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‖, ∀i ∈ Vn. . . . . . . . . . . 91

5



4.4 Convergence result of the objective function. . . . . . . . . . . . . 91

5.1 Graph topology of the distributed attitude estimation. . . . . . . 128

5.2 Posterior estimate of the quaternion states by all radars. . . . . . 129

5.3 Process (black), measurement (blue) and prediction of the mea-

surement (red) by all radars. . . . . . . . . . . . . . . . . . . . . . 130

5.4 Average MSEs of the radars. . . . . . . . . . . . . . . . . . . . . . 130

5.5 MSEs of 50 simulations. . . . . . . . . . . . . . . . . . . . . . . . 131

6



Abbreviations

CRB Cramér-Rao Bound

CKF Curbature Kalman Filter

DRKF Distributed Riemannian Kalman Filter

DUKF Distributed Unscented Kalman Filter

EKF Extended Kalman Filter

FIM Fisher Information Matrix

ICRB Intrinsic Cramér-Rao Bound

MAS Multi-agent System

MSE Mean-squared Error

PDF Probability Density Function

RSN Robotic Sensor Network

UKF Unscented Kalman Filter

WSN Wireless Sensor Network

7



The University of Manchester
Ishak Hilton Pujantoro Tnunay
Doctor of Philosophy
Distributed Coordination and Estimation of Multi-agent Systems
August 5, 2020

This thesis addresses problems arising in the coordination and estimation of a
connected multi-agent system. The distributed coordination of agents consists of
cooperative control and optimisation. Cooperative control aims at guiding a team
of agents moving in a formation, maintaining a required pattern or velocity. An
optimisation problem in a group of agents aims at driving them towards specific
locations according to a performance index. Furthermore, the distributed estima-
tion problem when states in a dynamical process are unknown is also considered;
the agents are then assigned to estimate the unknown states cooperatively.

A coordination problem investigated in this thesis is the coverage control
problem in robot sensor networks whose objective is to find the optimal locations
of the sensors leading to the best measurement. In this work, the objective
function of locational optimisation is solved by interchanging the positions of
the neighbouring agents. The formulated Lagrangian function augments the
objective function and the consensus constraint to accommodate this mechanism.
Accordingly, a coverage controller with cooperative constraint is proposed via
the gradient-descent protocol. Furthermore, a controller is designed to drive the
robots to the optimal locations in a finite time regardless of their initial positions.
However, since an environment is not generally convex due to the presence of
obstacles, a coverage controller with potential-field based obstacle avoidance is
also considered to drive the robot to the optimal location safely.

Motivated by the unavailability of information distribution in an environment
before sensor deployment, a class of distributed nonlinear filter is designed to
estimate the states of a dynamical process using the shared information among
the agents. The proposed algorithm extends the distributed unscented Kalman
filter to accommodate any communication topology. It utilises not only the mea-
surement from an agent’s sensor for estimating the process but also the shared
information. The proposed filter is then employed to estimate the information
distribution in the optimal coverage problem with unknown information distribu-
tion. Different from the existing field-estimation algorithms, the proposed filter
also optimises the estimator gains in every iteration to avoid instability of the
system caused by failure to choose the appropriate parameters.

Thereafter, the question regarding how good is a distributed recursive Bayesian-
based estimator when the information belongs to more general manifolds other
than Euclidean, i.e., Riemannian manifolds, are also addressed. In this thesis,
the formulated intrinsic Cramér-Rao bounds (ICRBs) demonstrates that the non-
zero curvature term of the manifold also affects the performance of the Bayesian
estimator. Lastly, assuming that the probability density functions (PDF) of
the noises are Gaussian, a distributed nonlinear Kalman filter for Riemannian
systems is also proposed. The simulations verify that the mean-squared error of
the designed filter will not be lower than its ICRBs.
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Chapter 1

Introduction

1.1 Motivation

Aggregate motion of a flock of birds, school of fish and coordination of ants

have inspired the development of the distributed multi-agent systems (MASs) [1].

Mainly in the area of robotics, wireless sensor networks, and distributed machine

learning, the development of MASs has received attention in recent decades

as it offers beneficial mechanism in the implementation side. Mimicking the

phenomenons in nature, agents in a MAS do not necessarily receive and utilise

information from the whole network; instead, they communicate with nearby

agents in the coordination process, namely, distributed cooperative control. Due

to limited resources in implementations, this mechanism may alleviate the burden

of a centralised computer by allowing each agent to evaluate a decision according

to information shared with neighbouring agents. By utilising shared resources, the

distributed scheme might significantly improve operational effectiveness, enhances

scalability and reduces computational costs [2].

In this thesis, distributed coordination of a team of agents could into coop-

erative control and optimisation. Cooperative control aims at guiding a team

of agents moving in a formation maintaining certain patern or velocity. An op-

timisation problem in a group of agents aims at driving them towards certain

locations according to the specified performance index. In many cases, since some

parameters of the systems might be unknown, the agents can also be employed to

approximate the unknown values cooperatively. This scenario could be referred

15



CHAPTER 1. INTRODUCTION 16

to as distributed estimation of multi-agent systems.

In a networked system, distributed coordination has widely been investigated

in recent decades. Simple cooperative control using consensus algorithm has

received considerable attention, such as [3, 4, 5, 6, 7]. The simple consensus

protocol is also applicable to the optimisation problem in multi-agent systems

whenever a consensus of the optimising parameters is required. Such an opti-

misation problem is then referred to as the distributed optimisation. Previous

activities related to distributed optimisation has been investigated in [8, 9, 10, 11].

Furthermore, if some optimising parameters are unknown before, a distributed

estimation algorithm needs to be involved. Several studies related to this area

have been conducted by [12, 13, 14, 15, 16, 17, 18] demonstrating the performance

of distributed estimation algorithm in connected multi-agent systems. Another

distributed estimation algorithm combined with application to robotic sensor net-

work for approximating an informatin distribution in an unknown area can be

found in [19, 20, 21].

1.2 Literature Review

1.2.1 Consensus Protocol for Coordination

In coordination of a MAS, consensus protocol is a fundamental technique utilised

in many applications including formation control [22], distributed optimisation

[23] and estimation [24]. The agents in a consensus protocol exchanges infor-

mation with neighbouring agents and subsequently updates its state based on

the received information such that the information of all agents converges to a

consensus value. From the optimisation perspective, the consensus protocol aims

to minimise the disagreement function of information throughout the network

[5, 25, 26]. A crucial means to investigating the consensus algorithm is graph

theory. Algebraically, the graph topology of a network corresponds to adjacency,

degree and Laplacian matrices which could accordingly be employed to design

many cooperative controllers [27, 28, 6].

The communication topology, represented by a graph, plays an essential role

in the performance of the consensus algorithm. In the continuous-time consensus
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with fixed time topology, the consensus value could be achieved if and only if the

communication graph is connected for undirected graph, or strongly connected

for directed graph [5, 6]. The Laplacian matrix whose graph is strongly connected

has only a zero eigenvalue. Moreover, the average consensus is reached asymp-

totically if the directed graph is balanced. In discrete-time consensus protocol,

the communication topology is often represented via Perron stochastic matrix

instead of Laplacian matrix [29, 13]. Unlike the continuous-time consensus, a

strongly connected graph is a necessary condition, not sufficient, to guarantee

the convergence to a consensus value. Also, a balanced graph is just a neces-

sary condition to guarantee the convergence to average consensus. In some cases,

Perron matrix could be assembled utilising the Laplacian matrix with some ad-

ditional parameters [5]. Consensus protocol with fixed communication topology

has been established in [30, 31]. However, in implementation, switching topology

might happen due to, for example, limited communication range. The problem of

consensus with switching topologies has been studied in [32, 25, 33]. In term of

communication topology, these results about switching graphs indicated that as

long as the graph is strongly connected, the consensus value of the network can

still be achieved.

Timeliness has become a crucial requirement in many applications, such as

in a post-disaster evacuation and nuclear decommissioning, to prevent worsening

situations [34]. In control theory, timeliness is related to the settling time or

the convergence of an autonomous system to the origin from a set of initial

values. The study reported in [35] has initiated the finite-time stability analysis

in the control system by showing that the convergence time depends on the initial

states. By utilising the proposed finite-time strategy, a finite-time consensus of

a team of agents with single-integrator dynamics, double-integrator dynamics

and with nonholonomic dynamics were presented in [36, 37, 38]. The finite-

time based controller has also found application in the pose synchronisation

of spacecrafts whose poses are represented by dual-quaternion as reported in

[39]. However, since those results depend on the initial values, if the agents

are initially separated with large distance, the system requires more time to

converge to a formation. To overcome this problem, results in [40] proposed a
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finite-time consensus controller that guarantees the convergence within a specified

boundary of settling time regardless of the initial positions. Subsequently, work

in [41] has extended the result in [40] to consensus of multi-agent systems with

double-integrator. Furthermore, this approach has also been applied to design a

finite-time consensus controller with the presence of time delays in a networked

system in [42].

1.2.2 Coverage Control in Robotic Sensor Network

Wireless sensor network (WSN), defined as a group of wirelessly-connected sensors

deployed in an environment to monitor its physical condition and accordingly to

provide the required information, has received attention in recent decades. The

physical conditions might include, but not limited to, temperature, pollution

levels, humidity, wind, sound, and nuclear radiation. In a remote area, a WSN

could be equipped with actuators enabling them to move according to particular

command dynamically. WSN with dynamic movement capability could be referred

to as a robotic sensor network (RSN). There are two possible architectures of

the network: centralised and decentralised. However, to improve the modularity

and scalability of the network as well as to comply with the limited resources,

including power supply, processor, and memory, a decentralised communication

scheme is desirable in implementation.

From the optimisation perspective, the main task of a WSN is to maximise

the coverage of the deployed sensors, which leads to the best measurement data

of the corresponding environment. To address this problem, the locational opti-

misation, originated from the field of operation research, has been proposed to

find the best locations of agents given an interest function [43, 44]. However, this

optimisation problem is solved only for specific information distribution. This

optimisation requires manual recalculation whenever the information distribution

changes. To overcome this problem, centroidal Voronoi Tessellation has become

a recognised tool to solve this locational problem [45, 46]. Several strategies to

solve this problem by iteratively minimises the objective function of the locational

optimisation has been reported in [46] and [47].

The distributed coverage control implementation has attracted attention from



CHAPTER 1. INTRODUCTION 19

the robotics community. By adopting the locational optimisation problem [48],

a simple proportional controller was initially developed in [46]. However, this

algorithm requires several assumptions to be satisfied: the sensing range of all

agents needs to be unlimited, isotropic and homogenous, the environment where

the robots are deployed needs to be convex, and the communication graph has

been known a priori. A coverage strategy to overcome the problem with limited

sensing range has been addressed in [49] by assuming that the sensing range is still

isotropic but only within a certain range. To relax the homogeneity assumption

about the sensor, the protocol in [50] has enabled implementation of coverage

control to a non-convex environment using a group of sensors with heterogeneous

sensing range. Studies in [51] and [52] have investigated coverage control with

non-convex areas by a group of sensors with limited and anisotropic sensing range.

Another result related to the non-convex environment coverage control has been

conducted in [53] by considering obstacles inside the environment. Regarding

the communication topology, result in [54] has included a dynamically-routing

communication algorithm while optimising the coverage control problem. However,

among the existing mechanisms in literature, coverage algorithm from the control

perspective that guarantees the timely convergence in a finite time has not been

investigated.

Furthermore, the aforementioned results assumed that the information distri-

bution of an area had been known by all agents, which is restrictive in implemen-

tation. This situation would require an additional field estimation algorithm to

enable deployment of mobile sensors in an unknown area. The most common

strategy to find the information distribution is by assuming that the informa-

tion distribution is a linear combination of kernel functions whose weights are

adjusted during observations [55, 56, 21]. A decentralised and adaptive coverage

control to estimate the appropriate weights has been investigated in [55]. The

convergence rate of the algorithm was then improved via ladybug exploration

scenario in [57] and consensus learning [58]. In [56], a distributed interpolation

scheme has also been investigated to estimate the weight of the kernel functions

recursively. It should be noted that noises in the system and measurement have

not been considered explicitly. Different from the coverage control perspective,
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a gradient-based source-finding mechanism has been proposed in [59] where the

noise in the measurement process has been considered.

Most related to our work, studies about coverage problems with field estimation

of unknown information distribution can be found in [60, 61, 21]. These field

estimation algorithms have not considered the noises in the measurement and

communication network. Moreover, these algorithms require estimator gains need

tuning before execution, but the boundary of the gains has not been given. Failure

to choose suitable gains prior to the execution might lead to an unstable system.

1.2.3 Distributed Unscented Kalman Filter

The estimation problem of a process is mainly characterised by the presence of, at

least, an unknown parameter in the dynamics. This problem naturally emerges

whenever a system provides no direct measurement of the required parameter, or

the process and sensor noises disrupt the information. An estimator is required

to provide an estimate value closest to the true value. Since measurements and

processes, in reality, are generally noisy, many areas in signal processing require

solving the estimation problem, such as the attitude estimation of an aircraft [62],

visual odometry [63], localisation and mapping [64], etc.

In the area of estimation problem, Kalman filter has been a notable technique

utilised to deal with sensor filtering, data fusion, state estimation and system

identification. It includes uncertainties to the model of a system, and then

iteratively analyzes the statistics from sensing information in order to achieve a

minimum mean-squared error (MMSE) between the obtained information and

the desired value. Generally, there are two main classifications of Kalman filter:

linear Kalman filter and nonlinear Kalman filter. Linear Kalman filter is designed

to estimate a system with linear dynamics. Example of the previous development

in this linear Kalman filter can be seen in [65]. As an extension of the linear

Kalman filter, Extended Kalman Filter (EKF) was designed to solve the nonlinear

estimation problem by linearizing the nonlinear dynamics and then treated the

linearised system as the linear Kalman filter. Another technique to treat the

nonlinear estimation is Unscented Kalman Filter (UKF) by utilising unscented

transformation in the prediction update. There have been numerous studies
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investigating this nonlinear estimation, the example of the developments related

to these nonlinear filtering methods can be found in [66, 67, 68, 69, 16]. In addition

to ordinary estimation problem, Kalman filter has also found application in the

reinforcement learning algorithm to estimate the optimal policy, value function

and Q-function via temporal difference method [70, 71].

The field of Kalman filters in a connected sensor network has become an

interesting area to investigate. It incorporates the concept of distributed control

systems and the Kalman filtering method. In the case of centralised Kalman

filters, for both the linear and nonlinear systems, intensive investigations have

been carried out, for example, by [65, 67, 68, 69, 16, 72] and [73]. While in the

case of networked linear filter, the study reported by [74] added updating weight

on the measurement dynamics to fuse information from a number of sensors, while

[75] includes the low, high- and band-pass consensus filters. The stability of a

networked filter, namely, the Kalman-Consensus filter, has been analysed in [12],

while various scenarios of diffusive Kalman filtering for the linear system have been

designed in [15]. Generalising the concept of distributed Kalman filtering, the

networked nonlinear Kalman filtering has also attracted numerous developments

in distributed Extended Kalman Filter (EKF), Unscented Kalman Filter (UKF)

and Cubature Kalman Filter (CKF) [14, 76, 77, 78, 13].

In application, the distributed version of Kalman filter-based estimator has

also attracted attentions due to the high scalability, robustness to failure, and

flexibility [13, 79]. The distributed protocol is able to reduce the computation

burden of a central processor while maintaining the performance of the global

result. In practice, communication medium has noises which can affect the quality

of shared information among agents. Although there have been some results

on the distributed nonlinear Kalman filter algorithms in literature, such as in

[75, 13, 80], the communication noise has not been considered and analysed. Both

in the linear and nonlinear cases, the previous research on distributed Kalman

filter have considered the implementation of consensus protocol to minimise the

disagreement of the estimate results among the sensors. However, the optimal

gain of the consensus term has not been analysed in order to guarantee the

performance. If one fails to pick the consensus gain, the result may oscilate and
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become unstable. Thus, the optimal Kalman and consensus gains need to be

designed such that the optimality and boundedness can be guaranteed.

1.2.4 Distributed Bayesian Estimation on Manifolds

Literature indicates that information can evolve not only in Euclidean space but

also in other manifolds, such as Riemannian manifolds. Estimator for, specifically,

Euclidean information can be designed by minimising the norm of the mean-

squared Euclidean distance between the true and the estimate values. This

scheme applies to the estimation problem of information in a locally-flat manifold

and having a sufficiently-large signal-to-noise ratio(SNR). However, since the

direct implementation of this type of estimator to Riemannian systems is not

generally applicable, the estimator needs modification to accommodate the non-

zero curvature of the manifold.

An important measure of the performance of an estimator is the Cramér-Rao

bound (CRB). The bound describes the theoretical limitation of an estimator,

which can accordingly be utilised as a means to assess the actual performance

quality. In the Euclidean estimation problem, the bound corresponds to matrix

inequality where the covariance matrix of an estimator is at least as high as the

inverse of the Fisher information matrix (FIM) [81, 82]. This bound indeed applies

to Riemannian manifold if the manifold is locally Euclidean and the information

has a sufficiently-large signal-to-noise ratio (SNR). Otherwise, the lower bound

of the covariance matrix will comprise the inverse of the FIM together with the

curvature terms [83, 84, 85].

The development of recursive CRBs in Euclidean information space have been

conducted in the recent years, as reported in [81, 86, 87, 82, 88, 89]. The recursive

version of the posterior CRB in [81] was elegantly derived by firstly construct-

ing a Fisher information matrix from the first to the last posterior probability

distributions; followed by extracting the inverse of the right-lower block of the

large Fisher information matrix. Following the identical procedure, one improved

CRBs to explain the performance of filtering, prediction, and smoothing steps

of an estimator [86]. In [87], conditional CRB of recursive Bayesian estimation

was developed. However, another conditional CRB proposed in [82] removed the
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auxiliary FIM of the recursive update for the conditional bound proposed in [87],

and provided alternative approximation which was shown to be more compact

and computationally efficient. By assuming the distribution of the noises to being

Gaussian, posterior CRB for dual Kalman estimation was derived in [88]. In [89],

the bound for a class of distributed recursive Bayesian estimator, i.e., unscented

particle filter, with application to multiple source tracking using acoustic sensor

network was derived.

Different from the Euclidean estimation problem, which has been intensively

studied, Riemannian based Bayesian estimator still requires more attention. The

recursive Bayesian estimators for information in manifolds with Gaussian distri-

bution might extend the Euclidean approach; hence, Kalman filter is the optimal

solution of the estimation problem. However, as information is evolving in a

manifold, the curved geodesics of the manifold necessitates additional treatment

to tackle the estimation problem. Directly implementing Euclidean filtering

strategies on curved Riemannian manifold might leads to incorrect estimate value

as they do not consider the curvature of the manifold utilising, for example,

exponential or logarithm mapping. Accordingly, results in previous estimator

designs, as reported in [90] and [91], have utilised the exponential and logarithmic

mapping of manifolds. The latter explicitly considers the noises in the process

and measurement dynamics and provides more rigorous formulation. Instead of

designing filter in generic Riemannian manifold, there have been several devel-

opments that consider the Lie group or quaternion property in the filter design

and apply it to intrinsic filter on Lie group [92, 93], particle filter on Lie group

[94], pose estimation using dual-quaternion [95], attitude estimation in SE(3)

with gyroscope bias [96], localisation problem [97], and visual inertial odometry

[98, 99]. However, based on those existing results, a distributed implementation

of the filtering algorithm for Riemannian system has not been studied.

Although several studies have addressed the Riemannian estimator, those

results have not provided the bounds for the distributed recursive estimator,

especially the Bayesian recursive estimator. Because the Euclidean CRBs do not

have curvature terms, those CRBs are not applicable to a Riemannian estimator

as the bounds will inaccurately describe the performance of the estimator. The
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ICRBs for general Riemannian manifolds were presented in [83], wherein the

curvature terms of the information manifold has been included. Later, ICRBs for

Riemannian submanifold and quotient manifold were formulated in [84], showing

that the higher-order terms of the curvature in the ICRBs for general Riemannian

manifolds vanishes for signal with sufficiently large SNR. Considering the special

case of ICRB for Riemannian manifolds, the bound for Lie groups was developed

in [85], where the bound was derived in terms of Lie bracket and proved to be

identical with the one in Riemannian manifolds. Nevertheless, to the best of our

knowledge, ICRB for recursive estimation has not been addressed.

1.3 Contributions

The contributions of the thesis could primarily be classified into distributed coordi-

nation problem in a robotic sensor network to solve the coverage control problem

and distributed estimation problem.

The coordination problem addressed in this work is mainly focused on guaran-

teeing a group of sensors to achieve the best locations to measure the information

of an environment while maintaining the cohesiveness of the network. Different

from the existing results in literature, the first scenario of the coverage controller

is developed via distributed optimisation perspective to guarantee the ability to

track the optimal points of the coverage problem while maintaining the consensus

of the agents’ formation. The second scenario considers the finite-time based

coverage control protocol to guarantee the convergence of the positions of the

robots within a limited amount of time. Furthermore, the obstacle avoidance

controller is also appended to the controller of each robot prevent the collision

between an agent and the other objects while moving towards the optimal location

and maintaining the formation.

In the estimation problem, the distributed nonlinear Kalman filter is firstly

developed to accommodate various communication processes. Our algorithm

has explicitly considered the communication noise in a communication module

which could disrupt the information exchanged within a network. Secondly, as

reflected in literature review, there have been considerable works developing the
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CRBs for recursive Bayesian estimator for Euclidean systems. This thesis relaxes

the Euclidean-space restriction by formulating the ICRBs for Bayesian estimator

accomodating the non-zero curvature of Riemannian manifolds. Moreover, after

presenting the lower bounds, this thesis also provides an extension of distributed

unscented Kalman filter for systems whose states and measurements belong to

Riemannian manifolds, namely, distributed Riemannian Kalman filter.

1.4 Thesis Organisation

The remainder of this thesis is constructed of five chapters, and those are organised

as follows.

In Chapter 2, several relevant theories required in this study, including the

algebraic graph theory, Riemannian manifolds, intrinsic statistic on manifolds,

and stability theory, are briefly reviewed.

In Chapter 3, the distributed coverage control of multiple connected sensors is

presented. The objective function of the locational optimisation is modified using

the notion of distributed optimisation to accommodate the consensus constraint

of the parameters. Thereafter, a finite-time coverage controller is proposed to

guarantee the convergence to the optimal setting before a specified time. After

designing the coverage control algorithms, an obstacle avoidance based controller

is proposed to prevent collision between robots and their surrounding objects, in-

cluding other robots and static obstacles. Please note that some results presented

in this chapter have been published in the paper entitled "Distributed Collision-

free Coverage Control of Mobile Robots with Consensus-based Approach". The

other results will be published in the paper entitled "Distributed Coverage Control

with Finite-Time Convergence."

Chapter 4 subsequently addresses the estimation problem which naturally

emerges in the coverage control of mobile sensors in an unknown environment.

An estimator is required to estimate the information distribution of the area to

feed the estimate value to the coverage controller. To accommodate the noise in a

communication process among the agents, the distributed nonlinear Kalman filter

with communication protocol is developed to extend the unscented transformation
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originated in Unscented Kalman Filter (UKF). The proposed estimator is then

applied to the coverage control problem in an unknown environment along with

the proposed coverage controller. Please note that the results presented in this

chapter have been published in the paper entitled "Distributed Nonlinear Kalman

Filter with Communication Protocol."

Chapter 5 elaborates our attempt to answer the question about the quality

of a distributed Bayesian-based recursive estimator if information belongs to a

Riemannian manifold. The ICRBs is formulated as the lowest covariance matrix,

and consequently the mean-squared error, an estimator could achieve. A dis-

tributed unscented Kalman filter for Riemannian systems is also proposed as an

example of a distributed Bayesian-based filter in manifolds. Please note that the

results presented in this chapter will be published in the paper entitled "Intrinsic

Cramér-Rao Bounds for Distributed Bayesian Estimator."

Finally, Chapter 6 provides the summary of this work and outlines the possible

directions of the future works.



Chapter 2

Preliminaries

This chapter presents the preliminaries related to the work in this thesis. It briefly

reviews the notions of graph theory, Riemannian manifolds, intrinsic statistics on

manifolds, and stability theory of nonlinear systems.

2.1 Algebraic Graph Theory

To model the communication or sensing network among the robots, the notion

of directed graph is utilised. Suppose that there are n robots. In graph theory,

vertices represent the agents; while edges represent the connection links among

the agents.

A graph G = (V , E) is a collection of vertices V , V = {1, 2, . . . , n}, connected

by a collection of edges E ⊆ V × V. If there exists an edge ei = (i, j) ∈ E , agent

i is able to receive information from agent j. If, for all (i, j) ∈ E , there exists

(j, i) ∈ E , the graph is called undirected; it implies that this communication link

enable those two agents to exchange their information. Vertices j ∈ Ni ⊂ V are

the neighbours of agent i, for all j 6= i if there is communication link between

agent i and j, i.e., (i, j) ∈ E .

To algebraically express the connectivity of a graph, we introduce the adja-

cency, in-degree, Laplacian and Perron matrices.

The adjacency matrix of a graph G, denoted as A = [aij] ∈ Rn×n, is a square

27
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matrix whose elements are given by

aij =


1 ∀(j, i) ∈ E ,

0 otherwise,
(2.1)

for all i, j ∈ V. In the case of undirected graph, it can clearly be seen that A is

a symmetric matrix, i.e., aij = aji. Correspondingly, summing up the i-th row

of A yields a in-degree matrix, i.e., D = diag(d1, d2, . . . , dN) ∈ Rn×n such that

di = ∑n
j=1,j 6=i aij, ∀i ∈ {1, 2, . . . , n}. The associated Laplacian matrix can be then

defined as L = [Lij] ∈ Rn×n, for Lii = di and Lij = −aij. In a matrix operation, a

Laplacian matrix can be obtained from the subtraction of in-degree by adjacency

matrix, L = D−A. For a more compact expression, we use L, D, and A to refer

to L, D, and A, respectively. Laplacian matrix has eigenvalues whose properties

might be obtained using the Gershgorin’s disc theorem [6]. They can sequentially

be expressed as

0 = λ1 6 λ2 6 · · · 6 λn 6 2∆ (2.2)

where 0 is the trivial eigenvalue of L with corresponding eigenvector 1n ∈ Rn and

∆ = maxi di = maxi
∑
j∈Ni

aij. For directed graph G, zero is a simple eigenvalue

of L if and only if G has spanning tree, i.e., a tree starting from a vertex i to all

other nodes with a minimum possible number of edges. For undirected graph,

zero is a simple eigenvalue of L if and only if G is connected [100, 6]. For a

strongly connected directed graph, there is only one zero eigenvalue of L, i.e.,

λ1 = 0. Moreover, according to Courant-Fisher theorem, the smallest and largest

non-zero eigenvalues of L satisfy λ2‖z‖2 6 z>Lz for 1>n z = 0 and λn‖z‖2 > z>Lz

for z ∈ Rn, respectively [101].

Before explaining the Perron matrix, we say a matrix H is row, or column,

stochastic if the sum of each row, or column, elements equals to one. Perron

matrix of the graph denoted by Π = [πij] ∈ Rn×n is a stochastic nonnegative

matrix where its eigenvalues are inside a unit circle. If graph G is balanced, then

Π is a doubly-stochastic matrix. Perron matrix Π is said to be primitive if there

exists a positive m-th power of Π for some integer m. In this case, strongly

connected graph is a necessary condition for Π to be primitive. In Euclidean

consensus, the relationship between Laplacian and Perron matrices could be
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expressed as P = I − εL for some scalar ε. If the graph is strongly connected and

ε ∈ (0, 1/∆], then the Perron matrix Π is primitive [5, 29].

In the coverage control problem, the notions of Voronoi tessellation and De-

launay graph are required. Let n robots be located in a convex set Q ∈ Rd at

a set of distinct positions P = {p1, p2, . . . , pn}, pi ∈ Q. These points are then

assigned as Voronoi generators. The Voronoi tessellation of Q generated by P is

defined as V (P) = ⋃n
i=1 Vi(pi), where

Vi(pi) = {q ∈ Q : ‖q − pi‖ 6 ‖q − pj‖,∀pj ∈ P , j 6= i}. (2.3)

We use Vi conveniently to refer to Vi(pi).

To exemplify the property of Voronoi partition, suppose that the Voronoi

partition is a two-dimensional Euclidean space. We can see that the boundary of

the Voronoi partition is a one-dimensional Euclidean space, or a line. In a general

case, we can say that if Q is a convex set in a d-dimensional Euclidean space,

then the boundary of Vi is a (d− 1)-dimensional convex set.

To build Voronoi partition in a distributed manner, an agent need to know the

position of its neighbouring agents. The connection among the agents can then

be constructed as a networked topology called proximity graph – a graph that

is constructed based on particular geometric requirements. There are a number

of proximity graph, such as Delaunay graph, r-disk graph, r-Delaunay graph and

r-limited Delaunay graph. The details related to these graphs can be found in [49].

In the case of Voronoi tessellation systems, a proximity graph Gprox = (P , E(P))

is constructed using the Voronoi generator P ∈ Q and its edges E(P), where

E ⊆ Q×Q.

In the discussion about coverage control, we assume that the agents are

connected by Delaunay graph which the definition is given as follows. Let

Br(p) = {q ∈ Rd : ‖q − p‖ 6 r} be a closed ball in Rd at p ∈ Rd with ra-

dius r ∈ R+. We then have Delaunay graph denoted by GD = (P , ED(P)) whose

edge set is given by

ED(P) = {(pi, pj) ∈ P2 \ diag(P2)|Vi ∩ Vj 6= ∅}.

Since the Delaunay triangulation is applied to generate Voronoi partition without

limited communication range, we always have an connected Delaunay graph of
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the network. Thus, there always exists the smallest non-zero eigenvalue of graph

Laplacian LD satisfying λ2‖z‖2 6 z>LDz for 1>n z = 0.

2.2 Riemannian Manifolds

In this section, we briefly review of some concepts in Riemannian geometry relevant

to the formulation of the ICRBs and the Kalman-based nonlinear filter. Please

refer to [102] for more detailed elaboration.

Let a pair (M, g) denote a set of real smooth manifold M equipped with

a metric g. Also, let the set of all tangent vectors of M at p ∈ M be defined

as tangent space at p and denoted by TpM. If metric g at each point p ∈ M

is a bilinear, symmetric and positive-definite map gp : TpM× TpM → R and

induces an inner product 〈Xp, Yp〉p
.= gp(Xp, Yp) for Xp, Yp ∈ TpM, then g is

a Riemannian metric. Hence, a manifold M with a Riemannian metric g is

Riemannian manifold.

Suppose that all vector fields of differential manifoldM is denoted by X (M).

Then, for smooth real-valued functions on manifold M, f, g : M → R and

X, Y, Z ∈ X (M), affine connection ∇ of a differential manifoldM is a mapping

∇ : X (M)×X (M)→ X (M) : (X, Y ) 7→ ∇XY satisfying:

1. ∇fX+gYZ = f∇XZ + g∇YZ,

2. ∇X(Y + Z) = ∇XY +∇XZ,

3. ∇X(fY ) = f∇XY + df(X)Z.

Moreover, if the affine connection satisfies the following properties:

1. preserving the metric: X〈Y, Z〉 = 〈∇XY, Z〉+ 〈Y,∇XZ〉, and

2. torsion-free or symmetric, i.e., ∇XY −∇YX = [X, Y ],

where [X, Y ] is the Lie bracket of X and Y , then ∇ is the Riemannian connection

of manifoldM, or widely-known as Levi-Civita connection. In fact, the differential

manifold equipped with this Riemannian connection is a Riemannian manifold.
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Consider I ⊆ R as an open interval subset of R, and a differentiable function

γ : I →M as a differentiable curve inM. Using the Riemannian metric g along

the interval I, the arc length of γ is

Lba(γ) .=
∫ b

a
‖γ̇(t)‖dt =

∫ b

a
〈γ̇(t), γ̇(t)〉1/2γ(t)dt, (2.4)

where γ̇ ∈ TγM is the curve derivative or instantaneous speed vector. If, for two

points p, q ∈ M, there exists a curve γ along I = (a, b), such that γ(a) = p and

γ(b) = q, the distance between p and q is

dist(x, y) .= inf
γ
Lba(γ). (2.5)

Accordingly, a geodesic is defined as the differentiable curve γ minimising the arc

length between those two points. In fact, a geodesic is a generalisation paradigm of

straight line in a Euclidean space. In term of Levi-Civita connection, a geodesics

can also be defined as a curve γ along the interval I satisfying

∇γ̇ γ̇ = 0. (2.6)

If the interval I can be relaxed to R, thenM is called a geodesically-complete

manifold. In this case, based on the Hopf-Rinow theorem, there exists at least

a geodesic joining each pair (p, q) ∈ M. Moreover, a vector field X ∈ X (M) is

parallel along the defined curve γ if and only if it satisfies the following condition:

∇γ̇X(t) = 0, ∀t ∈ I. (2.7)

Let the domain of γ be defined as I = [a, b]. Then, there exists a unique

isomorphism Pγ : Tγ(a)M → Tγ(t)M, for t ∈ I, such that a vector field X(t) ∈

X (M) is parallel along the curve γ with Pγ(X(a)) = X(t). This isomorphism is

defined as a parallel transport along γ.

Consider two points in manifold denoted by p, q ∈ M. Let γ : [0, 1] → M

be a geodesic such that, at v ∈ TpM, γv(0) = p, γv(1) = q and γ̇v(0) = v. A

Riemannian exponential map at p associating the tangent vector TpM to manifold

M can be expressed as

Expp : TpM→M, v 7→ Expp(v) = q. (2.8)
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Within the maximal domain where the exponential map is a diffeomorphism, the

inverse of the mapping exists and is defined by

Logp :M→ TpM, q 7→ Logp(q) = v. (2.9)

The exponential mapping can geometrically be interpreted as a geodesic curve

γ(t) starting from point p at t = 0 with unit velocity v/‖v‖ and length ‖v‖.

In a sufficiently small set, the geodesic is unique. It is worth noticing that

these exponential and logarithm mappings work as a local diffeomorphism from

a sufficiently small neighbourhood of γ(0) in the tangent space Tγ(0)M into the

neighbourhood of γ(1) in the manifoldM.

Consider a tangent vector v ∈ TpM at p ∈M and a geodesic γ(t) = expp(vt)

from t = 0 to t = tv < ∞. If, for t > tv, the curve γ is no longer a minimising

arc length, then the point γ(tv) is a cut point. A collection of all cut points is

called a cut locus of p, denoted by Cp ⊂ M. If the exponential mapping is still

diffeomorphism, the tangential cut locus can easily obtained taking the inverse of

the exponential map, C̃p = Exp−1
p (Cp) = Logp(Cp) ⊂ TpM. The cut locus becomes

the boundary of the maximal domain where the exponential mapping is still a

diffeomorphism. The maximal domain in the tangent space is denoted Ũp ⊂ TpM;

while the corresponding set on manifold is the maximal intrinsic domain and

denoted by Up =M−Cp ⊆M. Based on this explanation, the exponential and

logarithm map at point p ∈M can more specifically be expressed as

Ũp ←→ Up (2.10)

v = Logp(q)←→ q = Expp(v). (2.11)

Consider a point p ∈ M. As a generalisation of the definition of ball in

Euclidean space, one defines the geodesic ball with centre point at p and radius r

as

B(p, r) .= {q ∈M : dist(p, q) < r} . (2.12)

If all points within the geodesic ball centered at p with radius r are inside the

maximal intrinsic domain, then r is the injectivity radius of the maximal geodesic

ball, denoted by injpM. Accordingly, the infimum of the injectivity radius over
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p ∈ M is denoted by injM. If the radius of the ball satisfies 2r
√
κ < π with

κ denoting the upper-bound of the Riemannian curvature of the manifold, then

the ball is regular. Furthermore, for a connected and complete Riemannian

manifold with non-positive curvature, the geodesic ball covers the manifold due

to diffeomorphism to Rd according to Cartan-Hadamard theorem [103].

Consider vector fieldsX, Y, Z ∈ X (M) on a Riemannian manifoldM equipped

with Levi-Civita connection ∇. Then, the Riemannian curvature tensor R :

X (M)×X (M)×X (M)→ X (M) is defined as follows:

R(X, Y )Z = ∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z. (2.13)

This notion is related to the sectional curvature of the manifold M. The real-

number sectional curvature at point p ∈M could be defined as

K(Xp, Yp) = 〈R(X, Y )Z,X〉p
‖Xp‖2‖Yp‖2 − 〈Xp, Yp〉

, (2.14)

where X, Y, Z ∈ X (M) and Xp, Yp ∈ TpM.

2.3 Intrinsic Statistics on Manifolds

In this section, we provide some important notions related to intrinsic statistics

on Riemannian manifolds based on [103, 104, 105, 106]. Intrinsic statistics of

Riemannian manifold also includes the properties of statistics in Euclidean space.

Related to intrinsic statistics, define a discrete point x = {xi ∈ M : i =

1, 2, . . . , n} as a set of random variable in a manifold M. The variance of the

random point x with a fixed point y is given by

σ2
x(y) = E{dist(y, x)2} = 1

n

(
n∑
i=1

dist(y, xi)2
)
.

Accordingly, mean point of x is defined as a point minimising this variance. The

set containing these points is given by

E{x} = arg min
y∈M

(
E{dist(y, x)2}

)
.

By assuming that the mean value x̄ ∈ E{x} is unique, the covariance matrix can

be defined as

Σxx = covx(x̄) = E{Logx̄x(Logx̄x)>} = 1
n

n∑
i=1

Logx̄xi(Logx̄xi)>.
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From the covariance matrix, the variance of x can equivalently be obtained via

σ2
x(x̄) = tr(Σxx). If the probability density function (PDF) of the data Gaussian,

we use notation N (x̄,Σxx).

To discuss the properties of Riemannian center of mass, we provide the follow-

ing definitions and lemmas from [106].

Definition 2.1 ([106]). A convex mean function on manifoldM of order N > 2,

µ :MN →M, is a function that maps N points x = (x1, x2, . . . , xN) to a mean

point µ(x1, x2, . . . , xN) such that

1. µ(x1, x2, . . . , xN) is continuous in its arguments,

2. µ(x1, x2, . . . , xN) lies in the closure of the convex hull of {xi}Ni=1, and

3. µ(x1, x2, . . . , xN) lies in to a closed strongly convex ball containing {xi}Ni=1.

In particular, µ(x1, x2, . . . , xN) is strictly convex mean function if it belongs

to the interior of a closed strongly convex ball containing {xi}Ni=1 unless

x1 = x2 = . . . = xn = x̄ and µ(x̄, x̄, . . . , x̄) = x̄.

Definition 2.2 ([106]). A (strictly) convex vectorial mean function on manifold

M of order N > 2, µ̄ :MN →MN , is defined as

µ̄(x) = (µ1(x), . . . , µN(x)) ∈MN , for x = (x1, x2, . . . , xN), (2.15)

whose entry µi is a (strictly) convex mean function of order N . The composition

of l > 2 (strictly) convex vectorial mean functions is given by µ̄l(x) = (µ̄1 ◦ µ̄2 ◦

. . . ◦ µ̄l)(x).

Definition 2.3 ([106]). A primitive vectorial mean function is a convex vectorial

mean function µ̄ with the primitivity index np such that µ̄np is strictly convex

mean function.

From the given definitions, it could be observed that the radius of the minimal

ball containing the codomain of a convex vectorial mean function is less than or

equal to the radius of minimal ball containing the domain. Moreover, if the mean

function is strictly convex, the radius of the minimal ball containing the codomain

is less than the radius of the minimal ball containing the domain.
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The following lemma states the convergence of a primitive vectorial mean

function.

Lemma 2.4 ([106]). The sequence of primitive vectorial mean functions, {µ̄k(x)}∞k=1,

converges pointwise to a strictly convex vectorial function whose entries are equal

i.e., µ̄∗ = (µ∗, . . . , µ∗).

For a Riemannian manifoldM with upper-bounded sectional curvature by κ,

consider N points inM, {xi ∈M}Ni=1. Accordingly, let us define an optimisation

of manifold-valued function f :M→ R:

f(x) = 1
2

N∑
i=1

widist2(x, xi), (2.16)

with ∑N
i=1wi = 1. The Riemannian center of mass or Fréchet mean of these

points, denoted by x∗ ∈ M, can be defined as the minimiser of f(x). The

following technical lemmas adapted from [106] and [105] state the convexity of

the Fréchet mean minimising the objective function (2.16).

Lemma 2.5. If {xi}Ni=1 belong to the closure of the convex ball B̄(y, r) ⊆M with

r < rκ = 1
2 min{injM, π√

κ
}, then Fréchet mean, x∗, is unique and lies in B(y, r).

Lemma 2.6. If {xi}Ni=1 belong to the closure of the convex ball B̄(y, r) ⊆M with

r < rκ = 1
2 min{injM, π√

κ
}, then Fréchet mean, x∗, lies in the interior of the

convex hull of {xi}Ni=1.

According to these lemmas, if a set of points are located inside the convex ball

B̄(y, r) ⊆ M, the Fréchet mean of (2.16) is a strictly convex mean function by

definition. This fact also follows from the theorem about Riemannian center of

mass in [107].

For example, a 2-sphere with radius one and constant curvature one, i.e., κ = 1,

is illustrated in Fig. 2.1. In this illustration, the 2-sphere has injectivity radius

injpS2 = π and convex-ball radius rκ = π
2 . It follows that the diffeomorphism

of the exponential mapping exists for points inside the maximal domain whose

boundary is given by the injectivity radius. Furthermore, by using Lemmas 2.5

and 2.6, some points located inside the convex ball with radius π/2 will always

have unique Fréchet mean inside the convex hull of those points.
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Figure 2.1: Relationship between 2-sphere and its tangent space.

2.4 Stability Theory

In this section, we briefly review some important definitions and properties in

stability analysis based on [108] and [109].

Let x ∈ U ⊂ Rd, respectively be the state of a system and a domain with

x = 0 as an interior point. Define a nonlinear system as a continuous mapping

f : U × [0,+∞)→ Rd such that

ẋ = f(x, t). (2.17)

Definition 2.7 (Stability of Equilibrium Points). For the system defined in (2.17):

1. the equilibrium point x = 0 is Lyapunov stable if, for any given R ∈ R+,

there exists a constant r to ensure that that ‖x‖ < R, ∀t > 0 if ‖x‖ < r;

2. the equilibrium point x = 0 is asymptotically stable if it is Lyapunov stable

and limt→∞ x(t) = 0;

3. the equilibrium point x = 0 is globally asymptotically stable if the origin is

asymptotically stable for any initial values in Rd;

4. the equilibrium point x = 0 is exponentially stable if there exist α, β > 0

such that

‖x(t)‖ < α‖x(0)‖ exp(−βt), for t > 0,

in some neighbourhood U ⊂ Rd containing the equilibrium point;
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5. the equilibrium point x = 0 is globally exponential stable if the origin is

exponentially stable for any initial values in Rd.

Theorem 2.8 (Lyapunov Stability [108]). If, for U ⊂ Rd containing the equi-

librium point x = 0, the function V (x) is positive definite and continuously dif-

ferentiable such that its time derivative along any state trajectory of (2.17) is

non-positive, i.e., V̇ (x) 6 0, then the equilibrium point x = 0 of system (2.17) is

Lyapunov stable. Moreover, if V̇ (x) < 0, then the origin is asymptotically stable.

Theorem 2.9 (LaSalle Invariance Principle [108]). Let Ω ∈ U be a compact set

that is positively invariant with respect to (2.17). Let V : U → R be a continuously

differentiable function such that V̇ (x) 6 0 in U . Let D be the set of all points in

U where V̇ = 0. Let M be the largest invariant set in D. Then, every solution

starting in D approaches M as t→∞.



Chapter 3

Distributed Coverage Control of

Mobile Sensors

In this chapter, we address the coverage control problem of robotic sensor networks

deployed in an environment. The investigation mainly aims to design algorithms

that enable cooperative computation in a distributed fashion while guaranteeing

the convergence to the optimal points of the corresponding global objective func-

tion. The objective function of the coverage control problem is originated from

the locational optimisation problem, that is, a problem of finding the optimal

location of sensors in an area. This problem could then be transformed into a

local optimisation problem with a consensus constraint.

There are several novel algorithms proposed in this work. The first algo-

rithm directly implements the simple gradient-based control derived from the

Lagrangian of the distributed optimisation problem. However, due to some costly

computational burdens, we design coverage control protocol that reduces the

distributed-optimisation-based controller to a consensus-based tracking controller

which could be guaranteed to converge in finite time. Lastly, we also design a

coverage controller with collision avoidance mechanism to prevent collisions if the

agents face obstacle while moving towards the optimal locations.

The remainder of this chapter is structured as follows. Section 3.1 contains

some definitions related to the established locational optimisation problem. Sec-

tion 3.2 formulates the distributed objective function of locational optimisation

which will be solved in our work. Subsequently, in Section 3.3, we present our

38
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proposed algorithms: simple gradient-descent method controller, finite-time cov-

erage controller and coverage control with obstacle avoidance. After presenting

the proposed algorithms, verification of the performance is performed via a set of

numerical experiments in 3.4. Finally, Section 3.5 summarises our work in this

coverage control problem.

3.1 Locational Optimisation

Consider n robots deployed in an environment denoted by a convex set Q ⊂ Rd.

The set containing the position of all robots is denoted by P = {pi}ni=1 ⊂ Q with

pi is the position of robot i.

Sensing unreliability function g : Q × Q → R+ : (q, pi) 7→ g(q, pi), is a

function that provides the quantitative information of the sensing performance

at point q ∈ Q measured by agent i at pi. In our discussion, we assume the

sensing unreliability function to be isotropic, increasing and convex. A function

is isotropic if the value is independent on its direction. Hence, the function

g(q, pi) can be re-parametrised to a norm-valued function f : R→ R+ such that

g(q, pi) = f(‖q − pi‖), for i ∈ {1, 2, . . . , n}. In the sense of unreliability function,

the isotropic, increasing and convex sensing function means the sensing quality at

point q measured by robot i decreases proportionally with the distance ‖q − pi‖,

that is, the greater is the value of sensing unreliability function, the worse is the

sensing quality.

The distribution of information in the environment is represented by a density

function, or information distribution function, and denoted by φ : Q → R+ : q 7→

φ(q). This density function indicates the importance of a quantity to measure

at particular point q. For instance, consider an environment with Gaussian

information distribution function. In this case, the information is peaked at

certain point and therefore the robots should intuitively be located around the

peak of the density function.

After providing the definitions of the sensing unreliability function and density

function, we introduce the locational optimization problem. Generated by the

sensor positions at time t, P, we are able to use the Voronoi tessellation of Q
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given by

Vi(pi) = {q ∈ Q : ‖q − pi‖ 6 ‖q − pj‖,∀pj ∈ P , j 6= i}. (3.1)

In the following discussion, we use Vi conveniently to refer to Vi(pi). With

this Voronoi partitions, the objective function of the locational optimisation is

formulated as

H(P) =
n∑
i=1

∫
Vi

g(q, pi)φ(q)dq. (3.2)

With the defined conditions of the sensing unreliability function and density

functions, the following lemma states the convexity of the objective function of

the locational optimization.

Lemma 3.1. Assume that the sensing unreliability function is isotropic, increas-

ing, and convex in pi ∈ P, for all i ∈ {1, 2, . . . , n}. Then, for a positive density

function, the cost function H in 3.2 is convex.

Proof. Due to isotropic property of the sensing unreliability function, we have a

norm-valued function f : R→ R that re-parametrises g(q, pi) such that g(q, pi) =

f(‖q − pi‖). By letting H∗(pi) be the i-th term of H(P) in (3.2), we have

H∗(pi) =
∫
Vi

f(‖q − pi‖)φ(q)dq.

To prove that H∗(pi) is convex in pi, applying the property of the convex

function to f(‖q − pi‖) yields

f(θ‖q − z1‖+ (1− θ)‖q − z2‖) 6 θf(‖q − z1‖) + (1− θ)f(‖q − z2‖) (3.3)

by taking θ ∈ [0, 1], and ‖q − z1‖, ‖q − z2‖ ∈ dom(f). By utilising the triangle

inequality, the domain of left-hand side of (3.3) can be written as

θ‖q − z1‖+ (1− θ)‖q − z2‖ ≥ ‖θ(q − z1) + (1− θ)(q − z2)‖.

Since f is increasing, substituting the above domain inequality to (3.3) yields

f(‖q − (θz1 + (1− θ)z2)‖) 6 θf(‖q − z1‖) + (1− θ)f(‖q − z2‖).

With the assumption of the positive density function, that is φ(q) > 0 for all

q, multiplying both sides by φ(q) and integrating them along the i-th Voronoi
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partition Vi leads to
∫
Vi

f(‖q − (θz1 + (1− θ)z2)‖)φ(q)dq

6
∫
Vi

θf(‖q − z1‖)φ(q)dq +
∫
Vi

(1− θ)f(‖q − z2‖)φ(q)dq.

In a compact expression, we have

H∗(θz1 + (1− θ)z2) 6 θH∗(z1) + (1− θ)H∗(z2),

which is convex. Therefore, since H is a summation of convex functions H∗, that

is,

H(P) =
n∑
i=1

H∗(pi),

we conclude that H is also convex.

In our study, we will utilise the quadratic sensing unreliability function as,

f(‖q − pi‖) = ‖q − pi‖2. With the quadratic function, we may borrow some

notions of rigid body motion. Consider the mass, moment of inertia and centroid

of i-th Voronoi region expressed as

MVi
=
∫
Vi

φ(q)dq, IVi
=
∫
Vi

qφ(q)dq, and CVi
= IVi

MVi

, (3.4)

respectively. Therefore, applying the parallel-axis theorem of rigid-body motion

[110] to the cost function (3.2) leads to an equivalent expression given by

H(p) =
n∑
i=1
IVi

+
n∑
i=1

MVi
‖pi − CVi

‖2, (3.5)

where p = [p>1 , . . . , p>n ]> ∈ Rnd denotes the vectorised positions of the robots.

The coverage control problem could be considered as a problem that aims to

designing control inputs of robots that are capable of driving them towards the

optimal positions such that the objective function of the locational optimisation

is minimised.

3.2 Problem Formulation

Consider n robots deployed in a convex space Q ⊆ Rd, and their connection

topology represented by a connected undirected graph Gn = (Vn, En). In our work,
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we are employing the Delaunay graph resulted from Delaunay triangulation and

used to generate the Voronoi tessellation in (3.1), referred to as Delaunay graph.

The corresponding Laplacian of this graph is denoted by Ln ∈ Rn×n. For agent

i ∈ Vn, the position of the agent is denoted by pi ∈ Q. The continuous-time

dynamics of robot i ∈ Vn is given by

ṗi = ui, (3.6)

with ui ∈ Rd denoting the control input of agent i.

Inspired by the optimisation method in [10], to solve the locational optimisa-

tion problem in a distributed fashion, we can equivalently transform (3.2) into

min
pi

H̃(p) =
n∑
i=1

∫
Vi

f(‖q − pi‖)φ(q)dq, (3.7a)

s.t. L̂n(p− CV ) = 0nd, (3.7b)

with f(‖q − pi‖) = ‖q − pi‖2, L̂n = Ln ⊗ Id ∈ Rnd×nd, p = [p>1 , . . . , p>n ]> ∈ Rnd

and CV = [C>V1 , . . . , C
>
Vn

]> ∈ Rnd. Furthermore, we could say that the above

constrained optimisation problem is feasible because the objective function is

convex and the constrain is linear.

With the transformed constrained optimisation problem and the defined agent

dynamics in (3.6), the objectives of this work are:

1. to design distributed gradient-based coverage controller that minimises (3.7),

2. to design finite-time coverage controller that guarantees the convergence to

the optimiser of (3.7) in finite time, and

3. to design obstacle-avoidance based coverage controller that prevent collision

among agents and collission between agents and obstacles while guiding the

robots towards the optimiser of (3.7).
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3.3 Distributed Coverage Control Algorithms

3.3.1 Gradient-descent Technique

In our algorithm design, by adopting the distributed optimisation method in [10],

the Lagrangian multiplier theory is employed to design the distributed gradient-

descent based controller. The Lagrangian function of this problem, F : Rnd ×

Rnd → R : (p, v) 7→ F (p, v), containing the distributed objective function (3.7)

with the disagreement function of consensus protocol is denoted by

F (p, v) = H̃(p) + v>L̂n(p− CV ) + 1
2(p− CV )>L̂n(p− CV ), (3.8)

where v = [v>1 , . . . , v>n ]> ∈ Rnd denotes the Lagrangian multiplier of the equality

constraint. The saddle point optimising F (p, v), denoted by (p?, v?), could be ob-

tained by utilising the Karush-Kuhn-Tucker (KKT) conditions of the constrained

optimisation in (3.7) [111]. For the optimal solution p? ∈ Rnd, there exists a

Lagrange multiplier v? ∈ Rnd with L̂nv? = ∇pH̃(p?) such that (p?, v?) is the

saddle point of F (p, v).

By utilising the gradient-descent method, we can express the optimisation

algorithm and the update of Lagrangian multiplier as

u = −∇pF (p, v), (3.9a)

v̇ = ∇vF (p, v), (3.9b)

where u = [u>1 , . . . , u>n ]> ∈ Rnd denotes the augmented control input of all agents.

Accordingly, the proposed algorithm to optimise the constrained coverage control

problem (3.7) is given by

u = −2kpMV (p− CV )− kcL̂n(p− CV )− kvL̂nv, (3.10a)

v̇ = L̂n(p− CV ), (3.10b)

where kp, kc, kv ∈ R are positive constants. In the proposed algorithm, we have

usedMV = diag(MVi
) ∈ Rnd×nd as a positive diagonal matrix containing the mass

of the Voronoi regions. Element-wise expression of the control input of agent
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i ∈ Vn is given by

ui =− kpMVi
p̃i − kc

n∑
j=1

aij
(
p̃i − p̃j

)
− kv

n∑
j=1

∫ t

t0
aij
(
vi − vj

)
dt, (3.11a)

v̇i =
n∑
j=1

aij
(
p̃i − p̃j

)
dt, (3.11b)

with p̃i = pi − CVi
. This gradient-based method allows each agent to share the

full information containing the current position, centroid, and Lagrange multiplier

to the neighbouring agents. Accordingly, the integral term of the proposed control

law could utilise them to reduce the steady-state error of the robot formation by

driving the robots to satisfy the consensus constraint.

The following theorem states the convergence of our distributed optimisation

based coverage control.

Theorem 3.2 (Convergence of Distributed Gradient-descent Coverage Control).

Consider a group of n agents are connected via Delaunay graph Gn = (Vn, En).

Let the dynamics of the agents be given by (3.6), for i ∈ Vn. Then, by utilising

the control protocol (3.10), the positions of the robots converge to the centroid of

the Voronoi tessellation, that is,

lim
t→∞

p(t) = CV . (3.12)

Proof. Define the constant point of the Lagrangian function as (p?, v?) with

p?, v? ∈ Rnd. Let p̃ = p − p? and ṽ = v − v? denote the error of the primal-

dual pair. Accordingly, by employing the robot dynamics in (3.6) and the control

input in (3.10), the error dynamics can be expressed as

˙̃p = −(2kpMV + kcL̂n)p+ (2kpMV + kcL̂n)p? − kvL̂nṽ, (3.13a)

˙̃v = L̂np̃, (3.13b)

for some positive constants kp, kc, kv.

Consider a Lyapunov function candidate

Vc = 1
2 p̃
>p̃+ 1

2 ṽ
>ṽ. (3.14)
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The corresponding time derivative is given by

V̇c =p̃> ˙̃p+ ṽ> ˙̃v

=− p̃>(2kpMV + kcL̂n)p̃− kvp̃>L̂nṽ + ṽ>L̂np̃

=− p̃>(2kpMV + kcL̂n)p̃− (kv − 1)p̃>L̂nṽ

=− p̃>(2kpMV + kcL̂n)p̃

where the symmetrical property of the Laplacian matrix and kv = 1 have been

applied. Thus, by denoting mV = min{MV1 , . . . ,MVn} > 0 and utilising the

Courant-Fisher theorem of the Laplacian matrix, that is, x>Lnx > λ2(Ln)‖x‖2,

we have

V̇c 6 −(2kpmV + kcλ2(Ln))‖p̃‖2 6 0,

for p 6= p? and p̃ 6= 0. By invoking LaSalle’s invariance principle, we can say that

for any p(0), we have p̃→ 0 as t→∞ implying that limt→∞ p(t) = p?.

Thereafter, we need to prove that the solution p? equals to the centroids of

Voronoi regions CV . Recall Karush-Kuhn-Tucker optimality condition of H̃(p)

and take the i-th term, we have

∇pi
H̃i(pi) = ∂

∂pi

∫
Vi

‖q − p?i ‖2φ(q)dq =
∫
Vi

2(q − p?i )φ(q)dq = 0.

Rearranging the last equality yields

p?i =
∫
Vi
qφ(q)dq∫

Vi
φ(q)dq ,

which equivalent to the centroid of Voronoi region, CVi
, as defined in (3.4).

Generalising similar arguments to any i ∈ Vn leads to p? = CV with p? =

[(p?1)>, . . . , (p?n)>]>.

3.3.2 Finite-time Coverage Control

In the previous discussion, a distributed gradient-descent based coverage control

protocol has been designed. However, we can observe that the algorithm requires

each agent to have sufficiently high-performance communication and computation

resources to exchange their position, centroid and the Lagrange multiplier, and
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perform the integration to obtain the control input. In the following control design,

we discard the Lagrange-multiplier term and design a coverage controller that still

guarantees the convergence to the optimal positions in finite time independent of

the initial positions.

Recall the Lagrangian of the constrained coverage problem. By setting the

Lagrangian multiplier to zero, we have the following objective function:

G(p) = H̃(p) + 1
2(p− CV )>L̂n(p− CV ). (3.15)

The corresponding optimal point of this optimisation given by p? = CV −
1
2M

−1
V L̂nτv for some vector τv ∈ Rnd. Due to the graph connectivity, it follows

that the last term vanishes with eigenvector τv = (p1 −CV1)? = . . . = (pn −CVn)?

associated to the zero eigenvalue. In other words, we could say that the objective

function G(p) is optimal when the position of the robots converge to the optimal

point p? = CV and the consensus is achieved.

For all agent i ∈ Vn, consider the following errors: p̃i = pi−CVi
, p̃ij = sign(p̃i−

p̃j)|p̃i − p̃j|. Since there are two terms to optimise in (3.15), by employing these

errors, we design a controller consisting of centroid stabiliser and the consensus

stabiliser. The proposed centroid stabiliser, which is responsible for driving the

robots toward the centroids, is expressed as

ugi = −kgsign(p̃i)(|p̃i|2−
a
b + |p̃i|

a
b ), (3.16)

where a, b are positive odd integers satisfing a < b and kg is a positive gain.

Similarly, the consensus stabiliser, assigned to maintain the consensus, is given

by

uci = −kc
n∑
j=1

aijsign(p̃ij)(|p̃ij|2−
a
b + |p̃ij|

a
b ), (3.17)

with kc a positive gain. Hence, the augmented controller reads

ui = ugi + uci . (3.18)

Before stating our result of the designed control protocol, we require a set of

technical lemmas defined as follows.
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Lemma 3.3 ([40]). The equilibrium point of the scalar system

ẋ = −αx2−m
n − βx

m
n , x(0) = x0,

where α, β > 0, and m,n are positive odd integers satisfying m < n, is finite-time

stable with upper-bound of the settling time given by

T (x0) 6 nπ

2
√
αβ(n−m) .

Remark 3.4. This lemma guarantees the finite-time convergence independent to

the initial value of the dynamics.

Lemma 3.5 ([40]). Let ζ1, ζ2, . . . , ζn > 0. Then
n∑
i=1

ζqj >

(
n∑
i=1

ζj

)q
, for q ∈ (0, 1).

Lemma 3.6 ([40]). Let ζ1, ζ2, . . . , ζn > 0. Then
n∑
i=1

ζqj > n1−q
(

n∑
i=1

ζj

)q
, for q > 1.

In the following theorem, we present our result about the finite-time conver-

gence of the proposed control protocol.

Theorem 3.7 (Convergence of Finite-time Coverage Controller). Consider a

group of n agents connected via a connected Delaunay graph Gn = (Vn, En) with

agent dynamics defined in (3.6). Then, there exist some constants κ1, κ2 > 0

such that the finite-time coverage problem can be solved by employing the coverage

control protocol (3.18) with settling time given by

T 6 Tmax = bπ

2√κ1κ2(b− a) ,

where a, b are positive odd integers satisfying a < b.

Proof. The system dynamics of agent i ∈ Vn with the proposed control input

(3.18 could be expressed as

ṗi = −kgsign(p̃i)(|p̃i|2−
a
b + |p̃i|

a
b )− kc

n∑
j=1

aijsign(p̃ij)(|p̃ij|2−
a
b + |p̃ij|

a
b ), (3.19)

with p̃i = pi−CVi
, p̃ij = sign(p̃i− p̃j)|p̃i− p̃j|. The equilibrium point of the system

is given by CV with (p1 − CV1) = . . . = (pn − CVn) = 0. By assuming this to be

invariant, we have ˙̃pi = ṗi.
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Define a Lyapunov candidate:

V f (p̃(t)) = 1
2

n∑
i=1

p̃2
i (t).

With the system dynamics in (3.19), the time derivative of the candidate function

is given by

V̇ f (p̃) = V̇ g(p̃) + V̇ c(p̃),

where centroid and consensus stabiliser terms are, respectively, given by

V̇ g(p̃) = −kg
n∑
i=1

p̃isign(p̃i)(|p̃i|2−
a
b + |p̃i|

a
b ), and

V̇ c(p̃) = −kc
n∑
i=1

p̃i
n∑
j=1

aijsign(p̃ij)(|p̃ij|2−
a
b + |p̃ij|

a
b ).

Since |p̃i| = p̃isign(p̃i), the centroid stabiliser term could be written as

V̇ g(p̃) = −kg
n∑
i=1
|p̃i|(|p̃i|2−

a
b + |p̃i|

a
b )

= −kg
n∑
i=1

((p̃2
i )

3b−a
2b + (p̃2

i )
a+b
2b )

= −kg
( n∑
i=1

(p̃2
i )

3b−a
2b +

n∑
i=1

(p̃2
i )

a+b
2b

)
6 −kg

(
n

a−b
2b

( n∑
i=1

p̃2
i

) 3b−a
2b +

( n∑
i=1

p̃2
i

)a+b
2b
)

= −kg(n
a−b
2b (2V f (p̃))

3b−a
2b + (2V f (p̃))

a+b
2b ), (3.20)

in which Lemmas (3.5) and (3.6) have been utilised to obtain the inequality. By

utilising the property of the adjacency matrix and also |p̃ij| = p̃ijsign(p̃ij), the

consensus stabiliser term could be written as

V̇ c(p̃) = −kc2

n∑
i=1

n∑
j=1

aij p̃ijsign(p̃ij)(|p̃ij|2−
a
b + |p̃ij|

a
b )

= −kc2

n∑
i=1

n∑
j=1

aij((p̃2
ij)

3b−a
2b + (p̃2

ij)
a+b
2b )

= −kc2

n∑
i=1

n∑
j=1

((a
2b

3b−a

ij p̃2
ij)

3b−a
2b + (a

2b
a+b

ij p̃2
ij)

a+b
2b )

6 −kc2
(
n

a−b
b

( n∑
i=1

n∑
j=1

a
2b

3b−a

ij p̃2
ij

) 3b−a
2b +

( n∑
i=1

n∑
j=1

a
2b

a+b

ij p̃2
ij

)a+b
2b
)

where the last inequality is obtained by employing Lemmas 3.5 and 3.6.
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Consider two adjacency matrices of connected undirected graphs Gα and Gβ
denoted by Aα = [a

2b
3b−a

ij ] ∈ Rn×n and Aβ = [a
2b

a+b

ij ] ∈ Rn×n, respectively. The

corresponding Laplacians are given by Lα and Lβ. It follows that the inequality

of the consensus stabiliser can equivalently be expressed as

V̇ c(p̃) 6 −kc2 (na−b
b (2p̃>Lαp̃)

3b−a
2b + (2p̃>Lβ p̃)

a+b
2b ),

with p̃ = [p̃>1 , . . . , p̃>n ]> ∈ Rnd. Applying the Courant-Fischer theorem of the

Laplacian matrices, p̃>Lαp̃ > λ2(Lα)‖p̃‖2 and p̃>Lβ p̃ > λ2(Lβ)‖p̃‖2 for 1>ndp̃ =

0nd, leads to

V̇ c(p̃) 6 −kc2 (na−b
b (2λ2(Lα)‖p̃‖2) 3b−a

2b + (2λ2(Lβ)‖p̃‖2)
a+b
2b ).

= −kc2 (n
a−b

b (4λ2(Lα)V f (p̃))
3b−a

2b + (4λ2(Lβ)V f (p̃))
a+b
2b )

= −kc2 (n
a−b

b (4λfV f (p̃))
3b−a

2b + (4λfV f (p̃))
a+b
2b ), (3.21)

in which we have used λf = min{λ2(Lα), λ2(Lβ)}.

By adding (3.20) and (3.21) followed by some re-arrangements, the time

derivative of the Lyapunov candidate can be written as

V̇ f (p̃) 6− 1
2(2kgn

a−b
2b + kcn

a−b
b (2λf )

3b−a
2b )(2V f (p̃))

3b−a
2b

− 1
2(2kg + kc(2λf )

a+b
2b )(2V f (p̃))

a+b
2b .

By denoting ξ = 2V f (p̃) and ξ̇ = 2V̇ f (p̃)/
√

2V f (p̃) for V f (p̃) 6= 0, we have

ξ̇ 6 −(2kgn
a−b
2b + kcn

a−b
b (2λf )

3b−a
2b )ξ2−a

b − (2kg + kc(2λf )
a+b
2b )ξ a

b .

Employing Lemma 3.3 and the Comparison Principle [108] yield the boundary of

the settling time expressed as

T 6 Tmax = bπ

2√κ1κ2(b− a) ,

with

κ1 = 2kgn
a−b
2b + kcn

a−b
b (2λf )

3b−a
2b , and

κ2 = 2kg + kc(2λf )
a+b
2b ,

such that limt→T ‖p̃i‖ = 0, for all i ∈ Vn. This completes our proof.
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Remark 3.8. The computation of the boundary of the settling time is indeed

dependant to some design parameters and the algebraic graph topology but

independent to the initial positions. Therefore, the robots will reach the centroids

regardless of the initial positions before Tmax given by

Tmax = bπ

2√κ1κ2(b− a) , (3.22)

with

κ1 = 2kgn
a−b
2b + kcn

a−b
b (2λf )

3b−a
2b , and

κ2 = 2kg + kc(2λf )
a+b
2b ,

3.3.3 Coverage Control with Obstacle Avoidance

In the following discussion, we aim to design obstacle-avoidance algorithms to

prevent both inter-agent collision and agent-obstacle collision using the notion of

potential field algorithm. The proposed avoidance controller can be implemented

along with either the gradient-based controller or the finite-time controller.

Consider m obstacles inside the convex set Q located at pol ∈ Q for l ∈

{1, 2, . . . ,m}. By utilising the potential field algorithm, define the repulsive

functions produced by the robots as

Ur =


n∑
j=1

1
2kr

(
1

‖pi−pj‖ −
1

∆r

)2
, if ‖pi − pj‖ 6 ∆r

0, otherwise,
(3.23)

and by the obstacles as

Uo =


m∑
l=1

1
2ko

(
1

‖pi−po
l
‖ −

1
∆o

)2
, if ‖pi − pol ‖ 6 ∆o

0, otherwise,
(3.24)

where kr, ko,∆r,∆o, respectively, are positive gains, and activation radii of the

corresponding potential function. The ball centered at point pi, for i ∈ Vn, with

radius ∆r is referred to as safety region of agent i; while the ball centered at

pol , for l = {1, . . . ,m}, with radius ∆o is the safety region of obstacle l. In the

following discussion, the safety region, avoidance regions or repulsive regions are

used interchangeably. To employ this method, the gains need to be sufficiently
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large in order to prevent collisions. Furthermore, the safety regions of the objects

need to be chosen such that the outer point of every object is still far inside the

safety ball.

Based on the defined potential function, the proposed coverage control protocol

with obstacle avoidance can be expressed as

ui = ugi + uri + uoi (3.25)

where ugi is the centroid controller, which could be chosen from either (3.11a)

or (3.18). Avoidance terms uri and uoi are, respectively, obtained by taking the

gradient of the potential functions Ur and Uo with respect to the position of agent

i. The avoidance terms are detailed as

uri =
n∑
j=1

krµ
r
ij

(
1

‖pi − pj‖
− 1

∆r

)
pi − pj
‖pi − pj‖2 ,

uoi =
m∑
l=1

koµ
o
il

(
1

‖pi − pol ‖
− 1

∆o

)
pi − pol
‖pi − pol ‖2 .

In the above avoidance terms, some activation functions have been included. The

activation functions are defined as

µrij =


1 if ‖pi − pj‖ 6 ∆r,

0 otherwise,

and

µoil =


1 if ‖pi − pol ‖ 6 ∆o,

0 otherwise.

Based on the defined avoidance protocol, the following theorem is established

to explain the avoidance behaviour of robot i ∈ Vn.

Theorem 3.9 (Avoidance Behaviour). Consider a convex set Q ⊂ Rd with m

obstacles and a group of n. Let the dynamics of each robot be given by (3.6) with

control input (3.25). By choosing sufficiently large kr and ko, if robot i enters the

the safety region of robot j, for j 6= i, or of obstacle l, for l ∈ {1, 2, . . . ,m}, then

robot i ∈ Vn will not collide robot j or obstacle l.

Proof. Let us firstly analyse the case of inter-robot collision where we assume that

uoi = 0. Consider distance vector p̂ij = pi − pj, for i 6= j and define a function
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V r
i = 1

2‖p̂ij‖
2 whose time-derivative is given by V̇ r

i = p̂>ij
˙̂pij. With dynamics (3.6)

and control input (3.25), if the robot is not inside the avoidance region of robot

j, then V̇ r
i 6 0 because uri = 0. In this situation, robot i will not collide robot j

and the position converges to its Voronoi centroid. If robot i enters the avoidance

region of robot j, then uri > 0 and

V̇ r
i = p̂>iju

g
i + p̂>iju

r
i = p̂>iju

g
i +

n∑
j=1

kr

(
1
p̂ij
− 1

∆r

)
.

By choosing a sufficiently large gain kr such that V̇ r
i > 0, there exists a ball

B(∆r, εj) centered at ∆r with radius εj such that pi ∈ B(∆r, εj) as p̂ij → ∆r.

Therefore, pi will not reach to pj, that is, there is no collision between robot i

and j, for i 6= j.

By, following similar arguments in the previous case, let us analyse the case

of inter-robot collision where we assume that uri = 0. Consider distance vector

p̄il = pi − pl, for l ∈ {1, 2, . . . ,m} and define a function V o
i = 1

2‖p̄il‖
2 whose

time-derivative is given by V̇ o
i = p̄>il ˙̄pil. With dynamics (3.6) and control input

(3.25), if the robot is outside the avoidance region of obstacle l, then V̇ o
i 6 0

because uoi = 0. In this situation, robot i will not collide obstacle l and the

position converges to its Voronoi centroid. If robot i enters the avoidance region

of obstacle l, then uoi > 0 and we have

V̇ o
i = p̄>ilu

g
i + p̄>ilu

o
i = p̄>ilu

g
i +

m∑
l=1

ko

(
1
p̄il
− 1

∆o

)
.

By choosing a sufficiently large gain ko such that V̇ o
i > 0, there exists a ball

B(∆o, εl) centered at ∆o with radius εl such that pi ∈ B(∆o, εl) as p̂il → ∆o.

Therefore, pi will not reach to pol , that is, there is no collision between robot i

and obstacle l.

Remark 3.10. By choosing large gains kr, ko > 0, the position of robot i converges

to the position of robot i or to the position of obstacle l even if the centroid of

Voronoi region is inside the safety region.
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3.4 Numerical Experiments

In this section, three numerical simulations are provided for verification of the

proposed coverage controllers. The scenarios include the distributed gradient-

descent, finite-time and obstacle-avoidance based controllers. The simulations are

executed using MATLAB on a computer with a Linux-based operating system,

2.5-GHz processor, and 4-GB RAM.

3.4.1 Nonholonomic Robots

In our simulation, we utilise a set of nonholonomic ground robots whose dynamics

are given by 
ṗx

ṗy

θ̇

 =


cos θ 0

sin θ 0

0 1


v
ω

 ,
where px, py, θ, v, ω denote the x and y-axis positions, orientation, linear velocity

and angular velocity, respectively. To overcome the nonholonomic constraints,

consider the x and y-axis head positions of robot denoted by phx and phy , respectively

(Please refer to Fig. 3.1). Then, by taking the distance between the center and

head position, R = ‖p−ph‖, where p = [px, py]> and ph = [phx, phy ]>, the kinematics

of the robot can be transformed into
ṗhx

ṗhy

θ̇

 =


cos θ −R sin θ

sin θ R cos θ

0 1


 v

ω

 .

y

x

(x,y)

r

q

0

(x , y )

v

h      h

Figure 3.1: Coordinates of the differential drive robot.
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Accordingly, the transformed dynamics could be controlled viav
ω

 =

 cos θ sin θ

− 1
R

sin θ 1
R

cos θ


ux
uy

 . (3.26)

Further, by denoting u = [ux, uy]>, we may express the dynamics of the robot as

ṗh = u, (3.27)

with some boundary on the angular velocity. The boundary can be tuned in

simulation, but the design of the analytical boundary is beyond our work.

3.4.2 Gradient-descent based Coverage Control

Given n = 16 robots randomly scattered in a square areaQ ∈ R2 whose boundaries

are {(0, 0), (0, 2), (2, 2), (2, 0)}. The information distribution of this scenario is a

double-peak exponential function given by

φ(x, y) = φ1(x, y) + φ2(x, y), (3.28)

where

φ1(x, y) = ω1 exp (−k1(a1(x− xc1)2 + b1(y − yc1)2 + (rc1)2)), (3.29)

φ2(x, y) = ω2 exp (−k2(a2(x− xc2)2 + b2(y − yc2)2 + (rc2)2)), (3.30)

with ω1 = 10000, k1 = 2.6, a1 = 1, b1 = 1, xc1 = 1.5, yc1 = 0.5, rc1 = 1 and

ω2 = 10000, k2 = 2.5, a2 = 1, b2 = 1, xc2 = 0.5, yc2 = 1.5, rc2 = 1. This

information distribution has two peaks, with one peak is higher than the other.

The gains of the controller are kp = kc = 1 for all agents. In the simulation, the

numerical integration is performed every 0.1s for 200 steps, equivalent to 20s.

For instance, this scenario illustrates how a disastrous environment might

possess two sources of fire with a limited communication network. A group of

robots are assigned to find the sources and map the environment based on their

temperature and light intensity sensors. Accordingly, because of the limited

communication, some robots could be located close to the fire sources while the

rest could also provide a communication relay for the entire flock.

By applying the gradient-descent based control protocol in (3.11a) to the robot

dynamics (3.27), we obtain the resulting trajectory of robots and the Voronoi
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partition illustrated in Fig. 3.2. We can also observe the trajectory of the

Euclidean error ‖pi − CVi
‖ and the objective function of this gradient-based

controller case depicted in Figs. 3.3 and 3.4, respectively.

Figure 3.2: Trajectories and optimal centroidal Voronoi regions with double-peak
distribution.
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Figure 3.3: Convergence result of the centroid errors of coverage problem with
double-peak distribution.

Fig. 3.2 demonstrates that the controller has successfully drive the robots such

that their positions align with their centroids. Since the information distribution

has two peaks with different heights, we observe that the number of robot deployed
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Figure 3.4: Convergence result of the objective function of coverage problem with
double-peak distribution.

to the area with higher peak (upper-left peak) is higher than to area with lower

peak (lower-right peak). In Fig. 3.4, we also see the convergence of the objective

function to an optimal value when the centroids are reached. However, the

figure shows that the objective value does not equal to zero. This phenomenon

is caused by the nonholonomic constraints of the mobile robots preventing them

to translate to the optimal location when they have been sufficiently close to the

optimal location. Furthermore, the large value of the information distribution

amplifies the small error caused by the nonholonomic constraints leading to non-

zero objective value. These simulation results imply that the protocol (3.11a) can

successfully solve the coverage control problem and drive the mobile robots with

dynamics (3.27) close to the optimal positions, i.e., the Voronoi centroids.

3.4.3 Finite-time Coverage Control

Given n = 16 robots randomly deployed in a square areaQ ∈ R2 whose boundaries

are {(0, 0), (0, 2), (2, 2), (2, 0)}. The information distribution of this scenario is

uniform, that is,

φ(x, y) = 1. (3.31)

The parameters of the finite-time controller are a = 21, b = 23, kg = 0.4, kc = 0.3

and lower bound of the non-zero eigenvalue of graph Laplacian is λf = 0.4615.
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By utilising (3.22), we may obtain the estimate maximum settling time is Tmax =

18.0816s. In the simulation, the numerical integration is performed every 0.1s for

200 steps, equivalent to 20s.

By applying the gradient-descent based control protocol in (3.18) to the robot

dynamics (3.27), we obtain the resulting trajectory of robots and the Voronoi

partition illustrated in Fig. 3.5. We can also observe the trajectory of the

Euclidean error ‖pi − CVi
‖ and the objective function of this finite-time case

depicted in Figs. 3.6 and 3.7, respectively.

Figure 3.5: Trajectories and optimal centroidal Voronoi regions with double-peak
distribution.

Fig. 3.5 demonstrates that the controller has successfully drive the robots

such that their positions align with their centroids. Since the density function

is uniform within the boundary, we observe that the number of robot deployed

per a unit area is constant. Fig. 3.6 verifies that the error between the position

and the optimal position is minimised before the estimate settling time Tmax. In

Fig. 3.7, we also see the convergence of the objective function to an optimal value

when the centroids are reached. Similar to the phenomenon in the previous

gradient-based coverage simulation, the figure shows that the objective value does

not equal to zero. The nonholonomic constraints of mobile robots might also cause

this phenomenon. However, the objective value of this simulation is significantly

smaller compared to the previous one because the information distribution of this
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Figure 3.6: Convergence result of the centroid errors of coverage problem with
double-peak distribution.
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Figure 3.7: Convergence result of the objective function of coverage problem with
double-peak distribution.

scenario is also significantly smaller than the gradient-based coverage simulation.

These simulation results imply that the protocol (3.18) can successfully solve the

coverage control problem and drive the mobile robots with dynamics (3.27) close

to the optimal positions with a finite-time convergence.
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3.4.4 Gradient-descent based Coverage Control with Ob-

stacle Avoidance

Given n = 16 robots randomly located in a square area Q ∈ R2 whose boundaries

are {(0, 0), (0, 2), (2, 2), (2, 0)}. The information distribution of this scenario has

one peak given by

φ(x, y) = ω0 exp (−k0(a0(x− xc0)2 + b0(y − yc0)2 + (rc0)2)), (3.32)

with ω0 = 1000, k0 = 2.0, a0 = b0 = 1.0, xc0 = 1.3, yc0 = 1.3, rc0 = 1.5. There

are two obstacles in the area, located at po1 = (1.3, 0.3) and po2 = (0.2, 1.2). The

gains of the optimisation with obstacle avoidance controller are kp = kc = 1.0 and

kr = ko = 15.0 for all agents. The radius of the safety regions are ∆r = 0.1 and

∆o = 0.4. In the simulation, the numerical integration is performed every 0.1s

for 200 steps, equivalent to 20s. It is worth noticing that the obstacles are not

located on the straight line connecting the robots’ initial positions and their goals

to avoid local minimum because of the potential-field-based obstacle avoidance.

Figure 3.8: Trajectories and optimal centroidal Voronoi regions with double-peak
distribution.

By applying the gradient-descent based control protocol in (3.25) to the robot

dynamics (3.27), we obtain the resulting trajectory of robots and the Voronoi

partition illustrated in Fig. 3.8. We can also observe the trajectory of the
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Figure 3.9: Convergence result of the centroid errors of coverage problem with
double-peak distribution.
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Figure 3.10: Convergence result of the objective function of coverage problem
with double-peak distribution.

Euclidean error ‖pi − CVi
‖ and the objective function of this obstacle avoidance

case depicted in Figs. 3.9 and 3.10, respectively.

Fig. 3.8 demonstrates that the controller has safely drive the robots such that

their positions align with their centroids. Since the density function has only one

peak, we observe that all robots are deployed around its peak. Fig. 3.9 shows

that the error between the position and the centroid converge to zero. In Fig.

3.10, we also see the convergence of the objective function to an optimal value
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when the centroids are reached. Similar to the phenomenon in the gradient-

based coverage simulation without collision avoidance behaviour, this result also

shows that the objective value does not equal to zero due to the nonholonomic

constraints of mobile robots. However, the objective value of this simulation is

significantly smaller compared to the gradient-based simulation without obstacle

because the information distribution in this scenario is also significantly smaller.

These simulation results suggest that the protocol (3.25) can successfully solve

the coverage control problem and drive the mobile robots with dynamics (3.27) to

the optimal positions without colliding obstacle or another neighbouring robot.

3.5 Conclusions

In this chapter, we have investigated some control protocols to overcome coverage

control problem with various scenarios. In our analysis of the gradient-descent

optimisation of the coverage control problem, we have transformed the traditional

locational optimisation into the distributed version. We have proved that the

proposed gradient-based protocol can distributedly drive all robots to the centroids

of the Voronoi region. Afterwards, to reduce the communication burden, we have

proposed a coverage controller that guarantees the convergence to the centroid

positions in finite time. By choosing some appropriate parameters, the protocol

has been proved to be capable of guiding the robots to the optimal solutions before

the maximum settling time regardless of their initial positions. Furthermore,

we have also considered the scenario when obstacles are in the environment,

which an obstacle-avoidance based coverage protocol is proposed accordingly

using the repulsive potential field method. By choosing some large avoidance

parameters, the protocol is capable of preventing collisions among agents and

between an agent and obstacles. Finally, some simulations have been carried out

on a group of nonholonomic mobile robots to validate the performance of our

proposed controllers.

Although the proposed algorithms have successfully solved coverage control

problem in a distributed manner, the implementation of these algorithms requires

all agents to know the information distribution of the environment prior to the
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execution. To relax this situation, investigation on a distributed estimation

algorithm will be carried out in the next chapter to enable implementation of

coverage control problem of robotic sensor network in an area with unknown

information distribution.



Chapter 4

Distributed Unscented Kalman

Filter with Communication

Protocol

In this chapter, we present an optimal design of nonlinear Kalman filter to esti-

mate the state of a dynamical process in a distributed manner using the shared

information among the agents. Different from existing techniques in literature,

such as in [75, 14, 77, 78, 13], our algorithm generalises the distributed Kalman

filter to accomodate any communication mechanism which uses not only the mea-

surement from an agent’s own sensor as consideration for estimating the process,

but also the shared information from the neighbouring agents. In addition to

standard Kalman filter, this distributed filtering algorithm also considers noisy

communicated information within the network. The proposed technique alters

the procedure in the prediction and update steps of the unscented Kalman filter.

In the prediction, the prior state, measurement and communication estimates

and their covariances are designed utilising the sigma points calculated from the

previous estimate and covariance. While, in the subsequent update step, the

posterior estimator of this filter comprises the prior estimate term, measurement

correction term and communication correction term - leading to the posterior co-

variance containing the prior state, measurement and communication covariances.

Afterwards, the Kalman and communication gains of the estimator are optimally

designed. It can be said that solving the optimal gain of existing distributed

63
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Kalman filter with consensus algorithm is a special case of this technique. To

verify the effectiveness of the proposed algorithm, it is then applied to estimate

the information distribution of optimal coverage problem in an area by a sensor

network. Different with the state-of-the-art field estimation algorithm reported

in [21], the proposed filter in this thesis has considered the noises in measurement

and in the communication network and also optimised the estimator gains in

every iteration to avoid instability of the system caused by failure to choose the

appropriate gains.

This chapter is structured as follows. Section 4.1 defines the formulation

of the general distributed estimation problem. Section 4.2 presents the result

on the distributed Kalman-based nonlinear estimation, followed by Section 4.3

discussing the application of the proposed filter to the field estimation of the

optimal coverage problem. Afterwards, in Section 4.4, comparative simulations

on optimal coverage problem using distributed Kalman filter algorithm and the

modified-consensus observer in [21] are presented to validate the performance of

the proposed methods. Finally, Section 4.5 concludes this work.

4.1 Problem Formulation

Consider a group of n agents connected in a network whose topology is represented

by a graph Gn = (Vn, En), for Vn = {1, 2, . . . , n} and En ⊆ Vn × Vn. These

agents are assigned to estimate a dynamical process represented by a function

f : Rd × Rd → Rd, such that

ξk+1 = f(ξk, ξvk), (4.1)

where ξk ∈ Rd and ξvk ∈ Rd, respectively, denote the unknown state, and the

process noise at time step k, with k ∈ Z∗.

To estimate the process (4.1) using a group of networked agents in a distributed

manner, each agent is equipped with a sensor whose measurement data is modelled

by a function hi : Rd × Rq → Rq such that

ζ ik = hi(ξk, wik), for i ∈ Vn, (4.2)
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where ζ ik ∈ Rq and wik ∈ Rq, respectively, denote the sensing data and the

measurement noise at time step k.

Since each agent within a network requires information from its neighbours to

colaboratively estimate a dynamical process, we need to model the communication

network of the agents and define how each agent use the shared information.

As a proposed mechanism in the distributed nonlinear Kalman filtering, the

communication model of a noisy network at time step k is represented by a

function G : Rnd × Rnr → Rnr, i.e.,

zk = G(xk, sk), (4.3)

where, in this communication model, xk = 1n ⊗ ξk, zk = vecn(zik) ∈ Rnr and

sk = vecn(sik) ∈ Rnr are the augmented state to estimate, the communicated data

and the communication noise, respectively.

Remark 4.1. The communication model of a network provides a representation of

the connection topology of a network. For example, consider a group of n robots

are assigned to estimate d unknown states, ξk ∈ Rd, in which the data received by

agent i is denoted by zik ∈ Rd and the communication noise by sik ∈ Rr. Suppose

that the communication topology is modelled via a graph with Laplacian matrix

L̂n = Ln ⊗ Id ∈ Rnd×nd. Then, using the defined model, the communication

process can be expressed as zk = L̂nxk + sk.

Throughout this chapter, to improve the brevity of the filter design and formu-

lation, augmented expressions of the process, measurement and communication

dynamics are equivalently described as

xk+1 = F (xk, vk) (4.4)

yk = H(xk, wk) (4.5)

zk = G(xk, sk) (4.6)

where yk = vecn(ζ ik), F = vecn(fi), H = vecn(hi), vk = 1n⊗ξvk , and wk = vecn(wik)

with vecn(·) denoting the vectorisation operator.

There are some assumptions made regarding the noises, given as follows.

Assumption 4.2. The expected values of process, measurement and communica-

tion noises are zero, i.e., E{vk} = 0, E{wk} = 0 and E{sk} = 0.
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Assumption 4.3. The covariances of process, measurement and communication

noises of every agent i, j are E{vkv>k } = Qk, E{wkw>k } = Rk, and E{sks>k } = Sk,

where Qk,ij = Qi
kδij, Rk,ij = Ri

kδij, and Sk,ij = Sikδij, for some matrices Qi
k, R

i
k, S

i
k

and the Kronecker delta δij.

Assumption 4.4. The process, measurement and communication noises are un-

correlated, i.e., E{vkw>k } = 0, E{vks>k } = 0, E{wks>k } = 0.

Assumption 4.5. The process, measurement and communication estimates of

agent i and j, for i 6= j, are uncorrelated, i.e., their cross-covariance matrices are

zero.

The objective of the distributed estimation is to minimise the collective ex-

pected value of mean-squared error (MSE) of the estimation of the agents. The

performance index is formulated as

min
x̂k

E{(xk − x̂k)>(xk − x̂k)} (4.7)

where x̂k = vecn(x̂ik) is the estimate value of xk. In the following filter design, the

estimate value of xk refers to the posterior estimate of the Kalman filter.

In order to analyse the boundedness of a filtering algorithm, the following

boundedness lemma of a stochastic process, such as presented in [112, 14], is

required.

Lemma 4.6 (Stochastic Boundedness). If, for θ ∈ Rd being a stochastic process at

time step k, k ∈ Z∗, there exists a scalar stochastic process V (εk) with εk = θk−θ′k
satisfying these conditions:

1. v‖εk‖2 6 V (εk) 6 v‖εk‖2, for v, v > 0,

2. E{V (εk+1)|εk} 6 µ+ (1− σ)V (εk), for µ > 0, 0 6 σ 6 1.

Then, the stochastic process εk is exponentially bounded in mean square such that

E{‖εk‖2} 6 v

v
E[‖ε0‖2](1− σ)k + µ

v

k−1∑
l=1

(1− σ)l. (4.8)

There are some useful variables that are necessary for the filter design. x̂k, x̄k,

ȳk, and z̄k, respectively, denote the posterior state estimate of xk, prior state esti-

mate of xk, prior measurement estimate of yk, and prior communication estimate
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of zk at time step k, for k ∈ Z∗. Related to the covariance update, P̂xx,k denotes

the posterior covariance of the error of the posterior estimates; P̄xx,k, P̄yy,k, P̄zz,k,

P̄xy,k, P̄xz,k, and P̄yz,k, respectively, denote the prior state-to-state, measurement-

to-measurement, communication-to-communication, state-to-measurement, state-

to-communication and measurement-to-communication covariances.

4.2 Distributed Nonlinear Filter Design

In this filter design, the state, measurement and communication models are given

in (4.4), (4.5) and (4.6), respectively, and these functions are considered to be

nonlinear.

4.2.1 Prediction Update

The means of unscented transformation used in the Unscented Kalman Filter is

modified in the prediction step to produce the predicted state, measurement and

communication estimates and their covariances.

Define x̃k = [x̂>k v>k w>k s>k ]> as a vector of random variables augmenting the

state and noises; while P̃k = diag(Pxx,k, Qk, Rk, Sk) as the augmented covariance

at time step k. The augmented form of sigma vectors at time step k−1 is defined

as Xk−1 =
[
(X x

k−1)> (X v
k−1)> (Xw

k−1)> (X s
k−1)>

]>
∈ Ra×(2a+1), a = (2d + q + r)n.

Its entries are given by

Xk−1 =
[
x̃k−1 (1>a ⊗ x̃k−1) +

√
κP̃k−1 (1>a ⊗ x̃k−1)−

√
κP̃k−1

]
, (4.9)

with κ = a+ b. Expression 1>a ⊗ x̃k−1 augments the previous posterior estimates

to comply with the dimension of the augmented state covariance. Here, b is a

scaling parameter expressed as b = %2
1(a+ %2)− a, where %1 and %2 correlate with

the spread of sigma points around x̃k−1. The details regarding the criterion of

these parameters are provided in [113].

The sigma vector is subsequently transformed through the nonlinear functions.

For every l-th column of Xk−1, with l ∈ {0, 1, 2, . . . , 2a}, the sigma vector is

mapped through (4.4) such that the prior sigma vector of the state can be written
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as

X̄k,l = F (X x
k−1,l, X v

k−1,l). (4.10)

The prior estimate x̄k and covariance P̄xx,k are attained using the approximated

weighted mean and covariance of the sigma points in the form of

x̄k =
2a∑
l=0

Wm
l X̄k,l, (4.11)

P̄xx,k =
2a∑
l=0

W c
l

[
X̄k,l − x̄k

] [
X̄k,l − x̄k

]>
, (4.12)

where the weights are given by

Wm
0 = b/κ,

W c
0 = b/κ+ (1− %2

1 + %2),

Wm
l = W c

l = 1/(2κ), 0 < l 6 2a.

To predict the measurement data, the sigma vector of the state in (4.10) is

also mapped through the nonlinear measurement function (4.5) such that the

sigma vector of the measurement is formulated as

Ȳk,l = H(X̄k,l, Xw
k−1,l). (4.14)

Accordingly, the prior measurement estimate and its covariance, ȳk and P̄yy,k, are

calculated using the approximation of weighted mean and covariance, i.e.,

ȳk =
2a∑
l=0

Wm
l Ȳk,l, (4.15)

P̄yy,k =
2a∑
l=0

W c
l

[
Ȳk,l − ȳk

] [
Ȳk,l − ȳk

]>
, (4.16)

respectively.

The prediction of the communication data and its covariance can also be

attained by mapping the sigma vector (4.10) to the communication function (4.6),

yielding the communication sigma vector given by

Z̄k,l = G(X̄k,l, X s
k−1,l). (4.17)
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The associated approximation of the weighted mean and covariance can be ex-

pressed as

z̄k =
2a∑
l=0

Wm
l Z̄k,l, (4.18)

P̄zz,k =
2a∑
l=0

W c
l

[
Z̄k,l − z̄k

] [
Z̄k,l − z̄k

]>
. (4.19)

The prior cross covariance matrices between the state estimate and measure-

ment data, between state estimate and communication data, and between mea-

surement and communication data can, respectively, also be formulated utilising

the sigma vectors declared previously in the form of

P̄xy,k =
2a∑
l=0

W c
l

[
X̄k,l − x̄k

] [
Ȳk,l − ȳk

]>
, (4.20)

P̄xz,k =
2a∑
l=0

W c
l

[
X̄k,l − x̄k

] [
Z̄k,l − z̄k

]>
, (4.21)

and

P̄yz,k =
2a∑
l=0

W c
l

[
Ȳk,l − ȳk

] [
Z̄k,l − z̄k

]>
. (4.22)

Remark 4.7. Notice that the prior state, measurement and communication covari-

ances are symmetric matrices, i.e., P̄xx,k = P̄>xx,k, P̄yy,k = P̄>yy,k, and P̄zz,k = P̄>zz,k.

4.2.2 Measurement Update

In this chapter, an estimator at time step k append the additional communication

term as a correcting parameter to ensure the collective estimate are achieved. The

proposed estimator is formulated as

x̂k = x̄k +Kk(yk − ȳk) + Ck(zk − z̄k). (4.23)

This estimator comprises three terms: the first is the prior state estimate; the

second term is the conditional-mean update of Bayesian estimation method to

interfere the measurement data with the prior measurement estimate; and the last

term is the proposed communication term to correct the predicted communication

data with the information obtained from neighbouring agents. The parameters

Kk = diagn(Ki
k) ∈ Rnd∗nq and Ck = diagn(Ci

k) ∈ Rnd∗nr, respectively, denote the
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Kalman gain and communication gains. In order to minimise the cost function

(4.7), one has to find the optimal value of these gains.

Recall the cost function in (4.7) which can equivalently be expressed as

E{(xk − x̂k)>(xk − x̂k)} = E{tr
(
(xk − x̂k)(xk − x̂k)>

)
}, (4.24)

in which E[tr{u}] = tr{E[u]} and tr{u>u}] = tr{uu>}] have been applied. Based

on (4.24), minimising the mean-squared error is equivalent to minimising the trace

of the covariance of the estimate error, i.e.,

P̂xx,k = E{(xk − x̂k)(xk − x̂k)>}. (4.25)

Let ēxk = xk − x̄k denote the error between the unknown state and the prior

estimate; ēyk = yk − ȳk the error between the measurement data and its prior

estimate; and ēzk = zk − z̄k the error between communication data and its prior

estimate. Using these error parameters, the error of the posterior estimate êxk =

xk − x̂k is given by

êxk = ēxk −Kkē
y
k − Ckēzk (4.26)

where the posterior estimate in (4.23) has been inserted. Afterwards, substituting
(4.26) to the posterior covariance in (4.25) and applying the linearity property of
expected value result in the posterior covariance of estimate error:

P̂xx,k = E{ēxk(ēxk)>} −KkE{ēyk(ē
x
k)>} − E{ēxk(ēyk)

>}K>k − CkE{ēzkē>x } − E{ēxk(ēzk)>}C>k

+KkE{ēxk(ēxk)>}K>k + CkE{ēyk(ē
y
k)
>}C>k +KkE{ēyk(ē

z
k)>}C>k + CkE{ēzk(ē

y
k)
>}K>k .

(4.27)

Notice that P̄xx,k = E[ēxk(ēxk)>], P̄yy,k = E[ēyk(ē
y
k)>], P̄zz,k = E[ēzk(ēzk)>], P̄xy,k =

E[ēxk(ē
y
k)>], P̄xz,k = E[ēxk(ēzk)>], P̄yz,k = E[ēyk(ēzk)>]. Also, notice that P̄>xy,k = P̄yx,k,

P̄>xz,k = P̄zx,k, P̄>yz,k = P̄zy,k. Thus, it is straightforward to conclude that the

covariance matrix can be formulated as

P̂xx,k = P̄xx,k +KkP̄yy,kK
>
k + CkP̄zz,kC

> +KkP̄yz,kC
>
k + CkP̄

>
yz,kK

>
k

−KkP̄
>
xy,k − P̄xy,kK>k − CkP̄>xz,k − P̄xz,kC>k (4.28)

The result about the gains update is stated in the following theorem.
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Theorem 4.8 (Kalman and Communication Gains Update). Let (4.7) be the

objective function of the distributed nonlinear Kalman filter. Let the posterior

estimate be given by (4.23) and the covariance by (4.28). Then, the optimal

communication and Kalman gains at time step k ∈ Z∗ are, respectively, formulated

by

Ck = P̄xz,kP̄
−1
zz,k, (4.29)

Kk = (P̄xy,k − CkP̄>yz,k)P̄−1
yy,k. (4.30)

Moreover, with these gains, the covariance in (4.28) can be expressed as

P̂xx,k = P̄xx,k −KkP̄yy,kK
>
k − CkP̄zz,kC>k . (4.31)

Proof. Recall the cost function in (4.7). This cost function can also be written as

E{(xk − x̂k)>(xk − x̂k)} = E{tr{(xk − x̂k)(xk − x̂k)>}}, (4.32)

in which E[tr{u}] = tr{E[u]} and tr{u>u} = tr{uu>} have been applied. Since

minimising the mean-squared error (4.32) is equivalent to minimising the trace

of the covariance of the estimate error, the optimal Kalman and communication

gain can be derived by taking the derivative of the trace of posterior covariance

matrix with respect to the Kalman and communication gain. Thus, taking the

derivative of (4.28) with respect to the Kalman gain gives

∂tr(P̂xx,k)
∂Kk

= KkP̄yy,k + CkP̄
>
yz,k − P̄xy,k = 0

which leads to

P̄xy,k = KkP̄yy,k + CkP̄
>
yz,k. (4.33)

Plugging (4.33) into (4.28) yields

P̂xx,k = P̄xx,k −KkP̄yy,kK
>
k + CkP̄zz,kC

>
k − CkP̄>xz,k − P̄xz,kC>k . (4.34)

Thus, taking the derivative of (4.34) with respect to Ck, i.e.,

∂tr(P̂xx,k)
∂Ck

= CkP̄zz,k − P̄xz,k = 0
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results in the Communication gain given by

Ck = P̄xz,kP̄
−1
zz,k. (4.35)

Moreover, rearranging (4.35) to obtain P̄xz,k and plugging it to (4.34) give the

compact covariance expressed as

P̂xx,k = P̄xx,k −KkP̄yy,kK
>
k − CkP̄zz,kC>k . (4.36)

This completes the proof.

4.2.3 Instrumental Matrices

To analyse the performance of the estimation algorithm we have designed, some

additional matrices are utilised – which has also been used in Kalman-filter based

performance analysis such as in [114]. In the following analysis, ēxk = xk − x̄k,

êxk = xk− x̂k, ēyk = yk− ȳk, and ēzk = zk− z̄k denote as the prior, posterior estimate,

measurement and communication errors at time step k ∈ Z∗, respectively.

Since xk depends on the state estimate at k−1, by employing Taylor expansion

to xk in (4.4) around x̂k−1, we have

xk = F (x̂k−1) +∇F (x̂k−1)êxk−1 + 1
2∇

2F (x̂k−1)(êxk−1)2 + · · ·+ vk−1, (4.37)

where

∇nF (x̂k)(êxk)n =
 P∑
j=1

êxk,j
∂

∂xj

n F (x)

∣∣∣∣∣∣
x=x̂k

,

for xj and êxk,j referring to the j-th element of x and êxk. Similarly, expanding x̄k
in (4.11) about x̂k−1 and applying Assumption 4.2 yields

x̄k = F (x̂k−1) + 1
2∇

2F (x̂k−1)(êxk−1)2 + · · · . (4.38)

Thus, by subtracting (4.37) by (4.38), the estimate error caused by the prior

estimate in (4.11) can be approximated by

ēxk ≈ F̂k−1ê
x
k−1 + vk−1, (4.39)

where

F̂k =
 ∂F (x)

∂x

∣∣∣∣∣
x=x̂k

 . (4.40)
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However, to accomodate the residuals emerging from this Taylor approximation,

we utilise a diagonal matrix defined as αk = diag(αk,1, αk,2, · · · , αk,M), such that

we have the approximation formula of error caused by the prior estimate in (4.11)

at time step k given by

ēxk = αk−1F̂k−1ê
x
k−1 + vk−1. (4.41)

For measurement approximation, since the measurement estimate is dependent

on the prior estimate of xk, the Taylor expansion of yk in (4.5) is about x̄k. The

Taylor expansion of the measurement dynamics at time step k is given by

yk = H(x̄k) +∇H(x̄k)ēxk + 1
2∇

2H(x̄k)(ēxk)2 + · · ·+ wk, (4.42)

where

∇nH(x̄k)(ēxk)n =
 P∑
j=1

ēxk,j
∂

∂xj

nH(x)

∣∣∣∣∣∣
x=x̄k

,

for xj and ēk,j referring to the j-th element of x and ēxk. Subsequently, expanding

the predicted measurement in (4.15) about x̄k yields

ȳk = H(x̄k) + 1
2∇

2H(x̄k)(ēxk)2 + · · · . (4.43)

Hence, subtracting (4.42) by (4.43) leads to

ēyk ≈ Ĥkē
x
k + wk, (4.44)

where

Ĥk =
 ∂H(x)

∂x

∣∣∣∣∣
x=x̄k

 . (4.45)

An instrumental diagonal matrix related to the measurement prediction added to

accomodate the residuals of this approximation is βk = diag(βk,1, βk,2, · · · , βk,M).

Therefore, we have the error of the measurement prediction in (4.15) formulated

as

ēyk = βkĤkē
x
k + wk. (4.46)

In communication approximation, one may follow similar procedures to obtain

the approximation of the measurement error. Since the communication estimate
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is also dependent on the prior state estimate, the expansion of the communication

data in (4.6) is also about x̄k. The Taylor expansion of the communication data

at time step k is

zk = G(x̄k) +∇G(x̄k)ēxk + 1
2∇

2G(x̄k)(ēxk)2 + · · ·+ sk, (4.47)

where

∇nG(x̄k)(ēxk)n =
 P∑
j=1

ēxk,j
∂

∂xj

nG(x)

∣∣∣∣∣∣
x=x̄k

,

for xj and ēxk,j referring to the j-th element of x and ēxk. Subsequently, the Taylor

expansion of (4.18) about x̄k is

z̄k = G(x̄k) + 1
2∇

2G(x̄k)(ēxk)2 + · · · . (4.48)

Hence, subtracting (4.47) by (4.48) yields the approximation error of the predicted

communication data in (4.18) given by

ēzk ≈ Ĝkē
x
k + sk, (4.49)

where

Ĝk =
 ∂G(x)

∂x

∣∣∣∣∣
x=x̄k

 . (4.50)

An instrumental diagonal matrix to deal with the residuals of the approxima-

tion of this communication data is γk = diag(γk,1, γk,2, · · · , γk,M). Hence, the

approximate of the communication data satisfies the following equality:

ēzk = γkĜkē
x
k + sk. (4.51)

The unscented transformation of the covariance also requires us to design

a approximation of the estimate covariance matrices. In the case of the prior

estimate covariance, we insert (4.41) to P̄ ∗xx,k = E[ēxk(ēxk)>] and use Assumption

4.3 resulting in

P̄ ∗xx,k = αk−1F̂k−1P̂xx,k−1F̂
>
k−1α

>
k−1 +Qk + δxx,k−1 (4.52)

as the approximation of the prior estimate covariance. Parameter δxx,k is to

accomodate the residual approximation error of P̄xx,k by P̄ ∗xx,k. For the error
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covariance matrix of the measurement, with Assumption 4.3 and ēyk from (4.46),

the approximate value is given by P̄ ∗yy,k = E[ēyk(ē
y
k)>], i.e.,

P̄ ∗yy,k = βkĤkP̄
∗
xx,kĤ

>
k β
>
k +Rk + δyy,k, (4.53)

where δyy,k denotes the approximate error caused by P̄ ∗yy,k. Subsequently, the

error covariance matrix of the communication data, the approximation is given

by P̄ ∗zz,k = E[ēzk(ēzk)>]. Substituting (4.51) into it and using Assumption 4.3 yield

P̄ ∗zz,k = γkĜkP̄
∗
xx,kĜ

>
k γ
>
k + Sk + δzz,k, (4.54)

where in this case δzz,k is the approximate error of P̄ ∗zz,k.

There are three remaining important approximations that have to be defined

prior to the performance analysis, i.e., the error covariance between the estimate

and measurement error, between the estimate and communication error, and

between the measurement and communication error. These values are P̄ ∗xy,k =

E[ēxk(ē
y
k)>], P̄ ∗xz,k = E[ēxk(ēzk)>] and P̄ ∗yz,k = E[ēyk(ēzk)>]. With (4.41), (4.46) and

(4.51), we have

P̄ ∗xy,k = P̄ ∗xx,kĤ
>
k β
>
k + δxy,k, (4.55)

P̄ ∗xz,k = P̄ ∗xx,kĜ
>
k γ
>
k + δxz,k, (4.56)

and

P̄ ∗yz,k = βkĤkP̄
∗
xx,kĜ

>
k γ
>
k + δyz,k, (4.57)

by denoting δxy,k, δxz,k and δyz,k as the approximation errors caused by P̄ ∗xy,k,

P̄ ∗xz,k and P̄ ∗yz,k, respectively. Notice that, in above three equations, we have also

applied the conditions in Assumption 4.3.

4.2.4 Performance Analysis

The following assumptions are made prior to analysing the performance of the

proposed filter.
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Assumption 4.9. There exist non-zero real numbers α, β, γ, f , h, g, and α, β,

γ, f , h, g, for every k > 0, k ∈ Z∗, such that

α2I 6 αkα
>
k 6 α2I, (4.58)

β2I 6 βkβ
>
k 6 β

2
I, (4.59)

γ2I 6 γkγ
>
k 6 γ2I, (4.60)

f 2I 6 F̂kF̂
>
k 6 f

2
I, (4.61)

h2I 6 ĤkĤ
>
k 6 h

2
I. (4.62)

g2I 6 ĜkĜ
>
k 6 g2I. (4.63)

Assumption 4.10. There exist positive real numbers p, q, r, s, δxx, δyy, δzz, δxy,

δxz, δyz, and p, q, r, s, δxx, δyy, δzz, δxy, δxz, δyz, for every k > 0, k ∈ Z∗, such

that

pI 6 P̂xx,k 6 pI, (4.64)

qI 6 Qk 6 qI, (4.65)

rI 6 Rk 6 rI, (4.66)

sI 6 Sk 6 sI, (4.67)

δxxI 6 δxx,k 6 δxxI, (4.68)

δyyI 6 δyy,k 6 δyyI, (4.69)

δzzI 6 δzz,k 6 δzzI, (4.70)

δxyI 6 δxy,k 6 δxyI, (4.71)

δxzI 6 δxz,k 6 δxzI, (4.72)

δyzI 6 δyz,k 6 δyzI, (4.73)

Some lemmas stating the upper and lower boundaries of some parameters are

declared as follows.
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Lemma 4.11. Let the conditions in Assumptions 4.9 and 4.10 holds. Let the
error of the prior estimates of the nonlinear Kalman filter be approximated using
(4.41), (4.46) and (4.51). With conditions in Assumptions 4.9 and 4.10 hold, the
prior covariance matrices are bounded by

α2f2p+ q + δxx 6 P̄ ∗xx,k 6 α2f
2
p+ q + δxx, (4.74)

β2h2(α2f2p+ q + δxx) + r + δyy 6 P̄ ∗yy,k 6 β
2
h

2(α2f
2
p+ q + δxx) + r + δyy, (4.75)

γ2g2(α2f2p+ q + δxx) + s+ δzz 6 P̄ ∗zz,k 6 γ2g2(α2f
2
p+ q + δxx) + s+ δzz, (4.76)

(α2f2p+ q + δxx)Ĥ>k β> + δxy 6 P̄ ∗xy,k 6 (α2f
2
p+ q + δxx)Ĥ>k β> + δxy, (4.77)

(α2f2p+ q + δxx)Ĝ>k γ> + δxz 6 P̄ ∗xz,k 6 (α2f
2
p+ q + δxx)Ĝ>k γ> + δxz, (4.78)

(α2f2p+ q + δxx)βĤkĜ
>
k γ
> + δyz 6 P̄ ∗yz,k 6 (α2f

2
p+ q + δxx)βĤkĜ

>
k γ
> + δyz.

(4.79)

Lemma 4.12. Let the error of the prior estimates of the nonlinear Kalman filter

be approximated using (4.41), (4.46) and (4.51); and the prior error covariances

bounded by (4.74)-(4.79). Then, with the conditions in Assumptions 4.9 and 4.10

hold, the square of communication gain is bounded by

c2I 6 CkC
>
k 6 c2I (4.80)

where

c2 =
γ2g2(α2f 2p+ q + δxx)2 + δ2

xz

(γ2g2(α2f
2
p+ q + δxx) + s+ δzz)2

(4.81)

and

c2 =
2
(
γ2g2(α2f

2
p+ q + δxx)2 + δ

2
xz

)
(γ2g2(α2f 2p+ q + δxx) + r + δzz)2 . (4.82)

Lemma 4.13. Let the error of the prior estimates of the nonlinear Kalman filter

be approximated using (4.41), (4.46) and (4.51); and the prior error covariances

bounded by (4.74)-(4.79). Then, with the conditions in Assumptions 4.9 and 4.10

hold, the square of Kalman gain is bounded by

k2I 6 KkK
>
k 6 k

2
I (4.83)

where

k2 = 0 (4.84)
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and

k
2 =

4
(
(β2

h
2 + c2β

2
γ2h

2
g2)(α2f

2
p+ q + δxx)2 + δ

2
xy + δ

2
yz

)
(β2h2(α2f 2p+ q + δxx) + r + δyy)2 , (4.85)

with c2 as the upper bound of the square of communication gain.

Lemma 4.14. Let Kk in (4.29) and Ck in (4.30) be bounded by (4.83) and (4.80),

respectively. Define Mk = I −KkβkĤk − CkγkĜk. Then, with the conditions in

Assumptions 4.9 and 4.10 satisfied, the boundaries of MkM
>
k are given by

m2I 6MkM
>
k 6 m2I (4.86)

where

m2 = 0, (4.87)

and

m2 = 3
(
1 + k

2
β

2
h

2 + c2γ2g2
)
. (4.88)

Lemma 4.15. Consider the posterior estimate and covariance update of the

distributed nonlinear Kalman filter formulated by (4.23) and (4.31), respectively.

Define a matrix Mk = (I −KkβkĤk −CkγkĜk). If the conditions in Assumptions

4.9 and 4.10 hold, then, at every time step k ∈ Z∗, the inverse of the covariance,

denoted by Πk = P−1
k , satisfies the following condition

Πk 6 ϕΠk−1, (4.89)

where

ϕ = 1
α2f 2m2

(
1 +

m2q + k2r + c2s+m2δxx

α2f
2
m2p

)−1

. (4.90)

Proof. The error of the posterior estimate is êxk = xk − x̂k which, by plugging

(4.23) into it, gives

êxk = ēxk −Kkē
y
k − Ckēzk (4.91)

where ēxk = xk − x̄k, ēyk = yk − ȳk and ēzk = zk − z̄k. The measurement and

communication errors can be substituted by the approximate values in (4.46) and

(4.51), respectively. From this substitution, we have

êxk = Mkē
x
k −Kkwk − Cksk (4.92)
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whereMk = (I−KkβkĤk−CkγkĜk). Recall the definition of posterior covariance

matrix P̂xx,k = E[êxk(êxk)>]. Plugging (4.92) into it gives

P̂xx,k =MkP̄xx,kM
>
k +KkRkK

>
k + CkSkC

>
k (4.93)

in which Assumptions 4.3 and 4.4 have been applied. Notice that (4.93) uses the

approximate value of P̄xx,k. Using (4.52), one may have (4.93) expanded to

P̂xx,k =Mk

(
αk−1F̂k−1P̂xx,k−1(αk−1F̂k−1)> +Qk + δxx,k−1

)
M>

k +KkRkK
>
k + CkSkC

>
k .

(4.94)

Rearranging the terms, we have

P̂xx,k =Mkαk−1F̂k−1
(
I + (Mkαk−1F̂k−1)−1KkRkK

>
k (Mkαk−1F̂k−1)−>(P̂xx,k−1)−1

+(Mkαk−1F̂k−1)−1CkSkC
>
k (Mkαk−1F̂k−1)−>P̂−1

xx,k−1

+(αk−1F̂k−1)−1Qk(αk−1F̂k−1)−>P̂−1
xx,k−1

+(αk−1F̂k−1)−1δxx,k−1(αk−1F̂k−1)−>P̂−1
xx,k−1

)
P̂xx,k−1(Mkαk−1F̂k−1)>.

(4.95)

Using Assumptions 4.9 and 4.10 along with Lemmas 4.12, 4.13 and 4.14, (4.95)

can be expressed as

P̂xx,k >α
2f 2m2

(
1 +

m2q + k2r + c2s+m2δxx

α2f
2
m2p

)
P̂xx,k−1. (4.96)

Therefore, with Πk = P̂−1
xx,k, taking the inverse of (4.96) results in the inverse

covariance matrix bounded by

Πk 6 ϕΠk−1, (4.97)

where

ϕ = 1
α2f 2m2

(
1 +

m2q + k2r + c2s+m2δxx

α2f
2
m2p

)−1

. (4.98)

This completes the proof.

The following theorem guarantees the boundedness of the proposed distribued

nonlinear Kalman filter.
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Theorem 4.16 (Stochastic Stabilty of Distributed Nonlinear Kalman Filter).

Let the posterior estimator of the distributed nonlinear Kalman filter be given by

(4.23), and the covariance by (4.31). Suppose that Assumptions 4.2 to 4.10 hold.

Then, there exists a stochastic function V > 0 such that the estimate error is

bounded in mean square exponentially.

Proof. To proof the theorem, first, let us choose a stochastic function candidate

V (êxk) = ê>x Πkê
x
k (4.99)

where êxk = xk − x̂k and Πk = P̂−1
xx,k. To show the boundedness of V , multiplying

the inequality in the condition (4.64) by (êxk)>êxk results in

1
p
‖êxk‖2 6 V (êxk) 6

1
p
‖êxk‖2 (4.100)

v‖êxk‖2 6 V (êxk) 6 v‖êxk‖2. (4.101)

Therefore, since p and p are positive, V is positively bounded with v, v > 0. Since

V is positively bounded, it can now be used to show that there exist µ > 0 and

0 < σ 6 1 such that the following inequality holds

E[V (êxk+1)|êxk] 6 µ+ (1− σ)V (êxk). (4.102)

Let us consider the stochastic function (4.101) at time step k + 1, i.e.,

V (êxk+1) = (êxk+1)>Πk+1ê
x
k+1. (4.103)

Using the definition of the errors for the estimates, i.e., ēxk+1 = xk+1 − x̄k+1,

ēyk+1 = yk+1− ȳk+1, and ēzk+1 = xk+1− z̄k+1, and plugging them into the posterior

estimate (4.23) at time k + 1 yields the posterior error êxk+1 = xk+1 − x̂k+1 given

by

êxk+1 = ēxk+1 −Kk+1ē
y
k+1 − Cēzk+1. (4.104)

By inserting (4.41), (4.46) and (4.51) at k + 1 to (4.104), we have

êxk+1 = Mk+1αkF̂kê
x
k +Mk+1vk −Kk+1wk+1 − Ck+1sk+1 (4.105)

where Mk+1 = (I −Kk+1βk+1Ĥk+1 − Ck+1γk+1Ĝk+1).
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Plugging (4.105) into (4.103) and taking its expected value with respect to êxk
lead to

E[V (êxk+1)|êxk] = E[(Mk+1αkF̂kê
x
k)>Πk+1Mk+1αkF̂kê

x
k + (Mk+1vk)>Πk+1Mk+1vk

+ (Kk+1wk+1)>Πk+1Kk+1wk+1 + (Ck+1sk+1)>Πk+1Ck+1sk+1|êxk]

(4.106)

where Assumptions 4.4 and 4.5 have been utilised. With Assumptions 4.9, apply-

ing Lemma 4.14 and Lemma 4.15 to the first term of (4.106) leads to

E[(Mk+1αkF̂kê
x
k)>Πk+1Mk+1αkF̂kê

x
k|êxk] 6 E[tr

(
α2f

2
m2(êxk)>Πk+1ê

x
k

)
|êxk]

6 α2f
2
m2ϕV (êxk) (4.107)

in which we have applied the properties of matrix trace tr(E[A]) = E[tr(A)] and

tr(AB) = tr(BA). Similarly, employing Assumptions 4.2, 4.9, and 4.10, along

with Lemmas 4.12, 4.13, and 4.14 to the second, third and fourth terms of (4.107)

give

E[(Mk+1vk)>Πk+1Mk+1vk + (Kk+1wk+1)>Πk+1Kk+1wk+1 + (Ck+1sk+1)>Πk+1Ck+1sk+1|êxk]

6
1
p

(
m2q + k

2
r + c2s

)
(4.108)

where the properties of a trace of matrix have also been used. By denoting

µ = 1
p

(
m2q + k

2
r + c2s

)
, (4.109)

σ = 1− α2f
2
m2ϕ, (4.110)

and choosing some constants such that 0 6 σ 6 1 and µ > 0, we are now able to

write (4.108) as

E[V (êxk+1)|êxk] 6 µ+ (1− σ)V (êxk). (4.111)

Therefore, by employing Lemma 4.6, we can conclude that êxk is exponentially

bounded in mean square with

E[‖êxk‖2] 6 v

v
E[‖êx0‖2](1− σ)k + µ

v

k−1∑
l=1

(1− σ)l. (4.112)

This completes the proof.
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Algorithm 4.1 Distributed Nonlinear Kalman Filter
Input: x(0), Q(0), R(0), S(0), F (·), H(·), G(·).
Return: x̂k, P̂xx,k.
If k = 0, execute
Initialisation:
1: Initialise the estimator x̂k and covariance P :

x̃ = [x̂k(0)> 0p 0q 0r]>, for x̂k(0) = E[x(0)],
P̃ = diag(P (0), Q(0), R(0), S(0)), for P (0) = E[(x(0)− x̂k(0))(x(0)− x̂k(0))>].

If k = 1, 2, . . . , Tmax, Tmax <∞, execute
Prediction:
1: Calculate the sigma vector Xk−1 using Eq. (4.9).
2: Propagate the sigma vector through F (·), H(·), G(·) using (4.10), (4.14) and

(4.17), respectively.
3: Calculate the prior estimate x̄k using (4.11), ȳk using (4.15), and z̄k using

(4.18).
4: Calculate the prior covariances P̄xx,k, P̄yy,k, P̄zz,k, P̄xy,k, P̄xz,k, and P̄yz,k using

Eqs. (4.12), (4.16), (4.19), (4.20), (4.21), and (4.22), respectively.
Update:
1: Update the Kalman and communication gains, Kk and Ck using Eqs. (4.29)

and (4.30), respectively.
2: Update the posterior estimate x̂k using Eq. (4.23).
3: Update the posterior covariance P̂xx,k using Eq. (4.31)).

4.2.5 Practical Algorithm

This proposed algorithm can generally be applied to solve many estimation prob-

lems in, but not limited to, engineering field via distributed computation of the

filter whenever the dynamical process of a system, measurement and communica-

tion update can be formulated as in the discussion. For example, this algorithm

can further be employed to estimate the Bellman value and Q function in rein-

forcement learning, such as solving the learning problem in [71] in a distributed

manner using our proposed filtering algorithm. In the case of a sensor network,

this algorithm can also be employed to estimate the spatial information of an

area, which will be discussed in the next section.

The procedure of implementing the proposed distributed nonlinear Kalman fil-

ter is summarised in Algorithm 4.1. In the beginning, to implement the algorithm

in a distributed manner, one should supply some initial values of the augmented

state variable and the augmented covariance matrix in each agent. Afterwards,
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once the system starts, in every iteration, each agent will locally perform the

prediction step based on the latest available estimate value and its covariances

using the unscented transformation technique. This prediction step produces the

prior estimate values and their covariance and cross-covariance matrices. The

final stage of each iteration is called the update stage. In this stage, each agent

will have to exchange its local prior estimate values and their covariance matrices

to its neighbouring agents based on the network topology. This step is followed

by calculating the new posterior estimate value and its covariance matrix. These

prediction and update procedures repeat iteratively.

4.3 Application to Distributed Coverage Con-

trol

In this section, we implement the proposed distributed nonlinear Kalman filter

algorithm to specifically solve an existing problem in sensor network. The problem

considered in this section is the field estimation of coverage control problem. This

part is extended from our previous work in distributed coverage control elaborated

in Chapter 3 and published in [115].

4.3.1 Modified Coverage Problem

In this part, we recall the coverage problem discussed in 3 and modify the objective

function. Let the augmented vector of the position of robots be defined as

pk = vecn(pik)> ∈ Rnd, for i ∈ Vn, and the augmented Laplacian matrix of the

Delaunay graph as L̂n = Ln⊗Id ∈ Rnd×nd. From our previous result in Chapter 3,

the distributed expression of cost function of coverage problem can be formulated

as

min
pi

k

H(P) =
n∑
i=1

∫
Vi

ρ(‖q − pik‖)φ(q)dq, (4.113a)

s.t. L̂n(pk − CV ) = 0, (4.113b)

with

Vi(pi) = {q ∈ Q : ‖q − pi‖ 6 ‖q − pj‖,∀pj ∈ P , j 6= i},
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and CV = vecn(CVi
) ∈ Rnd, for i ∈ Vn.

Subsequently, we augment the constraint to the objective function using the

Lagrange multiplier method. The Lagrangian of this coverage problem, H̃ :

Rnd × Rnd → R, with disagreement function of consensus protocol is

H̃(pk, νk) =H + ν>k L̂n(pk − CV ) + 1
2(pk − CV )>L̂n(pk − CV ), (4.114)

where νk ∈ Rnd defines the Lagrangian multiplier of the constraint. Thus, the

control input and Lagrangian multiplier update, which is derived by taking the

gradient of H̃(pk, νk) with respect to pk and νk, respectively, can be expressed as

uk = −2κ1MV (pk − CV )− κ2L̂n(pk − CV )− L̂nνk, (4.115a)

ν̇k = κ3L̂n(pk − CV ), (4.115b)

where κ1, κ2, κ3, ∈ R+.

To apply the estimation update from the online field estimator, the centroid

CVi
in the control input is replaced by the estimated centroid ĈVi

such that the

control input of agent i is given by

uk = −kp(pk − ĈV )− kcL̂n(pk − ĈV )− kiL̂n
∫ tb

ta
(pk − ĈV )dt. (4.116)

Notice that, in the above expression, we have simplified the gains expression by

choosing kp, kc, ki ∈ R+ to be constant gains.

4.3.2 Field Estimation

In this estimation scenario, we consider the information distribution of an area

can be expressed as

φk(q) = K(q)>θk, (4.117)

with K : Q → Rm denoting a vector of basis function that is known by each

robot [21] [116]. Weight θk ∈ Rm here denotes an unknown parameter to estimate.

From (3.4), it can be seen that the mass MVi
of the centroid CVi

must be greater

than zero. This situation requires the information distribution to be positive,

φk(q) > 0. Therefore, a boundary must be set, i.e.,

θk,l > θ, for l ∈ {1, 2, . . . ,m}, (4.118)
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with θ > 0 denoting the lower bound of l-th entry of θk.

Afterwards, several estimation variables are defined. θ̂ik and φ̂ik denote, respec-

tively, the estimate weight and information distribution of robot i. Let φ̂ik = K>θ̂ik
denote the estimate of φ of i-th robot. Then, we may have the estimate of mass,

moment of inertia and centroid of Voronoi region formulated as

M̂Vi
=
∫
Vi

φ̂ik(q)dq, ÎVi
=
∫
Vi

qφ̂ik(q)dq, and ĈVi
= ÎVi

M̂Vi

, (4.119)

respectively.

By letting φik be the measurement value read by sensor i, the estimation error

of θk and φk can, respectively, be expressed as θ̃ik = θk − θ̂ik and φ̃ik = φik − φ̂ik =

K(q)>θ̃ik. With these notations, we have the error between true and estimate

value of the rigid body properties in the form of

M̃Vi
=
∫
Vi

K>(q)θ̃ikdq, ĨVi
=
∫
Vi

qK>(q)θ̃ikdq, (4.120)

and

C̃Vi
= ĨVi

M̃Vi

. (4.121)

Therefore, the distributed field estimation of the coverage control problem is

solved if the following conditions are satisfied:

1. lim
k→∞
‖pik − ĈVi

‖ = 0, for i ∈ Vn,

2. lim
k→∞
K>θ̃ik = 0, for i ∈ Vn.

It can also be concluded that if φ̂ik = φk, then M̂Vi
= MVi

, ÎVi
= IVi

and ĈVi
= CVi

.

4.3.3 Distributed Estimation with Laplacian-based Graph

To obtain the estimation of the centroid required in the control law (4.116), the

distributed nonlinear Kalman filter we have designed in Section 4.2 is utilised.

Consider the estimation dynamics, consisting of the weight of the density func-

tion, sensor reading and communication dynamics which, in augmented expression,



CHAPTER 4. DISTRIBUTED UNSCENTED KALMAN FILTER 86

are given by

θk+1 = θk + vk, (4.122)

ψk = φ(q, θk) + wk, (4.123)

τk = L̂nθ + sk, (4.124)

respectively. Note that θk = vecn(θik), ψk = vecn(ψik), τk = vecn(τ ik), vk =

vecn(vik), wk = vecn(wik), sk = vecn(sik) and L̂n = Ln ⊗ Id.

Since in this application the network topology is modelled using the Laplacian

matrix, the posterior estimator in (4.23) may be rewritten as

x̂k = x̄k +Kk(yk − ȳk)− CkL̂n(x̄k − xk). (4.125)

Let the element-wise expression of (4.125) be given by

x̂ik = x̄ik +Ki
k(yik − ȳik) + Ci

k

n∑
j=1

aij
(
(x̄jk − x

j
k)− (x̄ik − xik)

)
, for i ∈ Vn. (4.126)

Since each agent is assigned to track the same dynamical process, we have xik =

xjk = xk. Thus, the posterior estimator of the Laplacian-based communication

topology can be reduced to

x̂ik = x̄ik +Ki
k(yik − ȳik) + Ci

k

n∑
j=1

aij
(
x̄jk − x̄ik

)
, for i ∈ Vn. (4.127)

The coverage control procedure with the Kalman-based estimator is summarised

in Algorithm 4.2.
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Algorithm 4.2 Distributed Coverage Control with Field Estimation
Given information: θ̂(0), P (0), Q(0), R(0), S(0).
Return: pk.
If k = 0, execute
Initialisation:
1: Initialise the estimator x̂k and covariance P̂xx,k:

θ̃0 = [θ̂(0)> 0p 0q 0r]>, for θ̂(0) = E[θ(0)],
P̃0 = diag(P (0), Q(0), R(0), S(0)), for P (0) = E[(θ(0)− θ̂(0))(θ(0)− θ̂(0))>].

2: Calculate Voronoi partition V .

If k = 1, 2, . . . , Tk, Tk <∞, execute
Control Update:
1: Calculate the new centroid using Eq. (4.119).
2: Calculate the control input using Eq. (4.116).
3: Update the position of robot

pk+1 = g(pk, uk).

4: Update the Voronoi partition V .
Estimation update:
1: With x̂k = θ̂k, execute estimation procedures in Algorithm 4.1.
2: Assign θ̂k = x̂k.

4.4 Numerical Experiments

For comparison, two simulation scenarios are presented to estimate the spatial

information distribution of an area and drive a group of robots to estimate the op-

timal configurations using two different estimation algorithms. The first scenario,

referred to as the modified-consensus observer algorithm, illustrates a drawback

arising from using the modified consensus observer in [21]. The second scenario,

referred to as the distributed Kalman filter algorithm, demonstrates the perfor-

mance of the proposed distributed nonlinear Kalman filter given in Algorithm

4.2. The simulations are performed using Python programming language on a

computer with a Linux-based operating system, 2.5-GHz processor, and 4-GB

RAM.

Given n = 12 robots randomly scattered in a square area Q. We consider



CHAPTER 4. DISTRIBUTED UNSCENTED KALMAN FILTER 88

the continuous-time dynamics of mobile robots can be represented as a single-

integrator system, i.e.,

pk+1 = pk + uk, (4.128)

where pk = [pxk p
y
k]> denotes the x− y position, while uk = [uxk u

y
k]> is the x− y

control input. The boundaries of the area are {(0, 0), (0, 1), (1, 1), (1, 0)}; and the

information distribution is in the form of

φ(q) = K(q)>θ. (4.129)

Following the parametrisation in (4.117), the working area is divided into m = 4

partitions; and the kernel function, K(q) = [K1,K2, · · · ,Km], has elements given

by

Kl =
exp(−1

2(q − µl)>Σ−1
l (q − µl))√

(2π)d|Σl|
,

where d is the dimension of the environment - in this case d = 2. The elements

of the vectorised kernel functions have peaks whose values are given by µ1 =

[0.25, 0.25]>, µ2 = [0.25, 0.75]>, µ3 = [0.75, 0.25]>, and µ4 = [0.75, 0.75]>. The

variances of all partitions are similar with Σl = 0.02I2, for l = {1, 2, 3, 4}, where

I2 ∈ R2×2 is an identity matrix. The target value of the weights to track is

θ = [120.0, 2.5, 2.5, 160.0]>. Since the mobile robot and the modified-consensus

protocol are originally in a continuous-time system, in this work we choose to

perform the simulation with sampling time 0.1s.

The parameters required by the coverage controller and the initial values of

the estimated weights, θ̂i, in these two simulations are made identical. Since

the modified-consensus observer requires some parameters to be given, we choose

γ = 3.63, ζ = 0.6 and k = 1.5 to show the oscillation caused by large gains. The

gains chosen here In the distributed Kalman filter, no static constants are set

other than the initial values of estimator and covariance matrix.

By applying the modified-consensus observer algorithm in the first scenario

and the distributed Kalman filter in the second one, we obtain the trajectory of

robots and the Voronoi partitions illustrated in Figs. 4.1a and 4.1b, respectively.

The initial positions, final positions and estimated centroids are indicated using

red ’x’, blue ’o’ and orange ’x’. From Fig. 4.1a, it can be seen that there is an
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agent that do not converge to the centroid; while according to Fig. 4.1b all robots

can successfully converge to the estimated centroids.

Related to the performance of field estimation algorithm, the implementation

of the modified-consensus observer yields the convergence results of the estimated

weights θ̂i presented in Fig. 4.2a; while the distributed Kalman filter yields the

convergence results of the estimated weights given in Fig. 4.2b. These figures

shows that the distributed Kalman filter has successfully driven the estimated

weights to some values close to the target weights. As comparison, the estimation

using modified-consensus observer shows high-amplitude oscillation with constant

mean of several estimated weights.

The performance of coverage control using the modified-consensus observer

as its field estimator is illustrated in Fig. 4.3a for convergence of the norm of

the tracking errors ‖pik − ĈVi
‖, and Fig. 4.4a for the convergence of the objective

function; while results of the coverage control using the distributed Kalman filter

are depicted in Fig. 4.3b for the convergence of the norm of the errors and Fig.

4.4b for the convergence of the objective functions. Since the weights obtained

using the modified-consensus observer do not converge to zero, the errors also

do not converge to zero. According to Figures 4.3a, the estimated objective

function using the modified-consensus observer has steady state error with the

true objective function. As comparison, using the distributed Kalman filter, the

systems are able to minimise the errors and quickly track the true objective

function.

Empirically, in addition to the simulation results presented above, we also cal-

culate the average computation time of 500 iterations of these presented scenarios.

Although there exist variations in the computation time for each iteration, the av-

erage time required to perform the iterations of coverage control with distributed

Kalman filter always less than the one with modified-consensus observer. The

average of the computation time of the first scenario with the modified-consensus

observer varies along the process with average of 37.0349s per iteration, while the

second scenario with our algorithm takes 30.5859s per iteration in average.

From the illustrated figures, it can be concluded that: 1) Both estimators can

be used to estimate the information distribution; 2) It is true that the simulation
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result in [21] has shown non-oscillating results with some chosen gains. However,

the algorithm still requires the gains to be tuned but no exact upper boundary

of the estimation gains has been given. Failure to pick the right gains may

lead to oscillating performance and steady-state tracking error of the objective

function as shown in this comparative simulation; 3) Unlike the algorithm in

[21], the proposed distributed nonlinear Kalman filter needs no constant gains

to be tuned to produce stable performance; 4) The computation time, which

can also indicate the computation burden, of the distributed Kalman filter is

faster than the modified-consensus observer algorithm in [21]. This might be

caused by a number of surface integrations performed to adjust some variables in

the modified-consensus observer where the distributed Kalman filter requires no

additional surface integrations in the estimation process.

(a) Using modified-consensus observer. (b) Using Kalman-consensus estimator.

Figure 4.1: Position trajectories and optimal centroidal Voronoi regions.
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(a) Using modified-consensus observer.
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(b) Using Kalman-consensus estimator.

Figure 4.2: Convergence result of the estimated weights of the density function
θ̂i,∀i ∈ Vn
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(a) Using modified-consensus observer.
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(b) Using Kalman-consensus estimator.

Figure 4.3: Convergence result of error ‖pik − ĈVi
‖, ∀i ∈ Vn.
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(a) Using modified-consensus observer.
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(b) Using Kalman-consensus estimator.

Figure 4.4: Convergence result of the objective function.
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4.5 Conclusions

In this chapter, the distributed nonlinear Kalman filter with general communica-

tion scheme has been presented to estimate a dynamical process with additive

white Gaussian noises in the system, measurement and communication. The opti-

mal Kalman and communication gains have been provided such that the estimator

has capability of using measurement and communicated information to produce

an estimate value. By using this mechanism, if the communication topology is

represented using a Laplacian matrix and the agents share their prior estimate val-

ues, the consensus protocol combined with Kalman filter reported in the literature

could be considered as a special case of the proposed disributed unscented Kalman

filter with communication protocol. After designing the estimation algorithm, we

have analytically demonstrated that the estimate error is exponentially bounded

in mean square with regards to some boundaries. As an example, the algorithm

has also been applied to coverage problem scenarios with a previously-unidentified

information distribution. Combined with the coverage control protocol in our

results in Chapter 3, the proposed algorithm was used to estimate the density

function and find the optimal deployment of robots. Two scenarios of numerical

experiments have been carried out as a comparison with the existing method used

for field estimation in coverage control problem. The results have shown that

the proposed distributed nonlinear Kalman filter algorithm have outperformed

the modified-consensus observer in [21] by successfully estimating the unknown

density function of an environment indicated, driving all agents to the optimal

centroid positions and minimise the true objective function without oscillations.

Moreover, the simulation results indicated that the proposed algorithm needs less

computation time than the existing modified-consensus observer.

Although the proposed algorithm can solve the distributed estimation in Eu-

clidean space, direct implementation of this algorithm to estimation problem in

general Riemannian manifold might result in estimate value that violates the man-

ifold constraint. This situation necessitates the generalisation of the algorithm

by accomodating the curvature of the manifold. Accordingly, in the next chapter,
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we will investigate the lower bound of distributed Bayesian estimator in Rieman-

nian manifolds and propose a distributed Kalman filter for such manifold-valued

systems.



Chapter 5

Distributed Bayesian Estimator

on Riemannian Manifolds

The recursive Bayesian estimator is one of the existing estimators aiming to

minimise the mean-squared error between the estimate value and the true value.

In the case of linear dynamical Euclidean systems with Gaussian PDFs, Bayesian-

based estimation algorithm has lead to Kalman filter where the CRBs of the

estimator is achieved. However, the optimality achieved in Euclidean system

might not be achievable in Riemannian system due to the curved space.

In this chapter, we focus on developing the recursive version of ICRBs for

multi-agent Bayesian estimator. To formulate the lower bound, we firstly define

the distributed Bayesian estimation process by appending an additional step to

the traditional Bayesian procedure. The proposed Bayesian sequence becomes

prediction, measurement and coordination updates. The proposed Bayesian re-

cursion in each agent starts with the prediction process with the prior probability

distribution. The following process, that is, the measurement update employs the

consensus of the prior probability distribution to calculate the posterior distribu-

tion. Afterwards, the proposed coordination process executes the minimisation

of the Kullback-Liebler divergence of the posterior probability distributions ob-

tained from neighbouring agents [29]. Accordingly, the intrinsic lower bound of

every process is developed recursively by utilising the matrix block inversion as

initiated in [81]. Different from the traditional CRB for Euclidean system, the

proposed lower bounds will consequently include curvature terms of the manifold

94



CHAPTER 5. DISTRIBUTED BAYESIAN ESTIMATOR 95

as a function of the Fisher information matrix (FIM).

After presenting the intrinsic CRBs, a distributed nonlinear Kalman filter is

designed to tackle the estimation problem of Riemannian information manifolds

by following the proposed distributed Bayesian estimation strategy. It is worth

noticing that the Riemannian setting requires Riemannian consensus protocol

to find the consensus among the posterior estimate values [17]. Application to

distributed quaternionic attitude estimation demonstrates the performance of the

proposed filter.

This chapter is structured as follows. In Section I, we define the distributed

Bayesian estimation scheme investigated in this paper. Section II subsequently

presents our main results about the intrinsic CRBs for the distributed Bayesian

estimator consisting of three parts: CRBs of local prediction update, local mea-

surement update and local coordination updates. Section III presents a class of

Bayesian filter, i.e., extension of DUKF, for systems on Riemannian manifolds,

referred to as the distributed Riemannian Kalman filter (DRKF). Thereafter, in

Section IV, the proposed filtering algorithm is applied to a distributed attitude

estimation of multi-robot systems. Finally, Section V summarises the result of

our work in this chapter.

5.1 Bayesian Estimation Problem

Let n agents be connected in a network represented by a graph Gn = (Vn, En),

for Vn = {1, 2 . . . , n} and En ⊆ Vn × Vn. The dynamical process to be estimated

by these agents is modelled as a function of state and process noise living in

Riemannian manifolds. Let Px and Pv, respectively, denote the Riemannian

manifolds of the process state and its noise with d = dim(Px) = dim(Pv); while

Sy and Sw denote the manifolds where the measurement signal and its noise

evolve with q = dim(Sy) = dim(Sw), respectively. Denoting the process function

by f : Px ×Pv → Px, process state by xk ∈ Px and process noise by vk ∈ Pv, the

corresponding Riemannian discrete-time process considered in this paper is given

by

xk+1 = f(xk, vk). (5.1)
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The measurement data obtained by each agent can be modelled using measurement

function hi : Px ×Sw → Py, such that the measurement update can be expressed

as

yik = hi(xk, wik), ∀i ∈ Vn, (5.2)

with yik ∈ Sy and wik ∈ Sw being the measurement and the measurement noise by

agent i, respectively.

A distributed intrinsic estimation problem is to determine the most likely

value of xk ∈ Px based on a measured signal yik ∈ Sy such that the difference

between the estimated and true values are minimised at every time step k. This

problem could be addressed by minimising the mean-squared error between the

true and estimate values formulated using the logarithm mapping on manifold

[84, 91], i.e.,

min
x̂i

k

E
{(

Logxi
k
(x̂ik)

)>(
Logxi

k
(x̂ik)

)}
, (5.3)

where the x̂ik ∈ Px and xik ∈ Px denote the estimate and true values of agent i

at time step k, respectively. Since the agents are to observe the same process in

(5.1), it could simply be said that xik = xk.

To minimise the objective function, we consider a Bayesian online estimator

where at every time step k new measurement data are acquired to update the

estimate values. The sequence of the states up to time step k can be augmented

to become X i
k := (xi1, xi2, . . . , xik) ∈ P̃x; and the measurements to become Y i

k :=

(yi1, yi2, . . . , yik) ∈ S̃y. The proposed technique to minimise (5.3) adopted the

distributed Bayesian estimation procedure utilising the Kullback-Liebler averaging

method implemented by each agent in a network originated in [29].

Definition 5.1 (Distributed Recursive Bayesian Estimator). Distributed recur-

sive Bayesian estimator is a class of estimator which aims to find the estimate of

state xik, for i ∈ Vn, distributedly by performing the following steps at every time

step k in every agent i:

1. Prediction: predicting the subsequent value of xik given the measurement

signal up to time step k−1, Y i
k−1, based on the prior probability distribution

pi(xik|Y i
k−1) =

∫
pi(xik|xik−1)p̃i(xik−1|Y i

k−1)dxik−1; (5.4)
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2. Measurement: acquiring new measurement signal yk and updating new

posterior estimate value based on the posterior probability distribution

pi(xik|Y i
k ) = pi(yik|xik)pi(xik|Y i

k−1)
pi(yik|Y i

k−1) . (5.5)

3. Coordination: communicating with the neighbouring agents to calculate the

consensus value of the prior probability distributions using

p̃i(xik|Y i
k−1) =

⊕
j∈Ni

(
πij � pj(xjk|Y

j
k−1)

)
, (5.6)

where πij is the element (i, j) of the Perron matrix Π corresponding to the

network graph Gn;

Remark 5.2. Suppose that the probability density function of the state and mea-

surement is Gaussian, and the state and measurement is Euclidean. Then, the

well-known distributed Kalman filter and its variants are the optimal realisation

of the recursive Bayesian estimator.

The objectives of this work are then to (i) formulate the intrinsic CRB of

the distributed recursive Bayesian estimator; and (ii) design the Kalman filter

algorithm suitable for distributed estimation in Riemannian systems.

5.2 Intrinsic Cramér-Rao Bounds for Recursive

Bayesian Filter

This section presents the intrinsic CRBs for the estimator defined in the previous

section. The discussion is splitted into three parts: formulation of intrinsic CRBs

for local prediction, measurement, and finally measurement with coordination

updates.

Continued from the description in Section 5.1, consider a state manifold Px
with d = dim(Px). For every agent i ∈ Vn, the online orthogonal basis of the

state manifold at time step k is denoted by

eik = (eik,1, eik,2, . . . , eik,d), for eik,j ∈ Txi
k
Px. (5.7)

Define an augmented orthogonal basis of agent i up to time step k as ẽik = ei1:k :=

(ei1, ei2, . . . , eik), with ẽik,j = ei1:k,j := (ei1,j, ei2,j, . . . , eik,j). Recall the properties of
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Riemannian manifold that the product of Riemannian manifolds is also Rieman-

nian manifold. It follows that, using the product of all the state manifolds stacked

up to time step k, P̃x, the orthogonal basis of the state manifolds of agent i can

be expressed as

ẽik = (ẽik,1, ẽik,2, . . . , ẽik,d), for ẽik,j ∈ TXi
k
P̃x. (5.8)

5.2.1 Local Prediction Update

Let x̄ik ∈ Px and X̄ i
k ∈ P̃x be the prior estimate or the prediction of a state xik

at time step k, and the augmented prior estimate up to time step k, of agent

i ∈ Vn, respectively. The prior estimate at time step k is evaluated by executing

the prediction of the Bayesian estimation mechanism in (5.4). Our interest in this

discussion is to establish the lower bound of the prior covariance matrix, that is,

E{Logx̄i
k
(xik)Logx̄i

k
(xik)

>} = E{Logxi
k
(x̄ik)Logxi

k
(x̄ik)

>}.

A predictor of agent i at time step k, x̄ik : S̃y → Px : Y i
k−1 7→ x̄ik(Y i

k−1), is a

mapping which associates the previous measurement manifolds up to time step

k− 1 to the current state manifold at time step k based on the prior distribution

of the recursive Bayesian estimator. The augmented predictor can be defined

as a mapping X̄ i
k : S̃y → P̃x : Y i

k−1 7→ X̄ i
k(Y i

k−1) from augmented measurement

manifold available up to time step k − 1 to the augmented state manifold up to

time step k.

Define the prediction error at time step k as the difference between the true

value xik and the predicted value x̄ik. Due to non-zero curvature, the error is

obtained using the logarithm map of two points on manifold Px such that

ξ̄ik = Logxi
k
(x̄ik) ∈ Txi

k
Px. (5.9)

Let %̄ik ∈ Rp be a prediction vector of the corresponding prediction error on the

state manifold Px. The entries of the prediction vector can be expressed as

%̄ik,j = 〈Logxi
k
(x̄ik), eik,j〉. (5.10)

In this case, the norm of the prediction error is obtained via

‖%̄ik‖ = ‖Logxi
k
x̄ik‖ = dist(xik, x̄ik). (5.11)
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As the time step increases along the iterations, an expanding parameter composed

of the prediction errors up to time step k is then stacked as the augmented

prediction error given by

ζ̄ ik = LogXi
k
(X̄ i

k) ∈ TXi
k
P̃x. (5.12)

Accordingly, let an augmented prediction vector of the state up to time step k be

denoted by ϑ̄ik ∈ Rkd, for d = dim(Px). The entries of the augmented prediction

vector is

ϑ̄ik,j = 〈LogXi
k
(X̄ i

k), ẽik,j〉, (5.13)

leading to the norm of the augmented prediction error given by

‖ϑ̄ik‖ = ‖LogXi
k
X̄ i
k‖ = dist(X i

k, X̄
i
k). (5.14)

By employing the prediction vector of agent i ∈ Vn at time step k, the

covariance matrix of the prediction error at time step k is defined as a symmetric,

positive semidefinite matrix C̄i
k ∈ Rp×p written as

C̄i
k = E{%̄ik(%̄ik)>}, (5.15)

which is elementarily equivalent to

C̄i
k,rs = E{〈Logxi

k
(x̄ik), eik,r〉 · 〈Logxi

k
(x̄ik), eik,s〉}.

The expanding covariance matrix resulted from augmenting the predictions up to

time step k can be obtained using the augmented prediction vector, Ω̄i
k ∈ Rkp×kp.

The prediction covariance matrix can be written as

Ω̄i
k = E{ϑ̄ik(ϑ̄ik)>}, (5.16)

whose entries are

Ω̄i
k,rs = E{〈LogXi

k
(X̄ i

k), ẽik,r〉 · 〈LogXi
k
(X̄ i

k), ẽik,s〉}.

In this discussion, it is assumed that the probability distribution of estimations

at time step k1 at k2, for k1 6= k2, is uncorrelated, i.e., E{%̄ik1 %̄
i
k2} = 0. This

assumption allows us to write Ω̄i
k = diag(C̄i

1, C̄
i
2, . . . , C̄

i
k).
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Before presenting the definition of Fisher Information Matrix (FIM), we require

the logarithm of PDF of a predictor in Bayesian estimation. Define a function

L̃ : P̃x → R : X 7→ log p(X, ·), as the natural logarithm of a given probability

distribution that maps an augmented probability space to a scalar. Let the

joint probability distribution of augmented states and previous measurements be

parametrised as pi(X i
k, Y

i
k−1), for X i

k ∈ P̃x and Y i
k−1 ∈ S̃y. The logarithm of the

joint distribution pi(X i
k, Y

i
k−1) is

L̃(X i
k) = log pi(X i

k, Y
i
k−1). (5.17)

The logarithm of the joint PDF updated every time step k, L : Px → R : x 7→

log p(x, ·), can be expressed as

L(xik) = log pi(xik, Y i
k−1). (5.18)

In order to measure of the steepness of the log-distribution and reflect the sen-

sitivity to changes with respect to the parameter values, we also need a parameter

referred to as score vector. For i ∈ Vn, define a score function of a parameter at

time step k as sik : Px → Rd, which maps a probability space to a vector – referred

to as the score vector. The score vector is resulted from the directional derivative

of a log-distribution function L(xik) = log p(xik, ·) with respect to the state at time

step k, xik in the direction of basis vector eik,j on the manifold Px. Correspondingly,

the score vector of the predicted value at time step k, also referred to as prior

score vector, is defined using (5.18) and elementarily given by

s̄ik,r = sik,r(xik|Y i
k−1) = Di

kL(xik|Y i
k−1)[eik,r], (5.19)

where log pi(xik, Y i
k−1) = log pi(xik|Y i

k−1) + log pi(Y i
k−1) has been employed and the

derivative of the second term vanishes. Furthermore, let s̃ik : P̃x → Rkd be an

augmented score function up to time step k. In the prediction step, stacking the

prior score vectors up to time step k gives the augmented prior score vector based

on (5.17), σ̄ik ∈ Rkd, whose elements are

σ̄ik,r = s̃ik,r(X i
k|Y i

k−1) = Di
kL̃(X i

k|Y i
k−1)[ẽik,r]. (5.20)

The prior score function entails the historical prediction up to time step k such

that s̃ik(X i
k|Y i

k−1) = s̃ik(X i
k|X i

k−1) + s̃ik(X i
k−1|Y i

k−1). Based on the definition of
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the score vectors, it is straightforward to demonstrate that the above prior score

vectors have zero mean, that is, E{s̄ik} = E{σ̄ik} = 0.

In our discussion, the subscripted time-step index attached to the score vectors

indicates the time step of the state to which the gradient of the directional

derivative is taken. For example, consider s̄iκ,r = siκ,r(xik|·) = Di
κL(xik|·)[eik,r], for

some scalar κ. In this case, κ indicates that the directional derivative of log p(xik|·)

is taken with respect to the state at specified time step xiκ, which might not equal

to xik.

Prior FIM at time step k, F̄ i
k ∈ Rd×d, is a symmetric, positive semidefinite

matrix correponding to the prediction score vector (5.19) defined as

F̄ i
k = E{s̄ik(s̄ik)>}, (5.21)

whose entries are

F̄ i
k,rs = E{Di

kL(xik|Y i
k−1)[eik,r] ·Di

kL(xik|Y i
k−1)[eik,s]}.

The FIMs from the first to the k-th iterations can be augmented to form another

symmetric, positive semidefinite matrix Γ̄ik ∈ Rkd×kd expressed as

Γ̄ik = E
{
σ̄ik(σ̄ik)>

}
, (5.22)

and elementarily as

Γ̄ik,rs = E{Di
kL̃(X i

k|Y i
k−1)[ẽik,r] ·Di

kL̃(X i
k|Y i

k−1)[ẽik,s]}.

It could naturally be observed that the matrix will always be expanding as the

time step increases.

To establish the CRB, we require several lemmas stated as follows. The first

lemma provides a solution of the Jacobi field equation on a Riemannian manifold

with constant sectional curvature. This lemma is a restructured from a part of

the proof in [117].

Lemma 5.3 (Solution of Jacobi Field Equation for Constant Sectional Curvature).

Consider a Riemannian manifold M with constant sectional curvature K ∈ R

and a geodesic γ : I ⊂ R→M. Then, the Jacobi vector field along the geodesic

is expressed as

J(t) = u1(t)E(t) + u2(t)γ̇(t), (5.23)
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where E(t) denotes a parallel vector field along γ and is orthogonal to γ̇(t); the

scalar functions u1 : R→ R and u2 : R→ R are, respectively, given by

u1(t) =



t if K = 0,

1
sin(
√
K‖γ̇‖) sin(

√
K‖γ̇‖t) if K > 0,

1
sinh(

√
−K‖γ̇‖) sinh(

√
−K‖γ̇‖t) if K < 0,

and u2(t) = βt, for some values u1(0) = u2(0) = 0, u1(1) = 1 and u2(1) = β.

Furthermore, the covariant derivative of the Jacobi field is

∇γ̇J(t) = u′1(t)E(t) + u′2(t)γ̇(t), (5.24)

where

u′1(t) =



1 if K = 0,
√
K‖γ̇‖

sin(
√
K‖γ̇‖) cos(

√
K‖γ̇‖t) if K > 0,

√
K‖γ̇‖

sinh(
√
−K‖γ̇‖) cosh(

√
−K‖γ̇‖t) if K < 0.

and u′2(t) = β.

Proof. The claim follows straightforwardly after plugging (5.23) into the Jacobi

field equation,

∇2
γ̇J(t) +R(J(t), γ̇(t))γ̇(t) = 0,

where R(u, v)w is the Riemannian curvature tensor for u, v, w ∈ X (M).

To establish the our result in the prediction update, the proofs of the following

lemma and theorem require the defined instrumental vectors and matrices: the

augmented prediction error in (5.12), prediction vector in (5.13), prior covariance

matrix in (5.16), prior score vector in (5.20) and prior FIM in (5.22).

The following lemma states the cross-covariance matrix of prior score and

prediction vectors which is adapted from [117] and [118].

Lemma 5.4 (Score-Predition Covariance Matrix). Let Px denote a d-dimensional

Riemannian manifold of the state parameter with constant sectional curvature

K ∈ R. Consider a predictor in a recursive Bayesian estimation with prediction

error, prediction vector, covariance matrix, and prior score vector at time step k
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given in (5.9), (5.10), (5.15) and (5.19), respectively. Then, the score-prediction

covariance matrix is given by

E{s̄ik(%̄ik)>} = E{%̄ik(s̄ik)>} = I − 1
3Rm(C̄i

k) +O
(
E{K2‖ξ̄ik‖4}

)
(5.25)

where Rm(C̄i
k) : Rd×d → Rd×d is a linear map given elementarily by

Rm(C̄i
k)rs =

∑
j,l

〈R(eik,j, eik,r)eik,s, eik,l〉C̄i
k,jl. (5.26)

Proof. Let us express the expected value augmented prediction error stacked in

agent i, for i ∈ Vn, up to time step k in (5.12) as

E{ζ̄ ik} =
∫
P̃x

ζ̄ ik(X i
k)pi(X i

k|Y i
k−1)dX i

k = 0, (5.27)

where ζ̄ ik = LogXi
k
(X̄ i

k).

Consider two arbitrary tangent vector fields on manifold P̃x at point X i
k,

Ũ , Ṽ ∈ TXi
k
P̃x with vector components ũ, ṽ ∈ Rkd, where Ũ = ∑kd

j=1 ũj ẽ
i
k,j and

Ṽ = ∑kd
j=1 ṽj ẽ

i
k,j. Then, taking the covariant derivative with respect to Ũ on both

sides of (5.27), followed by taking the Riemannian inner product with Ũ yields
∫
P̃x

〈∇Ũ ζ̄
i
k(X i

k)pi(X i
k|Y i

k−1), Ṽ 〉dX i
k = 0. (5.28)

Recall the product rule of a covariant derivative of a scalar-multiplied vector field,

i.e., ∇ZfX = f∇ZX+Df [Z]X, for a scalar function f and vector field X,Z with

appropriate dimension. Hence, with the property of the derivative of logarithm

function,

Di
kL̃(X i

k|Y i
k−1)[Ũ ] = Di

kpi(X i
k|Y i

k−1)[Ũ ]
pi(X i

k|Y i
k−1) ,

(5.28) could be expanded to
∫
P̃x

〈Di
kL̃(X i

k|Y i
k−1)[Ũ ] · ζ̄ ik(X i

k) +∇Ũ ζ̄
i
k(X i

k), Ṽ 〉pi(X i
k|Y i

k−1)dX i
k = 0. (5.29)

Since Di
kL̃(X i

k|Y i
k−1)[Ũ ] = 〈∇Xi

k
L̃(X i

k|Y i
k−1), Ũ〉 = ũ>σ̄ik and 〈ζ̄ ik, Ṽ 〉 = (ϑ̄ik)>ṽ,

from (5.29) one have

ũ>E{σ̄ik(ϑ̄ik)>}ṽ = −E{〈∇Ũ ζ̄
i
k, Ṽ 〉}. (5.30)
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For every agent i ∈ Vn at time step k, let the geodesic connecting X i
k ∈ P̃x

and X̄ i
k ∈ P̃x be expressed as

γik(t) = ExpX̄i
k
(tLogX̄i

k
(X i

k))

where γik(0) = X̄ i
k, γik(1) = X i

k and γ̇ik(1) = ζ̄ ik. In the subsequent steps, we utilise

the fact shown in [119] that

−∇Ũ ζ̄
i
k = ∇γ̇J

i
k(1), (5.31)

for J ik being a vector field along γik satisfying

∇2
γ̇J

i
k(t) +R(J ik(t), γ̇ik(t))γ̇ik(t) = 0, (5.32)

where ‖γ̇ik(t)‖ = ‖ζ̄ ik‖ is the geodesic distance between X̄ i
k and X i

k.

Let the vector field Ũ be constructed as Ũ = Ũ⊥ + βζ̄ ik, with 〈Ũ⊥, ζ̄ ik〉 = 0 and

a scalar β. Let E(t) be a parallel vector field along γik(t) such that, at t = 1,

E(1) = Ũ⊥. By employing Lemma 5.3, the covariant derivative of the solution of

(5.32) at t = 1 is

∇γ̇J
i
k(1) = u′1(1)Ũ⊥ + u′2(t)ζ̄ ik, (5.33)

where

u′1(1) =



1 if K = 0,
√
K‖ζ̄ ik‖ cot(

√
K‖ζ̄ ik‖) if K > 0,

√
−K‖ζ̄ ik‖ coth(

√
−K‖ζ̄ ik‖) if K < 0,

and u′2(1) = β. Applying Taylor expansion series, i.e., x cot(x) = 1−x2/3+O(x4)

and x coth(x) = 1 + x2/3 +O(x4), to u′1(1) yields (5.33) rewritten as

∇γ̇J
i
k(1) = Ũ − 1

3K‖ζ̄
i
k‖2Ũ⊥ +O

(
E{K2‖ζ̄ ik‖4}

)
Ũ⊥. (5.34)

By subtituting (5.34) to (5.30) using (5.31), it follows that

ũ>E{σ̄ik(ϑ̄ik)>}ṽ = E{〈∇γ̇J
i
k(1), Ṽ 〉}

= E{〈Ũ , Ṽ 〉 − 〈13K‖ζ̄
i
k‖2Ũ⊥, Ṽ 〉+ 〈O

(
E{K2‖ζ̄ ik‖4}

)
Ũ⊥, Ṽ 〉}

(5.35)
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Recall the relationship between Riemannian sectional curvature and curvature

tensor, we have 〈R(ζ̄ ik, Ũ⊥)Ṽ , ζ̄ ik〉 = K(〈Ũ⊥, Ṽ 〉〈ζ̄ ik, ζ̄ ik〉 − 〈ζ̄ ik, Ṽ 〉〈Ũ⊥, ζ̄ ik〉). Since

〈Ũ⊥, ζ̄ ik〉 = 0, we have 〈R(ζ̄ ik, Ũ⊥)Ṽ , ζ̄ ik〉 = K(〈Ũ⊥, Ṽ 〉〈ζ̄ ik, ζ̄ ik〉). Due to skew-

symmetry of curvature tensor, we also have R(ζ̄ ik, Ũ⊥)Ṽ = R(ζ̄ ik, Ũ)Ṽ . Injecting

these facts to the second term of the right-hand side of (5.35) leads to

ũ>E{σ̄ik(ϑ̄ik)>}ṽ = E{〈Ũ , Ṽ 〉 − 1
3〈R(ζ̄ ik, Ũ)Ṽ , ζ̄ ik〉+O

(
E{K2‖ζ̄ ik‖4}

)
〈Ũ⊥, Ṽ 〉}.

(5.36)

Consequently, the augmented score-prediction covariance matrix can be expressed

as

E{σ̄ik(ϑ̄ik)>} = I − 1
3R̃m

(
Ω̄i
k

)
+O

(
E{K2‖ζ̄ ik‖4}

)
, (5.37)

where R̃m(Ω̄i
k) : Rkd×kd → Rkd×kd is given by

R̃m(Ω̄i
k)rs = E{〈R(ζ̄ ik, ẽik,r)ẽik,s, ζ̄ ik〉}

=
∑
j,l

〈R(ẽik,j, ẽik,r)ẽik,s, ẽik,l〉Ω̄i
k,jl.

Let us explicitly arrange the augmented prediction vector at agent i in (5.13)

stacked up to time step k as ϑ̄ik = [(ϑ̄ik−1)>, (%̄ik)>]>. Likewise, the augmented

score vector in (5.20) is decomposed to σ̄ik = [(σ̄ik−1)>, (s̄ik)>]>. By utilising these

decompositions, the left-hand side of (5.37) can be stacked as

E{σ̄ik(ϑ̄ik)>} = E


σ̄ik−1(ϑ̄ik−1)> 0

0 s̄ik(%̄ik)>


 . (5.38)

Let the prediction error up to time step k be arranged as ζ̄ ik = (ζ̄ ik−1, ξ̄
i
k) and

the orthogonal basis as ẽik,r = (ẽi{k−1},r, e
i
k,r). Applying them to the second term

of the right-hand side of (5.36) leads to R̃m(Ω̄i
k) structured as

R̃m(Ω̄i
k) =

R̃m(Ω̄i
k−1) 0

0 Rm(C̄i
k)

 , (5.39)

with Rm defined in (5.26). Notice that the implication of the independency of

information at time step k−1 and k has been employed to both (5.38) and (5.39),

i.e., the expected value of the cross-covariance between two variables at time step

k and k − 1 equals to zero.
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From (5.38), it can be observed that the state-prediction covariance matrix

at time step k can be obtained by extracting the lower-right entries of matrices

E{σ̄ik(ϑ̄ik)>} and R̃m(Ω̄i
k). Finally, plugging (5.38) and (5.39) into (5.37), then

taking the lower-right sub-matrix of all terms yields

E{s̄ik(%̄ik)>} = E{%̄ik(s̄ik)>} = I − 1
3Rm(C̄i

k) +O
(
E{K2‖ξ̄ik‖4}

)
. (5.40)

This completes the proof.

The following theorem states our first result about the intrinsic CRB for

Bayesian prediction update adapting the arguments in [117], and [118] and [81].

Theorem 5.5 (Intrinsic Prior CRB for Bayesian Prediction). Consider a group

of n agents connected via a graph Gn = (Vn, En). Let Px and Sy be Riemannian

state and measurement manifolds, respectively. For each agent i ∈ Vn, let x̄ik ∈ Px
be a predictor, equipped with score function in (5.19), prior covariance matrix in

(5.15) and FIM in (5.21), at time step k following the prediction step of recursive

Bayesian estimator in (5.4). Let the orthogonal basis of the predictor be given by

eik = (eik,1, eik,2, . . . , eik,d), for d = dim(Px). Then, with the prediction error and

prediction vector at time step k given by (5.9) and (5.10), respectively, the prior

covariance matrix satisfies the following inequality:

C̄i
k > (F̄ i

k)−1 − 1
3
(
(F̄ i

k)−1Rm((F̄ i
k)−1) +Rm((F̄ i

k)−1)(F̄ i
k)−1

)
+O

(
E{K2‖ξ̄ik‖4}

)
,

(5.41)

where Rm((F̄ i
k)−1)rs = ∑

j,l〈R(eik,j, eik,r)eik,s, eik,l〉((F̄ i
k)−1)jl and

F̄ i
k = Sik − (Bi

k)>(F̂ i
k−1 + Aik)−1Bi

k (5.42)

with

Sik = E{sik(xik|xik−1)sik(xik|xik−1)>},

Bi
k = E{sik−1(xik|xik−1)sik(xik|xik−1)>} = (Bi

k)>,

Aik = E{sik−1(xik|xik−1)sik−1(xik|xik−1)>}, and

F̂ i
k = E{sik−1(xik−1|yik−1)sik−1(xik−1|yik−1)>}.

Proof. For agent i ∈ Vn, let a random vector formed up to time step k be given

by ν̄ik ∈ Rkd, where d = dim(Px), such that E{ν̄ik(ν̄ik)>} > 0 holds. This vector
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can be chosen as

ν̄ik = ϑ̄ik − (Γ̄ik)−1σ̄ik,

whose expected value of ν̄ik is zero. By utilising this vector, consider a covariance

matrix E{ν̄ik(ν̄ik)>}:

E
{
ν̄ik(ν̄ik)>

}
= E

{
ϑ̄ik(ϑ̄ik)>

}
+ (Γ̄ik)−1E

{
σ̄ik(σ̄ik)>

}
(Γ̄ik)−1

− (Γ̄ik)−1E
{
σ̄ik(ϑ̄ik)>

}
− E

{
ϑ̄ik(σ̄ik)>

}
(Γ̄ik)−1 > 0. (5.43)

Now, let us inspect the element of each term in (5.43) by firstly noting that

ϑ̄ik = [(ϑ̄ik−2)>, (%̄ik−1)>, (%̄ik)>]>, σ̄ik = [(σ̄ik−2)>, (s̄ik−1)>, (s̄ik)>]>, E{σ̄ik(σ̄ik)>} = Γ̄ik
and E{ϑ̄ik(ϑ̄ik)>} = Ω̄i

k. It follows that

Ω̄i
k =


E
{
ϑ̄ik−2(ϑ̄ik−2)>

}
0 0

0 E
{
%̄ik−1(%̄ik−1)>

}
0

0 0 E
{
%̄ik(%̄ik)>

}

 , (5.44)

(Γ̄ik)−1 =


E
{
σ̄ik−2(σ̄ik−2)>

}
E
{
σ̄ik−2(s̄ik−1)>

}
0

E
{
s̄ik−1(σ̄ik−2)>

}
E
{
s̄ik−1(s̄ik−1)>

}
E
{
s̄ik−1(s̄ik)>

}
0 E

{
s̄ik(s̄ik−1)>

}
E
{
s̄ik(s̄ik)>

}


−1

, (5.45)

and

(Γ̄ik)−1E
{
σ̄ik(ϑ̄ik)>

}
=


E
{
σ̄ik−2(σ̄ik−2)>

}
E
{
σ̄ik−2(s̄ik−1)>

}
0

E
{
s̄ik−1(σ̄ik−2)>

}
E
{
s̄ik−1(s̄ik−1)>

}
E
{
s̄ik−1(s̄ik)>

}
0 E

{
s̄ik(s̄ik−1)>

}
E
{
s̄ik(s̄ik)>

}

−1

×


E
{
σ̄ik−2(ϑ̄ik−2)>

}
0 0

0 E
{
s̄ik−1(ϑ̄ik−1)>

}
0

0 0 E
{
s̄ik(ϑ̄ik)>

}
 .
(5.46)

To establish the CRB at every time step k, we need to extract the lower-right

submatrices of each term in (5.44), (5.45) and (5.46). However, the presence

of inverse of (Γ̄ik)−1 requires additional modification. By utilising the following

property of a block matrix, P Q

Q> R


−1

=

 (P −QR−1Q>)−1 −(P −QR−1Q>)−1QR−1

−R−1Q>(P −QR−1Q>)−1 (R−Q>P−1Q)−1

 ,
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for P,Q,R being matrices with appropriate dimension, the Fisher Information

Matrix at time step k can be obtained via

F̄ i
k = Sik −

[
0 (Bi

k)>
] E

{
σ̄ik−2(σ̄ik−2)>

}
E
{
σ̄ik−2(s̄ik−1)>

}
E
{
s̄ik−1(σ̄ik−2)>

}
E
{
s̄ik−1(s̄ik−1)>

}

−1  0

Bi
k


= Sik − (Bi

k)>(F̂ i
k−1 + Aik)−1Bi

k

where

Sik = E{sik(xik|xik−1)sik(xik|xik−1)>},

Bi
k = E{sik−1(xik|xik−1)sik(xik|xik−1)>} = (Bi

k)>,

Aik = E{sik−1(xik|xik−1)sik−1(xik|xik−1)>}, and

F̂ i
k = E{sik−1(xik−1|yik−1)sik−1(xik−1|yik−1)>}.

Subsequently, plugging (5.44), (5.45) and (5.46) to (5.43) and extracting the

lower-right submatrix of each term in (5.43) yield

C̄i
k + 1

3((F̄ i
k)−1Rm(C̄i

k) +Rm(C̄i
k)(F̄ i

k)−1) > (F̄ i
k)−1 +O

(
E{K2‖ξ̄ik‖4}

)
, (5.47)

wherein Lemma 5.4 has been applied to the third and fourth term. Define an

operator ∆ : Rd×d → Rd×d and a matrix identity operator Id : Rd×d → Rd×d. By

using these notations, it follows that the left-hand side of (5.47) could be arranged

to

(Id + ∆)C̄i
k = 1

3((F̄ i
k)−1Rm(C̄i

k) +Rm(C̄i
k)(F̄ i

k)−1).

Multiplying both sides of (5.47) by (Id + ∆)−1 and employing the Taylor series

(Id + ∆)−1 = Id −∆ + ∆2 − . . . yields

C̄i
k > (F̄ i

k)−1 − 1
3((F̄ i

k)−1Rm((F̄ i
k)−1) +Rm((F̄ i

k)−1)(F̄ i
k)−1) +O

(
E{K2‖ξ̄ik‖4}

)
,

which completes the proof.

5.2.2 Local Measurement Update

Let x̂ik ∈ Px and X̂ i
k ∈ P̃x be the posterior estimate or the estimate value of

a state xik at time step k, and the augmented posterior estimate up to time
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step k, of agent i ∈ Vn, respectively. The estimate at time step k is evaluated by

executing the measurement update of the Bayesian estimation mechanism in (5.5).

Our interest in this discussion is to establish the lower bound of the posterior

covariance matrix, that is, E{Logx̂i
k
(xik)Logx̂i

k
(xik)

>} = E{Logxi
k
(x̂ik)Logxi

k
(x̂ik)

>}.

An estimator of agent i at time step k, x̂ik : S̃y → Px : Y i
k 7→ x̂ik(Y i

k ), is

a mapping which associates the measurement manifolds up to time step k to

the current state manifold at time step k based on the posterior distribution of

the recursive Bayesian estimator. The augmented estimator can be defined as a

mapping X̂ i
k : S̃y → P̃x : Y i

k 7→ X̂ i
k(Y i

k ) from augmented measurement manifold

available up to time step k to the augmented state manifold up to time step k.

Define the estimation error at time step k as the difference between the true

value xik and the estimate value x̂ik. Due to non-zero curvature of the manifold,

the error requires the logarithm map of two points on manifold Px:

ξ̂ik = Logxi
k
(x̂ik) ∈ Txi

k
Px. (5.48)

Let %̂ik ∈ Rd be an estimation vector of the corresponding estimation error on the

state manifold Px. The entries of the estimate vector can be expressed as

%̂ik,j = 〈Logxi
k
(x̂ik), eik,j〉. (5.49)

Correspondingly, the norm of the estimation error could be calculated using

‖%̂ik‖ = ‖Logxi
k
x̂ik‖ = dist(xik, x̂ik). (5.50)

As the time step increases along the iterations, an expanding parameter composed

of the estimation errors up to time step k is then stacked to form the augmented

estimation error given by

ζ̂ ik = LogXi
k
(X̂ i

k) ∈ TXi
k
P̃x. (5.51)

Accordingly, let an augmented estimation vector of the state up to time step k be

denoted by ϑ̂ik ∈ Rkd, for d = dim(Px). The entries of the augmented estimation

vector is

ϑ̂ik,j = 〈LogXi
k
(X̂ i

k), ẽik,j〉, (5.52)
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leading to the norm of the augmented estimation error given by

‖ϑ̂ik‖ = ‖LogXi
k
X̂ i
k‖ = dist(X i

k, X̂
i
k). (5.53)

By employing the estimation vector of agent i ∈ Vn at time step k, the

covariance matrix of the estimation error at time step k is defined as a symmetric,

positive semidefinite matrix Ĉi
k ∈ Rd×d written as

Ĉi
k = E{%̂ik(%̂ik)>}, (5.54)

which is elementarily equivalent to

Ĉi
k,rs = E{〈Logxi

k
(x̂ik), eik,r〉 · 〈Logxi

k
(x̂ik), eik,s〉}.

The expanding covariance matrix resulted from augmenting the estimate values

up to time step k can be obtained by augmentation of the estimation vector,

Ω̂i
k ∈ Rkd×kd. The estimation covariance matrix can be written as

Ω̂i
k = E{ϑ̂ik(ϑ̂ik)>}, (5.55)

whose entries are

Ω̂i
k,rs = E{〈LogXi

k
(X̂ i

k), ẽik,r〉 · 〈LogXi
k
(X̂ i

k), ẽik,s〉}.

In this discussion, it is assumed that the probability distribution of the estimation

processes at time step k1 at k2, for k1 6= k2, is uncorrelated, i.e., E{%̂i{k1}%̂i{k2}} = 0.

It follows that Ω̂i
k = diag(Ĉi

1, Ĉ
i
2, . . . , Ĉ

i
k).

To form the definition of posterior FIM, we require the logarithm of PDF of an

estimator in Bayesian recursion. Continued from the definition about the natural

logarithm of a PDF in the prediction update, let the joint probability distribution

of augmented states and previous measurements calculated by agent i ∈ Vn be

parametrised as pi(X i
k, Y

i
k ), for X i

k ∈ P̃x and Y i
k ∈ S̃y. Accordingly, the logarithm

of the joint distribution is given by

L̃(X i
k) = log pi(X i

k, Y
i
k ). (5.56)

The logarithm of the joint PDF updated every time step k, L : Px → R : x 7→

log p(x, ·), can be expressed as

L(xik) = log pi(xik, Y i
k ). (5.57)
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In order to measure of the steepness of the log-distribution and reflect the

sensitivity to changes with respect to the parameter values, we continue the score

function explained in the prediction update, that is, sik : Px → Rd. The score

vector of the estimate value at time step k, also referred to as posterior score

vector, is defined using (5.57) and elementarily given by

ŝik,r = sik,r(xik|Y i
k ) = Di

kL(xik|Y i
k )[eik,r], (5.58)

where log pi(xik, Y i
k ) = log pi(xik|Y i

k )+log pi(Y i
k ) has been employed and the deriva-

tive of the second term vanishes. In the measurement update, by utilising

s̃ik : P̃x → Rkd, stacking the posterior score vectors up to time step k gives

the augmented posterior score vector based on (5.56), σ̂ik ∈ Rkd, whose elements

are

σ̂ik,r = s̃ik,r(X i
k|Y i

k ) = Di
kL̃(X i

k|Y i
k )[ẽik,r]. (5.59)

Neglecting the coordination process, the posterior score function of the measure-

ment process up to time step k is given by s̃ik(X i
k|Y i

k ) = s̃ik(Y i
k |X i

k)+ s̃ik(X i
k|X i

k−1)+

s̃ik(X i
k−1|Y i

k−1). It is worth noting that, in this case, the derivative of the denomi-

nator of (5.5) equals to zero because it is no longer a function of X i
k. Based on

the definition of the score vectors, it is straightforward to demonstrate that the

above posterior score vectors have zero mean, that is, E{ŝik} = E{σ̂ik} = 0.

Posterior FIM at time step k, F̂ i
k ∈ Rd×d, is a symmetric, positive semidefinite

matrix correponding to the estimation score vector (5.58) defined as

F̂ i
k = E{ŝik(ŝik)>}, (5.60)

whose entries are

F̂ i
k,rs = E{Di

kL(xik|Y i
k )[eik,r] ·Di

kL(xik|Y i
k )[eik,s]}.

Augmenting the FIMs from the first to the k-th iterations forms another symmetric,

positive semidefinite matrix Γ̂ik ∈ Rkd×kd expressed as

Γ̂ik = E
{
σ̂ik(σ̂ik)>

}
, (5.61)

and elementarily as

Γ̂ik,rs = E{Di
kL̃(X i

k|Y i
k )[ẽik,r] ·Di

kL̃(X i
k|Y i

k )[ẽik,s]}.
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It could naturally be observed that the matrix will always be expanding as the

time step increases.

To establish the our result in the measurement update, the proofs of the fol-

lowing lemma and theorem require the defined instrumental vectors and matrices:

the augmented estimation error in (5.51), estimation vector in (5.52), posterior

covariance matrix in (5.55), posterior score vector in (5.59) and posterior FIM in

(5.61).

Identical to Lemma 5.4, an additional lemma is required to establish the CRB

for the measurement update. The following lemma states the cross-covariance

matrix of posterior score and estimate vectors which is adapted from [117] and

[118].

Lemma 5.6 (Score-Estimate Covariance Matrix). Let Px denote a d-dimension

Riemannian manifold of the state parameter with constant sectional curvature

K ∈ R. Consider a predictor in a recursive Bayesian estimation with estimate

error, estimate vector, covariance matrix, and posterior score vector at time step

k given in (5.48), (5.49), (5.54) and (5.58), respectively. Then, the score-estimate

covariance matrix is given by

E{ŝik(%̂ik)>} = E{%̂ik(ŝik)>} = I − 1
3Rm(Ĉi

k) +O
(
E{K2‖ξ̂ik‖4}

)
(5.62)

where Rm(Ĉi
k) : Rd×d → Rd×d is a linear map given elementarily by

Rm(Ĉi
k)rs =

∑
j,l

〈R(eik,j, eik,r)eik,s, eik,l〉Ĉi
k,jl. (5.63)

Proof. Let us express the expected value augmented estimate error stacked in

agent i, for i ∈ Vn, up to time step k in (5.51) as

E{ζ̂ ik} =
∫
P̃x

ζ̂ ik(X i
k)pi(X i

k|Y i
k )dX i

k = 0, (5.64)

where ζ̂ ik = LogXi
k
(X̂ i

k).

Consider two arbitrary tangent vector fields on manifold P̃x at point X i
k,

Ũ , Ṽ ∈ TXi
k
P̃x with vector components ũ, ṽ ∈ Rkd, where Ũ = ∑kd

j=1 ũj ẽ
i
k,j and

Ṽ = ∑kd
j=1 ṽj ẽ

i
k,j. Then, taking the covariant derivative with respect to Ũ on both

sides of (5.64), followed by taking the Riemannian inner product with Ũ yields∫
P̃x

〈∇Ũ ζ̂
i
k(X i

k)pi(X i
k|Y i

k ), Ṽ 〉dX i
k = 0. (5.65)
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Recall the product rule of a covariant derivative of a scalar-multiplied vector field,

i.e., ∇ZfX = f∇ZX+Df [Z]X, for a scalar function f and vector field X,Z with

appropriate dimension. Hence, with the property of the derivative of logarithm

function,

Di
kL̃(X i

k|Y i
k )[Ũ ] = Di

kpi(X i
k|Y i

k )[Ũ ]
pi(X i

k|Y i
k ) ,

(5.65) could be expanded to

∫
P̃x

〈Di
kL̃(X i

k|Y i
k )[Ũ ] · ζ̂ ik(X i

k)

+∇Ũ ζ̂
i
k(X i

k), Ṽ 〉pi(X i
k|Y i

k )dX i
k = 0. (5.66)

Since Di
kL̃(X i

k|Y i
k )[Ũ ] = 〈∇Xi

k
L̃(X i

k|Y i
k−1), Ũ〉 = ũ>σ̂ik and 〈ζ̂ ik, Ṽ 〉 = (ϑ̂ik)>ṽ, from

(5.66) one have

ũ>E{σ̂ik(ϑ̂ik)>}ṽ = −E{〈∇Ũ ζ̂
i
k, Ṽ 〉}. (5.67)

For every agent i ∈ Vn at time step k, let the geodesic connecting X i
k ∈ P̃x

and X̂ i
k ∈ P̃x be expressed as

γik(t) = ExpX̂i
k
(tLogX̂i

k
(X i

k))

where γik(0) = X̂ i
k, γik(1) = X i

k and γ̇ik(1) = ζ̂ ik. In the subsequent steps, we utilise

the fact shown in [119] that

−∇Ũ ζ̂
i
k = ∇γ̇J

i
k(1), (5.68)

for J ik being a vector field along γik satisfying

∇2
γ̇J

i
k(t) +R(J ik(t), γ̇ik(t))γ̇ik(t) = 0, (5.69)

where ‖γ̇ik(t)‖ = ‖ζ̂ ik‖ is the geodesic distance between X̂ i
k and X i

k.

Let the vector field Ũ be constructed as Ũ = Ũ⊥ + βζ̂ ik, with 〈Ũ⊥, ζ̂ ik〉 = 0 and

a scalar β. Let E(t) be a parallel vector field along γik(t) such that, at t = 1,

E(1) = Ũ⊥. By employing Lemma 5.3, the covariant derivative of the solution of

(5.69) at t = 1 is

∇γ̇J
i
k(1) = u′1(1)Ũ⊥ + u′2(t)ζ̂ ik, (5.70)
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where

u′1(1) =



1 if K = 0,
√
K‖ζ̂ ik‖ cot(

√
K‖ζ̂ ik‖) if K > 0,

√
−K‖ζ̂ ik‖ coth(

√
−K‖ζ̂ ik‖) if K < 0,

and u′2(1) = β. Applying Taylor expansion series, i.e., x cot(x) = 1−x2/3+O(x4)

and x coth(x) = 1 + x2/3 +O(x4), to u′1(1) yields (5.70) rewritten as

∇γ̇J
i
k(1) = Ũ − 1

3K‖ζ̂
i
k‖2Ũ⊥ +O

(
E{K2‖ζ̂ ik‖4}

)
Ũ⊥. (5.71)

By subtituting (5.71) to (5.67) using (5.68), it follows that

ũ>E{σ̂ik(ϑ̂ik)>}ṽ = E{〈∇γ̇J
i
k(1), Ṽ 〉}

= E{〈Ũ , Ṽ 〉 − 〈13K‖ζ̂
i
k‖2Ũ⊥, Ṽ 〉+ 〈O

(
E{K2‖ζ̂ ik‖4}

)
Ũ⊥, Ṽ 〉}

(5.72)

Recall the relationship between Riemannian sectional curvature and curvature

tensor, we have 〈R(ζ̂ ik, Ũ⊥)Ṽ , ζ̂ ik〉 = K(〈Ũ⊥, Ṽ 〉〈ζ̂ ik, ζ̂ ik〉 − 〈ζ̂ ik, Ṽ 〉〈Ũ⊥, ζ̂ ik〉). Since

〈Ũ⊥, ζ̂ ik〉 = 0, we have 〈R(ζ̂ ik, Ũ⊥)Ṽ , ζ̂ ik〉 = K(〈Ũ⊥, Ṽ 〉〈ζ̂ ik, ζ̂ ik〉). Due to skew-

symmetry of curvature tensor, we also have R(ζ̂ ik, Ũ⊥)Ṽ = R(ζ̂ ik, Ũ)Ṽ . Injecting

these facts to the second term of the right-hand side of (5.72) leads to

ũ>E{σ̂ik(ϑ̂ik)>}ṽ = E{〈Ũ , Ṽ 〉 − 1
3〈R(ζ̂ ik, Ũ)Ṽ , ζ̂ ik〉+O

(
E{K2‖ζ̂ ik‖4}

)
〈Ũ⊥, Ṽ 〉}.

(5.73)

Consequently, the augmented score-estimate covariance matrix can be expressed

as

E{σ̂ik(ϑ̂ik)>} = I − 1
3R̃m

(
Ω̂i
k

)
+O

(
E{K2‖ζ̂ ik‖4}

)
, (5.74)

where R̃m(Ω̂i
k) : Rkd×kd → Rkd×kd is given by

R̃m(Ω̂i
k)rs = E{〈R(ζ̂ ik, ẽik,r)ẽik,s, ζ̂ ik〉}

=
∑
j,l

〈R(ẽik,j, ẽik,r)ẽik,s, ẽik,l〉Ω̂i
k,jl.

Let us explicitly arrange the augmented estimate vector at agent i in (5.52)

stacked up to time step k as ϑ̂ik = [(ϑ̂ik−1)>, (%̂ik)>]>. Likewise, the augmented
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score vector in (5.59) is decomposed to σ̂ik = [(σ̂ik−1)>, (ŝik)>]>. By utilising these

decompositions, the left-hand side of (5.74) can be stacked as

E{σ̂ik(ϑ̂ik)>} = E


σ̂ik−1(ϑ̂ik−1)> 0

0 ŝik(%̂ik)>


 . (5.75)

Let the estimate error up to time step k be arranged as ζ̂ ik = (ζ̂ ik−1, ξ̂
i
k) and

the orthogonal basis as ẽik,r = (ẽi{k−1},r, e
i
k,r). Applying them to the second term

of the right-hand side of (5.73) leads to R̃m(Ω̂i
k) structured as

R̃m(Ω̂i
k) =

R̃m(Ω̂i
k−1) 0

0 Rm(Ĉi
k)

 , (5.76)

with Rm defined in (5.63). Notice that the implication of the independency of

information at time step k−1 and k has been employed to both (5.75) and (5.76),

i.e., the expected value of the cross-covariance between two variables at time step

k and k − 1 equals to zero.

From (5.75), it can be observed that the state-estimate covariance matrix at

time step k can be obtained by extracting the lower-right entries of matrices

E{σ̂ik(ϑ̂ik)>} and R̃m(Ω̂i
k). Finally, plugging (5.75) and (5.76) into (5.74), then

taking the lower-right sub-matrix of all terms yields

E{ŝik(%̂ik)>} = E{%̂ik(ŝik)>} = I − 1
3Rm(Ĉi

k) +O
(
E{K2‖ξ̂ik‖4}

)
. (5.77)

This completes the proof.

The following theorem states our second result about the intrinsic CRB for

local Bayesian estimation update whose arguments are adapted from [117], and

[118] and [81].

Theorem 5.7 (Intrinsic Posterior CRB for Bayesian Estimator). Consider a

group of n agents connected via a graph Gn = (Vn, En). Let Px and Sy be Rie-

mannian state and measurement manifolds, respectively. For each agent i ∈ Vn,

let x̂ik ∈ Px be an estimator at time step k following the measurement step of

recursive Bayesian estimator in (5.5). Let the orthogonal basis of the estimator be

given by eik = (eik,1, eik,2, . . . , eik,d), for d = dim(Px). Let the estimator be equipped

with the estimate error, estimate vector and posterior score vector at time step
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k given by (5.48), (5.49), (5.58), respectively. Then, with posterior covariance

matrix in (5.54) and FIM in (5.60), the posterior covariance matrix satisfies the

following inequality:

Ĉi
k > (F̂ i

k)−1 − 1
3
(
(F̂ i

k)−1Rm((F̂ i
k)−1) +Rm((F̂ i

k)−1)(F̂ i
k)−1

)
+O

(
E{K2‖ξ̂ik‖4}

)
,

(5.78)

where Rm((F̂ i
k)−1)rs = ∑

j,l〈R(eik,j, eik,r)eik,s, eik,l〉((F̂ i
k)−1)jl and

F̂ i
k = Gi

k + Sik − (Bi
k)>(F̂ i

k−1 + Aik)−1Bi
k (5.79)

with

Gi
k = E{sik(yik|xik)sik(yik|xik)>},

Sik = E{sik(xik|xik−1)sik(xik|xik−1)>},

Bi
k = E{sik−1(xik|xik−1)sik(xik|xik−1)>} = (Bi

k)>,

Aik = E{sik−1(xik|xik−1)sik−1(xik|xik−1)>}, and

F̂ i
k = E{sik−1(xik−1|yik−1)sik−1(xik−1|yik−1)>}.

Proof. For agent i ∈ Vn, consider a random vector augmented up to time step k

be given by ν̂ik ∈ Rkd, where d = dim(Px), such that E{ν̂ik(ν̂ik)>} > 0 holds. This

vector can be chosen as

ν̂ik = ϑ̂ik − (Γ̂ik)−1σ̂ik,

whose expected value of ν̂ik is zero. Accordingly, consider a covariance matrix

E{ν̂ik(ν̂ik)>}:

E
{
ν̂ik(ν̂ik)>

}
= E

{
ϑ̂ik(ϑ̂ik)>

}
+ (Γ̂ik)−1E

{
σ̂ik(σ̂ik)>

}
(Γ̂ik)−1

− (Γ̂ik)−1E
{
σ̂ik(ϑ̂ik)>

}
− E

{
ϑ̂ik(σ̂ik)>

}
(Γ̂ik)−1 > 0. (5.80)

From the defined covariance matrix, let us inspect the element of its term by

firstly noting that ϑ̂ik = [(ϑ̂ik−2)>, (%̂ik−1)>, (%̂ik)>]>, σ̂ik = [(σ̂ik−2)>, (ŝik−1)>, (ŝik)>]>,

E{σ̂ik(σ̂ik)>} = Γ̂ik and E{ϑ̂ik(ϑ̂ik)>} = Ω̂i
k. It follows that

Ω̂i
k =


E
{
ϑ̂ik−2(ϑ̂ik−2)>

}
0 0

0 E
{
%̂ik−1(%̂ik−1)>

}
0

0 0 E
{
%̂ik(%̂ik)>

}

 , (5.81)
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(Γ̂ik)−1 =


E
{
σ̂ik−2(σ̂ik−2)>

}
E
{
σ̂ik−2(ŝik−1)>

}
0

E
{
ŝik−1(σ̂ik−2)>

}
E
{
ŝik−1(ŝik−1)>

}
E
{
ŝik−1(ŝik)>

}
0 E

{
ŝik(ŝik−1)>

}
E
{
ŝik(ŝik)>

}


−1

, (5.82)

and

(Γ̂ik)−1E
{
σ̂ik(ϑ̂ik)>

}
=


E
{
σ̂ik−2(σ̂ik−2)>

}
E
{
σ̂ik−2(ŝik−1)>

}
0

E
{
ŝik−1(σ̂ik−2)>

}
E
{
ŝik−1(ŝik−1)>

}
E
{
ŝik−1(ŝik)>

}
0 E

{
ŝik(ŝik−1)>

}
E
{
ŝik(ŝik)>

}

−1

×


E
{
σ̂ik−2(ϑ̂ik−2)>

}
0 0

0 E
{
ŝik−1(ϑ̂ik−1)>

}
0

0 0 E
{
ŝik(ϑ̂ik)>

}
 .
(5.83)

To establish the posterior CRB at every time step k, we need to extract the

lower-right submatrices of each term in (5.81), (5.82) and (5.83). However, the

presence of inverse of (Γ̂ik)−1 requires additional modification. By utilising the

following property of a block matrix, P Q

Q> R


−1

=

 (P −QR−1Q>)−1 −(P −QR−1Q>)−1QR−1

−R−1Q>(P −QR−1Q>)−1 (R−Q>P−1Q)−1

 ,
for P,Q,R being matrices with appropriate dimension, the Fisher Information

Matrix at time step k can be obtained via

F̂ i
k = Sik −

[
0 (Bi

k)>
] E

{
σ̂ik−2(σ̂ik−2)>

}
E
{
σ̂ik−2(ŝik−1)>

}
E
{
ŝik−1(σ̂ik−2)>

}
E
{
ŝik−1(ŝik−1)>

}

−1  0

Bi
k


= Gi

k + Sik − (Bi
k)>(F̂ i

k−1 + Aik)−1Bi
k

where

Gi
k = E{sik(yik|xik)sik(yik|xik)>},

Sik = E{sik(xik|xik−1)sik(xik|xik−1)>},

Bi
k = E{sik−1(xik|xik−1)sik(xik|xik−1)>} = (Bi

k)>,

Aik = E{sik−1(xik|xik−1)sik−1(xik|xik−1)>}, and

F̂ i
k = E{sik−1(xik−1|yik−1)sik−1(xik−1|yik−1)>}.
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Subsequently, plugging (5.81), (5.82) and (5.83) to (5.80) and extracting the

lower-right submatrix of each term in (5.80) yield

Ĉi
k + 1

3((F̂ i
k)−1Rm(Ĉi

k) +Rm(Ĉi
k)(F̂ i

k)−1) > (F̂ i
k)−1 +O

(
E{K2‖ξ̂ik‖4}

)
, (5.84)

wherein Lemma 5.6 has been applied to the third and fourth term. Define an

operator ∆ : Rd×d → Rd×d and a matrix identity operator Id : Rd×d → Rd×d. By

using these notations, it follows that the left-hand side of (5.84) could be arranged

to

(Id + ∆)Ĉi
k = 1

3((F̂ i
k)−1Rm(Ĉi

k) +Rm(Ĉi
k)(F̂ i

k)−1).

Multiplying both sides of (5.84) by (Id + ∆)−1 and employing the Taylor series

(Id + ∆)−1 = Id −∆ + ∆2 − . . . yields

Ĉi
k > (F̂ i

k)−1 − 1
3((F̂ i

k)−1Rm((F̂ i
k)−1) +Rm((F̂ i

k)−1)(F̂ i
k)−1) +O

(
E{K2‖ξ̂ik‖4}

)
which completes the proof.

The following corollary states a more compact form of the intrinsic posterior

CRB presented in Theorem 5.7.

Corollary 5.8. By invoking the FIM in the intrinsic prior CRB,

F̄ i
k = Sik − (Bi

k)>(F̂ i
k−1 + Aik)−1Bi

k,

the posterior CRB could equivalently be expressed as

Ĉi
k > (F̂ i

k)−1 − 1
3
(
(F̂ i

k)−1Rm((F̂ i
k)−1) +Rm((F̂ i

k)−1)(F̂ i
k)−1

)
+O

(
E{K2‖ξ̂ik‖4}

)
,

(5.85)

where

F̂ i
k = F̄ i

k +Gi
k. (5.86)

The above discussion have demonstrated the intrinsic CRBs for both local

prediction and measurement of Bayesian estimator. The established CRBs can

be utilised to calculate the lowest value of MSE of a Bayesian estimator. For

simplicity, assume that there is only n = 1 agent. By removing the subscripted i
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and the higher-order term of the posterior CRB, the minimum value of the MSE

a Bayesian estimator could achieve at every time step k could be calculated via

MSE(xk, x̂k) = tr(Ĉk)

> tr(F̂−1
k )− 1

3tr
(
F̂−1
k Rm(F̂−1

k ) +Rm(F̂−1
k )F̂−1

k

)
.

5.2.3 Coordination Update

Based on the scenario of distributed Bayesian estimator presented in Section 5.1,

the corresponding intrinsic CRB is sequenced as follows. Firstly, each agent com-

putes the prior CRB followed by computing the posterior CRB locally. Secondly,

the distributed posterior CRB is calculated using the local posterior CRBs from

neighbouring agents.

The intrinsic posterior CRB for the distributed Bayesian estimation is stated

in the following theorem.

Theorem 5.9 (Intrinsic Posterior CRB for Distributed Bayesian Estimator). Let

Px and Sy, respectively, be Riemannian state and measurement manifolds with

p = dim(Px). Let a group of n agents be connected via a graph Gn = (Vn, En) with

doubly-stochastic primitive Perron matrix Π = [πij] ∈ Rnd×nd. For each agent

i ∈ Vn, let x̂ik ∈ Px be an estimator at time step k following the measurement

step of recursive Bayesian estimator in (5.5). Let the orthogonal basis of the

estimator be given by eik = (eik,1, eik,2, . . . , eik,d). Let the estimator be equipped with

the estimate error, estimate vector and posterior score vector at time step k given

by (5.48), (5.49), (5.58), respectively. Then, with posterior covariance matrix in

(5.54) and FIM in (5.60), the posterior covariance matrix satisfies the following

inequality:

C̃i
k > (F̃ i

k)−1 − 1
3
(
(F̃ i

k)−1Rm((F̃ i
k)−1) +Rm((F̃ i

k)−1)(F̃ i
k)−1

)
+O

(
E{K2‖ξ̂ik‖4}

)
,

(5.87)

where Rm((F̃ i
k)−1)rs = ∑

j,l〈R(eik,j, eik,r)eik,s, eik,l〉((F̃ i
k)−1)jl. The distributed poste-

rior FIM is given by

F̃ i
k =

n∑
j=1

πijF̂jk, for j ∈ Ni. (5.88)
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Proof. The proof of this theorem follows similar arguments in the proof of Theorem

5.7 with slight modification by employing the primitive Perron matrix to collect

the posterior FIMs from neighbouring agents.

Remark 5.10. The primitivity of the Perron matrix Π implies that limk→∞Πk =

vw> with Πv = v and w>Π = w>. Due to doubly-stochastic assumption, we have

v = 1 and w = (1/n)1. It follows that the value of prior FIM as k →∞ is given

by limk→∞ΠkF̄i0 = (1/n)1>F̄i0, i.e., average of the initial value of the FIMs.

In this n-agent estimator scenario, by neglecting the higher-order term of the

CRB, the MSE of the distributed Bayesian estimator is lower-bounded by

MSE(xk, x̂k) =
n∑
i=1

tr(C̃i
k)

>
n∑
i=1

tr((F̃ i
k)−1)− 1

3

n∑
i=1

tr
(
(F̃ i

k)−1Rm((F̃ i
k)−1) +Rm((F̃ i

k)−1)(F̃ i
k)−1

)
.

5.3 Distributed Riemannian Kalman Filter

In this section, we propose a class of Bayesian estimator to solve the distributed

estimation problem on Riemannian manifolds whose system dynamic and mea-

surement model is defined in (5.1) and (5.2), respectively. By assuming that the

probability density function (PDF) of the noises to being Gaussian, we can design

a distributed Riemannian Kalman filter based on the distributed UKF designed

in Chapter 4 with some adjustments to accommodate the geodesic curvature.

Before designing the distributed filter, we require several assumptions regard-

ing the process and measurement PDFs, communication topology of the network,

and the Riemannian manifolds of the process and measurement:

1. the Riemannian manifolds of the process and measurement are geodesically

complete,

2. all points are located inside the maximal domain where the exponential

mapping is still a diffeomorphism,

3. the system has sufficiently large SNR that allows the state and measurement

to stay inside the maximal geodesic all points such that there exists only

one Fréchet mean,
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4. the communication noise is zero and the graph topology of the network can

be modelled via Laplacian matrix,

5. the process and measurement noises are Gaussian and uncorrelated, while

the process and measurement data are jointly Gaussian.

These assumptions allow us to generalise the distributed UKF developed in Chap-

ter 4 without communication data by utilising the exponential and logarithm

mappings on manifolds to accommodate the non-zero sectional curvature. Since

the communication noise is assumed to be zero, the distributed UKF developed

in Euclidean systems is extendable to Riemannian manifolds with several modifi-

cation to accommodate curved space.

5.3.1 Prediction Update

The means of unscented transformation utilised in the UKF is modified in the

prediction update to calculate the prior estimate and measurement values together

with their covariances.

For each agent i ∈ Vn, define x̃ik,aug = [(x̃ik)> (vik)> (wik)>]> as a random vari-

able augmenting the posterior estimate, and the process and measurement noises;

while P̃ i
xx,k,aug = diag(P̃ i

xx,k, Q
i
k, R

i
k) as an augmented covariances containing the

covariance of the posterior estimate, and the covariance matrices of the process

and measurement noises at time step k. Accordingly, the sigma vector at time

step k − 1 is defined as X i
k−1 = [(X i

x,k−1)> (X i
v,k−1)> (X i

w,k−1)>]> ∈ Ra×(2a+1),

a = 2d+ q whose entries are detailed as

X i
k−1,l = x̃ik−1,aug, for l = 0, (5.89a)

X i
k−1,l = Expx̃i

k−1,aug

(√
(a+ b)P̃ i

xx,k−1,aug

)
l
, for 1 6 l 6 a, (5.89b)

X i
k−1,l = Expx̃i

k−1,aug

(
−
√

(a+ b)P̃ i
xx,k−1,aug

)
l
, for a+ 1 6 l 6 2a, (5.89c)

where we already employed the exponential mapping on the manifolds. We also

use b = %2
1(a+%2)−a as a scaling parameter, where %1 and %2 are some parameters

related to the spread of sigma points around x̃ik−1,aug [113].

The sigma vectors are subsequently transformed through the process function

as defined in (5.1). Every l-th column of X i
k−1, with l ∈ {0, 1, 2, . . . , 2a}, is
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transformed via the process function such that the prior sigma vector of the state

can be written as

X̄ i
k,l = f(X i

x,k−1,l, X i
v,k−1,l). (5.90)

Accordingly, the prior estimate x̄ik and covariance P̄ i
xx,k can be calculated using

the approximated weighted mean and covariance of the sigma points in the form

of

x̄ik = arg min
α∈Px

2a∑
l=0

wml dist2(α, X̄ i
k,l), (5.91)

P̄ i
xx,k =

2a∑
l=0

wcl
(
Logx̄i

k
X̄ i
k,l

) (
Logx̄i

k
X̄ i
k,l

)>
, (5.92)

where the weights are given by

wm0 = b/κ,

wc0 = b/κ+ (1− %2
1 + %2),

wml = W c
l = 1/(2κ), 0 < l 6 2a,

satisfying ∑2a
l=0w

m
l = 1 and ∑2a

l=0w
c
l = 1. The optimisation in manifold is pre-

sented because the mean value on manifold, or simply the Riemannian center of

mass, is generally obtained via an optimisation process. The mean value could be

obtained via, for example, Riemannian gradient-descent as analysed in [120]. It

is worth noticing that the prior estimate value is unique because of the maximal

domain assumption.

In the prediction of the measurement data, the sigma vector of the state in

(5.90) is also mapped through the nonlinear measurement function (5.2) such that

the sigma vector of the measurement is formulated as

Ȳ ik,l = h(X̄ i
k,l, X i

w,k−1,l). (5.94)

Accordingly, similar to the prediction of the state and its covariance, the prior

estimate of the measurement and its covariance, ȳik and P̄ i
yy,k, are also the mean

and covariance calculated by solving the Riemannian optimisation problem, i.e.,

ȳik = arg min
α∈Sy

2a∑
l=0

wml dist2(α, Ȳ ik,l), (5.95)

P̄ i
yy,k =

2a∑
l=0

wcl
(
Logȳi

k
Ȳ ik,l

) (
Logȳi

k
Ȳ ik,l

)>
(5.96)
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respectively. Due to the maximal domain assumption, we will also have a unique

prior estimate of the measurement.

The prior cross-covariance matrices between the state estimate and measure-

ment data also be formulated utilising the sigma vectors in the form of

P̄ i
xy,k =

2a∑
l=0

wcl
(
Logx̄i

k
X̄ i
k,l

) (
Logȳi

k
Ȳ ik,l

)>
. (5.97)

Notice that the prior state and measurement covariances are symmetric matrices,

i.e., P̄ i
xx,k = (P̄ i

xx,k)> and P̄ i
yy,k = (P̄ i

yy,k)>.

5.3.2 Measurement and Coordination Updates

Before presenting the posterior estimation update, we present a Riemannian

consensus protocol utilised in the coordination process.

To combine the states from neighbouring agents, the traditional consensus pro-

tocol originated for deterministic systems has widely been utilised in distributed

filtering and estimation [12, 13]. The following proposition presents the exten-

sion of the traditional consensus protocol to Riemannian systems and provides

alternative stability proof of the Riemannian consensus protocol.

Proposition 5.11. Consider a group of n agents connected via a graph Gn =

{Vn, En}. Let a Riemannian manifold M whose sectional curvature is upper-

bounded by ∆ with injectivity radius r∆ = 1
2 min{injM, π√

∆}. Let the state of the

agents be stacked as xk = [(x1
k)>, . . . , (xnk)>]> and all states {xik ∈ M|i = Vn} ⊂

B̄(y, r) with r < r∆. Let the Riemannian consensus protocol be given by

xik+1 = Expxi
k

(
ε

n∑
j=1

aijLogxi
k
(xjk)

)
, (5.98)

where A = [aij] denotes the adjacency matrix of the graph Gn, ε ∈ (0, 2
H∆deg(Gn))

and H∆ being the Hessian of distance function on manifold M. Then, the con-

sensus of xik, that is x1
k = . . . = xnk = x?, is achieved asymptotically.

Proof. Let a twice-differentiable Lyapunov function candidate at x? ∈ Txi
k
M

given by

V (xk) = 1
2

n∑
i=1
‖Logx?(xik)‖2. (5.99)
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Consider the consensus protocol of agent i as the geodesic connecting the state xik
to xik+1, for all i ∈ Vn. Then, applying Taylor expansion of (5.99) at k + 1 leads

to difference equation given by

V (xk+1)− V (xk) =ε
n∑
i=1
〈Logx?(xik),

n∑
j=1

aijLogxi
k
(xjk)〉

+ 1
2∇

2V (xk)ε2
n∑
i=1
〈
n∑
j=1

aijLogxi
k
(xjk),

n∑
j=1

aijLogxi
k
(xjk)〉.

(5.100)

Before continuing the proof, let us consider the consensus protocol in (5.98) at

the tangent space of x?:

Logx?(xik+1) = ε
n∑
j=1

aij(Logx?(xjk)− Logx?(xik)). (5.101)

Plugging this to (5.100) leads to the first term of the right-hand side expressed as

ε
n∑
i=1
〈Logx?(xik),

n∑
j=1

aijLogxi
k
(xjk)〉

= ε
n∑
i=1
〈Logx?(xik),

n∑
j=1

aij(Logx?(xjk)− Logx?(xik))〉. (5.102)

By utilising the Laplacian matrix of the graph L̂n = Ln ⊗ Id, we have

ε
n∑
i=1
〈Logx?(xik),

n∑
j=1

aijLogxi
k
(xjk)〉 = −ε〈Logx?(xk), L̂nLogx?(xk)〉. (5.103)

Similarly, plugging (5.101) to (5.100) and utilising the Laplacian matrix yield the

second term of the right-hand side of (5.100) written as

1
2∇

2V (xk)ε2
n∑
i=1

〈 n∑
j=1

aijLogxi
k
(xjk),

n∑
j=1

aijLogxi
k
(xjk)

〉
= 1

2ε
2∇2V (xk)〈L̂nLogx?(xk), L̂nLogx?(xk)〉. (5.104)

By substituting (5.103) and (5.104) into (5.100), we have

V (xk+1)− V (xk) 6 −ε〈Logx?(xk), L̂nLogx?(xk)〉

+ 1
2H∆ε

2〈L̂nLogx?(xk), L̂nLogx?(xk)〉.

= −ε〈(L̂−1
n −

1
2H∆ε)L̂nLogx?(xk), L̂nLogx?(xk)〉. (5.105)
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By choosing 0 < ε < 2/(H∆deg(Gn)), we have the difference of the Lyapunov

function given by

V (xk+1)− V (xk) 6 −λ2
2‖Logx?(xk)‖2, (5.106)

with λ2 denoting the smallest eigenvalue of Laplacian Ln. Therefore, since the

difference of the Lyapunov function satisfies V (xk+1) − V (xk) 6 0, we could

conclude that the consensus value x?, such that x1
k = . . . = xnk = x?, can be

achieved asymptotically.

The presented proposition about the Riemannian consensus protocol is appli-

cable to any Riemannian manifold whose Hessian of the distance function exists,

for example, a quaternion, special-orthogonal group, special-Euclidean group, etc.

By utilising the Riemannian consensus protocol, we are now in position to define

the measurement along with the coordination update of the distributed Rieman-

nian Kalman filter. Following the procedure of the recursive Bayesian estimation,

the prior estimate and its covariance of agent i is shared to the neighbouring

agents j 6= i. The Riemannian consensus protocol is utilised to calculate the

consensus of the prior estimates; while consensus protocol on the tangent space

at the prior estimate is utilised to obtain the consensus of the prior covariance

matrix.

The proposed local posterior estimate of each agent is obtained via

x̂ik = Expx̄i
k

(
Ki
kLogȳi

k
(yik)

)
, for i ∈ Vn. (5.107)

In computation of the posterior convariance matrix, we require a parallel transport

of a manifoldM defined as a function PT : TpM×M×M→ Tp?M : (U, p, p?) 7→

PT(U, p, p?) that transport U along the geodesic connecting p ∈ M to p? ∈ M.

Accordingly, the covariance of the local posterior estimate value can given by

P̂ i
xx,k = PT

(
P̄ i
xx,k −Ki

kP̄
i
yy,k(Ki

k)>, x̄ik, x̂ik
)
, (5.108)

where parallel transport from Tx̄i
k
Px to Tx̂i

k
Px has been used. In the above steps,

the Kalman gain is calculated via

Ki
k = P̄ i

xx,k(P̄ i
yy,k)−1. (5.109)
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To calculate the consensus of the posterior estimates, define a function µκ :

Px × Px → Px : (x̂ik,0, x̂
j
k,0) 7→ x̂ik,κ+1, for j ∈ Ni, as the κ iterations of the

Riemannian consensus protocol employed every time step k via

x̂ik,l+1 = Expx̂i
k,l

(
ε

n∑
j=1

aijLogx̂i
k,l

(x̂jk,l)
)
, for 0 6 l 6 κ,

with x̃ik,0 = x̃ik, and suitable gains defined in Proposition 5.11. Accordingly, the

consensus of posterior estimate value can compactly be expressed as

x̃ik = µκ(x̂ik, x̂
j
k), for i, j ∈ Vn, j ∈ Ni. (5.110)

Since the local posterior covariance matrix P̂ i
xx,k is calculated on the tangent

space of x̂ik, we also require a parallel transport of the consensus of P̂ i
xx,k from

Tx̂i
k
Px to Tx̃i

k
Px such that the consensus of the posterior covariance is given by

P̃ i
xx,k = PT

(
P̂ i
xx,k − ε

n∑
j=1

aij
(
P̂ i
xx,k − P̂

j
xx,k

)
, x̂ik, x̃

i
k

)
, (5.111)

wherein the Perron matrix has been applied along with the Laplacian matrix and

sufficiently-small constant ε.

5.3.3 Practical Algorithm

The practical algorithm of each agent to implement the distributed Riemannian

Kalman filter is summarised in Algorithm 5.1.

To implement the proposed DRKF algorithm, one should supply some initial

estimates and their covariances, and determine the model of the process and

measurement. As the system starts at time step k > 0, every agent executes the

prediction update which produces prior estimates and covariance matrices. These

values are then utilised by the local measurement update to calculate the local

posterior estimate and its covariance matrix. The final step in every iteration is

the coordination process where every agent executes κ iterations of Riemannian

consensus protocol to combine estimates from other agents and calculate the

consensus of the covariance matrix. The process, measurement and coordination

updates are executed every time step k recursively.
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Algorithm 5.1 DRKF Executed by Agent i, for i ∈ Vn

Input: x0, v0, w0, P0, Q0, R0, f(·), h(·).

Return: x̃ik, P̃ i
xx,k.

If k = 0, execute

Initialisation:

1: Initialise the estimate value, noises, and their covariance matrices:

x̃i0 = x0, v
i
0 = v0, w

i
0 = w0; and P̃ i

xx,0 = P0, Q
i
0 = Q0, R

i
0 = R0.

For k = 1, 2, . . . , Tk, Tk <∞, execute

Prediction Update:

1: Calculate the sigma vector X i
k−1 using (5.89).

2: Propagate the sigma vector through f(·), h(·), using (5.90) and (5.94),

respectively.

3: Calculate the prior estimate x̄ik using (5.91), and ȳik using (5.95).

4: Calculate the prior covariances P̄ i
xx,k, P̄ i

yy,k, and P̄ i
xy,k based on (5.92), (5.96),

and (5.97), respectively.

Measurement and Coordination Updates:

1: Agent i exhanges information to and receive information from agent j ∈ Ni.

2: Update the Kalman and communication gains, Ki
k based on (5.109).

3: Update the local posterior estimate x̂ik according to (5.107).

4: Update the local posterior covariance P̂ i
xx,k via (5.108).

5: Update the consensus posterior estimate x̃ik according to (5.110).

6: Update the consensus posterior covariance P̃ i
xx,k via (5.111).

5.3.4 Numerical Experiments

For verification, we present a set of 50 simulations of the developed DRKF applied

to distributed attitude estimation where the state and measurement belong to

unit quaternion, a class of Riemannian manifold with positive curvature, denoted

by H = {q = [qw, qx, qy, qz]> ∈ R4 : ‖q‖2 = 1}. The following simulation is

modified from the estimation scenario in [121] by considering that the tracking is

performed by a set of several radars. For instance, consider a group of 4 tracking
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radars connected via an undirected graph depicted in Fig. 5.1. The radars are

4

1

2

3

Figure 5.1: Graph topology of the distributed attitude estimation.

assigned to estimate and track an aircraft attitude given by

q̇(t) = 1
2ω(t)⊗ q(t)

with

ω(t) =



0

0.03 sin((πt/600)◦)

0.03 sin((πt/600− 300)◦)

0.03 sin((πt/600− 600)◦)


.

In this case, we use ⊗ to denote the quaternion multiplication. The dynamics

is integrated with interval [0, 20] and the initial quaternion state is given by

q(0) = [0.96, 0.13, 0.19,
√

1− 0.962 − 0.132 − 0.192]>.

Accordingly, the process dynamics to estimate and the measurement model

with their noises are given by

qk+1 = Expξ̃(qk)

(
Logξ̃(qk) (ξ(qk) + vk)

)
yik = Expζ̃(qk)

(
Logζ̃(qk)

(
ζ(qk) + wik

))
, for i ∈ Vn,

where

ξ(qk) = [cos(θ(t)) ω>

‖ω‖
sin(θ(t))]> ⊗ qk,

ζ(qk) = qk,
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and θ(t) = (1/2)‖ω(t)‖δt. The expected value of the process noise utilised by all

radars is given by E{vk} = 03 with the covariance of Qk = (1.71236 × 10−2)2I3.

The expected values of the measurement of all sensors are similiar, E{wik} =

03, with different covariance given by R1
k = (5.4π/180)2I3, R2

k = (4.1π/180)2I3,

R3
k = (4.5π/180)2I3, and R4

k = (3.1π/180)2I3, respectively. For the Riemannian

consensus of the posterior estimates, we allocate κ = 7 iterations every time step

k to guarantee that the consensus value is reached.
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Figure 5.2: Posterior estimate of the quaternion states by all radars.

To illustrate one of the simulation performances, we present the convergence of

the state parameters, measurement-tracking ability and MSE in Figs. 5.2, 5.3 and

5.4, respectively. After executing Algorithm 5.1 with the specified parameters, we

can observe that the estimate of the system state of every radar can successfully

achieve consensus as illustrated in Fig. 5.2. The proposed algorithm allows the

system to predict and track the measurement as illustrated in Fig. 5.3 where the

predictions of the measurement align with the trajectory of the process almost

every time step k, and also filter the information from the noisy measurements.

The trajectories of the MSE of the proposed filter and the MSE from the intrinsic

CRB are presented in Fig. 5.4. In this case, the final MSE of proposed filter is

4.8780× 10−3 while the final MSE from the intrinsic CRB is 4.8303× 10−3.

In Fig. 5.5, we present the MSEs in our 50 simulations. Based on these

simulation results, we can verify that, as predicted by our analysis about intrinsic
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Figure 5.3: Process (black), measurement (blue) and prediction of the measure-
ment (red) by all radars.
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Figure 5.4: Average MSEs of the radars.

CRB for distributed Bayesian estimator, the values of the MSE from the proposed

filter is not lower than the lower-bound MSE obtained via the intrinsic CRB.
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Figure 5.5: MSEs of 50 simulations.

5.4 Conclusions

In this chapter, we have firstly investigated the lower bounds one can expect when

designing an estimator following the distributed Bayesian estimator procedure

when the state and measurement belong to Riemannian manifold, referred to as the

intrinsic CRB for distributed Bayesian estimator. The intrinsic CRBs are mainly

obtained by (i) utilising the fact that the product of Riemannian manifolds is also

a Riemannian manifold; (ii) extracting the covariance and information matrices

at time-step k from the augmented matrices up to time step k; and (iii) finally,

applying the Kullback-Liebler average to combine FIMs from neighbouring agents.

From our analysis, it has been proved that the intrinsic CRB, and accordingly the

MSE, of the distributed Bayesian estimator depends on the recursive FIMs and the

curvature of the system manifolds. Thereafter, we developed a class of distributed

Bayesian estimator whose state and measurement are Gaussian, referred to as the

distributed Riemannian Kalman filter (DRKF). The DRKF has been designed by

following the similar procedure of the DUKF design for Euclidean systems. For

verification purpose, a simulation is conducted for distributed attitude estimation

using the distributed Riemannian filter. Finaly, the simulation result validates

that the actual MSE of the estimation via the proposed filter is greater than the

MSE of the correponding intrinsic CRBs.



Chapter 6

Conclusions and Future Works

6.1 Conclusions

This thesis addresses issues in the coordination and Bayesian estimation processes

in MASs.

In the coverage control problem, several control protocols are investigated

to tackle the cooperative issues of the networked robots from the perspective of

distributed optimisation. Firstly, in our analysis, the proposed gradient-based

algorithm has been developed via distributed optimisation to allow distributed

cooperation among robots to achieve optimal positions while maintaining the

formation. Secondly, to reduce the communication burden and improve the

timeliness, another coverage control protocol has been established to guarantee

the finite-time convergence independent to the initial positions. A potential-field

based obstacle avoidance has also been utilised to prevent collisions between

an agent and other agents, and between an agent and static obstacles in an

environment, while all agents are moving towards the optimal positions. Finally,

numerical experiments demonstrate the performance of the proposed algorithms

and validate our results.

Subsequently, a distributed unscented Kalman filter has been proposed for

general communication scheme. The notion of unscented transformation has

been employed to predict the state, measurement and communication data. In

the posterior estimator, the Kalman and communication gains are optimised

to produce an optimal posterior estimate value. By using this mechanism, the

132
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consensus-based distributed Kalman filter in literature could be considered as

a special case of our proposed algorithm. Furthermore, we have shown that

the estimate error is exponentially bounded in mean-square with regards to some

boundaries. Combined with the coverage control protocol in our results in Chapter

3, the proposed algorithm was used to estimate the density function and find the

optimal deployment of robots. The numerical experiments suggest that that the

proposed distributed algorithm has outperformed the modified-consensus observer

in [21] by successfully estimating the unknown density function of an environment

indicated, driving all agents to the optimal centroid positions and minimise the

true objective function without oscillations. Moreover, the simulation results

have indicated that the proposed algorithm needs less computation time than the

existing modified-consensus observer.

Thereafter, we have first investigated the lower bounds one can expect when

designing an estimator following the distributed Bayesian estimator procedure

when the state and measurement belong to Riemannian manifold, referred to as

the intrinsic CRB for distributed Bayesian estimator. We have shown that the

intrinsic CRBs, and accordingly the MSE, of the distributed Bayesian estimator,

depends on the recursive FIMs and the curvature of the system manifolds. We

have also developed a class of distributed Bayesian estimator whose state and

measurement are Gaussian, referred to as the distributed Riemannian Kalman

filter (DRKF). A simulation has been carried out to perform distributed attitude

estimation using the DRKF. In the simulation result, we have verified that the

MSE of the DRKF is greater than the analytical MSE from the corresponding

intrinsic CRBs.

6.2 Future Works

There are several possible extensions of the works presented in this thesis which

are listed as follows:

1. The first possible future direction is the distributed coverage control with

non-isotropic sensing unreliability function. In Chapter 3, we have developed

algorithms to handle distributed implementation of coverage control problem.
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These algorithms require the sensors to have equal abilities in detecting

information from any direction, that is, isotropic. However, in reality, there

are sensors with directional sensing ability. For instance, forward-facing

light sensor of a mobile robot will have non-isotropic sensing unreliability

function. Investigation about distributed implementation of such scenario

should become an interesting future research topic because it can solve many

more practical problems.

2. Secondly, another research direction could be to analyse the convergence be-

haviour of the DRKF algorithm. In Chapter 5, intrinsic CRBs for distributed

Bayesian estimator have been developed to provide the most sensible perfor-

mance one can expect when designing such estimator. However, this is not

to guarantee the convergence analysis of such filtering algorithm. Therefore,

it is worthwhile to analytically establish the convergence behaviour of the

DRKF algorithm.

3. The third possible future work would be the DRKF for any geodesically-

complete Riemannian manifolds. Although in Chapter 5 we have designed

the DRKF and its lower bounds, a neccessary condition of this algorithm

is that the state and measurement should be in the interior of the maximal

domain. Investigation on how to relax this condition such that all states

initialised at any point in a complete Riemannian manifold converge to

the consensus value could become another future work. In the practical

implementation, for example, this relaxation might reduce the MSE of

rotational attitude estimator algorithm in a spacecraft with any initial

estimate values.

4. Finally, it would be interesting to see the practical implementation of the

proposed algorithms. In this thesis, we have proposed several algorithms

in coordination and estimation of multi-agent systems and analyse their

theoretical performance. However, since implementation sometimes requires

additional tuned parameter sensor network, experiments that implement

the distributed coverage control, DUKF, and DRKF, to real robotic sensor

network might become a direction of future works.
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