74 research outputs found

    On Formal Methods for Large-Scale Product Configuration

    Get PDF
    <p>In product development companies mass customization is widely used to achieve better customer satisfaction while keeping costs down. To efficiently implement mass customization, product platforms are often used. A product platform allows building a wide range of products from a set of predefined components. The process of matching these components to customers' needs is called product configuration. Not all components can be combined with each other due to restrictions of various kinds, for example, geometrical, marketing and legal reasons. Product design engineers develop configuration constraints to describe such restrictions. The number of constraints and the complexity of the relations between them are immense for complex product like a vehicle. Thus, it is both error-prone and time consuming to analyze, author and verify the constraints manually. Software tools based on formal methods can help engineers to avoid making errors when working with configuration constraints, thus design a correct product faster.</p> <p>This thesis introduces a number of formal methods to help engineers maintain, verify and analyze product configuration constraints. These methods provide automatic verification of constraints and computational support for analyzing and refactoring constraints. The methods also allow verifying the correctness of one specific type of constraints, item usage rules, for sets of mutually-exclusive required items, and automatic verification of equivalence of different formulations of the constraints. The thesis also introduces three methods for efficient enumeration of valid partial configurations, with benchmarking of the methods on an industrial dataset.</p> <p>Handling large-scale industrial product configuration problems demands high efficiency from the software methods. This thesis investigates a number of search-based and knowledge-compilation-based methods for working with large product configuration instances, including Boolean satisfiability solvers, binary decision diagrams and decomposable negation normal form. This thesis also proposes a novel method based on supervisory control theory for efficient reasoning about product configuration data. The methods were implemented in a tool, to investigate the applicability of the methods for handling large product configuration problems. It was found that search-based Boolean satisfiability solvers with incremental capabilities are well suited for industrial configuration problems.</p> <p>The methods proposed in this thesis exhibit good performance on practical configuration problems, and have a potential to be implemented in industry to support product design engineers in creating and maintaining configuration constraints, and speed up the development of product platforms and new products.</p

    Industrial Symbiosis Recommender Systems

    Get PDF
    For a long time, humanity has lived upon the paradigm that the amounts of natural resources are unlimited and that the environment has ample regenerative capacity. However, the notion to shift towards sustainability has resulted in a worldwide adoption of policies addressing resource efficiency and preservation of natural resources.One of the key environmental and economic sustainable operations that is currently promoted and enacted in the European Union policy is Industrial Symbiosis. In industrial symbiosis, firms aim to reduce the total material and energy footprint by circulating traditional secondary production process outputs of firms to become part of an input for the production process of other firms.This thesis directs attention to the design considerations for recommender systems in the highly dynamic domain of industrial symbiosis. Recommender systems are a promising technology that may facilitate in multiple facets of the industrial symbiosis creation as they reduce the complexity of decision making. This typical strength of recommender systems has been responsible for improved sales and a higher return of investments. That provides the prospect for industrial symbiosis recommenders to increase the number of synergistic transactions that reduce the total environmental impact of the process industry in particular

    Approaches to grid-based SAT solving

    Get PDF
    In this work we develop techniques for using distributed computing resources to efficiently solve instances of the propositional satisfiability problem (SAT). The computing resources considered in this work are assumed to be geographically distributed and connected by a non-dedicated network. Such systems are typically referred to as computational grid environments. The time a modern SAT solver consumes while solving an instance varies according to a random distribution. Unlike many other methods for distributed SAT solving, this work identifies the random distribution as a valuable resource for solving-time reduction. The methods which use randomness in the run times of a search algorithm, such as the ones discussed in this work, are examples of multi-search. The main contribution of this work is in developing and analyzing the multi-search approach in SAT solving and showing its efficiency with several experiments. For the purpose of the analysis, the work introduces a grid simulation model which captures several of the properties of a grid environment which are not observed in more traditional parallel computing systems. The work develops two algorithmic frameworks for multi-search in SAT. The first, SDSAT, is based on using properties of the distribution of the solving time so that the expected time required to solve an instance is reduced. Based on the analysis of SDSAT, the work proposes an algorithm for efficiently using large number of computing resources simultaneously to solve collections of SAT instances. The analysis of SDSAT also motivates the second algorithmic framework, CL-SDSAT. The framework is used to efficiently solve many industrial SAT instances by carefully combining information learned in the distributed SAT solvers. All methods described in the work are directly applicable in a wide range of grid environments and can be used together with virtually unmodified state-of-the-art SAT solvers. The methods are experimentally verified using standard benchmark SAT instances in a production-level grid environment. The experiments show that using the relatively simple methods developed in the work, SAT instances which cannot be solved efficiently in sequential settings can be now solved in a grid environment

    Solving hard subgraph problems in parallel

    Get PDF
    This thesis improves the state of the art in exact, practical algorithms for finding subgraphs. We study maximum clique, subgraph isomorphism, and maximum common subgraph problems. These are widely applicable: within computing science, subgraph problems arise in document clustering, computer vision, the design of communication protocols, model checking, compiler code generation, malware detection, cryptography, and robotics; beyond, applications occur in biochemistry, electrical engineering, mathematics, law enforcement, fraud detection, fault diagnosis, manufacturing, and sociology. We therefore consider both the ``pure'' forms of these problems, and variants with labels and other domain-specific constraints. Although subgraph-finding should theoretically be hard, the constraint-based search algorithms we discuss can easily solve real-world instances involving graphs with thousands of vertices, and millions of edges. We therefore ask: is it possible to generate ``really hard'' instances for these problems, and if so, what can we learn? By extending research into combinatorial phase transition phenomena, we develop a better understanding of branching heuristics, as well as highlighting a serious flaw in the design of graph database systems. This thesis also demonstrates how to exploit two of the kinds of parallelism offered by current computer hardware. Bit parallelism allows us to carry out operations on whole sets of vertices in a single instruction---this is largely routine. Thread parallelism, to make use of the multiple cores offered by all modern processors, is more complex. We suggest three desirable performance characteristics that we would like when introducing thread parallelism: lack of risk (parallel cannot be exponentially slower than sequential), scalability (adding more processing cores cannot make runtimes worse), and reproducibility (the same instance on the same hardware will take roughly the same time every time it is run). We then detail the difficulties in guaranteeing these characteristics when using modern algorithmic techniques. Besides ensuring that parallelism cannot make things worse, we also increase the likelihood of it making things better. We compare randomised work stealing to new tailored strategies, and perform experiments to identify the factors contributing to good speedups. We show that whilst load balancing is difficult, the primary factor influencing the results is the interaction between branching heuristics and parallelism. By using parallelism to explicitly offset the commitment made to weak early branching choices, we obtain parallel subgraph solvers which are substantially and consistently better than the best sequential algorithms

    Machine learning for network based intrusion detection: an investigation into discrepancies in findings with the KDD cup '99 data set and multi-objective evolution of neural network classifier ensembles from imbalanced data.

    Get PDF
    For the last decade it has become commonplace to evaluate machine learning techniques for network based intrusion detection on the KDD Cup '99 data set. This data set has served well to demonstrate that machine learning can be useful in intrusion detection. However, it has undergone some criticism in the literature, and it is out of date. Therefore, some researchers question the validity of the findings reported based on this data set. Furthermore, as identified in this thesis, there are also discrepancies in the findings reported in the literature. In some cases the results are contradictory. Consequently, it is difficult to analyse the current body of research to determine the value in the findings. This thesis reports on an empirical investigation to determine the underlying causes of the discrepancies. Several methodological factors, such as choice of data subset, validation method and data preprocessing, are identified and are found to affect the results significantly. These findings have also enabled a better interpretation of the current body of research. Furthermore, the criticisms in the literature are addressed and future use of the data set is discussed, which is important since researchers continue to use it due to a lack of better publicly available alternatives. Due to the nature of the intrusion detection domain, there is an extreme imbalance among the classes in the KDD Cup '99 data set, which poses a significant challenge to machine learning. In other domains, researchers have demonstrated that well known techniques such as Artificial Neural Networks (ANNs) and Decision Trees (DTs) often fail to learn the minor class(es) due to class imbalance. However, this has not been recognized as an issue in intrusion detection previously. This thesis reports on an empirical investigation that demonstrates that it is the class imbalance that causes the poor detection of some classes of intrusion reported in the literature. An alternative approach to training ANNs is proposed in this thesis, using Genetic Algorithms (GAs) to evolve the weights of the ANNs, referred to as an Evolutionary Neural Network (ENN). When employing evaluation functions that calculate the fitness proportionally to the instances of each class, thereby avoiding a bias towards the major class(es) in the data set, significantly improved true positive rates are obtained whilst maintaining a low false positive rate. These findings demonstrate that the issues of learning from imbalanced data are not due to limitations of the ANNs; rather the training algorithm. Moreover, the ENN is capable of detecting a class of intrusion that has been reported in the literature to be undetectable by ANNs. One limitation of the ENN is a lack of control of the classification trade-off the ANNs obtain. This is identified as a general issue with current approaches to creating classifiers. Striving to create a single best classifier that obtains the highest accuracy may give an unfruitful classification trade-off, which is demonstrated clearly in this thesis. Therefore, an extension of the ENN is proposed, using a Multi-Objective GA (MOGA), which treats the classification rate on each class as a separate objective. This approach produces a Pareto front of non-dominated solutions that exhibit different classification trade-offs, from which the user can select one with the desired properties. The multi-objective approach is also utilised to evolve classifier ensembles, which yields an improved Pareto front of solutions. Furthermore, the selection of classifier members for the ensembles is investigated, demonstrating how this affects the performance of the resultant ensembles. This is a key to explaining why some classifier combinations fail to give fruitful solutions

    On the Recognition of Emotion from Physiological Data

    Get PDF
    This work encompasses several objectives, but is primarily concerned with an experiment where 33 participants were shown 32 slides in order to create ‗weakly induced emotions‘. Recordings of the participants‘ physiological state were taken as well as a self report of their emotional state. We then used an assortment of classifiers to predict emotional state from the recorded physiological signals, a process known as Physiological Pattern Recognition (PPR). We investigated techniques for recording, processing and extracting features from six different physiological signals: Electrocardiogram (ECG), Blood Volume Pulse (BVP), Galvanic Skin Response (GSR), Electromyography (EMG), for the corrugator muscle, skin temperature for the finger and respiratory rate. Improvements to the state of PPR emotion detection were made by allowing for 9 different weakly induced emotional states to be detected at nearly 65% accuracy. This is an improvement in the number of states readily detectable. The work presents many investigations into numerical feature extraction from physiological signals and has a chapter dedicated to collating and trialing facial electromyography techniques. There is also a hardware device we created to collect participant self reported emotional states which showed several improvements to experimental procedure

    Women in Artificial intelligence (AI)

    Get PDF
    This Special Issue, entitled "Women in Artificial Intelligence" includes 17 papers from leading women scientists. The papers cover a broad scope of research areas within Artificial Intelligence, including machine learning, perception, reasoning or planning, among others. The papers have applications to relevant fields, such as human health, finance, or education. It is worth noting that the Issue includes three papers that deal with different aspects of gender bias in Artificial Intelligence. All the papers have a woman as the first author. We can proudly say that these women are from countries worldwide, such as France, Czech Republic, United Kingdom, Australia, Bangladesh, Yemen, Romania, India, Cuba, Bangladesh and Spain. In conclusion, apart from its intrinsic scientific value as a Special Issue, combining interesting research works, this Special Issue intends to increase the invisibility of women in AI, showing where they are, what they do, and how they contribute to developments in Artificial Intelligence from their different places, positions, research branches and application fields. We planned to issue this book on the on Ada Lovelace Day (11/10/2022), a date internationally dedicated to the first computer programmer, a woman who had to fight the gender difficulties of her times, in the XIX century. We also thank the publisher for making this possible, thus allowing for this book to become a part of the international activities dedicated to celebrating the value of women in ICT all over the world. With this book, we want to pay homage to all the women that contributed over the years to the field of AI

    Traveling Salesman Problem

    Get PDF
    The idea behind TSP was conceived by Austrian mathematician Karl Menger in mid 1930s who invited the research community to consider a problem from the everyday life from a mathematical point of view. A traveling salesman has to visit exactly once each one of a list of m cities and then return to the home city. He knows the cost of traveling from any city i to any other city j. Thus, which is the tour of least possible cost the salesman can take? In this book the problem of finding algorithmic technique leading to good/optimal solutions for TSP (or for some other strictly related problems) is considered. TSP is a very attractive problem for the research community because it arises as a natural subproblem in many applications concerning the every day life. Indeed, each application, in which an optimal ordering of a number of items has to be chosen in a way that the total cost of a solution is determined by adding up the costs arising from two successively items, can be modelled as a TSP instance. Thus, studying TSP can never be considered as an abstract research with no real importance
    • …
    corecore