterministic IDE was first proposed in [129,

130] to model the spread of invading organisms. The IDE was developed by modelling
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a population in two separate stages. The first stage is known as the sedentary stage

and is represented by a nonlinear map 𝑓(·) that determines local growth. The second

stage is referred to as the dispersion stage and is described by an integral operator

which represents physical diffusion or migration dynamics in a population. On the

basis of such applications, the IDE was shown to model these systems better than the

reaction-diffusion equation proposed in [131]. Since then, IDEs have been employed

to model several phenomena such as cloud dynamics [132, 128] and precipitation

nowcasting [133].

The IDE is continuous in space and discrete in time. It describes the evolution of

the spatio-temporal field 𝜓 given by

𝜓𝑘(s) =

∫︁
𝒮
𝜅𝑘(s, r)𝑓(𝜓𝑘−1(r))𝑑r, (2.8)

where s, r ∈ 𝒮 ⊂ R𝑑 represent the spatial locations in a 𝑑-dimensional space and

𝜅𝑘(s, r) : R𝑑 × R𝑑 → R is a time-varying, heterogeneous spatial convolution kernel

that controls the spatio-temporal interactions of the system.

Equation (2.8) represents a heterogeneous IDE model with nonlinear growth. In

environmental literature, however, this is usually simplified and linear growth and

homogeneity is assumed, giving rise to the following model:

𝜓𝑘(s) = 𝑓 ′(0)

∫︁
𝒮
𝜅𝑘(s− r)𝜓𝑘−1(r)𝑑r, (2.9)

where 𝑓 ′ represents the first derivative of 𝑓 . This simplification catalysed the devel-

opment of spatio-temporal methods such as spatio-temporal Kalman filtering [134,

135] and new classes of non-separable covariance functions for geostatistical mod-

els [136, 137, 53]. In time, IDEs became a popular choice in representing complex

spatio-temporal behaviour spanning fields as diverse as ecology [129], signal process-

ing [138, 139] and environmental applications [134, 133, 128, 135, 140, 132].

Most of the research, particularly in ecological literature, has concentrated on

analysing the effect of the shape and growth term of the convolution kernel on the

spatio-temporal process stability [130] and the shape and speed of the invading waves
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generated [129, 141, 142, 143, 144, 145]. More recent works in modelling population

dynamics using IDE models have been addressing improvements in the basic repre-

sentations given by equations (2.8) and (2.9), namely by employing the Allee effect

[129, 144, 145] and by analysing the effect of environmental variables and population

structure on propagation [146, 143]. Other efforts report the estimation of the travel-

ling wave shape [147], the numerical estimation of the invading wave speed [145] and

the prediction of the future invasion speed [143].

The IDE was put into a stochastic framework in [128], where additive spatial noise

is included using a spatial Gaussian processes (GP) [148]. For every time instant of

this stochastic IDE, the propagated field is superimposed by draws from a zero-mean

spatial GP, 𝜖𝑘(s) ∼ 𝒢𝒫(0,Σ(s, r)). This stochasticity can model uncertainties and

represent any random forcing functions or model mismatch. The set generated, 𝜖𝑘(s),

is usually taken to be independent and identically distributed (i.i.d.) over time, so

the behaviour of the model is principally dictated by the mixing kernel and the form

of 𝑓(·). For example, in EEG studies, 𝑓(·) is set to be a sigmoid function [149]. On

the other hand, the Ricker growth models or the standard logistic models are often

used in ecology [130]. The function 𝑓(·), however, may take different forms, such as

Gompertz or Malthusian formats [150].

A novel basis function decomposition for the IDE was derived in [138], where a

state-space representation that decouples the number of states from the number of ob-

servation locations or parameters is presented. By using a state-space representation

for the IDE, the work in [139] employs ideas from multidimensional sampling theory

to propose an approach that provides the minimum model and parameter vector di-

mensions required for an adequate system representation. The method is based on

the spatial bandwidth of the system and the frequency support of the redistribution

kernel of the IDE.

When modelling systems using the IDE, the kernel provides a meaningful insight

into the system dynamics. Various works have estimated basis functions which shape

𝜅𝑘(s, r) [151, 149, 152, 138]. However, as argued in [153], a key limitation of the

IDE is its lack of description of the evolution process at a physical level. The IDE
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may obscure the underlying physical dynamics and may be consequently challenging

to represent heterogeneity. A more mechanistic approach to modelling is therefore

necessary for a principled way of representing spatially varying systems. This is the

key strength of another class of models, the partial differential equations.

2.1.4 Partial differential equation models

PDE models, which are continuous in both space and time, enjoy a widespread inter-

est due to their impressive array of natural phenomena that they can describe. These

include elasticity, quantum physics, thermodynamics, fluid dynamics, mechanics and

electromagnetic theory [154, 155, 156, 157]. PDEs have been central to several ap-

plications in oceanography [158], ecology [159], flexible structures [160] and wildfire

control [161].

A PDE is defined as any equation that describes a function of two or more in-

dependent variables and at least one of their partial derivatives [162, Chapter 1].

For the case of spatio-temporal systems, the independent variables are restricted to

be space and time. Let time 𝑡 ∈ 𝒯 ⊂ R+ and consider a spatio-temporal field

𝜓(s, 𝑡) : 𝒮 × 𝒯 → R. The general form of the PDE may be written as

𝐹

(︂
s, 𝑡, 𝜓,

𝜕𝜓

𝜕s
,
𝜕𝜓

𝜕𝑡
,
𝜕2𝜓

𝜕s2
,
𝜕2𝜓

𝜕𝑡2
,
𝜕2𝜓

𝜕s𝜕𝑡
, . . .

)︂
= 0. (2.10)

Whenever the function 𝐹 (·) is linear, the PDE is referred to as linear, otherwise

the PDE is said to be nonlinear or quasilinear. The system is known as space and

time invariant if 𝐹 (·) is independent of both space and time.

The study of linear PDEs has been substantial given the broad applicability to

so many areas of mathematical physics including vibrations, heat flow and so on

[163, 155, 157]. However, several other phenomena are modelled using nonlinear

PDEs, including fluid pressure effects solved using Navier-Stokes equations, super-

conductivity based on the Ginzburg-Landau equation and general relativity described

by Einstein’s field equations and the Dym equation [164, 165].

Although PDEs represent spatio-temporal dynamics of physical phenomena, for
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which practical experiments prove the existence of a stable unique solution, their

mathematical description might not determine a solution. While for the ODE case

the general solution to an nth-order equation is given by a family of functions with n

independent arbitrary constants, PDE models are different. In fact, even the solution

space for simple linear homogeneous PDEs is infinite dimensional. In the control liter-

ature, systems yielding an infinite dimensional solution space are termed distributed

parameter systems [166].

PDEs are typically defined on some bounded domain and the PDE formulation

must have some conditions for 𝜓 that should be obeyed on the domain boundary 𝜕𝒮.

The conditions are generally first-type (Dirichlet), where 𝜓 takes some fixed value on

𝜕𝒮, or second-type (Neumann), where 𝜓 must have fixed derivatives on 𝜕𝒮. If both

boundary conditions and initial conditions are specified, the problem of solving for

the field 𝜓 is referred to as the initial/boundary-value problem.

Although various methods exist for finding an analytical solution to PDEs [156,

154], most practical physical systems cannot be solved analytically and therefore a

numerical method is the viable alternative. Two main techniques are available in the

literature, namely the finite element [167] and the finite difference methods [168].

The solution of PDEs becomes more complex when the model parameters, such

as the thermal conductivity of a material in a heat flow equation, are unknown. The

system identification community has dedicated significant research efforts towards

obtaining models of spatio-temporal systems using measured data, often assuming

little or no knowledge of the underlying physical dynamics [169, 170, 171, 172]. This

problem was first treated in [173] by proposing tests for the identifiability of PDE

model parameters. An estimation method that assumes identifiability and is based

on alternating conditional algorithms was later developed in [174] and was shown to

successfully estimate the Swift-Hohenberg equation.

More recently, works progressively allowed more assumptions to be relaxed. The

assumption of knowing the structural form of the PDE taken in [171] is relaxed in

[169, 170], where PDE estimation is carried out using the orthogonal least squares

algorithm and the Adams integration.
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Stochastic PDEs (SPDEs) become the necessary form of representation whenever

the initial or boundary conditions are stochastic [175, Section 1.1], where a random

forcing term exists [176] or when the physical system is not fully known. This intricate

model can describe all kinds of processes characterised by a stochastic influence in

nature or man-made complex systems [177]. This is clearly evidenced by the use of

SPDEs for modelling systems in hydrology [56], neurophysiology [178], geophysics

[179] and signal denoising [180]. Despite their wide applicability, choosing SPDEs

for analysis is particularly challenging in the context of parameter estimation. Here,

most of the literature considers deterministic PDEs observed in noise [181, 169, 160],

whilst for the stochastic case, fewer works have been published [182]. New estimation

and identification tools for SPDEs have been recently explored in [183], where the

variational approximation and the consideration of both continuous and point-process

observations were investigated and implemented for SPDE models.

2.1.5 Partial differential-algebraic equation models

A more general class of models to the PDEs are partial differential-algebraic equation

(PDAE) models, which have a descriptor formulation. Several natural processes,

such as fluid flow [14], electrochemical reactions in a molten carbonate fuel cell [184],

packed-bed chromatographic adsorption [185], electronic integrated circuit processes

[186] and slender inextensible elastica dynamics [187] are modelled by a nonlinear

PDAE model of the form

𝜕b(s, 𝑡)

𝜕𝑡
= F

(︀
𝐷𝑛𝑜𝜓(s, 𝑡), 𝐷𝑛𝑜−1𝜓(s, 𝑡), . . . , 𝐷𝜓(s, 𝑡),𝜓(s, 𝑡)

)︀
, (2.11a)

0 = G
(︀
𝐷𝑛𝑜𝜓(s, 𝑡), 𝐷𝑛𝑜−1𝜓(s, 𝑡), . . . , 𝐷𝜓(s, 𝑡),𝜓(s, 𝑡)

)︀
, (2.11b)

where 𝜓(s, 𝑡) : R𝑑+1 → R𝑛𝜓 represents 𝑛𝜓 spatio-temporal fields and 𝜓(s, 𝑡) =

[b⊤(s, 𝑡), c⊤(s, 𝑡)]⊤, where b : R𝑑+1 → R𝑛𝑏 and c : R𝑑+1 → R𝑛𝑐 denote the differential

and algebraic state variables, respectively. For a non-negative integer 𝑛𝑜, 𝐷𝑛𝑜𝜓(s, 𝑡)

is the set of all partial spatial derivatives of order 𝑛𝑜.

It is noteworthy to point out a key difference between a PDAE and a constrained
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PDE system. For constrained PDE systems, the evolution of all process states

𝜓(s, 𝑡) = b(s, 𝑡) is described by PDEs, subject to algebraic constraints that restrict

their evolution. For a PDAE system, there exist some states c(s, 𝑡), termed alge-

braic, whose evolution is not governed by PDEs, but is completely controlled by the

evolution of differential states b(s, 𝑡), such that all algebraic constraints are satisfied

[30]. This key difference means that the spatio-temporal descriptor system cannot be

estimated as a constrained PDE system, requiring an alternative estimation scheme

[30].

2.2 Model reduction, state-space models and descrip-

tor systems

Most standard signal processing techniques are usually tailored for finite-dimensional

systems, so model reduction methods were proposed to reduce infinite-dimensional

spatio-temporal models to a finite-dimensional form. An important spatial and tem-

poral discretisation scheme is the method of finite differences, usually employed for

PDE-based models [188]. This method uses difference quotients to approximate spa-

tial and temporal derivatives of the PDE.

Another model reduction technique is the method of moments which is typically

used for spatial dimensionality reduction [189], where a finite set of linearly inde-

pendent basis functions {𝜑𝑖(s)}
𝑛𝜑
𝑖=1 decomposes a spatio-temporal field 𝜓(𝑠, 𝑡) such

that

𝜓(s, 𝑡) ≈
𝑛𝜑∑︁
𝑖=1

𝜑𝑖(s)𝑥𝑖(𝑡) = 𝜑⊤(s)x(𝑡), (2.12)

where x(𝑡) ∈ R𝑛𝜑 is a vector of state variables that weights the field basis functions

𝜑𝑖(s). The spatio-temporal field is then projected under an inner-product transforma-

tion with respect to a set of test functions {𝜒𝑖(s)}
𝑛𝜑
𝑖=1 [189]. A popular choice for the

test functions is to set {𝜑𝑖(s)}
𝑛𝜑
𝑖=1 = {𝜒𝑖(s)}

𝑛𝜑
𝑖=1, which is a special case of the method

of moments known as the Galerkin method. The method of moments enjoys a num-
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ber of advantages over standard finite-difference schemes, largely due to their more

convenient use in complex geometry spaces and their ability to systematically han-

dle Dirichlet boundary conditions by an appropriate choice of basis functions [183].

Since the observation process is usually temporally discrete, an Euler step provides a

discrete-time representation for the finite-dimensional system [149].

By following finite-dimensional reduction, the popular stochastic state-space model

framework is obtained for which several signal processing techniques are readily avail-

able and algorithm development is greatly facilitated:

x𝑘+1 = f𝑘(x𝑘) + q𝑘, (2.13a)

y𝑘 = h𝑘(x𝑘) + r𝑘, (2.13b)

where x𝑘 := x(𝑘∆𝑡) and y𝑘 := y(𝑘∆𝑡) ∈ R𝑛𝑦 are vectors of the system state variables

and observations, respectively, q𝑘 and r𝑘 are noise sequences, f𝑘(·) is a dynamic model

function, h𝑘(·) is a measurement model function and ∆𝑡 is the time step.

In Chapter 1, it was seen how descriptor models are characterised by a collection

of variables which is adequate to describe the system. Such variables, conveniently

described as descriptor variables, generally have an inherent meaning, or natural

interpretation, within the context of the particular system. These might represent,

for instance, position, velocity or acceleration in the case of Newtonian systems,

price or quantity in economic systems and so on. Once variables are defined, system

laws dictate the relationship between descriptor variables, some of which will be

dynamic, in that they involve variables at different time instants [18]. Some of these

relationships will be purely static, which represent identity relations that hold between

variables. This results in a set of equations expressed in terms of variables, aptly called

descriptor variables for their role of being natural descriptors of the system, rendering

descriptor models widely applicable to several physical systems. The equations (2.13)
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may be written as a more general descriptor formulation given by

x𝑘+1 = f(x𝑘, z𝑘) + q𝑘, (2.14a)

0 = g(x𝑘, z𝑘) + e𝑘, (2.14b)

y𝑘 = h(x𝑘, z𝑘) + r𝑘, (2.14c)

where z𝑘 ∈ R𝑛𝑧 is a vector of algebraic state variables, e𝑘 is the algebraic state process

noise and g(·) is a mapping of algebraic equations. The functions f , g and h may

depend on the time instant 𝑘, however this dependence will no longer be explicitly

noted throughout this thesis for notational convenience.

As will be discussed in the next section, the purpose of a filter is then to approx-

imate the filtering distributions 𝑝(X𝑘|y1:𝑘) for time steps 𝑘 running from 0 to 𝐾. A

smoothing algorithm approximates the smoothing distributions 𝑝(X𝑘|y1:𝐾) for time

steps 𝑘 running from 0 to 𝐾. In this thesis, the approximations and noise processes

are chosen to be Gaussian where q𝑘 ∼ 𝒩𝑞(0,Q𝑘), e𝑘 ∼ 𝒩𝑒(0,E𝑘) and r𝑘 ∼ 𝒩𝑟(0,R𝑘).

The notation 𝒩𝑞(0,Q𝑘) denotes the normal distribution of x𝑘 with zero mean and

covariance matrix Q𝑘 = 𝜎2
𝑞I, where I denotes the identity matrix of appropriate di-

mensions. A similar notation holds for 𝒩𝑒(0,E𝑘) and 𝒩𝑟(0,R𝑘), where E𝑘 = 𝜎2
𝑒I and

R𝑘 = 𝜎2
𝑟I. The filtering and smoothing distributions may be given respectively as

𝑝(X𝑘|y1:𝑘) ≈ 𝒩 (X𝑘|𝜇𝑘,P𝑘), (2.15)

𝑝(X𝑘|y1:𝐾) ≈ 𝒩 (X𝑘|𝜇(𝑠)
𝑘 ,P

(𝑠)
𝑘 ), (2.16)

where 𝜇𝑘 and 𝜇
(𝑠)
𝑘 denote the associated mean and P𝑘 and P

(𝑠)
𝑘 represent the associ-

ated covariance matrices.

2.3 State estimation for nonlinear state-space models

An important problem in dynamic spatio-temporal systems is field reconstruction

in some spatial domain at a given time instant from some observation process. If
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the data is sufficiently informative, such as data obtained from an infrared camera

[190], the spatio-temporal field is practically known and no further signal processing

is required. If, however, the field is only observed at a few, isolated points, such as in

neural field or ocean sampling [149, 191], state estimation for x1:𝐾 = {x1, . . . ,x𝐾} (for

K regularly spaced time steps) is carried out using observed data y1:𝐾 = {y1, . . . ,y𝐾}

needed for field reconstruction. The optimal estimation of the states from some data

set is referred to as the smoothing problem. This problem is typically solved using

the forward-backward algorithm, where the forward pass represents filtering and the

backward pass represents smoothing. Another approach is the two-filter smoother

that uses forward messages (equivalent to the filtering result) with backward messages

calculated in reverse time so that smoothed estimates are obtained.

With much improved computational power being widely available, state estima-

tion is now being increasingly performed for on-line monitoring and control in various

application domains such as robotics, digital communications, computer vision and

process control [67, 71]. Historical developments in state estimation are excellently

introduced in [192] and the important publications [77] and [193] spurred great re-

search efforts in the area of dynamic model online state estimation. While such initial

developments used only linear dynamic models, their nonlinear counterpart was the

main topic of research in later years. It is noteworthy that despite significant advances

employing dynamic models considering continuous observations [194, 138, 149], very

few efforts have considered the problem of having observations available as isolated

events, i.e. point-process observations [45].

A general state-space model has the form

x𝑘+1 ∼ 𝑝(x𝑘+1|x𝑘), (2.17a)

y𝑘 ∼ 𝑝(y𝑘|x𝑘), (2.17b)

of which the model (2.13) is a special case. The filtering distributions are formally
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described by the optimal filtering equations [195, 196] given by

𝑝(x𝑘+1|y1:𝑘) =

∫︁
𝑝(x𝑘+1|x𝑘)𝑝(x𝑘|y1:𝑘) dx𝑘, (2.18a)

𝑝(x𝑘+1|y1:𝑘+1) =
𝑝(y𝑘+1|x𝑘+1)𝑝(x𝑘+1|y1:𝑘)∫︀

𝑝(y𝑘+1|x1:𝑘+1)𝑝(x𝑘+1|y1:𝑘)dx𝑘+1

, (2.18b)

where equations (2.18a) and (2.18b) are the prediction and update steps, respectively.

The optimal smoothing equations [196] may be expressed in the two-filter smoother

form, as follows:

𝑝(x𝑘|y1:𝐾) ∝ 𝑝(x𝑘|y1:𝑘)𝑝(y𝑘+1:𝐾 |x𝑘), (2.19)

where 𝑝(x𝑘|y1:𝑘) is obtained using the optimal filter and 𝑝(y𝑘+1:𝐾 |x𝑘) is calculated

by running a filter that goes backwards in time. The unscented Kalman smoother

(UKS) described in [197] may be considered to approximate this form of smoother.

An alternative form is the forward-backward smoother which is described by the

equation

𝑝(x𝑘|y1:𝐾) = 𝑝(x𝑘|y1:𝑘)

∫︁
𝑝(x𝑘+1|x𝑘)𝑝(x𝑘+1|y1:𝑘)

𝑝(x𝑘+1|y1:𝑘)
dx𝑘+1, (2.20)

where 𝑝(x𝑘+1|y1:𝑘) represents the predicted distribution at time instant 𝑘+1, that may

be obtained from equation (2.18a). The filtering distribution at time 𝑘 is 𝑝(x𝑘|y1:𝑘).

The recursion that performs the smoothing action is started from the last time step

𝑘 = 𝐾 and proceeds back in time.

The filtering and smoothing equations just described are only formal in that they

can rarely be implemented directly for practical computation purposes because of the

computational intractability. This explains the significant research efforts towards

numerical approximation methods.

Consider discrete-time state-space models of the form given by equations (2.13).

In the context of conditional-density-approximation-based state estimators for linear

models, the analytical solution is the Kalman filter that describes the optimal re-
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cursive solution to the problem of sequential state estimation [77]. Combining the

predicted state estimate x̂𝑘+1|𝑘 with the measurement y𝑘+1, the optimal state estimate

is constructed recursively as follows:

x̂𝑘+1|𝑘+1 = x̂𝑘+1|𝑘 + L𝑘+1e𝑘+1, (2.21)

where e𝑘+1 = y𝑘+1−C𝑘+1x̂𝑘+1|𝑘 is the innovation and L𝑘+1 is the Kalman gain matrix

given by

L𝑘+1 = P
(𝜖,𝑒)
𝑘+1 [P

(𝑒,𝑒)
𝑘+1 ]−1, (2.22)

where

P
(𝜖,𝑒)
𝑘+1 = E[(𝜖𝑘+1|𝑘)(e𝑘+1)

𝑇 ] (2.23)

and

P
(𝑒,𝑒)
𝑘+1 = E[(e𝑘+1)(e𝑘+1)

𝑇 ]. (2.24)

The a priori estimation error is denoted by 𝜖𝑘+1|𝑘 = x𝑘+1 − x̂𝑘+1|𝑘 and E(·) is the

expectation operator. A key feature of the Kalman filter is that whenever q𝑘 and r𝑘

are additive Gaussian noise processes and x0 is Gaussian distributed, the conditional

densities 𝑝(x𝑘+1|y𝑘) and 𝑝(x𝑘+1|y𝑘+1), and the innovation sequence e𝑘+1, are also

Gaussian. This is a consequence of the preservation of the Gaussian distributions

under linear transformations.

In practical applications, the dynamic and measurement models are often non-

linear and the Kalman filter becomes inappropriate. When dealing with nonlinear

systems, the sequential Bayesian estimation problem needs approximate and compu-

tationally tractable sub-optimal solutions. For such cases, even when q𝑘, r𝑘 and x0

are Gaussian, the conditional densities 𝑝(x𝑘+1|y𝑘) and 𝑝(x𝑘+1|y𝑘+1) are non-Gaussian.

The key to obtaining approximate solutions is making appropriate simplifying as-

sumptions to approximate the non-Gaussian conditional densities and estimating their

first and second moments. In his seminal publication, Kalman [77] noted how when

the Kalman filter is used, all statistical computations are based on the first and second

order averages and no other statistical data is needed. For Gaussian distributions, this
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is indeed the case and the first and second moments are sufficient to characterize the

whole distribution. However, this is not the case for non-Gaussian distributions and

most of the approximate methods that extend the Kalman filter to handle nonlinear

problems focus on estimating the first and second moments of the conditional densi-

ties. These techniques continue the use of the Kalman filter update step of equation

(2.21) and the observer gain computation of equation (2.22). As will be discussed,

the main differences lie in the methods used to estimate the moments.

A popular choice for the simplification of the Bayesian estimation problem is ap-

proximating the conditional densities by a Gaussian distribution. This approximation,

owing to its analytical tractability, is a simple approach to approximate numerical

integration computations in the prediction and update steps. The simplifying assump-

tion also makes it sufficient to update the mean and covariances of the conditional

distributions while performing sequential estimation. In this section, particular em-

phasis is given to two types of methods for forming the Gaussian approximations,

both of which will be implemented in this work: the extended Kalman filter (EKF),

based on the Taylor series approximation and the unscented Kalman filter (UKF),

based on the unscented transform approximation. The statistically linearised filter

(SLF), based on statistical linearisation, is briefly described and compared.

The UKF differs from the other filters since it is not a series expansion-based

technique, despite being initially justified by considering a nonlinear function given

as a series expansion. The UKF is, however, considered to approximate the SLF and

to converge to the EKF in an appropriate parameter limit.

2.3.1 Extended Kalman filter

The EKF [58, 198] is an extension of the Kalman filter to nonlinear filtering problems

and approximates the filtering densities using the Gaussian approximation

𝑝(x𝑘|y1:𝑘) ≈𝒩 (x𝑘|𝜇𝑘,P𝑘). (2.25)
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Such approximation is computed using Taylor series approximations to the nonlinear-

ities. Assuming additive process and measurement noise as in equations (2.13), the

joint distribution of x𝑘+1 and x𝑘 is non-Gaussian, however, a Gaussian approximation

may be formed as follows:

𝑝(x𝑘,x𝑘+1|y1:𝑘) ≈ 𝒩

⎛⎝⎛⎝ x𝑘

x𝑘+1

⎞⎠ |𝜇′
𝑘,P

′
𝑘

⎞⎠ , (2.26)

where

𝜇′
𝑘 =

⎛⎝ 𝜇𝑘

f(𝜇𝑘)

⎞⎠ , (2.27)

P′
𝑘 =

⎛⎝ P𝑘 P𝑘F
(𝑥) ⊤

F(𝑥)P𝑘 F(𝑥)P𝑘F
(𝑥)⊤ + Q𝑘

⎞⎠ , (2.28)

and the Jacobian matrix F(𝑥) of f(x) is computed at x = 𝜇𝑘. The marginal mean

and covariance of x𝑘 are approximated by

𝜇−
𝑘+1 = f(𝜇𝑘), (2.29)

P−
𝑘+1 = F(𝑥)P𝑘F

(𝑥)⊤ + Q𝑘. (2.30)

Considering now the non-Gaussian joint distribution of y𝑘+1 and x𝑘+1, this may be

approximated by the following distribution:

𝑝(x𝑘+1,y𝑘+1|y1:𝑘) ≈ 𝒩

⎛⎝⎛⎝x𝑘+1

y𝑘+1

⎞⎠ |𝜇′′
𝑘+1,P

′′
𝑘+1

⎞⎠ , (2.31)
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where

𝜇′′
𝑘+1 =

⎛⎝ 𝜇−
𝑘+1

h(𝜇−
𝑘+1)

⎞⎠ , (2.32)

P′′
𝑘+1 =

⎛⎝ P−
𝑘+1 P−

𝑘+1H
(𝑥) ⊤

H(𝑥)P−
𝑘+1 H(𝑥)P𝑘H

(𝑥)⊤ + R𝑘+1

⎞⎠ , (2.33)

and the Jacobian matrix H(𝑥) of h(x) is calculated at x = 𝜇−
𝑘+1. Finally, the condi-

tional distribution of x𝑘+1 may be obtained as

𝑝(x𝑘+1|y𝑘+1,y1:𝑘) ≈𝒩 (x𝑘+1|𝜇𝑘+1,P𝑘+1), (2.34)

where

𝜇𝑘+1 = 𝜇−
𝑘+1 + P−

𝑘+1H
(𝑥)⊤(H(𝑥)P−

𝑘+1H
(𝑥)⊤ + R𝑘+1)

−1[y𝑘+1 − h(𝜇−
𝑘+1)], (2.35)

P𝑘+1 = P−
𝑘+1 −P−

𝑘+1H
(𝑥)⊤(H(𝑥)P−

𝑘+1H
(𝑥)⊤ + R𝑘+1)

−1H(𝑥)P−
𝑘+1. (2.36)

Algorithm 2.1 summarises the EKF algorithm.

Algorithm 2.1 (The EKF algorithm) The prediction-correction technique of the first

order EKF algorithm for additive noise is as follows:

∙ Initialisation: Recursions start from the prior mean 𝜇0 and covariance P0.

∙ Prediction:

𝜇−
𝑘+1 =f(𝜇𝑘), (2.37)

P−
𝑘+1 =F(𝑥)(𝜇𝑘)P𝑘F

(𝑥)⊤(𝜇𝑘) + Q𝑘. (2.38)
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∙ Correction:

e𝑒,𝑘+1 =y𝑘+1 − h(𝜇−
𝑘+1), (2.39)

S𝑒,𝑘+1 =H(𝑥)(𝜇−
𝑘+1)P

−
𝑘+1H

(𝑥)⊤(𝜇−
𝑘+1) + R𝑘+1, (2.40)

K𝑘+1 =P−
𝑘+1H

(𝑥)⊤(𝜇−
𝑘+1)S

−1
𝑒,𝑘+1, (2.41)

𝜇𝑘+1 =𝜇−
𝑘+1 + K𝑘+1e𝑒,𝑘+1, (2.42)

P𝑘+1 =P−
𝑘+1 −K𝑘+1S𝑒,𝑘+1K

⊤
𝑘+1. (2.43)

The EKF has been particularly successful in solving several industrial problems

[199]. The EKF algorithm has the edge over its nonlinear filtering counterparts when

noting its relative simplicity in comparison to the filtering performance. Linearisation

is a popular strategy for approximating nonlinear systems and is therefore easy to

understand and implement.

Many nonlinear systems remain challenging, however, and the price to pay for the

simplicity of the EKF is that owing to its local linear approximation method, it will

not perform well for significant nonlinearities. Also, since the noise processes can only

be Gaussian, the model cannot have, for instance, random variables having discrete

values. The Gaussian limitation further prevents the use of hierarchical models or

models for which considerably non-Gaussian distributions are required. The Taylor

series approximation needs smooth and at least twice differentiable nonlinear function

vectors. In certain situations, the Jacobian matrices are difficult to compute and

program, or simply not possible to obtain.

Although the second-order EKF attempts to contain the significant error involved

by correcting estimates of the mean x̂𝑘+1|𝑘 and x̂𝑘+1|𝑘+1 using the second order terms

in the Taylor series expansion of f(x𝑘), severe nonlinearities remain hard to handle.

This requirement for smooth or differentiable nonlinear functions is relaxed when

the first order Taylor series approximation employed in the first order EKF algorithm

is replaced by approximations based on statistical linearisation [59], which represents

a better alternative for approximating the nonlinear function of a random variable.
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The statistically linearised filter [59] represents an improvement over EKF in the

sense that the filter is a more global approximation when compared to the EKF,

since the linearisation covers the whole range of function values instead of only the

local region around the mean. The nonlinear functions are not required to be smooth

or differentiable [59]. A notable disadvantage of the SLF in comparison to the EKF is

the computation of the expected values of nonlinear functions in closed form, which

is clearly impossible for some functions. It is noteworthy that when the first order

truncation of the series is utilized, the SLF algorithm is a special case of the Fourier-

Hermite Kalman filter (FHKF) [200].

2.3.2 Unscented Kalman filter

A common approach in the class of conditional-density-approximation-based estima-

tors are sigma point filters. The popular unscented Kalman filter [78, 79] has been an

attractive filtering strategy for several researchers and numerous application studies

have appeared [201, 202, 203, 204].

The relatively recent unscented transform (UT) numerical method is another

strategy for obtaining approximations to the joint distribution of random variables

x ∼ 𝒩 (𝜇,P) (dimension 𝑛𝑥) and y = h(x). The UT is different from linearisa-

tion and statistical linearisation in that it attempts to yield direct approximations

to the mean and covariance of the target distribution rather than approximating the

nonlinear function [205].

By first deterministically choosing a number of sigma points which exactly encode

the mean and covariance of the original distribution of x, the UT algorithm propagates

the points through the nonlinearity. The mean and covariance of the transformed

variable are then approximated using the sigma points. This might seem similar to

Monte Carlo estimation, however, the fundamental difference of having sigma points

being selected deterministically distinguishes the two methods [79].

To illustrate the unscented transform action, we consider the example of having

the random variable x undergoing the nonlinear transformation h(x) to form the

Gaussian approximation to y = h(x). A set of 2𝑛𝑥 + 1 sigma points is first formed
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using the following equations:

𝒳 0 = 𝜇̃𝑘,

𝒳 𝑖 = 𝜇̃𝑘 + (
√︀

(𝑛𝑥 + 𝜆)P)𝑖, 𝑖 = 1, . . . , 𝑛𝑥, (2.44)

𝒳 𝑖 = 𝜇̃𝑘 − (
√︀

(𝑛𝑥 + 𝜆)P)𝑖, 𝑖 = 𝑛𝑥 + 1, . . . , 2𝑛𝑥,

where the vector (
√︀

(𝑛𝑥 + 𝜆)P)𝑖 represents the 𝑖th column of the matrix square root

and 𝜆 denotes a scaling parameter defined by the equation

𝜆 = 𝛼2(𝑛𝑥 + 𝜅) − 𝑛𝑥, (2.45)

where the constants 𝛼 and 𝜅 (here set to 3−𝑛𝑥) govern the sigma point spread around

the mean [197]. The matrix square root represents a matrix for which
√
P
√
P

⊤
= P.

The sigma point propagation through the nonlinear function h(·) yields

𝒴 𝑖 = h(𝒳 𝑖), 𝑖 = 0, . . . , 2𝑛𝑥, (2.46)

which gives the transformed sigma points 𝒴 𝑖. The estimates for the mean and co-

variance of the transformed variable may be determined using the sigma points:

E(h(x)) ≈ 𝜇𝑠 =
2𝑛𝑥∑︁
𝑖=0

𝑊
(𝑚)
𝑖 𝒴 𝑖, (2.47)

C𝑜𝑣(h(x)) ≈ S𝑠 =
2𝑛𝑥∑︁
𝑖=0

𝑊
(𝑐)
𝑖 (𝒴 𝑖 − 𝜇𝑠)(𝒴 𝑖 − 𝜇𝑠)⊤, (2.48)

where 𝑊 (𝑚)
𝑖 and 𝑊 (𝑐)

𝑖 are constant weights given by [197]

𝑊
(𝑚)
0 =

𝜆

𝑛𝑥 + 𝜆
,

𝑊
(𝑐)
0 =

𝜆

𝑛𝑥 + 𝜆
+ 1 − 𝛼2 + 𝛽, (2.49)

𝑊
(𝑚)
𝑖 =𝑊

(𝑐)
𝑖 =

1

2(𝑛𝑥 + 𝜆)
, 𝑖 = 1, . . . , 2𝑛𝑥.
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The parameter 𝛽 may be employed to incorporate prior knowledge of the non-Gaussian

distribution of x [197].

Since the estimate for the mean of h(·) is exact for polynomials up till the third

order, the unscented transform is said to be a third order method. Therefore, if h(·)

happens to be a multi-variate third order polynomial, the mean is exact. However,

the approximation for the covariance is only exact for first order polynomials since

squaring a second order polynomial results in a fourth order polynomial for which the

UT cannot determine exact results. In this context, the UT is known as a first order

method. With an appropriate parameter selection (namely, setting 𝜅 = 3 − 𝑛𝑥 as in

[205]), there exists a possibility to have some correct fourth order terms appearing

in the covariance computation for quadratic functions. Note that the UT may also

be implemented without the Gaussian assumption, but Guassianity facilitates the

Bayesian interpretation of the UT.

The UT is used in the unscented Kalman filter [205, 79, 197], which is an ap-

proximate filtering algorithm that approximates the filtering distributions of models

having a similar form as those used with the EKF and SLF algorithms, as in equa-

tions (2.13). A non-additive noise filtering model may also be used, but is not given

here in the interest of brevity. Similar to the EKF and the SLF, the UKF approxi-

mates the filtering distribution given by equation (2.25) as a Guassian approximation.

Algorithm 2.2 summarises the UKF algorithm.

Algorithm 2.2 (The UKF algorithm) In its additive form, the UKF algorithm may

be used for additive models of the form given by equations (2.13). For this additive

form, the following steps are performed for each measurement instant 𝑘 = 0, 1, 2, 3, . . .:

∙ Initialisation: Recursions start from the prior mean 𝜇0 and covariance P0.

∙ Prediction:
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1. Sigma points are formed:

𝒳 𝑘,0 = 𝜇𝑘,

𝒳 𝑘,𝑖 = 𝜇𝑘 + (
√︀

(𝑛𝑥 + 𝜆)P𝑘)𝑖, 𝑖 = 1, . . . , 𝑛𝑥, (2.50)

𝒳 𝑘,𝑖 = 𝜇𝑘 − (
√︀

(𝑛𝑥 + 𝜆)P𝑘)𝑖, 𝑖 = 𝑛𝑥 + 1, . . . , 2𝑛𝑥,

where 𝜆 is given by equation (2.45).

2. The sigma points are propagated through the dynamic model:

𝒳̂ 𝑘+1,𝑖 = f(𝒳 𝑘,𝑖), 𝑖 = 0, . . . , 2𝑛𝑥. (2.51)

3. The predicted mean 𝜇−
𝑘+1 and the predicted covariance P−

𝑘+1 are obtained:

𝜇−
𝑘+1 =

2𝑛𝑥∑︁
𝑖=0

𝑊
(𝑚)
𝑖 𝒳̂ 𝑘+1,𝑖, (2.52)

P−
𝑘+1 =

2𝑛𝑥∑︁
𝑖=0

𝑊
(𝑐)
𝑖 (𝒳̂ 𝑘+1,𝑖 − 𝜇−

𝑘+1)(𝒳̂ 𝑘+1,𝑖 − 𝜇−
𝑘+1)

⊤ + Q𝑘, (2.53)

where the weights 𝑊 (𝑚)
𝑖 and 𝑊 (𝑐)

𝑖 are defined in equation (2.49).

∙ Correction:

1. Sigma points are formed:

𝒳−
𝑘+1,0 = 𝜇−

𝑘+1,

𝒳−
𝑘+1,𝑖 = 𝜇−

𝑘+1 + (
√︁

(𝑛𝑥 + 𝜆)P−
𝑘+1)𝑖, 𝑖 = 1, . . . , 𝑛𝑥, (2.54)

𝒳−
𝑘+1,𝑖 = 𝜇−

𝑘+1 − (
√︁

(𝑛𝑥 + 𝜆)P−
𝑘+1)𝑖, 𝑖 = 𝑛𝑥 + 1, . . . , 2𝑛𝑥.

2. The sigma points are propagated through the measurement model:

𝒴̂𝑘+1,𝑖 = h(𝒳−
𝑘+1,𝑖), 𝑖 = 0, . . . , 2𝑛𝑥. (2.55)

3. The predicted observation mean m𝑘+1, the predicted measurement covari-
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ance S𝑘+1 and the state and measurement cross-covariance matrix C𝑘+1

are computed:

m𝑘+1 =
2𝑛𝑥∑︁
𝑖=0

𝑊
(𝑚)
𝑖 𝒴̂𝑘+1,𝑖, (2.56)

S𝑘+1 =
2𝑛𝑥∑︁
𝑖=0

𝑊
(𝑐)
𝑖 (𝒴̂𝑘+1,𝑖 −m𝑘+1)(𝒴̂𝑘+1,𝑖 −m𝑘+1)

⊤ + R𝑘+1, (2.57)

C𝑘+1 =
2𝑛𝑥∑︁
𝑖=0

𝑊
(𝑐)
𝑖 (𝒳−

𝑘+1,𝑖 − 𝜇
−
𝑘+1)(𝒴̂𝑘+1,𝑖 −m𝑘+1)

⊤. (2.58)

4. The filter gain D𝑘+1, filtered state mean 𝜇𝑘+1 and covariance P𝑘+1, con-

ditional on the measurement y𝑘+1 are computed:

D𝑘+1 = C𝑘+1S
−1
𝑘+1, (2.59)

𝜇𝑘+1 = 𝜇−
𝑘+1 + D𝑘+1(y𝑘+1 −m𝑘+1), (2.60)

P𝑘+1 = P−
𝑘+1 −D𝑘+1S𝑘+1D

⊤
𝑘+1. (2.61)

The filtering equations above may be similarly derived as the EKF equations,

replacing the linear approximations with the UT-based approximations. As can be

easily seen, the advantage that the UKF algorithm enjoys over EKF is that the nonlin-

earity is approximated using several points instead of having a linear approximation

at one point. This makes the UT more capable of capturing the higher order mo-

ments caused by the nonlinear transformation in comparison with Taylor series-based

approximations [79]. Furthermore, the UKF does not require the dynamic and mea-

surement models to be differentiable and the computation of their Jacobian matrices

is not necessary. As opposed to the SLF algorithm, the UKF does not need any

closed form evaluation of expected values since only computations of dynamic and

measurement models must be performed. The UKF accuracy, however, trails that of

the SLF, since the latter makes use of a more extensive area in its approximation,

whilst the UKF considers only a specific number of points within the region. One
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disadvantage of the UKF over the EKF is the higher computational cost.

2.3.3 Particle filtering and optimisation-based estimators

Although Gaussian approximations work well for many filtering problems, the filter-

ing distributions may occasionally be, for instance, multi-modal and non-Gaussian,

or a number of the state components may be discrete, for which Gaussian approxi-

mations become inappropriate. In such situations, particle filtering can be a better

alternative. A particle filter (PF) [66, 70] employs Monte Carlo sampling to approxi-

mate the multi-dimensional integrations involved in the prediction and update steps

of the Bayesian filtering equations (2.18). The problem with such integrals is that

closed form evaluation is only possible in a few specific cases and in general, numer-

ical techniques are required. Monte Carlo methods are therefore exploited so that

obtaining samples from the distribution and using sample averages to estimate the

quantities replaces the closed form calculation of statistical values.

Belonging to the class of particle filters is the ensemble Kalman Filter (EnKF)

[206, 207] that is based on the idea of determining estimates for P(𝜖,𝑒)
𝑘+1 and P

(𝑒,𝑒)
𝑘+1 using

random samples instead of deterministic ones. Detailed expositions on algorithmic

and theoretical aspects of particle filtering are given in [67, 66, 70, 208].

In addition to conditional-density-approximation-based estimators, several nonlin-

ear state estimation methods that exploit an optimisation strategy to solve nonlinear

state estimation problems have been developed. These techniques were proposed with

the specific goal of handling constraints on states and parameters in the estimation

process [30]. An estimator that makes use of an explicit optimisation-based ap-

proach for state and parameter estimation of nonlinear dynamic processes (described

by ODEs) is the moving horizon estimator (MHE) [209]. At every time step, the

MHE solves an optimisation problem, thus readily handling constraints and bounds

on state variables. The standard MHE formulation includes an arrival cost term that

accounts for the accumulated state estimate uncertainties till the current window of

interest. For general nonlinear constrained state estimation, the arrival cost cannot

be determined analytically, however, for constrained linear ODE systems, the arrival
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cost can be approximated using the cost evaluated for the unconstrained problem

[210]. For nonlinear systems, the arrival cost is typically calculated by approximating

a constrained nonlinear ODE system by an unconstrained linear time-varying system

[211].

With this work’s high-dimensional and real-time applications in mind, particle

filters are known to become computationally expensive for large dimensions. For

high-dimensional systems and long window sizes, optimisation-based formulations

require a computationally intensive optimisation problem to be solved at every time

step [30]. Kalman filtering is therefore the main focus in this thesis.

2.3.4 Unscented Rauch-Tung-Striebel smoothing

So far, only filtering algorithms have been discussed. These make use of measurements

obtained before and at the present instant for determining the optimal estimate of the

present state (and potentially future states). However, on occasions, it is important to

obtain state estimates for every time instant conditional on all observations, including

future measurements. Bayesian smoothing solves such a problem, which is described

here for the unscented Rauch-Tung-Striebel smoother (URTSS) [81, 82], which is an

unscented transform-based RTS smoother (or a forward-backward UKS smoother)

used to approximate Bayesian smoothing solutions for nonlinear state-space models

using Gaussian approximations, where the nonlinearity is approximated using the

unscented transform.

To obtain such an approximation, the approximate mean and covariance of the

filtering distribution, given in equation (2.25), are assumed to be available. The joint

distribution of x𝑘 and x𝑘+1 given y1:𝑘 may be given by

𝑝(x𝑘,x𝑘+1|y1:𝑘) = 𝑝(x𝑘+1|x𝑘)𝑝(x𝑘|y1:𝑘). (2.62)

Equation (2.62) is approximated by a Gaussian approximation using the unscented
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transform, as follows:⎛⎝ x𝑘

x𝑘+1

⎞⎠ |y1:𝑘 ∼ 𝒩

⎛⎝⎛⎝ 𝜇𝑘

𝜇−
𝑘+1

⎞⎠ ,

⎛⎝ P𝑘 C𝑘+1

C⊤
𝑘+1 P−

𝑘+1

⎞⎠⎞⎠ . (2.63)

This can be computed using the unscented transform for the nonlinear transformation

given by equation (2.13a). By re-writing equation (2.62) as a conditional distribution

of x𝑘 given x𝑘+1 and y1:𝑘, we have that

𝑝(x𝑘|x𝑘+1,y1:𝑘) =
𝑝(x𝑘,x𝑘+1|y1:𝑘)

𝑝(x𝑘+1|y1:𝑘)
, (2.64)

but using the Markov property yields

𝑝(x𝑘|x𝑘+1,y1:𝐾) =
𝑝(x𝑘,x𝑘+1|y1:𝑘)

𝑝(x𝑘+1|y1:𝑘)
. (2.65)

Distribution (2.63) is Gaussian and we may therefore exploit the Gaussian distribution

computation rules to obtain the Gaussian conditional distribution of equation (2.65),

resulting in the following approximation:

𝑝(x𝑘|x𝑘+1,y1:𝐾) ≈ 𝒩 (x𝑘|𝜇
′

𝑘+1,P
′

𝑘+1), (2.66)

where

D𝑘 = C𝑘+1(P
−
𝑘+1)

−1, (2.67)

𝜇
′

𝑘+1 = 𝜇𝑘 + D𝑘(x𝑘+1 − 𝜇−
𝑘+1), (2.68)

P
′

𝑘+1 = P𝑘 −D𝑘P
−
𝑘+1D

⊤
𝑘 . (2.69)

The joint distribution of x𝑘 and x𝑘+1 given y1:𝐾 is

𝑝(x𝑘,x𝑘+1|y1:𝐾) = 𝑝(x𝑘|x𝑘+1,y1:𝐾)𝑝(x𝑘+1|y1:𝐾), (2.70)

so that assuming knowledge of the smoothing distribution of the following time instant
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and taking this to be Gaussian and given by

𝑝(x𝑘+1|y1:𝐾) ≈ 𝒩 (x𝑘+1|𝜇𝑠𝑘+1,P
𝑠
𝑘+1), (2.71)

the distribution (2.70) then becomes

⎛⎝ x𝑘

x𝑘+1

⎞⎠ |y1:𝐾 ∼ 𝒩 (𝜇
′′

𝑘+1,P
′′

𝑘+1), (2.72)

where

𝜇
′′

𝑘+1 =

⎛⎝𝜇𝑘 + D𝑘(x𝑘+1 − 𝜇−
𝑘+1)

𝜇𝑠𝑘+1

⎞⎠ , (2.73)

P
′′

𝑘+1 =

⎛⎝D𝑘P
𝑠
𝑘+1D

⊤
𝑘 + P

′

𝑘+1 D𝑘P
𝑠
𝑘+1

P𝑠
𝑘+1D

⊤
𝑘 P𝑠

𝑘+1

⎞⎠ . (2.74)

At time instant 𝑘, the smoothing distribution is obtained as a Gaussian approximation

by marginalizing over x𝑘+1:

𝑝(x𝑘|y1:𝐾) ≈ 𝒩 (x𝑘|𝜇𝑠𝑘,P𝑠
𝑘), (2.75)

where

𝜇𝑠𝑘 = 𝜇𝑘 + D𝑘(𝜇
𝑠
𝑘+1 − 𝜇−

𝑘+1), (2.76)

P𝑠
𝑘 = P𝑘 + D𝑘(P

𝑠
𝑘+1 −P−

𝑘+1)D
⊤
𝑘 . (2.77)

Algorithm 2.3 summarises the unscented RTS smoother algorithm.

Algorithm 2.3 (The URTSS algorithm) The unscented RTS smoother algorithm for

the additive model of equations (2.13) is as follows:

∙ Initialisation: The algorithm starts from the filtered estimates of the last time

instant, with mean 𝜇𝑠𝐾 = 𝜇𝐾 and covariance P𝑠
𝐾 = P𝐾 . The following recur-
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sions run backward for 𝑘 = 𝐾 − 1, . . . , 0.

∙ Sigma points are formed:

𝒳 𝑘,0 = 𝜇𝑘,

𝒳 𝑘,𝑖 = 𝜇𝑘 + (
√︀

(𝑛𝑥 + 𝜆)P𝑘)𝑖, 𝑖 = 1, . . . , 𝑛𝑥, (2.78)

𝒳 𝑘,𝑖 = 𝜇𝑘 − (
√︀

(𝑛𝑥 + 𝜆)P𝑘)𝑖, 𝑖 = 𝑛𝑥 + 1, . . . , 2𝑛𝑥.

∙ Sigma point propagation through the dynamic model yields

𝒳̂ 𝑘+1,𝑖 = f(𝒳 𝑘,𝑖), 𝑖 = 0, . . . , 2𝑛𝑥. (2.79)

∙ The predicted mean 𝜇−
𝑘+1, its covariance P−

𝑘+1 and cross-covariance C𝑘+1 are

computed as follows:

𝜇−
𝑘+1 =

2𝑛𝑥∑︁
𝑖=0

𝑊
(𝑚)
𝑖 𝒳̂ 𝑘+1,𝑖, (2.80)

P−
𝑘+1 =

2𝑛𝑥∑︁
𝑖=0

𝑊
(𝑐)
𝑖 (𝒳̂ 𝑘+1,𝑖 − 𝜇−

𝑘+1)(𝒳̂ 𝑘+1,𝑖 − 𝜇−
𝑘+1)

⊤ + Q𝑘, (2.81)

C𝑘+1 =
2𝑛𝑥∑︁
𝑖=0

𝑊
(𝑐)
𝑖 (𝒳 𝑘,𝑖 − 𝜇𝑘)(𝑋̂𝑘+1,𝑖 − 𝜇−

𝑘+1)
⊤, (2.82)

where the weights 𝑊 (𝑚)
𝑖 and 𝑊 (𝑐)

𝑖 are given by equation (2.49).

∙ The smoother gain D𝑘, smoothed mean 𝜇𝑠𝑘 and smoothed covariance P𝑠
𝑘 are

calculated using the following equations:

D𝑘 = C𝑘+1(P
−
𝑘+1)

−1, (2.83)

𝜇𝑠𝑘 = 𝜇𝑘 + D𝑘(𝜇
𝑠
𝑘+1 − 𝜇−

𝑘+1), (2.84)

P𝑠
𝑘 = P𝑘 + D𝑘(P

𝑠
𝑘+1 −P−

𝑘+1)D
⊤
𝑘 . (2.85)
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The two-filter smoother [212, 213, 214] is another approach which differs from

RTS-style forward-backward smoothing. Despite the many advantages of two-filter

smoothing, this is not particularly well suited for the nonlinear case due to the required

construction of artificial probability densities which ensure a normalisable backward

filter. In view of this difficulty, this thesis bases the smoothing algorithms on the

forward-backward smoothing methodology.

2.4 State estimation for nonlinear descriptor systems

Several researchers tend to convert the descriptor problem to a standard state-space

formulation (e.g. [1, 215]), however this may introduce significant numerical errors

where ODE solvers are used [21]. The conversion may also lead to the violation of

algebraic constraints and makes measurements that are functions of algebraic states

redundant for state estimation [21]. This was an important motivation for researchers

to retain a descriptor formulation for estimation purposes [216, 21, 85].

The problem of state estimation for linear descriptor systems has been well de-

veloped by various authors [217, 218, 219, 220]. By contrast, most research efforts in

designing filters and observers for the nonlinear case are more recent [75, 76].

A full-order observer is reported in [221] for a nonlinear descriptor system class

subject to unknown inputs and faults. The observer design is based on the idea of

dividing the system into a dynamic system and a static one. Other researchers have

designed observers for nonlinear DAE systems described in terms of a linear part and

a nonlinearity that is assumed to be Lipschitz [222, 223, 224]. This assumption is

relaxed in [225, 226], however the nonlinearity is taken to obey a quadratic inequality

so that the observer error system is represented as a Lur’e descriptor system. Another

estimation scheme is proposed in [227], where the authors reformulate the original

descriptor model into an ODE form on a restricted manifold [228]. Other efforts

exploit linearisation methods, such as those presented in [229, 230]. In [230], index

reduction techniques are further proposed to handle high-index models. The observer

design put forward in [231] proposes a Lyapunov-based approach. Åslund and Frisk

61



[232] consider index 1 nonlinear DAE systems and extend the work of Nikoukhah [233]

so that an observer formulated as an index 1 DAE is developed. The authors linearise

the error dynamics where under the right conditions, the estimator error dynamics are

guaranteed to be locally stable. Another approach to the state estimation of nonlinear

DAEs is the MHE scheme [234], however this becomes computationally intensive for

large horizons or large-scale models [85].

The application of Kalman filtering for nonlinear DAE systems is described in

[85], where a modified extended Kalman filter is proposed. However, this technique

only treats measurements as functions of differential state variables. The technique

was therefore extended in [235, 21] to accommodate measurements including algebraic

state variables. More recently, this method was further modified in [236] to handle

measurements taken at multiple sampling rates. An unscented Kalman filter [79]

approach to nonlinear descriptor systems was presented in [84], who linearise the DAE

model to obtain a recursive least squares estimation approach in which the unscented

transformation is applied. The work in [235, 21] proposes a heuristic extension of the

standard UKF approach to nonlinear DAEs, which was later heuristically revised in

[83], where the scaled unscented transformation [237] is employed whilst excluding

augmented state calculations.

2.5 Conclusion

This chapter has discussed different classes of spatio-temporal models which are com-

monly used and reveals how the study of nonlinear PDAEs is warranted for the

applications we consider in this thesis. Nonlinear PDAEs retain the physical mean-

ing of the underlying process governing the system whilst being able to represent the

spatially heterogeneous dynamics. Model reduction methods were also described to

show how a spatio-temporal field may be approximated in finite-dimensional form

which is readily applicable to the available state estimation tools which were also

described in this same chapter. The prevalent state estimation schemes were dis-

cussed with particular emphasis to those pertaining to our work, namely, the UKF
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and URTSS methods. This leaves the development of appropriate state estimation

tools for nonlinear descriptor systems to be addressed in the next chapter.
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Chapter 3

Estimation of temporal descriptor

systems

As it was described in Chapter 2, descriptor systems consist of a general form of sets of

equations that are often a product of modelling physical systems or large-scale systems

and involve both dynamic and static relationships between variables. Since such

systems are typically only partially observed, an estimation problem arises. In their

original form, the optimal filtering equations for such systems are rarely used directly

in practical situations due to high computational cost. Numerical approximations are

therefore required so the optimal filtering equations are divided into steps. Since we

are primarily interested in the first and second moments of the filtering distributions,

we employ unscented transform-based Gaussian approximations [197].

Section 3.1 extends the UKF and URTSS algorithms to temporal nonlinear de-

scriptor systems with stochastic differential equations and deterministic algebraic

equations, for which an electrochemical case study is used to validate the proposed

methodology. Section 3.2 derives modified UKF and URTSS techniques for tempo-

ral nonlinear DAE systems having stochastic differential and algebraic equations, as

would be the case when model uncertainties exist in all equations. A numerical exam-

ple illustrates the derived solutions. All proposed methods allow for measurements

that are functions of both differential and algebraic states.
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3.1 Nonlinear descriptor systems with deterministic

algebraic equations

Deterministic algebraic equations typically arise from physical principles that con-

strain the evolution of differential states such that all states obey the descriptor

formulation. Taking chemical kinetics as an example, reaction rates are governed

by differential equations, while algebraic equations typically represent equilibrium

properties, pseudo-stationary assumptions and charge or mass balances [22]. The

foregoing means that the algebraic state covariance would encode useful information

which in previously developed filtering algorithms, remains unknown. In our method,

we ensure that statistical information from all states is used throughout since this

would best capture all system properties.

3.1.1 Problem statement

We consider nonlinear DAE models of the form given by equations (2.14) and remove

the algebraic state process noise e𝑘 to have deterministic algebraic equations. Our

aim is to obtain Gaussian approximations to the filtering distributions 𝑝(X𝑘|y1:𝑘) and

smoothing distributions 𝑝(X𝑘|y1:𝐾) for time steps 𝑘 running from 0 to 𝐾. This thesis

shall only consider semi-explicit DAEs of differentiation index 1 unless otherwise

stated.

3.1.2 An unscented Kalman filter for nonlinear DAEs with

deterministic algebraic equations

This section presents a filtering algorithm that is employed in the forward step of the

proposed RTS smoother for nonlinear descriptor systems. In contrast with previously

proposed UKF algorithms, our technique provides the covariance of both the differen-

tial and algebraic state estimates. For this purpose, we make use of the discrete-time

UKF [205, 78, 197, 79] - an optimal filtering algorithm that employs the unscented

transformation. Since the evolution of algebraic states is completely described by the
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evolution of differential states such that all algebraic constraints are satisfied [30],

such typical natural constraints enable algebraic states to be considered as noise-free

[85, 21]. In the algebraic equation, the differential states are nonlinearly transformed

to yield the algebraic states. A way of transforming statistical information through

the nonlinear function g must therefore be sought. Since approximating a probability

distribution is an easier approach than approximating a nonlinear function [238, 79],

the unscented transformation is employed to propagate the mean and covariance of

the differential state estimates through the nonlinear function.

The theoretical results obtained in [239, 197] may be used to quantify the accuracy

of the resulting algebraic state estimates mean and covariance. The true posterior

mean and the UT predicted mean of the algebraic state estimates are identical till

the third order and errors are only present in the fourth and higher-order terms.

Similarly, it can be shown that the true posterior covariance and the UT posterior

covariance of the algebraic state estimates are identical for the first two terms and

errors are introduced only for the fourth and higher order moments. If, however, a

priori knowledge of the shape of the prior distribution is available, a non-zero value

for the UT parameter 𝛽 may be set, thus minimising the error in some of the higher

order (≥ 4) moments. For a Gaussian random variable, Julier [237] shows how the

error in the kurtosis of the posterior distribution is minimised when 𝛽 = 2. A detailed

treatment of the UT is given in [239, 79, 197, 237].

The standard formulation of the UKF algorithm is used to obtain the filtered

differential state estimates. A notable difference, however, is that the computation

of the predicted differential state and predicted observation mean and covariance re-

quires algebraic state sigma points obtained using algebraic equations. This ensures

consistency with respect to the descriptor model. Additionally, we note that measure-

ments of algebraic states are functions of differential states and are therefore treated

as such.

The filtered algebraic state estimates at 𝑘+1 are computed by using a set of 2𝑛𝑥+1

sigma points that are selected such that the mean and covariance of the sigma points

are x𝑘+1 and P
(𝑥)
𝑘+1, respectively. By propagating each sigma point through the non-
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linear function g, the statistics of the transformed sigma points may be calculated to

obtain an estimate for the nonlinearly transformed mean and covariance. Algorithm

3.1 summarises the UKF algorithm for nonlinear difference-algebraic equations with

deterministic algebraic equations.

Algorithm 3.1(The UKF algorithm for nonlinear DAEs with deterministic algebraic

equations). The UKF computations are initialised with a prior distribution that has a

mean x0 and covariance P(𝑥)
0 . The following steps are executed at every measurement

time instant 𝑘 = 0, 1, 2, 3, . . . :

1. Prediction step:

(a) The differential state sigma points 𝒳 𝑘,𝑖 are first computed, as follows:

𝒳 𝑘,0 =x𝑘,

𝒳 𝑘,𝑖 =x𝑘 + (

√︁
(𝑛𝑥 + 𝜆)P

(𝑥)
𝑘 )𝑖, 𝑖 = 1, . . . , 𝑛𝑥, (3.1)

𝒳 𝑘,𝑖 =x𝑘 − (

√︁
(𝑛𝑥 + 𝜆)P

(𝑥)
𝑘 )𝑖, 𝑖 = 𝑛𝑥 + 1, . . . , 2𝑛𝑥,

where 𝜆 is defined in equation (2.45). The vector (

√︁
(𝑛𝑥 + 𝜆)P

(𝑥)
𝑘 )𝑖 denotes

the 𝑖th column of the matrix square root, x𝑘 is the filtered estimate of differ-

ential states and P
(𝑥)
𝑘 is the associated covariance matrix.

(b) The algebraic state sigma points 𝒵𝑘,𝑖 are obtained using the algebraic equa-

tions g(𝒳 𝑘,𝑖,𝒵𝑘,𝑖) = 0 to ensure consistency.

(c) The sigma points 𝒳 𝑘,𝑖 and 𝒵𝑘,𝑖 are propagated through the nonlinear DAE

model to get 𝒳̂ 𝑘+1,𝑖.

(d) The predicted differential state estimate x−
𝑘+1 and the predicted covariance
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P
(𝑥)−
𝑘+1 are computed as follows:

x−
𝑘+1 =

2𝑛𝑥∑︁
𝑖=0

𝑊
(𝑚)
𝑖 𝒳̂ 𝑘+1,𝑖, (3.2)

P
(𝑥)−
𝑘+1 =

2𝑛𝑥∑︁
𝑖=0

𝑊
(𝑐)
𝑖 (𝒳̂ 𝑘+1,𝑖 − x−

𝑘+1)(𝒳̂ 𝑘+1,𝑖 − x−
𝑘+1)

⊤ + Q𝑘, (3.3)

where the constant weights 𝑊 (𝑚)
𝑖 and 𝑊 (𝑐)

𝑖 are given by equations (2.49).

2. Update step:

(a) The differential state sigma points 𝒳−
𝑘+1,𝑖 are computed by performing un-

scented sampling with mean x−
𝑘+1 and covariance P

(𝑥)−
𝑘+1 .

(b) The algebraic state sigma points 𝒵−
𝑘+1,𝑖 are determined from the algebraic

equations g(𝒳−
𝑘+1,𝑖,𝒵

−
𝑘+1,𝑖) = 0.

(c) The sigma points are propagated through the measurement model:

𝒴̂𝑘+1,𝑖 = h(𝒳−
𝑘+1,𝑖,𝒵

−
𝑘+1,𝑖). (3.4)

(d) The predicted observation mean y−
𝑘+1, the predicted measurement covariance

S𝑘+1 and the state and measurement cross-covariance matrix B𝑘+1 are com-

puted as follows:

y−
𝑘+1 =

2𝑛𝑥∑︁
𝑖=0

𝑊
(𝑚)
𝑖 𝒴̂𝑘+1,𝑖, (3.5)

S𝑘+1 =
2𝑛𝑥∑︁
𝑖=0

𝑊
(𝑐)
𝑖 (𝒴̂𝑘+1,𝑖 − y−

𝑘+1)(𝒴̂𝑘+1,𝑖 − y−
𝑘+1)

⊤ + R𝑘+1, (3.6)

B𝑘+1 =
2𝑛𝑥∑︁
𝑖=0

𝑊
(𝑐)
𝑖 (𝒳−

𝑘+1,𝑖 − x−
𝑘+1)(𝒴̂𝑘+1,𝑖 − y−

𝑘+1)
⊤. (3.7)

(e) The filter gainK𝑘+1, filtered differential state mean x𝑘+1 and covariance P
(𝑥)
𝑘+1
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are calculated as follows:

K𝑘+1 = B𝑘+1S
−1
𝑘+1, (3.8)

x𝑘+1 = x−
𝑘+1 + K𝑘+1(y𝑘+1 − y−

𝑘+1), (3.9)

P
(𝑥)
𝑘+1 = P

(𝑥)−
𝑘+1 −K𝑘+1S𝑘+1K

⊤
𝑘+1. (3.10)

(f) To obtain the filtered algebraic states z𝑘+1, the differential state sigma points

𝒳 𝑘+1,𝑖 are first computed by performing unscented sampling with mean x𝑘+1

and covariance P
(𝑥)
𝑘+1.

(g) The algebraic state sigma points 𝒵𝑘+1,𝑖 are generated from the algebraic

equations g(𝒳 𝑘+1,𝑖,𝒵𝑘+1,𝑖) = 0.

(h) The filtered algebraic state mean z𝑘+1 and its covariance P(𝑧)
𝑘+1 are computed:

z𝑘+1 =
2𝑛𝑥∑︁
𝑖=0

𝑊
(𝑚)
𝑖 𝒵𝑘+1,𝑖, (3.11)

P
(𝑧)
𝑘+1 =

2𝑛𝑥∑︁
𝑖=0

𝑊
(𝑐)
𝑖 (𝒵𝑘+1,𝑖 − z𝑘+1)(𝒵𝑘+1,𝑖 − z𝑘+1)

⊤. (3.12)

3.1.3 An unscented Rauch-Tung-Striebel smoother for nonlin-

ear DAEs with deterministic algebraic equations

An unscented RTS smoothing (URTSS) algorithm that extends the work presented

by Särkkä in [81, 82] is now proposed for application to nonlinear descriptor system

models of the form given by equations (2.14). The URTSS method is used to obtain

the differential state estimates. Once again, the algebraic state sigma points are

computed using the algebraic equations. Then proceeding similarly as in Section

3.1.2, the unscented transform is used to obtain the algebraic state estimates from

the differential state estimates. Algorithm 3.2 summarises the URTSS method for

nonlinear DAEs with deterministic algebraic equations.
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Algorithm 3.2 (The URTSS algorithm for nonlinear DAEs with deterministic alge-

braic equations). After computing the filtered state estimates, the following URTSS

algorithm can be executed to get the smoothed state estimates for each time instant

conditional to all measurements spanning time 𝐾:

1. The differential state sigma points𝒳 𝑘,𝑖 are first generated by performing unscented

sampling with mean x𝑘 and covariance P
(𝑥)
𝑘 .

2. Consistency is ensured by obtaining the algebraic state sigma points 𝒵𝑘,𝑖 using

the equation g(𝒳 𝑘,𝑖,𝒵𝑘,𝑖) = 0.

3. The sigma points 𝒳 𝑘,𝑖 and 𝒵𝑘,𝑖 are propagated through the nonlinear DAE model

to obtain 𝒳̂ 𝑘+1,𝑖.

4. The predicted state estimates x−
𝑘+1 and the corresponding cross-covariance C𝑘+1

and predicted covariance P
(𝑥)−
𝑘+1 are determined using the following equations:

x−
𝑘+1 =

2𝑛𝑥∑︁
𝑖=0

𝑊
(𝑚)
𝑖 𝒳̂ 𝑘+1,𝑖, (3.13)

C𝑘+1 =
2𝑛𝑥∑︁
𝑖=0

𝑊
(𝑐)
𝑖 (𝒳 𝑘,𝑖 − x𝑘)(𝒳̂ 𝑘+1,𝑖 − x−

𝑘+1)
⊤, (3.14)

P
(𝑥)−
𝑘+1 =

2𝑛𝑥∑︁
𝑖=0

𝑊
(𝑐)
𝑖 (𝒳̂ 𝑘+1,𝑖 − x−

𝑘+1)(𝒳̂ 𝑘+1,𝑖 − x−
𝑘+1)

⊤ + Q𝑘. (3.15)

5. The smoother gain D𝑘 and associated smoothed mean x𝑠𝑘 and covariance P(𝑥)𝑠
𝑘 are

calculated as follows:

D𝑘 = C𝑘+1(P
(𝑥)−
𝑘+1 )−1, (3.16)

x𝑠𝑘 = x𝑘 + D𝑘(x
𝑠
𝑘+1 − x−

𝑘+1), (3.17)

P
(𝑥)𝑠
𝑘 = P

(𝑥)
𝑘 + D𝑘(P

(𝑥)𝑠
𝑘+1 −P

(𝑥)−
𝑘+1 )D⊤

𝑘 . (3.18)

6. To determine the smoothed algebraic states z𝑠𝑘, the differential state sigma points
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𝒳 𝑠
𝑘,𝑖 are generated by carrying out unscented sampling with mean x𝑠𝑘 and covari-

ance P
(𝑥)𝑠
𝑘 .

7. The algebraic state sigma points 𝒵𝑠
𝑘,𝑖 are calculated using the algebraic equations

g(𝒳 𝑠
𝑘,𝑖,𝒵𝑠

𝑘,𝑖) = 0.

8. The smoothed algebraic state mean z𝑠𝑘 and its covariance P
(𝑧)𝑠
𝑘 are computed:

z𝑠𝑘 =
2𝑛𝑥∑︁
𝑖=0

𝑊
(𝑚)
𝑖 𝒵𝑠

𝑘,𝑖, (3.19)

P
(𝑧)𝑠
𝑘 =

2𝑛𝑥∑︁
𝑖=0

𝑊
(𝑐)
𝑖 (𝒵𝑠

𝑘,𝑖 − z𝑠𝑘)(𝒵𝑠
𝑘,𝑖 − z𝑠𝑘)

⊤. (3.20)

At the last time step 𝐾, the smoothing and filtering distributions are identical and

hence x𝑠𝐾 = x𝐾 , z𝑠𝐾 = z𝐾 , P
(𝑥)𝑠
𝐾 = P

(𝑥)
𝐾 and P

(𝑧)𝑠
𝐾 = P

(𝑧)
𝐾 . Therefore, by running the

above computations starting from the filtered estimates of the last time instant and

proceeding backwards for 𝑘 = 𝐾 − 1, . . . , 0, the smoothed estimates are obtained.

3.1.4 Case study: a galvanostatic charge process of a thin-film

nickel hydroxide electrode

The estimation performance of the UKF and URTSS algorithms developed here for

nonlinear descriptor systems with deterministic algebraic equations is demonstrated

by an electrochemical reaction considering a galvanostatic charge process of a thin-film

nickel hydroxide electrode [240]. The problem was studied in [235, 21] to investigate

the performance of EKF and UKF algorithms.

The operation can be charging, open-circuit or discharging if the value of the

applied current density on the nickel electrode, 𝑖𝑎𝑝𝑝, is positive, zero or negative,
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respectively. The nonlinear descriptor system is described by the following equations:

𝑑𝑥

𝑑𝑡
=

𝑙1𝑊

𝜌𝐹𝑉
, (3.21)

0 = 𝑙1 + 𝑙2 − 𝑖𝑎𝑝𝑝, (3.22)

where

𝑙1 = 𝑖1[2(1 − 𝑥)𝑒
0.5𝐹
𝑅𝑇

(𝑧−𝜑1) − 2𝑥𝑒
−0.5𝐹
𝑅𝑇

(𝑧−𝜑1)], (3.23)

𝑙2 = 𝑖2[𝑒
𝐹
𝑅𝑇

(𝑧−𝜑2) − 𝑒
−𝐹
𝑅𝑇

(𝑧−𝜑2)]. (3.24)

The differential state 𝑥 represents the mole fraction of nickel hydroxide and the al-

gebraic state 𝑧 denotes the potential difference across the solid-liquid interface. The

differential equation (3.21) is known as the species balance equation and the algebraic

equation (3.22) is referred to as the charge balance equation. The terms 𝑙1 and 𝑙2

are described by the Butler-Volmer relationship. The rest of the terms, that remain

constant throughout the simulation, are process parameters that are summarised in

Table 3.1. Their values and the initial state values are chosen as given in [235, 21].

In this simulation, the measurement is the algebraic state 𝑧 and the DAE solver used

follows the forward Euler scheme. It is assumed that 𝑥 is affected by process noise 𝑞,

𝑧 is noise-free and 𝑦 is corrupted with observation noise 𝑟.

The estimation methods tested here are the EKF reported in [235, 21] and the

UKF and URTSS proposed here. To our knowledge, the extended Kalman smoother

(EKS) and UKS (two-filter smoother) methods have not yet been extended to non-

linear DAE systems and are therefore not investigated here. The parameters used for

the EKF and the proposed UKF and URTSS techniques are given in Table 3.1.

A typical simulation result for the system under study is shown in Figures 3-1 and

3-2. Table 3.2 gives the root mean square error (RMSE) value statistics of EKF, UKF

and URTSS estimates following 100 Monte Carlo simulations of the electrochemical

reaction. Figure 3-3 further illustrates the results using RMSE plots. As expected,

the smoother’s performance is superior with a more significant improvement observed
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Table 3.1: Parameters for the nonlinear DAE model and the estimation procedure.

Symbol Description Value Units

Time Domain

Δt Time step 15 s

𝐾 Number of time steps used in estimation 300 n.a.

DAE Model

𝐹 Faraday’s constant 96487 C/mol

𝑅 Ideal gas constant 8.314 J/mol K

𝑇 Temperature 298.15 K

𝜑1 Equilibrium potential of nickel reaction 0.420 V

𝜑2 Equilibrium potential of oxygen reaction 0.303 V

𝜌 Density of nickel active material 3.4 g/cm3

𝑊 Molecular weight 92.7 g/mol

𝑉 Effective length 10−5 cm

𝑖𝑎𝑝𝑝 Applied current density on nickel electrode 10−5 A/cm2

𝑖1 Exchange current density of nickel reaction 10−4 A/cm2

𝑖2 Exchange current density of oxygen reaction 10−8 A/cm2

𝑞𝑘 Differential state process noise variance 10−4 n.a.

𝑟𝑘 Observation noise variance 10−4 𝑉 2

EKF state estimation [235, 21]

P0 State estimation error covariance 0.005× I2 n.a.

Proposed UKF and URTSS state estimation

𝑃
(𝑥)
0 Differential state estimation error variance 0.005 n.a.

𝛼 Controls spread of sigma points 1 n.a.

𝛽 Prior knowledge of sigma points distribution 2 n.a.

𝜅 Scaling parameter (3− 𝑛𝑥) 2 n.a.

𝜆 Scaling parameter 2 n.a.

for the initial time steps since smoothed estimates are based on the entire interval of

measurements rather than just prior means. The remaining initial smoother error is

then largely a result of the Gaussian approximations employed. Furthermore, it may

be noted that the unscented transformation is a better approximation to the model

nonlinearities, as evidenced by the lower UKF and URTSS errors.
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Figure 3-1: True value, EKF estimate, UKF estimate and URTSS estimate of (a)
differential state 𝑥𝑘 (dimensionless) and (b) algebraic state 𝑧𝑘 (in Volts) for a single
instantiation of the electrochemical reaction.
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Figure 3-2: Covariance plots of the UKF and URTSS state estimates of (a) differential
state 𝑥𝑘 and (b) algebraic state 𝑧𝑘, plotted on a log scale for the single instantiation
of the electrochemical reaction shown in Figure 3-1.

Table 3.2: Mean and standard deviation of RMSE values for 100 Monte Carlo runs
of the electrochemical process.

Method EKF ([235, 21]) UKF URTSS

E (RMSE (𝑥𝑘)) 0.0268 0.0247 0.0177

STD (RMSE (𝑥𝑘)) 0.0156 0.0137 0.0043

E (RMSE (𝑧𝑘)) 0.0044 0.0041 0.0030

STD (RMSE (𝑧𝑘)) 0.0014 0.0012 0.0006
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Figure 3-3: RMSE plots for (a) differential state 𝑥𝑘 and (b) algebraic state 𝑧𝑘 following
100 Monte Carlo simulations of the electrochemical process.

3.2 Nonlinear descriptor systems with stochastic al-

gebraic equations

In several situations, significant model uncertainties exist in both differential and al-

gebraic equations, often as a result of modelling errors, unmodelled dynamics, model

reduction and associated approximations. The effect of such uncertainties may be ap-

proximated stochastically and algebraic equations would therefore also be stochastic

in nature.

This section extends UKF and URTSS algorithms to nonlinear DAE systems where

all states are affected by stochastic uncertainties. The mean and covariance of both

differential and algebraic state estimates are computed and utilized for sigma point

generation through the backward smoothing pass that recursively computes correc-

tions to the forward filtering result. The unscented transform is employed to form

Gaussian approximations to smoothing distributions. The performance of the pro-

posed smoothing algorithm is demonstrated by a simulation.

The aforementioned advances in modifying Kalman filtering to nonlinear DAE

systems assume that the algebraic equations are free of any uncertainty. Although

this is typically the case, in the transformation from a nonlinear PDAE to a DAE, ef-

fects of model approximations have to be included. By representing the latter effects
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stochastically, we propose to compute and exploit the mean and covariance of the

algebraic state estimates that are required to complete the estimate information ob-

tained and, unlike previously developed methods, ensure that the sigma points encode

the mean and covariance of both differential and algebraic states. In this context, we

derive a new descriptor form of the discrete-time UKF algorithm, where differential

and algebraic state filtering distributions are derived as unscented transform-based

Gaussian approximations. Motivated by the need for accurate estimation techniques

that enable successful preview control of wind turbines, the performance of the pro-

posed descriptor filtering framework is demonstrated through the accurate estimation

of wind flow velocity and pressure given sparse noisy velocity measurements from re-

alistic atmospheric boundary layer wind flow data.

3.2.1 Problem statement

This section considers general descriptor models of the form given by equations

(2.14). For such systems where all equations are now stochastic in nature, the aim

is to approximate the filtering distributions 𝑝(X𝑘|y1:𝑘) and smoothing distributions

𝑝(X𝑘|y1:𝐾) using Gaussian approximations, for time steps 𝑘 running from 0 to 𝐾.

3.2.2 Unscented Kalman filtering for nonlinear DAEs with

stochastic algebraic equations

Most standard state estimation tools do not handle nonlinear descriptor systems and

we cannot treat a DAE system as a constrained ODE system [30]. An appropriate esti-

mator must therefore be studied and developed for system models where uncertainties

and unmodelled dynamics in both difference and algebraic equations are represented

stochastically.

For this purpose, a new descriptor form of the UKF algorithm is derived, where

all equations may be stochastic. The resulting method differs from the standard

UKF algorithm for ODE systems in that the differential and algebraic states are

neither estimated by running two separate standard filters, nor augmented into one
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state vector throughout the whole algorithm. Instead, one forward filtering pass

yields the differential and algebraic state filtering distributions derived as unscented

transform-based Gaussian approximations. In particular, state and measurement

predictions make use of statistical information from all states to ensure that the set

of sigma points computing the projected prediction correctly encode the mean and

covariance of both differential and algebraic states (see equations (3.28) and (3.33)).

Furthermore, unlike [85, 21], the unscented transform is employed to determine the

predicted and filtered algebraic state estimates (see equations (3.33) and (3.40)).

This conceptually simple step provides the required statistical information (mean

and covariance) for algebraic state estimates with sufficient accuracy, after differential

state estimates are nonlinearly transformed in equation (2.14b). An approximation

to the optimal filtering solution is now derived for nonlinear descriptor systems, based

on the unscented transform methodology.

Consider the joint distribution of x𝑘, z𝑘 and x𝑘+1 given y1:𝑘:

𝑝(x𝑘, z𝑘,x𝑘+1|y1:𝑘) = 𝑝(z𝑘|x𝑘,x𝑘+1,y1:𝑘) 𝑝(x𝑘,x𝑘+1|y1:𝑘). (3.25)

Re-arranging equation (3.25) as

𝑝(x𝑘,x𝑘+1|y1:𝑘) =
𝑝(x𝑘, z𝑘,x𝑘+1|y1:𝑘)

𝑝(z𝑘|x𝑘,x𝑘+1,y1:𝑘)
, (3.26)

a Gaussian approximation⎛⎝ x𝑘

x𝑘+1

⎞⎠ |y1:𝑘 ∼ 𝒩

⎛⎝⎛⎝ 𝜇
(𝑥)
𝑘

𝜇
(𝑥)−
𝑘+1

⎞⎠ ,

⎛⎝ P
(𝑥)
𝑘 C

(𝑥,𝑥)−
𝑘+1

C
(𝑥,𝑥)−⊤
𝑘+1 P

(𝑥)−
𝑘+1

⎞⎠⎞⎠ (3.27)

may be generated using the unscented transform, where 𝜇(·) represents the mean and

P(·) and C(·,·) denote the corresponding state covariance and cross-covariance matri-

ces, respectively. The ‘−’ superscript denotes the predicted quantities. Distribution
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(3.27) is computed by evaluating the distribution

⎛⎝x𝑘

z𝑘

⎞⎠ |y1:𝑘 ∼ 𝒩

⎛⎝⎛⎝𝜇(𝑥)
𝑘

𝜇
(𝑧)
𝑘

⎞⎠ ,

⎛⎝ P
(𝑥)
𝑘 C

(𝑥,𝑧)
𝑘

C
(𝑥,𝑧)⊤
𝑘 P

(𝑧)
𝑘

⎞⎠⎞⎠ , (3.28)

using the unscented transform, so the joint distribution of x𝑘 and x𝑘+1 may now be

computed as a Gaussian approximation, again making use of the unscented transform.

Marginalising distribution (3.27) over x𝑘 yields

x𝑘+1|y1:𝑘 ∼ 𝒩 (𝜇
(𝑥)−
𝑘+1 ,P

(𝑥)−
𝑘+1 ). (3.29)

The joint distribution of x𝑘+1, z𝑘+1 and y𝑘+1 given y1:𝑘 is

𝑝(x𝑘+1, z𝑘+1,y𝑘+1|y1:𝑘) =𝑝(z𝑘+1|x𝑘+1,y1:𝑘+1) 𝑝(x𝑘+1,y𝑘+1|y1:𝑘), (3.30)

which may be written as

𝑝(x𝑘+1,y𝑘+1|y1:𝑘) =
𝑝(x𝑘+1, z𝑘+1,y𝑘+1|y1:𝑘)

𝑝(z𝑘+1|x𝑘+1,y1:𝑘+1)
. (3.31)

An unscented transform-based Gaussian approximation can be calculated for this

distribution: ⎛⎝x𝑘+1

y𝑘+1

⎞⎠ |y1:𝑘 ∼ 𝒩

⎛⎝⎛⎝𝜇(𝑥)−
𝑘+1

m𝑘+1

⎞⎠ ,

⎛⎝ P
(𝑥)−
𝑘+1 C

(𝑥,𝑦)
𝑘+1

C
(𝑥,𝑦)⊤
𝑘+1 S𝑘+1

⎞⎠⎞⎠ , (3.32)

where m𝑘+1 is the predicted observation mean and S𝑘+1 is the predicted measure-

ment covariance. Once again, this requires the concatenation of the differential and

algebraic states, as follows:⎛⎝x𝑘+1

z𝑘+1

⎞⎠ |y1:𝑘 ∼ 𝒩

⎛⎝⎛⎝𝜇(𝑥)−
𝑘+1

𝜇
(𝑧)−
𝑘+1

⎞⎠ ,

⎛⎝ P
(𝑥)−
𝑘+1 C

(𝑥,𝑧)−
𝑘+1

C
(𝑥,𝑧)−⊤
𝑘+1 P

(𝑧)−
𝑘+1

⎞⎠⎞⎠ . (3.33)

Since the distribution (3.32) is Gaussian, the conditional distribution 𝑝(x𝑘+1|y1:𝑘+1)
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may be determined to approximate the differential state filtering distribution of the

instant 𝑘 + 1 using a Gaussian approximation:

x𝑘+1|y1:𝑘+1 ∼ 𝒩 (𝜇
(𝑥)
𝑘+1,P

(𝑥)
𝑘+1), (3.34)

where

𝜇
(𝑥)
𝑘+1 = 𝜇

(𝑥)−
𝑘+1 + D𝑘+1(y𝑘+1 −m𝑘+1), (3.35)

P
(𝑥)
𝑘+1 = P

(𝑥)−
𝑘+1 −D𝑘+1S𝑘+1D

⊤
𝑘+1, (3.36)

D𝑘+1 = C
(𝑥,𝑦)
𝑘+1 S

−1
𝑘+1, (3.37)

where D𝑘+1 denotes the filter gain. The joint distribution of x𝑘+1 and z𝑘+1 given

y1:𝑘+1 is as follows:

𝑝(x𝑘+1, z𝑘+1|y1:𝑘+1) = 𝑝(x𝑘+1|z𝑘+1,y1:𝑘+1) 𝑝(z𝑘+1|y1:𝑘+1). (3.38)

The algebraic state filtering distribution of the instant 𝑘 + 1 is hence given by:

𝑝(z𝑘+1|y1:𝑘+1) =
𝑝(x𝑘+1, z𝑘+1|y1:𝑘+1)

𝑝(x𝑘+1|z𝑘+1,y1:𝑘+1)
. (3.39)

The generated Gaussian approximation to equation (3.38) may be written as an

unscented transform-based approximation as⎛⎝x𝑘+1

z𝑘+1

⎞⎠ |y1:𝑘+1 ∼ 𝒩

⎛⎝⎛⎝𝜇(𝑥)
𝑘+1

𝜇
(𝑧)
𝑘+1

⎞⎠ ,

⎛⎝ P
(𝑥)
𝑘+1 C

(𝑥,𝑧)
𝑘+1

C
(𝑥,𝑧)⊤
𝑘+1 P

(𝑧)
𝑘+1

⎞⎠⎞⎠ , (3.40)

so that marginalising over x𝑘+1 gives a Gaussian approximation for the algebraic state

filtering distribution of the instant 𝑘 + 1:

z𝑘+1|y1:𝑘+1 ∼ 𝒩 (𝜇
(𝑧)
𝑘+1,P

(𝑧)
𝑘+1). (3.41)

In summary, the developed descriptor filtering algorithm is characterised by novel
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aspects that include the inclusion of both differential and algebraic state distributions

in the computation of the state and measurement predictions (see Algorithm 3.3, steps

1(a) and 2(a), respectively). Additionally, instead of obtaining the predicted and

filtered algebraic state estimates by directly solving the algebraic equation (2.14b),

the unscented transform is used for the computation of the mean and covariance

of the algebraic state estimates after the differential states undergo the nonlinear

transformation g (see Algorithm 3.3, steps 1(d)-(f) and 2(e)-(g)).

A prior distribution with mean 𝜇(𝑥)
0 and covariance P

(𝑥)
0 is used to initialise the

UKF computations. Equations (3.56)-(3.58) are used to get 𝜇(𝑧)
0 , P(𝑧)

0 and C
(𝑥,𝑧)
0 . A

single step of the UKF is summarised in Algorithm 3.3 (the procedure is executed for

each time step 𝑘 = 0, 1, 2, . . .).

Algorithm 3.3 (UKF algorithm for nonlinear descriptor systems with stochastic

algebraic equations).

1. Prediction step:

(a) The sigma points of X𝑘 are first formed:

𝒳̃ 𝑘,0 = 𝜇̃𝑘,

𝒳̃ 𝑘,𝑖 = 𝜇̃𝑘 + (

√︁
(𝑛+ 𝜆′)P̃𝑘)𝑖, 𝑖 = 1, . . . , 𝑛, (3.42)

𝒳̃ 𝑘,𝑖 = 𝜇̃𝑘 − (

√︁
(𝑛+ 𝜆′)P̃𝑘)𝑖, 𝑖 = 𝑛+ 1, . . . , 2𝑛,

where

𝜇̃𝑘 =

⎛⎝𝜇(𝑥)
𝑘

𝜇
(𝑧)
𝑘

⎞⎠ , P̃𝑘 =

⎛⎝ P
(𝑥)
𝑘 C

(𝑥,𝑧)
𝑘

C
(𝑥,𝑧)⊤
𝑘 P

(𝑧)
𝑘

⎞⎠ . (3.43)

The vector (
√︁

(𝑛+ 𝜆′)P̃𝑘)𝑖 denotes the 𝑖th column of the matrix square root and

𝑛 = 𝑛𝑥 + 𝑛𝑧 is the total number of states, where 𝑛𝑥 and 𝑛𝑧 are the number of

differential and algebraic states, respectively. The scaling parameter 𝜆′ is defined
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by equation (2.45) but replacing 𝑛𝑥 by 𝑛 and setting 𝜅 = 3 − 𝑛.

(b) The sigma points are propagated through the dynamic model to yield

𝒳̂ 𝑘+1,𝑖 = f(𝒳̃ (𝑥)

𝑘,𝑖 , 𝒳̃
(𝑧)

𝑘,𝑖 ), 𝑖 = 0, . . . , 2𝑛, (3.44)

where 𝒳̃ (𝑥)

𝑘,𝑖 represents the first 𝑛𝑥 components of 𝒳̃ 𝑘,𝑖 and 𝒳̃ (𝑧)

𝑘,𝑖 represents the

last 𝑛𝑧 components. It is assumed that if a numerical solver is used, the latter

can accept the sigma points 𝒳̃ 𝑘,𝑖 as its arguments.

(c) The predicted differential state mean 𝜇(𝑥)−
𝑘+1 and its predicted covariance P

(𝑥)−
𝑘+1

are computed as follows:

𝜇
(𝑥)−
𝑘+1 =

2𝑛∑︁
𝑖=0

𝑊
(𝑚)′

𝑖 𝒳̂ 𝑘+1,𝑖, (3.45)

P
(𝑥)−
𝑘+1 =

2𝑛∑︁
𝑖=0

𝑊
(𝑐)′

𝑖 (𝒳̂ 𝑘+1,𝑖 − 𝜇(𝑥)−
𝑘+1 )(𝒳̂ 𝑘+1,𝑖 − 𝜇(𝑥)−

𝑘+1 )⊤ + Q𝑘, (3.46)

where the weights𝑊 (𝑚)′

𝑖 and𝑊 (𝑐)′

𝑖 are as defined in equation (2.49), but replacing

𝜆 and 𝑛𝑥 by 𝜆′ and 𝑛, respectively.

(d) The sigma points 𝒳̄ (𝑥)−
𝑘+1,𝑖 of the predicted differential states are generated using

equation (3.42), replacing 𝜇̃𝑘, P̃𝑘, 𝜆′ and 𝑛 by 𝜇
(𝑥)−
𝑘+1 , P

(𝑥)−
𝑘+1 , 𝜆 and 𝑛𝑥, respectively.

(e) The algebraic state sigma points 𝒳̄ (𝑧)−
𝑘+1,𝑖 are computed using the algebraic equa-

tion

g(𝒳̄ (𝑥)−
𝑘+1,𝑖, 𝒳̄

(𝑧)−
𝑘+1,𝑖) = 0, 𝑖 = 0, . . . , 2𝑛𝑥. (3.47)

(f) The algebraic state predicted mean 𝜇(𝑧)−
𝑘+1 , associated covariance P(𝑧)−

𝑘+1 and cross-
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covariance C
(𝑥,𝑧)−
𝑘+1 may be calculated next:

𝜇
(𝑧)−
𝑘+1 =

2𝑛𝑥∑︁
𝑖=0

𝑊
(𝑚)
𝑖 𝒳̄ (𝑧)−

𝑘+1,𝑖, (3.48)

P
(𝑧)−
𝑘+1 =

2𝑛𝑥∑︁
𝑖=0

𝑊
(𝑐)
𝑖 (𝒳̄ (𝑧)−

𝑘+1,𝑖 − 𝜇
(𝑧)−
𝑘+1 )(𝒳̄ (𝑧)−

𝑘+1,𝑖 − 𝜇
(𝑧)−
𝑘+1 )⊤ + E𝑘+1, (3.49)

C
(𝑥,𝑧)−
𝑘+1 =

2𝑛𝑥∑︁
𝑖=0

𝑊
(𝑐)
𝑖 (𝒳̄ (𝑥)−

𝑘+1,𝑖 − 𝜇
(𝑥)−
𝑘+1 )(𝒳̄ (𝑧)−

𝑘+1,𝑖 − 𝜇
(𝑧)−
𝑘+1 )⊤, (3.50)

The noise e𝑘 is assumed to enter the algebraic equation (2.14b) additively with

respect to z𝑘.

2. Update step:

(a) The sigma points 𝒳̃−
𝑘+1,𝑖 of X𝑘+1 are computed using equation (3.42) and re-

placing 𝜇̃𝑘 and P̃𝑘 by 𝜇̃−
𝑘+1 and P̃−

𝑘+1, respectively. The mean 𝜇̃−
𝑘+1 and co-

variance P̃−
𝑘+1 are given by equation (3.33), which has the form X𝑘+1|y1:𝑘 ∼

𝒩 (𝜇̃−
𝑘+1, P̃

−
𝑘+1).

(b) The sigma points are propagated through the observation model:

𝒴̂𝑘+1,𝑖 = h(𝒳̃ (𝑥)−
𝑘+1,𝑖, 𝒳̃

(𝑧)−
𝑘+1,𝑖), 𝑖 = 0, . . . , 2𝑛. (3.51)

(c) The predicted observation mean m𝑘+1, the predicted measurement covariance

S𝑘+1 and the state and measurement cross-covariance matrix C
(𝑥,𝑦)
𝑘+1 are obtained

as follows:

m𝑘+1 =
2𝑛∑︁
𝑖=0

𝑊
(𝑚)′

𝑖 𝒴̂𝑘+1,𝑖, (3.52)

S𝑘+1 =
2𝑛∑︁
𝑖=0

𝑊
(𝑐)′

𝑖 (𝒴̂𝑘+1,𝑖 −m𝑘+1)(𝒴̂𝑘+1,𝑖 −m𝑘+1)
⊤ + R𝑘+1, (3.53)

C
(𝑥,𝑦)
𝑘+1 =

2𝑛∑︁
𝑖=0

𝑊
(𝑐)′

𝑖 (𝒳̃ (𝑥)−
𝑘+1,𝑖 − 𝜇

(𝑥)−
𝑘+1 )(𝒴̂𝑘+1,𝑖 −m𝑘+1)

⊤. (3.54)

(d) The filter gain D𝑘+1, filtered differential state mean 𝜇(𝑥)
𝑘+1 and covariance P

(𝑥)
𝑘+1
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are calculated using equations (3.35)-(3.37).

(e) To compute the filtered algebraic state estimates, the differential state sigma

points 𝒳̌ (𝑥)

𝑘+1,𝑖 are first obtained using equation (3.42) and replacing 𝜇̃𝑘, P̃𝑘, 𝜆′

and 𝑛 by 𝜇(𝑥)
𝑘+1, P

(𝑥)
𝑘+1, 𝜆 and 𝑛𝑥, respectively.

(f) The algebraic state sigma points 𝒳̌ (𝑧)

𝑘+1,𝑖 are generated using the algebraic equa-

tion

g(𝒳̌ (𝑥)

𝑘+1,𝑖, 𝒳̌
(𝑧)

𝑘+1,𝑖) = 0, 𝑖 = 0, . . . , 2𝑛𝑥. (3.55)

(g) The filtered algebraic state mean 𝜇(𝑧)
𝑘+1, covariance P

(𝑧)
𝑘+1 and cross-covariance

C
(𝑥,𝑧)
𝑘+1 are computed:

𝜇
(𝑧)
𝑘+1 =

2𝑛𝑥∑︁
𝑖=0

𝑊
(𝑚)
𝑖 𝒳̌ (𝑧)

𝑘+1,𝑖, (3.56)

P
(𝑧)
𝑘+1 =

2𝑛𝑥∑︁
𝑖=0

𝑊
(𝑐)
𝑖 (𝒳̌ (𝑧)

𝑘+1,𝑖 − 𝜇
(𝑧)
𝑘+1)(𝒳̌

(𝑧)

𝑘+1,𝑖 − 𝜇
(𝑧)
𝑘+1)

⊤ + E𝑘+1, (3.57)

C
(𝑥,𝑧)
𝑘+1 =

2𝑛𝑥∑︁
𝑖=0

𝑊
(𝑐)
𝑖 (𝒳̌ (𝑥)

𝑘+1,𝑖 − 𝜇
(𝑥)
𝑘+1)(𝒳̌

(𝑧)

𝑘+1,𝑖 − 𝜇
(𝑧)
𝑘+1)

⊤. (3.58)

3.2.3 Unscented Rauch-Tung-Striebel smoothing for nonlinear

DAEs with stochastic algebraic equations

An approximation to the optimal smoothing solution is now derived for nonlinear

descriptor models using the unscented transform, where all states are assumed to be

corrupted by zero-mean white Gaussian noise. The smoothing solution is obtained us-

ing a separate backward smoothing pass that recursively corrects the forward filtering

results.

Since in the algebraic equation the differential states undergo a nonlinear transfor-

mation that yields the algebraic states, the proposed algorithm employs the unscented
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transformation to propagate the mean and covariance of the smoothed differential

state estimates through the nonlinear function g. This provides the smoothed al-

gebraic state estimates, as can be seen in equations (3.79)-(3.82). Furthermore, for

the steps involving the propagation of sigma points through the dynamic model, the

mean and covariance of both differential and algebraic state estimates are used, as

shown in equation (3.64).

The mean and covariance of the filtering distributions, given by

𝑝(x𝑘|y1:𝑘) ≈ 𝒩 (𝜇
(𝑥)
𝑘 ,P

(𝑥)
𝑘 ), (3.59)

𝑝(z𝑘|y1:𝑘) ≈ 𝒩 (𝜇
(𝑧)
𝑘 ,P

(𝑧)
𝑘 ), (3.60)

shall be assumed computed by the filtering algorithm developed in Section 3.2.2 or an

alternative method. A derivation for the RTS smoother that determines the smoothed

state estimates of nonlinear DAE systems is given below.

We first consider the joint distribution of x𝑘, z𝑘 and x𝑘+1 given y1:𝑘 that may be

written as

𝑝(x𝑘, z𝑘,x𝑘+1|y1:𝑘) =𝑝(z𝑘|x𝑘,x𝑘+1,y1:𝑘) 𝑝(x𝑘,x𝑘+1|y1:𝑘). (3.61)

Re-arranging this joint distribution as

𝑝(x𝑘,x𝑘+1|y1:𝑘) =
𝑝(x𝑘, z𝑘,x𝑘+1|y1:𝑘)

𝑝(z𝑘|x𝑘,x𝑘+1,y1:𝑘)
, (3.62)

we compute a Gaussian approximation using the unscented transform, as follows:⎛⎝ x𝑘

x𝑘+1

⎞⎠ |y1:𝑘 ∼ 𝒩

⎛⎝⎛⎝ 𝜇
(𝑥)
𝑘

𝜇
(𝑥)−
𝑘+1

⎞⎠ ,

⎛⎝ P
(𝑥)
𝑘 C

(𝑥,𝑥)−
𝑘+1

C
(𝑥,𝑥)−⊤
𝑘+1 P

(𝑥)−
𝑘+1

⎞⎠⎞⎠ . (3.63)

This can be achieved by using the unscented transform to evaluate the distribution

X𝑘|y1:𝑘 ∼ 𝒩

⎛⎝⎛⎝𝜇(𝑥)
𝑘

𝜇
(𝑧)
𝑘

⎞⎠ ,

⎛⎝ P
(𝑥)
𝑘 C

(𝑥,𝑧)
𝑘

C
(𝑥,𝑧)⊤
𝑘 P

(𝑧)
𝑘

⎞⎠⎞⎠ , (3.64)
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so we may now calculate the joint distribution of X𝑘 and x𝑘+1 = f(x𝑘, z𝑘) + q𝑘 as a

Gaussian approximation, again using the unscented transform.

By re-writing equation (3.61) as a conditional distribution, we have that

𝑝(x𝑘|x𝑘+1,y1:𝑘) =
𝑝(x𝑘, z𝑘,x𝑘+1|y1:𝑘)

𝑝(z𝑘|x𝑘,x𝑘+1,y1:𝑘)𝑝(x𝑘+1|y1:𝑘)
, (3.65)

but using the Markov property yields

𝑝(x𝑘|x𝑘+1,y1:𝐾) =
𝑝(x𝑘, z𝑘,x𝑘+1|y1:𝑘)

𝑝(z𝑘|x𝑘,x𝑘+1,y1:𝑘)𝑝(x𝑘+1|y1:𝑘)
. (3.66)

Distribution (3.63) is Gaussian and we may therefore exploit the Gaussian computa-

tion rules to obtain the Gaussian conditional distribution of equation (3.66), yielding

the following approximation:

x𝑘|x𝑘+1,y1:𝐾 ∼ 𝒩 (𝜇
(𝑥)′

𝑘+1,P
(𝑥)′

𝑘+1), (3.67)

where

D𝑘 = C𝑘+1(P
(𝑥)−
𝑘+1 )−1, (3.68)

𝜇
(𝑥)′

𝑘+1 = 𝜇
(𝑥)
𝑘 + D𝑘(x𝑘+1 − 𝜇(𝑥)−

𝑘+1 ), (3.69)

P
(𝑥)′

𝑘+1 = P
(𝑥)
𝑘 −D𝑘P

(𝑥)−
𝑘+1 D

⊤
𝑘 . (3.70)

The joint distribution of x𝑘 and x𝑘+1 given y1:𝐾 is given by

𝑝(x𝑘,x𝑘+1|y1:𝐾) =
𝑝(x𝑘, z𝑘,x𝑘+1|y1:𝐾)

𝑝(z𝑘|x𝑘,x𝑘+1,y1:𝐾)
. (3.71)

We assume knowledge of the smoothing distribution of the following time step, here

taken to be Gaussian and given by

𝑝(x𝑘+1|y1:𝐾) ≈ 𝒩 (x𝑘+1|𝜇(𝑥)𝑠
𝑘+1,P

(𝑥)𝑠
𝑘+1). (3.72)
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The distribution (3.71) then leads to

⎛⎝ x𝑘

x𝑘+1

⎞⎠ |y1:𝐾 ∼ 𝒩 (𝜇
(𝑥)′′

𝑘+1 ,P
(𝑥)′′

𝑘+1), (3.73)

where

𝜇
(𝑥)′′

𝑘+1 =

⎛⎝𝜇(𝑥)
𝑘 + D𝑘(𝜇

(𝑥)𝑠
𝑘+1 − 𝜇

(𝑥)−
𝑘+1 )

𝜇
(𝑥)𝑠
𝑘+1

⎞⎠ , (3.74)

P
(𝑥)′′

𝑘+1 =

⎛⎝D𝑘P
(𝑥)𝑠
𝑘+1D

⊤
𝑘 + P

(𝑥)′

𝑘+1 D𝑘P
(𝑥)𝑠
𝑘+1

P
(𝑥)𝑠
𝑘+1D

⊤
𝑘 P

(𝑥)𝑠
𝑘+1

⎞⎠ . (3.75)

The differential state smoothing distribution of the time instant 𝑘 is obtained as a

Gaussian approximation by marginalizing over x𝑘+1:

x𝑘|y1:𝐾 ∼ 𝒩 (𝜇
(𝑥)𝑠
𝑘 ,P

(𝑥)𝑠
𝑘 ), (3.76)

where

𝜇
(𝑥)𝑠
𝑘 = 𝜇

(𝑥)
𝑘 + D𝑘[𝜇

(𝑥)𝑠
𝑘+1 − 𝜇

(𝑥)−
𝑘+1 ], (3.77)

P
(𝑥)𝑠
𝑘 = P

(𝑥)
𝑘 + D𝑘[P

(𝑥)𝑠
𝑘+1 −P

(𝑥)−
𝑘+1 ]D⊤

𝑘 . (3.78)

The joint distribution of x𝑘 and z𝑘 given y1:𝐾 is as follows:

𝑝(x𝑘, z𝑘|y1:𝐾) =
𝑝(x𝑘, z𝑘,x𝑘+1|y1:𝐾)

𝑝(x𝑘+1|x𝑘, z𝑘,y1:𝐾)
. (3.79)

The algebraic state smoothing distribution of time instant 𝑘 is computed by marginal-

izing the joint distribution over x𝑘:

𝑝(z𝑘|y1:𝐾) =

∫︁
𝑝(x𝑘, z𝑘,x𝑘+1|y1:𝐾)

𝑝(x𝑘+1|x𝑘, z𝑘,y1:𝐾)
𝑑x𝑘. (3.80)

The generated Gaussian approximation to equation (3.79) is based on the unscented

87



transform and can be written as⎛⎝x𝑘

z𝑘

⎞⎠ |y1:𝐾 ∼ 𝒩

⎛⎝⎛⎝𝜇(𝑥)𝑠
𝑘

𝜇
(𝑧)𝑠
𝑘

⎞⎠ ,

⎛⎝ P
(𝑥)𝑠
𝑘 C

(𝑥,𝑧)𝑠
𝑘

C
(𝑥,𝑧)𝑠⊤
𝑘 P

(𝑧)𝑠
𝑘

⎞⎠⎞⎠ , (3.81)

so that a marginalisation over x𝑘 approximates the algebraic state smoothing distri-

bution of instant 𝑘 by the Gaussian distribution

z𝑘|y1:𝐾 ∼ 𝒩 (𝜇
(𝑧)𝑠
𝑘 ,P

(𝑧)𝑠
𝑘 ). (3.82)

The following URTSS Algorithm 3.4 can be used to compute the smoothed state

estimates for every time instant conditional to all measurements spanning time 𝐾.

Algorithm 3.4 (URTSS algorithm for nonlinear DAEs with stochastic algebraic equa-

tions).

1. The sigma points of X𝑘 are first formed:

𝒳̃ 𝑘,0 = 𝜇̃𝑘,

𝒳̃ 𝑘,𝑖 = 𝜇̃𝑘 + (

√︁
(𝑛+ 𝜆′)P̃𝑘)𝑖, 𝑖 = 1, . . . , 𝑛, (3.83)

𝒳̃ 𝑘,𝑖 = 𝜇̃𝑘 − (

√︁
(𝑛+ 𝜆′)P̃𝑘)𝑖, 𝑖 = 𝑛+ 1, . . . , 2𝑛,

where

𝜇̃𝑘 =

⎛⎝𝜇(𝑥)
𝑘

𝜇
(𝑧)
𝑘

⎞⎠ , P̃𝑘 =

⎛⎝ P
(𝑥)
𝑘 C

(𝑥,𝑧)
𝑘

C
(𝑥,𝑧)⊤
𝑘 P

(𝑧)
𝑘

⎞⎠ . (3.84)

2. The sigma points are propagated through f(·) to obtain

𝒳̂ 𝑘+1,𝑖 = f(𝒳̃ (𝑥)

𝑘,𝑖 , 𝒳̃
(𝑧)

𝑘,𝑖 ), 𝑖 = 0, . . . , 2𝑛. (3.85)

It is assumed that if a numerical solver is used, the latter can take the sigma points

𝒳̃ 𝑘,𝑖 as its arguments.
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3. The predicted differential state mean 𝜇(𝑥)−
𝑘+1 , its predicted covariance P(𝑥)−

𝑘+1 and the

cross-covariance C
(𝑥,𝑥)−
𝑘+1 are computed as follows:

𝜇
(𝑥)−
𝑘+1 =

2𝑛∑︁
𝑖=0

𝑊
(𝑚)′

𝑖 𝒳̂ 𝑘+1,𝑖, (3.86)

P
(𝑥)−
𝑘+1 =

2𝑛∑︁
𝑖=0

𝑊
(𝑐)′

𝑖 (𝒳̂ 𝑘+1,𝑖 − 𝜇(𝑥)−
𝑘+1 )(𝒳̂ 𝑘+1,𝑖 − 𝜇(𝑥)−

𝑘+1 )⊤ + Q𝑘, (3.87)

C
(𝑥,𝑥)−
𝑘+1 =

2𝑛∑︁
𝑖=0

𝑊
(𝑐)′

𝑖 (𝒳̃ (𝑥)

𝑘,𝑖 − 𝜇
(𝑥)
𝑘 )(𝒳̂ 𝑘+1,𝑖 − 𝜇(𝑥)−

𝑘+1 )⊤. (3.88)

4. The smoother gain D𝑘 and associated smoothed mean 𝜇(𝑥)𝑠
𝑘 and covariance P

(𝑥)𝑠
𝑘

are calculated using the following equations:

D𝑘 = C
(𝑥,𝑥)−
𝑘+1 (P

(𝑥)−
𝑘+1 )−1, (3.89)

𝜇
(𝑥)𝑠
𝑘 = 𝜇

(𝑥)
𝑘 + D𝑘(𝜇

(𝑥)𝑠
𝑘+1 − 𝜇

(𝑥)−
𝑘+1 ), (3.90)

P
(𝑥)𝑠
𝑘 = P

(𝑥)
𝑘 + D𝑘(P

(𝑥)𝑠
𝑘+1 −P

(𝑥)−
𝑘+1 )D⊤

𝑘 . (3.91)

5. To determine the smoothed algebraic state estimates, the differential state sigma

points 𝒳̃ (𝑥)

𝑘,𝑖 are computed by performing unscented sampling with mean 𝜇(𝑥)𝑠
𝑘 and

covariance P
(𝑥)𝑠
𝑘 .

6. The algebraic state sigma points 𝒳̃ (𝑧)

𝑘,𝑖 are obtained using the algebraic equation:

g(𝒳̃ (𝑥)

𝑘,𝑖 , 𝒳̃
(𝑧)

𝑘,𝑖 ) = 0. (3.92)

7. The smoothed algebraic state mean 𝜇(𝑧)𝑠
𝑘 and its covariance P

(𝑧)𝑠
𝑘 are calculated:

𝜇
(𝑧)𝑠
𝑘 =

2𝑛𝑥∑︁
𝑖=0

𝑊
(𝑚)
𝑖 𝒳̃ (𝑧)

𝑘,𝑖 , (3.93)

P
(𝑧)𝑠
𝑘 =

2𝑛𝑥∑︁
𝑖=0

𝑊
(𝑐)
𝑖 (𝒳̃ (𝑧)

𝑘,𝑖 − 𝜇
(𝑧)𝑠
𝑘 )(𝒳̃ (𝑧)

𝑘,𝑖 − 𝜇
(𝑧)𝑠
𝑘 )⊤ + E𝑘. (3.94)
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The smoothing and filtering distributions are identical at the last time step 𝐾 and

therefore 𝜇(𝑥)𝑠
𝐾 = 𝜇

(𝑥)
𝐾 , 𝜇(𝑧)𝑠

𝐾 = 𝜇
(𝑧)
𝐾 , P(𝑥)𝑠

𝐾 = P
(𝑥)
𝐾 and P

(𝑧)𝑠
𝐾 = P

(𝑧)
𝐾 . The smoothed

estimates are obtained by running the above computations starting from the filtered

estimates of the last time instant and proceeding backwards for 𝑘 = 𝐾 − 1, . . . , 0.

3.2.4 Illustrative example: a nonlinear index two Hessenberg

DAE problem

In this section, we demonstrate the effectiveness of the state estimation method de-

veloped here for nonlinear DAE systems with stochastic algebraic equations. For this

purpose, we consider the following index 2 nonlinear Hessenberg DAE formulation

that was presented as an example in [241, 242, 243]:

𝑑𝑥1(𝑡)

𝑑𝑡
= 𝑡𝑥2(𝑡)

2 + 𝑧(𝑡) + ℎ1(𝑡), (3.95)

𝑑𝑥2(𝑡)

𝑑𝑡
= 𝑡𝑒𝑥1(𝑡) + 𝑡𝑧(𝑡) + ℎ2(𝑡), (3.96)

0 = 𝑥1(𝑡) + 𝑡𝑥2(𝑡) + ℎ3(𝑡), (3.97)

where ℎ1(𝑡), ℎ2(𝑡) and ℎ3(𝑡) are nonlinear functions in 𝑡 as defined in [243]. Differen-

tiating equation (3.97) with respect to time yields an equivalent index 1 DAE with

𝑥1(𝑡) and 𝑥2(𝑡) as differential state variables and 𝑧(𝑡) as an algebraic state variable.

The formulation was discretised using a forward Euler scheme. For our purpose of

investigating state estimation performance, the differential states were assumed to

be corrupted with process noise q𝑘 and the algebraic equation was assumed to be

affected by a stochastic uncertainty represented by process noise 𝑒𝑘. The measure-

ment in this example is 𝑧(𝑡) and is corrupted by measurement noise 𝑟𝑘. The noise

covariance matrices used for the state estimators are Q𝑘 = 10−6 × I2, 𝐸𝑘 = 10−6 and

𝑅𝑘 = 10−3, where I2 is a 2× 2 identity matrix. State estimation parameters were set

as described in [197], with 𝛼 = 10−3 and 𝛽 = 2.

Given this descriptor model, a Monte Carlo approach was adopted and 100 reali-
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sations of data were generated. Initial conditions for the simulator were drawn from

a zero-mean Gaussian distribution having a variance of 10−2, whilst the initial con-

ditions for the filter were 𝜇(𝑥)
0 = 0 and P

(𝑥)
0 = 10−2 × I2. Each realisation comprised

100s of data sampled at 1kHz. Figure 3-4 shows a typical simulation result over the

initial period for the system under study while Figure 3-5 shows the filtering and

smoothing action in terms of the root mean square error performance.

(a) (b) (c)

Figure 3-4: True value, UKF estimate and URTSS estimate of (a) 𝑥1(𝑡), (b) 𝑥2(𝑡) and
(c) 𝑧(𝑡), for the initial period of a single instantiation of the stochastic Hessenberg
DAE formulation.

(a) (b) (c)

Figure 3-5: State estimation performance. The semi-log RMSE plots are shown for (a)
𝑥1(𝑡), (b) 𝑥2(𝑡) and (c) 𝑧(𝑡), following 100 Monte Carlo simulations of the nonlinear
DAE model.

The RMSE results for the UKF and URTSS estimates are given in Table 3.3. The

smoother estimates exhibit a notable improvement, with a more significant effect

observed for the initial time step where URTSS estimates are based on the entire
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interval of measurements instead of only prior means. The remaining initial smoother

error is then essentially a consequence of the Gaussian approximations employed.

When the initial transient is over and the filter may be assumed to have converged,

the steady state period (𝑡 ≥ 90) shows the smoother’s consistently considerable RMSE

enhancement.

Table 3.3: RMSE values of all states for the entire simulation period (0 ≤ 𝑡 ≤ 100),
the initial state (𝑡 = 0) and the stabilized interval (90 ≤ 𝑡 ≤ 100), averaged over 100
Monte Carlo runs.

State UKF URTSS

RMSE (×10−3) (0 ≤ 𝑡 ≤ 100)

𝑥1(𝑡) 1.36 0.96
𝑥2(𝑡) 4.18 3.03
𝑧(𝑡) 25.69 22.99

RMSE (×10−3) (𝑡 = 0)

𝑥1(𝑡) 99.30 33.46
𝑥2(𝑡) 99.49 5.74
𝑧(𝑡) 99.46 5.73

RMSE (×10−3) (90 ≤ 𝑡 ≤ 100)

𝑥1(𝑡) 0.34 0.32
𝑥2(𝑡) 2.43 1.63
𝑧(𝑡) 30.19 28.89

3.3 Conclusion

In this chapter, the filtering and smoothing problems for temporal nonlinear descriptor

systems were addressed for the cases of having differential and stochastic algebraic

equations. The unscented transform was employed to determine the algebraic state

estimates using the mean and covariance of the differential state estimates. The

covariance of the algebraic states was used throughout successive iterations so that

all system properties were part of the estimation scheme. The methods also allow

the inclusion of both differential and algebraic states in the measurement equation.
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Finally, the performance of the proposed filters and smoothers was demonstrated for

electrochemical and numerical case studies.
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Chapter 4

Estimation of spatio-temporal

descriptor systems

Spatio-temporal models naturally describe several complex phenomena, however es-

timation for the descriptor case remains a challenging task since standard estimation

techniques, like Kalman filters, only handle systems that are finite-dimensional and

described by ordinary differential equations. Spatio-temporal nonlinear descriptor

systems are characterised by a nonlinear partial differential-algebraic equation for-

mulation which is known to describe the physical meaning of the underlying process

whilst accommodating spatial heterogeneity. Examples of such physical processes

include slender inextensible elastica dynamics in textiles [187], fluid flow [14], elec-

trochemical reactions in fuel cells [184], packed-bed chromatographic adsorption pro-

cesses [185] and electronic integrated circuit phenomena [186]. This chapter proposes

a state estimation method for a class of spatio-temporal nonlinear PDAEs.

Section 4.1 presents a technique which is based on finite-dimensional reduction

employing a basis function decomposition method to convert the nonlinear PDAE

formulation to a tractable nonlinear DAE form which retains a spatially-continuous

representation deemed important for situations involving distributed sensor networks

for observing systems such as the ocean [191] and the weather [244]. The remaining

problem is to estimate the resulting nonlinear descriptor form, which is tackled using

the UKF algorithm derived for nonlinear descriptor systems in Chapter 3. However,
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especially for critical real-world spatio-temporal applications, an estimation error per-

formance analysis is needed to quantify the performance limitations and validate im-

posed performance requirements. A mean square error lower bound for the nonlinear

descriptor filtering problem based on the posterior Cramér-Rao inequality is therefore

derived in Section 4.2. Section 4.3 provides an application of the proposed framework

on a realistic atmospheric boundary layer wind flow estimation problem.

4.1 Generalised state-space representation of nonlin-

ear PDAEs

We consider spatio-temporal nonlinear descriptor systems of equations having the

form given by equations (2.11). It is noteworthy that systems characterised by higher-

order partial temporal derivatives may be expressed in a first-order partial temporal

derivative representation as is usually done for descriptor system representations [28].

A finite-dimensional formulation is obtained by decomposing the spatio-temporal

field vector 𝜓(s, 𝑡) using a set of linearly independent basis functions ℬ = {𝜑(s −

𝜁𝑗)}
𝑛𝜑
𝑗=1, where 𝜁𝑗 is the centre of the 𝑗th basis function and 𝑛𝜑 denotes the number

of basis functions, each 𝜑(s− 𝜁𝑗) : Ω → R. Furthermore, let 𝜑(s) = [𝜑(s− 𝜁1) 𝜑(s−

𝜁2) · · · 𝜑(s− 𝜁𝑛𝜑)]⊤ and Φ(s) = I𝜓 ⊗ 𝜑(s), where ⊗ denotes the Kronecker product

operator of two matrices and I𝜓 is an 𝑛𝜓 × 𝑛𝜓 identity matrix. We may therefore

decompose 𝜓(s, 𝑡) by writing

𝜓(s, 𝑡) ≈ Φ⊤(s)X(𝑡), (4.1)

where X(𝑡) ∈ R𝑛𝜑𝑛𝜓 and each 𝑖th component of 𝜓(s, 𝑡) is a spatio-temporal field given

by 𝜓𝑖(s, 𝑡) =
∑︀𝑛𝜑

𝑗=1 𝜑(s − 𝜁𝑗)𝑋𝑖,𝑗(𝑡) = 𝜑⊤(s)X𝑖(𝑡) for 𝑖 = 1, 2, . . . , 𝑛𝜓. The vector

X(𝑡) = (x⊤(𝑡), z⊤(𝑡))⊤ scales the field basis functions 𝜑(s). Since the observations

considered here are discrete in time, the latter is discretised by a first-order Euler

method. Define x𝑘 := x(𝑘∆𝑡) and z𝑘 := z(𝑘∆𝑡) with regular time steps ∆𝑡 and let

the subscript 𝑘+ 1 denote the index of the future time sample. Considering equation
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(2.11a) and substituting the decomposition gives

Φ⊤
𝑏 (s)x𝑘+1 = ∆𝑡F

(︀
𝐷𝑛𝑜𝜑(s), 𝐷𝑛𝑜−1𝜑(s), . . . , 𝐷𝜑(s),𝜑(s),x𝑘, z𝑘

)︀
+ Φ⊤

𝑏 (s)x𝑘 + 𝜖𝑘(s),

(4.2)

where the effects of model uncertainties are approximated by subjecting the spa-

tial field to a disturbance 𝜖𝑘(s), which represents a zero-mean white Gaussian noise

process where 𝜖𝑘(s) ∼ 𝒩 (0, 𝜎2
𝑞I) and the covariance is defined by

cov(𝜖𝑘(s), 𝜖𝑘+𝜏 (𝜉)) =

⎧⎪⎨⎪⎩𝜎
2
𝑞 𝛿(s− 𝜉), if 𝜏 = 0,

0, otherwise,
(4.3)

for all 𝜏 ∈ Z, where 𝜉 ∈ Ω, 𝛿 is the Dirac delta function and 𝒩 (0, 𝜎2
𝑞I) denotes the

zero-mean normal distribution with covariance 𝜎2
𝑞I. The matrix Φ𝑏 = I𝑏 ⊗ 𝜑(s) and

I𝑏 is an 𝑛𝑏×𝑛𝑏 identity matrix. Pre-multiplying equation (4.2) by Φ𝑏 and integrating

over the spatial domain Ω gives

𝛾x𝑘+1 = ∆𝑡

∫︁
Ω

Φ𝑏(s) F
(︀
𝐷𝑛𝑜𝜑(s), 𝐷𝑛𝑜−1𝜑(s), . . . , 𝐷𝜑(s),𝜑(s),x𝑘, z𝑘

)︀
𝑑s + 𝛾x𝑘

+

∫︁
Ω

Φ𝑏𝜖𝑘(s)𝑑s, (4.4)

where the matrix 𝛾 ∈ R𝑛𝑏𝑛𝜑×𝑛𝑏𝑛𝜑 is defined as

𝛾 ,
∫︁
Ω

Φ𝑏(s)Φ
⊤
𝑏 (s)𝑑s. (4.5)

Since 𝛾 is symmetric and positive, then by [245] the matrix is positive definite and

therefore invertible. Pre-multiplying equation (4.4) by 𝛾−1 yields

x𝑘+1 = f(x𝑘, z𝑘) + q𝑘, (4.6)
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where

f(x𝑘, z𝑘) = ∆𝑡𝛾
−1

∫︁
Ω

Φ𝑏(s) F
(︀
𝐷𝑛𝑜𝜑(s), 𝐷𝑛𝑜−1𝜑(s), . . . , 𝐷𝜑(s),𝜑(s),x𝑘, z𝑘

)︀
𝑑s + x𝑘

(4.7)

and

q𝑘 = 𝛾−1

∫︁
Ω

Φ𝑏𝜖𝑘(s)𝑑s. (4.8)

By [138], we have that q𝑘 is a zero-mean, normally distributed white noise process

with covariance Q𝑘 = 𝜎2
𝑞𝛾

−1. The terms in 𝜑(s) and its spatial derivatives get

integrated and can either be computed analytically or numerically.

Proceeding similarly for algebraic equation (2.11b), discretising time and substi-

tuting the decomposition we obtain

0 = g(x𝑘, z𝑘) + e𝑘, (4.9)

where

g(x𝑘, z𝑘) = G
(︀
𝐷𝑛𝑜𝜑(s), 𝐷𝑛𝑜−1𝜑(s), . . . , 𝐷𝜑(s),𝜑(s),x𝑘, z𝑘

)︀
, (4.10)

and e𝑘 denotes white Gaussian noise with zero mean and covariance E𝑘 = 𝜎2
𝑒I. The

discrete-time reduced-order spatio-temporal nonlinear DAE model is then expressed

as

x𝑘+1 = f(x𝑘, z𝑘) + q𝑘, (4.11a)

0 = g(x𝑘, z𝑘) + e𝑘. (4.11b)

4.1.1 The observation process

For general spatio-temporal estimation problems, the required observations are pro-

vided by 𝑛𝑠 distinct sensors located throughout the spatial domain Ω. Sensors are
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generally characterised by a nonlinear function, H(s; s𝑙) : R𝑑 → R𝑛𝑠 . This describes

the spatial extent of the sensor over the spatial domain Ω. The general noise-free

observation equation is then written as

y(𝑡) =

∫︁
Ω

H(s; s𝑙)𝜓(s, 𝑡)𝑑s, (4.12)

where s𝑙 is the position of the 𝑙th sensor. Substituting the field decomposition yields

y(𝑡) =

∫︁
Ω

H(s; s𝑙)Φ
⊤(s)𝑑s X(𝑡). (4.13)

Discretising time and approximating the effect of modelling errors stochastically, the

output equation is given by

y𝑘 = h(x𝑘, z𝑘) + r𝑘, (4.14)

where

h(x𝑘, z𝑘) =

∫︁
Ω

H(s; s𝑙)Φ
⊤(s)𝑑s X𝑘, (4.15)

and r𝑘 denotes white Gaussian noise with zero mean and covariance R𝑘 = 𝜎2
𝑟I.

The aim here is to approximate the filtering distribution 𝑝(X𝑘|y1:𝑘) for time steps 𝑘

running from 0 to 𝐾 using a Gaussian distribution.

4.1.2 Basis function selection

The basis function selection approach taken here follows the work reported by Sanner

and Slotine [246] and applied to spatio-temporal systems in [139, 149, 183]. The num-

ber of sensors and basis functions required to adequately estimate the spatio-temporal

field from the observations may be determined by appropriate spectral analysis tech-

niques. A two-dimensional extension of Shannon’s sampling theorem suggests how

knowledge of the spatial bandwidth of the observed field would provide the mini-

mum number of sensors and basis functions required to cater for all dominant spatial
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frequency characteristics within the field [247].

Shannon’s sampling theorem requires the field to be spatially band-limited with

some cutoff frequency 𝜈𝑐, also known as the -3 dB point. In the situations considered

in this thesis, 𝜈𝑐 may be determined by performing Fourier analysis of the available

data. The distance between adjacent sensors, ∆𝑦, must then be such that

∆𝑦 ≤
1

2𝜌𝑦𝜈𝑐
, (4.16)

where 𝜌𝑦 ∈ R ≥ 1 is an oversampling parameter. This condition must hold in order

to prevent spatial aliasing effects during field reconstruction. The reader is referred

to [246, 139, 149] for the derivation of the sampling theorem.

In general, the spatial extent of the sensors would effectively attenuate high spatial

frequency components, resulting in the state estimation procedure underestimating

such frequency content. This motivates the use of higher bandwidth sensors (covering

a smaller space), requiring a larger number of sensors in the process. An optimal com-

promise would therefore be needed. This problem does not feature in our work since

for the applications considered, the observations are taken as point measurements

over a large spatial domain.

Similar compromise requirements hold for the resolution of the lattice on which

basis functions are placed. This must be fine enough to ensure no aliasing occurs

throughout the field reconstruction. More specifically, by Shannon’s sampling theo-

rem, the distance between basis functions, ∆𝜑, must satisfy

∆𝜑 ≤
1

2𝜌𝜑𝜈𝑐
, (4.17)

where 𝜌𝜑 ∈ R ≥ 1 is an oversampling parameter. The frequency support of the basis

functions is also dictated by their width, which may be selected using spectral analysis

[246, 139, 149]. In particular, for two-dimensional Gaussian basis functions located
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at the origin, we have that

𝜑(s) = exp

(︃
−s⊤s

2𝜎2
𝜑

)︃
. (4.18)

Taking the Fourier transform of equation (4.18), we obtain the following [149]:

Υ(𝜈) = 2𝜋𝜎2
𝜑 exp

(︀
−2𝜋2𝜎2

𝜑𝜈
⊤𝜈
)︀
, (4.19)

where 𝜈 is the spatial frequency. A 3 dB attenuation at cut-off frequency 𝜈𝑐 is

obtained if the basis function width is chosen using the following equation:

𝜎2
𝜑 =

ln 2

4𝜋2𝜈⊤
𝑐 𝜈𝑐

. (4.20)

Such basis function selection ensures the adequate representation of the spatio-temporal

field with frequency support 𝜈𝑐. One problem that often arises, however, is compu-

tational cost, which is why an alternative basis function selection method is often

necessary. The computational demands of the state estimation process may be re-

duced by having fewer basis functions, which in turn decreases the spatial bandwidth

and yields a higher level of smoothness throughout the approximated field. This de-

sign technique requires the user to choose the basis function width first. The spatial

cutoff frequency is then calculated by rearranging equation (4.20), as follows:

𝜈𝑐𝜑 =
1

2𝜋𝜎𝜑

√
ln 2. (4.21)

4.2 State Estimation of nonlinear PDAEs

Nonlinear PDAEs naturally allow for an adequate representation of nonlinear spatio-

temporal dynamics which frequently arise in control and engineering applications.

They are typically based on the physical description of the underlying processes pro-

ducing the data and consequently can describe a vast array of natural phenomena.

However, their infinite-dimensional nature makes them impractical for standard sig-
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nal processing methods and would require a finite-dimensional reduction method to

render the model amenable to an estimation scenario.

As was seen in Section 4.1, the basis function decomposition method employed

reduces the original infinite-dimensional PDAEs using a projection method where the

dynamical system is projected onto a subspace. A finite set of basis functions allows

the continuous spatio-temporal field to be represented by a finite-dimensional state

vector which facilitates the application of nonlinear state estimation methods, whilst

preserving the overall spatio-temporal dynamics. The resulting reduced-order model,

given by descriptor equations (4.11) and observation equation (4.14), are readily ap-

plicable to Algorithm 3.3 developed in Section 3.2.2.

In a number of critical spatio-temporal applications, however, the estimation pro-

cess often needs to be analysed for its estimation error performance. The predictive

abilities of the derived estimation algorithm might impact decision making in real-

world systems and we therefore analyse error performance in terms of the posterior

Cramér-Rao bounds that we derive for nonlinear descriptor systems.

4.2.1 Posterior Cramér-Rao bounds for nonlinear descriptor

system filtering

Assessing achievable filtering performance is an essential requirement for estimation

algorithms. The computation of lower bounds is an important error analysis tech-

nique that is indicative of performance limitations and may determine the validity of

imposed performance requirements [248, 249]. This subsection therefore derives the

posterior Cramér-Rao bounds (PCRBs) for the state estimation of nonlinear descrip-

tor systems.

Let the first and second-order partial derivatives be represented as

𝛿x𝑘 =

[︃
𝜕

𝜕𝑥
(1)
𝑘

,
𝜕

𝜕𝑥
(2)
𝑘

, . . . ,
𝜕

𝜕𝑥
(𝑛𝑏𝑛𝜑)

𝑘

]︃⊤
, (4.22)

𝛿x𝑘y𝑘 = 𝛿x𝑘𝛿
⊤
y𝑘
, (4.23)
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respectively. Assume that the probability density function 𝑝(x0) is known for initial

state x0. The joint probability density function of X0:𝐾 and y0:𝐾 for time instant 𝑘

running from 0 to 𝐾 is given by

𝑝(X0:𝐾 ,y0:𝐾) =

[︃
𝐾∏︁
𝑘=0

𝑝(y𝑘|x𝑘, zk)

]︃[︃
𝐾∏︁
𝑘=0

𝑝(z𝑘|x𝑘)

]︃[︃
𝐾−1∏︁
𝑘=0

𝑝(x𝑘+1|x𝑘, zk)

]︃
𝑝(x0). (4.24)

The objective is to obtain the Fisher information submatrices J(x𝑘) and J(z𝑘) for

estimating x𝑘 and z𝑘, respectively. The matrices [J(x𝑘)]
−1 and [J(z𝑘)]

−1 would yield

the PCRBs where P(𝑥)
𝑘 ≥ [J(x𝑘)]

−1 and P
(𝑧)
𝑘 ≥ [J(z𝑘)]

−1. This gives the lower bound

on the mean square error for the estimation of x𝑘 and z𝑘, respectively [250, 249]. For

brevity, 𝑝(X0:𝐾 ,y0:𝐾) will be denoted by 𝑝0:𝐾 .

Letting 𝜒̃0:𝐾 = (X⊤
0:𝐾−1,x

⊤
𝐾)⊤ and noting that X0:𝐾 = (𝜒̃⊤

0:𝐾 , z
⊤
𝐾)⊤, we may write

J(X0:𝐾) =

⎛⎝J(11) J(12)

J(21) J(22)

⎞⎠ , (4.25)

where

J(11) =𝐸[−𝛿𝜒̃0:𝐾 𝜒̃0:𝐾
ln 𝑝0:𝐾 ], (4.26)

J(21) =𝐸[−𝛿z𝐾 𝜒̃0:𝐾
ln 𝑝0:𝐾 ] = J(12)⊤, (4.27)

J(22) =𝐸[−𝛿z𝐾z𝐾 ln 𝑝0:𝐾 ]. (4.28)

Taking the right-lower block matrix of J(X0:𝐾)−1 results in

J(z𝐾) = J(22) − J(21)J(11)−1
J(12). (4.29)

Since calculating J(z𝐾) requires the computation of the inverse of the large matrices

J(11) or J(X0:𝐾), we propose a recursive method to improve computational efficiency.

The rest of this subsection derives the recursion.
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The information matrix J(X0:𝐾 ,x𝐾+1) is obtained by noting that

𝑝𝑥0:𝐾+1 =𝑝(X0:𝐾 ,x𝐾+1,y0:𝐾+1)

=𝑝(x𝐾+1|X𝐾)𝑝(y𝐾+1|x𝐾+1)𝑝(X0:𝐾 ,y0:𝐾). (4.30)

Then using equation (4.30), J(X0:𝐾 ,x𝐾+1) may be written in block form as

J(X0:𝐾 ,x𝐾+1) =

⎛⎜⎜⎜⎝
J(11) J(12) 0

J(21) J(22)′ J(23)

0 J(32) J(33)

⎞⎟⎟⎟⎠ , (4.31)

where 0 denotes the null matrix of appropriate dimensions and

J(22)′ =𝐸[−𝛿z𝐾z𝐾 ln 𝑝0:𝐾 ] + 𝐸[−𝛿z𝐾z𝐾 ln 𝑝(x𝐾+1|X𝐾)], (4.32)

J(23) =𝐸[−𝛿z𝐾x𝐾+1
ln 𝑝(x𝐾+1|X𝐾)] = J(32)⊤, (4.33)

J(33) =𝐸[−𝛿x𝐾+1x𝐾+1
ln 𝑝(x𝐾+1|X𝐾)] + 𝐸[−𝛿x𝐾+1x𝐾+1

ln 𝑝(y𝐾+1|X𝐾+1)]. (4.34)

The required information submatrix 𝐽(x𝑘+1) may be obtained by calculating the

inverse of the right-lower (𝑛𝑏𝑛𝜑 × 𝑛𝑏𝑛𝜑) submatrix of J(X0:𝐾 ,x𝐾+1)
−1, as follows:

J(x𝐾+1) = J(33) −
(︁
0 J(32)

)︁⎛⎝J(11) J(12)

J(21) J(22)′

⎞⎠−1⎛⎝ 0

J(23)

⎞⎠ , (4.35)

which may be shown to yield

J(x𝐾+1) = J(33) − J(32)(J(z𝐾) + J(22)′′)−1J(23), (4.36)

where J(22)′′ = 𝐸[−𝛿z𝐾z𝐾 ln 𝑝(x𝐾+1|X𝐾)].

The recursive computation for J(z𝐾+1) is determined by writing the information
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matrix J(X0:𝐾+1) = J(X0:𝐾 ,x𝐾+1, z𝐾+1) in block form as

J(X0:𝐾+1) =

⎛⎜⎜⎜⎜⎜⎜⎝
J(11) J(12) 0 0

J(21) J(22)′ J(23) 0

0 J(32) J(33)′ J(34)

0 0 J(43) J(44)

⎞⎟⎟⎟⎟⎟⎟⎠ , (4.37)

where

J(33)′ = 𝐸[−𝛿x𝐾+1x𝐾+1
ln 𝑝(x𝐾+1|X𝐾)] + 𝐸[−𝛿x𝐾+1x𝐾+1

ln 𝑝(y𝐾+1|X𝐾+1)]

+ 𝐸[−𝛿x𝐾+1x𝐾+1
ln 𝑝(z𝐾+1|x𝐾+1)], (4.38)

J(43) = 𝐸[−𝛿z𝐾+1x𝐾+1
ln 𝑝(y𝐾+1|X𝐾+1)] + 𝐸[−𝛿z𝐾+1x𝐾+1

ln 𝑝(z𝐾+1|x𝐾+1)]

= J(34)⊤, (4.39)

J(44) = 𝐸[−𝛿z𝐾+1z𝐾+1
ln 𝑝(y𝐾+1|X𝐾+1)] + 𝐸[−𝛿z𝐾+1z𝐾+1

ln 𝑝(z𝐾+1|x𝐾+1)]. (4.40)

The algebraic state information submatrix J(z𝑘+1) is hence computed as

J(z𝐾+1) = J(44) −
(︁
0 0 J(43)

)︁⎛⎜⎜⎜⎝
J(11) J(12) 0

J(21) J(22)′ J(23)

0 J(32) J(33)′

⎞⎟⎟⎟⎠
−1⎛⎜⎜⎜⎝

0

0

J(34)

⎞⎟⎟⎟⎠ , (4.41)

which yields

J(z𝐾+1) = J(44) − J(43)(J(x𝐾+1) + J(33)′′)−1J(34), (4.42)

where J(33)′′ = 𝐸[−𝛿x𝐾+1x𝐾+1
ln 𝑝(z𝐾+1|x𝐾+1)].

The initial information submatrix J(x0) is obtained using the prior probability

function 𝑝(x0):

J(x0) =𝐸[−𝛿x0x0 ln 𝑝(x0)]. (4.43)
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4.3 Case study: Atmospheric boundary layer flow

We now consider nonlinear PDAEs that may be approximated by the discrete-time

nonlinear stochastic descriptor formulation given by equations (4.11), with a specific

focus on an important spatio-temporal process: fluid flow. Our motivation is fu-

elled by the idea of using estimation methods for potential applications in wind gust

forecasting and the preview control of wind turbines [3].

Models governed by the Navier-Stokes equations are known to adequately approxi-

mate many real-world fluid flows, including atmospheric boundary layer flow [14], and

form the basis of this case study. The Navier-Stokes equations are particularly chal-

lenging for estimation due to their nonlinear PDAE form and their undetermined

nature, the analysis of which is given later on in Chapter 5 where a real-world wind

flow estimation application is discussed in detail.

A basis function decomposition approach enables the user to represent the flow

field by choosing an appropriate number and placement of basis functions that is

independent of the number and placement of observations and which allows a com-

putationally efficient estimation procedure.

With this in mind, the following nonlinear PDAE formulation for fluid flow, ex-

pressed by the Navier-Stokes equations for viscous incompressible flow, is considered:

𝜕U(s, 𝑡)

𝜕𝑡
= −∇𝑃 (s, 𝑡) −U(s, 𝑡) · ∇U(s, 𝑡) +

1

𝑅𝑒
∇2U(s, 𝑡), (4.44a)

0 = ∇ · U(s, 𝑡), (4.44b)

whereU(s, 𝑡) and 𝑃 (s, 𝑡) denote the velocity and pressure fields, respectively, evolving

over spatial domain Ω ∈ R𝑑 for 𝑑-dimensional flow, with time 𝑡 ∈ R+ and s ∈ Ω. The

term 𝑅𝑒 denotes Reynolds number and ∇ denotes the del operator. The boundary

condition may be specified as

U(s, 𝑡) = U𝛿(s, 𝑡) with s ∈ 𝛿Ω, (4.45)
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where 𝛿Ω is the domain boundary and the initial condition is given by

U(s, 0) = U0. (4.46)

By approximating modelling errors stochastically, a tractable, temporally-discrete,

spatially-continuous generalised state-space form may be derived by proceeding with

basis function decomposition following a pressure Poisson equation description. By

letting

f(U(s, 𝑡), 𝑃 (s, 𝑡)) = −∇𝑃 (s, 𝑡) −U(s, 𝑡) · ∇U(s, 𝑡) +
1

𝑅𝑒
∇2U(s, 𝑡), (4.47)

𝑔(U(s, 𝑡)) = −∇ · (U(s, 𝑡) · ∇U(s, 𝑡)), (4.48)

the following reduced-order descriptor flow estimation model results:

x𝑘+1 =∆𝑡𝛾
−1

∫︁
Ω

Φ𝑑(s)f(Φ
⊤
𝑑 (s)x𝑘,𝜑

⊤(s)z𝑘)𝑑s + x𝑘 + q𝑘, (4.49a)

z𝑘 =𝜂−1

∫︁
Ω

𝜑(s)𝑔(Φ⊤
𝑑 (s)x𝑘)𝑑s + ẽ𝑘, (4.49b)

where the velocity and pressure fields are decomposed using a set of Gaussian basis

functions described by

𝜑(s− 𝜁𝑖) = exp

(︃
−(s− 𝜁𝑖)⊤(s− 𝜁𝑖)

2𝜎2
𝜑

)︃
, (4.50)

where 𝜁𝑖 is the 𝑖th basis function centre, 𝜎𝜑 ∈ R is a parameter defining the basis

function width, Φ𝑏(s) = Φ𝑑(s) and 𝑛𝑏 = 𝑑 for the 𝑑-dimensional flow problem under

consideration. The term ẽ𝑘 is a zero-mean, normally distributed white noise process

with covariance Ẽ𝑘 = 𝜎2
𝑒𝜂

−1 and the matrix 𝜂 ∈ R𝑛𝜑×𝑛𝜑 is defined as

𝜂 ,
∫︁
Ω

𝜑(s)(∇2𝜑⊤(s))𝑑s, (4.51)

where ∇2 denotes the Laplace operator. A full derivation of the reduced-order flow

estimation model in strangeness-free nonlinear descriptor form is given in Chapter 5.
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4.3.1 Simulation setup

The performance of the estimation framework developed here is evaluated by con-

sidering wind flow over a large horizontal plane at a height of 100m above sea level.

Rather than estimating the wind field at a single point location, this work has de-

veloped a technique to provide the complete picture of the flow field by using sparse

flow velocity measurements and a single pressure sensor to provide flow velocity and

pressure estimates anywhere throughout the region of interest. This becomes crucial,

for instance, when detecting oncoming flow dynamics having length scales smaller

than the wind turbine rotor blade diameter, such as wind gusts. Wind field data

is generated for estimation purposes using the Simulator for Offshore Wind Farm

Applications (SOWFA) [251, 252, 253].

Figure 4-1 shows a typical snapshot of the simulated atmospheric boundary layer

together with the output measurement waveforms obtained at a specific location

within the 240m square domain. The fluid velocity sensors were set over a 7 × 7

square grid, with the distance between sensors, ∆𝑦 = 40m. For our purposes of

investigating the state estimation framework, we assume free boundary conditions and

that the available instrumentation can provide measurements for U(s, 𝑡) = (𝑢 𝑣)⊤,

where 𝑢 := 𝑢(s, 𝑡) and 𝑣 := 𝑣(s, 𝑡) are the horizontal and vertical velocity components,

respectively.

4.3.2 Spatial frequency analysis

Basis functions capable of reconstructing the spatio-temporal field were elicited in

accordance with the guidelines of Section 4.1.2. A spatial frequency analysis was per-

formed to confirm that the spacing of sensors was adequate to capture the dominant

field dynamics. For the synthetic wind data generated, the cutoff frequency of the

velocity field, taken to be the -3 dB point, is 𝑓 (𝑢)
𝑐 ≈ 𝑓

(𝑣)
𝑐 ≈ 0.01 cycles/m. From

equation (4.16), a maximum sensor separation of 50m is allowed, which confirms that

the separation of ∆𝑦 = 40m is sufficient to mitigate any problems related to spatial

aliasing of the significant dynamics.
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Figure 4-1: (a) A snapshot from a large eddy simulation of the atmospheric bound-
ary layer together with the wind velocity sensor placement within a 240m square
domain at a height of 100m above sea level. The contours represent the wind veloc-
ity magnitude in ms−1 with the prevailing wind direction being from the southwest.
(b) Velocity measurement plots as captured by one wind sensor. The terms 𝑦(𝑢)𝑘 and
𝑦
(𝑣)
𝑘 denote the sensor readings for the horizontal and vertical velocity components,
respectively.

It is equally important to choose a basis function grid layout that adequately

approximates the dominant field dynamics. The basis functions can be chosen to

represent the full spatial bandwidth (-3 dB point). Alternatively, fewer basis functions

can be selected to limit the frequency content of the estimated field in favour of

computation time. The velocity and pressure fields cutoff frequency was therefore

decreased to 𝑓𝑐𝜑 = 0.003 cycles/m. As a consequence of the relatively slow roll-off for

Gaussian basis functions, an oversampling parameter of 𝜌𝜑 = 2.08 was chosen, giving

a total of 𝑛𝜑 = 25 basis functions which were equally spaced over a 5 × 5 grid laid

out in the spatial domain Ω. As a result, 25 × 3 = 75 basis functions are required to

represent the velocity and pressure fields.

4.3.3 State estimation and results

The state estimation framework implemented follows that proposed in Sections 4.1

and 4.2, with equations (4.11) replaced by equations (4.49). For the situation con-

sidered here, the observation equation is linear and given by equation (4.14), where
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h(x𝑘, z𝑘) = Φ⊤
𝑑 (s𝑙)x𝑘 and s𝑙 is the position of the 𝑙th sensor. The predicted differ-

ential states are hence corrected using the standard Kalman filter update equations

instead of executing steps 2(a)-(d) of Algorithm 3.3. The proposed state estimation

algorithm was validated using a Monte Carlo approach, where 100 realisations of wind

field data were generated. Each realisation estimated 𝐾 = 500 data points (in time)

with a sample time of ∆𝑡 = 0.1s. Estimation parameters were set similar to [1], with

𝜎2
𝑞 = 10−1m2s−2, 𝜎2

𝑒 = 10−4m2s−2, 𝜎2
𝑟 = 10−3m2s−2, 𝑅𝑒 = 107, 𝛼 = 1 and 𝛽 = 2. The

state estimator received no prior information about initial states.

The accuracy of the resulting state estimates was determined by comparing the

estimated field with the generated field using the mean root mean square error

(MRMSE), which is often employed in the literature for state estimation of nonlinear

systems (e.g. [254, 255]). The MRMSE is defined at each time instant 𝑘 as

MRMSE𝑘 =
1

𝑁

𝑁∑︁
𝑗=1

⎯⎸⎸⎷ 1

𝑂

𝑂∑︁
𝑜=1

(𝜄
(𝑗)
𝑘,𝑜)

2, 𝑘 = 0, 1, 2, . . . , 𝐾, (4.52)

where 𝜄(𝑗)𝑘,𝑜 is the estimation error at spatial location 𝑜 at the 𝑘th sampling instant for

the 𝑗th simulation run. 𝑂 denotes the number of spatially discrete points (equally

spaced on Ω with a spatial discretisation step of ∆𝑠) and𝑁 is the number of simulation

runs. For the 240m square domain Ω under study, 𝑂 = 37 × 37 = 1369 spatially

discrete points are represented.

Table 4.1 summarises the average MRMSE values for the whole simulation period

(0 ≤ 𝑘 ≤ 500), with the corresponding MRMSE plots shown in Figure 4-2. Pressure

estimation is noted to be accurate despite being measured only at a single point. This

stands as evidence of the ability of the derived reduced-order model and proposed

nonlinear DAE estimation algorithm to identify dynamic pressure and estimate the

whole pressure field.

As a result of basis function decomposition, we attribute part of the estimation

error to the loss of high spatial frequency components, as discussed in Section 4.3.2.

Figure 4-3 illustrates this band-limiting effect by giving a visual comparison at a single
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time instant of the generated fields, estimated fields and corresponding error between

both fields. The remaining errors include the Gaussian approximations employed, the

model uncertainty and the unmodelled dynamics with respect to the full atmospheric

boundary layer flow model [14].

The posterior Cramér-Rao bounds on the estimation error were calculated as

proposed in Section 4.2.1. Figure 4-4 shows the estimation variance and PCRB plots

for all spatio-temporal fields at a particular space point during one simulation run.

A similar pattern was observed for other spatial locations.

Table 4.1: Average MRMSE values for the whole simulation period (0 ≤ 𝑘 ≤ 500) for
100 simulation runs.

Quantity Value Range RMSE RMSE(%
(units) [min, max] of range)

𝑢 (ms−1) [3.9251, 9.7919] 0.3332 5.6794%
𝑣 (ms−1) [4.6222, 9.6176] 0.3239 6.4840%
𝑃 (Pa) [-27.3478, 29.8723] 4.1704 7.2883%

Figure 4-2: Error in the field state estimation. The mean RMSE (solid line) and
95% confidence interval (grey region) plots are shown for (a) horizontal velocity 𝑢 (in
ms−1), (b) vertical velocity 𝑣 (in ms−1) and (c) pressure 𝑃 (in Pa), for 100 simulation
runs.
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Figure 4-3: The field state estimation is visualised here by showing a single time
instant of (a) the generated wind data, (b) the estimated flow fields and (c) the
corresponding error between the generated and estimated fields. This is shown for
the following fluid flow quantities: horizontal velocity 𝑢 (in ms−1), vertical velocity 𝑣
(in ms−1) and pressure 𝑃 (in Pa) (left to right, respectively).

Figure 4-4: Estimation variance and PCRB plots for (a) horizontal velocity 𝑢, (b)
vertical velocity 𝑣 and (c) pressure 𝑃 , plotted on a log scale for a single space point
throughout one simulation run.
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4.4 Conclusion

The nonlinear PDAE estimation problem has so far not been addressed in the signal

processing literature. This chapter developed a novel state estimation scheme for a

class of spatio-temporal nonlinear infinite-dimensional PDAEs. By adopting a finite-

dimensional reduction approach based on basis function decomposition, a nonlinear

PDAE is converted to a nonlinear DAE form for which a new unscented transform-

based filtering algorithm is used and associated posterior Cramér-Rao bounds are

derived. The performance and viability of the proposed estimation framework is

demonstrated for a realistic atmospheric boundary layer wind flow estimation problem

where results show consistent accurate estimates of unmeasured flow velocity and

pressure.
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Chapter 5

Wind field estimation from LIDAR

measurements

The ability to harness fluid flow represents a burgeoning source of renewable energy.

However, taking wind as an example, fluid flow is also the main disturbance in the

control system of wind turbines. This has sparked recent interest in maximising

energy production and mitigating structural loads using the preview control of wind

turbines and forecasting of wind gusts [3]. Although sampling an oncoming wind

field has become possible with recent advances in fluid flow measurement, we are

still left with the compelling question of how best to use such limited sparse flow

measurements to predict wind gusts and to incorporate such knowledge within a

preview control strategy [7, 256, 257]. Furthermore, these measurements are only

line-of-sight velocity measurements resulting in what several authors refer to as the

Cyclops’ dilemma [6, 258], which is the problem encountered by a Cyclops for which

three-dimensional vision is impossible due to the availability of only one eye. This

requires extra information to resolve wind magnitude and direction. Range weighting

is another imperfection influencing LIDAR measurements, where a spatial filter is

effectively applied along the laser beam, resulting in wind speeds at locations other

than the focal distance to affect the measured value [6]. Overcoming such sources of

error require further information that may be obtained from a physical model that

captures the spatio-temporal dynamics of the wind. This will inevitably rely upon the
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accuracy of wind models employed and calls for wind velocity estimation tools that

predict wind turbine gusts using limited spatio-temporal wind velocity measurements

[9, 4, 10], thereby mitigating the possible blade damage due to severe wind gusts if

the blade pitch is altered in a timely manner [6, 7, 11, 12, 13]. This would of course

link measurements to regions of flow which are not directly observed.

Much of the design and control problems treated in the existing wind energy

literature take common assumptions that include the steady and uniform flow across

the rotor plane [259]. To account for the unsteady nature of fluid flow, the next

improvement employs Taylor’s frozen turbulence hypothesis [260] that assumes an

unchanged spatial structure of wind flow as this advects with a mean velocity [8, 261].

In this work, we seek to provide a more complete picture of the oncoming wind

field by estimating wind velocity and pressure over the horizontal plane spanned by

the LIDAR beams, rather than estimating wind flow at only single point locations.

This becomes a critical requirement, for instance, in the detection of oncoming flow

dynamics having length scales smaller than the wind turbine rotor blade diameter,

such as wind gusts. The pressure field description is retained since this becomes

important for several fluid flow types and situations [262, 263, 264].

To conquer the fact that only limited spatial measurements are available, we pro-

pose a model-based estimation framework that presents a reasonable approximation

where the field is approximated up to a particular bandwidth. The aforementioned

requirements call for a dynamic model that must be amenable to state estimation. We

therefore consider models governed by the Navier-Stokes equations which are known

to be a good approximation for many real-world fluid flows, including atmospheric

boundary layer flow [14], and form the basis of this work. However, the Navier-Stokes

equations are in partial differential-algebraic equation form, which presents difficulties

for estimation purposes. In addition to being infinite dimensional, the DAE formu-

lation means that it is distinguished from constrained ordinary differential equation

systems. In DAE systems, the evolution of algebraic states is not described by differ-

ential equations and follow an evolution that is entirely governed by the evolution of

differential states, such that all algebraic constraints are satisfied (e.g. pressure in an
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incompressible flow) [30]. This key difference means that we will make use of the esti-

mation framework developed for spatio-temporal descriptor systems in Chapter 4. A

further important consideration is that DAE systems are generally described by their

differentiation index [265]. However, this concept cannot be applied to the Navier-

Stokes equations since pressure is only determined up to an additive constant and

the equations are hence of an undetermined nature, which Kunkel and Mehrmann

[31] describe in terms of a so-called strangeness index. A formal definition of the

strangeness index is provided in Appendix A.

The foregoing is particularly challenging since the majority of established estima-

tion techniques are designed for finite-dimensional systems in ODE form. We note

that a simplified wind model has been proposed in [215], however this is derived as

the spatial discretisation of the linearised incompressible Navier-Stokes equations. A

recent work reported in [1] has derived a simplified deterministic state-space model of

atmospheric boundary layer flow but is based on spatial discretisation and excludes

pressure. In Section 5.1, we therefore derive a generalised state-space flow model in

nonlinear, spatially-continuous form. The key to obtaining a strangeness-free DAE

of differentiation index 1 is the reformulation of the Navier-Stokes equations using

the pressure Poisson equation (PPE) in conjunction with basis function decomposi-

tion. The latter enables the user to represent the flow field by choosing an appro-

priate number and placement of basis functions, or states, that is independent of the

number and placement of observations and which allows a computationally efficient

estimation procedure. Section 5.2 presents the estimation framework for the incom-

pressible Navier-Stokes equations by obtaining a reduced-order nonlinear descriptor

flow estimation model which may be readily applied to the modified DAE form of the

discrete-time UKF algorithm derived in Chapter 3. Sections 5.3 and 5.4 demonstrate

estimation performance for wind field data generated from large eddy simulations of

the atmospheric boundary layer and real-world LIDAR measurement data obtained

from a nacelle-mounted LIDAR unit, respectively.
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5.1 A generalised state-space model for incompress-

ible flow

We consider wind flow expressed by the Navier-Stokes equations for viscous incom-

pressible flow [266, 267, 215], as given by equations (4.44) and repeated here for

completeness’ sake:

𝜕U(s, 𝑡)

𝜕𝑡
= −∇𝑃 (s, 𝑡) −U(s, 𝑡) · ∇U(s, 𝑡) +

1

𝑅𝑒
∇2U(s, 𝑡), (5.1a)

0 = ∇ · U(s, 𝑡), (5.1b)

whereU(s, 𝑡) and 𝑃 (s, 𝑡) denote the velocity and pressure fields, respectively, evolving

over spatial domain Ω ∈ R𝑑 for 𝑑-dimensional flow, with time 𝑡 ∈ R+ and s ∈ Ω. The

term 𝑅𝑒 denotes Reynolds number, the superscript ⊤ is the transpose operator and

∇ denotes the del operator. The boundary condition may be specified as

U(s, 𝑡) = U𝛿(s, 𝑡) with s ∈ 𝛿Ω, (5.2)

where 𝛿Ω is the domain boundary and the initial condition is given by

U(s, 0) = U0. (5.3)

A derivation of the Navier-Stokes equations is given in [268]. It is noteworthy that

equations (5.1) give no explicit equation for the pressure 𝑃 , with a pressure term

appearing only once as a spatial derivative on the right-hand side of equation (5.1a).

In fact, 𝑃 is known as a Lagrange multiplier which enforces the incompressibility

of the velocity field U such that the algebraic equation (5.1b) is always satisfied.

This PDAE system is said to have a higher differentiation index (non-decoupled)

since no pressure term exists in the algebraic equation. Furthermore, since pressure

is only determined up to an additive constant, the system is undetermined and the

concept of the differentiation index [265] cannot be readily applied [269]. Whenever

undetermined solution components exist, the differentiation index concept for general
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nonlinear DAEs is described in terms of a so-called strangeness index [31]. Conse-

quently, following the strangeness index definition given in Appendix A, the above

system is, after spatial discretisation, characterised by a unity strangeness index. To

render this formulation amenable to an estimation framework, we propose a refor-

mulation into a strangeness-free, spatially-continuous generalised state-space form by

employing basis function decomposition following a pressure Poisson equation de-

scription. The following preliminaries present the necessary matrices and associated

invertibility properties required to obtain the main result of this section. Note that

all integral operations presented here are performed element-wise.

Let 𝑛𝜑 denote the number of basis functions, each 𝜑(s−𝜁𝑖) : Ω → R, where 𝜁𝑖 is the

centre of the 𝑖th basis function. Further, let 𝜑(s) = [𝜑(s−𝜁1) 𝜑(s−𝜁2) · · · 𝜑(s−𝜁𝑛𝜑)]⊤

and Φ𝑑(s) = I𝑑 ⊗ 𝜑(s), where ⊗ denotes the Kronecker product operator of two

matrices and I𝑑 is a 𝑑× 𝑑 identity matrix. The matrix 𝛾 ∈ R𝑑𝑛𝜑×𝑑𝑛𝜑 shall be defined

as

𝛾 ,
∫︁
Ω

Φ𝑑(s)Φ
⊤
𝑑 (s)𝑑s, (5.4)

where 𝑛𝑏 = 𝑑. Also, define the matrix 𝜂 ∈ R𝑛𝜑×𝑛𝜑 as

𝜂 ,
∫︁
Ω

𝜑(s)(∇2𝜑⊤(s))𝑑s, (5.5)

where ∇2 denotes the Laplace operator.

We note that since 𝛾 is symmetric and positive, then by [245] the matrix is positive

definite and hence invertible. To show invertibility for the matrix 𝜂, we consider a

regular grid of equally-spaced identical basis functions. This yields a Toeplitz-block

Toeplitz matrix structure for 𝜂 and its invertibility may be determined by [270, 271].

In order to obtain a strangeness-free nonlinear descriptor system of differentiation

index 1, let

f(U(s, 𝑡), 𝑃 (s, 𝑡)) =
𝜕U(s, 𝑡)

𝜕𝑡
. (5.6)
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We decompose the spatio-temporal fields U(s, 𝑡) and 𝑃 (s, 𝑡) using an infinite set of

linearly independent basis functions 𝒵 = {𝜑(s− 𝜁𝑖)}∞𝑖=1, as follows:

U(s, 𝑡) = Φ⊤
𝑑 (s)x(𝑡), (5.7)

𝑃 (s, 𝑡) =
∞∑︁
𝑖=1

𝜑(s− 𝜁𝑖)𝑧𝑖(𝑡) = 𝜑⊤(s)z(𝑡), (5.8)

where x(𝑡) ∈ R𝑑𝑛𝜑 and z(𝑡) ∈ R𝑛𝜑 are the velocity and pressure state vectors, respec-

tively, that scale the field basis functions 𝜑(s). Substituting the field decomposition

in the momentum equation (5.1a) we obtain

Φ⊤
𝑑 (s)

𝜕x(𝑡)

𝜕𝑡
= f(Φ⊤

𝑑 (s)x(𝑡),𝜑⊤(s)z(𝑡)). (5.9)

Pre-multiplying equation (5.9) by Φ𝑑(s) and integrating over the spatial domain Ω

yields

∫︁
Ω

Φ𝑑(s)Φ
⊤
𝑑 (s)𝑑s

𝜕x(𝑡)

𝜕𝑡
=

∫︁
Ω

Φ𝑑(s)f(Φ
⊤
𝑑 (s)x(𝑡),𝜑⊤(s)z(𝑡))𝑑s. (5.10)

Substituting 𝛾 into equation (5.10) and pre-multiplying by 𝛾−1 we may write

𝜕x(𝑡)

𝜕𝑡
= 𝛾−1

∫︁
Ω

Φ𝑑(s)f(Φ
⊤
𝑑 (s)x(𝑡),𝜑⊤(s)z(𝑡))𝑑s. (5.11)

To derive the algebraic equation for z(𝑡), we first obtain the Poisson equation for

pressure by taking the divergence of equation (5.1a) and using the divergence-free

condition of equation (5.1b) [272]:

∇2𝑃 (s, 𝑡) = −∇ · (U(s, 𝑡) · ∇U(s, 𝑡)). (5.12)

Let

𝑔(U(s, 𝑡)) = −∇ · (U(s, 𝑡) · ∇U(s, 𝑡)). (5.13)
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Then substituting the field decomposition into equation (5.12) yields

(∇2𝜑⊤(s))z(𝑡) = 𝑔(Φ⊤
𝑑 (s)x(𝑡)). (5.14)

Pre-multiplying equation (5.14) by 𝜑(s) and integrating over the spatial domain Ω

gives

∫︁
Ω

𝜑(s)(∇2𝜑⊤(s))𝑑s z(𝑡) =

∫︁
Ω

𝜑(s)𝑔(Φ⊤
𝑑 (s)x(𝑡))𝑑s. (5.15)

Substituting 𝜂 into equation (5.15) and pre-multiplying by 𝜂−1 we have that

z(𝑡) = 𝜂−1

∫︁
Ω

𝜑(s)𝑔(Φ⊤
𝑑 (s)x(𝑡))𝑑s. (5.16)

The final form of the nonlinear descriptor model may therefore be written as

𝜕x(𝑡)

𝜕𝑡
= 𝛾−1

∫︁
Ω

Φ𝑑(s)f(Φ
⊤
𝑑 (s)x(𝑡),𝜑⊤(s)z(𝑡))𝑑s, (5.17a)

z(𝑡) = 𝜂−1

∫︁
Ω

𝜑(s)𝑔(Φ⊤
𝑑 (s)x(𝑡))𝑑s, (5.17b)

where both x(𝑡) and z(𝑡) are exactly determined, making the formulation strangeness-

free. The concept of the differentiation index may now be applied to such system of

equations and the formulation is said to have a differentiation index of 1. Note

that this representation is still infinite dimensional. In practice, however, a finite-

dimensional approximation would be required for estimation purposes, as will be

described in the next section.

5.2 Estimation of the incompressible Navier-Stokes

equations

In order to render our flow model apt for estimation purposes, we decompose the

velocity and pressure fields using a set of Gaussian basis functions given by equation
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(4.50). The basis function width and placement are computed using the spatial fre-

quency analysis technique discussed in Section 4.1.2 which considers spatial frequency

cutoff as the design parameter describing basis function width and placement. For the

flow estimation framework to be computationally tractable and efficient, a reduced-

order flow model is derived together with the associated observation process and static

pressure estimation schemes.

5.2.1 A reduced-order nonlinear descriptor flow estimation

model

Since the observations are discrete in time, we discretise time using a first-order Euler

method. This simple approach introduces a discretisation error which is analysed in

[273]. However, this error is only incurred in the forward prediction step so it is then

corrected throughout the update step of the estimation algorithm. We may write the

flow estimation model by first defining x𝑘 := x(𝑘∆𝑡) and z𝑘 := z(𝑘∆𝑡) with regular

time steps ∆𝑡 and denoting the index of the future time sample by the subscript 𝑘+1.

Substituting the decomposition into equation (5.1a) yields

Φ⊤
𝑑 (s)x𝑘+1 = ∆𝑡f(Φ

⊤
𝑑 (s)x𝑘,𝜑

⊤(s)z𝑘)+Φ⊤
𝑑 (s)x𝑘 + 𝜖𝑘(s), (5.18)

where to approximate the effects of model reduction and model uncertainties, the spa-

tial field is subjected to a disturbance 𝜖𝑘(s), which represents a normally distributed

zero-mean white noise process where 𝜖𝑘(s) ∼ 𝒩 (0, 𝜎2
𝑞I) and the covariance is defined

by

cov(𝜖𝑘(s), 𝜖𝑘+𝜏 (𝜉)) =

⎧⎪⎨⎪⎩𝜎
2
𝑞 𝛿(s− 𝜉), if 𝜏 = 0,

0, otherwise,
(5.19)

for all 𝜏 ∈ Z, where 𝜉 ∈ Ω, I is an identity matrix of appropriate dimensions, 𝛿 is the

Dirac delta function and 𝒩 (0, 𝜎2
𝑞I) denotes the zero-mean normal distribution with

covariance 𝜎2
𝑞I. Pre-multiplying equation (5.18) by Φ𝑑, integrating over the spatial
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domain Ω and re-arranging gives

x𝑘+1 = f (x)(x𝑘, z𝑘) + q𝑘, (5.20)

where

f (x)(x𝑘, z𝑘) = ∆𝑡𝛾
−1

∫︁
Ω

Φ𝑑(s) f(Φ⊤
𝑑 (s)x𝑘,𝜑

⊤(s)z𝑘)𝑑s + x𝑘 (5.21)

and

q𝑘 = 𝛾−1

∫︁
Ω

Φ𝑑𝜖𝑘(s)𝑑s. (5.22)

By [138], we have that q𝑘 is a zero-mean, normally distributed white noise process with

covariance Q𝑘 = 𝜎2
𝑞𝛾

−1. We note that the terms in 𝜑(s) and its spatial derivatives

get integrated and can either be determined analytically or numerically.

Proceeding similarly for algebraic equation (5.1b), we get

z𝑘 = g(z)(x𝑘) + ẽ𝑘, (5.23)

where

g(z)(x𝑘) = 𝜂−1

∫︁
Ω

𝜑(s)𝑔(Φ⊤
𝑑 (s)x𝑘)𝑑s, (5.24)

where ẽ𝑘 is a zero-mean, normally distributed white noise process with covariance

Ẽ𝑘 = 𝜎2
𝑒𝜂

−1. The discrete-time reduced-order spatio-temporal nonlinear descriptor

model is then given by

x𝑘+1 = f (x)(x𝑘, z𝑘) + q𝑘, (5.25a)

z𝑘 = g(z)(x𝑘) + ẽ𝑘. (5.25b)

We note that the states x𝑘 and z𝑘 can be decoupled from the integral computation,

thus allowing offline computation and hence more efficient estimation. Following the
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dimensional analysis carried out in [1], the wind field dynamics over the horizontal

plane are largely independent of changes in height and we will therefore consider only

two-dimensional flow (𝑑 = 2). Taking the first 𝑛𝜑 components of x𝑘+1 as an example

and denoting this vector by x
(𝑢)
𝑘+1 (i.e. the state vector describing the horizontal

component of velocity) we have that

x
(𝑢)
𝑘+1 =∆𝑡𝛾

−1
0

[︂
1

𝑅𝑒

∫︁
Ω

𝜑
𝜕2𝜑⊤

𝜕𝑠12
x
(𝑢)
𝑘 𝑑s +

1

𝑅𝑒

∫︁
Ω

𝜑
𝜕2𝜑⊤

𝜕𝑠22
x
(𝑢)
𝑘 𝑑s−

∫︁
Ω

𝜑
𝜕𝜑⊤

𝜕𝑠1
z𝑘𝑑s

−
∫︁
Ω

𝜑𝜑⊤x
(𝑢)
𝑘

𝜕𝜑⊤

𝜕𝑠1
x
(𝑢)
𝑘 𝑑s−

∫︁
Ω

𝜑𝜑⊤x
(𝑣)
𝑘

𝜕𝜑⊤

𝜕𝑠2
x
(𝑢)
𝑘 𝑑s

]︂
+ x

(𝑢)
𝑘 + q

(𝑢)
𝑘 , (5.26)

where 𝜑 = 𝜑(s), q(𝑢)
𝑘 denotes the first 𝑛𝜑 components of q𝑘, x

(𝑣)
𝑘 denotes the last 𝑛𝜑

components of x𝑘 and 𝛾0 is given by equation (5.4) with 𝑑 = 1. The states may be

decoupled from the integral computation by re-writing equation (5.26) as follows:

x
(𝑢)
𝑘+1 =∆𝑡𝛾

−1
0

[︂
1

𝑅𝑒

∫︁
Ω

𝜑
𝜕2𝜑⊤

𝜕𝑠12
𝑑s x

(𝑢)
𝑘 +

1

𝑅𝑒

∫︁
Ω

𝜑
𝜕2𝜑⊤

𝜕𝑠22
𝑑s x

(𝑢)
𝑘

−
∫︁
Ω

𝜑
𝜕𝜑⊤

𝜕𝑠1
𝑑s z𝑘 −

∫︁
Ω

𝜑(𝜑⊗ 𝜕𝜑

𝜕𝑠1
)⊤𝑑s (x

(𝑢)
𝑘 ⊗ x

(𝑢)
𝑘 )

−
∫︁
Ω

𝜑(𝜑⊗ 𝜕𝜑

𝜕𝑠2
)⊤𝑑s (x

(𝑣)
𝑘 ⊗ x

(𝑢)
𝑘 )

]︂
+ x

(𝑢)
𝑘 + q

(𝑢)
𝑘 . (5.27)

Grouping terms, this equation has the form

x
(𝑢)
𝑘+1 = f (𝑢)(x𝑘, z𝑘) + q

(𝑢)
𝑘 , (5.28)
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where

f (𝑢)(x𝑘, z𝑘) =A1x
(𝑢)
𝑘 + A2z𝑘 + A3(x

(𝑢)
𝑘 ⊗ x

(𝑢)
𝑘 ) + A4(x

(𝑣)
𝑘 ⊗ x

(𝑢)
𝑘 ),

A1 =
1

𝑅𝑒
∆𝑡𝛾

−1
0

[︂ ∫︁
Ω

𝜑
𝜕2𝜑⊤

𝜕𝑠12
𝑑s +

∫︁
Ω

𝜑
𝜕2𝜑⊤

𝜕𝑠22
𝑑s

]︂
,

A2 = − ∆𝑡𝛾
−1
0

∫︁
Ω

𝜑
𝜕𝜑⊤

𝜕𝑠1
𝑑s,

A3 = − ∆𝑡𝛾
−1
0

∫︁
Ω

𝜑(𝜑⊗ 𝜕𝜑

𝜕𝑠1
)⊤𝑑s,

A4 = − ∆𝑡𝛾
−1
0

∫︁
Ω

𝜑(𝜑⊗ 𝜕𝜑

𝜕𝑠2
)⊤𝑑s. (5.29)

It is easy to see that the constant matrices A1, A2, A3 and A4 may be computed

offline. By proceeding similarly for any other dimension and component of velocity

and pressure, the form of equations (5.25) is obtained.

5.2.2 Static pressure estimation

In the incompressible Navier-Stokes equations (5.1), the total pressure 𝑃 appears

only as a spatial derivative in the momentum equation (5.1a). The static (𝑃 (𝑠)) and

dynamic (𝑃 (𝑑)) pressure terms that make up 𝑃 = 𝑃 (𝑠) + 𝑃 (𝑑) are characterised by

different time constants, with 𝑃 (𝑠) naturally demonstrating much slower dynamics.

This makes 𝑃 unobservable and consequently, the pressure estimated using equation

(5.23) is effectively dynamic pressure. We therefore propose to model static pressure

𝑃 (𝑠) by a Gaussian random walk model to track its slow variation and take a single

pressure measurement 𝑦𝑘(s𝑃 ) := 𝑦(s𝑃 , 𝑘∆𝑡) at regular time intervals ∆𝑡 within the

spatial domain Ω. We assume that the static pressure is uniform throughout this

domain. The full static pressure model is then given by

𝑃
(𝑠)
𝑘+1 = 𝑃

(𝑠)
𝑘 + 𝑤𝑘, (5.30)

𝑦𝑘(s𝑃 ) − 𝜑⊤(s𝑃 )z𝑘 = 𝑃
(𝑠)
𝑘 + 𝑣𝑘, (5.31)
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where s𝑃 is the position of the pressure sensor and 𝑤𝑘 ∼ 𝒩 (0, 𝜎2
𝑤) and 𝑣𝑘 ∼ 𝒩 (0, 𝜎2

𝑣+

𝜑⊤(s𝑃 )P
(𝑧)
𝑘 𝜑(s𝑃 )) denote additive white Gaussian noise. The term 𝜑⊤(s𝑃 )z𝑘 effec-

tively represents the dynamic pressure estimate so the difference between 𝜑⊤(s𝑃 )z𝑘

and the single pressure measurement 𝑦𝑘(s𝑃 ) is used to estimate the static pres-

sure term using the standard Kalman filter. The covariance term of 𝑣𝑘 caters for

both pressure sensor noise and dynamic pressure estimation error through 𝜎2
𝑣 and

𝜑⊤(s𝑃 )P
(𝑧)
𝑘 𝜑(s𝑃 ), respectively.

5.2.3 The observation process

Current LIDAR systems can only detect aerosol speeds in the line-of-sight direction

of the laser beam. Measurements are taken at discrete points along the line-of-sight

path, so we consider the case where observations are available at regular time intervals

∆𝑡 at 𝑛𝑠 points distinctly located throughout the spatial domain s ∈ Ω. Define the

observation vector as y𝑘(s𝑙) := y(s𝑙, 𝑘∆𝑡). Then the full model observation equation

may be written as

y𝑘(s𝑙) = u𝑘(s𝑙) sin 𝜃 + v𝑘(s𝑙) cos 𝜃 + r𝑘(s𝑙), (5.32)

where u𝑘(s𝑙) := u(s𝑙, 𝑘∆𝑡) and v𝑘(s𝑙) := v(s𝑙, 𝑘∆𝑡) are the horizontal and vertical

velocity components, respectively, 𝜃 is the LIDAR beam half-angle and s𝑙 is the

𝑙th position. Substituting for field decomposition yields the reduced-order model

observation equation given as

y𝑘(s𝑙) = 𝜑⊤(s𝑙) (x
(𝑢)
𝑘 sin 𝜃 + x

(𝑣)
𝑘 cos 𝜃) + r𝑘(s𝑙). (5.33)

5.3 Case study 1: Estimation from large eddy simu-

lation wind field data

Large eddy simulation (LES) wind field data is used to validate the estimator perfor-

mance. Wind flow over a large horizontal plane is considered and sparse line-of-sight
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wind speed measurements and a single pressure measurement are used to yield flow

velocity and absolute pressure estimates anywhere in the area of interest.

State estimation is performed using Algorithm 3.3 with the discrete-time reduced-

order spatio-temporal nonlinear descriptor model given by equations (5.25) and (5.33).

As discussed in [1], the coupling between the wind velocity fields is enhanced by

assuming that the instantaneous wind direction is uniform throughout the spatial

domain under study. Note that since the observation equation is linear in the states,

the predicted differential states are corrected using the standard Kalman filter update

equations.

5.3.1 Simulation setup

Realistic wind field data is generated using SOWFA [251, 252, 253], which enables

large eddy simulations of the atmospheric boundary layer. The interested reader is

referred to [251, 252, 253] for a detailed simulator description.

A typical snapshot of the simulated atmospheric boundary layer is shown in Figure

5-1 together with the output measurement waveform obtained at one of the observa-

tion locations within the spatial domain. The LIDAR configuration consists of two

beams of 15∘ half-angle with the line-of-sight wind speed being measured at discrete

points along the beams. The LIDAR range considered in this example is 220m and

the distance between sample points (black plus signs) is 20m, which is considerably

less than the characteristic gust length scales (𝒪(102)m) [1]. We shall assume free

boundary conditions throughout the estimation process.

5.3.2 Basis function selection and estimation

The basis function selection procedure adopted here follows that described in Section

4.1.2. For the simulated wind data, the cutoff frequency of the velocity field (-3

dB point) is 𝑓 (𝑢)
𝑐 ≈ 𝑓

(𝑣)
𝑐 ≈ 0.01 cycles/m, so that choosing the basis functions for

improved computation time, the cutoff frequency for the velocity and pressure fields

is set to 𝑓𝑐𝜑 = 0.003 cycles/m. An oversampling parameter of 𝜌𝜑 = 2.08 was chosen,
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(a) (b)

Figure 5-1: (a) A snapshot from a large eddy simulation of the atmospheric boundary
layer together with the line-of-sight wind speed observation locations (black plus
signs situated over a 15∘ half-angle LIDAR beam configuration) within a 120m×240m
spatial domain at a height of 100m above sea level. The contour represents the wind
speed in ms−1 with the prevailing wind direction being from the southwest. Note
that the rotor blades are shown for clarity, but the turbine dynamics are excluded
in this work. (b) Radial wind speed (RWS) measurement plots as captured at one
observation location.

requiring 𝑛𝜑 = 15 basis functions which were equally spaced over a 3×5 grid laid out

in the spatial domain Ω. Consequently, 15 × 3 = 45 basis functions are required to

represent the velocity and pressure fields.

A Monte Carlo approach was used to demonstrate the performance of the proposed

state estimation algorithm, where 50 realisations of wind field data were generated.

Each realisation estimated 𝐾 = 500 data points (in time) with a sample time of

∆𝑡 = 0.1s. Estimation parameters were set similar to [1], with 𝜎2
𝑞 = 1m2s−2, 𝜎2

𝑒 =

10−4m2s−2, 𝜎2
𝑟 = 10−3m2s−2, 𝜎2

𝑤 = 10−5Pa2, 𝜎2
𝑣 = 10−4Pa2, 𝑅𝑒 = 107, 𝛼 = 1 and

𝛽 = 2. No prior information about initial states was passed on to the state estimator

and the initial differential state distribution was set to 𝒩 (0, 100𝛾−1).
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5.3.3 Results and discussion

The mean root mean square error (MRMSE) as defined by equation (4.52) was used

to obtain a measure of accuracy for the state estimates by comparing the estimated

field with the generated field. For the spatial domain Ω considered, 𝑂 = 19×37 = 703

spatially discrete points are represented.

Table 5.1 summarises the average MRMSE values for the stabilized simulation

period (𝑡 ≥ 10s) with Figure 5-2 showing the corresponding MRMSE plots and Figure

5-3 showing a single time instant of the generated fields and estimated fields. Accurate

pressure estimation is obtained despite being measured only at a single point in

the field. This shows how the derived reduced-order model and proposed nonlinear

descriptor estimation algorithm can identify dynamic pressure and correctly estimate

the entire pressure field.

Table 5.1: Average MRMSE values for the stabilized simulation period (𝑡 ≥ 10s) for
50 simulation runs.

Quantity Value Range RMSE RMSE(%
(units) [min, max] of range)

Wind speed (ms−1) [6.59, 13.04] 0.72 11.16%
Wind direction (∘) [208.15, 236.66] 2.69 9.44%
Pressure (Pa) [-27.35, 29.87] 6.17 10.78%

(a) (b) (c)

Figure 5-2: Error in the field state estimation. The mean RMSE (solid line) and 95%
confidence interval (shaded area) plots are shown for (a) wind velocity magnitude
(m/s), (b) wind direction (∘) and (c) pressure (Pa).
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(a)

(b)

Figure 5-3: The spatial field estimation is visualised here by showing a single time
instant of the generated wind data (left) and estimated flow field (right), shown here
for (a) wind velocity magnitude (represented by contours, in m/s) and wind direction
(arrows representing direction) and (b) pressure (represented by contours, in Pa).

The contribution to the estimation errors come from mainly three sources: model

uncertainty, model reduction/approximation and sparse measurements. The two-

dimensional incompressible Navier-Stokes equations are used to approximate the full

three-dimensional atmospheric boundary layer flow model [14]. The model reduction

scheme employed affects model accuracy and selecting the number of basis functions

has to be traded off against the estimation accuracy that can be achieved with limited

spatial measurements. Basis function decomposition brings about the loss of high

spatial frequency components [149]. The Gaussian approximations made in the UKF-

based filtering algorithm also contribute towards the estimation error.
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5.4 Case study 2: Estimation from real-world LIDAR

measurements

The performance of the proposed estimation framework was further demonstrated

for real-world wind speed LIDAR measurements obtained from a five-beam wind

turbine-mounted LIDAR unit manufactured by Avent Lidar Technology.

5.4.1 A five-beam wind turbine-mounted LIDAR unit setup

Three of the five LIDAR beams provide measurements on a horizontal plane, with

two lateral beams at a 15∘ half-angle and one central beam. Since the only wind field

data available is the radial wind speed (RWS) at these observation locations, the two

lateral beams are the ones used for estimation, whilst the central beam is only used for

validating estimation performance. The dynamic wind model and estimation scheme

developed here allow for wind field reconstruction of the entire region of interest

using these LIDAR measurements. A single instance of this reconstruction is given in

Figure 5-4(a). The observation points as provided by the LIDAR unit are indicated

with black plus signs. The LIDAR range is 185m and the distance between sample

points is 15m. Basis function selection and state estimation were performed similarly

as in Section 5.3.2, with the time step ∆𝑡 = 0.25s. Numerical tests revealed that

the average runtime for the proposed estimation algorithm was 0.083s1 per single

iteration, which comfortably allows for real-time execution.

5.4.2 Results and discussion

A comparison of a typical real-world LIDAR wind speed measurement data set and

its estimate is shown in Figure 5-4(b) for the left beam (LB; top plot) and the right

beam (RB; bottom plot) at a distance of 80m away from the LIDAR unit. A similar

comparison is shown in Figure 5-5 for every observation location located on the central

beam in the order of increasing distance from the LIDAR unit (top to bottom plots).

1Simulations were carried out on an Intel R○Core i5-2450M @ 2.50GHz personal computer with
4GB of RAM.
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(a) (b)

Figure 5-4: (a) A single instant from the reconstructed wind field obtained from esti-
mation using the real-world LIDAR wind speed measurements along the two lateral
(outer) beams in a 15∘ half-angle configuration. The wind velocity magnitude is rep-
resented by contours (in m/s) and direction arrows represent wind direction. Note
that the rotor blades are shown for clarity, but the turbine dynamics are excluded in
this work. (b) A typical real-world LIDAR wind speed measurement data set shown
in comparison with the estimated radial wind speed (RWS) for the left beam (LB;
top plot) and the right beam (RB; bottom plot) at a distance of 80m away from the
LIDAR unit.

The accuracy of the state estimates was evaluated by comparing the radial wind

speed estimates to the LIDAR wind speed measurements at the central beam, using

the MRMSE as defined in equation (4.52), where 𝑂 = 10 is now the number of

observed spatial locations (along the central beam) and 𝑁 = 30 is the number of

independent LIDAR measurement data sets, each of 20s duration. The MRMSE of

the field estimates is shown in Figure 5-6(a). The average MRMSE for the entire

duration is 0.8452m/s, which is approximately 12.6% of the wind field RWS range

([5.26 11.95] m/s). This is comparable to the MRMSE value obtained for the synthetic

LES data scenario, with a slight increase being potentially a result of more significant

uncertainties and measurement imperfections in the real-world scenario, including

LIDAR range weighting effects and atmospheric stability.

From Figure 5-5, it is evident that the estimation performance degrades with
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Figure 5-5: A typical comparison of the real-world LIDAR wind speed measurements
and the corresponding estimation shown for every observation location along the cen-
tral beam. Plots are shown in the order of increasing distance from the LIDAR unit,
with the top plot showing the estimation at 50m away from the LIDAR equipment.

an increased distance as a result of being further away from the nearest available

measurement. Detecting wind gusts coming from the furthest locations might be

particularly difficult since some gusts may approach the LIDAR unit without going

past any measurement for them to be identifiable. Such estimation performance

degradation is further visualised using the MRMSE of the field estimates over space

along the central beam, as shown in Figure 5-6(b). The MRMSE is defined at each
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(a) (b)

Figure 5-6: Error in the field state estimation at the central beam observation loca-
tions. The mean RMSE (solid line) and 95% confidence interval (shaded region) is
shown for the radial wind speed (m/s) for 30 independent LIDAR measurement data
sets over (a) time and (b) space, along the central beam direction.

spatial location 𝑜 as

MRMSE𝑜 =
1

𝑁

𝑁∑︁
𝑗=1

⎯⎸⎸⎷ 1

𝐾 + 1

𝐾∑︁
𝑘=0

(𝜄
(𝑗)
𝑘,𝑜)

2. (5.34)

5.5 Conclusion

This chapter has proposed a spatio-temporal wind flow estimation framework with a

reduced-order descriptor fluid flow model and a nonlinear estimator that accurately

estimates velocity and in particular pressure given sparse line-of-sight wind speed

measurements. By uniquely employing a pressure Poisson equation (PPE) formula-

tion, a spatially-continuous, strangeness-free nonlinear DAE form of the Navier-Stokes

equations was obtained. The modified UKF algorithm derived in Chapter 3 was used

to estimate the resulting nonlinear descriptor formulation. The estimation framework

was successfully validated for both simulated and real-world LIDAR wind measure-

ment data.

Results show that by using only limited radial velocity measurements along two

LIDAR beams, estimates of the horizontal and vertical velocity components, together

with pressure, is possible. Since determining both velocity components is equivalent

to estimating the wind magnitude and direction, this work shows that it is possible to
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overcome Cyclops’ dilemma using a dual-beam LIDAR setup. It was further shown

that the developed method is able to pinpoint the strength, location and direction of

incoming gusts, with good accuracy. The derived simplified model enabled estimates

to be computed faster than the sample rate of the LIDAR equipment under study,

paving the way for use in real-time applications.
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Chapter 6

Conclusion

This thesis presents an estimation framework for nonlinear temporal and spatio-

temporal descriptor systems. The approach caters for the estimation of infinite-

dimensional nonlinear PDAE models, known to easily describe spatially heteroge-

neous dynamics. The estimation scheme retains a continuous-space representation

throughout and makes use of unscented transform-based inference mechanisms. In

summary, the proposed methodology for estimating nonlinear spatio-temporal DAE

systems consists of:

∙ reducing the continuous-time, infinite-dimensional nonlinear PDAEs to finite-

dimensional discrete-time descriptor form, with the associated state dimension-

ality decoupled from the measurement process dimensionality;

∙ adopting a spatial frequency analysis approach for basis function selection;

∙ estimating the spatio-temporal field using the proposed estimators for descriptor

systems from a set of observations.

The methods developed in this work were validated using both simulated data

and real-world measurement data sets.
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6.1 Summary

Chapter 2 discusses different classes of spatio-temporal models which are commonly

used and reveals how the study of nonlinear PDAEs is warranted for the applications

we consider in this work. Nonlinear PDAEs retain the physical meaning of the under-

lying process governing the system whilst catering for spatial heterogeneity. Model

reduction methods are also described to show how a spatio-temporal field may be

approximated in finite-dimensional form which is readily applicable to the available

state estimation tools which are also described in the same chapter. The prevalent

state estimation schemes are discussed with particular emphasis to those concerning

this work, namely, the UKF and URTSS methods.

In the first part of Chapter 3, the filtering and smoothing problems for temporal

nonlinear descriptor systems having deterministic algebraic equations were addressed

by presenting a modified UKF algorithm and a modified UKS algorithm following an

RTS formulation. The proposed filter and smoother yield the mean and covariance of

both differential and algebraic state estimates. The unscented transform is employed

to determine the algebraic state estimates using the mean and covariance of the

differential state estimates. The performance of the filter and smoother were demon-

strated for an electrochemical case study and compared to alternative approaches. As

expected, the URTSS was shown to exhibit superior state estimation performance.

The second part of Chapter 3 derives new unscented transform-based filtering

and smoothing algorithms for nonlinear DAEs characterised by stochastic differential

and algebraic equations. Differential and algebraic state filtering and smoothing dis-

tributions are derived as unscented transform-based Gaussian approximations. The

resulting approximate optimal filtering and smoothing solutions consist of the mean

and covariance of both differential and algebraic state estimates. By using this in-

formation throughout successive recursions in the backward smoothing pass of the

URTSS, suitable corrections to the forward filtering results were obtained. A simu-

lated filtering and smoothing problem demonstrated the performance of the proposed

filter and smoother. All methods developed in this chapter also allow the inclusion
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of both differential and algebraic state variables in the measurement equation.

Chapter 4 tackles the nonlinear PDAE estimation problem, which to the best of

our knowledge, has not been addressed in the signal processing literature. A novel

state estimation scheme for a class of spatio-temporal nonlinear PDAEs is proposed.

By employing a finite-dimensional reduction approach based on basis function de-

composition, a nonlinear PDAE is converted to a nonlinear DAE form for which

the new unscented transform-based filtering algorithm derived in Chapter 3 is used.

With flow estimation applications in mind, estimation error performance is deemed

critical and the associated posterior Cramér-Rao bounds are therefore derived. The

performance and viability of the developed estimation framework is demonstrated for

a realistic atmospheric boundary layer wind flow estimation problem where results

show consistent accurate estimates of unmeasured flow velocity and pressure.

Finally, Chapter 5 proposes a spatio-temporal wind flow estimation framework

with a reduced-order dynamic fluid model and a nonlinear estimator that accurately

estimates velocity and in particular pressure given sparse line-of-sight wind speed

measurements. By uniquely employing a pressure Poisson equation (PPE) formula-

tion, a spatially-continuous, strangeness-free nonlinear DAE form of the Navier-Stokes

equations was obtained. The modified UKF algorithm derived in Chapter 3 was used

to estimate the resulting nonlinear descriptor formulation. The estimation framework

was successfully validated for both simulated and real-world LIDAR wind measure-

ment data. Results show that by using only limited radial velocity measurements

along two LIDAR beams, the wind magnitude and direction, together with pressure,

may be estimated with considerable accuracy. This shows that it is possible to over-

come Cyclops’ dilemma using a dual-beam LIDAR setup. It was further shown that

the developed method is able to provide information about the strength, location and

direction of incoming gusts, with good accuracy. The derived simplified model en-

abled estimates to be computed quicker than the sample rate of the LIDAR equipment

used in this study, making it a candidate solution in real-time applications.
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6.2 Future work

Various new avenues of research may be identified to enhance the proposed state

estimation framework and widen the applicability of nonlinear descriptor models to

several spatio-temporal phenomena. Such additions include:

∙ An observability analysis - Although the sensor configurations employed in this

work resulted in good estimation performance, a proper observability analysis is

still required to have a handle over an adequate sensor layout and the minimum

number of sensors required for an acceptable estimation performance. Also, the

optimal sensor placement problem in the context of nonlinear spatio-temporal

PDAEs remains an open one.

For the LIDAR-based wind flow estimation problem studied in this work, sparse

flow velocity measurements were used to estimate wind velocity and pressure.

However, for other potential applications, such as flow control for reduced drag

in transport vehicles, using only pressure sensors would be a cheap alternative

to estimate wind flow. The coupling between the velocity and pressure fields,

together with the associated observability properties of these spatio-temporal

fields should be studied in detail for accurate estimation of both velocity and

pressure for different observation processes.

∙ Joint state-parameter estimation - Whenever in addition to the states, a set

of parameters are unknown, a joint state-parameter estimation problem arises.

The extension of MCMC sampling methods such as the Gibbs sampler [274]

and the Metropolis-Hastings algorithm [275], as well as EM methods [74], to

nonlinear DAEs and PDAEs would constitute interesting contributions. Joint

state-parameter estimation problems are often encountered in interesting ap-

plications in fluid flow systems, electrochemical processes and elastic fiber dy-

namics, to name a few, and novel estimation tools for such systems would need

to be developed. Furthermore, although identifiability is well treated for stan-

dard ODE models (e.g. [276]), an identifiability analysis for nonlinear DAE and
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PDAE models is lacking in the literature, with a notable exception for nonlinear

DAE models being the work of Ljung and Glad [277].

∙ The consideration of boundary conditions - For the spatio-temporal flow estima-

tion problem considered in this thesis, free boundary conditions were assumed

for the large spatial domain under study. The assumption of having no boundary

condition is made in a wide range of applications, such as the analysis of cloud

dynamics in meteorology [128], diffusion of pollutants [278, 279] and ecological

models for the spread of invasive species [43]. Nevertheless, for smaller spatial

domains, boundary conditions cannot be ignored, as observed in various phe-

nomena and applications in mathematical physics. In view of such conditions

for spatio-temporal processes, the estimators must be modified to accommodate

the boundary conditions and allow for estimation with known constraints.

∙ Particle filtering and smoothing for nonlinear descriptor systems - Although

Gaussian approximations work well for several filtering problems, filtering and

smoothing distributions may sometimes be multi-model, or a number of state

components may be discrete. In such circumstances, particle filtering and

smoothing can work better. These methods form Monte Carlo approximations

to the Bayesian filtering and smoothing equation solutions. Their application to

nonlinear DAEs and PDAEs remains largely unexplored ([280] is an exception).

∙ Spatio-temporal control - The control problem for spatio-temporal descriptor

systems has received little attention in systems and control theory. The develop-

ment of spatio-temporal descriptor models given in this thesis pave the way for

robust, optimal and model predictive controllers that may be modified for this

class of systems. The control of such spatio-temporal systems may use static

or mobile agents and problems such as the planning of trajectories for mobile

agents to estimate and control the spatio-temporal fields may be tackled.
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Appendix A

Index concepts of nonlinear

descriptor systems

This appendix provides a brief description of the main index concepts of nonlin-

ear descriptor systems as applied in this thesis. Such concepts as well as general

properties of DAEs are discussed extensively in [31] and references therein.

To describe DAE index concepts, the following general nonlinear DAE is con-

sidered:

F̃(Ẋ(𝑡),X(𝑡), 𝑡) = 0, (A.1)

where F̃ ∈ R𝑚𝑠 , X(𝑡) = (x⊤(𝑡), z⊤(𝑡))⊤ and the superscript ⊤ denotes the

transpose operator. DAE models are harder to handle in comparison to state-

space models since in general, equation (A.1) is not solvable for Ẋ(𝑡). Should

this be the case, the DAE may be reformulated into the state-space system

given by

Ẋ(𝑡) = F̄(X(𝑡), 𝑡), (A.2)

for which standard techniques for state-space models may be employed. In

order to transform a DAE into an ODE, it is typically required to differentiate
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equations a number of times with respect to time. The differentiation index is

the number of times a descriptor model needs to be differentiated to obtain a

solution for Ẋ(𝑡). More formally, the differentiation index is defined as follows

[265]:

Definition A.1 (Differentiation index). The differentiation index of the

DAE given by equation (A.1) is the least 𝜈𝑑 such that Ẋ(𝑡) is uniquely deter-

mined as a function of 𝑡 and X(𝑡) using the following system of equations:

F̃(Ẋ(𝑡),X(𝑡), 𝑡) = 0,

𝑑

𝑑𝑡
F̃(Ẋ(𝑡),X(𝑡), 𝑡) = 0,

... (A.3)

𝑑𝜈𝑑

𝑑𝑡𝜈𝑑
F̃(Ẋ(𝑡),X(𝑡), 𝑡) = 0.

In order to further examine DAE systems, Kunkel and Mehrmann [281] present

a strangeness index, which generalises the differentiation index. Their analysis

makes use of successive differentiations of the DAE formulation. For conve-

nience, we shall assume that all functions are sufficiently smooth. A nonlinear

derivative array may first be defined as

F̃Λ(X(Λ+1)(𝑡), . . . , Ẋ(𝑡),X(𝑡), 𝑡) = 0, (A.4)

where the original equation is stacked such that all its derivatives up to level Λ

are grouped into the following larger formulation:

F̃Λ(X(Λ+1)(𝑡), . . . , Ẋ(𝑡),X(𝑡), 𝑡) =

⎡⎢⎢⎢⎢⎢⎢⎣
F̃(Ẋ(𝑡),X(𝑡), 𝑡)

𝑑
𝑑𝑡
F̃(Ẋ(𝑡),X(𝑡), 𝑡)

...
𝑑Λ

𝑑𝑡Λ
F̃(Ẋ(𝑡),X(𝑡), 𝑡)

⎤⎥⎥⎥⎥⎥⎥⎦ . (A.5)

Partial derivatives of F̃Λ with respect to a selection of variables 𝑝𝑑 from (X(Λ+1)(𝑡),
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. . . ,Ẋ(𝑡), X(𝑡), 𝑡) may be represented by, for instance,

F̃Λ;Ẋ,...,X(Λ+1) =

[︂
𝑑

𝑑Ẋ
F̃Λ

𝑑

𝑑Ẍ
F̃Λ · · · 𝑑

𝑑X(Λ+1)
F̃Λ

]︂
. (A.6)

The solution set for the derivative array F̃𝜐 for an integer 𝜐 is written as

L𝜐 = {z̃𝜐 ∈ R× R𝑛 × · · · × R𝑛|F̃𝜐(z̃𝜐) = 0}, (A.7)

where 𝑛 = 𝑛𝑥 +𝑛𝑧. The following hypothesis given in [281] may now be stated:

Hypothesis A.1. Consider the general DAE equation given by equation (A.1).

There exist integers 𝜐, 𝑟𝑠, 𝑎𝑠, 𝑑𝑠 and 𝑣𝑠 such that L𝜐 is not empty and the

following conditions are true:

1. The set L𝜐 ⊆ R(𝜐+2)𝑛+1 makes up a manifold having dimension (𝜐+2)𝑛+

1 − 𝑟𝑠.

2. The following holds on L𝜐:

rank F̃𝜐;X,Ẋ,...,X(𝜐+1) = 𝑟𝑠. (A.8)

3. The following holds on L𝜐:

corank F̃𝜐;X,Ẋ,...,X(𝜐+1) − corank F̃𝜐−1;X,Ẋ,...,X(𝜐) = 𝑣𝑠, (A.9)

where the corank is the corange dimension with the convention that

corank F̃−1;X = 0.

4. The following holds on L𝜐:

rank F̃𝜐;Ẋ,...,X(𝜐+1) = 𝑟𝑠 − 𝑎𝑠, (A.10)

where the matrix functions Z2 and T2 that are smooth, full rank and
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defined on L𝜐, of size ((𝜐 + 1)𝑚𝑠, 𝑎𝑠) and (𝑛, 𝑛− 𝑎𝑠), respectively, satisfy

Z⊤
2 F̃𝜐;Ẋ,...,X(𝜐+1) = 0, (A.11)

rank Z⊤
2 F̃𝜐;X = 𝑎𝑠, (A.12)

Z⊤
2 F̃𝜐;XT2 = 0, (A.13)

on L𝜐.

5. The following holds on L𝜐:

rank F̃ẊT2 = 𝑑𝑠 = 𝑚𝑠 − 𝑎𝑠 − 𝑣𝑠. (A.14)

The strangeness index of DAE systems as used in this thesis may now be defined

as follows [281]:

Definition A.2 (Strangeness index). The strangeness index of the descrip-

tor system given by equation (A.1) is the least 𝜐 for which Hypothesis A.1 is

true. If 𝜐 = 0, the DAE is said to be strangeness-free.
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