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The idea behind TSP was conceived by Austrian mathematician Karl Menger in mid 
1930s who invited the research community to consider a problem from the everyday 
life from a mathematical point of view. A traveling salesman has to visit exactly once 

each one of a list of m cities and then return to the home city. He knows the cost of 
traveling from any city i to any other city j. Thus, which is the tour of least possible 

cost the salesman can take? In this book the problem of finding algorithmic technique 
leading to good/optimal solutions for TSP (or for some other strictly related problems) 

is considered. TSP is a very attractive problem for the research community because 
it arises as a natural subproblem in many applications concerning the every day life. 

Indeed, each application, in which an optimal ordering of a number of items has to be 
chosen in a way that the total cost of a solution is determined by adding up the costs 

arising from two successively items, can be modelled as a TSP instance. Thus, studying 
TSP can never be considered as an abstract research with no real importance.
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Preface 
 

In the middle 1930s computer science was yet a not well defined academic discipline. 
Actually, fundamental concepts, such as ‘algorithm’, or ‘computational problem’, has been 
formalized just some year before.   

In these years the Austrian mathematician Karl Menger invited the research community 
to consider from a mathematical point of view the following problem taken from the every 
day life. A traveling salesman has to visit exactly once each one of a list of m cities and then 
return to the home city. He knows the cost of traveling from any city i to any other city j. 
Thus, which is the tour of least possible cost the salesman can take? 

The Traveling Salesman Problem (for short, TSP) was born. 
More formally, a TSP instance is given by a complete graph G on a node set V= 

{1,2,…m}, for some integer m, and by a cost function assigning a cost cij to the arc (i,j) , for 
any i, j in V. 

TSP is a representative of a large class of problems known as combinatorial 
optimization problems. Among them, TSP is one of the most important, since it is very easy 
to describe, but very difficult to solve. 

Actually, TSP belongs to the NP-hard class. Hence, an efficient algorithm for TSP (that 
is, an algorithm computing, for any TSP instance with m nodes, the tour of least possible 
cost in polynomial time with respect to m) probably does not exist. More precisely, such an 
algorithm exists if and only if the two computational classes P and NP coincide, a very 
improbable hypothesis, according to the last years research developments. 

From a practical point of view, it means that it is quite impossible finding an exact 
algorithm for any TSP instance with m nodes, for large m, that has a behaviour considerably 
better than the algorithm which computes any of the (m-1)! possible distinct tours, and then 
returns the least costly one. 

If we are looking for applications, a different approach can be used. Given a TSP 
instance with m nodes, any tour passing once through any city is a feasible solution, and its 
cost leads to an upper bound to the least possible cost. Algorithms that construct in 
polynomial time with respect to m feasible solutions, and thus upper bounds for the 
optimum value, are called heuristics. In general, these algorithms produce solutions but 
without any quality guarantee as to how far is their cost from the least possible one. If it can 
be shown that the cost of the returned solution is always less than k times the least possible 
cost, for some real number k>1, the heuristic is called a k-approximation algorithm. 
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Unfortunately, k-approximation algorithm for TSP are not known, for any k>1. 
Moreover, in a paper appeared in 2000, Papadimitriou, and Vempala have shown that a k-
approximation algorithm for TSP for any 97/96>k>1 exists if and only if P=NP. Hence, also 
finding a good heuristic for TSP seems very hard. 

Better results are known for NP-Hard subproblem of TSP. For example, a 3/2-
approximation algorithm is known for Metric TSP (in a metric TSP instance the cost function 
verifies the triangular inequality). 

Anyway, the extreme intractability of TSP has invited many researchers to test new 
heuristic technique on this problem. The harder is the problem you test on, the more 
significant are the result you obtain. 

A large part of this book is devoted to some bio-inspired heuristic techniques that have 
been developed in the last years. Such techniques take inspiration from the nature. Actually, 
the animals that usually form great groups behave by instinct trying to satisfy the group 
necessity in the best possible way. Similarly, the natural systems develop in order to 
(locally) minimize their potential by finding a stationary point. 

In chapter 1 [Population-Based Optimization Algorithms for Solving the Travelling 
Salesman Problem] the following bio-inspired algorithmic techniques are considered: 
Genetic Algorithms, Ant Colon Optimization, Particle Swarm Optimization, Intelligent 
Water Drops, Artificial Immune Systems, Bee Colony Optimization, and Electromagnetism-
like Mechanisms. Every section briefly introduces one of these techniques and an algorithm 
applying it for solving TSP. In the last section the obtained experimental results are 
compared. 

Chapter 2 [Bio-inspired Algorithms for TSP and Generalized TSP] is divided into two 
parts. In the first part, a new algorithm using the Ant Colon Optimization technique is 
considered. The obtained experimental results are then compared with other two algorithms 
using the same technique. In the second part, the combinatorial optimization problem called 
Generalized TSP (GTSP) is introduced, and a Genetic Algorithm for solving is proposed. We 
recall that a GSTP instance provides a complete graph G = (V,E), and a cost function (as in a 
TSP instance), together with a partition of the node set V into p subsets. A feasible solution 
for GTSP is a tour passing at least once from each one of the p subsets of V. Clearly, GTSP is 
a generalization of TSP. 

In Chapter 3 [Approaches to the Travelling Salesman Problem Using Evolutionary 
Computing Algorithms] an algorithm for TSP using the Genetic Local Search is considered. 
It is a hybrid technique, as it combines a genetic algorithm approach by a local search 
technique: As in a genetic algorithm the fitness of a population is the target, but a local 
search optimization phase is applied whenever a new individual is created during the 
evolutionary process. At the end of the chapter some experimental results are discussed. 

Chapter 4 [Particle Swarm Optimization Algorithm for the Traveling Salesman 
Problem] and Chapter 5 [A Modified Discrete Particle Swarm Optimization Algorithm for 
the Generalized Traveling Salesman Problem] deals with the Particle Swarm Optimization 
(PSO) technique. In a PSO algorithm the current solution is seen as a particle whose 
movement in the solution space is controlled by a certain velocity operator. As the solution 
space of a TSP instance is discrete, it is more correct referring to discrete PSO approach for 
TSP. 
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In Chapter 4 the authors propose some velocity operators for a discrete PSO algorithm 
for TSP, and compare by computational experiments the results of the proposed approach 
with other known PSO heuristics for TSP. 

In Chapter 5 a discrete PSO approach is considered for Generalized TSP. Afterwards, 
the proposed algorithm is hybridized with a local search improvement heuristic. In the last
section some the computational results compare the proposed algorithm, and its
improvement with other known discrete PSO algorithm for GTSP. 

In Chapter 6 [Solving TSP via Neural Networks] and in Chapter 7 [A Recurrent Neural
Network to Traveling Salesman Problem] Neural Network techniques for solving TSP are 
considered.

In particular, Chapter 6 is devoted to the recent progress in the transiently chaotic 
neural network (TCNN), a discrete-time neural network model, are presented. An algorithm 
for TSP using such technique is then introduced, and the obtained results are compared 
with other neural networks algorithms.

In Chapter 7 a technique based on the Wang’s Recurrent Neural Networks with the
“Winner Takes All” principle is used to solve the Assignment Problem (AP). By lightly 
modifying such technique, an algorithm for TSP is derived. Finally, some TSP instances 
taken from the TSP library are chosen for comparing the proposed algorithm with some
other algorithms using different techniques. 

Chapter 8 [Solving the Probabilistic Travelling Salesman Problem Based on Genetic 
Algorithm with Queen Selection Scheme] treats an extension of TSP, the Probabilistic TSP 
(PTSP). A PTSP instance provides a complete graph G=(V,E), and a cost function (as in a TSP 
instance), together with a real number 0 ≤ Pi ≤ 1 for each node i in V. Pi represents the
probability of the node i to be visited by a tour. Clearly, the goal of PTSP is to find a tour of 
minimal expected cost. In this chapter an optimization procedure based on a Genetic 
Algorithm framework is presented.

In Chapter 9 [Niche Pseudo-Parallel Genetic Algorithms for Path Optimization of
Autonomous Mobile Robot - A Specific Application of TSP] an application of TSP to the
Path Optimization of Autonomous Mobile Robot is considered. An autonomous mobile
robot has to find a non-collision path from initial position to objective position in an obstacle
space trying to minimize the path cost. This problem can be modelled as a TSP instance. The
authors consider a genetic algorithm, called Niche Pseudo-Parallel Genetic Algorithm, for 
solving TSP.

The last Chapter [The Symmetric Circulant Traveling Salesman Problem] gives an 
example of a theoretical research on TSP. Actually, it is interesting to investigate if TSP 
becomes easier or remains hard (from a computational complexity point of view) when it is 
restricted to a particular class of graphs. In this chapter the case in which the graph in the 
instance is symmetric, and circulant is deeply analyzed, and an overview on the most recent
results is given.

By summing up, in this book the problem of finding algorithmic technique leading to
good/optimal solutions for TSP (or for some other strictly related problems) is considered. 
An important thing has to be outlined here. As already said, TSP is a very attractive problem
for the research community. Anyway, it arises as a natural subproblem in many applications 
concerning the every day life. Indeed, each application, in which an optimal ordering of a 
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number of items has to be chosen in a way that the total cost of a solution is determined by 
adding up the costs arising from two successively items, can be modelled as a TSP instance. 
Thus, studying TSP can be never considered as an abstract research with no real importance. 

It is time to start with the book. 
Enjoy the reading! 

September 2008 

Editor 

Federico Greco 
Universita degli studi di Perugia, 

Italy 
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1. Introduction 
The Travelling Salesman Problem or the TSP is a representative of a large class of problems
known as combinatorial optimization problems. In the ordinary form of the TSP, a map of
cities is given to the salesman and he has to visit all the cities only once to complete a tour 
such that the length of the tour is the shortest among all possible tours for this map. The
data consist of weights assigned to the edges of a finite complete graph, and the objective is 
to find a Hamiltonian cycle, a cycle passing through all the vertices, of the graph while 
having the minimum total weight. In the TSP context, Hamiltonian cycles are commonly
called tours. For example, given the map shown in figure l, the lowest cost route would be 
the one written (A, B, C, E, D, A), with the cost 31. 

Fig. 1. The tour with A=>B =>C =>E =>D => A is the optimal tour. 

In general, the TSP includes two different kinds, the Symmetric TSP and the Asymmetric
TSP. In the symmetric form known as STSP there is only one way between two adjacent
cities, i.e., the distance between cities A and B is equal to the distance between cities B and A
(Fig. 1). But in the ATSP (Asymmetric TSP) there is not such symmetry and it is possible to
have two different costs or distances between two cities. Hence, the number of tours in the
ATSP and STSP on n vertices (cities) is (n-1)! and (n-1)!/2, respectively. Please note that the
graphs which represent these TSPs are complete graphs. In this chapter we mostly consider 
the STSP. It is known that the TSP is an NP-hard problem (Garey & Johnson, 1979) and is 
often used for testing the optimization algorithms. Finding Hamiltonian cycles or traveling
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salesman tours is possible using a simple dynamic program using time and space O(2n nO(1)), 
that finds Hamiltonian paths with specified endpoints for each induced subgraph of the 
input graph (Eppstein, 2007). The TSP has many applications in different engineering and 
optimization problems. The TSP is a useful problem in routing problems e.g. in a 
transportation system.   
There are different approaches for solving the TSP. Solving the TSP was an interesting 
problem during recent decades. Almost every new approach for solving engineering and 
optimization problems has been tested on the TSP as a general test bench. First steps in 
solving the TSP were classical methods. These methods consist of heuristic and exact 
methods. Heuristic methods like cutting planes and branch and bound (Padherg & Rinaldi, 
1987), can only optimally solve small problems whereas the heuristic methods, such as 2-opt 
(Lin & Kernighan, 1973), 3-opt, Markov chain (Martin et al., 1991), simulated annealing 
(Kirkpatrick et al., 1983) and tabu search are good for large problems. Besides, some 
algorithms based on greedy principles such as nearest neighbour, and spanning tree can be 
introduced as efficient solving methods. Nevertheless, classical methods for solving the TSP 
usually result in exponential computational complexities. Hence, new methods are required 
to overcome this shortcoming. These methods include different kinds of optimization 
techniques, nature based optimization algorithms, population based optimization 
algorithms and etc. In this chapter we discuss some of these techniques which are 
algorithms based on population.  
Population based optimization algorithms are the techniques which are in the set of the 
nature based optimization algorithms. The creatures and natural systems which are working 
and developing in nature are one of the interesting and valuable sources of inspiration for 
designing and inventing new systems and algorithms in different fields of science and 
technology. Evolutionary Computation (Eiben & Smith, 2003), Neural Networks (Haykin, 
99), Time Adaptive Self-Organizing Maps (Shah-Hosseini, 2006), Ant Systems (Dorigo & 
Stutzle, 2004), Particle Swarm Optimization (Eberhart & Kennedy, 1995), Simulated 
Annealing (Kirkpatrik, 1984), Bee Colony Optimization (Teodorovic et al., 2006) and DNA 
Computing (Adleman, 1994) are among the problem solving techniques inspired from 
observing nature.    
In this chapter population based optimization algorithms have been introduced. Some of 
these algorithms were mentioned above. Other algorithms are Intelligent Water Drops 
(IWD) algorithm (Shah-Hosseini, 2007), Artificial Immune Systems (AIS) (Dasgupta, 1999) 
and Electromagnetism-like Mechanisms (EM) (Birbil & Fang, 2003). In this chapter, every 
section briefly introduces one of these population based optimization algorithms and 
applies them for solving the TSP. Also, we try to note the important points of each algorithm 
and every point we contribute to these algorithms has been stated. Section nine shows 
experimental results based on the algorithms introduced in previous sections which are 
implemented to solve different problems of the TSP using well-known datasets.  

2. Evolutionary algorithms 
2.1 Introduction 
Evolutionary Algorithms (EAs) imitates the process of biological evolution in nature. These 
are search methods which take their inspiration from natural selection and survival of the 
fittest as exist in the biological world. EA conducts a search using a population of solutions. 
Each iteration of an EA involves a competitive selection among all solutions in the 
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population which results in survival of the fittest and deletion of the poor solutions from the 
population. By swapping parts of a solution with another one, recombination is performed 
and forms the new solution that it may be better than the previous ones. Also, a solution can 
be mutated by manipulating a part of it. Recombination and mutation are used to evolve the 
population towards regions of the space which good solutions may reside.  
Four major evolutionary algorithm paradigms have been introduced during the last 50 
years: genetic algorithm is a computational method, mainly proposed by Holland (Holland, 
1975). Evolutionary strategies developed by Rechenberg (Rechenberg, 1965) and Schwefel 
(Schwefel, 1981). Evolutionary programming introduced by Fogel (Fogel et al., 1966), and 
finally we can mention genetic programming which proposed by Koza (Koza, 1992). Here 
we introduce the GA (Genetic Algorithm) for solving the TSP. At the first, we prepare a brief 
background on the GA. 

2.2 Genetic algorithms 
Genetic Algorithms focus on optimizing general combinatorial problems. GAs have long 
been studied as problem solving tools for many search and optimization problems, 
specifically those that are inherent in NP-Complete problems. Various candidate solutions 
are considered during the search procedure in the system, and the population evolves until 
a candidate solution satisfies the predefined criteria. In most GAs, a candidate solution, 
called an individual, is represented by a binary string (Goldberg, 1989) i.e. a string of 0 or 1 
elements. Each solution (individual) is represented as a sequence (chromosome) of elements 
(genes) and is assigned a fitness value based on the value given by an evaluation function. 
The fitness value measures how close the individual is to the optimum solution. A set of 
individuals constitutes a population that evolves from one generation to the next through 
the creation of new individuals and deletion of some old ones. The process starts with an 
initial population created in some way, e.g. through a random process. Evolution can take 
two forms: 
Crossover: 
Two selected chromosomes can be combined by a crossover operator, the result of which 
will replace the lowest fitness chromosome in the population. Selection of each chromosome 
is performed by an algorithm to ensure that the selection probability is proportional to the 
fitness of the chromosome. A new chromosome has the chance to be better than the replaced 
one. The process is oriented towards the sub-regions of the search space, where an optimal 
solution is supposed to exist (Goldberg, 1989). 
Mutation: 
In mutation process, a gene from a selected chromosome is randomly changed. This 
provides additional chances of entering unexplored sub-regions. Finally, the evolution is 
stopped when either the goal is reached or a maximum CPU time has been spent (Goldberg, 
1989). 
In the following the GA operation pseudo code has been written: 
1. Start 
2. Population initialization 
3. Repeat until (satisfying termination criteria) 

• Selection 
• Cross over 
• Mutation 
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• Making new population with the fittest solutions 
• Evaluation 
• Checking the termination criterion 

4. Take the best solution as output 
5. End 

2.3 Solving the TSP using GA 
As mentioned earlier, the TSP is known as a classical NP-complete problem, which has 
extremely large search spaces and is very difficult to solve (Louis & Gong, 2000). Hence, 
classical methods for solving TSP usually result in exponential computational complexities. 
These methods consist of heuristic and exact methods. Heuristic methods like cutting planes 
and branch and bound (Padherg & Rinaldi, 1987), can only optimally solve small problems 
while the heuristic methods, such as 2-opt (Lin & Kernighan, 1973), 3-opt, Markov chain 
(Martin et al., 1991), simulated annealing (Kirkpatrick et al., 1983) and tabu search are good 
for large problems. Besides, some algorithms based on greedy principles such as nearest 
neighbour, and spanning tree can be used as efficient solving methods. Nevertheless, 
because of the tremendous number of possible solutions and large search spaces, GAs seem 
to be wise approaches for solving the TSP especially when they are accompanied with 
carefully designed genetic operators (Jiao & Wang, 2000). GAs search the large space of 
solutions toward best answer and the operators can help the search process become faster 
and also they prepare the ability to avoid being trapped in local optima. 
In recent years, solving the TSP using evolutionary algorithms and specially GAs has 
attracted a lot of attention. Many studies have been performed and researchers try to 
contribute to different parts of solving process. Some of researchers pose different forms of 
GA operators (Yan et al., 2005) in comparison to the former ones and others attempt to 
combine GA with other possible approaches like ACO (Lee, 2004), PSO and etc. In addition, 
some authors implement a new evolutionary idea or combine some previous algorithms and 
idea to create a new method (Bonyadi et al., 2007). Here we investigate some of these works 
and compare their results. Due to the spread of related works we can not mention all of 
them here. But The reader is referred to the prepared references for further information.   
In all of the performed works, two instances are mentionable. First: all of the proposed 
algorithms work toward finding the nearest answer to the best solution. Second: solving the 
TSP in a more little time is a key point in this problem because of its special application 
which require, finding the best feasible answer fast.      
In (Bonyadi et al., 2007), the authors made some changes to two previous local search 
algorithms i.e. the Shuffled Frog Leaping (SFL) and the Civilization and Society (CS) and 
combined these two algorithms with the GA idea. In this study, as it is common in a 
conventional GA, at first the elements of the population perform mutation or crossover in 
random order. Then for every element of this population, a local search algorithm, which is 
a mix of both SFL and CS, is performed. The results demonstrate significant improvements 
in terms of time complexity and reaching better solutions in comparison to the GAs which 
apply only SFL or CS in their usual forms. Hence, the main contribution in this work is 
combining two previous search methods and using them with the GA, simultaneously. The 
evaluation results of the proposed algorithm have been prepared in section nine.  
In another work (Yan et al., 2005) a new algorithm based on Inver-over operator, for 
combinatorial optimization problems has been proposed. Inver-over is based on simple 
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inversion; however, knowledge taken from other individuals in the population influences its 
action. In this algorithm some new strategies including selection operator, replace operator 
and some new control strategy have been applied. The results prove that these changes are 
very efficient to accelerate the convergence. A consequence, it is inferred that, one of the 
points for contribution is operators. Suitable changes in the conventional form of operators 
might lead to major differences in the search and optimization procedure. 
Through the experiments, GAs are global search algorithms appropriate for problems with 
huge search spaces. In addition, heuristic methods can be applied for search in local areas. 
Hence, combination of these two search algorithms can result in producing high quality 
solutions. Cooperation between Speediness of local search methods in regional search and 
robustness of evolutionary methods in global search can be very useful to obtain the global 
optimum. Recently, (Nguyen et al., 2007) proposed a hybrid GA to find high-quality 
solutions for the TSP. The main contribution of this study is to show the suitable 
combination of a GA as a global search with a heuristic local search which are very 
promising for the TSP. In addition, the considerable improvements in the achieved results 
prove that the effectiveness and efficiency of the local search in the performance of hybrid 
GAs. Through these results, one of other points where it can be kept in mind is the design of 
the GA in a case that it balances between local and global search. Moreover, many other 
studies have been performed that all of them combine the local and global search 
mechanisms for solving the TSP. 
As mentioned earlier, one of the points that solving the TSP can contribute is recombination 
operators i.e. mutation and crossover. Based on (Takahashi, 2005) there are two kinds of 
crossover operators for solving the TSP. Conventional encoding of the TSP which is an array 
representation of chromosomes where every element of this array is a gene that in the TSP 
shows a city. The first kind of crossover operator corresponds to this chromosome structure. 
In this operator two parents are selected and with exchanging of some parts in parents the 
children are reproduced. The second type performs crossover operation with mentioning 
epistasis. In this method it is tried to retain useful information about links of parent’s edges 
which leads to convergence. Also, in (Tsai et al., 2004) another work on genetic operators 
has been performed which resulted in good achievements.   

3. Ant colony optimization (ACO) 
3.1 Introduction 
The ACO (Ant Colony Optimization) heuristic is inspired by the real ant behaviour (figure 
2) in finding the shortest path between the nest and the food (Beckers et al., 1992). This is 
achieved by a substance called pheromone that shows the trace of an ant. In its searching the 
ant uses heuristic information which is its own knowledge of where the smell of the food 
comes from and the other ants’ decision of the path toward the food by pheromone 
information (Holldobler & Wilson, 1990).  
 

 
Fig. 2. Real ant behaviour in finding the shortest path between the nest and the food 
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• Making new population with the fittest solutions 
• Evaluation 
• Checking the termination criterion 

4. Take the best solution as output 
5. End 
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In fact the algorithm uses a set of artificial ants (individuals) which cooperate to the solution 
of a problem by exchanging information via pheromone deposited on graph edges. The 
ACO algorithm is employed to imitate the behaviour of real ants and is as follows: 
Initialize 
Loop 
                Each ant is positioned on a starting node 
                Loop 
                                Each ant applies a state transition rule to 
                                incrementally build a solution and a local 
                                pheromone updating rule 
                Until all ants have built a complete solution 
                A global pheromone updating rule is applied 
Until end condition 

3.2 State transition 
Consider n is the city amount; m is the quantity of the ants in an ACO problem; dij is the 
length of the path between adjacent cities i and j; ij (t) is the intensity of trail on edge (i, j) at 
time t . At the beginning of the algorithm, an initialization algorithm determines the ants 
positions on different cities and initial value ij (0), a small positive constant c for trail 
intensity are set on edges. The first element of each ant’s tabu list is set to its starting city. 
The state transition is given by equation 1, which ant k in city i chooses to move to city j : 
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where allowedk = {N-tabuk}, which is the set of cities that remain to be visited by ant k 
positioned on city i (to make the solution feasible) α and β are parameters that determine the 
relative importance of trail versus visibility, and η = 1/d  is the visibility of edge (i, j) . 

3.3 Trial updating 
In order to improve future solutions, the pheromone trails of the ants must be updated to 
reflect the ant’s performance and the quality of the solutions found. The global updating 
rule is implemented as follows. Once all ants have built their tours, pheromone is updated 
on all edges according to the following formula (equations 2 to 4): 
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ρ (0 < ρ < 1) is trail persistence, Lk is the length of the tour found by kth ant , Q is a constant 
related to the quantity of trail laid by ants. In fact, pheromone placed on the edges plays the 
role of a distributed long-term memory (Dorigo & Gambardella, 1997). The algorithm 
iterates in a predefined number of iterations and the best solutions are saved as the results. 

3.4 Solving the TSP using ACO 
As it is mentioned, the ACO algorithm has good potential for problem solving and recently 
has attracted a lot of attentions specifically for solving NP-Hard set of problems. One of the 
earliest best works for solving the TSP uses the ACS (Ant Colony System) is presented in 
(Dorigo & Gambardella, 1997). They use the ACS algorithm for solving the TSP and they 
claim that the ACS outperforms other nature-inspired algorithms such as simulated 
annealing and evolutionary computation. In addition, they compared ACS-3-opt, a version 
of the ACS improved with a local search procedure, to some of the best performing 
algorithms for symmetric and asymmetric TSPs. 
One of the other recent approaches for solving the TSP is proposed in (Song et al., 2006). In 
particular, the option that an ant hunts for the next step, the use of a combination of two 
kinds of pheromone evaluation models, the change of size of population in the ant colony 
during the run of the algorithm, and the mutation of pheromone have been studied. One of 
the most powerful attitudes in their paper was choosing the appropriate ACO model that 
proposed by M. Dorigo which were called ant-cycle, ant-quantity and ant-density models. 
These three models differ in the way the pheromone trail is updated. In ant-cycle algorithm, 
the trail is updated after all the ants finish their tours. In contrast, in the last two models, 
each ant lays its pheromone at each step without waiting for the end of the tour (Song et al., 
2006). Furthermore they claim that in early stage of iterations, the convergence speed is 
faster using ant-density model in comparison with the other two models. Thus, at the 
beginning, the ant-density model is applied. Because the Ant-cycle system has the 
advantage of utilizing the global information, it is used at the other times. A mutation 
mechanism same as in genetic algorithm has been added to the improved ACO algorithm to 
assist the algorithm to jumping out from local optima’s. In their proposed improved ACO, a 
population sizing method is used which changes the number of individuals (ants).  

4. Particle swarm optimization (PSO) 
4.1 Introduction 
Particle Swarm Optimization (PSO) uses swarming behaviours observed in flocks of birds, 
schools of fish, or swarms of bees (figure 3), and even human social behaviour, from which 
intelligence emerges (Kennedy & Eberhart, 2001). 
The standard PSO model consists of a swarm of particles. They move iteratively through the 
feasible problem space to find the new solutions. Each particle has a position represented by 
a position-vector ix (i is the index of the particle), and a velocity represented by a velocity-

vector iv . Each particle remembers its own best position so far in a vector #
ix  and its j-th 



 Travelling Salesman Problem 

 

6 

In fact the algorithm uses a set of artificial ants (individuals) which cooperate to the solution 
of a problem by exchanging information via pheromone deposited on graph edges. The 
ACO algorithm is employed to imitate the behaviour of real ants and is as follows: 
Initialize 
Loop 
                Each ant is positioned on a starting node 
                Loop 
                                Each ant applies a state transition rule to 
                                incrementally build a solution and a local 
                                pheromone updating rule 
                Until all ants have built a complete solution 
                A global pheromone updating rule is applied 
Until end condition 

3.2 State transition 
Consider n is the city amount; m is the quantity of the ants in an ACO problem; dij is the 
length of the path between adjacent cities i and j; ij (t) is the intensity of trail on edge (i, j) at 
time t . At the beginning of the algorithm, an initialization algorithm determines the ants 
positions on different cities and initial value ij (0), a small positive constant c for trail 
intensity are set on edges. The first element of each ant’s tabu list is set to its starting city. 
The state transition is given by equation 1, which ant k in city i chooses to move to city j : 

⎪
⎩

⎪
⎨

⎧
∉

∑
∉

=

otherwise,0  

 if,
))(())((

))(())((

)(
kallowedj

kallowedk
tiktik

tijtij

t
k
ijp

β
η

α
τ

β
η

α
τ

 

(1) 

where allowedk = {N-tabuk}, which is the set of cities that remain to be visited by ant k 
positioned on city i (to make the solution feasible) α and β are parameters that determine the 
relative importance of trail versus visibility, and η = 1/d  is the visibility of edge (i, j) . 
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ρ (0 < ρ < 1) is trail persistence, Lk is the length of the tour found by kth ant , Q is a constant 
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4. Particle swarm optimization (PSO) 
4.1 Introduction 
Particle Swarm Optimization (PSO) uses swarming behaviours observed in flocks of birds, 
schools of fish, or swarms of bees (figure 3), and even human social behaviour, from which 
intelligence emerges (Kennedy & Eberhart, 2001). 
The standard PSO model consists of a swarm of particles. They move iteratively through the 
feasible problem space to find the new solutions. Each particle has a position represented by 
a position-vector ix (i is the index of the particle), and a velocity represented by a velocity-

vector iv . Each particle remembers its own best position so far in a vector #
ix  and its j-th 
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dimensional value is #
ijx . The best position-vector among the swarm heretofore is then 

stored in a vector  x* and its j-th dimension value is x*j .The PSO procedure is as follows:  
 

  
Fig. 3. Birds or fish exhibit such a coordinated collective behaviour 

Algorithm 1 Particle Swarm Algorithm 
01. Begin 
02. Parameter settings and swarm initialization 
03. Evaluation 
04. g = 1 
05. While (the stopping criterion is not met) do 
06.  For each particle 
07.   Update velocity 
08.   Update position and local best position 
09.   Evaluation 
10.  EndFor 
11.  Update leader (global best particle) 
12.  g + + 
15. End While 
14. End 
The PSO algorithm has several phases consist of Initialization, Evaluation, Update Velocity 
and Update Position. These phases are described in more details (See figure 5).  

4.2 Initialization 
The initialization phase is used to determine the position of the m particles in the first 
iteration. The random initialization is one of the most popular methods for this job. There is 
no guarantee that a randomly generated particle be a good answer and this will make the 
initialization more attractive. A good initialization algorithm make the optimization 
algorithm more efficient and reliable. For initialization, some known prior knowledge of the 
problem can help the algorithm to converge in less iterations. As an example, in 0-1 
knapsack problem, there is a greedy algorithm which can generate good candidate answers 
but not optimal one. This greedy algorithm can be used for initializing the population and 
the optimization algorithm will continue the optimization from this good point. 

4.3 Update velocity and position 
In each iteration, each particle updates its velocity and position according to its heretofore 
best position, its current velocity and some information of its neighbours. Equation 5 is used 
for updating the velocity: 
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Where ( )lx t is the position-vector in iteration t (i is the index of the particle), ( )l tv is the 

velocity-vector in iteration t.  #
1 ( )x t is the best position so far of particle i in iteration t and its 

j-th dimensional value is # ( )i jx t . The best position-vector among the swarm heretofore is 
then stored in a vector x*(t) and its j-th dimension value is x*j(t). r1 and r2 are the random 
numbers in the interval [0,1]. c1 is a positive constant, called as coefficient of the self-
recognition component, c2 is a positive constant, called as coefficient of the social 
component. The variable w is called as the inertia factor, which value is typically setup to 
vary linearly from 1 to near 0 during the iterated processing. In fact, a large inertia weight 
facilitates global exploration (searching new areas), while a small one tends to facilitate local 
exploration. Consequently a reduction on the number of iterations required to locate the 
optimum solution (Yuhui & Eberhart, 1998). Figure 4 illustrates this reduction. The 
algorithm invokes the equation 6 for updating the positions: 

( ) ( 1) ( )l l lx t x t t= − + v  (6) 

 

 
Fig. 4. The value of the inertia weight is decreased during a run 

4.4 Solving the TSP using PSO 
As it is described before, Particle Swarm Optimization (PSO) has a good potential for 
problem solving. The susceptibilities and charms of this nature based algorithm convinced 
researchers to use the PSO to solve NP-Hard problems such as TSP and Job-Scheduling.  
Here, we investigate some of these proposed approaches for solving the TSP. 
One of the attractive works for solving the TSP was cited in (Yuan et al.., 2007). They 
propose a novel hybrid algorithm which invokes the sufficiency of both PSO and COA 
(Chaotic Optimization Algorithm) (Zhang et al., 2001). In fact, they exert the COA to restrain 
the particles from getting stock on local optima’s in rudimentary iterations. In other word, 
they claim that the COA could considerably useful to keep particle’s global searching 
ability.  
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One of the other exciting algorithms based on PSO for solving TSP is introduced in (Pang et 
al., 2004). In this paper they propose an algorithm based on PSO which uses the fuzzy 
matrices for velocity and position vectors. In addition, they use the fuzzy multiplication and 
addition operators for velocity and position updating formulas (equations (5) and (6)). The 
mentioned PSO algorithm in previous sections modified to an algorithm which works based 
on fuzzy means such as fuzzification and defuzzification. In each iteration, the position of 
each generated solution has been defuzzified to determine the cost of the individual. This 
cost will be used for updating the local best position. 
 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 5. (a) Create a ‘population’ of agents (called particles) uniformly distributed over X 
(feasible region) and Evaluate each particle’s position according to the objective function, (b) 
Update particles’ velocities according to equation (5), (c) Move particles to their new 
positions according to equation (6), (d) If a particle’s current position is better than its 
previous best  position, update it. 

5. Intelligent water drops 
5.1 Introduction 
The last work on the population based optimization algorithms inspired by nature is a novel 
problem solving method proposed by Hamed Shah-hosseini (Shah-hosseini, 2007). This 
method is called “Intelligent Water Drops” or IWD algorithm which is based on the 
processes that happen in the natural river systems and the actions and reactions that take 
place between water drops in the river and the changes that happen in the environment that 
river is flowing. Here we prepare a complete description on this new and interesting 

Population-Based Optimization Algorithms for Solving the Travelling Salesman Problem 

 

11 

method. To start with, the inspiration of IWD, natural water drops, will be stated. After that 
the IWD system has been introduced. And finally these ideas are embedded into the 
proposed algorithm for solving the Traveling Salesman Problem or the TSP.   

5.2 Natural water drops 
In nature, we often see water drops moving in rivers, lakes, and seas. As water drops move, 
they change their environment in which they are flowing. Moreover, the environment itself 
has substantial effects on the paths that the water drops follow. Consider a hypothetical 
river in which water is flowing and moving from high terrain to lower terrain and finally 
joins a lake or sea. The paths that the river follows, based on our observation in nature, are 
often full of twists and turns. We also know that the water drops have no visible eyes to be 
able to find the destination (lake or river). If we put ourselves in place of a water drop of the 
river, we feel that some force pulls us toward itself (gravity). This gravitational force as we 
know from physics is straight toward the center of the earth. Therefore with no obstacles 
and barriers, the water drops would follow a straight path toward the destination, which is 
the shortest path from the source to the destination. However, due to different kinds of 
obstacles in the way of this ideal path, the real path will have to be different from the ideal 
path and we often see lots of twists and turns in a river path. In contrast, the water drops 
always try to change the real path to make it a better path in order to approach the ideal 
path. This continuous effort changes the path of the river as time passes by. One feature of a 
water drop is the velocity that it flows which enables the water drop to transfer an amount 
of soil from one place to another place in the front. This soil is usually transferred from fast 
parts of the path to the slow parts. As the fast parts get deeper by being removed from soil, 
they can hold more volume of water and thus may attract more water. The removed soils 
which are carried in the water drops are unloaded in slower beds of the river. There are 
other mechanisms which are involved in the river system which we don’t intend to consider 
them all here. 
In summary, a water drop in a river has a non-zero velocity. It often carries an amount of 
soil. It can load some soil from an area of the river bed, often from fast flowing areas and 
unload them in slower areas of the river bed. Obviously, a water drop prefers an easier path 
to a harder path when it has to choose between several branches that exist in the path from 
the source to the destination. Now we can introduce the intelligent water drops. 

5.3 Intelligent water drops 
Based on the observation on the behavior of water drops, we develop an artificial water 
drop which possesses some of the remarkable properties of the natural water drop. This 
Intelligent Water Drop, IWD for short, has two important properties:  
1. The amount of the soil it carries now, Soil (IWD). 
2. The velocity that it is moving now, Velocity (IWD). 
flows in its environment. This environment depends on the problem at hand. In an 
environment, there are usually lots of paths from a given source to a desired destination, 
which the position of the destination may be known or unknown. If we know the position of 
the destination, the goal is to find the best (often the shortest) path from the source to the 
destination. In some cases, in which the destination is unknown, the goal is to find the 
optimum destination in terms of cost or any suitable measure for the problem. 
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We consider an IWD moving in discrete finite-length steps. From its current location to its 
next location, the IWD velocity is increased by the amount nonlinearly proportional to the 
inverse of the soil between the two locations. Moreover, the IWD’s soil is increased by 
removing some soil of the path joining the two locations. The amount of soil added to the 
IWD is inversely (and nonlinearly) proportional to the time needed for the IWD to pass from 
its current location to the next location. This duration of time is calculated by the simple 
laws of physics for linear motion. Thus, the time taken is proportional to the velocity of the 
IWD and inversely proportional to the distance between the two locations.  
Another mechanism that exists in the behavior of an IWD is that it prefers the paths with 
low soils on its beds to the paths with higher soils on its beds. To implement this behavior of 
path choosing, we use a uniform random distribution among the soils of the available paths 
such that the probability of the next path to choose is inversely proportional to the soils of 
the available paths. The lower the soil of the path, the more chance it has for being selected 
by the IWD. 
In this part, we specifically express the steps for solving the TSP. The first step is how to 
represent the TSP in a suitable way for the IWD. For the TSP, the cities are often modeled by 
nodes of a graph, and the links in the graph represent the paths joining each two cities. Each 
link or path has an amount of soil. An IWD can travel between cities through these links and 
can change the amount of their soils. Therefore, each city in the TSP is denoted by a node in 
the graph which holds the physical position of each city in terms of its two dimensional 
coordinates while the links of the graph denote the paths between cities. To implement the 
constraint that each IWD never visits a city twice, we consider a visited city list for the IWD 
which this list includes the cities visited so far by the IWD. So, the possible cities for an IWD 
to choose in its next step must not be from the cities in the visited list. 

5.4 Solving the TSP using IWD  
In the following, we present the proposed Intelligent Water Drop (IWD) algorithm for the 
TSP: 
1. Initialization of static parameters: set the number of water drops

IWDN , the number of 
cities

CN , and the Cartesian coordinates of each city i such that [ ]T
ii yxi  ,)( =c to their 

chosen constant values. The number of cities and their coordinates depend on the 
problem at hand while the

IWDN is set by the user. Here, we choose IWDN to be equal to the 
number of cities. For velocity updating, we use parameters 1000=va , 01.=vb and 1=vc . For 

soil updating, we use parameters 1000=sa , 01.=sb and 1=sc . Moreover, the initial 
soil on each link is denoted by the constant InitSoil  such that the soil of the link 
between every two cities i and j is set by InitSoiljisoil =),( . The initial velocity of IWDs 
is denoted by the constant InitVel . Both parameters InitSoil and InitVel are also user 
selected. In this paper, we choose 1000=InitSoil and 100=InitVel . The best tour is 

denoted by BT which is still unknown and its length is initially set to infinity: 

∞=)( BTLen . Moreover, we should specify the maximum number of iterations that the 
algorithm should be repeated or some other terminating condition suitable for the 
problem. 
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2. Initialization of dynamic parameters:  For every IWD, we create a visited city list 
{ }=)(IWDcV   set to the empty list. The velocity of each IWD is set to InitVel  whereas 

the initial soil of each IWD is set to zero.    
3. For every IWD, randomly select a city and place that IWD on the city.  
4. Update the visited city lists of all IWDs to include the cities just visited.  
5. For each IWD, choose the next city j to be visited by the IWD when it is in city i with the 

following probability (equation 7): 
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to prevent a possible division by zero in the function (.)f . Here, we use 01.0=sε . The 
function min(.) returns the minimum value among all available values for its argument. 
Moreover, )(IWDvc  is the visited city list of the IWD.  
6. For each IWD moving from city i to city j, update its velocity based on equation 8.  
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such that )1( +tIWDvel  is the updated velocity of the IWD. ),( jisoil  is the soil on the path 
(link) joining the current city i and the new city j. With formula (8), the velocity of the IWD 
increases less if the amount of the soil is high and the velocity would increase more if the 
soil is low on the path. 
7. For each IWD, compute the amount of the soil, ),( jisoilΔ , that the current water drop 

IWD loads from its the current path between two cities i and j using equation 9. 
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from city i to city j with the velocity IWDvel . Here, the function (.)c  represents the two 
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2. Initialization of dynamic parameters:  For every IWD, we create a visited city list 
{ }=)(IWDcV   set to the empty list. The velocity of each IWD is set to InitVel  whereas 
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dimensional positional vector for the city. The function max(.,.)returns the maximum value 
among its arguments, which is used here to threshold the negative velocities to a very small 
positive number 0001.0=vε . 
8. For each IWD, update the soil of the path traversed by that IWD using equation 10. 
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where IWDsoil represents the soil that the IWD carries.  The IWD goes from city i to city j. 
The parameter ρ  is a small positive number less than one. Here we use 9.0=ρ . 
9. For each IWD, complete its tour by using steps 4 to 8 repeatedly. Then, calculate the 

length of the tour traversed by the IWD, and find the tour with the minimum length 
among all IWD tours in this iteration. We denote this minimum tour by MT . 

10. Update the soils of paths included in the current minimum tour of the IWD, denoted 
by MT which is computed based on equation 11. 
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11. 11. If the minimum tour MT is shorter than the best tour found so far denoted by BT , 
then we update the best tour by applying equation 12.   

)()(      MTLenBTLenandMTBT ==  (12)

12. Go to step 2 unless the maximum number of iterations is reached or the defined 
termination condition is satisfied. 

13. The algorithm stops here such that the best tour is kept in BT and its length is )( BTLen . 
It is reminded that it is also possible to use only TM and remove step 11 of the IWD 
algorithm. However, it is safer to keep the best tour BT of all iterations than to count on only 
the minimum tour TM of the last iteration. The IWD algorithm is experimented by artificial 
and some benchmark TSP environments. The proposed algorithm converges fast to 
optimum solutions and finds good and promising results. This research (Shah-Hosseini, 
2007) is the beginning of using water drops ideas to solve engineering problems. So, there is 
much space to improve and develop the IWD algorithm. 

6. Artificial immune systems 
6.1 Introduction 
Recently, there was an increasing interest in the area of Artificial Immune System (AIS) and 
its application for solving various problems specifically for the TSP (Zeng & Gu, 2007), (Lu 
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et al., 2007). AIS is inspired by natural immune mechanism and uses immunology idea in 
order to develop systems capable of performing different tasks in various areas of research 
such as pattern recognition, fault detection, diagnosis and a number of other fields including 
optimization. Here we want to know the AIS completely. To start with, it might be useful to 
become more familiar with natural immune system. 
Natural immune systems consist of the structures and processes in the living body that 
provide a defence system against invaders and also altered internal cells which lead to 
disease. In a glance, immune system’s main tasks can be divided into three parts; 
recognition, categorization and defence. As recognition part, the immune system firstly has 
to recognize the invader and foreign antigens e.g. bacteria, viruses and etc. After 
recognition, classification must be performed by immune systems, this is the second part. 
And appropriate form of defence must to be applied for every category of foreign aggressive 
phenomenon as the third part. The most significant aspect of the immune systems in 
mammals is learning capability. Namely, the immune systems can grow during the life time 
and is capable of using learning, memory and associative retrieval in order to solve 
mentioned recognition and classification tasks. In addition, the studies show that the natural 
immune systems are useful phenomena in information processing and can be helpful in 
inspiration for problem solving and various optimization problems (Keko et al., 2003). 

6.2 Artificial immune system  
Like the natural immune systems the AIS is a set of techniques, which try to algorithmically 
mimic natural immune systems' behaviour (Dasgupta, 99). As mentioned earlier, the 
immune system is susceptible to all of the invaders, also the outer influences, like vaccines 
which are artificial ways of raising individual's immunity. Vaccines are other factors that 
can stimulate the immune system’s susceptibility. This feature is the key point of the AIS 
structure. The vaccines in the AIS are abstracted forms of the preceding information. 
Vaccination modifies genes based on the useful knowledge of the problem to achieve higher 
fitness in comparison to the fitness that obtained from a random process when for example a 
classical GA is applied. Once again it is necessary to point out that, vaccines contain some 
important information about the problem and in consequence the vaccination process 
employed in a right manner can be very useful in the performance of the algorithm. Like 
classical GA and based on its structure the AIS can work. The GA operators (crossover and 
mutation) search the problem space randomly and hence they don’t have enough capability 
of meeting the actual problem at the local level. GAs are known as incapable of search fine 
local tuning because they are global search algorithms. Immune method through 
vaccination tries to overcome such blindness of crossover and mutation (Keko et al., 2003). 
After vaccination, the immune method might leads to deterioration. This case happens 
when vaccination leads to smaller fitness values than previous ones. Hence, another 
important part of immune algorithm is prevention of deterioration when inserting vaccine. 
In short, immune operators perform in four steps: firstly, an individual is selected, 
randomly. Now as the second step, the vaccine is inserted at the individual’s randomly 
chosen place. Vaccine insertion might leads to deterioration, the third step is checking for 
deterioration. And finally the forth step is discarding every individual that shows 
degeneration right after vaccine. This way of checking could be dangerous for diversity and 
could result in algorithm's inability to avoid local optima, especially when combined with 
small populations. The studies show that the use of immune systems resulted in faster 
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convergence when population is large enough and diversity is secured. The combination of 
immune algorithm and GA, form the immune genetic algorithm (IGA). Many of previous 
works that are performed on the TSP used IGA. Now, we first investigate the IGA and its 
structure in detail and after that we have a look at some previous works around the TSP.  
In summery, the IGA consists of these steps: 
1. Creation of initial population in some way, e.g. through a random process 
2. Abstract vaccines according to the former information 
3. Checking the termination criterion (if it is satisfied go to step 10 and else go to next step)  
4. Crossover on the randomly selected individuals 
5. Mutation on the produced children  
6. Vaccination on the former step outcome 
7. Deterioration checking 
8. Discarding every individual that shows degeneration right after vaccine 
9. Go to step 3 
10. End 
As it is obvious from the ten steps which have been mentioned above, the IGA is very 
similar to the conventional GA, but they are different in operators. The IGA has vaccine 
operator to overcome the universality problem of the conventional GA. For more 
information on IGA you can refer to many cited papers which are prepared at the end of this 
chapter. 

6.3 Solving the TSP using AIS and IGA 
The first work in investigating potential application of the immune system in solving 
numerical optimization problems was the study by Bersini and Varela (Bersini & Varela, 90), 
who proposed immune employment mechanism. After that, many studies have been 
performed that focus on the AIS and IGA. Also, the IGA and AIS have been applied for 
solving the TSP in many cases. In (Jiao & Wang, 2000) the IGA and its parts have been 
introduced in detail and the IGA has been shown as an algorithm that accomplished in two 
steps: 1) a vaccination and 2) an immune selection. These phases are completely similar to 
that we mentioned about IGA and AIS in this section. In the mentioned paper, it is proved 
that the IGA theoretically converges with probability one. Besides, strategies and methods 
of selecting vaccines and constructing an immune operator are also given. Also, the IGA has 
been applied to the TSP and the results which are presented in this study illustrate that IGA 
is able to restrain the degenerate phenomenon effectively during the evolutionary process 
and can improve the searching ability, adaptability and greatly increase the converging 
speed. Recently, some works have been performed on the TSP which employ IGA. In (Zeng 
& Gu, 2007), a novel genetic algorithm based on immunity and growth for the TSP is 
presented. In this paper at first, a reversal exchange crossover and mutation operator is 
proposed which lead to preservation of the good sub-tours and making individuals various. 
At the next part, a new immune operator is proposed to restrain individuals’ degeneracy. In 
addition, a novel growth operator is proposed to obtain the optimal solution with more 
chances. Results and investigations that performed in this study show that the algorithm is 
feasible and effective as it is claimed. In addition, in another study (Lu et al., 2007), a 
modified immune genetic algorithm is applied to solve the Travelling Salesman Problem. 
This method called an improved IGA by its authors. In this paper, at first, a new selection 
strategy is incorporated into the conventional genetic algorithm to improve the performance 
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of genetic algorithm. Besides the authors changed the selection strategy and in a new form it 
includes three computational procedures: evaluating the diversity of genes, calculating the 
percentage of genes, and computing the selection probability of genes. Based on the 
prepared results it is inferred that, by incorporating inoculating genes into conventional 
procedures of genetic algorithm, the number of evolutional iterations to reach an optimal 
solution can be significantly reduced and in consequence it results in faster answer in 
comparison to conventional IGA. 
In addition to the mentioned works, the biological immune idea can be combined with other 
population based optimization algorithms which all of them are prepared in this chapter. As 
an instance, the paper (Qin et al., 2006) proposes a new diversity guaranteed ant colony 
algorithm by adopting the method of immune strategy to ant colony algorithm and 
simulating the behaviour of biological immune system. This method has been applied to the 
TSP benchmarks and results show that the presented algorithm has strong capability of 
optimization; it has diversified solutions, high convergence speed and succeeds in avoiding 
the stagnation and premature phenomena. 
Based on the performed studies some points can be inferred as mentioned in the following 
(Keko et al., 2003): 
The simulation results show that the variation in population size has the same effect on the 
GA and IGA. In both of the mentioned techniques, large population sizes require more 
generation to achieve higher fitness, resulting in relatively slow rate of convergence. Hence 
new ideas are required for faster convergence. Some of these new ideas had been presented 
in some works as you see in some investigated papers.  
Also, based on the simulation results, the running time of the IGA and the regular GA do 
not have large differences, since in the IGA all the vaccines are determined before the 
algorithm starts and when they are required they can be loaded from a look up table.     
Combining immune operator with another local improving operator can be an additional 
idea for getting better answers from the IGA.  
One of the advantages of the IGA over the plain GA is that it is less susceptible to changing 
control parameters such as crossover or mutation probability. The simulation results 
demonstrate that changing these parameters has slight influence to the overall performance. 
It is worth mentioning that more studies and attentions in the AIS and IGA are employing 
other AIS features like adaptive vaccine selection.  

7. Bee colony optimization 
7.1 Introduction 
Similar to other natural inspired and collective intelligence based algorithms such as PSO 
which is taken from the bird’s life and ACO based on the ant colony social life, another kind 
of artificial intelligence systems that can be useful in solving many engineering,  
management, control and computational problems, is an algorithm inspired from Bee 
colonies in nature. The Bee Colony Optimization (BCO) algorithms are interesting 
metaheuristic algorithms that represent another direction in the field of swarm intelligence. 
Here, firstly we introduce the bee system and bee colony optimization briefly and then some 
recent works on the TSP which have used bee systems are investigated. 

7.2 Bee colony optimization 
The bee colony’s function according to nature is as follows. At first, each bee belonging to a 
colony looks for the feed individually. When a bee finds the feed, it informs other bees by 
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dancing. Other bees collect and carry the feed to the hive. After relinquishing the feed to the 
hive, the bee can take three different actions.  
1. Abandon the previous food source and become again uncommitted follower.  
2. Continue to forage at the food source without recruiting the nestmates.  
3. Dance and thus recruit the nestmates before the return to the food source.  
With a certain probability that is dependent on the obtained feed quality, its distance from 
the hive and the number of the bees which are now engaged with this feed resource, a bee 
selects one of the stated actions and follows its work in a similar repetitive form (Teodorovic 
& Dell’Orco, 2005). This behaviour can be applied to many complicated engineering 
problems including computational, control, optimization, transportation, etc. In the 
following we study such a method that focuses on the TSP solving. 

7.3 BCO application   
The BCO algorithm can be a significant method in local search applications. One of the most 
primary works on the bees and their life is (Sato & Hagiwara, 97). In this study, the authors 
applied bee system along with GA and introduced a modified and improved form of the 
conventional GA. Based on this fact that the regular GA lacks the global search ability; the 
improvement is regarding to overcome this shortcoming. Hence, a new GA inspired by the 
bee colony’s function has been presented, the authors called it, bee system. The main 
purpose of this modified GA (bee system) is to improve the local search ability of GAs 
without degrading the global search ability. In the proposed bee system, firstly global search 
is performed using the simple GA structure. Through this global search step, some 
chromosomes with reasonable high fitness produced which are called superior 
chromosome. These superior chromosomes are kept for the local search procedure and each 
of them corresponds to a local population. At the beginning of the local search all of the 
chromosomes in each local population make couple (cross over) with its population superior 
chromosome. This crossover is named concentrated crossover which tries to search 
concentratedly around the related superior chromosome. Another difference between the 
bee system and ordinary GA is migration among the population. In this method, the bee 
system selects one individual per predetermined generation, and transfers it to the 
neighbouring population which is called migration. Using this migration technique, each 
population tries to search independently and cooperatively. Moreover, for a more effective 
search, a simplified Simplex Method named Pseudo-Simplex Method is introduced and 
employed in the proposed bee system. All of the mentioned operators are in the local search 
part. After passing the predetermined generations, the local search stops. If the best solution 
found so far does not suffice the ending condition, the global search starts again and the 
algorithm is repeated (Sato & Hagiwara, 97). It was a kind of application based on the bee 
colony’s function which is used to solve the TSP. Simulation results depict that the 
introduced method has a good potential to solve the TSP and other complicated problems.  

7.4 Solving the TSP using BCO   
Another study around bee colony and its applications is a work performed for 
transportation modelling with focus on artificial life (ALife) approach (Lucic & Teodorovic, 
2002). This paper shows that the ALife models that have been developed for solving 
complex transportation problems are inspired by social insect’s behavior. Interaction 
between individual insects in a colony of social insects has been well documented. The 
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examples of such interactive behavior are bee dancing during the food procurement, ants’ 
pheromone secretion, and performance of specific acts which signal the other insects to start 
performing the same actions. Based on these studies we can construct the artificial systems 
such as bee systems. In the mentioned study, the artificial bee system has been applied to 
solve the TSP. Assume that, the graph in which the traveling salesman route should be 
discovered is shown by G = (N, A) that N= nodes (cities) and A= links connecting these 
nodes. This graph can correspond to the network that the artificial bees are collecting nectar. 
The hive can also be placed randomly in one of the network’s nodes. For solving the TSP 
using the bee system it is necessary that two parameters correspond to each others, tour 
length and nectar quantity. Here, it is assumed that the nectar quantity that is possible to 
collect flying along a certain link is inversely proportional to the link length. In other words, 
the shorter the link, the higher the nectar quantity along that link. The artificial bees collect 
the nectar during the predetermined time interval. After that, the hive position is changed 
randomly and artificial bees start to collect the nectar from the new hive location. Each 
iteration is composed of a certain number of stages. The stage is an elementary time unit in 
the bees’ environment. During one stage the artificial bee will visit nodes, create partial 
traveling salesman tour, and after that return to the hive (the number of nodes to be visited 
within one stage is prescribed by the analyst at the beginning of the search process). In the 
hive the bee will participate in a decision making process. The artificial bee will decide 
whether to abandon the food source and become again an uncommitted follower, continue 
to forage at the food source without recruiting nestmates, or dance and thus recruit 
nestmates before returning to the food source (Lucic & Teodorovic, 2002). During any stage, 
bees are choosing nodes to be visited in a random manner. The randomness in not useful 
here and the mentioned paper’s authors assumed that the probability of choosing node j by 
the k-th bee, located in node i (during stage u +1 and iteration z) equals to equation 13:  
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Where: 
i, j – Node indexes (i, j = 1, 2, …, N), 
di,j – Length of link (i, j), 
k – Bee index (k = 1, 2, …, B), 
B – The total number of bees in the hive, 
z – Iteration index (z = 1, 2, …, M), 
M – Maximum number of iteration, 
u – Stage index ( )( )11, 2,..., /Nu s−= ,  

s – Number of nodes visited by every artificial bee during one stage, 
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dancing. Other bees collect and carry the feed to the hive. After relinquishing the feed to the 
hive, the bee can take three different actions.  
1. Abandon the previous food source and become again uncommitted follower.  
2. Continue to forage at the food source without recruiting the nestmates.  
3. Dance and thus recruit the nestmates before the return to the food source.  
With a certain probability that is dependent on the obtained feed quality, its distance from 
the hive and the number of the bees which are now engaged with this feed resource, a bee 
selects one of the stated actions and follows its work in a similar repetitive form (Teodorovic 
& Dell’Orco, 2005). This behaviour can be applied to many complicated engineering 
problems including computational, control, optimization, transportation, etc. In the 
following we study such a method that focuses on the TSP solving. 

7.3 BCO application   
The BCO algorithm can be a significant method in local search applications. One of the most 
primary works on the bees and their life is (Sato & Hagiwara, 97). In this study, the authors 
applied bee system along with GA and introduced a modified and improved form of the 
conventional GA. Based on this fact that the regular GA lacks the global search ability; the 
improvement is regarding to overcome this shortcoming. Hence, a new GA inspired by the 
bee colony’s function has been presented, the authors called it, bee system. The main 
purpose of this modified GA (bee system) is to improve the local search ability of GAs 
without degrading the global search ability. In the proposed bee system, firstly global search 
is performed using the simple GA structure. Through this global search step, some 
chromosomes with reasonable high fitness produced which are called superior 
chromosome. These superior chromosomes are kept for the local search procedure and each 
of them corresponds to a local population. At the beginning of the local search all of the 
chromosomes in each local population make couple (cross over) with its population superior 
chromosome. This crossover is named concentrated crossover which tries to search 
concentratedly around the related superior chromosome. Another difference between the 
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found so far does not suffice the ending condition, the global search starts again and the 
algorithm is repeated (Sato & Hagiwara, 97). It was a kind of application based on the bee 
colony’s function which is used to solve the TSP. Simulation results depict that the 
introduced method has a good potential to solve the TSP and other complicated problems.  

7.4 Solving the TSP using BCO   
Another study around bee colony and its applications is a work performed for 
transportation modelling with focus on artificial life (ALife) approach (Lucic & Teodorovic, 
2002). This paper shows that the ALife models that have been developed for solving 
complex transportation problems are inspired by social insect’s behavior. Interaction 
between individual insects in a colony of social insects has been well documented. The 
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examples of such interactive behavior are bee dancing during the food procurement, ants’ 
pheromone secretion, and performance of specific acts which signal the other insects to start 
performing the same actions. Based on these studies we can construct the artificial systems 
such as bee systems. In the mentioned study, the artificial bee system has been applied to 
solve the TSP. Assume that, the graph in which the traveling salesman route should be 
discovered is shown by G = (N, A) that N= nodes (cities) and A= links connecting these 
nodes. This graph can correspond to the network that the artificial bees are collecting nectar. 
The hive can also be placed randomly in one of the network’s nodes. For solving the TSP 
using the bee system it is necessary that two parameters correspond to each others, tour 
length and nectar quantity. Here, it is assumed that the nectar quantity that is possible to 
collect flying along a certain link is inversely proportional to the link length. In other words, 
the shorter the link, the higher the nectar quantity along that link. The artificial bees collect 
the nectar during the predetermined time interval. After that, the hive position is changed 
randomly and artificial bees start to collect the nectar from the new hive location. Each 
iteration is composed of a certain number of stages. The stage is an elementary time unit in 
the bees’ environment. During one stage the artificial bee will visit nodes, create partial 
traveling salesman tour, and after that return to the hive (the number of nodes to be visited 
within one stage is prescribed by the analyst at the beginning of the search process). In the 
hive the bee will participate in a decision making process. The artificial bee will decide 
whether to abandon the food source and become again an uncommitted follower, continue 
to forage at the food source without recruiting nestmates, or dance and thus recruit 
nestmates before returning to the food source (Lucic & Teodorovic, 2002). During any stage, 
bees are choosing nodes to be visited in a random manner. The randomness in not useful 
here and the mentioned paper’s authors assumed that the probability of choosing node j by 
the k-th bee, located in node i (during stage u +1 and iteration z) equals to equation 13:  
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nil(r) – total number of bees that visited link (i, l) in r-th iteration, 
b – Memory length, 
gk(u, z) – Last node that bee k visits at the end of stage u in iteration z, 
Nk(u, z) – Set of unvisited nodes for bee k at stage u in iteration z (in one stage bee will visits 
s nodes; we have |Nk(u, z) | = |N| - us), 
a – Input parameter given by analyst. 
This equation is based on some simple rules in solving the TSP using the bee system. These 
rules have been prepared as follows: 
The greater distance between nodes i and j leads to the lower probability that the k-th bee 
located in the node i will choose node j during stage u and iteration z.  
The greater number of iterations (z) makes the higher influence of the distance. In other 
words, at the beginning of the search process, artificial bees have “more freedom of flight”. 
It means that, the bees have more chance to search the entire solution space. But when more 
iterations have been performed the bees have less freedom to explore the solution space 
such as the search at first, because, near the end of the search process, with a high 
probability the solution is in our neighbourhood.  
Probability of selecting a new link by a bee is related to the total number of the last bees 
which had been visited this link, before this. The greater total number of bees results in a 
higher probability of choosing that link in the future.    
All of the above mentioned points have been employed in the equation 13. Another 
important point in this problem is the bee decision about the following of the search process. 
After relinquishing the food, the bee is making a decision about abandoning the food source 
or continuing the foraging at the food source. It is assumed that every bee can obtain the 
information about nectar quantity collected by every other bee. The probability that, at the 
beginning of stage u + 1, bee k will use the same partial tour that is defined in stage u in 
iteration z is equal to the following (equation 14): 
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Where Lk (u, z) is the length of partial route that is discovered by bee k in stage u in iteration z.  
Based on equation 14 if a bee has discovered the shortest partial travelling salesman tour in 
stage u in iteration z, the bee will fly along the same partial tour with the probability equal 
to one. Besides, the longer tour has the smaller chance to choose based on this equation. For 
having a global search it is better that the individual bees have interaction with each others. 
To follow this purpose the probability of that the artificial bee continues foraging at the food 
source without recruiting nestmates is tuned to a very low value and hence the probability 
of that the bee flies to the dance floor and dance with other bees becomes low. In other 
words, when at the beginning of a new stage, the bee does not follow the previous partial 
travelling salesman tour, it will follow other bees and interacts to their dancing. But the bee 
must select one of the advertised dancing arenas (partial travelling salesman tour) in the 
dancing area, and hence another selection must be performed. This selection can be carried 
out in terms of two conditions: 1) the length of that partial tour and 2) the number of bees 
which are engaged in that partial tour. It is clear that the selection can be done based on the 
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smaller tour length and also the greater number of bees. Based on these conditions the 
authors prepare a relation as it is shown in equation 15, where: 
 θρ ,  – Parameters given by the analyst, 

),( zuξα – The normalized value of the partial route length 

),( zuξβ  – The normalized value of the number of bees advertising the partial tour, 

Y(u, z) – The set of partial tours that were visited by at least one bee. 
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As it is shown in the mentioned work (Lucic & Teodorovic, 2002), this bee system has been 
tested on a large number of well known test benches such as Eil51.tsp, Berlin52.tsp, St70.tsp, 
Pr76.tsp, Kroa100.tsp, Eil101.tsp, Tsp225.tsp and A280.tsp. Also, for improving the results in 
each step, the 2-opt or 3-opt algorithms have been applied. The results reveal that the 
mentioned method is very efficient. In all instances with less than 100 nodes, the bee system 
achieves the optimal solution and in the large cases it has a significant improvement in 
comparison to the other prevalent methods. The simulation results have been organized in 
section nine. 
One of the recent work for solving the TSP using bee’s behaviour and BCO algorithm is 
(Teodorovic et al., 2006). In this paper the authors propose the Bee Colony Optimization 
Metaheuristic (BCO). Moreover, this study, describes two BCO algorithms that the authors 
call them, the Bee System (BS) and the Fuzzy Bee System (FBS). In the case of FBS the agents 
(artificial bees) use approximate reasoning and rules of fuzzy logic in their communication 
and acting. In this way, the FBS is capable to solve deterministic combinatorial problems, as 
well as combinatorial problems characterized by uncertainty. In this paper, The BCO as a 
new computational paradigm is described in detail at first. After that the TSP as a case study 
has been solved using the proposed bee system. The proposed bee system is similar to that 
had been seen in the previous investigated study but in this paper the BCO algorithm has 
been described completely. For further information about the BCO algorithm please refer to 
the related resources prepared at the end of the chapter.        

8. Electromagnetism 
8.1 Introduction 
The Electromagnetism-like mechanism is a heuristic that was introduced by (Birbil & Fang, 
2003). The method utilizes an attraction-repulsion mechanism to move the sample points 
towards the optimality. In other words, EM simulates the attraction-repulsion mechanism of 
electromagnetism theory which is based on Coulomb’s law. The main concentration of the 
first introduction of this heuristic was on the problems with bounded variables on the form 
equal to equation 16. 

Min(f(x)) s.t. x ∈[l,u] (16)
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nil(r) – total number of bees that visited link (i, l) in r-th iteration, 
b – Memory length, 
gk(u, z) – Last node that bee k visits at the end of stage u in iteration z, 
Nk(u, z) – Set of unvisited nodes for bee k at stage u in iteration z (in one stage bee will visits 
s nodes; we have |Nk(u, z) | = |N| - us), 
a – Input parameter given by analyst. 
This equation is based on some simple rules in solving the TSP using the bee system. These 
rules have been prepared as follows: 
The greater distance between nodes i and j leads to the lower probability that the k-th bee 
located in the node i will choose node j during stage u and iteration z.  
The greater number of iterations (z) makes the higher influence of the distance. In other 
words, at the beginning of the search process, artificial bees have “more freedom of flight”. 
It means that, the bees have more chance to search the entire solution space. But when more 
iterations have been performed the bees have less freedom to explore the solution space 
such as the search at first, because, near the end of the search process, with a high 
probability the solution is in our neighbourhood.  
Probability of selecting a new link by a bee is related to the total number of the last bees 
which had been visited this link, before this. The greater total number of bees results in a 
higher probability of choosing that link in the future.    
All of the above mentioned points have been employed in the equation 13. Another 
important point in this problem is the bee decision about the following of the search process. 
After relinquishing the food, the bee is making a decision about abandoning the food source 
or continuing the foraging at the food source. It is assumed that every bee can obtain the 
information about nectar quantity collected by every other bee. The probability that, at the 
beginning of stage u + 1, bee k will use the same partial tour that is defined in stage u in 
iteration z is equal to the following (equation 14): 
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Where Lk (u, z) is the length of partial route that is discovered by bee k in stage u in iteration z.  
Based on equation 14 if a bee has discovered the shortest partial travelling salesman tour in 
stage u in iteration z, the bee will fly along the same partial tour with the probability equal 
to one. Besides, the longer tour has the smaller chance to choose based on this equation. For 
having a global search it is better that the individual bees have interaction with each others. 
To follow this purpose the probability of that the artificial bee continues foraging at the food 
source without recruiting nestmates is tuned to a very low value and hence the probability 
of that the bee flies to the dance floor and dance with other bees becomes low. In other 
words, when at the beginning of a new stage, the bee does not follow the previous partial 
travelling salesman tour, it will follow other bees and interacts to their dancing. But the bee 
must select one of the advertised dancing arenas (partial travelling salesman tour) in the 
dancing area, and hence another selection must be performed. This selection can be carried 
out in terms of two conditions: 1) the length of that partial tour and 2) the number of bees 
which are engaged in that partial tour. It is clear that the selection can be done based on the 
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smaller tour length and also the greater number of bees. Based on these conditions the 
authors prepare a relation as it is shown in equation 15, where: 
 θρ ,  – Parameters given by the analyst, 
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As it is shown in the mentioned work (Lucic & Teodorovic, 2002), this bee system has been 
tested on a large number of well known test benches such as Eil51.tsp, Berlin52.tsp, St70.tsp, 
Pr76.tsp, Kroa100.tsp, Eil101.tsp, Tsp225.tsp and A280.tsp. Also, for improving the results in 
each step, the 2-opt or 3-opt algorithms have been applied. The results reveal that the 
mentioned method is very efficient. In all instances with less than 100 nodes, the bee system 
achieves the optimal solution and in the large cases it has a significant improvement in 
comparison to the other prevalent methods. The simulation results have been organized in 
section nine. 
One of the recent work for solving the TSP using bee’s behaviour and BCO algorithm is 
(Teodorovic et al., 2006). In this paper the authors propose the Bee Colony Optimization 
Metaheuristic (BCO). Moreover, this study, describes two BCO algorithms that the authors 
call them, the Bee System (BS) and the Fuzzy Bee System (FBS). In the case of FBS the agents 
(artificial bees) use approximate reasoning and rules of fuzzy logic in their communication 
and acting. In this way, the FBS is capable to solve deterministic combinatorial problems, as 
well as combinatorial problems characterized by uncertainty. In this paper, The BCO as a 
new computational paradigm is described in detail at first. After that the TSP as a case study 
has been solved using the proposed bee system. The proposed bee system is similar to that 
had been seen in the previous investigated study but in this paper the BCO algorithm has 
been described completely. For further information about the BCO algorithm please refer to 
the related resources prepared at the end of the chapter.        

8. Electromagnetism 
8.1 Introduction 
The Electromagnetism-like mechanism is a heuristic that was introduced by (Birbil & Fang, 
2003). The method utilizes an attraction-repulsion mechanism to move the sample points 
towards the optimality. In other words, EM simulates the attraction-repulsion mechanism of 
electromagnetism theory which is based on Coulomb’s law. The main concentration of the 
first introduction of this heuristic was on the problems with bounded variables on the form 
equal to equation 16. 

Min(f(x)) s.t. x ∈[l,u] (16)
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where l and u are defined as the following form (equation 17): 

[ , ] { , 1,... }n k k kl u x x l x u k n= ∈ < < =  (17)
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Fig. 6. A continuous optimization problem space 

As an example, figure 6 illustrates continues problem space with l1=-60, l2=-4, l3=-4, 
u1=+100, u2=+4 and u3=+4. The aim is to find the minimum value of the shown surface. 
In stochastic global optimization, population based algorithms start with sample points 
from feasible regions which are randomly selected. The regions of attraction are determined 
according to objective function values and then a mechanism is invoked for exploration of 
these candidate regions. The Genetic Algorithm is an example of this mechanism that 
corresponds to the crossover, reproduction and mutation operators (Michalewicz, 1994). 
Similarly, Birbil et al. construct a mechanism that encourages the points to converge to the 
highly attractive valleys, and contrarily, discourages the points to move further away from 
steeper hills. This is similar to the charge of particles in elementary electromagnetism. In this 
approach, the charge of each point relates to the objective function value, which we are 
trying to optimize and also determines the magnitude of attraction or repulsion of the point 
over the sample population. 
In addition, the combination force is exerted on the point via other points for finding a 
direction for each point to move in subsequence iterations. Like the electromagnetic forces, 
this force is calculated by adding vectorially the forces from each of the other points 
calculated separately. 
Finally, similar to the hybrid population-based algorithms (Glover & Laguna, 1995), we may 
apply a local search procedure to improve some of the objective function values observed in 
the population. 
Consider a problem in the form of (16) and the following parameters are given: 
n dimension of the problem. 
uk upper bound in the kth dimension. 
lk lower bound in the kth dimension. 
f (x) pointer to the function that is minimized. 
For solving such problem using Electromagnetism-Like method, the following algorithm is 
introduced by Birbil et al. 
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ALGORITHM 1. EM (m, MAXITER, LSIT ER, δ) 
m: number of sample points 
MAXITER: maximum number of iterations 
LSIT ER: maximum number of local search iterations 
δ: local search parameter, δ ∈ [0, 1] 
1: Initialize () 
2: iteration ←1 
3: while iteration <MAXITER do 
4:  Local (LSIT ER, δ) 
5:  F ←CalcF () 
6:  Move (F) 
7:  iteration ←iteration + 1 
8: end while 
The algorithm consists of four phases. The first phase is the initialization which determines the 
initial position of the particles, second is the local search which gathers the local information of 
each particle to improve it to its best local position, third is about calculating the force of each 
particle and finally moves the particles. These phases are described in more details as follows. 
 

8.2 Initialization 
The initialization procedure is used to determine the place of the m particles (size of 
population) at first iteration in an n dimensional feasible space. The distribution of the 
particles is uniform between the lower bound and upper bound of the corresponding 
variable. f(x) is the objective function and xbest  is the particle which has the best value of f(x). 
The initialization algorithm is as follow: 
ALGORITHM 2. Initialize () 
1: for i = 1 to m do 
2:  for k = 1 to n do 
3:    λ ← U (0,1) 
4:   ( )i

k k k kx l u lλ← + −  
5:  end for 
6:  Calculate f (xi ) 
7: end for 
8: xbest ← argmin{f (xi ), ∀i} 
 

8.3 Local search 
The local search procedure is used for gathering local information about xi and replacing the 
particle with its best potential in its neighbour. The invoked local search by Birbil et al., 
works as follows: for each particle, in each dimension select a random step length and move 
the ith particle along the direction. If the attained point has the better objective value than the 
xi, the xi will be replaced by this point.  
In this part of algorithm, any local search algorithm can be used but the following algorithm 
is introduced by Birbil et al.  
This is a simple random line search algorithm applied coordinate by coordinate. This 
procedure does not require any gradient information to perform the local search. Instead of 
using other powerful local search methods (Solis & Wets, 1981), we have utilized this 
procedure because we wanted to show that even with this trivial method, the algorithm 
shows promising convergence properties. 
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where l and u are defined as the following form (equation 17): 
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As an example, figure 6 illustrates continues problem space with l1=-60, l2=-4, l3=-4, 
u1=+100, u2=+4 and u3=+4. The aim is to find the minimum value of the shown surface. 
In stochastic global optimization, population based algorithms start with sample points 
from feasible regions which are randomly selected. The regions of attraction are determined 
according to objective function values and then a mechanism is invoked for exploration of 
these candidate regions. The Genetic Algorithm is an example of this mechanism that 
corresponds to the crossover, reproduction and mutation operators (Michalewicz, 1994). 
Similarly, Birbil et al. construct a mechanism that encourages the points to converge to the 
highly attractive valleys, and contrarily, discourages the points to move further away from 
steeper hills. This is similar to the charge of particles in elementary electromagnetism. In this 
approach, the charge of each point relates to the objective function value, which we are 
trying to optimize and also determines the magnitude of attraction or repulsion of the point 
over the sample population. 
In addition, the combination force is exerted on the point via other points for finding a 
direction for each point to move in subsequence iterations. Like the electromagnetic forces, 
this force is calculated by adding vectorially the forces from each of the other points 
calculated separately. 
Finally, similar to the hybrid population-based algorithms (Glover & Laguna, 1995), we may 
apply a local search procedure to improve some of the objective function values observed in 
the population. 
Consider a problem in the form of (16) and the following parameters are given: 
n dimension of the problem. 
uk upper bound in the kth dimension. 
lk lower bound in the kth dimension. 
f (x) pointer to the function that is minimized. 
For solving such problem using Electromagnetism-Like method, the following algorithm is 
introduced by Birbil et al. 
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ALGORITHM 1. EM (m, MAXITER, LSIT ER, δ) 
m: number of sample points 
MAXITER: maximum number of iterations 
LSIT ER: maximum number of local search iterations 
δ: local search parameter, δ ∈ [0, 1] 
1: Initialize () 
2: iteration ←1 
3: while iteration <MAXITER do 
4:  Local (LSIT ER, δ) 
5:  F ←CalcF () 
6:  Move (F) 
7:  iteration ←iteration + 1 
8: end while 
The algorithm consists of four phases. The first phase is the initialization which determines the 
initial position of the particles, second is the local search which gathers the local information of 
each particle to improve it to its best local position, third is about calculating the force of each 
particle and finally moves the particles. These phases are described in more details as follows. 
 

8.2 Initialization 
The initialization procedure is used to determine the place of the m particles (size of 
population) at first iteration in an n dimensional feasible space. The distribution of the 
particles is uniform between the lower bound and upper bound of the corresponding 
variable. f(x) is the objective function and xbest  is the particle which has the best value of f(x). 
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4:   ( )i

k k k kx l u lλ← + −  
5:  end for 
6:  Calculate f (xi ) 
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8.3 Local search 
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ALGORITHM 3. Local(LSITER, δ) 
1: counter ←1 
2: Length← δ(maxk{uk − lk}) 
3: for i = 1 to m do 
4:  for k = 1 to n do 
5:   λ1 ← U (0, 1) 
6:   while counter <LSITER do 
7:    y ← xi 

8:    λ2 ← U (0, 1) 
9:    if λ1 > 0.5 then 
10:     yk ← yk + λ2(Length) 
11:    else  
12:     yk ← yk − λ2(Length) 
13:    end if 
14:    if f (y) < f(xi ) then 
15:     xi ← y 
16:     counter← LSIT ER − 1 
17:    end if 
18:    counter ←counter + 1 
19:   end while 
20:  end for 
21: end for 
22: xbest ← argmin{f (xi ), ∀i} 
 

8.4 Calculation of total force vector 
The electrostatic force between two point charges is directly proportional to the magnitude 
of each charge and inversely proportional to the square of the distance between the charges. 
The fixed charge of particle i is shown as it is shown in equation 18 (Cowan, 1968): 

 
(18)

where  ql is the charge of the ith particle and f (xi) is its objective value. f (xbest) is the objective 
value of the best individual and m is population size. In each iteration the charge of all 
particles will be computed according to their objective values. The charge of each particle 
determines the magnitude of an attraction and repulsion effect in the population. A better 
solution encourages other particles to converge to attractive valleys whereas a bad solution 
discourages particles to move toward this region. The force of particle i is calculate as follow 
(equation 19): 

 

(19)
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Figure 7 represents an example. As it is clear from the figure, the particles 1, 2 and 3 have 
the objective values equal to 20, 15 and 10 respectively. The aim is calculating the force on 
particle 2 for example. The problem is minimization and particle 3 is the best particle. So 
particle 3 encourages the particle 2. Particle 1 is worse than the particle 2 and it represents a 
repulsion force on particle 2 and finally the force F is calculated. 
 

 
Fig. 7. F12 is the force from particle 1 to particle 2 (repulsion) and F32 is the force from particle 
3 to particle 2 (attraction), F is the resultant force vector. 

8.5 Movement according to the total force 
After the total force vector for the ith particle is evaluated, the particle is moved in the 
direction of the force with the step length of  λ which is selected randomly between 0 and 1. 
The following formula is used for the movement of particles: 

 
(20)

Where RNG is a vector whose components denote the allowed feasible movement toward 
the upper bound, uk, or the lower bound, lk, for the corresponding dimension (Algorithm 4, 
lines 6–10). 
The following algorithm shows the movement procedure. Note that the best particle is not 
moved and is carried to the next generation. 
ALGORITHM 4. Move(F) 
1: for i = 1 to m do 
2:  if i ≠ best then 
3:   λ ← U (0, 1) 
4:    l

i

l

F
F

F
←  

5:   for k = 1 to n do 
6:    if 0i

kF >  then 

7:     xki ←xki + λFki (uk – xki) 
8:    else 
9:     xki ←xki + λ Fki (xki − lk) 
10:    end if 
11:   end for 
12:  end if 
13: end for 
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8.6 Termination criteria 
There are 2 termination criteria introduced by Birbil et al. for electromagnetism as follow: 
1. Maximum number of iterations. They claim that in general, 25 iterations per dimension 

(i.e., MAXITER=25n) is satisfactory for converging to the optimum point for moderate 
difficulty functions. 

2. Successive number of iterations spent without changing the current best point. In other 
word, if the current best point is not improved for certain number of iterations, the 
algorithm may be stopped. 

8.7 Solving the TSP using EM-like mechanism 
One of the most attractive approaches for solving TSP using EM is cited in (Wu et al., 2006). 
In this study, a hybrid algorithm based on EM and K-OPT is introduced. They used a 
revised EM-like algorithm which proposed by (Birbil & Fang, 2005). In this version of EM, a 
parameter v belong to (0, 1) is introduced. The perturbed point xp is selected as the farthest 
point from the current best point, xbest, in the current population. The calculation of the total 
force vector remains the same for all points except xp. For xp, the component forces are 
perturbed by a random number λ, where λ is uniformly distributed between 0 and 1. The 
directions of the component forces are perturbed; that is, if the random variable  is less 
than the parameter v then the direction of the component force is reversed. Besides, they use 
a formulation for calculating the forces which proposed in (Maenhout & Vanhoucke, 2005) 
for solving the Nurse Scheduling problem. As we know, TSP is an integer value problem 
but the EM algorithm works in real valued problems (continues space). This problem makes 
the transformation very significant. In the proposed approach in (Wu et al., 2006), one of the 
well-known algorithms (Random Key (RK)) for transforming the continuous domain into 
the discrete domain has been used. The concept of RK technique is simple and can be 
applied easily. When we obtain a k-dimensional solution, we sort the value corresponding 
to each dimension. Any sorting algorithm can be used in the method. The indices of the 
sorted list will be the solution in discrete space. By applying the RK algorithm, any 
continuous algorithm like EM will be able to work in a discrete space. 

9. Experimental results 
In this section some results of discussed population based methods for solving the TSP have 
been prepared. At each subsection the mentioned algorithms and studies based on the some 
cited paper have been compared. 

9.1 Evolutionary algorithms 
The first study that has been cited in section 2 was (Bonyadi et al., 2007). In this work some 
changes to two previous local search algorithms i.e. Shuffled Frog Leaping (SFL) and 
Civilization and Society (CS) have been made and these algorithms are combined with the 
GA idea. The shown results illustrate that the mentioned hybrid algorithm has better results 
in comparison to the GA using the SFL method. The results have been shown in Table 1.  
In another work (Yan et al., 2005) a new algorithm based on Inver-over operator, for 
combinatorial optimization problems has been proposed. The shown results prove that 
these changes are very efficient to accelerate the convergence speed. As a consequence, it is 
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inferred that, one of the points for contribution is operators. Suitable changes in the 
conventional form of operators might lead to major differences in search and optimization 
procedure. The mentioned results have been prepared in Table 2. 
 

Algorithm Average path value for 80 point input (million) 
GA 26 

GA using SFL method 19 

GA using Proposed approach 14 
Exact solution 10 

Table 1. (Bonyadi et al., 2007) simulation results 
 

Instance Result in TSBLIB Optimum in TSBLIB Results by (Yan et al., 2005) 
Eil76 538 545.387 544.369 
Pr136 96772 96772 96770.924 

Table 2. (Yan et al., 2005) simulation results 

As mentioned earlier, one of the points that solving the TSP can contribute is recombination 
operators i.e. mutation and crossover. Based on (Takahashi, 2005) there are two kinds of 
crossover operators for solving the TSP. Takahashi tries to retain useful information about 
links of parent’s edges which leads to convergence. The Takahashi’s experimental results 
suggest that changing crossover operators at arbitrary time according to city data structure 
is available to improve the performance of GAs.  

9.2 ACO algorithms 
The algorithm presented in (Dorigo & Gambardella, 1997) is listed in Table 3. As it is 
mentioned, the paper uses an algorithm based on ACS for solving the TSP. 
 

Problem name ACS results (Dorigo & Gambardella 1997) Optimum 
Eil50 427.96 425 
Eil75 542.37 535 

Table 3. (Dorigo & Gambardella, 1997) simulation results 

9.3 PSO algorithms  
Table 4 illustrates the results of the paper presented in (Yuan et al., 2007) which works based 
on ACO in combination with PSO. 
 

Problem name Best Worst Average 
Oliver30 425.6542 457.2354 432.2231

Att48 33534 39679 34556 

Table 4. (Yuan et al., 2007) simulation results 
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9.4 IWD algorithms 
Based on the observation on the behavior of water drops, (Shah-Hosseini, 2007) develops an 
artificial water drop which possesses some of the remarkable properties of the natural water 
drop. The IWD algorithm is experimented by artificial and some benchmark TSP 
environments. The results show that the proposed algorithm converges fast to optimum 
solutions and finds good and promising results. Figures 8 and 9 depict the results of 
running this algorithm on some TSP benchmarks.  
 

 
 

Fig. 8. The best tour found by the proposed algorithm after 300 iterations for the 76-city 
problem eil76. The algorithm gets a good local optimum with the tour length 559 which is 
quite close to the global optimum 538.  
 

 
 

Fig. 9. The best tour found by the proposed algorithm after 1500 iterations for the 100-city 
problem kroA100. The algorithm gets a good local optimum with the tour length 23156 
which is quite close to the global optimum 21282. 

Figure 10 shows the average length of the best tours of the IWD algorithm in 10 
independent runs for the TSP problems in which the cities are on a circle. The number of 
cities is increased from 10 to 100 by the value of five, and in each case the best average tour 
length over 10 runs is depicted.  
Based on the simulation results, it is inferable that the IWD algorithm converges fast to 
optimum solutions and finds good and promising results.  
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Fig. 10. The dotted lines show the global optimum tour length whereas the solid lines are the 
best tour lengths obtained by the IWD algorithm. 

9.5 AIS algorithms 
The IGA and AIS have been applied for solving the TSP in many cases. In (Jiao & Wang, 
2000) it is proved that the IGA is theoretically convergent with probability one. Besides, 
strategies and methods of selecting vaccines and constructing an immune operator are also 
given. The simulation results illustrate that IGA is able to restrain the degenerate 
phenomenon effectively during the evolutionary process and can improve the searching 
ability and adaptability, while greatly increase the converging speed.  
In another work, (Zeng & Gu, 2007), a novel genetic algorithm based on immunity and 
growth for the TSP is presented. The value obtained by the mentioned algorithm is prepared 
in Table 5. Results and investigations that performed in this study show that the algorithm 
is feasible and effective as it is claimed. 
   

Problem Result in TSBLIB Results by (Zeng & Gu, 2007)
Eil51 429.983 428.872 
Pr136 96772 96770.9 

Table 5. (Zeng & Gu, 2007) simulation results 

9.6 BCO algorithms 
In section 7, one of the main work that had been studied was the study around bee colony 
and its applications for transportation modelling with focus on artificial life (ALife) 
approach (Lucic & Teodorovic, 2002). This paper shows that the ALife models that have 
been developed for solving complex transportation problems are inspired by social insect’s 
behavior. The proposed algorithm in this work has been tested on a large number of well 
known TSP test benches such as Eil51.tsp, Berlin52.tsp, St70.tsp, Pr76.tsp, Kroa100.tsp, 
Eil101.tsp, Tsp225.tsp and A280.tsp. Also, for improving the results in each step, the 2-opt or 
3-opt algorithms have been applied. Table 6 demonstrates the algorithm results. The results 
reveal that the mentioned method is very efficient. In all instances with less than 100 nodes, 
the bee system achieves the optimal solution and in the large cases it has a significant 
improvement in comparison to the other prevalent methods. 
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Problem Optimal value Best value in (Lucic & 
Teodorovic, 2002) 

Average value in (Lucic 
& Teodorovic, 2002) 

Eil51 428.87 428.87 428.87 
Pr76 108159 108159 108159 

Table 6. (Lucic & Teodorovic, 2002) simulation results obtained by the Bee System enriched 
with 3-opt heuristic.  
Another work on the field of BCO and for solving the TSP is (Teodorovic et al., 2006). In this 
paper the authors propose the Bee Colony Optimization Metaheuristic (BCO). Moreover, 
this study, describes two BCO algorithms that the authors call them, the Bee System (BS) 
and the Fuzzy Bee System (FBS). In the case of FBS the agents (artificial bees) use 
approximate reasoning and rules of fuzzy logic in their communication and acting. The 
simulation results of the BS can be seen in Table 7.  
 

Problem name Optimal value Best value by (Teodorovic et al., 2006) 
Eil51 429.983 431.121 
Pr76 108159 108790 

Table 7. (Teodorovic et al., 2006) simulation results   

9.7 Electromagnetism-like mechanisms  
Table 8 illustrates the results for EM which introduced in (Wu et al., 2006). 

9.8 Comparison of various algorithms  
Figure 11 shows a comparison among various methods for two standard TSP problems 
named st70 and kroa100.  
 

Problem name Best Optimal Average 
14 cities 30.879 30.879 31.80731
16 cities 3.2 3.2 3.30349 

Table 8. (Wu et al., 2006) simulation results  

 
(a) 

 
(b) 

Fig. 11. (a) The results of various algorithm applied on Kroa100, (b) The results of various algorithm 
applied on st70 (The vertical axes show the best tour length obtained by each algorithm).   
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10. Conclusion 
Maybe this chapter is the first versatile study on the population based optimization 
algorithms focused on solving the TSP. In this study, the state of the art of population based 
optimization algorithms such as Evolutionary Algorithms (EA), Ant Colony Optimization 
Algorithms (ACO), Particle Swarm Optimization Algorithms (PSO), Intelligent Water-Drops 
Algorithm (IWD), Artificial Immune Systems (AIS), Bee Colony Optimization Algorithms 
(BCO) and finally Electromagnetism-like Mechanisms (EM) has been introduced and 
investigated. The chapter includes nine parts before this; first one is introduction on the TSP 
and optimization algorithm, seven sections are about mentioned population based 
optimization algorithms and some related works which use these methods for solving the 
TSP, and finally the last part encompasses experimental results on the perused studies. All 
the sections try to introduce the related population based algorithm truly. Then the authors 
attempt to explore some useful studies that have been done by other researchers for solving 
the TSP. In addition some important points, where contribution or innovation in different 
parts of the related algorithm or in solving the TSP can be applied, have been pointed. The 
experimental results demonstrate a brief comparison among the various population based 
optimization methods. In this section you can find some tables, graphs and figures which 
compare the presented methods with their counterparts in terms of efficiency using some 
well known benchmarks on the TSP. The performed study shows that all of the stated 
methods have some weakness and some strength points which are noticed at the related 
section. As a consequence, the further research can focus on these points for amplification of 
strengths and eliminating or improving the weaknesses. In addition, an innovative 
population based method inspired by natural water drops behaviour is reviewed in this 
chapter.  
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Problem Optimal value Best value in (Lucic & 
Teodorovic, 2002) 

Average value in (Lucic 
& Teodorovic, 2002) 

Eil51 428.87 428.87 428.87 
Pr76 108159 108159 108159 

Table 6. (Lucic & Teodorovic, 2002) simulation results obtained by the Bee System enriched 
with 3-opt heuristic.  
Another work on the field of BCO and for solving the TSP is (Teodorovic et al., 2006). In this 
paper the authors propose the Bee Colony Optimization Metaheuristic (BCO). Moreover, 
this study, describes two BCO algorithms that the authors call them, the Bee System (BS) 
and the Fuzzy Bee System (FBS). In the case of FBS the agents (artificial bees) use 
approximate reasoning and rules of fuzzy logic in their communication and acting. The 
simulation results of the BS can be seen in Table 7.  
 

Problem name Optimal value Best value by (Teodorovic et al., 2006) 
Eil51 429.983 431.121 
Pr76 108159 108790 

Table 7. (Teodorovic et al., 2006) simulation results   

9.7 Electromagnetism-like mechanisms  
Table 8 illustrates the results for EM which introduced in (Wu et al., 2006). 

9.8 Comparison of various algorithms  
Figure 11 shows a comparison among various methods for two standard TSP problems 
named st70 and kroa100.  
 

Problem name Best Optimal Average 
14 cities 30.879 30.879 31.80731
16 cities 3.2 3.2 3.30349 

Table 8. (Wu et al., 2006) simulation results  

 
(a) 

 
(b) 

Fig. 11. (a) The results of various algorithm applied on Kroa100, (b) The results of various algorithm 
applied on st70 (The vertical axes show the best tour length obtained by each algorithm).   
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10. Conclusion 
Maybe this chapter is the first versatile study on the population based optimization 
algorithms focused on solving the TSP. In this study, the state of the art of population based 
optimization algorithms such as Evolutionary Algorithms (EA), Ant Colony Optimization 
Algorithms (ACO), Particle Swarm Optimization Algorithms (PSO), Intelligent Water-Drops 
Algorithm (IWD), Artificial Immune Systems (AIS), Bee Colony Optimization Algorithms 
(BCO) and finally Electromagnetism-like Mechanisms (EM) has been introduced and 
investigated. The chapter includes nine parts before this; first one is introduction on the TSP 
and optimization algorithm, seven sections are about mentioned population based 
optimization algorithms and some related works which use these methods for solving the 
TSP, and finally the last part encompasses experimental results on the perused studies. All 
the sections try to introduce the related population based algorithm truly. Then the authors 
attempt to explore some useful studies that have been done by other researchers for solving 
the TSP. In addition some important points, where contribution or innovation in different 
parts of the related algorithm or in solving the TSP can be applied, have been pointed. The 
experimental results demonstrate a brief comparison among the various population based 
optimization methods. In this section you can find some tables, graphs and figures which 
compare the presented methods with their counterparts in terms of efficiency using some 
well known benchmarks on the TSP. The performed study shows that all of the stated 
methods have some weakness and some strength points which are noticed at the related 
section. As a consequence, the further research can focus on these points for amplification of 
strengths and eliminating or improving the weaknesses. In addition, an innovative 
population based method inspired by natural water drops behaviour is reviewed in this 
chapter.  
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1. Introduction  
The Traveling Salesman Problem (TSP) is to find a Hamiltonian tour of minimal length on a 
fully connected graph. The TSP is a NP-Complete, and there is no polynomial algorithm to 
find the optimal result. Many bio-inspired algorithms has been proposed to address this 
problem. Generally, generic algorithm (GA), ant colony optimization (ACO) and particle 
swarm optimization (PSO) are three typical bio-inspired algorithm for TSP. In this section 
we will give a brief introduction to the above three bio-inspired algorithms and their 
application to the TSP. 

1.1 GAs for TSP 
GAs were introduced by Holland in the 1970s [1]. These algorithms are adaptive search 
techniques based on the mechanisms of natural selection and the survival of the fittest 
concept of biological evolution. By simulating biological evolution, GAs can solve searching 
problem domains effectively and easily apply to many of the current engineering problems. 
GAs have been widely used in many applications of TSP and its extensions throughout the 
literature [2-4].  
A particularly nice introduction to GAs is given in Goldberg’s book [5]. The main idea 
behind GAs is to start with randomly generating initial solutions and implements the 
“survival of the fittest” strategy to increasing better solutions through generations. A 
traditional GA process includes initial population generation, fitness evaluation, 
chromosome selection, applying genetic operators for reproduction, and suspension 
condition.  
In designing a GA, how to encode a search solution is a primary and key issue [6]. Many 
optimization operators for TSP were proposed by Goldberg [5]. A commonly used encoding 
strategy is transposition expression [7]. In the transposition expression strategy, each city of 
the TSP is encoded as a gene of the chromosome with the constraint that each city appears 
once and only once in the chromosome. Transposition expression is the most nature 
expression for TSP which based on the order of tour. While such method may leads to 
infeasible tour after traditional crossover operator [7]. This is a common occurrence for TSP. 
Although feasibility can be maintained in many ways named ‘repair algorithms’, such 
algorithms can consume a considerable amount of time and can inhibit convergence. 
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fully connected graph. The TSP is a NP-Complete, and there is no polynomial algorithm to 
find the optimal result. Many bio-inspired algorithms has been proposed to address this 
problem. Generally, generic algorithm (GA), ant colony optimization (ACO) and particle 
swarm optimization (PSO) are three typical bio-inspired algorithm for TSP. In this section 
we will give a brief introduction to the above three bio-inspired algorithms and their 
application to the TSP. 
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concept of biological evolution. By simulating biological evolution, GAs can solve searching 
problem domains effectively and easily apply to many of the current engineering problems. 
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A particularly nice introduction to GAs is given in Goldberg’s book [5]. The main idea 
behind GAs is to start with randomly generating initial solutions and implements the 
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condition.  
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the TSP is encoded as a gene of the chromosome with the constraint that each city appears 
once and only once in the chromosome. Transposition expression is the most nature 
expression for TSP which based on the order of tour. While such method may leads to 
infeasible tour after traditional crossover operator [7]. This is a common occurrence for TSP. 
Although feasibility can be maintained in many ways named ‘repair algorithms’, such 
algorithms can consume a considerable amount of time and can inhibit convergence. 



 Travelling Salesman Problem 

 

36 

3 2 1 5 4 6 8 7 

Figure 1. Transposition expression encoding method for TSP 

Another typical encoding method is Random Keys encoding [8] which is introduced by 
Bean. In Random Keys encoding a random numbers encode the structure of the solution. 
Such representation ensures that feasible tours are maintained during the application of 
genetic operators. 
  In the GA, the crossover and mutation are two of most important method for the success of 
the algorithm. A crossover operator generates new individuals through recombining the 
current population hopefully to retain good features from the parents. Numbers of different 
crossovers   have been proposed in the literatures to solve the TSP using a GA. The partially 
mapped crossover [5,11-12], linear order crossover [13] and order based crossover 
[5,8,11,12,14] are the commonly used crossover strategy in the TSP context. Expect the 
commonly used crossover strategy, many different crossover strategy are proposed for the 
TSP problem, for example: sub-tour crossover[15,16], edge recombination [17-20], distance 
preserving crossover [21-22], generic crossover [23], NGA [24], EAX [25-26], GSX [27-28], 
heuristic based crossover [29-35].  
A mutation operator is used to enhance the diversity and provide a chance to escape from 
local optima. Many mutation operators were proposed such as inverse, insert, displace, 
swap, hybrid mutation [34], and heuristic mutation. The former five are realized by small 
alterations of genes. Heuristic mutation was proposed by Cheng and Gen [37-38], which 
adopts a neighborhood strategy to improve the solution.  
At present, the genetic algorithm to solve the TSP has been to promote large-scale TSP, as 
well as a multiple TSP (MTSP) and generalized TSP. A lot of progress was made recently. 
Arthur E. Carter and Cliff T. Ragsdale propose a new GA chromosome and related 
operators for the MTSP [39]. H. D. Nguyen, et al described a hybrid GA based on a parallel 
implementation of a multi population steady-state GA involving local search heuristics [40]. 
Samanlioglu et.al proposes a methodology uses a “target-vector approach” in which the 
evaluation function is a weighted Tchebycheff metric with an ideal point for a symmetric 
multi-objective traveling salesman problem [41-43]. 

1.2 Ant colony optimization (ACO) for TSP 
Ant Colony Optimization (ACO), first proposed by M. Dorigo et al. [44-46], is a population-
based, general-purpose heuristic approach to combinational optimization problems. The 
earliest ACO algorithm [44-45], Ant System (AS), was applied to the TSP (mainly because 
the TSP is “a shortest path problem to which the ant colony metaphor is easily adapted and 
that it is a didactic problem” [4]. After that, most improved ACO algorithms also used the 
TSP as a test problem and the result is promising.  
As the name suggests, ACO took inspiration from the foraging behavior of real ant colonies. 
Ants deposit pheromone on the ground they cover while working, forming a pheromone 
trail. Other ants tend to follow the pheromone trail. Consider an ant colony exploring the 
paths between their nest to a food source. At the beginning, the ants choose paths randomly 
in equal rate since there’s no pheromone on the paths help them make the decision. Suppose 
that every ant walk in the same speed, shorter paths accumulate pheromone faster than 
longer paths because ants on those paths return earlier. A moment later, the difference in the 
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amount of pheromone on the paths becomes sufficient large so that the ants’ decision are 
influenced and more ants select the shorter paths. Experiments show that this behavior can 
lead the ant colony to the shortest path. 
 

 
Figure 2. an ant colony exploits the paths between S and T. (A) The two paths are selected 
with the same probability at first. (B) Ant 2 choosing the lower path returns to S earlier. 
Thus pheromone on the lower path rises faster. (C) Most ants walk on the lower path after a 
minute. 

Typical ant algorithms stimulate the above foraging behavior of ant colonies using a set of 
agents (artificial ants) and an indirect communication mechanism employing (artificial) 
pheromone. A simple framework may look like this:  
 

Loop  /* at this level each loop is called iteration */ 
      Each ant is positioned on a starting node. 
      Loop /* at this level each loop is called a step */ 
                Each ant applies a stochastic state transition rule to incrementally build a solution  
      Until all ants have built a complete solution 
      A pheromone updating rule is applied 
Until End condition 

 

The stochastic state transition rule and the pheromone updating rule are two factor to the 
success of the ACO. And many strategies have been proposed for these two operators. The 
Ant Colony System (ACS) [48-50] and MAX-MIN Ant System (MMAS) [51] are among the 
most successful algorithms [52]. Recent researches focus most on extending the applications 
of ACO algorithms to more challenge problems. There’re also some studies on the 
convergence theory of ACO algorithms too [47, 53-58]. 

1.3 PSO for TSP 
The particle swarm optimization (PSO) was originally presented by Kennedy and Eberhart 
in 1995 [59]. It is an algorithm based stochastic optimization technique which inspired by 
social behavior among individuals. In the PSO system, individuals (we call them particles) 
move around a multidimensional search space. Each particle represents a potential solution 
of the problem, and can remember the best position (so1ution) it has reached. All the 
particles can share their information about the search space, so there is a global best 
solution.  
In each iteration, every particle adjusts its velocity iv and position ix according to the 
following formulas: 
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Figure 1. Transposition expression encoding method for TSP 
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Where w is inertia weight, 1c and 2c are acceleration coefficients, 1r  and 2r  are two 
independent random values between 0 and 1. xi,pbest is the best solution this particle has 
reached; xi,gbest is the global best solution of all the particles until now.  
Due to the continuous characters of the position of particles in PSO, the standard encoding 
scheme of PSO can not be directly adopted for TSP. Much work was published to avoid 
such problem. Clerc adopted discrete particle swarm optimization (DPSO)[60] to make PSO 
suitable for solving TSP. Bo Liu, et al. proposes a PSO-based MA [61](PSOMA) for TSP, 
which combined evolutionary searching mechanism of PSO and adaptive local search. 
Yong-Qin Tao, et al. proposed a GRPSAC algorithm [62] combined ACO with PSO 
organically and adds gene regulation operator at the same time, which make solution of TSP 
problem more efficiency. Other recently work such as heuristic information method based 
on improved fuzzy discrete PSO [63] and chaotic PSO algorithm [64] were proved to be 
effective for TSP.  

2. Ant colony optimization (ACO) for TSP 
2.1 The method of ant colony optimization solving TSP 
Among the bio-inspired algorithms, the ant colony optimization (ACO) is a popular 
approach for TSP since it’s proposed by M.Dorigo in early nineties [65-66]. Ant colony 
optimization (ACO) takes inspiration from the foraging behavior of some ant species. These 
ants deposit pheromone on the ground in order to mark some favorable path that should be 
followed by other ants of the colony. Ant colony optimization exploits a similar mechanism 
for solving optimization problems. 
In TSP, a set of cities is given and the distance between each of them is known. The goal is to 
find a Hamiltonian tour of minimal length on a fully connected graph. This goal is very 
similar with the ants to find the shortest path between the nest and the food source. In ant 
colony optimization, the problem is tackled by simulating a number of artificial ants moving 
on a graph that encodes the problem itself. A variable called pheromone is associated with 
each edge and can be read and modified by ants. The artificial ants explore the pheromone 
to find the most favorable path which is the shortest Hamiltonian Tour in TSP. 
Ant colony optimization is an iterative algorithm. In an iterative step, each ant of the colony 
builds a solution by walking from vertex to vertex on the graph with the constraint of not 
visiting any vertex that has been visited before. The solution construction and the 
pheromone updating are two main steps for the ACO. In the solution construction step, an 
ant selects the next vertex to be visited according to a stochastic mechanism that is biased by 
the pheromone. After the solution construction step, the pheromone is updated on the basis 
of the quality of the solutions. 
Under the above framework, many different version of the algorithm are proposed. 
According to the M.Dorigo’s work [46,67], the Ant System (AS), MAX−MIN Ant System 
(MMAS) and Ant Colony System (ACS) are three of most popular ant algorithms. 
Following, we will give a short brief of those three algorithms on TSP. 

2.1.1 Ant System (AS) 
Ant System is the first ACO algorithm proposed in the literature [44,65-66]. Its main 
characteristic is that, at each iteration, the pheromone values are updated by all the m ants 
that have built a solution in the iteration itself. The pheromone ij, associated with the edge 
joining cities i and j, is updated as follows: 
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where Q is a constant, and kL  is the length of the tour constructed by ant k. 
In the construction of a solution, ants select the following city to be visited through a 
stochastic mechanism. When ant k is in city i and has so far constructed the partial solution 
Sp, the probability of going to city j is given by: 
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The MAX −MIN Ant System [51] is an improvement over the original Ant System. In the 
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Where w is inertia weight, 1c and 2c are acceleration coefficients, 1r  and 2r  are two 
independent random values between 0 and 1. xi,pbest is the best solution this particle has 
reached; xi,gbest is the global best solution of all the particles until now.  
Due to the continuous characters of the position of particles in PSO, the standard encoding 
scheme of PSO can not be directly adopted for TSP. Much work was published to avoid 
such problem. Clerc adopted discrete particle swarm optimization (DPSO)[60] to make PSO 
suitable for solving TSP. Bo Liu, et al. proposes a PSO-based MA [61](PSOMA) for TSP, 
which combined evolutionary searching mechanism of PSO and adaptive local search. 
Yong-Qin Tao, et al. proposed a GRPSAC algorithm [62] combined ACO with PSO 
organically and adds gene regulation operator at the same time, which make solution of TSP 
problem more efficiency. Other recently work such as heuristic information method based 
on improved fuzzy discrete PSO [63] and chaotic PSO algorithm [64] were proved to be 
effective for TSP.  

2. Ant colony optimization (ACO) for TSP 
2.1 The method of ant colony optimization solving TSP 
Among the bio-inspired algorithms, the ant colony optimization (ACO) is a popular 
approach for TSP since it’s proposed by M.Dorigo in early nineties [65-66]. Ant colony 
optimization (ACO) takes inspiration from the foraging behavior of some ant species. These 
ants deposit pheromone on the ground in order to mark some favorable path that should be 
followed by other ants of the colony. Ant colony optimization exploits a similar mechanism 
for solving optimization problems. 
In TSP, a set of cities is given and the distance between each of them is known. The goal is to 
find a Hamiltonian tour of minimal length on a fully connected graph. This goal is very 
similar with the ants to find the shortest path between the nest and the food source. In ant 
colony optimization, the problem is tackled by simulating a number of artificial ants moving 
on a graph that encodes the problem itself. A variable called pheromone is associated with 
each edge and can be read and modified by ants. The artificial ants explore the pheromone 
to find the most favorable path which is the shortest Hamiltonian Tour in TSP. 
Ant colony optimization is an iterative algorithm. In an iterative step, each ant of the colony 
builds a solution by walking from vertex to vertex on the graph with the constraint of not 
visiting any vertex that has been visited before. The solution construction and the 
pheromone updating are two main steps for the ACO. In the solution construction step, an 
ant selects the next vertex to be visited according to a stochastic mechanism that is biased by 
the pheromone. After the solution construction step, the pheromone is updated on the basis 
of the quality of the solutions. 
Under the above framework, many different version of the algorithm are proposed. 
According to the M.Dorigo’s work [46,67], the Ant System (AS), MAX−MIN Ant System 
(MMAS) and Ant Colony System (ACS) are three of most popular ant algorithms. 
Following, we will give a short brief of those three algorithms on TSP. 

2.1.1 Ant System (AS) 
Ant System is the first ACO algorithm proposed in the literature [44,65-66]. Its main 
characteristic is that, at each iteration, the pheromone values are updated by all the m ants 
that have built a solution in the iteration itself. The pheromone ij, associated with the edge 
joining cities i and j, is updated as follows: 
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where bestL  is the length of the tour of the best ant. 

For the maxτ and minτ , they are typically obtained empirically and tuned on the specific 

problem considered [68]. And some guidelines have been provided for defining minτ  and 

maxτ  on the basis of analytical considerations [51]. 

2.1.3 Ant Colony System (ACS) 
The ACS was considered the most efficient algorithm on the TSP problem. The main 
contribution of ACS [48, 50, 69] is introducing a novel local pheromone update in addition 
to the global pheromone.  
The local pheromone update is performed by all the ants after each construction step. Each 
ant applies it only to the last edge traversed: 

 0(1 )ij ijτ ϕ τ ϕ τ= − ⋅ + ⋅   (6) 

where ( ]0,1ϕ∈  is the pheromone decay coefficient, and 0τ  is the initial value of the 

pheromone. 
Using the local update strategy, the pheromone concentration on the traversed edges is 
decreased. So, the subsequent ants are encouraged to choose other edges and to produce 
different solutions. This makes it less likely that several ants produce identical solutions 
during one iteration. 

2.2 An adaptive strategy for weight parameter 
Many strategies for ACO have been studied, but little theoretical work has been done on 
ACO’s parameters α and β, which control the relative weight of pheromone trail and 
heuristic value. In this part, we will theoretical show the importance and functioning of α 
and β. The theoretical analysis show that a fixed β may not enable ACO to use both heuristic 
and pheromone information for solution when α = 1. An adaptive β strategy and a new 
ACO called adaptive weight ant colony system (AWACS) with the adaptive β and α = 1 is 
introduced. The numerical experiment results show that the AWACS is more effective and 
steady than traditional ACS. 

2.2.1 Theoretical analysis of the weight parameter  
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Particularly, when α=1, which exists in ACO algorithms like ACS, a conclusion can be 
drawn: 
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For the sake of convenience, some symbols about the pheromone trail are defined as 
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where bestL  is the length of the tour of the best ant. 
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ant applies it only to the last edge traversed: 
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However, when ( ) ( ), ( ) 0, ( ) 0ga gb ga gbt t t tτ τ τ τ≠ > >  and ga gbη η≠ ( ( ) 0, ( ) 0ga gbt tη η> > ), one 
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For the sake of convenience, some symbols about the pheromone trail are defined as 
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obvious that 
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According to the analysis of case ① and ②, ACO may work as a non-heuristic searching 
when 1 ( , )M g tβ < , and as a greedy searching without using pheromone trail 

when 2 ( , )M g tβ > . Therefore, a fixed β may not enable ACO to find optimal solution by 
using both heuristic and pheromone information. However, the process of ACO will not be 
in the extreme as non-heuristic or greedy searching when

1 2( , ) ( , )M g t M g tβ≤ ≤ . So a new 

adaptive parameter β  is designed as follows:  
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where 1 2( , ) ( , ) ( , )M g t g t M g tβ≤ ≤  can be proved. 

Based on the adaptive parameter ( , )g tβ  strategy shown in Formula (4), a novel ACO 
algorithm, which is called adaptive weight ant colony system (AWACS) can be described as 
follows. 
 

Initialize  /* β is chosen in [0, 5] randomly, q0=0.6 */ 
Loop  /* at this level each loop is called iteration */ 
       Each ant is positioned on a starting node. 
       Loop /* at this level each loop is called a step */ 
                 Each ant applies a stochastic state transition rule to incrementally build a solution 
                 and a local pheromone updating rule 
       Until all ants have built a complete solution 
       A global pheromone updating rule is applied 
       β(g,t) is updated  (g = 1,…,n) following Formula (11) 
Until End condition 
 

The proof of its convergence (g = 1,…,n) is the same as the one in Ref. [54]. According to the 

work of Ref. [54], it still holds that min( ) 0g tτ >  and max ( )g tτ < +∞  (g = 1,…,n) when the 

adaptive parameter β(g,t) strategy in Formula (4) is applied. Then, AWACS can be proved to 
find the optimal solution with probability one following the conclusion given by T. Stützle 
and M. Dorigo [54,69]. 

2.2.2 Numerical results and analyses 
A comparison of the performance of ACS and AWACS is given in this section. In our 
experiments, the parameters are set as follows: m = 10, α = ρ= 0.1, 1

0 ( )nnnLτ −= . q0 is set  

q0 =0.9 in ACS, and q0 =0.6 in AWACS , respectively. The initial value of β in AWACS is a 
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random figure changing in the interval [1,5]. The initial feasible solutions of TSP are generated in 
the way from Ref [49]. What’s more, no local search strategy is used in experiment. 
The experiments are conducted on two set of TSP problems. In the first set of 10 TSP, the 
distances between cities are measured by integers and in the left 10 TSP, and the distances 
are measured by real values. The datasets can be found in TSPLIB: http://www.iwr.uni-
heidelberg.de/ iwr/comopt/soft/TSPLIB95/TSPLIB.html. The detail of the experiment 
result is given at table 1, table 2 and table 3. 
 

Instance Optimal Best 
(ACS)

Best 
(AWACS)

Average
(ACS) 

Average 
(AWACS)

Tavg(s)
(ACS)

Tavg (s) 
(AWACS) 

Best β  
(ACS) 

st70 654 657 657 675.9 675.5 16.9 27.4 4 

rat99 unknown 1188 1188 1211.7 1199.4 53.2 59.7 3 

pr107 unknown 44539 44398 44906.3 44783.9 39.5 55.4 4 

pr124 unknown 59205 59067 59819.9 59646.6 59.2 42.3 4 

eil101 612 614 613 634.6 631.4 22.4 76.3 5 

rd100 7858 7909 7861 8100.4 8066.2 59.5 54.1 3 

eil51 415 415 415 423.9 423.7 6.7 7.8 3 

lin105 14345 14376 14354 14509.3 14465.6 73.7 50.8 4, 5 

kroD100 21249 21486 21265 21893 21628.2 25.8 60 5 

kroC100 20703 20703 20703 21165.3 20914.9 29.5 67.7 4 

Table 1. Comparison I of the results obtained by ACS and AWACS 

Instance Optimal Best 
(ACS) 

Best 
(AWACS)

Average
(ACS) 

Average 
(AWACS)

Tavg(s)
(ACS)

Tavg (s) 
(AWACS) 

Best β  
(ACS) 

kroA100 21282 21285.44 21285.44 21345.78 21286.33 51.3 51.8 2, 3 

kroE100 22068 22078.66 22068.75 22206.62 22117.16 56.3 64.5 5 

berlin52 7542 7544.36 7544.36 7544.36 7544.36 8.7 9.8 5 

kroB150 26130 26127.35 26127.71 26332.75 26214.10 177.8 164.8 5 

ch150 6528 6530.90 6530.90 6594.94 6559.66 373.6 118.1 2 

kroB100 22141 22139.07 22139.07 22335.72 22177.47 55.5 68.6 4 

kroA150 26524 26618.33 26524.86 26809.08 26685.73 204.5 242.9 5 

u159 42080 42075.67 42075.67 42472.04 42168.54 356.7 80.2 1 

pr76 108159 108159.4 108159.4 108610.6 108581.7 50.5 42.8 1 

pr136 96772 96870.89 96785.86 97854.16 97236.61 344.3 158.9 14,5 

Table 2. Comparison II of the results obtained by ACS and AWACS 
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Instance 
\Standard deviation AWACS

ACS
1β =  

ACS
2β =  

ACS
3β =  

ACS
4β =  

ACS
5β =  

kroA100 8.49 460.04 338.84 183.55 625.81 447.03 

kroE100 123.82 327.01 467.75 529.73 330.12 366.49 

berlin52 0.00 376.98 376.19 357.76 548.34 0.00 

kroB150 221.98 447.98 652.57 821.48 664.54 486.91 

ch150 54.50 114.76 153.71 109.36 171.66 54.81 

kroB100 132.37 554.43 579.73 1091.25 558.86 233.01 

kroA150 384.39 522.81 942.11 974.79 640.34 432.72 

u159 623.16 726.99 3531.45 2458.43 1509.09 1661.63 

pr76 1158.43 1180.56 5058.92 2088.68 1677.73 1411.15 

pr136 1300.78 2386.53 5303.40 4572.69 3304.40 2173.27 

Table 3. Comparison of standard deviations of the tour lengths obtained by AWACS and 
ACS 

As shown in the above tables, there might be something like precision and time cost in the 
result of our experiments different from those in the former research because of the different 
program tools, systems and computing machines. Another possible reason is that the 
distances between cities in the first 10 instances are measured by integer numbers. But ACS 
and AWACS are running in the same setting, so the result remains helpful to compare the 
performance of these two algorithms.  
From Table 1-2, it could be seen that AWACS performs better than ACS with the fixed β. 
The shortest lengths and the average lengths obtained by AWACS are shorter than those 
found by ACS in all of the TSP instances. As Table 3 shows, it can be concluded that the 
standard deviations of the tour lengths obtained by AWACS are smaller than those of ACS 
with the fixedβ. Therefore, we can conclude that AWACS is proved to be more effective and 
steady than ACS.  
ACS has to change the best integer value of parameterβ with respect to different instances in 
the experiments. AWACS can avoid the difficulty about how to choose the experimental 
value ofβ, because its adaptive strategy can be considered as a function trying to find the 
best setting for each path search via meeting the request of Formula 4. Though, the time cost 
tavg of AWACS is more than ACS in some case, it is less than the sum of time ACS costs with 
β =1,2,3,4,5 in all of the instances. As a result, the adaptive setting can save much time in 

choosing the experimentalβ. Item tavg of AWACS is not less than ACS in all of the instances 

because it needs to compute the value of β n (number of cities) times in each iteration. 
However, the adaptive function of AWACS is feasible to use because of its acceptable time 
cost. 
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2.3 Bi-directional searching ant colony system 
In 2.2, an adaptive strategy for the weight parameter is proposed by exploring the function 
of the parameter in the stochastic mechanism. In this section, we will further explore the 
stochastic mechanism and a bi-directional searching ant colony system is proposed.  

2.3.1 Bi-directional searching strategy using adaptive weight parameter  
In the proposed ACO algorithms, the state transition rule of the artificial ants is given as 
follows:  
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The only difference between the (10) and (3) is the setting of the parameter ( , )g tβ . In the 
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It means that the ants will select the paths with the maximum pheromone trail by the higher 
probability than most of the other feasible paths, even if they are paths with the highest 
heuristic value. 
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It means that the ants will select the paths with the maximum heuristic value by the higher 
probability than most of the other feasible paths, even if they are paths with the highest 
pheromone trail.  
Combing the above two methods of the parameter setting, the new ACO algorithm BSACS 
is designed as: 
 Initialize   
/*β is chosen between 0 and 5 randomly, q0=0.6 */ 
Loop  /* at this level each loop is called iteration */ 
           Each ant is positioned on a starting node 
           Loop /* at this level each loop is called a step */ 
                     Each ant applies a state transition rule to incrementally build a solution and  
                     a local pheromone updating rule is applied 
           Until all ants have built a complete solution 
           A global pheromone updating rule is applied  
β(g,t)is updated by either of the two methods by probability 0.5 (g=1,…,n) 
Until End_condition 

2.3.2 Numerical results and analyses 
In this section, several large TSP instances of TSPIB [70] are tested by BSACS and ACS to 
show the efficiency of the BSACS. The parameters are set as follows: m = 10, a = ρ= 0.1, 

1
0 ( )nnnLτ −= , and α=1.  q0=0.9  in ACS,  ε0=0.001  and q0=0.6 in BSACS , respectively. All 

the instances are computed by BSACS 10 times, and so does ACS with each  
β(β =1,2,3,4,5). As shown in Table 4 and Table 5, Item (1) is the length of the best tour 
obtained by ACS and BSACS. Item (6) is the length of optimal solution published in the 
TSPLIB: http://www.iwr.uniheidelberg.de/iwr/comopt/soft/TSPLIB95/TSPLIB.html. 
Item (2) is the relative error which can be computed by 1 100%(2) ((1) (3)) (3)−= ×− × . Item 
(1) and (2) show that BSACS can obtain better solution than ACS in all of the instances. Item 
(4) is the average length of the solutions found by both ACS and BSACS. Item (5) is the best 
value of β which can make ACS perform the best according to Item (1) or Item (4). 
The experiment result shows that BSACS can perform better than ACS in every 
computation. What’s more, ACS has to change the selection of β in different instances and 

cannot solve different large size TSP problems steadily with a fixed value of β. The reason is 
that ACS is not able to effectively use the pheromone trail and heuristic value in searching 
when β of the transition rule is fixed and unchanged in iterations. This disadvantage could 
be avoided by using BSACS because the new rule of BSACS (Formula 1) functions based on 
both pheromone trail and heuristic value adaptively. For the computational complexity, the 
BSACS need more time than ACS, because β(g,t)(g=1,…, n) has to be updated at each 
iteration. However, it doesn’t mean that the cost of BSACS is more than ACS in the 
application, because the cost of ACS for the best parameter selection (Item (5) in Table 2) has 
not been calculated here. Therefore, BSACS can save the time in choosing the experimental 
value of the parameter. Generally, the BSACS improves the performance of ACS in solving 
large size TSP problems. 
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Instance Algorithm (1)Best (2)%Error (3)Optimal 
ACS 118773 0.423 bier127 

BSACS 118372 0.076 
118282 

ACS 15888 0.68 d198 
BSACS 15780 0.00 

15780 

ACS 128829 1.734 ts225 
BSACS 126905 0.206 

126643 

ACS 51286 0.96 pcb442 
BSACS 51271 0.93 

50799 

ACS 28147 1.67 att532 
BSACS 27939 0.91 

27686 

ACS 38318 3.829 u574 
BSACS 37662 2.052 

36905 

ACS 9015 2.37 rat783 
BSACS 8819 0.14 

8806 

ACS 22977 3.27 fl1577 
BSACS 22611 1.63 

222490. 

Table 4. Comparison of the best solution obtained by ACS and BSACS 

Instance Algorithm (4) 
Average 

(5)Best β of 
ACS 

(6) tavg 

(second) 

ACS 119185.3 2, 3 45.6 bier127
BSACS 118826.8 - 91.0 

ACS 16054.8 2 97.8 d198 
BSACS 15842.1 - 124.5 

ACS 129102.5 4, 5 32.0 ts225 
BSACS 127262.8 - 67.0 

ACS 51690.2 2 281.6 pcb442
BSACS 51642.8 - 461.2 

ACS 28532.0 2 401.5 att532 
BSACS 28163.7 - 539.7 

ACS 38657.8 1, 5 305.3 u574 
BSACS 38291.9 - 504.3 

ACS 9066.0 2 1185.4 rat783 
BSACS 8985.8 - 1559.8 

ACS 23163.5 2 3884.0 fl1577 
BSACS 22680.3 - 6290.2 

Table 5. Comparison of the average solution obtained by ACS and BSAC 

2.4 An adaptive volatility rate of pheromone trail 
The following presents a trial work of setting the parameters of ACO adaptively. First, a tuning 
rule for ρ is designed based on the quality of the solution constructed by artificial ants. Then, we 
introduce the adaptive ρ to form a new ACO algorithm, which is tested to compute several 
benchmark instances of traveling sales-man problem and film-copy deliverer problem.  
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It means that the ants will select the paths with the maximum heuristic value by the higher 
probability than most of the other feasible paths, even if they are paths with the highest 
pheromone trail.  
Combing the above two methods of the parameter setting, the new ACO algorithm BSACS 
is designed as: 
 Initialize   
/*β is chosen between 0 and 5 randomly, q0=0.6 */ 
Loop  /* at this level each loop is called iteration */ 
           Each ant is positioned on a starting node 
           Loop /* at this level each loop is called a step */ 
                     Each ant applies a state transition rule to incrementally build a solution and  
                     a local pheromone updating rule is applied 
           Until all ants have built a complete solution 
           A global pheromone updating rule is applied  
β(g,t)is updated by either of the two methods by probability 0.5 (g=1,…,n) 
Until End_condition 

2.3.2 Numerical results and analyses 
In this section, several large TSP instances of TSPIB [70] are tested by BSACS and ACS to 
show the efficiency of the BSACS. The parameters are set as follows: m = 10, a = ρ= 0.1, 

1
0 ( )nnnLτ −= , and α=1.  q0=0.9  in ACS,  ε0=0.001  and q0=0.6 in BSACS , respectively. All 

the instances are computed by BSACS 10 times, and so does ACS with each  
β(β =1,2,3,4,5). As shown in Table 4 and Table 5, Item (1) is the length of the best tour 
obtained by ACS and BSACS. Item (6) is the length of optimal solution published in the 
TSPLIB: http://www.iwr.uniheidelberg.de/iwr/comopt/soft/TSPLIB95/TSPLIB.html. 
Item (2) is the relative error which can be computed by 1 100%(2) ((1) (3)) (3)−= ×− × . Item 
(1) and (2) show that BSACS can obtain better solution than ACS in all of the instances. Item 
(4) is the average length of the solutions found by both ACS and BSACS. Item (5) is the best 
value of β which can make ACS perform the best according to Item (1) or Item (4). 
The experiment result shows that BSACS can perform better than ACS in every 
computation. What’s more, ACS has to change the selection of β in different instances and 

cannot solve different large size TSP problems steadily with a fixed value of β. The reason is 
that ACS is not able to effectively use the pheromone trail and heuristic value in searching 
when β of the transition rule is fixed and unchanged in iterations. This disadvantage could 
be avoided by using BSACS because the new rule of BSACS (Formula 1) functions based on 
both pheromone trail and heuristic value adaptively. For the computational complexity, the 
BSACS need more time than ACS, because β(g,t)(g=1,…, n) has to be updated at each 
iteration. However, it doesn’t mean that the cost of BSACS is more than ACS in the 
application, because the cost of ACS for the best parameter selection (Item (5) in Table 2) has 
not been calculated here. Therefore, BSACS can save the time in choosing the experimental 
value of the parameter. Generally, the BSACS improves the performance of ACS in solving 
large size TSP problems. 
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2.4 An adaptive volatility rate of pheromone trail 
The following presents a trial work of setting the parameters of ACO adaptively. First, a tuning 
rule for ρ is designed based on the quality of the solution constructed by artificial ants. Then, we 
introduce the adaptive ρ to form a new ACO algorithm, which is tested to compute several 
benchmark instances of traveling sales-man problem and film-copy deliverer problem.  
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2.4.1 An adaptive volatility rate setting strategy  
After constructing its tour, an artificial ant also modifies the amount of pheromone on the 
visited edges by applying the pheromone updating rule. The rule is designed so that it tends 
to give more pheromone to the edges which should be visited by ants. The classical 
pheromone updating rule is as (1). And the optimal ρ was set ρ =0.1 experimentally [46, 49, 
55], which means that 90 per cent of the original pheromone trail remains and its 10 per cent 
is replaced by the increment.  
In order to update the pheromone according to the quality of solutions found by ants, an 
adaptive rule for volatility of the pheromone trail is designed as follows: 

 1 1 1/( )m m m PL L Lρ − − −= +  (11) 

whereLm is the length of the solution Sm found by ant m, and Lp is the length of the solution 
Sp built based on the pheromone matrix, shown as 

( )
arg max {[ ( , )}

mu J r
s r uτ

∈
=  where s  is the 

city selected as the next one to city r  for any (r,s)∈ Sp. 
The motivation of the proposed rule is: better solutions should contribute more pheromone, 
and the worse ones contribute less. And a new ACO algorithm with the adaptive rule 
(shown as Equation 3) is introduced as follows: 
 

Initialize   
/*β is chosen between 0 and 5 randomly, q0=0.6 */ 
Loop  /* at this level each loop is called iteration */ 
           Each ant is positioned on a starting node 
           Loop /* at this level each loop is called a step */ 
                  Each ant applies a state transition rule to incrementally build a solution and  
                  a local pheromone updating rule is applied 
                  Each ant the calculate the ρi is based on its solution’s length 
          Until all ants have built a complete solution 
          ρbest is calculated based on the best solution  Sbest. 
          Carry out the pheromone updating rule with  ρi (i=1,…,k) and ρbest.  
Until End_condition 

2.4.2 Numerical results 
This section indicates the numerical results in the experiment that the proposed ACO 
algorithm is used to solve TSP problems [69]. Several TSP instances are computed by ACS 
[49], ACO [71] and the proposed ACO on a PC with an Intel Pentium 550MBHz Processor 
and 256MB SDR Memory, and the results are shown in Table 1.  
It should be noted that every instance is computed 20 times. The algorithms are both 
programmed in Visual C++6.0 for Windows System. They would not stop until a better 
solution could be found in 500 iterations, which is considered as a virtual convergence of the 
algorithms. Table 6 shows that the proposed ACO algorithm (PACO) performs better than 
ACS [49] and ACO [71]. The shortest lengths and the average lengths obtained by PACO are 
shorter than those found by ACS and ACO in all of the TSP instances. Furthermore, it can be 
concluded that the standard deviations of the tour lengths obtained by PACO are smaller 
than those of another algorithms. Therefore, we can conclude that PACO is proved to be 
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more effective and steady than ACS [49] and ACO [71]. Computation time cost of PACO is 
not less than ACS and ACO in all of the instances because it needs to compute the value of 
volatility rate k+1 times per iteration. Although all optimal tours of TSP problems cannot be 
found by the tested algorithms, all of the errors for PACO are much less than that for 
another two ACO approaches. The algorithms may make improvement in solving TSP when 
reinforcing heuristic strategies like local search like ACS-3opt [49] and MMAS+rs [51] are 
used. 
 

Problem Algorithm best ave time(s) standard 
deviation 

ACS 21958 22088.8 65 1142.77 
ACO 21863 22082.5 94.6 1265.30 kroA100 

PACO 21682 22076.2 117.2 549.85 
ACS 130577 133195 430.6 7038.30 
ACO 130568 132984 439.3 7652.80 ts225 

PACO 130507 131560 419.4 1434.98 
ACS 84534 86913.8 378.4 4065.25 
ACO 83659 87215.6 523.8 5206.70 pr226 

PACO 81967 83462.2 762.2 3103.41 
ACS 14883 15125.4 88.8 475.37 
ACO 14795 15038.4 106.6 526.43 lin105 

PACO 14736 14888 112.2 211.34 
ACS 23014 23353.8 56.2 685.79 
ACO 22691 23468.1 102.9 702.46 kroB100 

PACO 22289 22728 169.6 668.26 
ACS 21594 21942.6 54.8 509.77 
ACO 21236 21909.8 78.1 814.53 kroC100 

PACO 20775 21598.4 114.8 414.62 
ACS 48554 49224.4 849.2 1785.21 
ACO 48282 49196.7 902.7 2459.16 lin318 

PACO 47885 49172.8 866.8 1108.34 

Table 6. Comparison of the ACS [49], ACO [51] and the proposed ACO (PACO) in TSP 
instances 

3. Genetic algorithm for generalized TSP 
3.1 Generalized TSP (GTSP) 
The generalized traveling salesman problem (GTSP) is a kind of combinatorial optimization 
problem, which has been introduced by Henry-Labordere [72] and Saksena [73] in the 
context of computer record balancing and of visit sequencing through welfare agencies since 
1960s. The GTSP can be described as the problem of seeking a special Hamiltonian cycle 
with lowest cost in a complete weighted graph.  
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Let G=(V, E, M) be a complete weighted graph where { }1 2, , , ( 3),nV v v v n= >�  

{ }| ,i j i jE e v v V= ∈  and { }| 0 0, , ( )i j ij iiW w w and w i j N n= ≥ = ∀ ∈  are vertex set, edge 

set, and cost set, respectively. The vertex set V is partitioned into m possibly intersecting 
groups 1 2, , mV V V�  with 1jV ≥  and 1

m
j jV V== ∪ . The GTSP is required to pass through all 

of the groups, but not all of the vertices differing from that of TSP. For convenience, we also 
call W as the cost matrix and take it as W=(wij)n×n. There are two different kinds of GTSP 
under the abovementioned framework of the special Hamiltonian cycle [75-76]: (1) the cycle 
passes exactly one vertex in each group (refer to Fig. 1) and (2) the cycle passes at least one 
vertex in each group (refer to Fig. 2). The first kind of GTSP is also known as E-GTSP, where 
E stands for equality [76]. In this paper we only discuss the GTSP for the first case and will 
still call it as GTSP for convenience. 
 

 
Figure 3.  Exactly one vertex is visited in a GTSP cycle. 

GTSP has extensive application fields. Laport et al. [75], Lien et al. [77], and Castelino et al. 
[78] reported the applications of GTSP. Just as mentioned in Ref. [77], “for many real-world 
problems that are inherently hierarchical, the GTSP offers a more accurate model than the 
TSP.” Generally, GTSP provides a more ideal modeling tool for many real problems. 
Furthermore, GTSP can include the grouped and isolated vertices at the same time 
according to our present extension. Therefore, GTSP includes TSP theoretically (see Fig. 3) 
and application fields of GTSP are wider than those of TSP. 
Although since late 1960s GTSP has been proposed [72-74], the related reported works are 
very limited compared with those on TSP [79–82] and the existing algorithms for GTSP are 
mainly based on dynamic programming techniques [72-74,76,83-84]. However, because of 
its NP-hard quality, only a few solutions of modest-size problems are supported by the 
current hardware technology and most of them fail to obtain the results due to the huge 
memory required in dynamic programming algorithms and the problem of lengthy 
computational time.  
The main methodology of the dynamic programming algorithms is to transform the GTSP 
into TSP and then to solve the TSP using existing algorithms [76, 84–86]. The shortcomings 
of these methods are that the transformation increases the problem dimension dramatically 
and in some cases the dimension would expand up to more than three times of the original 
[77, 87-89]. Therefore, although theoretically the GTSP could be solved using the 
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corresponding transformed TSP, the technological limitation ruins its practical feasibility. 
Some studies have been performed to discuss and solve the problem [90–92]. This study, we 
will show some bio-inspired method on the GTSP problem. 

3.2 Genetic algorithm for generalized TSP 
Genetic algorithm (GA) is one of the powerful tools to deal with NP-hard combinatorial 
optimization problems and has been widely applied for finding the solution of TSP due to 
its high efficiency and strong searching ability. However, theoretical and application studies 
related to using GA methods to solve GTSP are very few. The [90] and [93] are two of most 
interesting work on this problem. In [90], a hybrid GTSP solving algorithm is proposed 
based on random-key GA and local search method, the main difficult of the method it is 
hard to handle large scale problems. In [93], a generalized chromosome is used and a 
generalized chromosome- based GA (GCGA) is proposed accordingly. The advantages of 
the GCGA are that it does not require the transformation from GTSP to TSP and remove the 
limitation of triangle inequality of the cost matrix, which enables the GCGA to be able to run 
with high efficiency.  

3.2.1 Generalized chromosome  
The solution of GTSP is a special Hamiltonian cycle, which passes through all of the groups. 
The encoding for solution of GTSP is designed similarly to the one proposed by Huang et al. 
[94]. A hybrid encoding, which includes a head encoded with binary number and a body 
encoded with integer number, is given for the solution as figure 1 shows. 
 

 
Figure 4. Hybrid Encoding for Solution of GTSP 

In the body, there are  m integer elements representing m groups ( ˆm m m= + , m̂ supper 
vertexes and m  scattering vertexes[93]. In the head, there are m̂  binary elements 
representing vertexes in groups.  
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Let G=(V, E, M) be a complete weighted graph where { }1 2, , , ( 3),nV v v v n= >�  

{ }| ,i j i jE e v v V= ∈  and { }| 0 0, , ( )i j ij iiW w w and w i j N n= ≥ = ∀ ∈  are vertex set, edge 

set, and cost set, respectively. The vertex set V is partitioned into m possibly intersecting 
groups 1 2, , mV V V�  with 1jV ≥  and 1

m
j jV V== ∪ . The GTSP is required to pass through all 
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Figure 3.  Exactly one vertex is visited in a GTSP cycle. 
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corresponding transformed TSP, the technological limitation ruins its practical feasibility. 
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reversion operator R. We give a brief introduction to these five steps in this section. More 
information about the GCGA can refer to [93].  
1. Initializing operator P 
Initializing operator P is used to generate an initial population. It is a two-element random 
operator. Its two variables are H and B, and its result is a subset of D. Denoting P as a 
population, then the initialization of P can be represented as PN=(H,B), where PN is an 
operator to randomly generate an initial population with size N.  
2. Generalized crossover operator C 
To implement the crossover operation and generate new chromosomes, a generalized 
crossover operator is defined as C:D×D→ D×D. It is a two-element random operator. Its 
variables are the elements of D. The behavior of the operator is somewhat similar to the two-
point crossover in the standard GA. Let the two crossover points selected randomly be 

1i and 2i  (assume 1 2i i< ), where 
^ ~

1 (2 )i random m m= + , and 
^ ~

2 (2 )i random m m= + . If 

1 ˆi m>  then the crossover takes place in the body parts. In this case, the effect of crossover 
operator is equal to the conventional crossover in some extent, because the body parts of GC 
are equivalent to two normal chromosomes. If 2 ˆi m≤ , then the crossover takes place in the 
head parts. In this case, it is only needed to exchange the genes within the crossover 
segments. If 1 2ˆi m i≤ < , then the generalized crossover can be treated as the combination 
of the above cases.  
3. Generalized mutation operator M 
To increase the diversity of the gene segments, the generalized mutation operator M is 
designed based on the insertion mutation used in standard GA. Preliminary gene 

^ ~

2 (2 )i random m m= +  is randomly selected, which is taken as the gene to be mutated. The 

difference between GCGA and standard GA is that if ˆi m<  then the preliminary gene lies 
in the head part and its corresponding body part also need to be generated.  
4. Generalized reversion operator R 
To enhance the convergent speed of the GCGA, the generalized reversion operator is 
designed which is similar to the conventional reversion operation. Operator R can be used 
to select two reversion points 1i  and 2i  according to  1 ˆ( )i random m m= + , and 

2 ˆ( )i random m m= + . If the solution generated after the reversion operator, then the 
operator R is taken, otherwise the operator won’t taken. 

3.3 Improved Evolutionary Algorithm (EA) for GTSP 
3.3.1 The framework of EA for GTSP 
In this section, an improved EA for the GTSP (EA-GTSP) has been proposed. In the EA-
GTSP, the generalized chromosome described in 3.2 is used to encode the problem. And the 
following three operators are specially designed to improve the efficiency of the algorithm 
on the GTSP: crossover operator, mutation operator and local optimization strategy. 
a. Crossover 
At Step 3, pairs of solutions may be selected to carry out the crossover operator by the 
crossover probability Pc. Given two solutions x x xS h b= ⊕  and y y yS h b= ⊕  selected at 

Step 3 ( hx, hy∈H.bx,by∈B), the process of crossover can be shown as follows:  
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Two integer numbers 1 2,i i ( 1 2,i i ≤ m̂ ＋( m̂ ＋m ), 1 2i i< ) are generated randomly to set 

the crossing position. If 1 m̂i > , then, ( , )b b b bx y x y′ ′⊗ → , which is the same operator as the 

GCGA, 'x h bx x′= ⊕ , 'y h by y′= ⊕ . If 2 m̂i ≤ , ( , )h h h hx y x y′ ′⊗ → , ' 'x h bx x= ⊕ , ' 'y h by y= ⊕ . 

If 1 m̂i <  and 2 m̂i ≥ , ( , )h h h hx y x y′ ′⊗ →  and ( , )b b b bx y x y′ ′⊗ → , x h bx x′ ′ ′= ⊕  and 

y h by y′ ′ ′= ⊕ .  

If the GTSP solution Sx  costs less than Sy ( 2 m̂i ≤ ),  

1 1 1 2 2 2
{ , ..., , . AND . , ..., . AND . , , ..., }ˆ1 1 1h e e e e e e e ex x xi xi yi xi yi xi xm

′ = − +  

1 1 1 2 2 2
{ , ..., , . OR . , ..., . OR . , , ..., }ˆ1 1 1h e e e e e e e ey x xi xi yi xi yi xi xm

′ = − + ; 

otherwise,  

1 1 1 2 2 2
{ , ..., , .AND. , ..., .AND. , , ..., }ˆ1 1 1h e e e e e e e ex y yi xi yi xi yi yi ym′ = − +  

1 1 1 2 2 2
{ , ..., , .OR . , ..., .OR . , , ..., }ˆ1 1 1h e e e e e e e ey y yi xi yi xi yi yi ym′ = − + . 

If the GTSP solution Sx costs less than Sy ( 1 m̂i <  and 2 m̂i ≥ ), 

1 1 1
{ , ..., , . AND . , ..., . AND . }ˆ ˆ1 1h e e e e e ex x xi xi yi xm ym

′ = −  

1 1 1
{ , ..., , . OR . , ..., . OR . }ˆ ˆ1 1h e e e e e ey x xi xi yi xm ym

′ = − ; 

otherwise,  

1 1 1
{ , ..., , . AND . , ..., . AND . }ˆ ˆ1 1h e e e e e ex y yi xi yi xm ym

′ = −  

1 1 1
{ , ..., , . OR . , ..., . OR . }ˆ ˆ1 1h e e e e e ey y yi xi yi xm ym

′ = − . 

 

b. Mutation 
The mutation operator is added to help EA-GTSP converge to the global optimal solution. 
Each solution is affected by the mutation operator by probability mP . There are two 

procedures called head mutation and body mutation in the operator. 
In the head mutation, given a head of a solution, the procedure of head mutation is: 
Head mutation: h hz z′→ , 

3 3 3
{ ,..., , ( ), , ..., }ˆ1 1 1h e e rebuild e e ez z zi zi zi zm′ = − +  
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3.3 Improved Evolutionary Algorithm (EA) for GTSP 
3.3.1 The framework of EA for GTSP 
In this section, an improved EA for the GTSP (EA-GTSP) has been proposed. In the EA-
GTSP, the generalized chromosome described in 3.2 is used to encode the problem. And the 
following three operators are specially designed to improve the efficiency of the algorithm 
on the GTSP: crossover operator, mutation operator and local optimization strategy. 
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At Step 3, pairs of solutions may be selected to carry out the crossover operator by the 
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where 
3 3 3

{ , ..., , , , ..., }ˆ1 1 1h e e e e ez z zi zi zi zm= − + . 
3

( )rebuild ezi  will generate a segment of 

binary bits randomly. Every binary element of solution SZ may be affected by 

3
( )rebuild ezi  when mh mhr P<  ( mhr  is generated randomly in [0,1] for each binary element 

of the solution obtained at Steps 3 and 4). 
In the body mutation, the procedure is described as follows: 
Body mutation: 'b bz z→ , ' { ' , ..., ' , ' , ' , ..., ' }ˆ1 1 1b g g g g gz z zi zi zi zm= − +  

where { , ..., , ..., }ˆ1b g g gz z zi zm=  and mb mbr P<  ( mbr  is generated randomly in [0,1] for 

each solution obtained at Steps 3 and 4).  
  So the mutation operator of the EA-GTSP is defined as follows: 

Mutation of EA-GTSP: ' ' 'mutation
z z z z z zS h b S h b= ⊕ ⎯⎯⎯⎯→ = ⊕ .  

c. Local Optimal Strategy 
The local optimal strategy is helpful to find the best solution in a local searching space. Each 
solutions of the population are optimized according to a heuristic algorithm as follows: 
 

Input: GTSP solution Sq 
For i =1 to m̂  do       //optimization for head 
    Choose a vertex in Group i to make Sq cost the lest 
 End for                                      
 For j =1 to m̂ m+ � -1 do //optimization for body 
     Choose an order for gqjand gqj+1 to make Sq cost the least. 
 End for                                      
Output: a new solution S’q (Sq is changed into S’q.) 

d. Decoding for solution of GTSP 
Because the head encoding is designed as binary number, it needs to be decoded in the 
following function. 

[ , , ] [ . MOD . , , . MOD . , ..., . MOD . ]ˆ1ˆ ˆ1 1
decoding

h e e e V e V e Vi mm i m
= ⎯⎯⎯⎯→… …  

where Vi  is the number of vertexes in Group i ( iV ). 

Until now, we can summarize the algorithm of the improved EA for the GTSP as follows. 
Initialize parameters. 
Encode and initialize a population of solutions. 
 /*β is chosen between 0 and 5 randomly, q0=0.6 */ 
Loop  /* at this level each loop is called iteration */ 
       Crossover Operator: select pairs of solutions and change them into pairs of new Local 
       solutions with the crossover operator by the crossover probability. 
       Optimal Strategy: optimize all of the solutions with a heuristic algorithm locally. 
       Mutation Operator: select several solutions by the mutation probability and change  
End_condition 
Decoding for solution of GTSP 
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3.3.2 Numerical result 
In this section, the efficiency of the EA-GTSP and other algorithms are compared on some 
benchmark problems [93].  
 

Problem 
\five runs 

EA-GTSP 
Best 

EA-GTSP 
Average 

GCGA 
Best 

GCGA 
Average 

HCGA 
Best 

HCGA 
Average 

30KROA150 11018 11018 11018 11022 11018 11018 

30KROB150 12195 12195 12196 12314 12195 12195 

31PR152 51573 51573 51586 53376 51573 51573 
32U159 22664 22664 22664 22685 22664 22664 

40KROA200 13408 13408 13408 13617 13408 13408 

40KROB200 13113 13114 13120 13352 13113 13119 

45TS225 68340 68403 68340 68789 68340 68432 

46PR226 64007 64007 64007 64574 64007 64007 

53GIL262 1011 1011 1011 1057 1011 1011 

53PR264 29546 29546 29549 29791 29546 29546 

60PR299 22617 22631 22638 22996 22631 22638 

64LIN318 20769 20799 20977 22115 20788 20914 

80RD400 6446 6480 6465 6604 6456 6498 

84FL417 9663 9663 9663 9725 9663 9663 

88PR439 60099 60249 61273 62674 60184 60558 

89PCB442 21695 21735 21978 22634 21768 21860 
 

Table 7. Comparison of solution among EA-GTSP, GCGA and HCGA 

The instances can be obtained from TSPLIB library which were originally generated for 
testing standard TSP algorithms. To test GTSP algorithms, Fischetti et al. [95] provided a 
partition algorithm to convert the TSP instances to GTSP instances. 
In our experiments, we set the population size as 100 (pop_size=100), crossover probability as 
0.5 ( 0.5cP = ), and mutation probability as 0.09 (Pm=0.09, Pmh=0.001, Pmb=0.005). The 

algorithms would stop when no better solution could be found in 500 iterations. All of the 
instances are computed by EA-GTSP, HCGA [94] and GCGA [93] twenty times on a PC with 
2.0 GHz processor and 256 MB SDR memory, and the results are shown in Table 1. 
In Table 7, not only the best solution obtained by EA-GTSP is shorter than the one obtained 
by HCGA and GCGA does, but also the one on average, in all of the examples. It can show 
global optimal function of EA-GTSP. In order to show the performance of EA-GTSP, there is 
a comparison between it and several heuristic algorithms [96] by computing the same GTSP 
instances. As Table 2 shows, EA-GTSP is more efficient and steady than all of the test 
algorithms because it can get the best solution in most of the instances. 
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0.5 ( 0.5cP = ), and mutation probability as 0.09 (Pm=0.09, Pmh=0.001, Pmb=0.005). The 

algorithms would stop when no better solution could be found in 500 iterations. All of the 
instances are computed by EA-GTSP, HCGA [94] and GCGA [93] twenty times on a PC with 
2.0 GHz processor and 256 MB SDR memory, and the results are shown in Table 1. 
In Table 7, not only the best solution obtained by EA-GTSP is shorter than the one obtained 
by HCGA and GCGA does, but also the one on average, in all of the examples. It can show 
global optimal function of EA-GTSP. In order to show the performance of EA-GTSP, there is 
a comparison between it and several heuristic algorithms [96] by computing the same GTSP 
instances. As Table 2 shows, EA-GTSP is more efficient and steady than all of the test 
algorithms because it can get the best solution in most of the instances. 
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Problem\fi
ve runs 

EA- 
GTSP 

NN 
(G-opt)

NN 
(G2-opt)

CI 
(G-opt)

CI 
(G2-opt)

MO 
(G-opt)

MO 
(G2-opt) CI2 GI3 

30KROA150 11018 11018 11018 11018 11018 11018 11018 11018 11018 

30KROB150 12195 12196 12196 12196 12196 12196 12196 12196 12196 

31PR152 51573 52506 52506 51915 51915 51820 51820 51820 51820 

32U159 22664 23296 23296 22664 22664 22923 22923 23254 23254 

40KROA200 13408 14110 14110 14059 14059 13887 13887 13406 13406 

40KROB200 13113 13932 13111 13117 13117 13117 13117 13111 13111 

45TS225 68340 68340 68340 69279 69279 68756 68756 68756 68756 

46PR226 64007 65811 65395 65395 65395 64007 64007 64007 64007 

53GIL262 1011 1077 1032 1036 1036 1021 1021 1064 1064 

53PR264 29546 31241 31241 31056 31056 30779 30779 29655 29655 

60PR299 22617 24163 23069 23119 23119 23129 23129 23119 23119 

64LIN318 20769 22233 21787 21858 21858 22403 22403 21719 21719 

80RD400 6446 7083 6614 6550 6550 6546 6546 6439 6439 

84FL417 9663 9754 9754 9662 9662 9697 9697 9932 9697 

88PR439 60099 63736 62514 61126 61126 62091 62091 62215 62215 

89PCB442 21695 23364 21704 23307 23307 22697 22697 22936 22936 
 
Table 8. Comparison of solution among EA-GTSP, GCGA and HCG 

4. Conclusion and discussions 
The chapter introduces two examples of bio-inspired algorithm for traveling sales-man 
problems and its extended version. The first algorithm, named ant colony optimization 
(ACO) which is designed inspired by the natural ants’ behavior, is a novel method to deal 
with TSPs. The experimental results prove the performance of ACO approach, which is 
feasible to solve TSP instances as well as the traditional method. The research results about 
the self-adaptive parameters of ACO are presented in the chapter, which indicates how to 
set an optimal ACO algorithm for different TSPs. Another algorithm is genetic algorithm, 
which is used to solve generalized traveling sales-man problem (GTSP) that is one extended 
style of TSPs. The best-so-far genetic algorithm for GTSP is introduced in the final sub-
section. Bio-inspired algorithms are the feasible methods for TSPs, and can attain better 
performance with the modified setting like self-adaptive parameters and hybrid coding, 
which are described in the chapter. 
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Approaches to the Travelling Salesman Problem 
Using Evolutionary Computing Algorithms 

Jyh-Da Wei 
Chang-Gung University 

Taiwan 

1. Introduction 
Genetic algorithms (GAs) were developed as problem independent search algorithms 
(Goldberg, 1989; Holland, 1975; Man et al., 1999), which simulate the biological evolution to 
search for an optimal solution to a problem. Figure 1(a) shows the main processes of genetic 
algorithms. When developing a genetic algorithm, we analyze the properties of the problem 
and determine the “gene encoding” policy -- Several parameters are chosen as genes and the 
parameter set is regarded as a chromosome, which reflects an individual. Following the 
gene encoding policy, we scatter many individuals in a population, and then repeatedly 
evaluate the individuals' fitness values and select the fittest ones to reproduce the offspring 
by crossover and mutation operators. Genetic algorithms follow the criterion of “survival of 
the fittest” to develop increasingly fit individuals. 
Hybrid with local search heuristics, Genetic Local Search (GLS) is an upgraded version that 
replaces each individual with its local optimal neighbour. As shown in Fig. 1(b), a local 
search process is launched in evaluation. GLS is thereby regarded as a method to mimic the 
cultural evolution instead of biological evolution, and also referred to as Mimetic Algorithm 
(MA) or Lamarckian Evolutionary Algorithm (Digalakis & Margaritis, 2004). 
Using these “evolutionary computing algorithms” for combinatorial optimization problems 
has been a well-studied problem-solving approach. The benefit of evolutionary computing 
is not only its simplicity but also its ability to obtain global optima. Many research findings 
have indicated that a well-adapted genetic local search algorithm can acquire a near-optimal 
solution better than those found by simply local searching algorithms (Goldberg, 1989; 
Pham & Karaboga, 2000). Therefore, numerous results on evolutionary optimization have 
been published in recent years (Larranaga et al., 1999; Man et al., 1999; Mohammadian et al., 
2002). Using genetic algorithms to solve the travelling salesman problem (TSP) is one of the 
popular approaches (Larranaga et al., 1999). 
The TSP is a classical NP-hard combinatorial optimization problem which has been 
extensively studied. Given n cities and the distances (costs) between each pair of cities, we 
want to find a minimum-cost tour that visits each city exactly once. Assuming that di,j is the 
cost traveling from city i to city j, the TSP is formulated as to find a permutation π of {1, 2, 
…, n} that minimizes 
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Figure 1. Genetic Algorithm (GA) and Genetic Local Search (GLS). (a) GA flowchart; (b) GLS 
is a combination of GA and local search heuristics; (c) Priority-Based GLS (PB-GLS) uses a 
greedy algorithm and a Lamarckian feedback process to alternate between genotype and 
phenotype. 

In the symmetric TSP (STSP), di,j is equal to dj,i for any two cities i and j, while in the 
asymmetric TSP (ATSP) this condition might not hold. The Euclidean TSP is a special case of 
STSP, where the cities are located in Rm space for some m, and the cost function satisfies the 
triangle inequality, i.e., di,k + dk,j is greater than or equal to di,j for distinct i, j and k. The two-
dimensional Euclidean TSP is the most popular version studied in the literature. 
According to Rego and Glover’s classification, the heuristic local search algorithms for the 
TSP are divided into two categories (Rego & Glover, 2002). Tour construction procedures 
build a tour by sequentially adding a new node into the current partial tour. Some instances 
of these procedures include nearest neighbour, nearest insertion, and shortest edge first 
algorithms (Johnson & McGeoch, 2002). On the other hand, tour improvement procedures 
start with an initial tour and iteratively seek a better one to replace the current tour. The k-
opt and LK (Lin & Kernighan, 1973; Rego & Glover, 2002) algorithms are examples of these 
procedures. Subsequently developed algorithms for the TSP also include stochastic search 
methods, such as Tabu search (Fiechter, 1994; Zachariasen & Dam, 1995), simulated 
annealing (Kirkpartrick et al., 1983; Moscato & Norman, 1992), ant colony (Dorigo & 
Gambardella, 1997; Gambardella & Dorigo, 1995) and artificial neural networks (Miglino et 
al., 1994; Naphade & Tuzun, 1995). 
As convenient and powerful searching tools, evolutionary computing algorithms have been 
applied to the TSP. Genetic algorithms and GLS algorithms are characterized by their 
population-based global searching, and often find a near-optimal solution better than most 
previously known methods. However, the TSP requires that each city be visited exactly 
once. This critical requirement puts a great constraint for us to encode the genes. Directly 
encoding cities into the chromosomes (the order representation to be given in more detail in 
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the next section) may not work altogether with traditional crossover methods. As Fig. 2 
shows, the offspring becomes an illegal tour if we use traditional crossover operators. 
To overcome this difficulty, new crossover operators built upon detection and repair 
procedures have been developed. Although these operators make evolutionary computing 
algorithms applicable to the TSP, they are ad hoc and lose generality in problem solving. In 
Section 2, we provide a relevant survey of developing particular crossover operators for the 
TSP. Then in Section 3, we present a priority-based encoding scheme instead. This 
alternative method not only maintains the general-purpose characteristics of evolutionary 
computing, but also acquires remarkable searching results. In Section 4, we discuss the 
experimental results, and we give conclusions in Section 5. 
 

 
Figure 2. Directly encoding cities into the chromosomes does not work altogether with 
traditional crossover methods. The offspring may become an invalid TSP tour. 

2. Specialized crossover operators for the TSP 
Traditional genetic evolution appears to contradict the TSP definition. Therefore, we need 
additional operators to assist genetic algorithms. Many of these operators depend on the 
tour representation in the algorithms, such as the order, adjacency and locus 
representations. 
Order representation: The order representation is the most natural to represent a tour since 
the TSP is a permutation problem. This tour representation encodes the cities in the 
chromosome as gene values. For example, the partially matched crossover (PMX) (Goldberg 
& Lingle, 1985; Goldberg, 1989) adopts two crossover points to enclose a crossover interval. 
The genes (cities) within the crossover intervals are exchanged to initiate the offspring 
chromosome, and then an automaton is established to transform the genes duplicated 
outside the intervals. 
Adjacency list representation: The adjacency list can also represent a tour. In this 
representation, recording city j in position i reflects travelling from city i to city j. Because 
adjacency lists might yield illegal tours, detection and repair procedures are also necessary. 
For example, the greedy crossover (GX) (Boukreev, 2007; Julstrom, 1995) iteratively selects 
the shortest edge from the parents to extend the current subtour. If this edge causes a cycle 
that is not a complete tour, we need to choose another edge connecting to the current 
subtour. 
Adjacency matrix representation: Instead of adjacency lists, the matrix crossover (MX) 
(Homaifar et al., 1992; Homaifar et al., 1992) uses adjacency matrix to represent the tour. In 
this binary matrix, the element mi,j is 1, if city j is visited after city i; otherwise the value is 0. 
Based on this encoding method, the MX exchanges columns of two parents to generate 
offspring matrix. If the offspring matrix is infeasible due to duplicate adjacency or 
disconnected cycles, repair procedures are also invoked.  
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Locus representation: The locus representation regards the graphic image itself of a tour as 
a chromosome. This representation retains geographical relationships among the cities, but 
does not embody a gene-encoding method. Therefore, geometrical computations might be 
necessary in the crossover operators. The natural crossover (NX) published in 2002 (Jung & 
Moon, 2002) used the locus representation. This crossover operator randomly generates 
curves to partition the chromosomal space. Cities in some regions inherit the paths from one 
parent, and those in other regions inherit the paths from the other parent. Finally, repair 
procedures are also needed to reconnect the subtours. 
Other representation-independent approaches: There are genetic operators independent of 
tour representations. These operators directly analyze the parent tours to create the 
offspring. Edge-recombination crossover (ERX) (Whitley et al., 1989; Whitley et al., 1991) 
collects the adjacency information from the parent tours and generates a new tour from this 
information. Distance preserving crossover (DPX) (Freisleben & Merz, 1996) generates an 
offspring satisfying the condition that the numbers of differences between the two parents 
and the offspring are all the same. By doing so, this crossover operator allows “jumps” in 
the search space. Although these approaches are representation independent, they also act 
according to the principle that the offspring must inherit the characteristics of the two 
parents. 
The renowned approaches listed above can improve genetic algorithms to solve the TSP. 
However, these approaches have some drawbacks. The order and adjacency list 
representations do not ensure a unique representation for a TSP tour. This situation usually 
retards the evolutionary process. The adjacency matrix representation is time-consuming 
and does not have a significant performance. The locus representation is not general enough 
even for an STSP case; and it can only perform on the Euclidean TSP. Most importantly, 
these crossover operators are specialized mainly for the TSP and involve repair procedures 
to generate a valid tour. In contrast with the original intention of genetic algorithms, these 
operators are short of general practical values. In the next section, we present a Genetic 
Local Search method with Priority-Based encoding, dubbed the “PB-GLS” model (Wei & 
Lee, 2004; Wei & Lee, 2006). This model retains generality in applications, supports schema 
analysis during searching process, and has been empirically proven to gain remarkable 
search results for the travelling salesman problem. 

3. Priority-based genetic local search 
For a combinatorial optimization problem for which a near-optimal solution can be obtained 
by using a greedy algorithm, certain entities, such as the nodes of the dMST and TSP 
problems (Freisleben  & Merz, 1996; Zeng & Wang, 2003) and the jobs in the flowshop 
scheduling (Arroyo & Armentano, 2005) are selected step by step. Herein, the links between 
two consecutively selected entities are called “consecutive selections”. The priority-based 
encoding policy assigns priorities to all the links between entities and it is expected to set 
high priority to the correct consecutive selections. The greedy algorithm employed remains 
the same, except that we select the next entity in consideration of the link priority prior to 
the original ranking key. By doing so, the greedy algorithm leads to a valid solution and the 
priority encoding makes it possible to follow traditional genetic evolutions. This approach 
does not lose generality in applications because we only need to provide a chromosome 
conformation that is simply a priority assignment. 
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3.1 Priority-based encoding with local search method 
As Fig. 1(c) shows, the priority-based encoding is based on Mendelian inheritance that 
distinguishes genotype and phenotype in inheritance process. A greedy algorithm plays the 
role as the biochemical process that transfers the genotype encoding to the phenotype of 
each individual. The PB-GLS model further conducts a local search method to improve this 
phenotype. After that, we need a Lamarckian feedback process for encoding the local 
optimal solution and converting it back to its genotype. This process can be done if we 
enable all consecutive selections in the given solution by assigning them with higher 
priorities and disable potentially incorrect links by setting lower priorities. The range of 
priorities can be determined experimentally, although two priority levels are sufficient in 
any case. 

3.2 Characteristics of the priority-based GLS 
The priority-based genetic local search has three main features, i.e., broad applicability, 
problem transformation, and simulation of Mendelian inheritance theory.  
Broad applicability: The priority-based encoding policy suits to any problem whose 
optimal solution can be approximated by a greedy algorithm, because the greedy algorithm 
is characterized by two features, i.e., (a) the candidate entities are selected one after another 
sequentially, and (b) the selected entities are not discarded thereafter. 
Problem transformation: The PB-GLS transforms combination and permutation problems 
into priority assignment problems. This problem transformation suggests a new direction to 
tackle the given problems. Imagine that the perfect optimal solution contains some crucial 
consecutive selections of problem entities (e.g. crucial edges in the TSP). Assigning higher 
priorities to these links leads to a near-optimal solution. Naturally, priority-based encoding 
allows us to analyze searching schema during the search process.  
Simulation of Mendelian inheritance theory: We use greedy algorithms to simulate 
chemical processes, and use the priority-based encoding policy to simulate the gene codes in 
inheritance procedure. These priorities control the biochemical processes to “enable” and 
“disable” some biological functions, and finally develop a phenotype that fits the definition 
of the genotype. 

3.3 Using the priority-based GLS to solve the TSP 
A greedy algorithm known as double-ended nearest neighbour (DENN) is used to 
demonstrate using the PB-GLS model to solve the TSP. Let E(A,B) denote the edge between 
city A and city B, and assume E(A,B) is identical to E(B,A) for any two distinct cities A and 
B. The DENN algorithm is described as follows: 
Step 1 Sort the edges by their costs into a sequence  S. 
Step 2 Initialize a partial tour T = {S[1]}. Let S[1] = E(A,B) be the current subtour from A to B. 
Step 3 Suppose the current subtour is from X to Y . We trace the sequence S to find the first 

edge E(P,Q) that could extend the subtour at either end city X or city Y without 
creating a cycle, i.e., a complete tour that does not visit all the cities. 

Step 4 If the above edge E(P,Q) is found, add it into T to extend the current subtour and 
repeat step 3; otherwise, add E(Y,X) into T and return T as the searching result. 

Note that the current state is extended by adding new nodes (cities) repeatedly. We now 
add priorities to the edges and change the sorting step by considering priorities of these 
edges first and then their costs in the first step. This change never affects the validity of 
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Locus representation: The locus representation regards the graphic image itself of a tour as 
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tours, because the other steps of this greedy algorithm remain unchanged. The most 
concerned question is whether any tour can be represented by this encoding method. 
Considering that a greedy algorithm never discards an object once this object is selected, we 
can construct any given tour “T” by a greedy algorithm as the following formula describes: 

 
(  (r, s, t, k, |{r,s,t,k}| 4)  ( {E(r,s), E(s,t)}  T 
C(k,s) min{C(r,s),C(s,t)}  P(k,s) max{P(r,s), P(s,t)} ) )

 The greedy algorithm constructs T,

∀ = ⊆ ∧
≤ ⇒ >

⇒

  (2) 

where C(a, b) and P(a, b) are the cost and priority of edge E(a, b) respectively, and a lower 
priority value P(a, b) reflects a higher priority of edge E(a, b) to be included in the tour. 
The above description implies that the priority-based encoding can be used to search the 
global optimal solution. Two levels of priorities are sufficient to guarantee such an optimal 
solution. Formula (2) is also used in the Lamarckian feedback process of the PB-GLS model. 
We apply the LK heuristic (Lin & Kernighan, 1973) as the local search method in the 
following experiments. 

3.4 Complexity analysis 
It is well-known that an exhausted search for a TSP has an exponential time complexity. 
Suppose that n is the number of vertices. An exact solution takes O(n!) time, which is 
prohibitively long. Therefore, polynomial-time heuristic search approaches are proposed. 
Heuristic or local search algorithms have complexities ranging from O(n2) (e.g., nearest 
neighbour, double ended nearest neighbour, and nearest insertion), O(n2 log(n)) (e.g., 
shortest edge first) to O(n2.2) (e.g., LK) or higher order (e.g., k-opt). 
The genetic algorithms with specialized crossover operators have time complexity O(kmn2), 
where k is the generation number and m is the population size. The n2 factor is due to the 
fact that all the repair procedures need to scan all the possible pairs of the vertices which is 
O(n2). If we combine genetic algorithms with a local search algorithm, the latter affects the 
time complexity. For example, the genetic local search algorithm incorporating the DPX 
operator with the LK heuristic (Freisleben  & Merz, 1996) has time complexity O(kmn2.2). 
This model, referred to as DPX-LK model, is currently known as the most powerful model 
and will be compared with the PB-GLS model in the next section. 
The time complexity of the PB-GLS model depends on the selected greedy algorithm, the 
Lamarckian feedback process, and the local search heuristic. When the DENN algorithm 
and LK heuristic are used, the PB-GLS needs O(n2) time to crossover the parent 
chromosomes and O(n2+n2.2+n2) time to construct the tour, search the local optimum, and 
feedback the upgraded gene information. Therefore, the total time complexity is also 
O(kmn2.2). 

4. Experimental results 
In this section, we conduct three parts of experiments applying PB-GLS to solve the TSP. 
The first part used our own data to demonstrate how priority encoding is used and how it 
supports schema analysis. The second part used benchmark instances released by the 
TSPLIB (http://www.iwr.uni-heidelberg.de/groups/comopt/software/tsplib9) and proved that the 
PB-GLS model can find near-optimal solutions identical to the best known results, in cases 
where the number of cities was no more than 400. In the last part, we generated sparsely 
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connected maps from the TSPLIB data instance and compared the experimental results 
between the PB-GLS model and the currently most efficient DPX-LK hybrid searching 
model. The PB-GLS model in these experiments uses Holland’s simple genetic algorithm 
model with the uniform crossover operator and conducts the LK heuristic for local searching 
every five generation. To reduce the searching space and simplify the result discussion, 
priority encoding in these experiments used only two-level priority, i.e., the high priority 
was 1 and the low priority was 2. The population size and mutation rate were set as 100 and 
0.2 respectively. 
 

 
Table 1. Cities in the first part of experiments 
 

 
Figure 3. Experimental results of the TSP. (a) map of the cities of Table 1; (b) near-optimal 
solution of the above listed cities; (c) near-optimal solution of the rd400 data instance. 
 

 
Table 2. Searching results of the first part experiment (partially listed). The edges are sorted 
by their costs. Columns from p1 to p4 are the converged priorities on four distinct 
chromosomes. 
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Table 1 lists the locations of the cities in the first part of experiments. These cities were 
randomly generated in the [0, 1] × [0, 1] square. Figure 3(a) and (b) show the city map and 
the near-optimal solution respectively, found by both the DPX-LK hybrid model and the PB-
GLS model within 100 generations. According to repeated experimental results, we believe 
that this tour with cost=4.35 is very close to the optimal tour. Table 2 lists the searching 
results of gene values partially, and the edges by their costs in ascending order. Columns 
from p1 to p4 are four converged near-optimal chromosomes. All these chromosomes can 
develop the near-optimal TSP tour that is shown in Fig. 3(b). The final column denotes 
whether the edge under consideration is selected to be part of the tour. 
Edges E(3, 5), E(7, 15) and E(13, 19) in the 45th, 53rd, and 57th rows are the longest three 
edges contained in the tour. We can observe that they all receive a high priority. They are 
likely the crucial edges in the optimal tour. Interestingly, the three edges excluded from the 
tour, i.e., E(9, 10), E(9, 12) and E(11, 12), are also remarkable because they are quite short and 
all receive a low priority. This result demonstrates that priority encoding allows schema 
explanation in searching optimal TSP tours. This schema is also likely to be useful when the 
number of cities increases or decreases. 
 

 
Fig 4. Assuming p priority levels are used for searching in a sparsely connected map with k 
edges and n cities, Kp(n)=logp(n!) represents the highest tolerable values of k to ensure the 
searching space of PB-GLS less than that of the DPX-LK model, i.e.,  pk < n!. 
 

 
Table 3. Applying DPX-LK and PB-GLS models to find TSP tours in sparsely connected 
rd400 maps 

In the second part of experiments, we used the instances released on the TSPLIB website to 
test the PB-GLS method. Experimental results reveal that the PB-GLS can find near-optimal 
solutions in maps with no more than 400 cities, such as the st70, ch150, a280 and rd400 data 
instances. The solutions obtained are identical to the presently best known results. For 
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example, Fig. 3(c) is the experimental result for the rd400 data instance with the tour cost 
equal to 15281. 
The time complexity of the PB-GLS model is described in the previous section as O(kmn2.2), 
where k, m and n are respectively the generation number, population size and city size. The 
running time increases quickly as more cities are added. For the first part of experiments, 
the searching result converged within 100 generations and took less than 3 seconds running 
on Sun’s Ultra SPARC III Workstation with 750-MHz clock rate. In case of 400 cities, it takes 
an average of 6216 generations and almost 3000-minute CPU time before the evolution 
converges to the best known solution. 
If we do not want to enlarge the population size and the generation number, it could be 
necessary that we prune the longest edges from the chromosomes to improve the 
performance for a large scale TSP. The pruning is reasonable because fully connected maps 
are eventually not usual in the real word. In the third part of experiments, we generated 
sparsely connected maps from rd400 data instance. In addition to the 400 edges in the best-
known optimal tour, another 1600, 2600, 3600, 4600, and 5600 edges were randomly selected 
and added into the testing bed. We then conducted five experiments using these 2000, 3000, 
4000, 5000 and 6000 edges as the test data respectively; these 400 nodes each had 10, 15, 20, 
25 and 30 adjacent nodes in average. The PB-GLS model was compared with the DPX-LK 
hybrid model. 
Assuming the p priority levels are used for testing a data instance with k edges and n nodes, 
the searching spaces of the PB-GLS model and the DPX-LK hybrid model are of sizes pk and 
n! respectively. The condition to let pk < n! can be derived as 
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Figure 4 draws the right part of formula (3), denoted as function Kp(n), with 
{1, 2, ,1000}n∈ …  and {2,3, 4}p∈ . Given p = 2 and n = 400, k must be less than 2886 to 

ensure search space pk < n!. However, the experimental results listed in Table 3 reveal that 
the PB-GLS model converged efficiently than the DPX-LK model even with k = 4000. This 
result implies that using permutation based algorithms in search sparsely connected maps 
may suffer an overhead that does not occur when we use priority-based algorithms. 

5. Conclusion 
Genetic algorithms and genetic local search are population based general-purpose search 
algorithms that have been examined to search efficiently for the near-optimal solutions to 
certain combinatorial optimization problems, such as the constraint satisfaction problem 
(Marchiori & Steenbeek, 2000), flowshop scheduling problem (Arroyo & Armentano, 2005), 
constraint minimum spanning tree problem (dMST) (Zeng & Wang, 2003), and travelling 
salesman problem (TSP) (Freisleben  & Merz, 1996). Notably, these optimization problems 
usually have critical requirements that have forced researchers to develop new genetic 
operators. For example, for the dMST we have an upper bound on the node degrees and for 
the TSP we require that each city be visited exactly once. 
Previous results made use of specialized genetic operators to enhance the GA and GLS. 
Alternatively, we have presented another approach to the TSP using evolutionary 
computing algorithms, i.e., the priority-based encoding method in conjunction with greedy 
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result implies that using permutation based algorithms in search sparsely connected maps 
may suffer an overhead that does not occur when we use priority-based algorithms. 

5. Conclusion 
Genetic algorithms and genetic local search are population based general-purpose search 
algorithms that have been examined to search efficiently for the near-optimal solutions to 
certain combinatorial optimization problems, such as the constraint satisfaction problem 
(Marchiori & Steenbeek, 2000), flowshop scheduling problem (Arroyo & Armentano, 2005), 
constraint minimum spanning tree problem (dMST) (Zeng & Wang, 2003), and travelling 
salesman problem (TSP) (Freisleben  & Merz, 1996). Notably, these optimization problems 
usually have critical requirements that have forced researchers to develop new genetic 
operators. For example, for the dMST we have an upper bound on the node degrees and for 
the TSP we require that each city be visited exactly once. 
Previous results made use of specialized genetic operators to enhance the GA and GLS. 
Alternatively, we have presented another approach to the TSP using evolutionary 
computing algorithms, i.e., the priority-based encoding method in conjunction with greedy 
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algorithms. This coding policy encodes link priorities as chromosomes, and then uses the 
underlying greedy algorithms to construct the corresponding solution as the phenotype. By 
doing so, traditional genetic algorithms can be exploited as usual. 
Priority-based encoding supports not only broad applications but also schema analysis. In 
addition, the priority-based genetic local search is empirically tested to achieve remarkable 
searching results for the TSP by iteratively converging to crucial edges. According to 
experimental results, this model found near-optimal solutions to TSPLIB instances -- in cases 
where the number of cities is no more than 400, the results are identical to the best 
previously known results. Experimental results also reveal that the permutation-based 
algorithms using specialized GA operators have an overhead in searching sparsely 
connected maps. This overhead does not occur when we use priority-based algorithms, 
because it is not necessary to encode the disconnected links into the chromosome. 
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1. Introduction     
Particle swarm optimization, PSO, is an evolutionary computation technique inspired in the 
behavior of bird flocks. PSO algorithms were first introduced by Kennedy & Eberhart (1995) 
for optimizing continuous nonlinear functions. The fundamentals of this metaheuristic 
approach rely on researches where the movements of social creatures were simulated by 
computers (Reeves, 1983; Reynolds, 1987; Heppner & Grenander, 1990). The research in PSO 
algorithms has significantly grown in the last few years and a number of successful 
applications concerning single and multi-objective optimization have been presented 
(Kennedy& Eberhart, 2001; Coello et al., 2004). This popularity is partially due to the fact 
that in the canonical PSO algorithm only a small number of parameters have to be tuned 
and also due to the easiness of implementation of the algorithms based on this technique. 
Motivated by the success of PSO algorithms with continuous problems, researchers that deal 
with discrete optimization problems have investigated ways to adapt the original proposal 
to the discrete case. In many of those researches, the new approaches are illustrated with the 
Traveling Salesman Problem, TSP, once it has been an important test ground for most 
algorithmic ideas.  
Given a graph G = (N,E), where N = {1,...,n} and E = {1,...,m}, and costs, cij, associated with 
each edge linking vertices i and j, the TSP consists in finding the minimal total length 
Hamiltonian cycle of G. The length is calculated by the summation of the costs of the edges 
in the considered cycle.  If for all pairs of nodes {i,j}, the costs cij and cji are equal then the 
problem is said to be symmetric, otherwise it is said to be asymmetric. The main importance 
of TSP regarding applicability is due to its variations, nevertheless some applications of the 
basic problem in real world problems are reported for different areas such as VLSI chip 
fabrication, X-ray crystallography, genome map and broadcast schedule, among others. 
Although, a great research effort has been done to accomplish the task of adapting PSO to 
discrete problems, many approaches still obtain results very far from the best results known 
for the TSP. Some of those works are summarized in section 2.  
An effective PSO approach for the TSP is presented by Goldbarg et al. (2006a), where 
distinct types of velocity operators are considered, each of them concerning one movement 
the particles are allowed to do. This proposal is presented and extended in this chapter, 
where search strategies for Combinatorial Optimization problems are associated with the 
velocity operators. Rather than a metaheuristic technique, the PSO approach in this context 
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can be thought as a framework for heuristics hybridization. The extension of the approach 
proposed previously comprehends methods to combine the distinct velocity operators. 
Computational experiments with a large set of benchmark instances show that the proposed 
algorithms produce high quality solutions when compared with effective heuristics for the 
TSP.  
The chapter begins with a brief review of Particle Swarm Optimization. Some proposals for 
applying this metaheuristic technique to discrete optimization problems and, in particular, 
to the Traveling Salesman Problem are presented in section 2.  In section 3, our proposal for 
velocity operators in the discrete context is presented. Computational experiments compare 
the results of the proposed approach with other PSO heuristics presented previously for the 
TSP. In section 4, the combination of velocity operators is investigated. Conclusions and 
directions for future works are presented in sections 5 and 6, respectively.  

2. Particle swarm optimization 
Kennedy & Eberhart (1995) proposed the bio-inspired PSO approach, which can be seen as a 
population-based algorithm that performs a parallel search on a space of solutions. In the 
optimization context, several solutions of a given problem constitute a population (the 
swarm). Each solution is seen as a social organism, also called particle. The method attempts 
to imitate the behavior of real creatures making the particles “fly” over a solution space. 
These particles search the problem’s solution space balancing the intensification and the 
diversification efforts. Each particle has a value associated with it. In general, particles are 
evaluated with the objective function of the considered optimization problem. A velocity is 
also assigned to each particle in order to direct the “flight” through the problem’s solution 
space. The artificial creatures have a tendency to follow the best ones among them. At each 
iteration step, a new velocity value is calculated for each particle. This velocity value is used 
to update the particle’s position. The process iterates until reaching a stopping condition. 
In the classical PSO algorithm, each particle 
• has a position and a velocity 
• knows its own position and the value associated with it 
• knows the best position it has ever achieved, and the value associated with it 
• knows its neighbors, their best positions and their values 
The best position a given particle has ever achieved is called pbest. In some versions of 
particle swarm algorithms the particles also track the best position achieved so far by any 
particle of the swarm. This position is called gbest. By changing their velocities with 
individualistic moves or toward pbest and gbest, the particles change their positions. The 
move of a particle is a composite of three possible choices (Onwubolu & Clerc, 2004): 
• To follow its own way 
• To go back to its best previous position 
• To go towards its best neighbor’s previous or present position  
The neighborhood may be physical or social. Physical neighborhoods take distances into 
account, thus a distance metric has to be established. This approach tends to be time 
consuming, since each iteration distances must be computed. In general, social 
neighborhoods are based upon “relationships” defined at the very beginning of the 
algorithm. 
A general framework of a particle swarm optimization algorithm is presented in figure 1. 
Initially, a population of particles is generated. After, all particles are evaluated and, if 
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necessary, pbestp is replaced by xp, p’s position. The best position achieved so far by any of 
the p’s neighbors is set to gbestp. Finally, the velocities and positions of each particle are 
updated. The procedure compute_velocity( ) receives three inputs. This is done to show that, 
in general, p’s position, xp, pbestp and gbestp are used to update p’s velocity, vp. The process is 
repeated until some stopping condition is satisfied.  
 

procedure PSO 
     Initialize a population of particles 
     do  
            for each particle p with position xp do 
                  if (xp is better than pbestp) then 
                      pbestp ← xp 
                  end_if 
            end_for 
            Define gbestp as the best position found so far by any of p’s neighbors 
            for each particle p do 
                vp ← Compute_velocity(xp, pbestp, gbestp) 
                xp ← update_ position(xp, vp) 
           end_for 
     while (a stop criterion is not satisfied)      

Fig. 1. Framework of a particle swarm optimization algorithm 

Kennedy & Eberhart (1995) suggest equations (1) and (2) to update the particle’s velocity 
and position, respectively. In these equations, xp(t) and vp(t) are the particle’s position and 
velocity at instant t, pbestp(t) is the best position the particle achieved up to instant t, gbestp(t) 
is the best position that any of p’s neighbors has achieved up to instant t, c1 is a cognitive 
coefficient that quantifies how much the particle trusts its experience, c2 is a social coefficient 
that quantifies how much the particle trusts its best neighbor, rand1 and rand2 are random 
numbers. 

 vp(t) = vp(t-1) + c1.rand1.(pbestp(t-1)  – xp(t-1)) + c2.rand2 .(gbestp(t-1)  – xp(t-1))  (1) 

 xp(t)  = xp(t-1) + vp(t)  (2) 

An inertia factor is introduced in equation (1) by Shi & Eberhart (1998). Considering the 
inertia factor w, equation (3) replaces equation (1). The inertia factor multiplies the velocity 
of the previous iteration. It is decreased throughout the algorithm execution. The inertia 
factor creates a tendency for the particle to continue moving in the same direction it was 
going previously.  The motivation for the use of the inertia factor was to be able to better 
control intensification and diversification. Shi & Eberhart (1998) observed that suitable 
values for the inertia factor yielded a good trade-off between exploration and exploitation. 

 vp(t) = wvp(t-1) + c1.rand1.(pbestp(t-1)  – xp(t-1)) + c2.rand2 .(gbestp(t-1)  – xp(t-1))  (3) 

Constriction factors were introduced by Clerc (1999) who observed that the use of a 
constriction factor was necessary to insure the convergence of the PSO algorithm. A simple 
way to incorporate a constriction factor in PSO algorithms is to replace equation (1) by 
equations (4) and (5), where K is the constriction factor. In equation (5), c1 and c2 are usually 
set to 1.49445 (Eberhart & Shi, 2001). 
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                      pbestp ← xp 
                  end_if 
            end_for 
            Define gbestp as the best position found so far by any of p’s neighbors 
            for each particle p do 
                vp ← Compute_velocity(xp, pbestp, gbestp) 
                xp ← update_ position(xp, vp) 
           end_for 
     while (a stop criterion is not satisfied)      

Fig. 1. Framework of a particle swarm optimization algorithm 
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 vp(t) = vp(t-1) + c1.rand1.(pbestp(t-1)  – xp(t-1)) + c2.rand2 .(gbestp(t-1)  – xp(t-1))  (1) 

 xp(t)  = xp(t-1) + vp(t)  (2) 
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 vp(t) = wvp(t-1) + c1.rand1.(pbestp(t-1)  – xp(t-1)) + c2.rand2 .(gbestp(t-1)  – xp(t-1))  (3) 

Constriction factors were introduced by Clerc (1999) who observed that the use of a 
constriction factor was necessary to insure the convergence of the PSO algorithm. A simple 
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equations (4) and (5), where K is the constriction factor. In equation (5), c1 and c2 are usually 
set to 1.49445 (Eberhart & Shi, 2001). 
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 vp(t) = K[vp(t-1) + c1.rand1.(pbestp(t-1)  – xp(t-1)) + c2.rand2 .(gbestp(t-1)  – xp(t-1))]  (4) 
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The canonical PSO algorithm, however, needs an adaptation in order to be applied to 
discrete optimization problems. Kennedy & Eberhart (1997) propose a discrete binary PSO 
version, defining particles’ trajectories and velocities in terms of changes of probabilities that 
a bit is set to 0 or 1 (Shi et al., 2007). The particles move in a state space restricted to 0 and 1 
with a certain probability that is a function of individual and social factors. The probability 
of xp(t) = 1, Pr(xp = 1), is a function of xp(t-1), vp(t-1), pbestp(t-1) and gbestp(t-1). The probability 
of xp(t) = 0 equals 1 - Pr(xp = 1). Thus equation (2) is replaced by equation (6), where rand3 is 
a random number, ψ(vp(t)) is a logistic transformation which can constrain vp(t) to the 
interval [0,1] and can be considered as a probability. 
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PSO for permutation problems is investigated by several researchers. In several of these 
research works the TSP is the target problem.  
Hu et al. (2003) define velocity as a vector of probabilities in which each element 
corresponds to the probability of exchanging two elements of the permutation vector that 
represents a given particle position. Pairwise exchanging operations, also called 2-swap or 2-
exchange, are very popular neighborhoods in local search algorithms for permutation 
problems. Let V be the velocity of a particle whose position is given by the permutation 
vector P. Given integers i and j, V[i] is the probability of elements P[i] and P[j] be exchanged. 
The element P[j] corresponds to Pnbest[i], where Pnbest is the vector that represents the 
permutation associated with the position of the best neighbor of the considered particle.    
The authors introduce a mutation operator in order to avoid premature convergence of their 
algorithm. The mutation operator does a 2-swap move with two elements chosen at random 
in the considered permutation vector. 
Another approach is proposed by Clerc (2004) that utilizes the Traveling Salesman Problem 
to illustrate the PSO concepts for discrete optimization problems. In the following we list the 
basic ingredients Clerc (2004) states that are necessary to construct a PSO algorithm for 
discrete optimization problems:  
• a search space, S = {si} 
• an objective function f on S, such that f(si) = ci 
• a semi-order on C = {ci} , such that for every ci, cj ∈ C, we can establish whether ci ≥ cj  or 

cj ≥ ci   
• a distance d in the search space, in case we want to consider physical neighborhoods. 
S may be a finite set of states and f a discrete function, and, if it is possible to define 
particles’ positions, velocity and ways to move a particle from one position to another, it is 
possible to use PSO. Clerc (2004) presents also some operations with position and velocity 
such as: the opposite of a velocity, the addition of position and velocity (move), the 
subtraction of two positions, the addition and subtraction of two velocities and the 
multiplication of velocity by a constant. A distance is also defined to be utilized with 
physical neighborhoods. To illustrate his ideas about tackling discrete optimization 
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problems with PSO, Clerc (2004) develops several algorithm variants with those operations 
and methods and applies them to the asymmetric TSP instance br17.atsp. In his algorithm 
the positions are defined as TSP tours represented in vectors of permutations of the |N| 
vertices of the graph correspondent to the considered instance. These vertices are also 
referred as cities, and the position of a particle is represented by a sequence (n1, …, n|N|, 
n|N|+1), n1 = n|N|+1. The value assigned to each particle is calculated with the TSP objective 
function, thus corresponding to the tour length. The velocity is defined as a list of pairs (i,j), 
where i and j are the indices of the elements of the permutation vector that will be 
exchanged. This approach was applied to tackle the real problem of finding out the best 
path for drilling operations (Onwubolu & Clerc, 2004) . 
Wang et al. (2003) present a PSO algorithm for the TSP utilizing, basically, the same 
structure proposed by Clerc (2004) and apply their algorithm to the benchmark instance 
burma14.  
Hendtlass (2003) proposes the inclusion of a memory for the particles in order to improve 
diversity. The memory of each particle is a list of solutions (target points) that can be used as 
an alternative for the current local optimal point. There is a probability of choosing one of 
the points of the particle’s memory instead of the current gbestp. The size of the memory list 
and the probability are new parameters added to the standard PSO algorithm. The 
algorithm is applied to the benchmark TSP instance burma14. The results obtained with 
algorithmic versions with several parameter settings are compared with the results of an 
Ant Colony Optimization algorithm. The author shows that his algorithm outperformed the 
PSO version without the use of memory and presented quality of solution comparable to the 
results produced by the ACO algorithm, for instance burma14.  
Pang et al. (2004a) extend the work of Wang et al. (2003). Their algorithm alternates among 
the continuous and the discrete (permutation) space. |N|-dimensional vectors in the 
continuous Cartesian space are used for positions and velocities. The discrete representation 
of the particles’ positions is done in the permutation space. They present methods to 
transform the positions from one space to the other. They alternate between the two spaces 
until a stopping condition is reached. The particle’s position and velocity are updated in the 
continuous space. Then, they move to the discrete space, where a local search procedure is 
applied to all particles’ positions. Two local search procedures are tested in their algorithms: 
the 2-swap and the 2-opt (Flood, 1956). After that, they make the reverse transformation to 
the continuous space. In order to avoid premature convergence, Pang et al. (2004a) use a 
chaotic operator. This operator changes randomly the position and velocity in the 
continuous space, multiplying these vectors by a random number. Four versions of their 
algorithm are applied to four benchmark instances with 14 to 51 cities: burma14, eil51, eil76 
and berlin52. The algorithm variations comprise the presence or not of chaotic variables and 
the two local search procedures. In the set of instances tested, the results showed that the 
version that includes chaotic variables and the 2-opt local search presented the best results.   
Pang et al. (2004b) present a fuzzy-based PSO algorithm for the TSP. The position of each 
particle is a matrix P = [pij], where pij ∈ (0,1) represents the degree of membership of the i-th 
city to the j-th position of a given tour. The velocity is also defined as a matrix and the 
operations resulting from equations (2) and (3) are defined accordingly. A method to decode 
the matrix position to a tour solution is presented. The value associated with each particle is 
the length of the tour represented by the particle’s position. They apply their algorithm to 
instances burma14 and berlin52. No average results or comparisons with other algorithms 
are reported. 
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A hybrid approach that joins PSO, Genetic Algorithms and Fast Local Search is presented by 
Machado & Lopes (2005) for the TSP. The positions of the particles represent TSP tours as 
permutations of |N| cities. The value assigned to each particle (fitness) is the rate between a 
constant Dmin and the cost of the tour represented in the particle’s position.  If the optimal 
solution is known, then Dmin equals the optimal tour cost. If the optimum is not known, Dmin 
is set to 1. Velocity is defined regarding only pbestp and gbestp and the equation of velocity is 
reduced to equation (7). The distance between two positions is calculated with a version of 
the Hamming distance for permutations. With the use of equation (7) for velocity, the 
particles tend to converge to pbestp and gbestp. At each iteration step, the average distance 
between all particles and the best global solution is computed. If this distance is lower than 
0.05|N|, then random positions are generated for all particles. The same occurs when some 
subset of particles is close enough. If a subset of particles is close enough to the best local 
solution, then the positions of the particles of the considered subset are generated randomly. 
The solutions are recombined by means of the OX operator and then submitted to the fast 
local search procedure introduced by Voudouris & Tsang (1999). The hybrid PSO is applied 
to the following symmetric TSP benchmark instances: pr76, rat195, pr299, pr439, d657, 
pr1002, d1291, rl1304, d2103. 

 vp(t) = c1.rand1.(pbestp(t-1)  – xp(t-1)) + c2.rand2 .(gbestp(t-1)  – xp(t-1))  (7) 

Goldbarg et al. (2006a) present a PSO algorithm for the TSP where the idea of distinct 
velocity operators is introduced. The velocity operators are defined according to the possible 
movements a particle is allowed to do. In the previous section, three alternatives for 
movements are identified. The three alternatives can be divided into two categories: 
independent and dependent moves. The independent move concerns the first parcel of 
equations (1) and (3). The other two parcels of those equations depend on pbestp and gbestp, 
thus referring to dependent moves. Based on those movement classes, Goldbarg et al. 
(2006a) use local search procedures as velocity operators for independent moves and path-
relinking (Glover et al., 2000) for dependent moves. At each iteration step, one of the three 
alternative moves is assigned to a particle and the correspondent velocity operator is 
applied in order to modify the particles position. For each particle, only one type of 
movement is allowed per iteration. A probability is assigned to each movement alternative. 
Initially, independent moves are more likely to occur than dependent moves. During the 
algorithm execution, the probabilities are modified, such that the probabilities assigned to 
the dependent moves are increased and the probability assigned to independent moves is 
decreased.  This algorithmic proposal obtained very promising results. It was applied to 35 
benchmark TSP instances with 51 to 7397 cities. The results were comparable to the results 
of state-of-the-art algorithms for the TSP. A detailed discussion of this approach and the 
results it obtained is presented in section 3. 
Yuan et al. (2007) and Shi et al. (2007) propose extensions for the approach presented by 
Wang et al. (2003). Both algorithms define subtraction in terms of sequences of 2-swap 
operations as defined in the path-relinking velocity operator presented by Goldbarg et al. 
(2006a), including some uncertainty for the exchange of two elements.   
Yuan et al. (2007) propose new concepts for “chaos variables” and memory for particles. The 
memory of each particle is an |N|-dimensional vector of chaos variables. The chaos 
variables are numbers in the interval (0,1) and are generated with a method proposed by the 
authors. Based on the memory list of a particle p, they define the permutation that 
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represents p’s position. They sort the elements of the memory list. The resulting order leads 
to a permutation of the elements in the memory list. This permutation is the representation 
of p’s position. They apply their algorithm to four benchmark instances with 14 to 51 cities: 
burma14, oliver30, att48, eil51. The results obtained for instances oliver30 and att48 are 
compared with the results obtained by algorithms based on: Simulated Annealing, Genetic 
Algorithm and Ant Colony Systems. Their algorithm outperforms the others regarding 
quality of solution of these two instances. 
Shi et al. (2007) adds to their algorithm a procedure that aims at eliminating edge crossings 
in the TSP tours represented by the particles’ positions. They apply their algorithm to five 
benchmark instances: eil51, berlin52, st70, eil76 and pr70.   
Zhong et al. (2007) present a PSO approach where a mutation factor (c3) is introduced in the 
formula that updates the particle’s position (equation (2)). The new formula is presented in 
equation (8). The factor introduces some diversity in the algorithm. The position of a particle 
is represented as a set of edges instead of a permutation as in the previous approaches. The 
velocity is defined as a list of edges with a probability associated with each element of the 
list. During the iterations if pbestp is identical to gbestp then, pbestp is not replaced by the 
current position of p. The authors apply their algorithm to six benchmark TSP instances: 
burma14, eil51, eil76, berlin52, kroA100 and kroA200. The results are compared with the 
results of Pang et al. (2004a) and with an Ant Colony Optimization algorithm. They show 
that their algorithm outperforms the others regarding average solutions. 

 xp(t)  = c3.rand.xp(t-1) + vp(t)  (8) 

Fang et al. (2007) present a PSO algorithm for the TSP where an annealing scheme is used to 
accept the movement of a particle. They apply their algorithm to instances oliver30 and 
att48. The results are compared with the results of algorithms based on: Simulated 
Annealing, Genetic Algorithms and Ant Colony. In the two instances tested, their algorithm 
presents the best average results. 
A comparison among some of the previous algorithms and the approach proposed in this 
chapter is presented in the next section. 

3. New velocity operators for discrete PSO 
In PSO algorithms the velocity is the basic mechanism for accomplishing the search in the 
space of solutions of optimization problems. In most applications, the particles’ positions 
represent the solutions of the investigated problem. The positions are updated by means of 
velocity operators that direct the search to promising regions of the space of solutions. There 
are two classes of movement a particle is allowed to do: independent and dependent moves. 
Independent moves are those in which the particle moves without knowing any other 
positions besides its own on the current instant. This type of movement depends only on the 
current particle position and on a velocity operator. The other case arises when the particle 
needs to know the position of pbest or gbest. This distinction between the movements leads 
us to a unary and a binary concept for velocity operators. In the unary operations only one 
particle is accepted as input.  The particle’s position is transformed according to a unary 
velocity operator. The binary operations accept two particles and alter the position of one of 
them considering the position of the other. In this context, m-ary operations can be defined 
where m particles are accepted and the position of one of them is altered considering the 
positions of the remaining m-1 particles, in accordance with an m-ary velocity operator. 
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represents p’s position. They sort the elements of the memory list. The resulting order leads 
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 xp(t)  = c3.rand.xp(t-1) + vp(t)  (8) 
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them considering the position of the other. In this context, m-ary operations can be defined 
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In order to modify the position of a given particle, the velocity operators are identified with 
heuristic methods. Basically, two approaches are utilized for designing the search strategies: 
the improvement methods and the metaheuristic techniques. As defined by Burkard (2002), 
the local search algorithms constitute the class of improvement methods. Given a 
neighborhood structure defined over a search space, a local search procedure begins with a 
solution and search the neighborhood of the current solution for an improvement. The 
metaheuristics are general frameworks for heuristics design. A review of the TSP and some 
well known methods utilized to solve it are presented by Gutin & Punnen (2002). 
In this chapter, any search strategy where a given solution is transformed with no 
knowledge of other solutions is a unary velocity operator.  Search strategies where a 
solution interacts with other m-1 solutions are classified as m-ary velocity operators. For 
example, local search and mutation are defined as unary velocity operators, recombination 
of two solutions, such as crossover in Genetic Algorithms, and path-relinking are defined as 
binary velocity operators and recombination operations among m solutions, such as in 
Scatter Search algorithms (Glover et al., 2000), are defined as m-ary velocity operators.    
The proposed approach is illustrated with unary and binary velocity operators utilizing 
local search and path-relinking strategies, respectively. 
Path-relinking is an intensification technique which ideas were originally proposed by 
Glover (1963) in the context of methods to obtain improved local decision rules for job shop 
scheduling problems (Glover et al., 2000). The strategy consists in generating a path between 
two solutions creating new intermediary solutions. This idea is very close to the movement 
of a particle from one position to another. Given an origin solution, x1, and a target solution, 
x2, a path from x1 to x2 leads to a sequence x1, x1 (1), x1 (2), …, x1 (r) = x2, where x1(i+1) is 
obtained from x1(i) by a move that introduces in x1(i+1) an attribute that reduces the distance 
between attributes of the origin and target solutions. 
The framework of PSO for discrete optimization problems proposed by Goldbarg et al. 
(2006a, 2006b) is shown in figure 2. In this proposal equation (3) is replaced by equation (9), 
where v1 is a unary velocity operator, v2 and v3 are binary velocity operators. The 
coefficients c0, c1 and c2 have the same meaning stated previously and the signal ⊕ 
represents a composition.  

 vp(t) = c0v1(xp(t-1)) ⊕ c1v2(pbestp(t-1),xp(t-1)) ⊕ c2v3(gbestp(t-1),xp(t-1))  (9) 

In initial applications of the proposed approach, only one of the three primitive moves is 
associated to each particle of the swarm at each iteration step (Goldbarg et al., 2006a, 2006b). 
Thus, c0, c1, c2 ∈ {0,1} and c0 + c1 + c2 = 1 in equation (9).  The assignment is done randomly. 
Initial probabilities are associated with each possible move and, during the execution, these 
probabilities are updated. Initially, a high value is set to pr1, the probability of particle p to 
follow its own way, a lower value is set to pr2, the probability of particle p goes towards 
pbestp and the lowest value is associated with the third option, to go towards gbestp. The 
algorithm utilizes the concept of social neighborhood and the gbestp of all particles is 
associated with the best current solution, gbest. The initial values set to pr1, pr2 and pr3 are 
0.9, 0.05 and 0.05, respectively. As the algorithm runs, pr1 is decreased and the other 
probabilities are increased. At the final iterations, the highest value is associated with the 
option of going towards gbest and the lowest probability is associated with the first move 
option.  

Particle Swarm Optimization Algorithm for the Traveling Salesman Problem 

 

83 

procedure Discrete_PSO 
      /* Define initial probabilities for particles’ moves:*/ 
      pr1 ← a1 /*to follow its own way*/  
      pr2 ← a2 /*to go towards pbest*/  
      pr3 ← a3  /*to go towards gbest*/ 
      /* a1+ a2+ a3=1 */ 
      Initialize the population of particles 
      do  
         for each particle p 
                valuep  ← Evaluate(xp) 
                if (value(xp) < value(pbestp)) then 
                    pbestp ← xp 
                if (value(xp) < value(gbest) ) then 
                    gbest ← xp 

          end_for 
          for each particle p 
               velocityp  ←  define_velocity(pr1, pr2, pr3)  
               xp  ← update(xp,velocityp) 
          end_for 
          /* Update probabilities*/ 
          pr1 = pr1×0.95; pr2 = pr2×1.01; pr3 = 1-( pr1+ pr2)      
      while (a stop criterion is not satisfied) 

Fig. 2. Pseudo-code of PSO for discrete optimization problems 

In the application to the TSP, Goldbarg et al. (2006a) implement two versions of the PSO 
algorithm defined by two local search procedures utilized to implement v1. In the first 
version a local search procedure based on an inversion neighborhood is used. The Lin-
Kernighan (Lin & Kernighan, 1973) neighborhood is used in the second version.  In both 
versions v2 and v3 are implemented with the same path-relinking procedure. The particles’ 
positions are represented as permutations of the |N| cities.  
In the inversion neighborhood, given a sequence x1 = (n1, …, ni, ni+1,…, nj-1, nj, …, n|N|) and 
two indices i and j, the sequence x2 is x1’s neighbor if x2 =  (n1, …, nj, nj-1,…, ni+1, ni, …, n|N|) . 
The difference between indices i and j varies from 1 to |N|-1. When v1 is applied to a 
particle p, the local search procedure starts inverting sequences of two elements in p’s 
position, then sequences of three elements are inverted, and so on.  
The Lin-Kernighan neighborhood is a recognized efficient improvement method for the 
TSP. The basic LK algorithm has a number of decisions to be made and depending on the 
strategies adopted by programmers distinct implementations of this algorithm may result 
on different performances. The literature contains reports of many LK implementations with 
widely varying behavior (Johnson & McGeoch, 2002). The work of Goldbarg et al. (2006a) 
uses the LK implementation of Applegate et al. (1999). 
The path-relinking implemented for the binary velocity operators exchanges adjacent 
elements of the origin solution. The permutations are considered as circular lists. At first, the 
origin solution is rotated until its first element be equal the first element of the target 
solution. Then the second element of the target solution is considered. The correspondent 
element in the origin solution is shifted left until reaching the second position in the 
sequence that represents the solution. The process continues until the origin solution reaches 
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the target solution. This procedure leads to time complexity O(n2). The path-relinking is 
applied simultaneously from the origin to the target solution and vice-versa (back and 
forward). Swap-left and swap-right operations are used. The permutation sequence 
representing the best solution found replaces the position of the considered particle. An 
example of the path-relinking procedure is shown in figure 3. 
 

54321 54321 24153 24153

Origin Target
21543 21543

Rotation

21453 21453

24153 24153

21543 21543

 
Fig. 3. Path-relinking 

In the following, a discussion about the results obtained by PSO proposals for the TSP is 
presented. PSO-INV and PSO-LK denote the two algorithmic versions of the proposed 
approach with the inversion and the LK neighborhoods, respectively. These algorithms run 
on a Pentium IV with 3.0 GHz, 1 Gb using Linux. The maximum processing times are 60 
seconds for instances with |N| < 1000 and 300 seconds for instances with 
1000 ≤ |N| < 5000. Other three stop criteria are used: to find the optimal solution, to reach a 
maximum number of iterations (200) or to reach a maximum number of iterations with no 
improvement of the best current solution (20). The population has 20 particles. Once most 
papers report results for instance eil51, berlin52 and eil76, table 1 shows a comparison 
between the proposed approach and other PSO algorithms concerning these instances. The 
compared algorithms are listed in the first column of table 1. The traced lines represent 
results not reported in the correspondent work. Results in table 1 are given in terms of the 
percent difference from the optimal solution (gap), calculated with equation (10), where av 
and optimal denote, respectively, the average solution found by the investigated algorithm 
and the best solution known for the correspondent instance. 

 100av optimalgap
optimal
−

= ×  (10) 

Only Pang et al. (2004) and Zhong et al. (2007) report average processing times. Pang et al. 
(2004) use a Pentium IV with 2 GHz, 256 Mb running Windows 2000. Zhong et al. (2007) use 
a Celeron with 2.26 GHz, 256 Mb, running Windows XP.  Running time comparisons are, in 
general, difficult to make, even when the codes are developed in the same machines and the 
same compiler options are used. A re-implementation of those algorithms could introduce 
errors and the results obtained with the new implementations could produce results that 
differ largely from the published ones. The proposed algorithm was executed in a platform 
superior than the other algorithms of table 1. Nevertheless, even if the processing times of 
the other algorithms were divided by a factor of 3 (an estimate that favors those algorithms), 
table 1 shows that the two versions of the proposed algorithm exhibit processing times 
significantly lower than the others. 
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Instance Algorithm Min Average T(s) 
Pang et al. (2004a) --- 3.498 30 

Shi et al. (2007) 0.235 2.575 --- 
Zhang et al. (2007) --- 2.529 --- 
Zhong et al. (2007) 0.235 1.793 4.06 

PSO-INV 0.704 2.582 0.16 

eil51 

PSO-LK 0 0 < 0.01 
Pang et al. (2004a) --- 2.151 120 

Shi et al. (2007) 0 3.846 --- 
Zhong et al. (2007) 0 0.753 4.12 

PSO-INV 0 2.592 0.17 
berlin52 

PSO-LK 0 0 < 0.01 
Pang et al. (2004a) --- 4.222 60 

Shi et al. (2007) 1.487 4.167 --- 
Zhong et al. (2007) 0.372 2.550 11.59 

PSO-INV 2.416 4.656 0.40 
eil76 

PSO-LK 0 0 0.01 

Table 1. Results of distinct PSO approaches 

Although the inversion neighborhood is not specialized for the TSP, table 1 shows that PSO-
INV exhibits better average results than the algorithms of Pang et al. (2004) and Shi et al. 
(2007) for instances eil51 and berlin52, respectively. Concerning the group of tested 
instances PSO-INV presents results that are comparable with the results presented by Pang 
et al. (2004a), Zhang et al. (2007) and Shi et al. (2007). Except for the PSO-LK, the algorithm 
presented by Zhong et al. (2007) outperforms the others regarding quality of solution. A 
comparison between the results obtained for instances with more than 50 cities by the PSO-
LK and the algorithm presented by Zhong et al. (2007) is shown in table 2. The proposed 
algorithm outperforms the algorithm of Zhong et al. (2007) regarding quality of solution and 
processing times in the five tested instances. 
 

Zhong et al. (2007) PSO-LK Instance 
Min Average T(s) Min Average T(s) 

eil51 0.002 1.793 4.06 0 0 0 
berlin52 0 0.753 4.12 0 0 0 

eil76 0.004 2.550 11.59 0 0 0.01 
kroA100 0.001 1.914 23.95 0 0 0.02 
kroA200 0.007 3.427 198.55 0 0 0.08 

Table 2. Comparison between PSO-LK and the algorithm of Zhong et al (2007) 

PSO-INV performs poorly when compared with PSO-LK. Table 3 presents a comparison, in 
terms of percent deviation from the optimal solution, between the best and average results 
found by these two algorithms for 8 instances with 195 to 2103 cities. Table 3 shows that the 
PSO-LK outperforms PSO-INV with a significant difference among the results reported. 
This is not a surprise, since the local search procedure embedded in the former version is 
more powerful than the local search procedure of the latter. 
Among the PSO approaches for the TSP, the hybrid algorithm presented by Machado & 
Lopes (2005) presents results for the largest instances. A comparison between the quality of 
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the target solution. This procedure leads to time complexity O(n2). The path-relinking is 
applied simultaneously from the origin to the target solution and vice-versa (back and 
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solutions obtained by this algorithm (M&L) and the PSO-LK is shown in table 4, where is 
shown that the proposed approach outperforms the algorithm of Machado & Lopes (2005) 
in all tested instances. The average differences from the optimal solution obtained by 
Machado & Lopes (2005) and the PSO-LK regarding the tested instances are, respectively, 
3.832 and 0.005. 
 

PSO-INV PSO-LK Instances Min Av Min Av 
rat195 5.8114 8.7581 0 0 
pr299 5.8476 7.9952 0 0 
pr439 4.4200 8.0111 0 0 
d657 6.9656 9.6157 0 0 

pr1002 9.8574 11.1900 0 0 
d1291 13.2104 15.5505 0 0.0113 
rl1304 10.4432 11.9942 0 0 
d2103 16.7383 18.4180 0.0087 0.0267 

Table 3. Quality of solutions obtained by the two versions of the proposed algorithm 

 
Instance M & L PSO-LK 
rat195 0.983 0 
pr299 0.590 0 
pr439 2.956 0 
d657 3.849 0 

pr1002 6.699 0 
d1291 4.581 0.0113 
rl1304 3.245 0 
d2103 7.749 0.0267 

Table 4. Quality of solutions obtained by Machado & Lopes (2005) and PSO-LK 

Although the LK is a powerful neighborhood for the TSP, the good performance exhibited 
by the PSO-LK is not only due to the use of this neighborhood. The differences between the 
results obtained by the LK procedure and the PSO-LK algorithm are shown in table 4. This 
experiment aimed at finding out if the proposed PSO approach was able to improve the LK 
results. Table 5 shows the results for 30 symmetric instances. The cells with dark 
background show the results where an improvement with the PSO approach is obtained. 
Twenty independent runs of each algorithm were performed. Table 5 shows that all average 
solutions are improved. A statistical analysis shows that, in average, improvements of 88% 
and 89% were achieved on the best and average results, respectively. The Mann-Whitney U-
test was applied to verify if the average solutions are statistically different. The Mann-
Withney U-test, also called Mann-Whitney-Wilcoxon test or Wilcoxon rank-sum test, is a 
non-parametric test used to verify the null hypothesis that two samples come from the same 
population (Conover, 1971). The p-values obtained are shown in the last column of table 5. 
Let avLK and avPSO-LK denote the average solution obtained by the LK and the PSO-LK 
algorithms, respectively, then the p-values show that, with a level of significance of 0.05, the 
null hypothesis that verifies if avLK = avPSO-LK is rejected for all instances.  
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LK PSO-LK Instance Min Average Min Average p-value 

pr439 0.0000 0.0463 0.0000 0.0000 0.004233 
pcb442 0.0000 0.1119 0.0000 0.0000 0.018562 
d493 0.0029 0.1216 0.0000 0.0000 0.000000 

rat575 0.0295 0.1277 0.0000 0.0052 0.000000 
p654 0.0000 0.0078 0.0000 0.0000 0.001932 
d657 0.0020 0.1500 0.0000 0.0000 0.000000 

rat783 0.0000 0.0704 0.0000 0.0000 0.000000 
dsj1000 0.0731 0.2973 0.0027 0.0041 0.000000 
pr1002 0.0000 0.1318 0.0000 0.0000 0.000000 
u1060 0.0085 0.1786 0.0000 0.0049 0.000000 

vm1084 0.0017 0.0669 0.0000 0.0052 0.000000 
pcb1173 0.0000 0.1814 0.0000 0.0003 0.000000 
d1291 0.0039 0.4333 0.0000 0.0113 0.000000 
rl1304 0.0202 0.3984 0.0000 0.0000 0.000000 
rl1323 0.0463 0.2300 0.0000 0.0079 0.000001 

nrw1379 0.0547 0.1354 0.0018 0.0160 0.000000 
fl1400 0.0000 0.1215 0.0000 0.0000 0.000021 
fl1577 0.7371 2.2974 0.0000 0.0420 0.000000 

vm1748 0.0903 0.1311 0.0000 0.0009 0.000000 
u1817 0.1976 0.5938 0.0454 0.1408 0.000000 
rl1889 0.1836 0.3844 0.0000 0.0165 0.000000 
d2103 0.0597 0.3085 0.0087 0.0267 0.000000 
u2152 0.2381 0.5548 0.0062 0.1135 0.000000 
pr2392 0.0775 0.3904 0.0000 0.0112 0.000000 

pcb3038 0.1598 0.2568 0.0123 0.0686 0.000000 
fl3795 0.5665 1.0920 0.0000 0.0403 0.000000 

fnl4461 0.0882 0.1717 0.0794 0.1155 0.000000 
rl5915 0.3528 0.5343 0.0755 0.1554 0.000000 
rl5934 0.2221 0.4761 0.0309 0.1545 0.000000 

pla7397 0.1278 0.2912 0.0075 0.0253 0.000000 

Table 5. Comparison between LK and PSO-LK 

4. Composing velocity operators 
The composition of velocities can be thought as an arrangement of velocity operators. This 
arrangement defines the sequence that determines the order of application of each velocity 
operator to a given particle. For example, let v1, v2, v3 be the three velocity operators defined 
in the last section, A1 and A2 be two sequences of application of these velocity operators, 
A1=(v1, v2, v3), A2=(v3, v1, v2). Regardless the coefficients of equation (9), two examples of 
algorithms for the composition of the velocities are presented in figures 4(a) and 4(b). The 
meaning of those coefficients is explained further. In the algorithm shown in figure 4(a), the 
composition of velocities is implicit, once the results of the application of the velocity 
operators v1 and v2 are inputs for the next operation. A possible implementation for the 
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solutions obtained by this algorithm (M&L) and the PSO-LK is shown in table 4, where is 
shown that the proposed approach outperforms the algorithm of Machado & Lopes (2005) 
in all tested instances. The average differences from the optimal solution obtained by 
Machado & Lopes (2005) and the PSO-LK regarding the tested instances are, respectively, 
3.832 and 0.005. 
 

PSO-INV PSO-LK Instances Min Av Min Av 
rat195 5.8114 8.7581 0 0 
pr299 5.8476 7.9952 0 0 
pr439 4.4200 8.0111 0 0 
d657 6.9656 9.6157 0 0 

pr1002 9.8574 11.1900 0 0 
d1291 13.2104 15.5505 0 0.0113 
rl1304 10.4432 11.9942 0 0 
d2103 16.7383 18.4180 0.0087 0.0267 

Table 3. Quality of solutions obtained by the two versions of the proposed algorithm 

 
Instance M & L PSO-LK 
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pr299 0.590 0 
pr439 2.956 0 
d657 3.849 0 
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d1291 4.581 0.0113 
rl1304 3.245 0 
d2103 7.749 0.0267 

Table 4. Quality of solutions obtained by Machado & Lopes (2005) and PSO-LK 

Although the LK is a powerful neighborhood for the TSP, the good performance exhibited 
by the PSO-LK is not only due to the use of this neighborhood. The differences between the 
results obtained by the LK procedure and the PSO-LK algorithm are shown in table 4. This 
experiment aimed at finding out if the proposed PSO approach was able to improve the LK 
results. Table 5 shows the results for 30 symmetric instances. The cells with dark 
background show the results where an improvement with the PSO approach is obtained. 
Twenty independent runs of each algorithm were performed. Table 5 shows that all average 
solutions are improved. A statistical analysis shows that, in average, improvements of 88% 
and 89% were achieved on the best and average results, respectively. The Mann-Whitney U-
test was applied to verify if the average solutions are statistically different. The Mann-
Withney U-test, also called Mann-Whitney-Wilcoxon test or Wilcoxon rank-sum test, is a 
non-parametric test used to verify the null hypothesis that two samples come from the same 
population (Conover, 1971). The p-values obtained are shown in the last column of table 5. 
Let avLK and avPSO-LK denote the average solution obtained by the LK and the PSO-LK 
algorithms, respectively, then the p-values show that, with a level of significance of 0.05, the 
null hypothesis that verifies if avLK = avPSO-LK is rejected for all instances.  
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LK PSO-LK Instance Min Average Min Average p-value 

pr439 0.0000 0.0463 0.0000 0.0000 0.004233 
pcb442 0.0000 0.1119 0.0000 0.0000 0.018562 
d493 0.0029 0.1216 0.0000 0.0000 0.000000 

rat575 0.0295 0.1277 0.0000 0.0052 0.000000 
p654 0.0000 0.0078 0.0000 0.0000 0.001932 
d657 0.0020 0.1500 0.0000 0.0000 0.000000 

rat783 0.0000 0.0704 0.0000 0.0000 0.000000 
dsj1000 0.0731 0.2973 0.0027 0.0041 0.000000 
pr1002 0.0000 0.1318 0.0000 0.0000 0.000000 
u1060 0.0085 0.1786 0.0000 0.0049 0.000000 

vm1084 0.0017 0.0669 0.0000 0.0052 0.000000 
pcb1173 0.0000 0.1814 0.0000 0.0003 0.000000 
d1291 0.0039 0.4333 0.0000 0.0113 0.000000 
rl1304 0.0202 0.3984 0.0000 0.0000 0.000000 
rl1323 0.0463 0.2300 0.0000 0.0079 0.000001 

nrw1379 0.0547 0.1354 0.0018 0.0160 0.000000 
fl1400 0.0000 0.1215 0.0000 0.0000 0.000021 
fl1577 0.7371 2.2974 0.0000 0.0420 0.000000 

vm1748 0.0903 0.1311 0.0000 0.0009 0.000000 
u1817 0.1976 0.5938 0.0454 0.1408 0.000000 
rl1889 0.1836 0.3844 0.0000 0.0165 0.000000 
d2103 0.0597 0.3085 0.0087 0.0267 0.000000 
u2152 0.2381 0.5548 0.0062 0.1135 0.000000 
pr2392 0.0775 0.3904 0.0000 0.0112 0.000000 

pcb3038 0.1598 0.2568 0.0123 0.0686 0.000000 
fl3795 0.5665 1.0920 0.0000 0.0403 0.000000 

fnl4461 0.0882 0.1717 0.0794 0.1155 0.000000 
rl5915 0.3528 0.5343 0.0755 0.1554 0.000000 
rl5934 0.2221 0.4761 0.0309 0.1545 0.000000 

pla7397 0.1278 0.2912 0.0075 0.0253 0.000000 

Table 5. Comparison between LK and PSO-LK 

4. Composing velocity operators 
The composition of velocities can be thought as an arrangement of velocity operators. This 
arrangement defines the sequence that determines the order of application of each velocity 
operator to a given particle. For example, let v1, v2, v3 be the three velocity operators defined 
in the last section, A1 and A2 be two sequences of application of these velocity operators, 
A1=(v1, v2, v3), A2=(v3, v1, v2). Regardless the coefficients of equation (9), two examples of 
algorithms for the composition of the velocities are presented in figures 4(a) and 4(b). The 
meaning of those coefficients is explained further. In the algorithm shown in figure 4(a), the 
composition of velocities is implicit, once the results of the application of the velocity 
operators v1 and v2 are inputs for the next operation. A possible implementation for the 
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composition of velocities with sequence A2 is illustrated in figure 4(b), where a method to 
compose the results of each application of the velocity operators has to be defined. 
 

procedure update_position(xp, pbestp, gbestp)
      y1 ← v1(xp) 
      y2 ← v2(y1, pbestp)  
      y3 ← v3(y2, gbestp)    
      return(y3) 

 procedure update_position(xp, pbestp, gbestp) 
      y1 ← v3(xp, gbestp) 
      y2 ← v1(xp) 
      y3 ← v2(xp, pbestp) 
      return(y1 ⊕ y2 ⊕ y3) 

(a)                 (b) 
Fig. 4. Composition of velocities to update xp with sequences (a) A1 and (b) A2 

Besides the six ways to combine velocities v1, v2 and v3, there is, still, the possibility of 
repeating velocity operators in the same sequence. For example, the sequence 
A = (v1,v2,v3,v1) can be implemented with the algorithm of figure 4(a), replacing the 
statement return(y3) by the statements y4←v1(y3) and return(y4). 
In order to accomplish the task of composing velocities, stopping conditions for the 
application of each velocity operator can also be defined. Let A = (a1, a2, …, am) be a sequence 
where each ai, 1 ≤ i ≤ m, is a pair (vj, sk), vj ∈ V, the set of velocity operators, and sk is vj’s 
stopping condition. Thus, given a sequence A with q elements, the first velocity operator is 
applied to particle p until reaching its corresponding stopping condition, then the process 
continues with the second velocity operator until the q-th element of sequence A. 
In this work two velocity operators are considered: local search (v1) and path-relinking 
(v2=v3). Some stopping conditions that can be adopted for v1 are: to execute a maximum 
number of local search iterations, to find a solution that improves the input solution by a 
given amount, to find a local optimum (corresponds to a standard local search run). Some 
stopping conditions for v2 are: to reach the target solution (corresponds to the standard 
path-relinking), to find a solution better than the origin and target solutions, to find a 
solution better than the worst among the two input solutions, to stop after a maximum 
number of iterations, or, given the distance d between the two input solutions, to stop after 
doing ⎣d/z⎦ iterations, where z is an integer z ≤ d. 
In this context, the coefficients of equation (9) can be thought as representing stopping 
conditions. For example, let c0, c1, c2 be three numbers in the interval [0,1] and itmax1, itmax2, 
itmax3 be the maximum number of iterations for the operations with velocities v1, v2 and v3, 
respectively. Then ci×vi+1(⋅), i = 0,1,2, represents the application of velocity operator vi+1 with 
a maximum of ci×itmaxi+1 iterations. 
Consider the algorithm of figure 2, with the following modifications: 
• pr1, pr2, pr3 are the probabilities associated with compositions represented by sequences 

A1, A2 and A3, respectively. 
• The statements  
                  velocityp  ←  define_velocity(pr1, pr2, pr3)  
                  xp ← update(xp,velocityp) 
        are replaced by 
                         compp  ←  define_composition(pr1, pr2, pr3)  
                         xp ← update(xp,compp) 
In order to test the potential of composing velocities, two variants of the basic algorithm 
shown in figure 2 are investigated. The sequences A1, A2 and A3 of the first algorithmic 
version are: A1 = ((v1,s1)), A2 = ((v2,s2), (v1,s1)), A3 = ((v3,s2), (v1,s1)). The stopping conditions s1 
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and s2 are, respectively, to find a local optimum and to find a solution better than the worst 
among the two input solutions. Figure 5(a) shows an illustrative scheme of sequence A2. 
Once the path-relinking is considered for v2 and v3, the scheme of figure 5(a) is also valid if 
v2 is replaced by v3. In the second variant of the basic algorithm the sequences are: 
A1 = ((v1,s1)), A2 = ((v2,s2), (v1,s1), (v2,s3)), A3 = ((v3,s2), (v1,s1),(v3,s3)). The stopping condition s3 
is to reach the target solution. The illustrative scheme of the sequence A3 (also valid for A2) is 
shown in figure 5(b). 
 

Origin Target

(v2,s2)

(v1,s1)

 

 Origin Target

(v3,s2)

(v1,s1)
(v3,s3)

 
(a)                 (b) 

Fig. 5. Sequences (a) A2 = ((v2,s2), (v1,s1)) and (b) A3 = ((v3,s2), (v1,s1),(v3,s3)). 
Tables 6 and 7 show a comparison between the results obtained by the basic PSO-LK and 
the first and second algorithmic versions, respectively. The elements of columns Min and Av 
are the percent deviation from the best known solution of the best and average solutions 
found by the correspondent algorithm in 20 independent runs. The average processing 
times in seconds are presented in column T(s). The cells with the best results have a dark 
background. The p-values shown in the last column of tables 6 and 7 are the result of the 
hypothesis test with the average values presented for each instance. 
In preliminary experiments the values 10, 15, 20 and 25 were tested for the size of the swarm 
and the values 20, 50 and 100 were tested for the maximum number of iterations. The best 
trade-off between quality of solution and processing time was reached with 20 particles and 
maximum of 20 iterations. The tests were done in a Pentium IV, 3.0 GHz, 1 Gb of RAM. 
Table 6 shows that both algorithmic versions find the best average solutions of 10 instances, 
the PSO-LK finds 1 best solution and the PSO-LK-C1 finds 6 best solutions. Observing the p-
values of the 20 instances where different average solutions were found, the table shows 
that, with a level of significance 0.05, significant differences exist only for instances nrw1379 
and pr2392. Thus, both versions present similar performance regarding quality of solution 
for the majority of the tested instances. Nevertheless, the processing times of the algorithmic 
version with the composition of velocities are significantly lower than those presented by 
the basic algorithmic version at 27 instances. The algorithm with the composition of 
velocities spends, in average, half the processing time spent by the basic algorithm. Thus 
with half of the processing effort, the algorithm is able to find solutions as good as the basic 
PSO-LK. 
Similar results are observed in table 7. The PSO-LK and the PSO-LK-C2 find the best 
average solutions of 10 and 11 instances, respectively. Regarding the best solution found by 
each algorithm, table 7 shows that the PSO-LK-C2 finds 6 best results and the PSO-LK does 
not find any best result. The p-values of the 21 instances for which the algorithms found 
different average solutions show that a significant difference exists only for instance pr2392. 
In average, the processing times of PSO-LK-C2 are 1.27 times better than the ones presented 
by the PSO-LK. 
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composition of velocities with sequence A2 is illustrated in figure 4(b), where a method to 
compose the results of each application of the velocity operators has to be defined. 
 

procedure update_position(xp, pbestp, gbestp)
      y1 ← v1(xp) 
      y2 ← v2(y1, pbestp)  
      y3 ← v3(y2, gbestp)    
      return(y3) 

 procedure update_position(xp, pbestp, gbestp) 
      y1 ← v3(xp, gbestp) 
      y2 ← v1(xp) 
      y3 ← v2(xp, pbestp) 
      return(y1 ⊕ y2 ⊕ y3) 

(a)                 (b) 
Fig. 4. Composition of velocities to update xp with sequences (a) A1 and (b) A2 

Besides the six ways to combine velocities v1, v2 and v3, there is, still, the possibility of 
repeating velocity operators in the same sequence. For example, the sequence 
A = (v1,v2,v3,v1) can be implemented with the algorithm of figure 4(a), replacing the 
statement return(y3) by the statements y4←v1(y3) and return(y4). 
In order to accomplish the task of composing velocities, stopping conditions for the 
application of each velocity operator can also be defined. Let A = (a1, a2, …, am) be a sequence 
where each ai, 1 ≤ i ≤ m, is a pair (vj, sk), vj ∈ V, the set of velocity operators, and sk is vj’s 
stopping condition. Thus, given a sequence A with q elements, the first velocity operator is 
applied to particle p until reaching its corresponding stopping condition, then the process 
continues with the second velocity operator until the q-th element of sequence A. 
In this work two velocity operators are considered: local search (v1) and path-relinking 
(v2=v3). Some stopping conditions that can be adopted for v1 are: to execute a maximum 
number of local search iterations, to find a solution that improves the input solution by a 
given amount, to find a local optimum (corresponds to a standard local search run). Some 
stopping conditions for v2 are: to reach the target solution (corresponds to the standard 
path-relinking), to find a solution better than the origin and target solutions, to find a 
solution better than the worst among the two input solutions, to stop after a maximum 
number of iterations, or, given the distance d between the two input solutions, to stop after 
doing ⎣d/z⎦ iterations, where z is an integer z ≤ d. 
In this context, the coefficients of equation (9) can be thought as representing stopping 
conditions. For example, let c0, c1, c2 be three numbers in the interval [0,1] and itmax1, itmax2, 
itmax3 be the maximum number of iterations for the operations with velocities v1, v2 and v3, 
respectively. Then ci×vi+1(⋅), i = 0,1,2, represents the application of velocity operator vi+1 with 
a maximum of ci×itmaxi+1 iterations. 
Consider the algorithm of figure 2, with the following modifications: 
• pr1, pr2, pr3 are the probabilities associated with compositions represented by sequences 

A1, A2 and A3, respectively. 
• The statements  
                  velocityp  ←  define_velocity(pr1, pr2, pr3)  
                  xp ← update(xp,velocityp) 
        are replaced by 
                         compp  ←  define_composition(pr1, pr2, pr3)  
                         xp ← update(xp,compp) 
In order to test the potential of composing velocities, two variants of the basic algorithm 
shown in figure 2 are investigated. The sequences A1, A2 and A3 of the first algorithmic 
version are: A1 = ((v1,s1)), A2 = ((v2,s2), (v1,s1)), A3 = ((v3,s2), (v1,s1)). The stopping conditions s1 
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and s2 are, respectively, to find a local optimum and to find a solution better than the worst 
among the two input solutions. Figure 5(a) shows an illustrative scheme of sequence A2. 
Once the path-relinking is considered for v2 and v3, the scheme of figure 5(a) is also valid if 
v2 is replaced by v3. In the second variant of the basic algorithm the sequences are: 
A1 = ((v1,s1)), A2 = ((v2,s2), (v1,s1), (v2,s3)), A3 = ((v3,s2), (v1,s1),(v3,s3)). The stopping condition s3 
is to reach the target solution. The illustrative scheme of the sequence A3 (also valid for A2) is 
shown in figure 5(b). 
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(a)                 (b) 

Fig. 5. Sequences (a) A2 = ((v2,s2), (v1,s1)) and (b) A3 = ((v3,s2), (v1,s1),(v3,s3)). 
Tables 6 and 7 show a comparison between the results obtained by the basic PSO-LK and 
the first and second algorithmic versions, respectively. The elements of columns Min and Av 
are the percent deviation from the best known solution of the best and average solutions 
found by the correspondent algorithm in 20 independent runs. The average processing 
times in seconds are presented in column T(s). The cells with the best results have a dark 
background. The p-values shown in the last column of tables 6 and 7 are the result of the 
hypothesis test with the average values presented for each instance. 
In preliminary experiments the values 10, 15, 20 and 25 were tested for the size of the swarm 
and the values 20, 50 and 100 were tested for the maximum number of iterations. The best 
trade-off between quality of solution and processing time was reached with 20 particles and 
maximum of 20 iterations. The tests were done in a Pentium IV, 3.0 GHz, 1 Gb of RAM. 
Table 6 shows that both algorithmic versions find the best average solutions of 10 instances, 
the PSO-LK finds 1 best solution and the PSO-LK-C1 finds 6 best solutions. Observing the p-
values of the 20 instances where different average solutions were found, the table shows 
that, with a level of significance 0.05, significant differences exist only for instances nrw1379 
and pr2392. Thus, both versions present similar performance regarding quality of solution 
for the majority of the tested instances. Nevertheless, the processing times of the algorithmic 
version with the composition of velocities are significantly lower than those presented by 
the basic algorithmic version at 27 instances. The algorithm with the composition of 
velocities spends, in average, half the processing time spent by the basic algorithm. Thus 
with half of the processing effort, the algorithm is able to find solutions as good as the basic 
PSO-LK. 
Similar results are observed in table 7. The PSO-LK and the PSO-LK-C2 find the best 
average solutions of 10 and 11 instances, respectively. Regarding the best solution found by 
each algorithm, table 7 shows that the PSO-LK-C2 finds 6 best results and the PSO-LK does 
not find any best result. The p-values of the 21 instances for which the algorithms found 
different average solutions show that a significant difference exists only for instance pr2392. 
In average, the processing times of PSO-LK-C2 are 1.27 times better than the ones presented 
by the PSO-LK. 
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PSO-LK PSO-LK-C1 
Instances 

Min Av T(s) Min Av T(s) 
p-level 

pr439 0 0 0.78 0 0 0.38 ----- 

pcb442 0 0 0.80 0 0 0.39 ----- 

d493 0 0 19.38 0 0 13.52 ----- 

rat575 0 0 6.47 0 0.0007 3.83 0.317318 

p654 0 0 1.90 0 0 0.87 ----- 

d657 0 0 12.42 0 0 8.35 ----- 

rat783 0 0 5.25 0 0 1.92 ----- 

dsj1000 0.0027 0.0031 178.48 0.0027 0.0027 82.27 0.077143 

pr1002 0 0 9.50 0 0 3.32 ----- 

u1060 0 0 38.18 0 0.0008 22.87 0.151953 

vm1084 0 0.0010 34.74 0 0.0016 25.05 0.958539 

pcb1173 0 0.0001 48.18 0 0.0003 32.65 0.156717 

d1291 0 0 29.86 0 0 8.81 ----- 

rl1304 0 0 21.62 0 0 5.57 ----- 

rl1323 0 0.0092 225.32 0 0.0030 66.60 0.068481 

nrw1379 0.0017 0.0085 417.80 0 0.0058 181.75 0.041205 

fl1400 0 0 15.42 0 0 5.68 ----- 

fl1577 0 0.0135 461.99 0 0.0200 248.85 0.237805 

vm1748 0 0.0018 854.17 0 0 382.28 0.317318 

u1817 0 0.0863 789.18 0.0367 0.1068 410.16 0.297390 

rl1889 0 0.0073 894.43 0 0.0037 348.68 0.229728 

d2103 0 0.0043 1137.53 0 0.0123 417.53 0.751641 

u2152 0 0.0717 1415.32 0 0.0711 512.12 0.989112 

pr2392 0 0.0021 577.78 0 0 86.43 0.018578 

pcb3038 0.0101 0.0396 323.94 0 0.0343 1772.8 0.336582 

fl3795 0 0.0142 621.63 0 0.0214 131.10 0.636875 

fnl4461 0.0296 0.0462 583.78 0.0104 0.0421 952.61 0.386402 

rl5915 0.0122 0.0633 1359.25 0.0025 0.0435 1029.21 0.083396 

rl5934 0.0012 0.0650 983.04 0 0.0797 1443.5 0.645471 

pla7397 0.0075 0.0253 1563.22 0.0004 0.0348 826.38 0.158900 

Table 6. Comparison between PSO-LK and PSO-LK-C1 
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PSO-LK PSO-LK-C2 
Instances 

Min Av T(s) Min Av T(s) 
p-level 

pr439 0 0 0.78 0 0 0.59 ---- 

pcb442 0 0 0.80 0 0 0.6 ---- 

d493 0 0 19.38 0 0 16.3 ---- 

rat575 0 0 6.47 0 0.0007 4.17 0.317318 

p654 0 0 1.90 0 0 1.46 ---- 

d657 0 0 12.42 0 0 9.72 ---- 

rat783 0 0 5.25 0 0 3.76 ---- 

dsj1000 0.0027 0.0031 178.48 0.0027 0.0028 103.01 0.097603 

pr1002 0 0 9.50 0 0 6.33 ---- 

u1060 0 0 38.18 0 0.0013 26.88 0.075373 

vm1084 0 0.0010 34.74 0 0.0016 29.57 0.958539 

pcb1173 0 0.0001 48.18 0 0.0003 34.53 0.297961 

d1291 0 0 29.86 0 0.0073 27.46 0.152088 

rl1304 0 0 21.62 0 0 10.44 ---- 

rl1323 0 0.0092 225.32 0 0.0055 127.55 0.618230 

nrw1379 0.0017 0.0085 417.80 0 0.0080 259.99 0.587686 

fl1400 0 0 15.42 0 0 11.2 ---- 

fl1577 0 0.0135 461.99 0 0.1144 303.77 0.102963 

vm1748 0 0.0018 854.17 0 0 485.22 0.317318 

u1817 0 0.0863 789.18 0 0.0811 454.81 0.684114 

rl1889 0 0.0073 894.43 0 0.0070 389.12 0.844488 

d2103 0 0.0043 1137.53 0 0.0128 443.39 0.655928 

u2152 0 0.0717 1415.32 0 0.0609 680.38 0.390349 

pr2392 0 0.0021 577.78 0 0 145.84 0.018578 

pcb3038 0.0101 0.0396 323.94 0.0036 0.0387 1930.7 0.849722 

fl3795 0 0.0142 621.63 0 0.0285 408.86 0.381866 

fnl4461 0.0296 0.0462 583.78 0.0148 0.0452 1148.8 0.108256 

rl5915 0.0122 0.0633 1359.25 0.0109 0.0499 984.11 0.194137 

rl5934 0.0012 0.0650 983.04 0 0.0659 1142.78 0.913724 

pla7397 0.0075 0.0253 1563.22 0.0007 0.0298 763.47 0.684311 

Table 7. Comparison between PSO-LK and PSO-LK-C2 
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PSO-LK PSO-LK-C1 
Instances 

Min Av T(s) Min Av T(s) 
p-level 

pr439 0 0 0.78 0 0 0.38 ----- 

pcb442 0 0 0.80 0 0 0.39 ----- 

d493 0 0 19.38 0 0 13.52 ----- 

rat575 0 0 6.47 0 0.0007 3.83 0.317318 
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u1060 0 0 38.18 0 0.0008 22.87 0.151953 
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Table 6. Comparison between PSO-LK and PSO-LK-C1 
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PSO-LK PSO-LK-C2 
Instances 

Min Av T(s) Min Av T(s) 
p-level 
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u1817 0 0.0863 789.18 0 0.0811 454.81 0.684114 

rl1889 0 0.0073 894.43 0 0.0070 389.12 0.844488 

d2103 0 0.0043 1137.53 0 0.0128 443.39 0.655928 

u2152 0 0.0717 1415.32 0 0.0609 680.38 0.390349 

pr2392 0 0.0021 577.78 0 0 145.84 0.018578 

pcb3038 0.0101 0.0396 323.94 0.0036 0.0387 1930.7 0.849722 

fl3795 0 0.0142 621.63 0 0.0285 408.86 0.381866 

fnl4461 0.0296 0.0462 583.78 0.0148 0.0452 1148.8 0.108256 

rl5915 0.0122 0.0633 1359.25 0.0109 0.0499 984.11 0.194137 

rl5934 0.0012 0.0650 983.04 0 0.0659 1142.78 0.913724 

pla7397 0.0075 0.0253 1563.22 0.0007 0.0298 763.47 0.684311 

Table 7. Comparison between PSO-LK and PSO-LK-C2 
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A comparison between the performance, regarding quality of solution, of PSO-LK-C1 and 
four effective heuristics for the TSP is shown in tables 8 and 9, where 23 symmetric instances 
with |N| ranging from 1000 to 7397 are considered. The heuristics are: the Nguyen, 
Yoshihara, Yamamori and Yasunada iterated Lin-Kernighan variant (reported at 
http://www.research.att.com/~dsj/chtsp/), ILK-NYYY, the iterated Lin-Kernighan variant 
presented by Johnson & McGeoch (1997), ILK-JM, the Tourmerge (Cook & Seymour, 2003) 
and the LK implementation presented by Helsgaun (2000), ILK-H. The results of the first 
three heuristics were obtained in the DIMACS Challenge page (at 
http://www.research.att.com/~dsj/chtsp/results.html).  
The columns of table 8 corresponding to the ILK-NYYY and the ILK-JM show the best tours 
obtained in ten |N| iterations runs.  The table shows that the PSO-LK-C1 obtains better 
values than the ILK-NYYY and the ILK-JM at 13 and 16 instances, respectively. The ILK-
NYYY presents the best minimal solution for instance dsj1000. The last line of table 8 shows 
the average results of the three algorithms. It is observed that, in average, the solutions 
obtained by the PSO-LK-C1 are, approximately, 8 and 24 times better than the solutions 
presented by the ILK-NYYY and the ILK-JM, respectively. 
 

Instance PSO-
LK-C1 

ILK-NYYY 
Nb10 

ILK-JM 
Nb10 

dsj1000 0.0027 0 0.0063 
pr1002 0 0 0.1482 
u1060 0 0.0085 0.0210 

vm1084 0 0.0217 0.0217 
pcb1173 0 0 0.0088 
d1291 0 0 0 
rl1304 0 0 0 
rl1323 0 0.01 0 

nrw1379 0 0.0247 0.0018 
fl1400 0 0 0 
fl1577 0 0 0 

vm1748 0 0 0 
u1817 0.0367 0.1643 0.2657 
rl1889 0 0.0082 0.0041 
d2103 0 0.0559 0 
u2152 0 0 0.1743 
pr2392 0 0.0050 0.1495 

pcb3038 0 0.0247 0.1213 
fl3795 0 0 0.0104 

fnl4461 0.0104 0.0449 0.1358 
rl5915 0.0025 0.0580 0.0168 
rl5934 0 0.0115 0.1723 

pla7397 0.0004 0.0209 0.0497 
Mean 0.0023 0.0199 0.0569 

Table 8. Best solutions of PSO-LK-C1 and two iterative LK 
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Table 9 shows a comparison between the best and average results found by the PSO-LK-C1, 
the Tourmerge and the ILK-H. Regarding the minimal values, the proposed algorithm 
presents better results than the Tourmerge at 6 of the 21 instances the latter algorithm 
reports results. The Tourmerge presents one minimal result better than the proposed 
algorithm. The ILK-H presents 4 minimal results that are better than the ones presented by 
the PSO-LK-C1. Compared with the former, the latter algorithm presents the best minimal 
results of 2 instances. Considering the average solutions, the PSO-LK-C1 presents better 
results than the Tourmerge and the ILK-H at 14 and 12 instances, respectively. The 
Tourmerge and the ILK-H present better average results than the PSO algorithm for 5 and 8 
instances, respectively. The last line of table 9 summarizes the results of each column. The 
proposed algorithm presents the best statistics regarding the average solutions. 
 

PSO-LK-C1 Tourmerge ILK-H Instance Min Average Min Average Min Average 
dsj1000 0.0027 0.0027 0.0027 0.0478 0 0.035 
pr1002 0 0 0 0.0197 0 0 
u1060 0 0.0008 0 0.0049 0 0 

vm1084 0 0.0016 0 0.0013 0 0.007 
pcb1173 0 0.0003 0 0.0018 0 0.002 
d1291 0 0 0 0.0492 0 0.033 
rl1304 0 0 0 0.1150 0 0.019 
rl1323 0 0.0030 0.01 0.0411 0 0.018 

nrw1379 0 0.0058 0 0.0071 0 0.006 
fl1400 0 0 0 0 0 0.162 
fl1577 0 0.0200 0 0.0225 0 0.046 

vm1748 0 0 0 0 0 0.023 
u1817 0.0367 0.1068 0.0332 0.0804 0 0.078 
rl1889 0 0.0037 0.0082 0.0682 0 0.002 
d2103 0 0.0123 0.0199 0.3170 --- --- 
u2152 0 0.0711 0 0.0794 0 0.029 
pr2392 0 0 0 0.0019 0 0 

pcb3038 0 0.0343 0.0036 0.0327 0 0 
fl3795 0 0.0214 0 0.0556 0 0.072 

fnl4461 0.0104 0.0421 --- --- 0 0.001 
rl5915 0.0025 0.0435 0.0057 0.0237 0.009 0.028 
rl5934 0 0.0797 0.0023 0.0104 0.005 0.089 

pla7397 0.0104 0.0348 --- --- 0 0.001 
Mean 0.002291 0.019926 0.004076 0.046652 0.000636 0.029591 

Table 9. Minimal and average results presented by PSO-LK-C1 and Tourmerge 

5. Conclusion 
This chapter summarized the research done to develop PSO algorithms for the TSP. Many of 
the PSO algorithms presented previously for the investigated problem do not tackle large 
instances and present results far from the best known heuristic solutions obtained by 
effective algorithms. The chapter presented an approach to design effective PSO algorithms 
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for the TSP that can be extended to other discrete optimization problems. The new 
approach, first introduced by Goldbarg et al. (2006a), differentiates velocity operators 
according to the type of move the particle does. Additionally, methods to compose the 
velocity operators were proposed. Computational experiments with instances up to 7397 
cities were presented. The results of those experiments show that the proposed method 
produces high quality solutions, when compared with four effective heuristics designed 
specifically for the investigated problem. 
The composition of velocities allows building a number of possible implementations for the 
search strategies chosen to be used in the PSO algorithm. Therefore, rather than a 
metaheuristic, the Particle Swarm approach can be thought as a framework for heuristics 
hybridization in the context of discrete optimization problems. 

6. Future works 
In future works other methods to compose velocities and heuristics hybridization under the 
PSO framework will be investigated. Another idea to be explored in future researches is 
variable velocities. The proposed approach will be applied to the Generalized TSP and to the 
Bi-objective TSP. 
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1. Introduction 
A variant of the traveling salesman problem (TSP) is known as the generalized traveling 
salesman problem (GTSP), where a tour does not necessarily visit all the nodes since the set 
N  of nodes is divided into m  sets or clusters, mNN ,..,1  with NNN m =∪∪ ..1  and 

φ=∩ kj NN  if kj ≠ . The objective is to find a minimum tour length containing at least a 

node from each cluster jN . Several applications of the GTSP can be found in postal routing 
[1], computer file processing [2], order picking in warehouses [3], process planning for 
rotational parts [4], and the routing of clients through welfare agencies [5]. Furthermore, 
many other combinatorial optimization problems can be reduced to the GTSP problem [1]. 
TSP is NP-Hard and hence the GTSP is NP-hard because if the set N of nodes is partitioned 
into N  subsets with each containing one node, it results in a TSP.  
Regarding the literature for the GTSP, it was first addressed in [2, 5, 6]. Exact algorithms can 
be found in Laporte et al. [7, 8], Laporte & Nobert [9], Fischetti et al. [10, 11], and others in 
[12, 13]. On the other hand, several worthy heuristic approaches are applied to the GTSP. 
Noon [3] presented several heuristics for the GTSP among which the most promising one is 
an adaptation of the well-known nearest-neighbor heuristic for the TSP. Similar adaptations 
of the farthest-insertion, nearest-insertion, and cheapest-insertion heuristics are proposed in 
Fischetti et al. [11]. GI3 (Generalized Initilialization, Insertion, and Improvement) is one of 
the most sophisticated heuristics, which is developed by Renaud & Boctor [14]. GI3 is a 
generalization of the I3 heuristic presented in Renaud et al. [15]. The application of the 
metaheuristic algorithms specifically to the GTSP is very rare in the litearture. A random 
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key genetic algorithm (RKGA) is proposed by Snyder & Daskin [16], which ignited the 
metaheuristic research on the GTSP. In the RKGA, random key representation is used and 
solutions generated by the RKGA are improved by using two local search heuristics 
namely, 2-opt and “swap” procedures. Note that their “swap” procedure provides a speed-
up method in the search process. It is basically concerned with removing a node j from a 
tour, and inserting all possible nodes k’s from the corresponding cluster in an edge ( )vu,  in 
a tour (i.e., between the node u  and the node v ) with a modified nearest-neighbor criterion. 
They have been separately implemented by embedding them in the level-I improvement and 
level-II improvement procedures.  
For each individual in the population, they store the original (pre-improvement) cost and 
the final cost after improvements have been made. When a new individual is created, they 
compare its pre-improvement cost to the pre-improvement cost of the individual at position 

Np×  in the previous (sorted) population, where [ ]1,0∈p  is a parameter of the algorithm 
and 05.0=p  in Snyder & Daskin [16]. These two improvement procedures are implemented 
as follows: 
1. If the new solution is worse than the pre-improvement cost of this individual, the level-I 

improvement is used by applying one 2-opt exchange and one “swap” procedure 
(assuming a profitable one can be found) and store the resulting individual.  

2. On the other hand, if the new solution is better, the level-II improvement is used by 
applying 2-opt until no profitable 2-opt can be found, then applying “swap” procedures 
until no profitable swaps can be found, and repeat until no improvements have been 
made in a given pass.  

The RKGA focuses on designing the local search to spend more time on improving solutions 
that seem promising in comparison to previous solutions and to spend less time on the 
others. In both level-I and level-II improvement, a ‘‘first-improving’’ strategy is employed 
where the first move of a given type improving the objective value is implemented, rather 
than searching for the best such move before choosing one. Thereafter, Tasgetiren et al. [17, 
18, 19] presented a discrete particle swarm optimization algorithm a genetic algorithm (GA) 
and an iterated greedy algorithm, respectively whereas Silberholz & Golden proposed 
another genetic algorithm in [20] which is denoted as mrOXGA.  
The GSTP may deal with either symmetric where the distance from node j to node k is the 
same as the distance from k to j or asymmetric distances where the distance from node j to 
node k is not the same as the distance from k to j. In this paper, meta-heuristics are presented 
to solve the GTSP on a standard set of benchmark instances with symmetric distances.  
 Particle swarm Optimization (PSO) is one of the most recent evolutionary meta-heuristic 
methods, which receives growing interest from the researchers. It is based on the metaphor 
of social interaction and communication such as bird flocking and fish schooling. PSO was 
first introduced to optimize various continuous nonlinear functions by Eberhart & Kennedy 
[21]. Distinctly different from other evolutionary-type methods such as GA and ES, PSO 
algorithms maintain the members of the entire population through the search procedure. In 
a PSO algorithm, each individual is called a particle, and each particle moves around in the 
multi-dimensional search space with a velocity constantly updated by the particle’s own 
experience, the experience of the particle’s neighbors, or the experience of the whole swarm.  
That is, the search information is socially shared among particles to direct the population 
towards the best position in the search space. The comprehensive surveys of the PSO 
algorithms and applications can be found in Kennedy et al. [22] and Clerc [23]. 
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In this paper, a DPSO algorithm is presented to solve the GTSP on a standard set of 
benchmark instances with symmetric distances. Furthermore, the DPSO algorithm is 
hybridized with local search improvement heuristics to intensify the search process; hence 
to further improve the solution quality.  
The remaining chapter is organized as follows. Section 2 introduces the DPSO algorithm 
and its basic components. Section 3 presents the computational results on benchmark 
problems. Finally, Section 4 summarizes the concluding remarks. 

2. Discrete particle swarm optimization algorithm 
In the standard PSO algorithm, all particles have their position, velocity, and fitness values. 
Particles fly through the m-dimensional space by learning from the historical information 
emerged from the swarm population. For this reason, particles are inclined to fly towards 
better search area over the course of evolution. Let NP denote the swarm size represented as 

[ ]k
NP

kkk xxxx ,...,, 21= . Then each particle in the swarm population has the following attributes: 

A current position represented as [ ]k
im
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a current global best position represented as [ ]k
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kkk gggg ,...,, 21= . Assuming that the 
function  f  is to be minimized, the current velocity of the jth dimension of the ith particle is 
updated as follows. 
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where kw  is the inertia weight which is a parameter to control the impact of the previous 
velocities on the current velocity; c1 and c2 are acceleration coefficients and r1 and r2 are 
uniform random numbers between [0,1]. The current position of the jth dimension of the ith 
particle at the generation k is updated using the previous position and current velocity of 
the particle as follows: 
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Finally, the global best position found so far in the swarm population is obtained for 
NPi ≤≤1  as 
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Standard PSO equations cannot be used to generate binary/discrete values since positions 
are real-valued. Pan et al. [24, 25, 26] have presented a DPSO optimization algorithm to 
tackle the binary/discrete spaces, where particles are updated as follows: 
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Finally, the global best position found so far in the swarm population is obtained for 
NPi ≤≤1  as 
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Standard PSO equations cannot be used to generate binary/discrete values since positions 
are real-valued. Pan et al. [24, 25, 26] have presented a DPSO optimization algorithm to 
tackle the binary/discrete spaces, where particles are updated as follows: 
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The update equation (5) consists of three components: The first component is 
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i xFwa ρ , which represents the velocity of the particle. In the component 
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i xFwa ρ , ρF  represents the mutation or perturbation operator with the mutation 

strength of ρ and the mutation probability of w . In other words, a uniform random number 
r  is generated between 0 and 1. If r  is less than w  then the mutation operator is applied to 
generate a perturbed particle by ( )1−= k
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i xFa ρ , otherwise current particle is mutated as 
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i xinserta . In addition, the mutation strength d  is the degree of perturbation, i.e., 

single insert move or double insert move or some constructive heuristics generating distinct 
solutions and so on. In this paper, we employ the destruction and construction (DC) 
procedure of the IG algorithm in the mutation phase. 
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i bx =  depending on the choice of a uniform random number. 

The basic idea behind the DPSO algorithm is to provide information exchange amongst the 
population members, personal best solutions and the global best solution. 
However, combining the particle with both personal best and then global best solution 
through crossover operator may cause a particle losing some genetic information. Instead, 
we propose a modification to our DPSO algorithm in this paper utilizing either the “social” 
or “cognitive” genetic information during the particle update process. It is achieved as 
follows: 
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In other words, after mutation operator, the particle is updated by recombining the 
temporary mutated individual with either the personal best or global best solution 
depending on a search directing probability of 1c . For the DPSO algorithm, the gbest (global 
neighborhood) model of Kennedy et al. [22] was followed. The pseudo code of the DPSO 
algorithm with the local search is given in Fig. 1. 
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Procedure DPSO 
Initialize parameters 
Initialize particles of population 
Evaluate particles of population 
Apply local search to population individuals   %Optional 
While (not termination) Do  
       Find personal best 
       Find global best 
       Update particles of population 
       Evaluate particles of population 
       Apply local search to population individuals   %Optional 
Endwhile 
Return Global best 
Endprocedure 

Fig. 1.  Generic Outline of DPSO Algorithm with Local Search. 

2.1 Solution representation 
We employ a path representation for the GTSP in this paper. In the path representation, 
each consecutive node is listed in order. An advantage of this representation is due to its 
simplicity in objective function evaluation since the total cost of a path can easily be 
calculated by summing the costs (distances) of each pair of adjacent nodes. However, a 
distadvantge of this representation is due to the fact that there is no quarantee that a 
randomly selected solution will be a valid GTSP tour because there is no quarantee that 
each cluster is represented exactly once in the path without some repair procedures. In order 
to handle the decision of which node should be chosen from a given cluster in the GTSP 
solution, we include both cluster and tour information in solutions. In other words, a GTSP 
solution consists of both an array of permutation of clusters ( jn ) and an array of nodes ( jπ ) 
to be visited in m dimensions/clusters. In this way, each solution is guaranteed to be a GTSP 
solution. The solution representation together with the necessary distance information for 
calculating the objective function value ( )xF  of the solution x  is illustrated in Table 1 where 

1+jjd ππ shows the distance from node jπ  to node 1+jπ . The initial solution is constructed in 

such a way that first a permutation of clusters is determined randomly, then since each 
cluster contains one or more nodes, a tour is established by randomly choosing a single 
node from each corresponding cluster. By including cluster information in solution 
representation, which node must be visited in a tour can be determined easily with either a 
random selection or a systematic way. For example, in the pair ( )jjn π, , jn stands for the 
cluster in the jth dimension whereas jπ  represents the node to be visited from cluster jn . 
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Table 1. Solution Representation 
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As illustrated in Table 1, the objective function value of a solution x  is the total tour length 
and given by  

 ( ) ∑ +=
−

=
+

1

1 11

m

j mjj
ddxF ππππ  (1) 

For example, consider a GTSP instance of 11EIL51 from TSPLIB library [27], which has fifty 
one nodes divided into eleven clusters. So the clusters are { }41,40,191 =N , { }36,35,20,32 =N , 

{ }43,243 =N , { }39,334 =N , { }5 11,12,27,32, 46,47,51 ,N =  { }6 2,16,21, 29,34,50 ,N =  

{ }7 8, 22,26, 28,31 ,N =  { }8 13,14,18,25 ,N =  { }9 4,15,17,37, 42, 44,45 ,N =  
{ }48,23,7,6,110 =N , and { }49,38,30,10,9,511 =N . Table 2 illustrates a random GTSP solution 

with the distance information 
1+jj

d ππ  and the objective function ( )xF  for the instance 

11EIL51. In addition, the whole distance matrix and other detailed information about the 
instance 11EIL51 can be found in http://www.ntu.edu.sg/home/EPNSugan. 
 

 j 1 2 3 4 5 6 7 8 9 10 11 1 
jn  10 5 7 2 6 11 4 9 1 8 3 10  

x  jπ  1 51 22 20 50 10 33 44 41 25 24 1 

 1+jj
d ππ  51,1d 22,51d 20,22d 50,20d 10,50d 33,10d 44,33d 41,44d 25,41d 24,25d  1,24d   

( )xF  201  14 21  15  21  17  12  17  20  21  14  29   

Table 2. GTSP Solution for Instance 11EIL51 

As to the construction of the initial random solution as mentioned before, first a random 
permutation of clusters is established; then a corresponding node is randomly chosen from 
each cluster to establish the tour. To be more specific, for example, in Table 2, 52 =n  refers 
to the cluster 5N , and the corresponding node 512 =π  refers to the node 51 chosen 
randomly from the cluster 5N .  

2.2 NEH heuristic 
Due to the availability of the insertion methods that we have already proposed in [17, 18, 
19], it is possible to apply the NEH heuristic of Nawaz et al. [28] to the GTSP. Without 
considering cluster information for simplicity, the NEH heuristic for the GTSP can be 
summarized as follows: 
1. Determine an initial tour of nodes. Let this tour be x .   
2. The first two nodes (that is, 1π  and 2π ) are chosen and two possible partial tours of 

these two nodes are evaluated. Note that since a tour must be Hamiltanion cycle, partial 
tours will be evaluated with the first node being the last node, too. As an example, 
partial tours, ( )121 ,, πππ   and  ( )212 ,, πππ  are evaluated. 

3. Repeat the following steps until all nodes are inserted. In the kth step, node kπ  at 
position k  is taken and tentatively inserted into all the possible k  positions of the 
partial tour that are already partially completed. Select these k  tentative partial tours 
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that results in the minimum objective function value or a cost function suitably 
predefined. 

To picture out how the NEH heuristic can be adopted for the GTSP, consider a solution 
with five nodes as { }5,2,4,1,3=x . The following example illustrates the implementation of 
the NEH heuristic for the GTSP: 
1. Current solution is { }3,1,4,2,5 .x =  
2. Evaluate the first two nodes as follows: { }3,1,3  and { }1,3,1 . Assume that the first partial 

tour has a better objective function value than the second one. So the current partial 
tour will be { }3,1 .  

3. Insertions: 
• Insert node 4 into three possible positions of the current partial tour as follows: 

{ }4,1,3,4 , { }3,1,4,3  and { }3,4,1,3 . Assume that the best objective function value is with 
the partial tour { }3,1,4,3 . So the current partial tour will be { }1,4,3 .  

• Next, insert node 2 into four possible positions of the current partial tour as 
follows: { }2,1,4,3,2 , { }3,1,4,2,3 , { }3,1,2,4,3  and { }3,2,1,4,3 . Assume that the best 
objective function value is with the partial tour { }3,1,4,2,3 . So the current partial 
tour will be { }1,4,2,3 .  

• Finally, insert node 5 into five possible positions of the current partial tour as 
follows: { }5,1,4,2,3,5 , { }3,1,4,2,5,3 , { }3,1,4,5,2,3 , { }3,1,5,4,2,3  and { }3,5,1,4,2,3 . Assume 
that the best objective function value is with the partial tour { }3,1,5,4,2,3 . So the final 
complete tour will be { }1,5,4,2,3=x . 

2.3 Destruction and construction procedure 
We employ the destruction and construction (DC) procedure of the iterated greedy (IG) 
algorithm in [29] in the DPSO algorithm. In the destruction step, a given number d  of 
nodes, randomly chosen and without repetition, are removed from the solution. This results 
in two partial solutions. The first one with the size d  of nodes is called Rx  and includes the 
removed nodes in the order where they are removed. The second one with the size dm −  of 
nodes is the original one without the removed nodes, which is called Dx . It should be 
pointed out that we consider each corresponding cluster when the destruction and 
construction procedures are carried out in order to keep the feasibility of the GTSP tour. 
Note that the perturbation scheme is embedded in the destruction phase where p  nodes 
from Rx  are randomly chosen without repetition and they are replaced by some other nodes 
from the corresponding clusters.  
The construction phase requires a constructive heuristic procedure. We employ the NEH 
heuristic described in the previous section. In order to reinsert the set Rx  into the 
destructed solution Dx  in a greedy manner, the first node R

1π  in Rx  is inserted into all 

possible 1+− dm positions in the destructed solution Dx  generating 1+− dm  partial 
solutions. Among these 1+− dm  partial solutions including node R

1π , the best partial 
solution with the minimum tour length is chosen and kept for the next iteration. Then the 
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1π , the best partial 
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second node R
2π  in  Rx  is considered and so on until Rx  is empty or a final solution is 

obtained. Hence Dx  is again of size m .  
To figure out how DC can be adopted for the GTSP, consider a solution with five nodes as 

{ }5,2,4,1,3=x . Again, we do not consider cluster information for simplicity: 
1.    Current solution is { }3,1,4,2,5 .x =  
2.   Remove nodes 1 and 5 randomly from the current solution to establish two partial 

solutions as { }2,4,3=Dx  and { }5,1=Rx . 

3.   Insert node 1 into  four possible positions of the current partial tour { }2,4,3=Dx  as 
follows: { }1,2,4,3,1 , { }3,2,4,1,3 , { }3,2,1,4,3  and { }3,1,2,4,3 . Assume that the best 
objective function value is with the partial tour { }3,2,1,4,3 . So the current partial tour 

will be { }2,1,4,3=Dx .  

4.    Next, insert node 5 into five possible positions of the current partial tour { }2,1,4,3=Dx  
as follows: { }5,2,1,4,3,5 , { }3,2,1,4,5,3 , { }3,2,1,5,4,3 , { }3,2,5,1,4,3  and { }3,5,2,1,4,3 . Assume 
that the best objective function value is with the final tour { }5,2,1,4,3,5 . So the final 
complete tour will be { }2,1,4,3,5=x .  

In order to highlight the difference between the NEH insertion and the one proposed in by 
Rosenkrantz et al. [30], we give the same example as follows:  
1.     Current solution is { }5,2,4,1,3=x  
2.   Revove nodes 1 and 5 randomly from the current solution to establish two partial 

solutions as { }2,4,3=Dx  and { }5,1=Rx . 

3.   Insert node 1 into two possible positions of the current partial tour { }2,4,3=Dx  as 

follows: { }3,2,4,1,3 and { }3,2,1,4,3  because there are only two edges in Dx . Assume that 
the best objective function value is with the partial tour { }3,2,1,4,3 . So the current partial 

tour will be { }2,1,4,3=Dx .  

4.    Next, insert node 5 into three possible positions of the current partial tour { }2,1,4,3=Dx  
as follows: { }2,1,4,5,3 , { }3,2,1,5,4,3  and { }3,2,5,1,4,3  because there are only three edges in 

Dx . Assume that the best objective function value is with the final tour { }2,1,4,5,3 . So the 
final complete tour will be { }3,2,1,4,5,3  

As seen in the examples above, the NEH heuristic considers ( )1+n  insertions at each step 
whereas the Rosenkrantz et al. [30] makes ( )1−n  insertions in order to find a complete tour. 

2.4 Insertion methods 
The following insertion methods are proposed by the authors in [19]. These greedy speed-
up methods are based on the insertion of the pair ( )R

k
R
kn π,  into 1+− dm possible positions 

of a partial or destructed solution xd. Note that as an example only a single pair is 
considered to be removed from the current solution, perturbed with another node from the 
same cluster and reinserted into the partial solution. For this reason, the destruction size and 
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the perturbation strength are equal to one (i.e., 1=== kdρ ). As a matter of fact, the 

insertion of node R
kπ  into 1−− dm  possible positions is actually proposed by Rosenkrantz 

et al. [30] for the TSP. Snyder & Daskin [16] have adopted it for the GTSP. It is based on the 
removal and the insertion of node R

kπ  in an edge ( )D
v

D
u ππ ,  of a partial tour. However, it 

avoids the insertion of node R
kπ  on the first and the last position of any given partial tour. 

We illustrate these possible three insertions using the partial solution Dx  of the instance 
11EIL51 having eleven clusters and nodes. Suppose that the pair ( )51,5  is removed from the 
solution in Table 1; perturbed with node 27 from the same cluster 5N . So the current partial 
solution after removal and the pair to be reinserted are given in Tables 3A and 3B, 
respectively.  
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second node R
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Dx . Assume that the best objective function value is with the final tour { }2,1,4,5,3 . So the 
final complete tour will be { }3,2,1,4,5,3  

As seen in the examples above, the NEH heuristic considers ( )1+n  insertions at each step 
whereas the Rosenkrantz et al. [30] makes ( )1−n  insertions in order to find a complete tour. 

2.4 Insertion methods 
The following insertion methods are proposed by the authors in [19]. These greedy speed-
up methods are based on the insertion of the pair ( )R
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R
kn π,  into 1+− dm possible positions 

of a partial or destructed solution xd. Note that as an example only a single pair is 
considered to be removed from the current solution, perturbed with another node from the 
same cluster and reinserted into the partial solution. For this reason, the destruction size and 
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the perturbation strength are equal to one (i.e., 1=== kdρ ). As a matter of fact, the 
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kπ  into 1−− dm  possible positions is actually proposed by Rosenkrantz 

et al. [30] for the TSP. Snyder & Daskin [16] have adopted it for the GTSP. It is based on the 
removal and the insertion of node R

kπ  in an edge ( )D
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D
u ππ ,  of a partial tour. However, it 

avoids the insertion of node R
kπ  on the first and the last position of any given partial tour. 

We illustrate these possible three insertions using the partial solution Dx  of the instance 
11EIL51 having eleven clusters and nodes. Suppose that the pair ( )51,5  is removed from the 
solution in Table 1; perturbed with node 27 from the same cluster 5N . So the current partial 
solution after removal and the pair to be reinserted are given in Tables 3A and 3B, 
respectively.  
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Dx  D
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1+ππ 22,1d 20,22d 50,20d 10,50d 33,10d 44,33d 41,44d 25,41d 24,25d  1,24d    
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Table 3A. Current Partial Solution 
 

 k 1 
R
kn  5  
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Table 3B. Partial Solution to Be Inserted 
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m
d
π π
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k m k
d d
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1 1 10 1
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( ) 1,2427,241,271,2424,2525,4141,4444,3333,1010,5050,2020,2222,1 dddddddddddddxF −+++++++++++=  

( ) 27,241,2724,2525,4141,4444,3333,1010,5050,2020,2222,1 dddddddddddxF ++++++++++=  

 
 j 1 2 3 4 5 6 7 8 9 10 11 1 

jn  5 10 7 2 6 11 4 9 1 8 3 5  
x  jπ  27 1 22 20 50 10 33 44 41 25 24 27 

 1+jjd ππ  1,27d 22,1d 20,22d 50,20d 10,50d  33,10d 44,33d 41,44d 25,41d 24,25d  27,24d   
( )xF  174  8  7  15  21  17  12  17  20  21  14  22   

Table 3C. Insertion of pair ( ) ( )27,5, =R
k

R
kn π  into the first position of partial solution 

B. Insertion of pair  ( ),R R
k kn π  in the last position of partial solution 

a. 
1

Remove D D
m

d
π π

=  

b. 
1

Add D R R D
m k k

d d
π π π π

= +  

c. ( ) ( ) Add RemoveDF x F x= + −  

Example B: 
 

1
Remove D D

m
d
π π

=  

10 1
Remove D Dd

π π
=  

24,1Remove d=  

1
Add D R R D

m k k
d d
π π π π

= +  

10 1 1 1
Add D R R Dd d

π π π π
= +  

24,27 27,1Add d d= +  

( ) ( ) Add RemoveDF x F x= + −  

( ) 1,241,2727,241,2424,2525,4141,4444,3333,1010,5050,2020,2222,1 dddddddddddddxF −+++++++++++=  

( ) 1,2727,2424,2525,4141,4444,3333,1010,5050,2020,2222,1 dddddddddddxF ++++++++++=  

 
 j 1 2 3 4 5 6 7 8 9 10 11 1 

jn  10 7 2 6 11 4 9 1 8 3 5 10  
x  jπ  1 22 20 50 10 33 44 41 25 24 27 1 

 1+jjd ππ  22,1d 20,22d 50,20d 10,50d 33,10d 44,33d 41,44d 25,41d 24,25d 27,24d  1,27d   
( )xF  174  7  15  21  17  12  17  20  21  14  22  8   

Table 3D. Insertion of the pair ( ) ( )27,5, =R
k

R
kn π  into the last position of partial solution 
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Note that even though both tours generated in the examples A and B are different, the 
insertion of pair  ( ) ( )27,5, =R

k
R
kn π  into the first and last positions of the partial solution Dx  is 

equivalent to each other in terms of distance information that they have. In addition, note 
that both solutions are optimal. 
C. Insertion of pair ( ),R R

k kn π  between the edge  ( ),D D
u un π  and ( ),D D

v vn π  

a. Remove D D
u v

d
π π

=  

b. Add D R R D
u k k v

d d
π π π π

= +  

c. ( ) ( ) Add RemoveDF x F x= + −  

Example C: 
6=u  
7=v  

Remove D D
u v

d
π π

=  

6 7
Remove D Dd

π π
=  

33,44Remove d=  

Add D R R D
u k k v

d d
π π π π

= +  

6 1 1 7
Add D R R Dd d

π π π π
= +  

33,27 27,44Add d d= +  

( ) ( ) Add RemoveDF x F x= + −  

( ) 44,3344,2727,331,2424,2525,4141,4444,3333,1010,5050,2020,2222,1 dddddddddddddxF −+++++++++++=  

( ) 44,2727,331,2424,2525,4141,4433,1010,5050,2020,2222,1 dddddddddddxF ++++++++++=  
 

 j 1 2 3 4 5 6 7 8 9 10 11 1 
jn  10 7 2 6 11 4 5 9 1 8 3 10  

x  jπ  1 22 20 50 10 33 27 44 41 25 24 1 

 1+jjd ππ  22,1d 20,22d 50,20d 10,50d 33,10d 27,33d 44,27d 41,44d 25,41d 24,25d  1,24d   
( )xF  223  7  15  21  17  12  41  33  20  21  14  22   

Table 3E. Insertion of the pair ( ) ( )27,5, =R
k

R
kn π between pairs ( ) ( )33,4, =D

u
D
un π  and ( ) ( )44,9, =D

v
D
vn π . 

It is important to note that above insertion methods, especially insertion to the first and the 
last nodes, make the NEH heuristic applicable in the destruction and construction procedure 
to establish a final complete solution. For this reason, the insertion methods given above are 
neccessary for an IG algorithm to solve the GTSP. 

2.5 Hybridization with local search 
The hybridization of DPSO algorithm with local search heuristics is trivial. It can be 
achieved through the improvement of each solution generated in the construction phase by 
some local search methods. As improvement heuristics, a simple local search (LS) method 
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Note that even though both tours generated in the examples A and B are different, the 
insertion of pair  ( ) ( )27,5, =R
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kn π  into the first and last positions of the partial solution Dx  is 

equivalent to each other in terms of distance information that they have. In addition, note 
that both solutions are optimal. 
C. Insertion of pair ( ),R R

k kn π  between the edge  ( ),D D
u un π  and ( ),D D

v vn π  

a. Remove D D
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π π
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b. Add D R R D
u k k v
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π π π π
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c. ( ) ( ) Add RemoveDF x F x= + −  
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It is important to note that above insertion methods, especially insertion to the first and the 
last nodes, make the NEH heuristic applicable in the destruction and construction procedure 
to establish a final complete solution. For this reason, the insertion methods given above are 
neccessary for an IG algorithm to solve the GTSP. 

2.5 Hybridization with local search 
The hybridization of DPSO algorithm with local search heuristics is trivial. It can be 
achieved through the improvement of each solution generated in the construction phase by 
some local search methods. As improvement heuristics, a simple local search (LS) method 
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and the 2-opt heuristic [31] were separately applied to the reconstructed solution. Note that 
the 2-opt heuristic is employed with the first improvement strategy in this study. Regarding 
the LS heuristic, we choose a simple one that is again based on the DC procedure. In other 
words, the destruction and construction procedures with the destruction size and the 
perturbation strength equal to one (i.e., 1== dρ ) are used in the LS procedure whereas the 
LS size is fixed at 5×= nclusterw in order to intensify the search on the local minima. We will 
denote the hybrid DPSO algorithm with both local search improvement heuristics as 
mDPSO from now on. The pseudo code of the LS procedure is given in Fig. 2 whereas the 
proposed mDPSO algorithm is given in Fig. 3.  
 

( )xGTSPLSprocedure _  
 1:=h  
 ( ) dowhwhile ≤  

  ( )xDCx =:*     % d=1 and p=1  
  ( ) ( )( ) thenxfxfif ≤*  

          *: xx =  
          1:=h     
   else  
          1: += hh  
   endif  
 endwhile  
 xreturn  

reendprocedu  

Fig. 2. Local Search Employed 

_procedure DPSO GTSP  
Set 1c , w , NP , maxt  

1000/: ntGetTickCout A =  

( )00
2

0
1 ,..,, NPxxx=Π   %NEH_RANDOM population individuals and evaluate 
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NPi

ixf
,..,2,1:

0

=
    %Evaluate population 

NPi
ii xp
,..,2,1:

00

=
=    %Initialize bestsofar population 

( )
NPi
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00 _
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=    %Apply LS local search 

( ){ }
NPi
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,..,2,1

00 minarg
=

=   %Find gbest solution 

0: gxB =     %Set bestsofar  
1:=k  

1000/: ntGetTickCoutB =  
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( )( ) dotttwhile AB max<−  

            ( )
NPi

k
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k
i xDCwa

,..,2,1
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                                                                  construction 
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11
1 ,,
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−−⊕=  %Update population individual by Eq. [6] 

           ( )
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k
ixf

,..,2,1:=
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            ( ) ( ){ }
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k
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            ( ) ( ){ }k
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1: += kk  
endwhile    

Bxreturn  
reendprocedu  

Fig. 3. DPSO Algorithm with Improvement Heuristics.   

2.6 Crossover operator 
In this paper, the traditional two-cut crossover operator is used in the mDPSO algorithm. 
The two-cut  crossover operator is is illustrated in Table 4.  
 

j 1 2 3 4 5 6 7 8 9 10 11 1 
jn  10 5 7 2 6 4 11 9 8 1 3 10  

1P  
jπ 1 51 22 20 50 33 10 44 25 41 24 1 

jn  10 6 7 11 5 1 2 9 8 4 3 10  
2P  

jπ 1 50 22 10 27 41 20 44 25 33 24 1 
j 1 2 3 4 5 6 7 8 9 10 11 1 

jn  10 7 5 1 6 4 11 2 9 8 3 10  
1O  

jπ 1 22 27 41 50 33 10 20 44 25 24 1 
Table 4.  Two-Cut Crossover Operator. 

2.7 Insert mutation operator 
The insert mutation operator is basically related to first determining a cluster randomly, 
then removing the corresponding node from the tour of the individual, and replacing that 
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Fig. 3. DPSO Algorithm with Improvement Heuristics.   

2.6 Crossover operator 
In this paper, the traditional two-cut crossover operator is used in the mDPSO algorithm. 
The two-cut  crossover operator is is illustrated in Table 4.  
 

j 1 2 3 4 5 6 7 8 9 10 11 1 
jn  10 5 7 2 6 4 11 9 8 1 3 10  

1P  
jπ 1 51 22 20 50 33 10 44 25 41 24 1 

jn  10 6 7 11 5 1 2 9 8 4 3 10  
2P  

jπ 1 50 22 10 27 41 20 44 25 33 24 1 
j 1 2 3 4 5 6 7 8 9 10 11 1 

jn  10 7 5 1 6 4 11 2 9 8 3 10  
1O  

jπ 1 22 27 41 50 33 10 20 44 25 24 1 
Table 4.  Two-Cut Crossover Operator. 

2.7 Insert mutation operator 
The insert mutation operator is basically related to first determining a cluster randomly, 
then removing the corresponding node from the tour of the individual, and replacing that 
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particular node with another node from the same cluster randomly. As shown in Table 5, 
the cluster 52 =n  is randomly chosen and its corresponding node 512 =π  is replaced by the 
node 272 =π  from the same cluster 52 =n using the GTSP instance of 11EIL51.  
 

 j 1 2 3 4 5 6 7 8 9 10 11 1 
jn  10 5 7 2 6 4 11 9 8 1 3 10  

x  
jπ 1 51 22 20 50 33 10 44 25 41 24 1 

j 1 2 3 4 5 6 7 8 9 10 11 1 
jn  10 5 7 2 6 4 11 9 8 1 3 10  

x  
jπ 1 27 22 20 50 33 10 44 25 41 24 1 

Table 5.  Insert Mutation Operator 

3. Computational results 
We consider RKGA and mrOXGA for comparison in this paper since they produced some 
of the best heuristic results for the GTSP. The first benchmark set contains between 51 (11) 
and 442 (89) nodes (clusters) and the optimal objective function value for each of the 
problems is available. The second benchmark set contains between 493 (99) and 1084 (217) 
nodes. Since optimal solutions are not available for larger instances, we compare our results 
to Silberholz & Golden [20]. The DPSO algorithm was coded in Visual C++ and run on an 
Intel P IV 3.20GHz with 512MB memory. The population size was fixed at 30. The initial 
population is constructed randomly and then the NEH heuristic was applied to each 
random solution. Destruction size and perturbation strength were taken as 5 and 3, 
respectively. The traditional two-cut crossover is employed where the search direction and 
mutation probabilities are taken as 5.01 =c  and 9.0=w , respectively. The DPSO algorithm 
was terminated when the best so far solution was not improved after 50 consecutive 
generations. Five runs were carried out for each problem instance to report the statistics 
based on the relative percent deviations ( Δ ) from optimal solutions. For the computational 
effort consideration, avgt  denotes average CPU time in seconds to reach the best solution 
found so far during the run, i.e., the point of time that the best so far solution does not 
improve thereafter. optn  stands for the number of optimal solutions found by each 
algorithm whereas avgf  represents the average objective function values out of five runs.  
We compare the mDPSO algorithm to two genetic algorithms, namely, RKGA by Snyder & 
Daskin [16] and mrOXGA by Silberholz & Golden [20] where RKGA is re-implemented 
under the same machine environment. Table 6 summarizes the solution quality in terms of 
relative percent deviations from the optimal values and CPU time requirements for all three 
algorithms. Note that our machine has a similar speed as Silberholz & Golden [20]. A two-
sided paired t-test which compares the results on Table 6 with a null hypothesis that the 
algorithms were identical generated p-values of 0.167 and 0.009 for mDPSO vs. mrOXGA 
and mDPSO vs. RKGA, suggesting near-identical results between mDPSO and mrOXGA. 
On the other hand, the paired t-test confirms that the differences between mDPSO and 
RKGA were significant on the behalf of mDPSO subject to the fact that RKGA was 
computationally less expensive than both mDPSO and mrOXGA when solely the optimal 
instances are considered. 
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 mDPSO mrOXGA RKGA 
Instance optn  avgΔ  avgt  avgΔ  avgt  avgΔ  avgt  

11EIL51 5 0.00 0.10 0.00 0.26 0.00 0.08 
14ST70 5 0.00 0.12 0.00 0.35 0.00 0.07 
16EIL76 5 0.00 0.13 0.00 0.37 0.00 0.11 
16PR76 5 0.00 0.17 0.00 0.45 0.00 0.16 

20KROA100 5 0.00 0.24 0.00 0.63 0.00 0.25 
20KROB100 5 0.00 0.23 0.00 0.60 0.00 0.22 
20KROC100 5 0.00 0.23 0.00 0.62 0.00 0.23 
20KROD100 5 0.00 0.24 0.00 0.67 0.00 0.43 
20KROE100 5 0.00 0.23 0.00 0.58 0.00 0.15 

20RAT99 5 0.00 0.21 0.00 0.50 0.00 0.24 
20RD100 5 0.00 0.23 0.00 0.51 0.00 0.29 
21EIL101 5 0.00 0.19 0.00 0.48 0.00 0.18 
21LIN105 5 0.00 0.25 0.00 0.60 0.00 0.33 
22PR107 5 0.00 0.23 0.00 0.53 0.00 0.20 
25PR124 5 0.00 0.41 0.00 0.68 0.00 0.26 

26BIER127 5 0.00 0.44 0.00 0.78 0.00 0.28 
28PR136 5 0.00 0.52 0.00 0.79 0.16 0.36 
29PR144 5 0.00 0.46 0.00 1.00 0.00 0.44 

30KROA150 5 0.00 0.47 0.00 0.98 0.00 0.32 
30KROB150 5 0.00 0.60 0.00 0.98 0.00 0.71 

31PR152 5 0.00 1.38 0.00 0.97 0.00 0.38 
32U159 5 0.00 0.64 0.00 0.98 0.00 0.55 

39RAT195 5 0.00 0.99 0.00 1.37 0.00 1.33 
40D198 5 0.00 1.77 0.00 1.63 0.07 1.47 

40KROA200 5 0.00 1.11 0.00 1.66 0.00 0.95 
40KROB200 5 0.00 2.44 0.05 1.63 0.01 1.29 

45TS225 2 0.05 1.75 0.14 1.71 0.28 1.09 
46PR226 5 0.00 0.74 0.00 1.54 0.00 1.09 
53GIL262 5 0.00 4.76 0.45 3.64 0.55 3.05 
53PR264 5 0.00 1.11 0.00 2.36 0.09 2.72 
60PR299 1 0.07 5.66 0.05 4.59 0.16 4.08 

64LIN318 5 0.00 5.72 0.00 8.08 0.54 5.39 
80RD400 4 0.02 13.66 0.58 14.58 0.72 10.27 
84FL417 4 0.00 13.06 0.04 8.15 0.06 6.18 
88PR439 3 0.00 16.15 0.00 19.06 0.83 15.09 

89PCB442 3 0.15 28.59 0.01 23.43 1.23 11.74 
Avg 4.64 0.01 2.92 0.04 2.99 0.13 2.00 

Machine P IV 3.20 GHz P IV 3.00 GHz 
 

Table 6. Comparison for Optimal Instances  
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 mDPSO mrOXGA RKGA 
Instance avgf  avgt  avgf  avgt  avgf  avgt  

11EIL51 174.0 100.0 174.0 259.2 174.0 78.2 
14ST70 316.0 120.0 316.0 353.0 316.0 65.6 
16EIL76 209.0 130.0 209.0 369.0 209.0 106.4 
16PR76 64925.0 170.0 64925.0 447.0 64925.0 156.2 

20KROA100 9711.0 240.0 9711.0 628.2 9711.0 249.8 
20KROB100 10328.0 230.0 10328.0 603.2 10328.0 215.6 
20KROC100 9554.0 230.0 9554.0 621.8 9554.0 225.0 
20KROD100 9450.0 240.0 9450.0 668.8 9450.0 434.4 
20KROE100 9523.0 230.0 9523.0 575.0 9523.0 147.0 

20RAT99 497.0 210.0 497.0 500.0 497.0 243.8 
20RD100 3650.0 230.0 3650.0 506.2 3650.0 290.8 
21EIL101 249.0 190.0 249.0 478.2 249.0 184.6 
21LIN105 8213.0 250.0 8213.0 603.2 8213.0 334.4 
22PR107 27898.0 230.0 27898.6 534.4 27898.6 I97.0 
25PR124 36605.0 410.0 36605.0 678.0 36605.0 259.0 

26BIER127 72418.0 440.0 72418.0 784.4 72418.0 275.2 
28PR136 42570.0 520.0 42570.0 793.8 42639.8 362.8 
29PR144 45886.0 460.0 45886.0 1003.2 45887.4 437.6 

30KROA150 11018.0 470.0 11018.0 981.2 11018.0 319.0 
30KROB150 12196.0 600.0 12196.0 978.4 12196.0 712.4 

31PR152 51576.0 1380.0 51576.0 965.4 51576.0 381.2 
32U159 22664.0 640.0 22664.0 984.4 22664.0 553.2 

39RAT195 854.0 990.0 854.0 1374.8 854.0 1325.0 
40D198 10557.0 1770.0 10557.0 1628.2 10564.0 1468.6 

40KROA200 13406.0 1110.0 13406.0 1659.4 13406.0 950.2 
40KROB200 13111.0 2440.0 13117.6 1631.4 13112.2 1294.2 

45TS225 68376.0 1750.0 68435.2 1706.2 68530.8 1087.4 
46PR226 64007.0 740.0 64007.0 1540.6 64007.0 1094.0 
53GIL262 1013.0 4760.0 1017.6 3637.4 1018.6 3046.8 
53PR264 29549.0 1110.0 29549.0 2359.4 29574.8 2718.6 
60PR299 22631.0 5660.0 22627.0 4593.8 22650.2 4084.4 

64LIN318 20765.0 5720.0 20765.0 8084.4 20877.8 5387.6 
80RD400 6362.4 13660.0 6397.8 14578.2 6407.0 10265.6 
84FL417 9651.2 13060.0 9654.6 8152.8 9657.0 6175.2 
88PR439 60099.4 16150.0 60099.0 19059.6 60595.4 15087.6 

89PCB442 21690.0 28590.0 21658.2 23434.4 21923.0 11743.8 
99D493 20118.6 23193.8 20117.2 35718.8 20260.4 14887.8 

115RAT575 2419.8 33521.6 2414.8 48481.0 2442.4 46834.4 
131P654 27432.4 39847.0 27508.2 32672.0 27448.4 46996.8 
132D657 22714.6 64956.2 22599.0 132243.6 22857.6 58449.8 
145U724 17422.8 141587.8 17370.6 161815.2 17806.2 59625.2 

157RAT783 3297.2 114315.8 3300.2 152147.0 3341.0 89362.4 
201PR1002 115759.4 231546.6 114582.2 464356.4 117421.2 332406.2 
212U1060 107316.4 341759.6 108390.4 594637.4 110158.0 216999.8 

217VM1084 131716.8 310097.4 131884.6 562040.6 133743.4 390115.6 
Overal Avg 27553.3 31245.7 27554.3 50930.4 27741.3 30169.1 
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Silberholz & Golden [20] provided larger problem instances ranging from 493 (99) to 1084 
(217) nodes (clusters) where no optimal solutions are available. However, they provided the 
results of mrOXGA and RKGA. We compare the mDPSO results to those presented in 
Silberholz & Golden [20]. As seen in Table 7, mDPSO generated consistently better results 
than both RKGA and mrOXGA in terms of solution quality even if the larger instances 
are considered. In particular, 4 out 9 larger instances are further improved by mDPSO. 
The paired t-test on the objective function values on Table 7 confirms that the differences 
between mDPSO and RKGA were significant since p-value was 0.030 (null hypothesis is 
rejected) whereas mDPSO was equivalent to mrOXGA since p-value was 0.979. In terms 
of CPU times, the paired t-test on the CPU times confirms that the differences between 
mDPSO and mrOXGA were significant since the p-values was 0.040 whereas it was failed 
to reject the null hypothesis of being equal difference between mDPSO and RKGA since 
the p-value was 0.700.  The paired t-test indicates that mDPSO was able to generate lower 
objective function values with less CPU times than mrOXGA. On the other hand, mDPSO 
yielded much better objective function values with identical CPU times than RKGA. 
Finally, the detailed statistics accumulated for the mDPSO algorithm during the runs are 
given in Table 8. Briefly, the statistics about the objective function values, CPU times, 
number of generations, average number of 2-opts, and average number of DC, 
respectively. 

4. Conclusions 
The mDPSO algorithm proposed employs the destruction and construction procedure of 
the iterated greedy algorithm (IG) in its mutation phase. Its performance is enhanced by 
employing a population initialization scheme based on an NEH constructive heuristic for 
which some speed-up methods previously developed by authors are used for greedy node 
insertions. Furthermore, the mDPSO algorithm is hybridized with local search heuristics 
to achieve further improvements in the solution quality. To evaluate its performance, the 
mDPSO algorithm is tested on a set of benchmark instances with symmetric Euclidean 
distances ranging from 51 (11) to 1084 (217) nodes (clusters) from the literature. 
Furthermore, the mDPSO algorithm was able to find optimal solutions for a large 
percentage of problem instances from a set of test problems in the literature. It was also 
able to further improve 4 out of 9 larger instances from the literature. Both solution 
quality and computation times are competitive to or even better than the best performing 
algorithms from the literature.  
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4. Conclusions 
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which some speed-up methods previously developed by authors are used for greedy node 
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distances ranging from 51 (11) to 1084 (217) nodes (clusters) from the literature. 
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Instance avgf
 minf  maxf  avgt mint maxt avgg ming maxg opt2  DC  

11EIL51 174.0 174.0 174.0 0.1 0.1 0.2 1.0 1.0 1.0 2.0 7346.6 
14ST70 316.0 316.0 316.0 0.1 0.1 0.1 1.0 1.0 1.0 2.0 10387.8 
16EIL76 209.0 209.0 209.0 0.1 0.1 0.1 1.0 1.0 1.0 2.0 11026.4 
16PR76 64925.0 64925.0 64925.0 0.2 0.2 0.2 1.0 1.0 1.0 2.0 14108.2 

20KROA100 9711.0 9711.0 9711.0 0.2 0.2 0.3 1.0 1.0 1.0 2.0 19958.6 
20KROB100 10328.0 10328.0 10328.0 0.2 0.2 0.3 1.0 1.0 1.0 2.0 18637.0 
20KROC100 9554.0 9554.0 9554.0 0.2 0.2 0.3 1.0 1.0 1.0 2.0 18370.0 
20KROD100 9450.0 9450.0 9450.0 0.2 0.2 0.3 1.0 1.0 1.0 2.0 19146.4 
20KROE100 9523.0 9523.0 9523.0 0.2 0.2 0.3 1.0 1.0 1.0 2.0 19235.8 

20RAT99 497.0 497.0 497.0 0.2 0.2 0.2 1.0 1.0 1.0 2.0 17025.2 
20RD100 3650.0 3650.0 3650.0 0.2 0.2 0.2 1.0 1.0 1.0 2.0 18345.6 
21EIL101 249.0 249.0 249.0 0.2 0.2 0.2 1.0 1.0 1.0 2.0 15256.0 
21LIN105 8213.0 8213.0 8213.0 0.3 0.2 0.3 1.0 1.0 1.0 2.0 20275.6 
22PR107 27898.0 27898.0 27898.0 0.2 0.2 0.2 1.0 1.0 1.0 2.0 17978.0 
25PR124 36605.0 36605.0 36605.0 0.4 0.3 0.7 1.8 1.0 4.0 2.8 31702.0 

26BIER127 72418.0 72418.0 72418.0 0.4 0.3 0.6 1.8 1.0 3.0 2.8 34417.4 
28PR136 42570.0 42570.0 42570.0 0.5 0.4 0.8 2.0 1.0 4.0 3.0 39157.2 
29PR144 45886.0 45886.0 45886.0 0.5 0.4 0.7 1.4 1.0 3.0 2.4 34640.6 

30KROA150 11018.0 11018.0 11018.0 0.5 0.4 0.6 1.2 1.0 2.0 2.2 35139.2 
30KROB150 12196.0 12196.0 12196.0 0.6 0.4 1.3 2.2 1.0 7.0 3.2 44800.0 

31PR152 51576.0 51576.0 51576.0 1.4 0.5 2.3 6.6 1.0 13.0 7.6 102702.0 
32U159 22664.0 22664.0 22664.0 0.6 0.5 1.0 2.2 1.0 5.0 3.2 47115.2 

39RAT195 854.0 854.0 854.0 1.0 0.6 1.2 2.6 1.0 4.0 3.6 68885.4 
40D198 10557.0 10557.0 10557.0 1.8 0.7 2.5 5.8 1.0 10.0 6.8 123194.6 

40KROA200 13406.0 13406.0 13406.0 1.1 0.7 1.3 2.8 1.0 4.0 3.8 76493.0 
40KROB200 13111.0 13111.0 13111.0 2.4 1.2 4.1 9.6 3.0 16.0 10.6 169724.4 

45TS225 68376.0 68340.0 68400.0 1.7 0.7 3.3 6.2 1.0 16.0 37.2 418896.2 
46PR226 64007.0 64007.0 64007.0 0.7 0.7 0.8 1.0 1.0 1.0 2.0 48324.4 
53GIL262 1013.0 1013.0 1013.0 4.8 2.0 9.1 16.2 4.0 37.0 17.2 300605.2 
53PR264 29549.0 29549.0 29549.0 1.1 1.0 1.4 1.2 1.0 2.0 2.2 68722.2 
60PR299 22631.0 22615.0 22635.0 5.7 4.0 7.9 13.8 8.0 29.0 54.8 860095.2 
64LIN318 20765.0 20765.0 20765.0 5.7 3.2 9.7 12.4 5.0 30.0 13.4 334602.4 
80RD400 6362.4 6361.0 6368.0 13.7 6.7 17.3 18.6 8.0 30.0 29.6 911334.6 
84FL417 9651.2 9651.0 9652.0 13.1 11.0 15.7 32.6 24.0 44.0 43.6 829024.2 
88PR439 60099.4 60099.0 60100.0 16.2 8.2 24.8 28.4 9.0 48.0 49.4 1173370.8 

89PCB442 21690.0 21657.0 21802.0 28.6 8.1 59.6 57.2 10.0 125.0 78.2 1813548.8 
99D493 20118.6 20045.0 20271.0 23.2 9.7 39.6 30.4 7.0 67.0 81.4 2240001.4 

115RAT575 2419.8 2388.0 2449.0 33.5 20.5 43.4 32.0 18.0 50.0 83.0 2681845.4 
131P654 27432.4 27432.0 27433.0 39.8 11.8 54.7 58.0 12.0 83.0 109.0 2740248.6 
132D657 22714.6 22543.0 22906.0 65.0 38.1 85.1 61.2 22.0 91.0 112.2 3891504.4 
145U724 17422.8 17257.0 17569.0 141.6 64.8 209.1 100.2 38.0 171.0 151.2 6502515.2 

157RAT783 3297.2 3283.0 3324.0 114.3 80.2 157.3 70.2 47.0 99.0 121.2 5182433.0 
201PR1002 115759.4 114731.0 116644.0 231.5 131.5 325.1 70.2 40.0 125.0 121.2 7972666.2 
212U1060 107316.4 106659.0 107937.0 341.8 169.7 514.4 125.4 65.0 208.0 176.4 10209723.6 

217VM1084 131716.8 131165.0 132394.0 310.1 133.9 389.8 113.6 36.0 156.0 164.6 9468416.8 
Avg 27553.3 27491.5 27617.2 31.2 15.9 44.2 20.1 8.5 33.4 34.0 1304065.5 

Table 8. Experimental Data Collected for mDPSO 
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1. Introduction 
Inspired by the information processing of human neural systems, the artificial neural 
networks (ANNs) have been developed and applied to solve problems in various disciplines 
with varying degrees of success.  For example, ANNs have been applied to memory storage, 
pattern recognition, categorization, error correction, decision making, and machine learning 
in object oriented machine. Various computational schemes and algorithms have been 
devised for solving the travelling salesman problem which is a difficult NP-hard 
combinatorial optimization problem. The use of ANN as a computational machine to solve 
combinatorial optimization problems, including TSP, dates back to 1985 by Hopfield and 
Tank (1985). Although the achievement of such an application broadens the capacity of 
ANNs, there remain several insufficiencies to be improved for such a computational task, cf. 
(Smith, 1999). They include that the computations can easily get trapped at local minimum 
of the objective function, feasibility of computational outputs, and suitable choice of 
parameters.  Improvements of feasibility and solution quality for the scheme have been 
reported subsequently.  Among them, there is a success in adding the chaotic ingredient into 
the network to enhance the global searching ability.  Chaotic behavior is an inside essence of 
stochastic processes in nonlinear deterministic system.  Recently, chaotic neural networks 
have been paid much attention to, and contribute toward solving TSP.  Chaotic phenomena 
arise from nonlinear system, and the discrete-time analogue of Hopfield’s model can admit 
such a dynamics. Notably, the discrete-time neural network models can also be 
implemented into analogue circuits, cf. (Hänggi et al., 1999 ; Harrer & Nossek, 1992). 
The chapter aims at introducing recent progress in discrete-time neural network models, in 
particular, the transiently chaotic neural network (TCNN) and the advantage of adopting 
piecewise linear activation function. We shall demonstrate the use of TCNN in solving the 
TSP and compare the results with other neural networks. The chaotic ingredients improve 
the shortcoming of the previous ODE models in which the outputs strongly depend on the 
initial conditions and are easily trapped at the local minimum of objective function. There 
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1. Introduction 
Inspired by the information processing of human neural systems, the artificial neural 
networks (ANNs) have been developed and applied to solve problems in various disciplines 
with varying degrees of success.  For example, ANNs have been applied to memory storage, 
pattern recognition, categorization, error correction, decision making, and machine learning 
in object oriented machine. Various computational schemes and algorithms have been 
devised for solving the travelling salesman problem which is a difficult NP-hard 
combinatorial optimization problem. The use of ANN as a computational machine to solve 
combinatorial optimization problems, including TSP, dates back to 1985 by Hopfield and 
Tank (1985). Although the achievement of such an application broadens the capacity of 
ANNs, there remain several insufficiencies to be improved for such a computational task, cf. 
(Smith, 1999). They include that the computations can easily get trapped at local minimum 
of the objective function, feasibility of computational outputs, and suitable choice of 
parameters.  Improvements of feasibility and solution quality for the scheme have been 
reported subsequently.  Among them, there is a success in adding the chaotic ingredient into 
the network to enhance the global searching ability.  Chaotic behavior is an inside essence of 
stochastic processes in nonlinear deterministic system.  Recently, chaotic neural networks 
have been paid much attention to, and contribute toward solving TSP.  Chaotic phenomena 
arise from nonlinear system, and the discrete-time analogue of Hopfield’s model can admit 
such a dynamics. Notably, the discrete-time neural network models can also be 
implemented into analogue circuits, cf. (Hänggi et al., 1999 ; Harrer & Nossek, 1992). 
The chapter aims at introducing recent progress in discrete-time neural network models, in 
particular, the transiently chaotic neural network (TCNN) and the advantage of adopting 
piecewise linear activation function. We shall demonstrate the use of TCNN in solving the 
TSP and compare the results with other neural networks. The chaotic ingredients improve 
the shortcoming of the previous ODE models in which the outputs strongly depend on the 
initial conditions and are easily trapped at the local minimum of objective function. There 
are transiently chaotic phase and convergent phase for the TCNN. The parameters for 
convergent phase are confirmed by the nonautonomous discrete-time LaSalle’s invariant 
principle, whereas the ones for chaotic phase are derived by applying the Marotto’s 
theorem. The Marotto’s theorem which generalizes the Li-York’s theorem on chaos from 
one-dimension to multi-dimension has found its best application in the discrete-time neural 
network model considered herein. 
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In Section 2, we will introduce the setting of solving the TSP by the neural networks, 
including the description of objective functions to be minimized at optimal routes, and the 
original work by Hopfield and Tank.  In Section 3, we review the LaSalle’s invariant 
principle, the Marotto’s theorem, and introduce the discrete-time analogue of Hopfield’s 
network. The recent progress in the transiently chaotic neural network is summarized in 
Section 4.  We arrange some numerical simulations in applying the TCNN with piecewise 
linear activation function in Section 5. Finally, the chapter is concluded with some 
discussions. 

2. Solving TSP via Hopfield neural network 

Suppose there are  N cities indexed by i= 1, 2,…, N and the distance between city i  and city 
k is dik. The optimal solution to the TSP consists of an ordered list of the N cities.  The list 
expresses the order of the cities visited and indicates the path with shortest total tour length.  
Let us describe how to map the TSP into the computational networks. For each city, its final 
location in the ordered list is to be specified by the asymptotic output states of a set of N 
neurons. For example, for a 10-city problem, if city i is the seventh city visited in an optimal 
solution, then it is represented by the corresponding outputs of 10 neurons: 

0 0 0 0 0 010 0 0.  

Accordingly, N2 neurons will be needed in the computational network for a N-city TSP. We 
thus arrange the outputs of these neurons into a N× N  matrix.  In such a representation, an 
ideal output matrix with only one entry equal to one in each row and in each column, and 
other entries all zero, will then correspond to a feasible solution of the TSP.  
Thereafter, the TSP with N cities can be formulated as the following optimization problem: 

( 1) ( 1)
1 1 1

1Minimize ( ) ( )
2

N N N

ij ik j k j k
i j k

E d y y y− +
= = =

= + ,∑∑∑y  (1) 

where matrix y=[yij] is constrained by 

1 1

1and 1
N N

ij ij
i j

y y
= =

= = ,∑ ∑  (2) 

for all i,j =1,…,N, and yi0=yiN and yi1=yi(N+1). The variables yij∈[0,1], i,j =1,…,N, can also be 
regarded as the probability for the i th city to be visited the j th time.   If every  yij is either 0 
or 1, then the constraint Eq. (2) means that every city must be visited only once. Under such 
a circumstances, the optimal solution of the objective function E(y) equals the shortest 
distance of the traveling route.  Notably, any shift of an optimal solution also yields an 
optimal solution (with the same shortest tour length).  Thus, the optimal solution is not 
unique.  
The main idea of using neural networks to solve TSP is to search the global minimum of the 
objective function which involves the data of TSP, through evolutions of the states of the 
network. Hopfield & Tank (1985) considered the following objective function 
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Note that the minimum, i.e., zero, of (3) is attained at a feasible solution. They aimed at 
using the Hopfield network to locate the global minimum of this objective function.  The 
Hopfield network is a continuous-time ODE system which consists of a fully interconnected 
system of computational elements or neurons arranged in, say, lattice L: 

 
L

dx xC w y I L
dt R ∈

= − + + , ∈ ,∑i i
i ij j i

ji

i  (5) 

 ( )y g x= .i i i  (6) 

The synapse (or weight) between two neurons is defined by wij, which may be positive or 
negative depending on whether the action of neurons is  in an excitatory or inhibitory 
manner;  xi  is the internal state of neuron i, and yi  with 0 1y≤ ≤i  is the external (output) state 

of neuron i. The parameter Ci (resp. Ri) is the input capacitance of the cell membrane (resp. 
the transmembrane resistance) of neuron i. The activation function gi is a monotonically 
increasing function and thus has an inverse. Typical gi is given by  

1( ) (1 tanh( ))
2

g ξ ξ ε= + / ,i  

where ε  is a parameter controlling the slope of the activation function. The gradient 
descent dynamics of the neural network provides a decreasing property of the objective 
function for the TSP. For convenience of expression and derivation, we consider (5) on the 
one-dimensional array {1,2,…,n}. There exists a Lyapunov function (energy function for the 
network)  
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The time derivative of V along a solution ( )tx  is computed as  
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Due to the increasing property of the activation function gi, we obtain 
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 0 and 0 if 0idxdV dV
dt dt dt

≤ , = = .  (8) 

3. Discrete-time dynamical systems 
Biological neurons are much more complicated than the simple threshold elements in 
ANNs.  Chaotic behaviors have actually been observed experimentally in biological 
neurons, as pointed out in Aihara et al. (1990) and the references therein. 
Discrete-time dynamical systems have attracted much attention in recent years, thanks to its 
capacity of applications and underlying sophisticated mathematical theory.  Indeed, not 
only that discrete-time counterparts of classical theorems for continuous-time systems have 
been developed successfully, but also the chaotic behaviors for discrete-time systems can be 
characterized lucidly.  
Due to the shortcomings that solutions get trapped at local minimum of objective function, 
and dependence of performance upon choosing initial conditions in continuous-time 
systems, researchers have attempted to introduce the chaotic ingredient into the networks.  
The stage was thus set for the development of discrete-time neural networks, cf. (Aihara et 
al., 1990; Chen & Aihara, 1995; Nozawa, 1992; Yamada & Aihara, 1997).  In particular, 
Nozawa (1992) showed that the Euler approximation of the continuous-time Hopfield 
neural network with a negative self-feedback connection possesses chaotic dynamics, and 
has a much better searching ability in solving the TSP than the original continuous-time 
Hopfield neural network.  
Notably, although it has been reported in (Bersini,1998; Bersini & Senser, 2002) that there 
exist chaotic behaviours in continuous-time Hopfield-type neural networks, it is still 
unknown whether the same concept or technique can be applied to the TSP problem.  
We shall introduce the discrete-time Hopfield neural network in Subsection 3.1; then review 
the LaSalle’s invariant principle for convergent dynamics and the Marotto’s theorem for 
chaos, for discrete-time dynamical systems in Subsections 3.2, 3.3, respectively.  

3.1 Discrete-time Hopfield neural networks 
Discrete-time neural network model of Hopfield type can be described by the following 
equations: for i = 1,…,n,  

 
1

( 1) ( ) ( )
n

i i ij j i
j

x t x t w y t Iμ
=

+ = + + .∑  (9) 

Here, xi is the internal state of neuron i; yi  is the output of neuron i; μ is the damping factor; 
wii is the self-feedback connection weight; wij is the connection weight from neuron j  to 
neuron i; iI  is the input bias.  The parameter μ (resp. ωij, Ii) in Eq. (9) can be compared to 

1
i i

t
C R
Δ−  (resp. ij

i

t
C

ω Δ , i

i

I t
C
Δ ) in terms of the parameters in Eq. (5), where tΔ  is the discretization 

time step.  System (9) is the Euler approximation of Eq. (5).  There also exists a Lyapunov 
function for the discrete-time system (9):  
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where again ( )i i iy g x= . It has been shown in (Chen & Aihara, 1997; Chen & Shih, 2002) that, 
under some conditions, the energy function (10) is decreasing along the solution of the 
system: 

( ( 1)) ( ( )) 0 for allV t V t t+ − ≤ , ∈ .y y N  

Notably, the Lyapunov function (10) for the discrete-time network and the one (7) for the 
continuous-time network are quite similar. The existence of Lyapunov function basically 
guarantees the convergence of evolutions for the system to certain steady states, by the 
LaSalle’s invariant principle. The transiently chaotic neural network is developed from this 
discrete-time network with transient chaos imbedded in.  Before introducing the theory for 
the TCNN, let us review the LaSalle’s invariant principle and the Marotto’s theorem. 

3.2 LaSalle’s invariant principle 
Long-time asymptotic behaviors of solutions for a dynamical system, such as neural 
network, are always important concerns. In 1960, LaSalle discovered the relation between 
Lyapunov function and Birkhoff limit set. Extended from the Lyapunov direct method, a 
uniform concept was developed to describe the asymptotic behaviors in terms of limit set.  
By the invariant property of limit set, a basic theory for the stability of motion of dynamical 
systems was derived. In this section, we review the invariant principle for both autonomous 
and non-autonomous discrete-time dynamical systems, cf. (LaSalle, 1976).  First, we consider 
an autonomous difference equation 

 ( 1) ( ( )) nt t R t+ = , ∈ , ∈ ,x F x x N  (11) 

where n nR R: →F  is continuous. We assume that ∗x  is a fixed point (i.e. ( )∗ ∗=F x x ).  
Suppose there exists a continuous, positive definite, and radially unbounded function 

nV G R G R: → , ⊂  with  

( ) 0V GΔ ≤ , ∀ ∈x x  

where ( ) ( ( )) ( )V V VΔ = −x F x x , then every solution to Eq. (11) converges to the largest 
invariant set M contained in { ( ) 0}G V∈ | Δ =x x .  If the set M only contains the equilibrium 
x* , then x* is asymptotically stable. The function V satisfying ( ) 0VΔ ≤x  for all G∈x  is 
said to be a Lyapunov function on set G.  
Now we consider a discrete-time non-autonomous system. Let N be the set of positive 
integers. For a given continuous function n nR R: × ⎯→F N , we consider the non-
autonomous dynamical system  

 ( 1) ( ( ))t t t+ = , .x F x  (12) 

A sequence of points { ( ) | 1 2 }t t = , ,x  in Rn is a solution of (12) if ( 1) ( ( ))t t t+ = ,x F x , for 
all t∈N .  Let { ( ) | (1) }O t t= ∈ , =x x x xN  be the orbit of x.  We say that p is a ω -limit point 

of Ox  if there exists a sequence of positive integers { }kt  with kt →∞  as k →∞ , such 
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invariant set M contained in { ( ) 0}G V∈ | Δ =x x .  If the set M only contains the equilibrium 
x* , then x* is asymptotically stable. The function V satisfying ( ) 0VΔ ≤x  for all G∈x  is 
said to be a Lyapunov function on set G.  
Now we consider a discrete-time non-autonomous system. Let N be the set of positive 
integers. For a given continuous function n nR R: × ⎯→F N , we consider the non-
autonomous dynamical system  

 ( 1) ( ( ))t t t+ = , .x F x  (12) 

A sequence of points { ( ) | 1 2 }t t = , ,x  in Rn is a solution of (12) if ( 1) ( ( ))t t t+ = ,x F x , for 
all t∈N .  Let { ( ) | (1) }O t t= ∈ , =x x x xN  be the orbit of x.  We say that p is a ω -limit point 

of Ox  if there exists a sequence of positive integers { }kt  with kt →∞  as k →∞ , such 
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that lim ( )k kt→∞=p x .  Denote by ( )ω x  the set of all ω -limit points of Ox .  Let Ni represent 

the set of all positive integers larger than ni, for some positive integer in .  Let nRΩ⊆  and 

Ω  be its closure. For a function 
0V R: ×Ω⎯→N , we define ( ) ( 1 ( )) ( )V t V t t V t, = + , , − ,x F x x  

so that if { ( )}tx  is a solution of Eq. (12), then ( ( )) ( 1 ( 1)) ( ( ))V t t V t t V t t, = + , + − ,x x x .  V is said 
to be a Lyapunov function for (12) if   
i. each ( )V t,⋅  is continuous, and   

ii. for each ∈Ωp , there exists a neighborhood U  of p  such that ( )V t,x  is bounded 

below for U∈ ∩Ωx  and 1t∈N , 1 0n n≥ , and  

iii. there exists a non-degenerate continuous function 0Q R: Ω→  such that 

0( ) ( ) 0V t Q, ≤ − ≤x x  for all ∈Ωx  and for all 2t∈N , 2 1n n≥ ,  
or  

iii.’ there exist a non-degenerate continuous function 0Q R: Ω→  and an equi-continuous 

family of functions ( )Q t R, ⋅ : Ω→  such that 
0lim ( ) ( ) 0t Q t Q→∞ | , − |=x x  for all ∈Ωx  and 

( ) ( ) 0V t Q t, ≤ − , ≤x x  for all 
2( )t N, ∈ ×Ωx , 2 1n n≥ .  

 

If there exists such a Lyapunov function V, then the LaSalle’s invariant principle states that 
the ω -limit set of any point x lies in 0S , i.e. 0( ) Sω ⊂x , where  

 0 0{ ( ) 0}S Q= ∈Ω : = .x x  (13) 

3.3 Marotto’s theorem on chaos 
Originally, a chaotic phenomenon was numerically found in the research of Lorenz on 
weather prediction in 1963.  Later, the mathematical definition of chaos was initiated by Li & 
Yorke (1975) for one-dimensional continuous maps. A criterion of existence of chaos has 
been termed as “period three implies chaos" therein. More precisely, let f I I: →  be a 
continuous map of the compact interval I of the real line R into itself; if f has a periodic point 
of period three, then f exhibits chaotic behavior.  Three years later, the above result was 
generalized by Marotto (1978).  He proposed the definition of “snapback repeller" and 
proved that “snapback repellers imply chaos" for multi-dimensional maps.  The definition of 
snapback repeller was further clarified in (Marotto, 2005).  
The theorem has provided the best analytic argument of chaos for multi-dimensional maps. 
The detailed description of chaos in the sense of Marotto is as follows. Let us define a 

system as 1 ( )k kF+ =x x  where n
k R∈x , and F is C1 or piecewise C1 with non-smooth 

points at suitable locations.  A fixed point x  is said to be a snapback repeller (see Fig. 1) of F if 
all eigenvalues of ( )DF x  exceeding one in magnitude, and there exists a point 0 ≠x x  in a 

repelling neighborhood of x , such that 0( )mF =x x  for some m∈N , and 
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0det( ( )) 0jDF ≠x , for all 1 j m≤ ≤ .  If F has a snapback repeller, then the dynamical system 
defined by F is chaotic in the following sense: (i) There exists a positive integer m0 such that 
for each integer p ≥ m0, F has p-periodic points. (ii) There exists a scrambled set, that is, an 
uncountable set L containing no periodic points such that the following pertains: (a) 

( )F L L⊂ ; (b) for every y∈L and any periodic point x of F,  

( ) ( ) 0limsup k k

k

F F
→∞

|| − ||> ;y x  

 (c) for every x, y ∈L  with ≠x y ,  

( ) ( ) 0limsup k k

k

F F
→∞

|| − ||> ;y x  

(iii) There exists an uncountable subset  L0 of L such that for every x, y ∈L0,  

( ) ( ) 0liminf k k

k

F F
→∞

|| − ||= .y x  

 

Fig. 1. Diagram of a snapback repeller.  The point X  is a snapback repeller.  The point 0X  is 

a snapback point such that Fm(X0)= X  for some integer m. Note that the value of F at the (m-
1)-th point is the snapback repeller X . 

Notably, (ii) (b) describes that any point in the scrambled set L does not converge to any 
periodic point of F under the iteration of F.  It bears a sense that there only exist unstable 
periodic points in the system. (ii)(c) shows that there only exist unstable points in the 
scrambled set L.  In other words, points in the scrambled set do not attract each other. (iii) 
describes that distances between the iterations of any pair of points in an uncountable subset 
of L approach zero.  Although it seems that there exists no rule for the dynamical behavior, 
the behavior is controlled by the underlying deterministic system.  It is not similar to the 
concept of randomness of a stochastic system. The chaotic behavior is very random but 
ordered.  
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Let us illustrate the existence of period-three points and a snap-back repeller in the sense of 
Li-Yorke and Marotto respectively, for the logistic map, ( ) (1 ) [0 1]f x x x xμ μ= − , ∈ , , as an 

example. The period-three points and a snap-back repeller are presented in Fig. (2). There 
exists chaos in the sense of Li-Yorke (resp. Marotto) for the logistic map fμ  with 4μ = . 
 

 

Fig. 2. The blue line is the graph of logistic map with 4μ = . Black line illustrates the period 
3 trajectory. The dotted line depicts a homoclinic orbit with snap-back points.  This logistic 
map possesses Li-Yorke’s and Marotto’s chaos. 

4. Transiently chaotic neural networks 
The transiently chaotic neural network (TCNN) is equipped with a chaotic phase which 
prevails in the first stage of computation to enhance global searching and reduce the effect 
of variations from choosing initial values.  This procedure can be realized by a suitable 
choice of parameters which typically starts from sufficiently large negative self-feedback 
connection weights.  The process is then cooled down, as the self-feedback connection 
weights increases, while maintaining decreasing property of the energy (objective) function, 
and finally settles at a state with lower value of objective function. The characteristic of 
dynamical phenomena from chaotic phase to convergent phase is called “chaotic simulated 
annealing".  
The TCNN, inherited from the Hopfield type network, was first proposed by Chen & Aihara 
(1995, 1997, 1999).  Later, Chen & Shih (2002) performed a systematic analysis on the chaotic 
behaviors of the TCNN.  The existence of chaos is proved by a geometrical formulation 
combined with the use of Marotto’s theorem.  The analysis has provided the ranges of 
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parameters for the chaotic phase and convergent phase.  Recently, Chen and Shih (2007) 
further extended the TCNN to the setting with piecewise linear activation function, which 
not only improves the performance of computation, but also admits more succinct and 
crystal mathematical description on the chaotic phase than the TCNN with the logistic 
activation function.  Such a setting fits into the revised version of theorem in (Marotto, 2005) 
pertinently.  
Let us describe the model equation for the TCNN.  

 
0

1

( 1) ( ) ( )[ ( ) ] [ ( ) ]
n

i i ii i i ij j i
j j i

x t x t t y t a y t vμ ω α ω
= , ≠

+ = − − + + ,∑  (14) 

 ( 1) (1 ) ( )ii iit tω β ω| + |=| − |,  (15) 

for i=1,…,n, t∈N, (positive integers), where xi is the internal state of neuron i; yi is the output 
of neuron i, which corresponds to xi through an activation function; μ  with 0 1μ< <  is the 

damping factor of nerve membrane; iiω  is the self-feedback connection weight; 0ia  is the 

self-recurrent bias of neuron i; ijω  is the connection weight from neuron j to neuron i; iv  is 

the input bias of neuron i; β  with 0 1β< < , is the damping factor for iiω ; α is a positive 
scaling parameter. Equation (15) represents an exponential cooling schedule in the 
annealing procedure.  The activation function adopted in (Chen & Aihara, 1995; 1997; 1999) 
is the logistic function given by  

( ) 1 [1 exp( ( ) )]i iy t x t ε= / + − / ,  

which is depicted in Fig. 3 (b).  
 

 
(a) 

 
(b) 

 

Fig. 3. The graphs of (a) the piecewise linear and (b) the logistic activation function. 
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Fig. 3. The graphs of (a) the piecewise linear and (b) the logistic activation function. 
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One may also consider more general annealing process:  

 ( )
0

1

( 1) ( ) (1 ) [ ( ) ] [ ( ) ]
n

q t
i i i i ij j i

j j i

x t x t y t a y t vμ β ω α ω
= , ≠

+ = + − − + + ,∑  (16) 

where i=1,…,n, 0 1β< < ; ( )q t  satisfies the condition that there exists an n1∈N such that 
( ) 0q t t− ≥  for all 1t n> . The standard annealing process simply takes ( )q t t= . 

The disadvantage of using the logistic activation function is that the output values for some 
neurons may be neither close to one nor to zero, as demonstrated in Fig. (4).  Although it is 
possible to avoid such a situation by choosing high gain of the logistic activation function, 
i.e., small ε , taking the piecewise linear output function (Fig. 3 (a)) leads to much better 
performance. 

 

Fig. 4. An example that the TCNN with the logistic activation function has an infeasible 
solution, i.e., there exists an output entry yi which approaches 0.6012, neither close to 1 nor 
to 0, after 1400 iterations. 

4.1 Piecewise linear activation function 
Chen & Shih (2007) proposed a transiently chaotic neural network (TCNN) with piecewise 
linear activation function, instead of the logistic one, as follows:  

 ( )
0

1
( 1) ( ) (1 ) [ ( ) ] ( )

n
q t

i i i i ij j i
j

x t x t y t a w y t vμ β ω
=

+ = + − − + + ,∑  (17) 

where i=1,…,n, and xi and yi satisfy the following relation  

 ( ) ( )( ) ( ( )) [2 1 1 ] 4 0,i i
i i

x t x ty t g x tε ε
ε ε

= := + | + | − | − | / , >  (18) 

That is, we consider the following time-dependent map on Rn:  

 ( )
0

1
( ) (1 ) [ ( ) ] ( )

n
q t

i i i i ij j i
j

F t x g x a g x vε εμ β ω ω
=

, = + − − + + .∑x  (19) 

Corresponding to this piecewise linear activation function, for a fixed 0ε > , we partition 
the real line into the left ( ), middle (m), right (r) parts; namely,  

 
m r( ) [ ] ( )ε ε ε εΩ := −∞,− , Ω := − , , Ω := ,∞ .  (20) 
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Consequently, Rn can be partitioned into the following subsets:  

 
1 1{( ) r m 1 }

n i

n
q q n i q ix x R x q `` " `` " `` " i nΩ = , , ∈ | ∈Ω ; = , , ; = , , ,  (21) 

as illustrated in Fig. 5 for n=2. We may call m mΩ  the interior region, each 
1 nq qΩ , with 

riq `` " `` "= , , for all i , an saturated region; each 
1 nq qΩ , with iq `` "= , or r`` " , for 

some i, and mjq `` "=  for some j, a mixed region.  

 

Fig. 5. Illustration of 
1 2q qΩ  in R2, where q1 and q2 are `` "  or m`` "  or r`` "  

Through introducing upper and lower bounds for the map (19), the existence of snap-back 
repellers in each of the 3n regions, hence Marotto’s chaos, for the system can be established.  
Let us quote the parameter conditions and the theorem. Consider 

(A) 0ω > , 1 1
20 μ

ω ε
−< < , 1

0 0h aμ
ω ωε−− − + > , 1

0 1h aμ
ω ωε− + + < ,  

(B) 1 1
0 0 02 2(1 ) [( ) (1 ) ]a h a h a hω

μ εμε ω ω ω μ ω ω+ − − > − + / − − − + − .  

Theorem 1 (Chen & Shih, 2007). If the parameters 0( )i ia hμ ω ε, , , , , satisfy (A) and (B) with 
a0=a0i, h=hi, for every i=1,…,n, then there exist snap-back repellers for the TCNN with 
activation function (18). 
  

On the other hand, system (17) admits a time-dependent Lyapunov function  

 2

1 1 1 1

1( ) ( 1) ( )
2

n n n n
t

ij i j i i i i
i j i i

V t y y v y y y cω μ ε
= = = =

, = − − − − − + ,∑∑ ∑ ∑x  (22) 
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where ( )i iy g xε= , i=1,…,n, and  0< c <1. Note that V is globally Lipschitz, but not C1.  Let 

[ ]ij n nW ω ×= .  By applying the LaSalle’s invariant principle, the following convergent 
theorem can be derived.  
Theorem 2 (Chen & Shih, 2007). If 0 1μ≤ ≤ , 0ε > , 1 1c

β−| |<  and the matrix 

2 (1 )W Iε μ+ −  is positive-definite, then there exists 2 2 1n n n∈ , >N  so that 

( 1 ( 1)) ( ( ))V t t V t t+ , + ≤ ,x x  for t≥n2 and V is a Lyapunov function for system (17) on N2×Rn. 
 

The conditions for chaotic and convergent dynamical phases for the TCNN are all 
computable. The range of the parameters satisfying these conditions can also be depicted 
numerically.  There are other advantages in adopting the piecewise linear activation 
function. Note that the feasible and optimal solutions lie in the saturated regions 

1 nq qΩ , 

with riq `` " `` "= , , for all i.  One can further impose conditions so that the fixed points in 
the interior and mixed regions are unstable.  Accordingly, iterations from almost any initial 
value converge to outputs with component equal to either 0 or 1.  Details for these 
discussions can be found in (Chen & Shih, 2007).  
On the other hand, the following objective function is considered in (Chen & Aihara, 1995) 
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where 1γ  and 2γ  are parameters which are selected to reflect the relative importance of the 
constraints and the cost function of the tour length, respectively.  
To apply the TCNN to the TSP, we reformulate the setting of TSP with two-dimensional 
indices into the one-dimensional form. Restated, by letting s(i,j)=j+(i-1)N, where N is the 
number of cities for the TSP, Eq. (23) becomes 
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where [ ] diag[ ] 2ijW W W W= := − / , i=1,…,N2. According to previous discussions, there is a 
Lyapunov function for Eq. (17):  
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Notice that the Lyapunov function (27) can be compared to a constant shift of the objective 
function (24) when 1c| |< , ε  is sufficiently small and as t is large. 

5. Numerical simulations 
Let us describe the method to suitably choose the parameters in the numerical simulation.  
Due to the deterministic nature for the TCNN (17), parameters are selected such that its 
dynamical behaviors have some stable properties.  Therefore, we take a parameter μ with  
0< μ < 1 for boundedness of iterations for the TCNN. Set ω=0, and choose 0ia hε , , , where 
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these parameters is in convergent phase. In convergent phase, any iteration is going to settle 
at a fixed point. Next, we let ω| |  increase from 0 to see if parameters 0( )ia hμ ε ω, , , ,  
enter the chaotic regime which has been justified in (Chen & Shih, 2002; 2007).  These 
computations can be assisted by a computer programming.  If the output matrix does not 
tend to a permutation matrix, one can enlarge slightly the parameter 1γ  in Eq. (25). 
In this section, we quote the numerical simulations in (Chen & Shih, 2007) to demonstrate 
the computation performance of using the TCNN (17) to find the optimal route of the TSP.  
We consider the five cities {1 2 3 4 10}, , , ,  with coordinates in Table 1.  These are data from 
the ten-city TSP problem in (Hopfield & Tank, 1985).  The positions of the ten cities and the 
optimal route are presented in Fig. 6. 
 

 
Fig. 6.  Illustration of the locations of 10 cities for the Hopfield-Tank original data.  The best 
way to travel for ten (resp. five) cities is in terms of the solid line (resp. dotted line) 
connection. 
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In our simulation, the parameters for the TCNN (17) are set as 

0 9μ = . ; 0 005β = . ; 0 01ε = . ; 0 0 65ia = . ;  

0 08ω = − . ; 1 0 015γ = . , 2 0 015γ = . ; ( )q t t= .  

Recall that coefficients 1γ  and 2γ  reflect the relative strength of the constraint and the tour 
length energy terms  (23). An optimal route trajectory is demonstrated in Fig. 7.  Our 
simulation indicates that the order of the best route for the TSP is 4 1 10 2 3 .  The 
other best routes include  1 10 2 3 4  and 4 3 2 10 1.  Actually, all of 
them represent the same loop.  Three diagrams in Fig. 8 are plotted to show the evolutions 
of constraint part and tour length part in the objective function. 
 

City No. x-axis y-axis 
1 .4 .445 
2 .245 .155 
3 .165 .235 
4 .225 .77 

10 .625 .27 

Table 1.  Coordinates of positions for 5 cities. 

 
Fig. 7. Evolutions of outputs yij in Eq. (17).  The trajectory approaches one, in the subfigures 
with a black point. 
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Fig. 8. Evolutions of (a) E, (b) the constraint term; (c) the tour-legnth term, in Eq. (23). 

As another observation on the convergent and chaotic phases, we compute the Lyapunov 
exponents for the one-neuron equation: 

 0( 1) ( ) [ ( ( )) ] (1 )tx t x t g x t a hεμ ω ω β ω+ = + − + , = −  (28) 

 

with parameters set as  

0 9 0 65 0 01 0a hμ ε= . ; = . ; = . ; = .  
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Let us consider 0[ 0]ω ω∈ ,  with 0 0 08ω = − . .  If the system possesses a chaotic behavior, its 

maximal Lyapunov exponent is positive along the chaotic trajectory, and vice versa.  The 
maximal Lyapunov exponent means the average of the maximal eigenvalue for linear part 
of the system along the chaotic trajectory in the ergodic sense.  If the maximal Lyapunov 
exponent is negative, the system corresponds to stable phase.  Notably, for a one-neuron 
map, there is only one Lyapunov exponent. The bifurcation diagram of Lyapunov exponent 
for the map (28) with parameters 0[ 0]ω ω∈ ,  is shown in Fig. (9).  It follows from Fig. (9) 

that there is a bifurcation point near 0 0 04ω = − . .  In other words, the behavior changes near 

the point, and transforms from chaotic phase to stable phase. However, since our algorithm 

is based on 0(1 )tω β ω= − , we also present the correspondence between iteration number 

t  and parameter ω  in Fig. (10). Similar computations can be applied to the 
multidimensional systems. 
 

 
 

Fig. 9. Bifurcation diagram of Lyapunov exponent for one-dimensional map (28). 
 

 
 

Fig. 10.  Correspondence between iteration number t and parameter ω .  

6. Conclusions 
It has been more than two decades since artificial neural networks were employed to solve 
TSP.  Among the efforts in improving the performance of this computational scheme, 
substantial achievements have been made in incorporating chaos into the system and 
developing mathematical analysis for finding the parameters in the chaotic regime and 
convergent regime.  There are several advantages in employing the piecewise linear 
activation function.  We have observed that the TCNN with piecewise linear activation 
function has better performance than with the logistic activation function in the 
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applications.  In addition, the parameter conditions derived in this framework are much 
simpler than the ones for logistic activation functions. 
There are certainly some further improvements to be developed; for example, in the 
decision of timing to cool down the process from the chaotic phase; observing and 
realization of the rotational symmetry and reversal symmetry in the solution structure, 
as well as conditions for stability of feasible solutions and instability of infeasible 
solutions. 
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1. Introduction   
One technique that uses Wang’s Recurrent Neural Networks with the “Winner Takes All” 
principle is presented to solve two classical problems of combinatorial optimization: 
Assignment Problem (AP) and Traveling Salesman Problem (TSP).  
With a set of appropriate choices for the parameters in Wang’s Recurrent Neural Network, 
this technique appears to be efficient in solving the mentioned problems in real time. In 
cases of solutions that are very close to each other or multiple optimal solutions to 
Assignment Problem, the Wang’s Neural Network does not converge. The proposed 
technique solves these types of problems by applying the “Winner Takes All” principle to 
Wang’s Recurrent Neural Network, and could be applied to solve the Traveling Salesman 
Problem as well. This application to the Traveling Salesman Problem can easily be 
implemented, since the formulation of this problem is the same that of the Assignment 
Problem, with the additional constraint of Hamiltonian circuit.  
Comparisons between some traditional ways to adjust parameters of Recurrent Neural 
Networks are made, and some proposals concerning to parameters with dispersion 
measures of the cost matrix coefficients to the Assignment Problem are shown. Wang’s 
Neural Network with principle Winner Takes All performs only 1% of the average number 
of iterations of Wang’s Neural Network without this principle. In this work 100 matrices 
with dimension varying of 3×3 to 20×20 are tested to choose the better combination of 
parameters to Wang’s recurrent neural network. 
When the Wang’s Neural Network presents feasible solutions for the Assignment Problem, 
the "Winner Takes All" principle is applied to the values of the Neural Network’s decision 
variables, with the additional constraint that the new solution must form a feasible route for 
the Traveling Salesman Problem.  
The results from this new technique are compared to other heuristics, with data from the 
TSPLIB (Traveling Salesman Problem Library). The 2-opt local search technique is applied to 
the final solutions of the proposed technique and shows a considerable improvement of the 
results. The results of problem “dantzig42” of TSPLIB and an example with some iterations 
of technique proposed in this work are shown.  
This work is divided in 11 sections, including this introduction. In section 2, the Assignment 
Problem is defined. In section 3, the Wang’s recurrent neural network is presented and a 
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Wang’s Recurrent Neural Network, and could be applied to solve the Traveling Salesman 
Problem as well. This application to the Traveling Salesman Problem can easily be 
implemented, since the formulation of this problem is the same that of the Assignment 
Problem, with the additional constraint of Hamiltonian circuit.  
Comparisons between some traditional ways to adjust parameters of Recurrent Neural 
Networks are made, and some proposals concerning to parameters with dispersion 
measures of the cost matrix coefficients to the Assignment Problem are shown. Wang’s 
Neural Network with principle Winner Takes All performs only 1% of the average number 
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TSPLIB (Traveling Salesman Problem Library). The 2-opt local search technique is applied to 
the final solutions of the proposed technique and shows a considerable improvement of the 
results. The results of problem “dantzig42” of TSPLIB and an example with some iterations 
of technique proposed in this work are shown.  
This work is divided in 11 sections, including this introduction. In section 2, the Assignment 
Problem is defined. In section 3, the Wang’s recurrent neural network is presented and a 
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problem with multiple optimal solutions is shown. In section 4, the technique based on the 
“Winner takes all“ principle is presented and an example of application to Assignment 
Problem is shown. In section 5, some alternatives for parameters of Wang’s neural network 
to Assignment Problem are presented. In section 6 the results to 100 matrices are shown. In 
Section 7, it is presented the formulation of Traveling Salesman Problem. In section 8 the 
application of Wang’s neural network with “Winner Takes all“ is shown with five examples 
of TSPLIB. In Section 9, results to others problems of TSPLIB are compared to the ones 
obtained trhrough other techniques. Findings are presented in section 10, and section 11 
contains the references. 

2. The assignment problem 
The objective of this problem is assigning a number of elements to the same number of 
positions, and minimizing the linear cost function. This problem is known in literature as 
Linear Assignment Problem or problem of Matching with Costs (Ajuha et al., 1993; Siqueira 
et al., 2004), and can be formulated as follows:  
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 xij ∈ {0, 1}, i, j = 1, 2, ..., n,  (4) 

where cij and xij are, respectively, the cost and the decision variable associated to the 
assignment of element i to position j. The usual representation form of c in the Hungarian 
method is the matrix form. When xij = 1, element i is assigned to position j.  
The objective function (1) represents the total cost to be minimized. The set of constraints (2) 
and (3) guarantees that each element i will be assigned for exactly one position j. The set (4) 
represents the zero-one integrality constraints of the decision variables xij. The set of 
constraints (4) can be replaced by: 

 0≥ijx ,  i, j = 1, 2, ..., n.  (5) 

Beyond traditional techniques, as the Hungarian method and the Simplex method, some 
ways of solving this problem has been presented in the last years. In problems of great scale, 
i.e., when the problem’s cost matrix is very large, the traditional techniques do not reveal 
efficiency, because the number of restrictions and the computational time are increased.  
Since the Hopfield and Tank’s publication (Hopfield & Tank, 1985), lots of works about the 
use of Neural Networks to solving optimization problems had been developed (Matsuda, 
1998; Wang, 1992 and 1997). The Hopfield’s Neural Network, converges to the optimal 
solution of any Linear Programming problem, in particular for the AP. 
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Wang, 1992, considered a Recurrent Neural Network to solve the Assignment Problem, 
however, the necessary number of iterations to achieve an optimal solution is increased in 
problems of great scale. Moreover, in problems with solutions that are very close to each 
other or multiple optimal solutions, such network does not converge. 
In this work, one technique based on the “Winner Takes All“ principle is presented, 
revealing efficiency solving the problems found in the use of Wang’s Recurrent Neural 
Network. Some criteria to adjust the parameters of the Wang’s Neural Network are 
presented: some traditional ways and others that use dispersion measures between the cost 
matrix’ coefficients. 

3. The Wang’s recurrent neural network to assignment problem 

Consider the 12 ×n vectors cT, that contains all the rows of matrix c; x, that contains the 
decision elements xij, and b, that contains the number “1“ in all positions. The matrix form of 
the problem described in (1)-(4) is due Hung & Wang, 2003:  

 Minimize C = cTx (6) 

 Subject to Ax = b  (7) 

0≥ijx , i, j = 1, 2, ..., n, 

where matrix A has the following form: 
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where I is an n × n identity matrix, and each Bi matrix, for i = 1, 2..., n, contains zeros, with 
exception of ith row, that contains the number “1“ in all positions. 
The Recurrent Neural Network proposed by Wang (published in Wang, 1992; Wang, 1997; 
and Hung & Wang, 2003) is characterized by the following differential equation: 
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where xij = g(uij(t)) and the equilibrium state of this Neural Network is a solution for the 
Assignment Problem, where g is the sigmoid function with a β parameter, i.e., 

 g(u) = ue β−+1
1 . (9) 

The threshold is defined as the 12 ×n vector θ = ATb = (2, 2, ..., 2). Parameters η, λ and τ are 
constants, and empirically chosen (Hung & Wang, 2003), affecting the convergence of the 
network. Parameter η serves to penalize violations in the problem’s constraints’ set, defined 
by (1)-(4). Parameters λ and τ control the objective function’s minimization of the 
Assignment Problem (1). The Neural Network matrix form can be written as: 

 τλθη
t

cetWx
dt

tdu −
−−−= ))(()( , (10) 



 Travelling Salesman Problem 

 

136 

problem with multiple optimal solutions is shown. In section 4, the technique based on the 
“Winner takes all“ principle is presented and an example of application to Assignment 
Problem is shown. In section 5, some alternatives for parameters of Wang’s neural network 
to Assignment Problem are presented. In section 6 the results to 100 matrices are shown. In 
Section 7, it is presented the formulation of Traveling Salesman Problem. In section 8 the 
application of Wang’s neural network with “Winner Takes all“ is shown with five examples 
of TSPLIB. In Section 9, results to others problems of TSPLIB are compared to the ones 
obtained trhrough other techniques. Findings are presented in section 10, and section 11 
contains the references. 

2. The assignment problem 
The objective of this problem is assigning a number of elements to the same number of 
positions, and minimizing the linear cost function. This problem is known in literature as 
Linear Assignment Problem or problem of Matching with Costs (Ajuha et al., 1993; Siqueira 
et al., 2004), and can be formulated as follows:  

 Minimize C =∑∑
= =

n

i

n

j
ijijxc

1 1

 (1) 

 Subject to 1
1

=∑
=

n

i
ijx , j = 1, 2, ..., n (2) 

 1
1

=∑
=

n

j
ijx , i = 1, 2, ..., n (3) 

 xij ∈ {0, 1}, i, j = 1, 2, ..., n,  (4) 

where cij and xij are, respectively, the cost and the decision variable associated to the 
assignment of element i to position j. The usual representation form of c in the Hungarian 
method is the matrix form. When xij = 1, element i is assigned to position j.  
The objective function (1) represents the total cost to be minimized. The set of constraints (2) 
and (3) guarantees that each element i will be assigned for exactly one position j. The set (4) 
represents the zero-one integrality constraints of the decision variables xij. The set of 
constraints (4) can be replaced by: 

 0≥ijx ,  i, j = 1, 2, ..., n.  (5) 

Beyond traditional techniques, as the Hungarian method and the Simplex method, some 
ways of solving this problem has been presented in the last years. In problems of great scale, 
i.e., when the problem’s cost matrix is very large, the traditional techniques do not reveal 
efficiency, because the number of restrictions and the computational time are increased.  
Since the Hopfield and Tank’s publication (Hopfield & Tank, 1985), lots of works about the 
use of Neural Networks to solving optimization problems had been developed (Matsuda, 
1998; Wang, 1992 and 1997). The Hopfield’s Neural Network, converges to the optimal 
solution of any Linear Programming problem, in particular for the AP. 

A Recurrent Neural Network to Traveling Salesman Problem 

 

137 

Wang, 1992, considered a Recurrent Neural Network to solve the Assignment Problem, 
however, the necessary number of iterations to achieve an optimal solution is increased in 
problems of great scale. Moreover, in problems with solutions that are very close to each 
other or multiple optimal solutions, such network does not converge. 
In this work, one technique based on the “Winner Takes All“ principle is presented, 
revealing efficiency solving the problems found in the use of Wang’s Recurrent Neural 
Network. Some criteria to adjust the parameters of the Wang’s Neural Network are 
presented: some traditional ways and others that use dispersion measures between the cost 
matrix’ coefficients. 

3. The Wang’s recurrent neural network to assignment problem 

Consider the 12 ×n vectors cT, that contains all the rows of matrix c; x, that contains the 
decision elements xij, and b, that contains the number “1“ in all positions. The matrix form of 
the problem described in (1)-(4) is due Hung & Wang, 2003:  

 Minimize C = cTx (6) 

 Subject to Ax = b  (7) 

0≥ijx , i, j = 1, 2, ..., n, 

where matrix A has the following form: 

22

21 ...
... nn

nBBB
III

A ×ℜ∈⎥
⎦

⎤
⎢
⎣

⎡
=  

where I is an n × n identity matrix, and each Bi matrix, for i = 1, 2..., n, contains zeros, with 
exception of ith row, that contains the number “1“ in all positions. 
The Recurrent Neural Network proposed by Wang (published in Wang, 1992; Wang, 1997; 
and Hung & Wang, 2003) is characterized by the following differential equation: 

 ∑ ∑
= =

−
−+−−=

n

k

n

l

t

ijijljik
ij ectxtx
dt

tdu

1 1

)()(
)(

τληθηη ,  (8) 

where xij = g(uij(t)) and the equilibrium state of this Neural Network is a solution for the 
Assignment Problem, where g is the sigmoid function with a β parameter, i.e., 
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The threshold is defined as the 12 ×n vector θ = ATb = (2, 2, ..., 2). Parameters η, λ and τ are 
constants, and empirically chosen (Hung & Wang, 2003), affecting the convergence of the 
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where x = g(u(t)) and W = ATA. The convergence properties of Wang’s Neural Network are 
demonstrated in Wang 1993, 1994 & 1995, and Hung & Wang, 2003. 

3.1 Multiple optimal solutions and closer optimal solutions 
In some cost matrices, the optimal solutions are very closer to each other, or in a different 
way, some optimal solutions are admissible. The cost matrix c given below: 
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has the solutions x* and x̂  given below:   
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where x* is found after 4,715 iterations using the Wang’s neural network, and x̂  is an 
optimal solution.  
The solution x* isn’t feasible, therefore, some elements xij* violate the set of restrictions (4), 
showing that the Wang’s neural network needs adjustments for these cases. The simple 
decision to place unitary value for any one of the elements xij* that possess value 0.5 in 
solution x* can become unfeasible or determine a local optimal solution. Another adjustment 
that can be made is the modification of the costs’ matrix’ coefficients, eliminating ties in the 
corresponding costs of the variable xij* that possess value different from “0“ and “1“. In this 
way, it can be found a local optimal solution when the modifications are not made in the 
adequate form. Hence, these decisions can cause unsatisfactory results.  

4. Wang’s neural network and “Winner Takes All” principle to assignment 
problem 
The method considered in this work uses one technique based on the ”Winner Takes All” 
principle, speeding up the convergence of the Wang’s Neural Network, besides correcting 
eventual problems that can appear due the multiple optimal solutions or very closer optimal 
solutions (Siqueira et al., 2005). 
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The second term of equation (10), Wx(t) − θ, measures the violation of the constraints to the 
Assignment Problem. After a certain number of iterations, this term does not suffer 
substantial changes in its value, evidencing the fact that problem’s restrictions are almost 
satisfied. At this moment, the method considered in this section can be applied.  
When all elements of x satisfy the condition Wx(t) − θ φ≤ , where φ ∈ [0, 2], the proposed 
technique can be used in all iterations of the Wang’s Neural Network, until a good approach 
of the Assignment Problem be found. An algorithm of this technique is presented as follows: 
Step 1: Find a solution x of the AP, using the Wang’s recurrent neural network. If Wx(t) − θ 

φ≤ , then go to Step 2. Else, find another solution x.  
Step 2: Given the matrix of decision x, after a certain number of iterations of the Wang’s 

recurrent neural network. Let the matrix x , where x  = x, m = 1, and go to step 3. 
Step 3: Find the mth biggest array element of decision, x kl. The value of this element is 

replaced by the half of all elements sum of row k and column l of matrix x, or either,  
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              The other elements of row k and column l become nulls. Go to step 4.  
Step 4: If m ≤  n, makes m = m + 1, and go to step 3. Else, go to step 5. 
Step 5: If a good approach to an AP solution is found, stop. Else, make x = x , execute the 

Wang’s neural network again and go to Step 2.  

4.1 Illustrative example 
Consider the matrix below, which it is a partial solution of the Assignment Problem defined 
by matrix C, in (13), after 14 iterations of the Wang’s recurrent neural network. The biggest 
array element of x  is in row 1, column 7. 
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where x = g(u(t)) and W = ATA. The convergence properties of Wang’s Neural Network are 
demonstrated in Wang 1993, 1994 & 1995, and Hung & Wang, 2003. 
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The second term of equation (10), Wx(t) − θ, measures the violation of the constraints to the 
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4.1 Illustrative example 
Consider the matrix below, which it is a partial solution of the Assignment Problem defined 
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After the update of this element through equation (12), the result given below is found. The 
second biggest element of x  is in row 5, column 5. 
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After the update of all elements of x , get the following solution:  
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This solution is presented to the Wang’s neural network, and after finding another x 
solution, a new x  solution is calculated through the “Winner Takes All“ principle.  
This procedure is made until a good approach to feasible solution is found. In this example, 
after more 5 iterations, the matrix x  presents one approach of the optimal solutions: 
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9991.00000000
000003.100000
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0009985.00000
0000000999.0
00009994.0000
0000009996.00
09992.0000000

x . 

Two important aspects of this technique that must be taken in consideration are the 
following: the reduced number of iterations necessary to find a feasible solution, and the 
absence of problems related to the matrices with multiple optimal solutions. The 
adjustments of the Wang’s neural network parameters are essential to guarantee the 
convergence of this technique, and some forms of adjusting are presented on the next 
section. 
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5. The parameters of Wang’s recurrent neural network 
In this work, the used parameters play basic roles for the convergence of the Wang’s neural 
network. In all the tested matrices, η = 1 had been considered, and parameters τ and λ had 
been calculated in many ways, described as follows (Siqueira et al., 2005).  
One of the most usual forms to calculate parameter λ for the AP can be found in Wang, 1992, 
where λ is given by: 

 λ = η/Cmax ,  (14) 

where Cmax = max{cij; i, j = 1, 2, ..., n}.  
The use of dispersion measures between the c matrix coefficients had revealed to be efficient 
adjusting parameters τ and λ. Considering δ as the standard deviation between the c cost 
matrix’ coefficients, the parameter λ can be given as:  

 λ = η/δ. (15) 

Another way to adjust λ is to consider it a vector, defined by: 

 ⎟⎟
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⎞
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⎝

⎛
=

nδδδ
ηλ 1,...,1,1

21
, (16) 

where δi, for i = 1, 2..., n, represents the standard deviation of each row of the matrix c. Each 
element of the vector λ is used to update the corresponding row of the x decision matrix. 
This form to calculate λ revealed to be more efficient in cost matrices with great dispersion 
between its values, as shown by the results presented in the next section.  
A variation of the expression (14), that uses the same principle of the expression (16), is to 
define λ by the vector: 
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1,...,1,1
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where ci max = max{cij; j = 1, 2, …, n}, for each i = 1, 2, …,n. This definition to λ also produces 
good results in matrices with great dispersion between its coefficients.  
The parameter τ depends on the necessary number of iterations for the convergence of the 
Wang’s neural network. When the presented correction “Winner Takes All“ technique isn’t 
used, the necessary number of iterations for the convergence of the Wang’s neural netowork 
varies between 1,000 and 15,000 iterations. In this case, τ is a constant, such that: 

 000,15000,1 ≤≤τ . (18) 

When the “Winner Takes All“ correction is used, the necessary number of iterations varies 
between 5 and 300. Hence, the value of τ  is such that: 

 3005 ≤≤τ . (19) 

In this work, two other forms of τ parameter adjustment had been used, besides considering 
it constant, in the intervals showed in expressions (18) and (19). In one of the techniques, τ is 
given by: 
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After the update of this element through equation (12), the result given below is found. The 
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absence of problems related to the matrices with multiple optimal solutions. The 
adjustments of the Wang’s neural network parameters are essential to guarantee the 
convergence of this technique, and some forms of adjusting are presented on the next 
section. 
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where δi, for i = 1, 2..., n, represents the standard deviation of each row of the matrix c. Each 
element of the vector λ is used to update the corresponding row of the x decision matrix. 
This form to calculate λ revealed to be more efficient in cost matrices with great dispersion 
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where ci max = max{cij; j = 1, 2, …, n}, for each i = 1, 2, …,n. This definition to λ also produces 
good results in matrices with great dispersion between its coefficients.  
The parameter τ depends on the necessary number of iterations for the convergence of the 
Wang’s neural network. When the presented correction “Winner Takes All“ technique isn’t 
used, the necessary number of iterations for the convergence of the Wang’s neural netowork 
varies between 1,000 and 15,000 iterations. In this case, τ is a constant, such that: 
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When the “Winner Takes All“ correction is used, the necessary number of iterations varies 
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In this work, two other forms of τ parameter adjustment had been used, besides considering 
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 ( )nnδμδμδμ
μ

τ ,...,,1
2211= , (20) 

where μi are the coefficients average of ith row of matrix c, δi is the standard deviation of ith 
row of matrix c, and μ is the average between the values of all the coefficients of c.  
The second proposal of adjustment for τ uses the third term of definition of neural network 
of Wang (8). When cij = cmax, the term −λicij exp(−t /τi ) = ki must satisfied g(ki) ≅ 0, so xij has 
minor value, minimizing the final cost of the Assignment Problem. Isolating τ, and 
considering cij = cmax and λi = 1/δi, where i = 1, 2..., n, τ is got, as follows: 
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The parameters’ application results given by (14)-(21) are presented on next section.  

6. Results to assignment problem 
In this work, 100 matrices (with dimensions varying of 3×3 until 20×20) had been used to 
test the techniques of adjustments to parameters presented in previous section, beyond the 
proposed “Winner Takes All” correction applied to the Wang’s recurrent neural network. 
These matrices had been generated randomly, with some cases of multiple optimal solutions 
and very closer optimal solutions. 
The results to 47 tested matrices with only one optimal global appear in Table 1, and results 
to 53 matrices with multiple optimal solutions and/or very closer optimal solutions appear 
in Table 2. Table 3 shown results to all matrices tested to Assignment Problem. 
To adjust λ, the following expressions had been used on Tables 1, 2 and 3: (14) in the first 
and last column; (15) in the second column; (17) in the third column; and (16) in fourth and 
fifth columns. To calculate τ, the following expressions they had been used: (19) in the three 
firsts columns; (20) in the fourth column; (21) in the fifth column; and (18) in the last column. 
The results of the Wang’s neural network application, without the use of the proposed 
correction in this work, are meet in the last column of Tables 1, 2 and 3. In the last row of the 
Tables 1, 2 and 3 the numbers of iterations of each technique is given by the average 
between the numbers of iterations found for all tested matrices.  
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λ

τ  
1,000 ≤ τ ≤  

≤ 15,000 

global optimality 40 45 40 40 46 47 
local optimality 7 2 7 7 1 0 
infeasibility 0 0 0 0 0 0 
global optim.(%) 85 96 85 85 98 100 
average error (%) 2.35 0.98 0.74 5.10 0.02 0 
iterations (average) 37 46 41 72 51 3,625 

Table 1. Results for 47 matrices with only one optimal solution 
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≤ 15,000 

global optimality 33 43 32 39 46 0 
local optimality 20 10 21 14 7 0 
infeasibility 0 0 0 0 0 53 
global optim.(%) 62 81 60 74 87 0 
average error (%) 4.87 1.63 6.37 4.79 2.14 - 
iterations (average) 39 42 41 76 47 6,164 

Table 2. Results for 53 matrices with multiple optimal solutions 
The results had been considered satisfactory, and the adjustments of the parameters that 
result in better solutions for the “Winner Takes All“ correction are those that use the 
standard deviation and the average between the elements of matrix of costs, and the use of 
parameters in vector form revealed to be more efficient for these matrices. The results 
shown in Tables 1, 2 and 3 reveal that the dispersion techniques between the coefficients of 
matrix c are more efficient for the use of the correction “Winner Takes All“ in matrices with 
multiple optimal solutions.  
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maxC

η λ = δ
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λ

τ  
1,000 ≤ τ ≤  
≤ 15,000 

global optim.(%) 73 88 72 79 92 47 
local optimality 27 12 28 21 8 0 
infeasibility 0 0 0 0 0 53 
average error (%) 3.17 1.19 2.57 5.00 0.71 - 
iterations (average) 38 44 41 74 49 4,970 

Table 3. Results for all matrices 
The pure Wang’s neural network has slower convergence when the adjustments described 
by (15)-(17) and (19)-(21) are applied for the parameters λ and τ, respectively. Better results 
are found with combination of parameters (16) and (21), as shown in Tables 1, 2 and 3. This 
combination is used to solve the Traveling Salesman Problem. 
These results shows that the “Winner Takes All“ principle, applied to the Wang’s neural 
network, produces good results to Assignment Problem, mainly in matrices with multiple 
optimal solutions. The parameters to Wang’s neural network presented in section 5 show 
the efficiency of this technique for great scale problems, because the average number of 
iterations necessary to find feasible solutions for the Assignment Problem was considerably 
reduced, compared to the pure Wang’s neural network. 
The application of “Winner Take All“ principle to Wang’s recurrent neural network to solve 
the Traveling Salesman Problem is presented on next sections.  
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the efficiency of this technique for great scale problems, because the average number of 
iterations necessary to find feasible solutions for the Assignment Problem was considerably 
reduced, compared to the pure Wang’s neural network. 
The application of “Winner Take All“ principle to Wang’s recurrent neural network to solve 
the Traveling Salesman Problem is presented on next sections.  



 Travelling Salesman Problem 

 

144 

7. The traveling salesman problem 
The formulation of Traveling Salesman Problem is the same of Assignment Problem, with 
the additional constraint of Hamiltonian circuit, i.e., the feasible route must form a cycle 
which visits each city exactly once, and returns to the starting city: 

 Minimize C =∑∑
= =

n

i

n

j
ijijxc

1 1

 (22) 

 Subject to   1
1

=∑
=

n

i
ijx ,    j = 1, 2, ..., n (23) 

 1
1

=∑
=

n

j
ijx ,   i = 1, 2, ..., n (24) 

 xij ∈ {0, 1},    i, j = 1, 2, ..., n (25) 
 

 x~  forms a Hamiltonian cycle (26) 
 

where the vector x~  has the whole sequence of the route that was found, i.e., the solution for 
the Traveling Salesman Problem. 
The Traveling Salesman Problem is a classical problem of combinatorial optimization in the 
Operations Research area. The purpose is to find a minimum total cost Hamiltonian cycle 
(Ahuja et al.,1993). There are several practical uses for this problem, such as Vehicle Routing 
(Laporte, 1992) and Drilling Problems (Onwubolu & Clerc, 2004).  
This problem has been used during the last years as a basis for comparison in order to 
improve several optimization techniques, such as Genetic Algorithms (Affenzeller & 
Wanger, 2003), Simulated Annealing (Budinich, 1996), Tabu Search (Liu et al., 2003), Local 
Search (Bianchi et al., 2005), Ant Colony (Chu et al., 2004) and Neural Networks (Leung et 
al., 2004; Siqueira et al., 2007).  
The main types of Neural Network used to solve the Traveling Salesman Problem are: 
Hopfield’s Recurrent Networks (Wang et al., 2002) and Kohonen’s Self-Organizing Maps 
(Leung et al., 2003). In a Hopfield’s Network, the main idea is to automatically find a 
solution for the Traveling Salesman Problem by means of an equilibrium state of the 
equation system defined for the Traveling Salesman Problem. By using Kohonen’s Maps for 
the Traveling Salesman Problem, the final route is determined through the cities 
corresponding to those neurons that have weights that are closest to the pair of coordinates 
ascribed to each city in the problem.  
Wang’s recurrent neural network with the “Winner Takes All” principle can be applied to 
solve the Traveling Salesman Problem on this way: solving this problem as if it were an 
Assignment Problem by means of the Wang’s neural network, and, furthermore, using the 
“Winner Takes All” principle on the solutions found with the Wang’s neural network, with 
the constraint that the solutions found must form a feasible route for the Traveling Salesman 
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Problem. The parameters used for the Wang’s neural network are those that show the best 
solutions for the Assignment Problem, as shown on Tables 1, 2 and 3 of previous section. 
The solutions found with the heuristic technique proposed in this work are compared with 
the solutions from the Self-Organizing Maps (SOM) and the Simulated Annealing (SA) for 
the symmetrical TSP, and with other heuristics for the asymmetrical TSP. The 2-opt Local 
Search technique (Bianchi et al., 2005) is used to improve the solutions found with the 
technique proposed in this work. The data used for the comparisons are from the TSPLIB 
database (Reinelt, 1991). 

8. Wang’s neural network and “Winner Takes All” principle to traveling 
salesman problem 
The algorithm presented on section 4 to Assignment Problem can be easily modified to solve 
the Traveling Salesman Problem: 
Step 1: Determine a maximum number of routes rmax. Find a solution x to Assignment 

Problem using the Wang’s neural netowork. If Wx(t) − θ φ≤ , then go to Step 2. 
Otherwise, find another solution x.  

Step 2: Given the decision matrix, consider matrix x , where x  = x, m = 1 and go to Step 3. 
Step 3: Choose a row k in decision matrix x . Do p = k, x~ (m) = k and go to Step 4. 
Step 4: Find the biggest element of row k, x kl. This element’s value is given by the half of 

the sum of all elements of row k and of column l of matrix x, i.e.,  
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The other elements of row k and column l become null. So that sub-routes are not 
formed, the other elements of column k must also be null. Do x~ (m + 1) = l; to 
continue the Traveling Salesman Problem route, make k = l and go to Step 5.  

Step 5: If m < n, then make m = m + 1 and go to Step 4. Otherwise, do  
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x~ (n + 1) = p, determine the route’s cost, C, and go to Step 6. 
Step 6: If C < Cmin, then do Cmin = C and x = x . Make r = r + 1. If r < rmax, then run the 

Wang’s neural network again and go to Step 2, otherwise Stop.  

8.1 Illustrative examples applied to problems of TSPLIB 
Consider the symmetrical Traveling Salesman Problem with 14-city instances burma14, due 
Zaw & Win (Reinelt, 1991), as shown in Fig. 1. After 17 iterations, the Wang’s neural 
network presents the following solution for the Assignment Problem: 
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(Ahuja et al.,1993). There are several practical uses for this problem, such as Vehicle Routing 
(Laporte, 1992) and Drilling Problems (Onwubolu & Clerc, 2004).  
This problem has been used during the last years as a basis for comparison in order to 
improve several optimization techniques, such as Genetic Algorithms (Affenzeller & 
Wanger, 2003), Simulated Annealing (Budinich, 1996), Tabu Search (Liu et al., 2003), Local 
Search (Bianchi et al., 2005), Ant Colony (Chu et al., 2004) and Neural Networks (Leung et 
al., 2004; Siqueira et al., 2007).  
The main types of Neural Network used to solve the Traveling Salesman Problem are: 
Hopfield’s Recurrent Networks (Wang et al., 2002) and Kohonen’s Self-Organizing Maps 
(Leung et al., 2003). In a Hopfield’s Network, the main idea is to automatically find a 
solution for the Traveling Salesman Problem by means of an equilibrium state of the 
equation system defined for the Traveling Salesman Problem. By using Kohonen’s Maps for 
the Traveling Salesman Problem, the final route is determined through the cities 
corresponding to those neurons that have weights that are closest to the pair of coordinates 
ascribed to each city in the problem.  
Wang’s recurrent neural network with the “Winner Takes All” principle can be applied to 
solve the Traveling Salesman Problem on this way: solving this problem as if it were an 
Assignment Problem by means of the Wang’s neural network, and, furthermore, using the 
“Winner Takes All” principle on the solutions found with the Wang’s neural network, with 
the constraint that the solutions found must form a feasible route for the Traveling Salesman 
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Problem. The parameters used for the Wang’s neural network are those that show the best 
solutions for the Assignment Problem, as shown on Tables 1, 2 and 3 of previous section. 
The solutions found with the heuristic technique proposed in this work are compared with 
the solutions from the Self-Organizing Maps (SOM) and the Simulated Annealing (SA) for 
the symmetrical TSP, and with other heuristics for the asymmetrical TSP. The 2-opt Local 
Search technique (Bianchi et al., 2005) is used to improve the solutions found with the 
technique proposed in this work. The data used for the comparisons are from the TSPLIB 
database (Reinelt, 1991). 

8. Wang’s neural network and “Winner Takes All” principle to traveling 
salesman problem 
The algorithm presented on section 4 to Assignment Problem can be easily modified to solve 
the Traveling Salesman Problem: 
Step 1: Determine a maximum number of routes rmax. Find a solution x to Assignment 

Problem using the Wang’s neural netowork. If Wx(t) − θ φ≤ , then go to Step 2. 
Otherwise, find another solution x.  

Step 2: Given the decision matrix, consider matrix x , where x  = x, m = 1 and go to Step 3. 
Step 3: Choose a row k in decision matrix x . Do p = k, x~ (m) = k and go to Step 4. 
Step 4: Find the biggest element of row k, x kl. This element’s value is given by the half of 

the sum of all elements of row k and of column l of matrix x, i.e.,  
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The other elements of row k and column l become null. So that sub-routes are not 
formed, the other elements of column k must also be null. Do x~ (m + 1) = l; to 
continue the Traveling Salesman Problem route, make k = l and go to Step 5.  

Step 5: If m < n, then make m = m + 1 and go to Step 4. Otherwise, do  
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x~ (n + 1) = p, determine the route’s cost, C, and go to Step 6. 
Step 6: If C < Cmin, then do Cmin = C and x = x . Make r = r + 1. If r < rmax, then run the 

Wang’s neural network again and go to Step 2, otherwise Stop.  

8.1 Illustrative examples applied to problems of TSPLIB 
Consider the symmetrical Traveling Salesman Problem with 14-city instances burma14, due 
Zaw & Win (Reinelt, 1991), as shown in Fig. 1. After 17 iterations, the Wang’s neural 
network presents the following solution for the Assignment Problem: 
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In this decision matrix, a city is chosen to start the route, for instance, city 8, this is, p = 8. In 
row p of the decision matrix the biggest element is chosen, thus defining the Traveling 
Salesman’s destiny when he leaves city p. The biggest element of row p is in column 1, 
therefore, k = p = 8 and l = 1. After the decision matrix x  is updated by means of equation 
(27), the route goes on with k = 1: 
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The biggest element of row 1 in matrix x  is in column 2, therefore, l = 2. This procedure is 
executed until all rows are updated, thus defining the route: x~ = (8, 1, 2, 10, 9, 11, 13, 7, 6, 5, 
4, 3, 14, 12, 8), as shown in Fig. 1a, with a cost of 34.03, which represents an average error of 
10.19%. 
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This solution is presented to the Wang’s neural network, by making x = x . After more 16 
iterations the neural network the following decision matrix is presented: 
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Through the “Winner Takes All” principle, an approximation for the optimal solution of this 
problem is found with the route: x~ = (2, 1, 10, 9, 11, 8, 13, 7, 12, 6, 5, 4, 3, 14, 2), with a cost of 
30.88 (Fig. 2b). 
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In this decision matrix, a city is chosen to start the route, for instance, city 8, this is, p = 8. In 
row p of the decision matrix the biggest element is chosen, thus defining the Traveling 
Salesman’s destiny when he leaves city p. The biggest element of row p is in column 1, 
therefore, k = p = 8 and l = 1. After the decision matrix x  is updated by means of equation 
(27), the route goes on with k = 1: 
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The biggest element of row 1 in matrix x  is in column 2, therefore, l = 2. This procedure is 
executed until all rows are updated, thus defining the route: x~ = (8, 1, 2, 10, 9, 11, 13, 7, 6, 5, 
4, 3, 14, 12, 8), as shown in Fig. 1a, with a cost of 34.03, which represents an average error of 
10.19%. 
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This solution is presented to the Wang’s neural network, by making x = x . After more 16 
iterations the neural network the following decision matrix is presented: 
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Through the “Winner Takes All” principle, an approximation for the optimal solution of this 
problem is found with the route: x~ = (2, 1, 10, 9, 11, 8, 13, 7, 12, 6, 5, 4, 3, 14, 2), with a cost of 
30.88 (Fig. 2b). 
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Consider the symmetrical Traveling Salesman Problem with 42-city instance by Dantzig 
(Reinelt, 1991), as shown in Fig. 3 and 4. This problem contains coordinates of cities in the 
United States, and after 25 epochs the condition Wx(t) − θ φ≤ is satisfied with 01.0=φ and 
the Wang’s neural network presents the first solution 1

~x  for the Traveling Salesman 
Problem, as shown in Fig. 3a. 
 

 
(a)                                                                             (b) 

 

Fig. 2. (a) Feasible solution found to burma14 through the proposed method, with an 
average error of 10.19%. (b) Optimal solution found through the proposed method 

The solution 1
~x  is presented to Wang’s neural network, and after 20 iterations an improved 

solution is reached, with the average error decreasing from 19.56% to 0.83% as shown in Fig. 
3a and 3b.  
An improvement to heuristic Wang’s neural network is the application of local search 2-opt 
heuristic on Step 5 of the algorithm shown in this section. This application is made after the 
expression (27), to the Wang’s neural network solution in the algorithm, just as an 
improvement. The results of Wang’s neural network with 2-opt on problem dantzig42 is 
shown in Fig. 4, where after 72 epochs an optimal solution is found. 
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(a)                                                                          (b) 

Fig. 3. Solutions found to dantzig42 data without 2-opt improvement. (a) First feasible tour 
found through the proposed heuristic, with an average error of 19.56%. (b) Tour with 0.83% 
of average error, after 29 iterations. 
Others examples of results found to symmetrical Traveling Salesman problems are (Reinelt, 
1991): the 58-city instance of Brazil, due Ferreira, shown in Fig. 5; the 532-city instances of 
United States due Padberg and Rinaldi, shown in Fig. 6; and the drilling problem u724 due 
Reinelt, shown in Fig. 7. 
 

 
(a)                                                                           (b) 

 
(c)                                                                           (d) 

Fig. 4. Solutions found to dantzig42 data with 2-opt improvement. (a) First feasible solution 
found, in 26 epochs and average error of 8.77%. (b) 36 epochs and error 1.5%. (c) 45 epochs 
and error 0.57%. (d) 72 epochs and optimal solution found. 
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Fig. 4. Solutions found to dantzig42 data with 2-opt improvement. (a) First feasible solution 
found, in 26 epochs and average error of 8.77%. (b) 36 epochs and error 1.5%. (c) 45 epochs 
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(a)                                                                           (b) 

Fig. 5. Solutions found to brazil58 data. (a) Feasible solution found without local search 
improvement with 81 epochs and average error of 2.9%. (b) Optimal solution found with 2-
opt improvement with 88 epochs. 
 

 
(a)                                                                           (b) 

Fig. 6. Solutions found to att532 data. (a) Feasible solution found without local search 
improvement with 411 epochs and average error of 14.58%. (b) Feasible solution found with 
local search improvement with 427 epochs and average error of 1.27%. 
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Fig. 7. Solutions found to u724 data. (a) Feasible solution found without local search 
improvement with 469 epochs and average error of 16.85%. (b) Feasible solution found with 
local search improvement with 516 epochs and average error of 6.28%. 
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The next Section shows the results of applying this technique to some of the TSPLIB’s 
problems for symmetrical and asymmetrical Traveling Salesman problems. 

9. Comparisons of technique proposed with others heuristics to some 
TSPLIB’s problems 
The results found with the technique proposed to problems of TSPLIB with symmetrical 
cases are compared with Self Organizing Maps and Simulated Annealing results. In 
asymmetrical problems of TSPLIB, the technique proposed are compared with heurist of 
insertion of arcs. In both cases the local search technique was applied to results found with 
Wang’s Recurrent Neural Network with “Winner Takes All”. 
For symmetrical problems, the following methods were used to compare with the technique 
presented in this work:  
• the method that involves statistical methods between neurons’ weights of Self 

Organizing Maps (Aras et al., 1999) and has a global version (KniesG: Kohonen 
Network Incorporating Explicit Statistics Global), where all cities are used in the neuron 
dispersion process, and a local version (KniesL), where only some represented cities are 
used in the neuron dispersion step;  

• the Simulated Annealing technique (Budinich, 1996), using the 2-opt improvement 
technique;  

• Budinich’s Self Organizing Map, which consists of a traditional Self Organizing Map 
applied to the Traveling Salesman Problem, presented in Budinich, 1996;  

• the expanded Self Organizing Map (ESOM), which, in each iteration, places the neurons 
close to their corresponding input data (cities) and, at the same time, places them at the 
convex contour determined by the cities (Leung et al., 2004);  

• the efficient and integrated Self Organizing Map (eISOM), where the ESOM procedures 
are used and the winning neuron is placed at the mean point among its closest 
neighboring neurons(Jin et al., 2003);  

• the efficient Self Organizing Map technique (SETSP), which defines the updating forms 
for parameters that use the number of cities of problem (Vieira et al., 2003);  

• and Kohonen’s cooperative adaptive network (CAN) uses the idea of cooperation 
between the neurons’ close neighbors and uses a number of neurons that is larger than 
the number of cities in the problem (Cochrane & Beasley, 2003).  

The computational complexity of the proposed heuristic is O(n2 + n) (Wang, 1997), 
considered competitive when compared to the complexity of mentioned Self Organizing 
Map, which have complexity O(n2) (Leung et al., 2004). The CAN technique has a 
computational complexity of O(n2log(n)) (Cochrane & Beasley, 2003), while the Simulated 
Annealing technique has a complexity of O(n4log(n)) (Liu et al., 2003). 
The results for the proposed heuristic in this paper, together with the 2-opt improvement, 
presented an average error range from 0 to 3.31%, as shown in the 2-opt column of Table 4. 
The methods that use improvement techniques to their solutions are Simulated Annealing, 
CAN and Wang’s neural network with “Winner Takes All”.  
The technique proposed in this paper, with 2-opt, present better results that Simulated 
Annealing and CAN methods in almost every problem, with the only exception in the lin105 
problem. Without the improvement 2-opt, the results of problems eil76, eil51, eil101 and 
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The next Section shows the results of applying this technique to some of the TSPLIB’s 
problems for symmetrical and asymmetrical Traveling Salesman problems. 
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For symmetrical problems, the following methods were used to compare with the technique 
presented in this work:  
• the method that involves statistical methods between neurons’ weights of Self 

Organizing Maps (Aras et al., 1999) and has a global version (KniesG: Kohonen 
Network Incorporating Explicit Statistics Global), where all cities are used in the neuron 
dispersion process, and a local version (KniesL), where only some represented cities are 
used in the neuron dispersion step;  

• the Simulated Annealing technique (Budinich, 1996), using the 2-opt improvement 
technique;  

• Budinich’s Self Organizing Map, which consists of a traditional Self Organizing Map 
applied to the Traveling Salesman Problem, presented in Budinich, 1996;  

• the expanded Self Organizing Map (ESOM), which, in each iteration, places the neurons 
close to their corresponding input data (cities) and, at the same time, places them at the 
convex contour determined by the cities (Leung et al., 2004);  

• the efficient and integrated Self Organizing Map (eISOM), where the ESOM procedures 
are used and the winning neuron is placed at the mean point among its closest 
neighboring neurons(Jin et al., 2003);  

• the efficient Self Organizing Map technique (SETSP), which defines the updating forms 
for parameters that use the number of cities of problem (Vieira et al., 2003);  

• and Kohonen’s cooperative adaptive network (CAN) uses the idea of cooperation 
between the neurons’ close neighbors and uses a number of neurons that is larger than 
the number of cities in the problem (Cochrane & Beasley, 2003).  

The computational complexity of the proposed heuristic is O(n2 + n) (Wang, 1997), 
considered competitive when compared to the complexity of mentioned Self Organizing 
Map, which have complexity O(n2) (Leung et al., 2004). The CAN technique has a 
computational complexity of O(n2log(n)) (Cochrane & Beasley, 2003), while the Simulated 
Annealing technique has a complexity of O(n4log(n)) (Liu et al., 2003). 
The results for the proposed heuristic in this paper, together with the 2-opt improvement, 
presented an average error range from 0 to 3.31%, as shown in the 2-opt column of Table 4. 
The methods that use improvement techniques to their solutions are Simulated Annealing, 
CAN and Wang’s neural network with “Winner Takes All”.  
The technique proposed in this paper, with 2-opt, present better results that Simulated 
Annealing and CAN methods in almost every problem, with the only exception in the lin105 
problem. Without the improvement 2-opt, the results of problems eil76, eil51, eil101 and 
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rat195 are better than the results of the other neural networks that do not use improvement 
techniques in its solutions.  
In Table 4 are shown the average errors of the techniques mentioned above. The "pure" 
technique proposed in this work to Traveling Salesman Problem, the proposed technique 
with the 2-opt improvement algorithm, as well as the best (max) and worst (min) results of 
each problem considered are also shown. 
 

average error (%) 

for 8 algorithms presented on TSPLIB WRNN with WTA 
TSP’s 
name n optimal 

solution

KniesG KniesL SA Budinich ESom EiSom Setsp CAN Max Min 2-opt 

eil51 51 430 2.86 2.86 2.33 3.10 2.10 2.56 2.22 0.94 1.16 1.16 0 

st70 70 678.6 2.33 1.51 2.14 1.70 2.09 NC 1.60 1.33 4.04 2.71 0 

eil76 76 545.4 5.48 4.98 5.54 5.32 3.89 NC 4.23 2.04 2.49 1.03 0 

gr96 96 514 NC NC 4.12 2.09 1.03 NC NC NC 6.61 4.28 0 

rd100 100 7,910 2.62 2.09 3.26 3.16 1.96 NC 2.60 1.23 7.17 6.83 0.08 

eil101 101 629 5.63 4.66 5.74 5.24 3.43 3.59 NC 1.11 7.95 3.02 0.48 

lin105 105 14,383 1.29 1.98 1.87 1.71 0.25 NC 1.30 0 5.94 4.33 0.20 

pr107 107 44,303 0.42 0.73 1.54 1.32 1.48 NC 0.41 0.17 3.14 3.14 0 

pr124 124 59,030 0.49 0.08 1.26 1.62 0.67 NC NC 2.36 2.63 0.33 0 

bier127 127 118,282 3.08 2.76 3.52 3.61 1.70 NC 1.85 0.69 5.08 4.22 0.37 

pr136 136 96,772 5.15 4.53 4.90 5.20 4.31 NC 4.40 3.94 6.86 5.99 1.21 

pr152 152 73,682 1.29 0.97 2.64 2.04 0.89 NC 1.17 0.74 3.27 3.23 0 

rat195 195 2,323 11.92 12.24 13.29 11.48 7.13 NC 11.19 5.27 8.82 5.55 3.31 

kroa200 200 29,368 6.57 5.72 5.61 6.13 2.91 1.64 3.12 0.92 12.25 8.95 0.62 

lin318 318 42,029 NC NC 7.56 8.19 4.11 2.05 NC 2.65 8.65 8.35 1.90 

pcb442 442 50,784 10.45 11.07 9.15 8.43 7.43 6.11 10.16 5.89 13.18 9.16 2.87 

att532 532 27,686 6.8 6.74 5.38 5.67 4.95 3.35 NC 3.32 15.43 14.58 1.28 

Table 4. Results of the experiments for the symmetrical problems of TSP, with techniques 
presented on TSPLIB: KniesG, KniesL, SA, Budinich’s SOM, ESOM, EISOM, SETSP, CAN 
and a technique presented on this paper: WRNN with WTA. The solutions presented in 
bold characters show the best results for each problem, disregarding the results with the 2-
opt technique. (NC = not compared) 
For the asymmetrical problems, the techniques used to compare with the technique 
proposed in this work were (Glover et al., 2001):  
• the Karp-Steele path methods (KSP) and general Karp-Steele (GKS), which begin with 

one cycle and by removing arcs and placing new arcs, transform the initial cycle into a 
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Hamiltonian one. The difference between these two techniques is that the GKS uses all 
of the cycle’s vertices for the changes in the cycle’s arcs; 

• the path recursive contraction (PRC) that consists in forming an initial cycle and 
transforming it into a Hamiltonian cycle by removing arcs from every sub-cycle;  

• the contraction or path heuristic (COP), which is a combination of the GKS and RPC 
techniques;  

• the “greedy” heuristic (GR) that chooses the smallest arc in the graph, contracts this arc 
creating a new graph, and keeps this procedure up to the last arc, thus creating a route; 

• and the random insertion heuristic (RI) that initially chooses 2 vertices, inserts one 
vertex that had not been chosen, thus creating a cycle, and repeats this procedure until 
it creates a route including all vertices.  

 

average error (%) 

for 6 algorithms WRNN with WTA 
TSP’s 
name n optimal 

solution
GR RI KSP GKS PRC COP max Min 2-opt 

br17 17 39 102.56 0 0 0 0 0 0 0 0 
ftv33 33 1,286 31.34 11.82 13.14 8.09 21.62 9.49 7.00 0 0 
ftv35 35 1,473 24.37 9.37 1.56 1.09 21.18 1.56 5.70 3.12 3.12 
ftv38 38 1,530 14.84 10.20 1.50 1.05 25.69 3.59 3.79 3.73 3.01 

pr43 43 5,620 3.59 0.30 0.11 0.32 0.66 0.68 0.46 0.29 0.05 

ftv44 44 1,613 18.78 14.07 7.69 5.33 22.26 10.66 2.60 2.60 2.60 
ftv47 47 1,776 11.88 12.16 3.04 1.69 28.72 8.73 8.05 3.83 3.83 
ry48p 48 14,422 32.55 11.66 7.23 4.52 29.50 7.97 6.39 5.59 1.24 
ft53 53 6,905 80.84 24.82 12.99 12.31 18.64 15.68 3.23 2.65 2.65 

ftv55 55 1,608 25.93 15.30 3.05 3.05 33.27 4.79 12.19 11.19 6.03 
ftv64 64 1,839 25.77 18.49 3.81 2.61 29.09 1.96 2.50 2.50 2.50 
ft70 70 38,673 14.84 9.32 1.88 2.84 5.89 1.90 2.43 1.74 1.74 

ftv70 70 1,950 31.85 16.15 3.33 2.87 22.77 1.85 8.87 8.77 8.56 
kro124p 100 36,230 21.01 12.17 16.95 8.69 23.06 8.79 10.52 7.66 7.66 
ftv170 170 2,755 32.05 28.97 2.40 1.38 25.66 3.59 14.66 12.16 12.16 
rbg323 323 1,326 8.52 29.34 0 0 0.53 0 16.44 16.14 16.14 
rbg358 358 1,163 7.74 42.48 0 0 2.32 0.26 22.01 12.73 8.17 
rbg403 403 2,465 0.85 9.17 0 0 0.69 0.20 4.71 4.71 4.71 
rbg443 443 2,720 0.92 10.48 0 0 0 0 8.05 8.05 2.17 

Table 5. Results of the experiments for the asymmetrical problems of TSP with techniques 
presented on TSPLIB:  GR, RI, KSP, GKS, RPC, COP and a technique presented on this 
paper:  WRNN with WTA. The solutions presented in bold characters show the best results 
for each problem, disregarding the results with the 2-opt technique. 
Table 5 shows the average errors of the techniques described, as well as those of the "pure" 
technique presented in this work and of the proposed technique with the 2-opt technique. 
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rat195 are better than the results of the other neural networks that do not use improvement 
techniques in its solutions.  
In Table 4 are shown the average errors of the techniques mentioned above. The "pure" 
technique proposed in this work to Traveling Salesman Problem, the proposed technique 
with the 2-opt improvement algorithm, as well as the best (max) and worst (min) results of 
each problem considered are also shown. 
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Table 4. Results of the experiments for the symmetrical problems of TSP, with techniques 
presented on TSPLIB: KniesG, KniesL, SA, Budinich’s SOM, ESOM, EISOM, SETSP, CAN 
and a technique presented on this paper: WRNN with WTA. The solutions presented in 
bold characters show the best results for each problem, disregarding the results with the 2-
opt technique. (NC = not compared) 
For the asymmetrical problems, the techniques used to compare with the technique 
proposed in this work were (Glover et al., 2001):  
• the Karp-Steele path methods (KSP) and general Karp-Steele (GKS), which begin with 

one cycle and by removing arcs and placing new arcs, transform the initial cycle into a 
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Hamiltonian one. The difference between these two techniques is that the GKS uses all 
of the cycle’s vertices for the changes in the cycle’s arcs; 

• the path recursive contraction (PRC) that consists in forming an initial cycle and 
transforming it into a Hamiltonian cycle by removing arcs from every sub-cycle;  

• the contraction or path heuristic (COP), which is a combination of the GKS and RPC 
techniques;  

• the “greedy” heuristic (GR) that chooses the smallest arc in the graph, contracts this arc 
creating a new graph, and keeps this procedure up to the last arc, thus creating a route; 

• and the random insertion heuristic (RI) that initially chooses 2 vertices, inserts one 
vertex that had not been chosen, thus creating a cycle, and repeats this procedure until 
it creates a route including all vertices.  
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rbg443 443 2,720 0.92 10.48 0 0 0 0 8.05 8.05 2.17 

Table 5. Results of the experiments for the asymmetrical problems of TSP with techniques 
presented on TSPLIB:  GR, RI, KSP, GKS, RPC, COP and a technique presented on this 
paper:  WRNN with WTA. The solutions presented in bold characters show the best results 
for each problem, disregarding the results with the 2-opt technique. 
Table 5 shows the average errors of the techniques described, as well as those of the "pure" 
technique presented in this work and of the proposed technique with the 2-opt technique. 
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The results of the "pure" technique proposed in this work are better or equivalent to those of 
the other heuristics mentioned above, for problems br17, ftv33, ftv44, ft53, ft70 and kro124p, 
as shown in Table 5. By using the 2-opt technique on the proposed technique, the best 
results were found for problems br17, ftv33, pr43, ry48p, ftv44, ft53, ft70 and kro124p, with 
average errors ranging from 0 to 16.14%. 

10. Conclusions 
This work presented the Wang’s recurrent neural network with the “Winner Takes All” 
principle to solve the Assignment Problem and Traveling Salesman Problem. The 
application of parameters with measures of matrices dispersion showed better results to 
both problems.  
The results of matrices to Assignment Problem had shown that the principle “Winner Takes 
all” solves problems in matrices with multiple optimal solutions, besides speed the 
convergence of the Wang’s neural network using only 1% of necessary iterations of neural 
network pure.   
Using the best combination of parameters, the average errors are only 0.71% to 100 tested 
matrices to Assignment Problem. Using these parameters solutions of Traveling Salesman 
Problem can be found. 
By means of the Wang’s neural network, a solution for the Assignment Problem is found 
and the “Winner Takes All” principle is applied to this solution, transforming it into a 
feasible route for the Traveling Salesman Problem. These technique’s solutions were 
considerably improved when the 2-opt technique was applied on the solutions presented by 
the proposed technique in this work.  
The data used for testing were obtained at the TSPLIB and the comparisons that were made 
with other heuristics showed that the technique proposed in this work achieves better 
results in several of the problems tested, with average errors below 16.14% to these 
problems.  
A great advantage of implementing the technique presented in this work is the possibility of 
using the same technique to solve both symmetrical and asymmetrical Traveling Salesman 
Problem as well.  
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The results of the "pure" technique proposed in this work are better or equivalent to those of 
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1. Introduction 
The probabilistic travelling salesman problem (PTSP) is an extension of the well-known 
travelling salesman problem (TSP), which has been extensively studied in the field of 
combinatorial optimization.  The goal of the TSP is to find the minimum length of a tour to 
all customers, given the distances between all pairs of customers whereas the objective of 
the PTSP is to minimize the expected length of the a priori tour where each customer 
requires a visit only with a given probability (Bertsimas, 1988; Bertsimas et al., 1990; Jaillet, 
1985).  The main difference between the PTSP and the TSP is that in the PTSP the probability 
of each node being visited is between 0.0 and 1.0 while in TSP the probability of each node 
being visited is 1.0. Due to the fact that the element of uncertainty not only exists, but also 
significantly affects the system performance in many real-world transportation and logistics 
applications, the results from the PTSP can provide insights into research in other 
probabilistic combinatorial optimization problems.  Moreover, the PTSP can also be used to 
model many real-world applications in logistical and transportation planning, such as daily 
pickup-delivery services with stochastic demand, job sequencing involving changeover cost, 
design of retrieval sequences in a warehouse or in a cargo terminal operations, meals on 
wheels in senior citizen services, trip-chaining activities, vehicle routing problem with 
stochastic demand, and home delivery service under e-commerce (Bartholdi et al., 1983; 
Bertsimas et al., 1995; Campbell, 2006; Jaillet, 1988; Tang & Miller-Hooks, 2004). 
Early PTSP computational studies, dating from 1985, adopted heuristic approaches that 
were modified from the TSP (e.g., nearest neighbor, savings approach, spacefilling curve, 
radial sorting, 1-shift, and 2-opt exchanges) (Bartholdi & Platzman, 1988; Bertsimas, 1988; 
Bertsimas & Howell, 1993; Jaillet, 1985, 1987; Rossi & Gavioli, 1987). With its less than 
satisfactory performance in yielding solution quality, researchers in the recent years switch 
to metaheuristic methods, such as ant colony optimization (Bianchi, 2006; Branke & 
Guntsch, 2004), evolutionary algorithm (Liu et al., 2007), simulated annealing (Bowler et al., 
2003), threshold accepting (Tang & Miller-Hooks, 2004) and scatter search (Liu, 2006, 2007, 
2008). Because the genetic algorithm (GA), a conceptual framework of the population-based 
metaheuristic method, has been shown to yield promising outcomes for solving various 
complicated optimization problems in the past three decades (Bäck et al., 1997; Davis, 1991; 
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Goldberg, 1989; Holland, 1992; Liu & Mahmassani, 2000), this study will propose an 
optimization procedure based on GA framework for solving the PTSP. 
Mainly, the author of this chapter proposes and tests a new search procedure for solving the 
PTSP by incorporating the nearest neighbor algorithm, 1-shift and/or 2-opt exchanges for 
local search, selection scheme, and edge recombination crossover (ERX) operator into 
genetic algorithm (GA) framework. Specifically, the queen GA, a selection approach which 
was proposed recently and yielded promising results (Balakrishnan et al., 2006; Stern et al., 
2006), will be tested against the traditional selection mechanisms (i.e., fitness-proportional, 
tournament, rank-based and elitist selections) for its comparative effectiveness and 
efficiency in solving the PTSP.  Unlike traditional selection mechanisms used in GA which 
selects both parents from the entire population based on their fitness values, the queen GA 
creates a subgroup of better solutions (the queen cohort), and uses at least one of its 
members in each performed crossover. To validate the effectiveness and efficiency of the 
proposed algorithmic procedure, a set of heterogeneous (90 instances) and homogeneous 
(270 instances) PTSP test instances as used in the previous studies (Liu, 2006, 2007, 2008; 
Tang & Miller-Hooks, 2004) will be used as the base for comparison purpose.  
The remainder of this chapter is organized as follows. In the next section, expressions for 
exactly and approximately evaluating the a priori tour for the PTSP are introduced.  The 
details of the proposed algorithmic procedure for the PTSP are then described.  The results 
of the numerical experiments are presented and discussed in the next section, followed by 
concluding comments. 

2. Definition and evaluation of the PTSP 
The PTSP is defined on a directed graph G := (V, E), where V := {0, v1, v2, ..., vn} is the set of 
nodes or vertices, E ⊆ V × V is the set of directed edges.  Node 0 represents the depot with 
the presence probability of 1.0.  Each non-depot node vi is associated with a presence 
probability pi that represents the possibility that node vi will be present in a given 
realization.  Given a directed graph G, the PTSP is to find an a priori Hamiltonian tour with 
minimal expected length in G. 

2.1 Exact evaluation for the a priori tour 
Solving the PTSP mainly relies on computing the expected length of an a priori tour.  The 
computation of the expected length of a specific a priori PTSP tour τ, denoted as E[τ], 
depends on the relative location of nodes on that tour and the presence probability of each 
node in a given instance.  By explicitly considering all realizations based on the presence of 
each individual node, the expected length of tour τ can be calculated.  For an n-node PTSP 
instance, a tour τ has 2n possible realizations.  The probability of realization rj, p(rj), can be 
calculated based on the presence probability of each individual node.  Let L[rj(τ)] describe 
the tour length of τ for realization rj under the assumption that nodes not in rj are simply 
skipped in the tour.  The expected tour length can then be formally described as 
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The computation of expected length based on Equation (1) is inefficient, because the 
computational complexity increases exponentially with an increasing number of nodes.  
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Therefore, Jaillet & Odoni (1988) proposed an approach to exactly calculate E[τ] in the 
complexity of O(n3) for the PTSP. 
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dij represents the distance between nodes i and j; τ (i) denotes the node that has been 
assigned the ith stop in tour τ  and pτ (i) is the probability of node τ (i). τ (0) and τ (n+1) 
represent node 0, which is the depot. 

2.2 Approximate evaluation for the a priori tour 
Even though (2) yields a polynomial evaluation time for the PTSP, the resulting O(n3) time 
for calculating E[τ ] is still very long, especially for metaheuristic methods which need to 
repeatedly evaluate the objective function value E[τ ].  In this study, the proposed GA needs 
to repeatedly compare two solutions (i.e., the new solution before and after local search 
procedure, which is described in the next section) based on their values of E[τ ].  Therefore, 
the depth approximation originally proposed by Branke & Guntsch (2004) was adopted.  
The depth approximate evaluation of E[τ ] shown in (3) have been used to significantly 
increase the computation efficiency under the scatter search framework (Liu, 2006). 
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The only difference between (2) and (3) is the choice of truncation position λ in (3).  Equation 
(3) will have the computational complexity of O(nλ2), instead of O(n3) in (2).  It is easy to see 
that (3) becomes more accurate when λ increases.  A larger value of λ, however, requires 
more computation efforts for the computation of (3).  Equation (3) can perform a very good 
approximation of E[τ] with a smaller value of λ when the value of pτ(k) gets larger, because  
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 will yield a very small value and can be omitted.  Nevertheless, Equation (3) 

will need a larger value of λ to perform a good approximation when the value of pτ(k) is 
small.  The approximation usually yields some errors in comparison to the exact evaluation. 
To overcome that, the two-stage comparison proposed by Liu (2008) intends to exactly 
evaluate the E[τ] value by using the depth approximation evaluation (Equation 3) in the first 
stage and the exact evaluation (Equation 2) in the second stage.  The detailed use of the 
depth approximation evaluation shown in Equation (3) to accelerate the proposed algorithm 
is referred to Liu (2008).  

3. Solution algorithm 
The proposed GA consists of four components as shown in Fig. 1. They are the initialization, 
local search, selection scheme, and crossover. When starting to solve the PTSP (Generation 0, 
g = 0), initial solutions are generated based on the nearest neighbor algorithm, which are 
then improved by the local search.  Then, a specific selection mechanism is called into place 
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g = 0), initial solutions are generated based on the nearest neighbor algorithm, which are 
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to further select solutions to be mated based on their solution quality (objective function 
value).  Pairs of solutions are used to generate the new solutions via edge recombination 
crossover (ERX).  The newly generated solutions are then improved using the local search.  
The solutions are allowed to evolve through successive generations until a termination 
criterion is met. The detailed description of the embedded components is illustrated in the 
following sections. 
 

 
Fig. 1.  The general procedure of the genetic algorithm for the PTSP. 

3.1 Initialization 
This procedure is designed to generate m initial solutions (m = 15 in this study).  
Considering a PTSP with n nodes (excluding the depot, node 0), the farthest node, a0, from 
node 0 is selected first and randomly inserted into a location between ( ⎣ ⎦ 42/)1( −+n ) and 

( ⎣ ⎦ 42/)1( ++n ).  The nearest neighbor algorithm is then used to build up the sequence of the 

tour.  After selecting node a0, the nearest node (a1) from a0 is selected and inserted in front of 
a0.  The second nearest node (a2) from a0 is selected and inserted behind a0.  Then, among the 
remaining nodes, the nearest node (a3) from a1 is selected and inserted in front of a1, while 
the nearest node (a4) from a2 is selected and inserted behind a2.  The 1st initial solution (tour) 
is thus built by following the above rule and expressed as follows. 
 

 
To create diverse solutions, the remaining initial solutions are generated using the above 
rule with slight modifications.  The only difference lies in whenever l = 6, 12, 18, ..., instead 
of using the nearest node from al-2, al is randomly chosen from the first or second nearest 
node from al-2.  
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3.2 Local search 
This component is used in an attempt to further enhance the solution generated via a local 
search procedure.  As the previous study has investigated the performance of diversified 
local search strategy by stochastically selecting two different local search methods (i.e., 1-
shift and 2-opt exchanges) and found that combining 1-shift and 2-opt (1-shift/2opt) is the 
most effective local search for the PTSP (Liu, 2008).  Therefore, the 1-shift/2-opt is then 
adopted to improve the solution generated in the proposed GA algorithm. 
The procedures of 1-shift and 2-opt exchanges are briefly summarized as follows.  Given an 
a priori tour τ, its 1-shift neighborhood is the set of tours obtained by moving a node at 
position i to position j with the intervening nodes being accordingly shifted backwards one 
space. The 2-opt exchange is the set of tours obtained by reversing a section of τ. 
The depth approximate evaluation of expected length of the a priori tour shown in (3) is then 
used to increase the computational efficiency.  For a specific tour τ, ][τλ

APE is always less 

than the value of E[τ] because of the truncation in calculating ][τλ
APE .  Let τb and τa denote 

the a priori tour before and after a specific local search method, respectively.  It means that 
no improvement has been found after the local search if ][ a

APE τλ  ≧ E[τb].  Equation (2) is 

used to exactly evaluate the solution after the local search if ][ a
APE τλ < E[τb].  If the local 

search yields a better E[τ] value than the one from the original solution (i.e., E[τa] < E[τb]), 
the new solution (τa) will replace the original solution (τb).  If no improvement has been 
found after the local search, no replacement will be made.  The above procedure is repeated 
NLS times for each solution (NLS ＝ 25 in this study). 

3.3 Selection scheme 
Selection scheme is the process of choosing the mating pairs from the current population 
and to create the new solutions based on crossover operator. To investigate the performance 
of the queen GA, four popularly used selection mechanisms are used as a benchmark in this 
study: fitness-proportional, rank-based, tournament, and elitism selections. 

3.3.1 Fitness-proportional selection (F) 
Under the fitness-proportional selection method, the probability of selecting a particular 
solution for reproduction is proportional to its own fitness (i.e., E[τ]) relative to the average 
fitness of the entire current generation. With this selection method, the best solution tends to 
produce the largest amount of offspring and hence survive to future generations. This 
procedure can be regarded as a “biased” roulette wheel where each string in the current 
population occupies a roulette wheel slot sized in proportion to its fitness (Goldberg, 1989). 
Selection can be done by simply spinning the weighted roulette wheel, and fitter strings will 
have higher chances of being selected.  This process can be simulated by the following 
expression: 
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where qk is the probability of selecting solution k to produce offspring, and m is the 
population size.  The fk is the fitness value of the kth solution in the current generation.  
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to further select solutions to be mated based on their solution quality (objective function 
value).  Pairs of solutions are used to generate the new solutions via edge recombination 
crossover (ERX).  The newly generated solutions are then improved using the local search.  
The solutions are allowed to evolve through successive generations until a termination 
criterion is met. The detailed description of the embedded components is illustrated in the 
following sections. 
 

 
Fig. 1.  The general procedure of the genetic algorithm for the PTSP. 

3.1 Initialization 
This procedure is designed to generate m initial solutions (m = 15 in this study).  
Considering a PTSP with n nodes (excluding the depot, node 0), the farthest node, a0, from 
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( ⎣ ⎦ 42/)1( ++n ).  The nearest neighbor algorithm is then used to build up the sequence of the 

tour.  After selecting node a0, the nearest node (a1) from a0 is selected and inserted in front of 
a0.  The second nearest node (a2) from a0 is selected and inserted behind a0.  Then, among the 
remaining nodes, the nearest node (a3) from a1 is selected and inserted in front of a1, while 
the nearest node (a4) from a2 is selected and inserted behind a2.  The 1st initial solution (tour) 
is thus built by following the above rule and expressed as follows. 
 

 
To create diverse solutions, the remaining initial solutions are generated using the above 
rule with slight modifications.  The only difference lies in whenever l = 6, 12, 18, ..., instead 
of using the nearest node from al-2, al is randomly chosen from the first or second nearest 
node from al-2.  
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3.2 Local search 
This component is used in an attempt to further enhance the solution generated via a local 
search procedure.  As the previous study has investigated the performance of diversified 
local search strategy by stochastically selecting two different local search methods (i.e., 1-
shift and 2-opt exchanges) and found that combining 1-shift and 2-opt (1-shift/2opt) is the 
most effective local search for the PTSP (Liu, 2008).  Therefore, the 1-shift/2-opt is then 
adopted to improve the solution generated in the proposed GA algorithm. 
The procedures of 1-shift and 2-opt exchanges are briefly summarized as follows.  Given an 
a priori tour τ, its 1-shift neighborhood is the set of tours obtained by moving a node at 
position i to position j with the intervening nodes being accordingly shifted backwards one 
space. The 2-opt exchange is the set of tours obtained by reversing a section of τ. 
The depth approximate evaluation of expected length of the a priori tour shown in (3) is then 
used to increase the computational efficiency.  For a specific tour τ, ][τλ

APE is always less 

than the value of E[τ] because of the truncation in calculating ][τλ
APE .  Let τb and τa denote 

the a priori tour before and after a specific local search method, respectively.  It means that 
no improvement has been found after the local search if ][ a

APE τλ  ≧ E[τb].  Equation (2) is 

used to exactly evaluate the solution after the local search if ][ a
APE τλ < E[τb].  If the local 

search yields a better E[τ] value than the one from the original solution (i.e., E[τa] < E[τb]), 
the new solution (τa) will replace the original solution (τb).  If no improvement has been 
found after the local search, no replacement will be made.  The above procedure is repeated 
NLS times for each solution (NLS ＝ 25 in this study). 

3.3 Selection scheme 
Selection scheme is the process of choosing the mating pairs from the current population 
and to create the new solutions based on crossover operator. To investigate the performance 
of the queen GA, four popularly used selection mechanisms are used as a benchmark in this 
study: fitness-proportional, rank-based, tournament, and elitism selections. 

3.3.1 Fitness-proportional selection (F) 
Under the fitness-proportional selection method, the probability of selecting a particular 
solution for reproduction is proportional to its own fitness (i.e., E[τ]) relative to the average 
fitness of the entire current generation. With this selection method, the best solution tends to 
produce the largest amount of offspring and hence survive to future generations. This 
procedure can be regarded as a “biased” roulette wheel where each string in the current 
population occupies a roulette wheel slot sized in proportion to its fitness (Goldberg, 1989). 
Selection can be done by simply spinning the weighted roulette wheel, and fitter strings will 
have higher chances of being selected.  This process can be simulated by the following 
expression: 
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where qk is the probability of selecting solution k to produce offspring, and m is the 
population size.  The fk is the fitness value of the kth solution in the current generation.  
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Because the PTSP is a minimization problem, 1/fk is used as the appropriate weight for the 
kth solution. 

3.3.2 Rank-based selection (R) 
Under the rank-based selection, the probability of selecting a particular solution for 
reproduction is determined by the rank of its fitness.  This process can be simulated by the 
following expression: 
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where rk is the rank of the fitness value for the kth solution.   

3.3.3 Tournament selection (T) 
Tournament selection, inspired by the competition in nature among individuals for the right 
to mate, picks two solutions using the proportional or rank-based selection from the 
population and the fittest one is selected for reproduction (Goldberg, 1989; Davis, 1991). 
Each solution can participate in an unlimited number of tournaments. The two winning 
solutions in the tournament are then subjected to the crossover operators. 

3.3.4 Elitism (E) 
Under the elitism selection strategy, the top Ne strings (Ne is determined by the analyst) of 
the current generation in terms of fitness value are kept and propagated to the next 
generation (Davis, 1991). The remaining solutions in the next generation are then generated 
based on the tournament selection method and the crossover operators. This procedure 
guarantees that the best solution in the next generation is not worse than the one in the 
current generation. 

3.3.5 Queen GA 
According to the concept of queen GA, the top Ntop solutions in terms of its fitness value of 
the population are selected to be the members of queen.   Then, one of the parents is chosen 
from the queen members and the other parent is randomly selected from the whole 
population excluding the already chosen member. These two selected parents are then 
mated based on the crossover operator.  The queen members are dynamically updated 
based on the quality of the new solutions generated.  A newly solution generated will 
become a queen member if the new solution has a better objective function value than the 
one with the worst objective value in the queen subset. 

3.3.6 Experiment design of selection schemes 
In addition to queen GA, eight schemes are designed by combining one or several selection 
methods from four popularly used selection mechanisms mentioned previously (i.e., fitness-
proportional, rank-based, tournament, and elitism selection).  Explicitly, since the 
tournament and elitism selections need to work with fitness-proportional (F) or rank-based 
(R) selection, eight selection schemes are designed and used in the numerical experiment in 
this study. They are fitness-proportional selection only (F), fitness-proportional and 
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tournament selection (F+T), fitness-proportional and elitism selection (F+E), fitness-
proportional, tournament and elitism selection (F+T+E), rank-based selection only (R), rank-
based and tournament selection (R+T), rank-based and elitism selection (R+E), rank-based, 
tournament and elitism selection (R+T+E). 

3.4 Edge recombination crossover (ERX) 
The main purpose of this component is to create new solutions using a given pair of 
solutions generated by “selection”.  Based on the results from previous studies (Liu et al., 
2007; Potvin, 1996), the edge recombination crossover (ERX) from genetic algorithms 
performed best when compared to other crossover strategies for both in TSP and PTSP.  
Therefore, ERX was adopted in this study. 
ERX was proposed by Whitley et al. (1989) to solve the traditional TSP. A 5-node PTSP is 
used as an example to describe the procedure of ERX. Assuming that two solutions (tours) 
are chosen from the “selection”--(0, 4, 3, 1, 2, 0) and (0, 1, 2, 3, 4, 0), the edges connected to 
each node are as follows. For node 0, the first solution indicates that node 0 connects to 
nodes 2 and 4 and the second solution shows that node 0 connects to nodes 1 and 4. 
Therefore, node 0 connects to nodes 1, 2, and 4 by considering these two solutions.  
Similarly, node 1 connects to nodes 0, 2, 3; node 2 connects to nodes 0, 1, 3; node 3 connects 
to nodes 1, 2, 4; node 4 connects to nodes 0, 3.  These are the initial edge lists for each node. 
The operation of the ERX is described as follows. Assuming that node 0 is selected as the 
starting node for the new solution, all edges incident to node 0 must be deleted from the 
initial edge list.  As described, from node 0 we can go to nodes 1, 2, or 4, while nodes 1 and 2 
have two active edges and node 4 has only one active edge by deleting node 0 from the 
initial edge list.  The node with the fewest active edge, node 4, is picked as the node next to 
node 0 in the new solution.  Then, the edge list for the remaining nodes (nodes 1, 2, and 3) is 
further updated by deleting node 4.  The updated edge list is node 1 (2, 3), node 2 (1, 3), and 
node 3 (1, 2).  From node 4, we can only go to node 3 (as node 0 is already deleted from the 
list).  Therefore, node 3 is chosen to be the node next to node 4 in the new solution.  The new 
solution generated is further improved by the local search.  

3.5 The procedure after the first generation 
The newly generated solutions from the ERX and local search are used to update the 
population in terms of the objective function value.  The above procedure is repeated until a 
termination criterion is met. However, if there are no solutions to be updated for the 
population in the current generation, the initialization is used to generate (m - m1) new 
solutions in the next generation, but keeping m1 high quality solutions (m1 = 2, in this study).  
In addition, if the previous three generations converge to the same best solution, the local 
search is used to improve that “converged” solution by repeating NLS2 times to exhaustively 
search the neighborhood of that “converged” solution (NLS2 = 300, in this study). 

4. Numerical experiments and results 
There are two types of data sets, heterogeneous and homogeneous PTSP, used as numerical 
experiments in this study to examine the performance of different selection schemes under 
GA framework for the PTSP.  First, 90 heterogeneous PTSP instances were generated by 
Tang & Miller-Hooks (2004) with size n = 50, 75, and 100.  Three groups of problem sets 
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Because the PTSP is a minimization problem, 1/fk is used as the appropriate weight for the 
kth solution. 

3.3.2 Rank-based selection (R) 
Under the rank-based selection, the probability of selecting a particular solution for 
reproduction is determined by the rank of its fitness.  This process can be simulated by the 
following expression: 
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where rk is the rank of the fitness value for the kth solution.   

3.3.3 Tournament selection (T) 
Tournament selection, inspired by the competition in nature among individuals for the right 
to mate, picks two solutions using the proportional or rank-based selection from the 
population and the fittest one is selected for reproduction (Goldberg, 1989; Davis, 1991). 
Each solution can participate in an unlimited number of tournaments. The two winning 
solutions in the tournament are then subjected to the crossover operators. 

3.3.4 Elitism (E) 
Under the elitism selection strategy, the top Ne strings (Ne is determined by the analyst) of 
the current generation in terms of fitness value are kept and propagated to the next 
generation (Davis, 1991). The remaining solutions in the next generation are then generated 
based on the tournament selection method and the crossover operators. This procedure 
guarantees that the best solution in the next generation is not worse than the one in the 
current generation. 

3.3.5 Queen GA 
According to the concept of queen GA, the top Ntop solutions in terms of its fitness value of 
the population are selected to be the members of queen.   Then, one of the parents is chosen 
from the queen members and the other parent is randomly selected from the whole 
population excluding the already chosen member. These two selected parents are then 
mated based on the crossover operator.  The queen members are dynamically updated 
based on the quality of the new solutions generated.  A newly solution generated will 
become a queen member if the new solution has a better objective function value than the 
one with the worst objective value in the queen subset. 

3.3.6 Experiment design of selection schemes 
In addition to queen GA, eight schemes are designed by combining one or several selection 
methods from four popularly used selection mechanisms mentioned previously (i.e., fitness-
proportional, rank-based, tournament, and elitism selection).  Explicitly, since the 
tournament and elitism selections need to work with fitness-proportional (F) or rank-based 
(R) selection, eight selection schemes are designed and used in the numerical experiment in 
this study. They are fitness-proportional selection only (F), fitness-proportional and 
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tournament selection (F+T), fitness-proportional and elitism selection (F+E), fitness-
proportional, tournament and elitism selection (F+T+E), rank-based selection only (R), rank-
based and tournament selection (R+T), rank-based and elitism selection (R+E), rank-based, 
tournament and elitism selection (R+T+E). 

3.4 Edge recombination crossover (ERX) 
The main purpose of this component is to create new solutions using a given pair of 
solutions generated by “selection”.  Based on the results from previous studies (Liu et al., 
2007; Potvin, 1996), the edge recombination crossover (ERX) from genetic algorithms 
performed best when compared to other crossover strategies for both in TSP and PTSP.  
Therefore, ERX was adopted in this study. 
ERX was proposed by Whitley et al. (1989) to solve the traditional TSP. A 5-node PTSP is 
used as an example to describe the procedure of ERX. Assuming that two solutions (tours) 
are chosen from the “selection”--(0, 4, 3, 1, 2, 0) and (0, 1, 2, 3, 4, 0), the edges connected to 
each node are as follows. For node 0, the first solution indicates that node 0 connects to 
nodes 2 and 4 and the second solution shows that node 0 connects to nodes 1 and 4. 
Therefore, node 0 connects to nodes 1, 2, and 4 by considering these two solutions.  
Similarly, node 1 connects to nodes 0, 2, 3; node 2 connects to nodes 0, 1, 3; node 3 connects 
to nodes 1, 2, 4; node 4 connects to nodes 0, 3.  These are the initial edge lists for each node. 
The operation of the ERX is described as follows. Assuming that node 0 is selected as the 
starting node for the new solution, all edges incident to node 0 must be deleted from the 
initial edge list.  As described, from node 0 we can go to nodes 1, 2, or 4, while nodes 1 and 2 
have two active edges and node 4 has only one active edge by deleting node 0 from the 
initial edge list.  The node with the fewest active edge, node 4, is picked as the node next to 
node 0 in the new solution.  Then, the edge list for the remaining nodes (nodes 1, 2, and 3) is 
further updated by deleting node 4.  The updated edge list is node 1 (2, 3), node 2 (1, 3), and 
node 3 (1, 2).  From node 4, we can only go to node 3 (as node 0 is already deleted from the 
list).  Therefore, node 3 is chosen to be the node next to node 4 in the new solution.  The new 
solution generated is further improved by the local search.  

3.5 The procedure after the first generation 
The newly generated solutions from the ERX and local search are used to update the 
population in terms of the objective function value.  The above procedure is repeated until a 
termination criterion is met. However, if there are no solutions to be updated for the 
population in the current generation, the initialization is used to generate (m - m1) new 
solutions in the next generation, but keeping m1 high quality solutions (m1 = 2, in this study).  
In addition, if the previous three generations converge to the same best solution, the local 
search is used to improve that “converged” solution by repeating NLS2 times to exhaustively 
search the neighborhood of that “converged” solution (NLS2 = 300, in this study). 

4. Numerical experiments and results 
There are two types of data sets, heterogeneous and homogeneous PTSP, used as numerical 
experiments in this study to examine the performance of different selection schemes under 
GA framework for the PTSP.  First, 90 heterogeneous PTSP instances were generated by 
Tang & Miller-Hooks (2004) with size n = 50, 75, and 100.  Three groups of problem sets 
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categorized by different intervals of customer presence probabilities were created for each 
problem size (n = 50, 75, and 100).  Presence probabilities of customer nodes were randomly 
generated from a uniform distribution on intervals (0.0, 0.2], (0.0, 0.5], (0.0, 1.0], one for each 
problem size.  Second, there were 270 homogeneous PTSP instances generated by the author 
and used in the previous study of Liu (2008) with size n = 50, 75, and 100 associated with 
nine probability values (p = 0.1, 0.2, …, 0.9).  For both homogeneous and heterogeneous 
PTSP, the presence probability of the depot (node 0) was assigned as 1.0.  Ten different 
problem instances were randomly generated for each presence probability of customer 
nodes.  For each instance, the coordinates of one depot and n customer nodes (xi, yi) were 
generated based on a uniform distribution from [0, 100]2.  The Euclidean distance for each 
pair of nodes was calculated by using dij = 22 )()( jiji yyxx −+− . 

To compare the effectiveness among nine different selection schemes under GA framework, 
the preset maximum number of generations (Gmax) was used as the termination criterion 
(Gmax is set to be two times the number of nodes, i.e., Gmax = 2n, in this study) for both 
heterogeneous and homogeneous PTSP.  The average solution quality is examined and 
compared among nine different selection schemes.  In this study, the proposed methods 
were used to solve each problem instance 30 times to enhance the robustness of the results.  
That is, the average statistics for the methods proposed in this study are based on a 300-run 
average.   The numerical results of heterogeneous and homogeneous PTSP are discussed in 
Section 4.1 and 4.2, respectively. 

4.1 Results of heterogeneous PTSP 
4.1.1 Descriptive statistics of average E [τ ] values obtained by the heterogeneous 
PTSP 
Average E[τ] values found from nine different selection schemes for the heterogeneous 
PTSP are reported in Table 1.  Definitions of terms used in the column headings are given as 
follows.  n denotes problem size, which is the number of customer nodes.  p represents the 
customer presence probability interval (0.0, p]. 
The best average value of E[τ] among the nine selection schemes (i.e., F, F+T, F+E, F+T+E, R, 
R+T, R+E, R+T+E, Queen) for each problem size with different presence probability interval 
is shown in shaded.  As shown in Table 1, the average E[τ] values obtained by only using 
fitness-proportional (F) or rank-based (R) selection strategy are consistently worse than the 
ones obtained by the other seven selection strategies.  The solution quality becomes much 
better when adding tournament (T) and/or elitism strategies to fitness-proportional (F) or 
rank-based (R) selection.  It indicates that fitness-proportional (F) or rank-based (R) selection 
should combine tournament (T) and/or elitism strategies to obtain acceptable outcomes. 
Moreover, except for p = 0.5 when n = 50, the average E[τ] values obtained by adding elitism 
to fitness-proportional (F) selection strategy (F+E) performs better than the ones obtained by 
adding tournament to fitness-proportional (F) selection strategy (F+T).  Furthermore, except 
for p = 0.5, 1.0 when n = 50, the average E[τ] values obtained by adding elitism to rank-based 
(R) selection strategy (R+E) performs better than the ones obtained by adding tournament to 
rank-based (R) selection strategy (R+T).  It reveals that the average E[τ] values obtained by 
keeping the best solution(s) to the successive generations can generally perform better than 
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the ones obtained by only applying tournament selection to fitness-proportional (F) or rank-
based (R) selection. 
Finally, as shown in Table 1, the average E[τ ] values obtained by adding elitism to fitness-
proportional (F) or rank-based (R) selection strategy are similar to the ones obtained by 
combining both elitism and tournament to fitness-proportional (F) or rank-based (R) 
selection strategy.  Overall, the queen, F+E, F+T+E, R+E, and R+T+E are better selection 
strategies and yielded similar average E[τ] value for the heterogeneous PTSP than the other 
four selection strategies. 
 

n p F F+T F+E F+T+E R R+T R+E R+T+E Queen 
50 0.2 225.110 224.854 224.839 224.832 224.868 224.838 224.835 224.834 224.831 
 0.5 343.901 341.585 341.675 341.426 341.935 341.347 341.504 341.331 341.499 
 1.0 459.504 450.583 450.235 450.964 452.853 449.539 450.916 451.383 451.272 

75 0.2 267.731 266.071 265.943 265.958 266.239 265.970 265.929 265.959 265.958 
 0.5 415.129 404.257 403.526 403.879 406.728 403.782 403.485 403.748 403.705 
 1.0 555.256 534.013 527.832 527.421 540.306 529.276 527.300 527.295 526.765 

100 0.2 304.779 301.318 300.859 300.873 301.791 301.084 300.830 300.825 300.837 
 0.5 480.752 466.813 463.747 462.578 469.663 464.671 462.661 463.381 461.556 
 1.0 684.758 649.544 626.749 625.105 660.210 641.668 625.056 624.490 624.144 

Table 1. Computational Results for the Heterogeneous PTSP 

4.1.2 Inferential statistics analysis of nine selection schemes for heterogeneous PTSP 
Since the assumption of normal distribution is hardly met in minimization problems, the 
permutation test (Basso et al., 2007), instead of parametric tests, is adopted for statistical 
testing in the study. A Monte Carlo method with 10,000 permutations is used to obtain the 
approximate p-value of the permutation test.  A set of two-sample permutation tests is 
conducted to investigate if any statistically significant differences exist between the best 
average E[τ ] value obtained and the ones obtained by the other eight selection schemes.  
Table 2 shows the p-values of the permutation tests, where α = 0.05 is considered statistically 
significant in this study. 
Several important findings are obtained. First, according to the results of the permutation 
tests, the average E[τ ] values obtained by fitness-proportional (F) or rank-based (R) 
selection strategy are significantly higher than the best ones obtained by the other seven 
selection schemes for all of the tested cases.  Second, the average E[τ ] values obtained by 
Queen GA performs best in four out of the nine tested cases, and where they are not the best 
performing scheme, the average E[τ] values are not statistically significant different to the 
best ones obtained by the other eight selection schemes, except for n = 50 and p = 1.0.  Third, 
for most of the test cases (21 out of 27 cases), the average E[τ ] values obtained by F+T+E, 
R+E and R+T+E are not statistically significant different to the best ones obtained by these 
nine selection schemes.  Finally, generally speaking, the average E[τ ] values obtained by 
F+T, F+E and R+T performs statistically worse than the best ones obtained by the nine 
selection schemes for most of the test cases (20 out of 27 cases), except for n = 50 and p = 1.0, 
where the average E[τ ] value obtained by R+T performs statistically better than the other 
eight selection schemes. 
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categorized by different intervals of customer presence probabilities were created for each 
problem size (n = 50, 75, and 100).  Presence probabilities of customer nodes were randomly 
generated from a uniform distribution on intervals (0.0, 0.2], (0.0, 0.5], (0.0, 1.0], one for each 
problem size.  Second, there were 270 homogeneous PTSP instances generated by the author 
and used in the previous study of Liu (2008) with size n = 50, 75, and 100 associated with 
nine probability values (p = 0.1, 0.2, …, 0.9).  For both homogeneous and heterogeneous 
PTSP, the presence probability of the depot (node 0) was assigned as 1.0.  Ten different 
problem instances were randomly generated for each presence probability of customer 
nodes.  For each instance, the coordinates of one depot and n customer nodes (xi, yi) were 
generated based on a uniform distribution from [0, 100]2.  The Euclidean distance for each 
pair of nodes was calculated by using dij = 22 )()( jiji yyxx −+− . 

To compare the effectiveness among nine different selection schemes under GA framework, 
the preset maximum number of generations (Gmax) was used as the termination criterion 
(Gmax is set to be two times the number of nodes, i.e., Gmax = 2n, in this study) for both 
heterogeneous and homogeneous PTSP.  The average solution quality is examined and 
compared among nine different selection schemes.  In this study, the proposed methods 
were used to solve each problem instance 30 times to enhance the robustness of the results.  
That is, the average statistics for the methods proposed in this study are based on a 300-run 
average.   The numerical results of heterogeneous and homogeneous PTSP are discussed in 
Section 4.1 and 4.2, respectively. 

4.1 Results of heterogeneous PTSP 
4.1.1 Descriptive statistics of average E [τ ] values obtained by the heterogeneous 
PTSP 
Average E[τ] values found from nine different selection schemes for the heterogeneous 
PTSP are reported in Table 1.  Definitions of terms used in the column headings are given as 
follows.  n denotes problem size, which is the number of customer nodes.  p represents the 
customer presence probability interval (0.0, p]. 
The best average value of E[τ] among the nine selection schemes (i.e., F, F+T, F+E, F+T+E, R, 
R+T, R+E, R+T+E, Queen) for each problem size with different presence probability interval 
is shown in shaded.  As shown in Table 1, the average E[τ] values obtained by only using 
fitness-proportional (F) or rank-based (R) selection strategy are consistently worse than the 
ones obtained by the other seven selection strategies.  The solution quality becomes much 
better when adding tournament (T) and/or elitism strategies to fitness-proportional (F) or 
rank-based (R) selection.  It indicates that fitness-proportional (F) or rank-based (R) selection 
should combine tournament (T) and/or elitism strategies to obtain acceptable outcomes. 
Moreover, except for p = 0.5 when n = 50, the average E[τ] values obtained by adding elitism 
to fitness-proportional (F) selection strategy (F+E) performs better than the ones obtained by 
adding tournament to fitness-proportional (F) selection strategy (F+T).  Furthermore, except 
for p = 0.5, 1.0 when n = 50, the average E[τ] values obtained by adding elitism to rank-based 
(R) selection strategy (R+E) performs better than the ones obtained by adding tournament to 
rank-based (R) selection strategy (R+T).  It reveals that the average E[τ] values obtained by 
keeping the best solution(s) to the successive generations can generally perform better than 
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the ones obtained by only applying tournament selection to fitness-proportional (F) or rank-
based (R) selection. 
Finally, as shown in Table 1, the average E[τ ] values obtained by adding elitism to fitness-
proportional (F) or rank-based (R) selection strategy are similar to the ones obtained by 
combining both elitism and tournament to fitness-proportional (F) or rank-based (R) 
selection strategy.  Overall, the queen, F+E, F+T+E, R+E, and R+T+E are better selection 
strategies and yielded similar average E[τ] value for the heterogeneous PTSP than the other 
four selection strategies. 
 

n p F F+T F+E F+T+E R R+T R+E R+T+E Queen 
50 0.2 225.110 224.854 224.839 224.832 224.868 224.838 224.835 224.834 224.831 
 0.5 343.901 341.585 341.675 341.426 341.935 341.347 341.504 341.331 341.499 
 1.0 459.504 450.583 450.235 450.964 452.853 449.539 450.916 451.383 451.272 

75 0.2 267.731 266.071 265.943 265.958 266.239 265.970 265.929 265.959 265.958 
 0.5 415.129 404.257 403.526 403.879 406.728 403.782 403.485 403.748 403.705 
 1.0 555.256 534.013 527.832 527.421 540.306 529.276 527.300 527.295 526.765 

100 0.2 304.779 301.318 300.859 300.873 301.791 301.084 300.830 300.825 300.837 
 0.5 480.752 466.813 463.747 462.578 469.663 464.671 462.661 463.381 461.556 
 1.0 684.758 649.544 626.749 625.105 660.210 641.668 625.056 624.490 624.144 

Table 1. Computational Results for the Heterogeneous PTSP 

4.1.2 Inferential statistics analysis of nine selection schemes for heterogeneous PTSP 
Since the assumption of normal distribution is hardly met in minimization problems, the 
permutation test (Basso et al., 2007), instead of parametric tests, is adopted for statistical 
testing in the study. A Monte Carlo method with 10,000 permutations is used to obtain the 
approximate p-value of the permutation test.  A set of two-sample permutation tests is 
conducted to investigate if any statistically significant differences exist between the best 
average E[τ ] value obtained and the ones obtained by the other eight selection schemes.  
Table 2 shows the p-values of the permutation tests, where α = 0.05 is considered statistically 
significant in this study. 
Several important findings are obtained. First, according to the results of the permutation 
tests, the average E[τ ] values obtained by fitness-proportional (F) or rank-based (R) 
selection strategy are significantly higher than the best ones obtained by the other seven 
selection schemes for all of the tested cases.  Second, the average E[τ ] values obtained by 
Queen GA performs best in four out of the nine tested cases, and where they are not the best 
performing scheme, the average E[τ] values are not statistically significant different to the 
best ones obtained by the other eight selection schemes, except for n = 50 and p = 1.0.  Third, 
for most of the test cases (21 out of 27 cases), the average E[τ ] values obtained by F+T+E, 
R+E and R+T+E are not statistically significant different to the best ones obtained by these 
nine selection schemes.  Finally, generally speaking, the average E[τ ] values obtained by 
F+T, F+E and R+T performs statistically worse than the best ones obtained by the nine 
selection schemes for most of the test cases (20 out of 27 cases), except for n = 50 and p = 1.0, 
where the average E[τ ] value obtained by R+T performs statistically better than the other 
eight selection schemes. 
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n p F F+T F+E F+T+E R R+T R+E R+T+E Queen 
50 0.2 0.0000 0.0000 0.0040 1.0000 0.0000 0.0000 0.1044 0.7157 ― 
 0.5 0.0000 0.0056 0.0016 0.2814 0.0000 0.8413 0.0742 ― 0.0574 
 1.0 0.0000 0.0001 0.0301 0.0003 0.0000 ― 0.0037 0.0000 0.0009 

75 0.2 0.0000 0.0000 0.2865 0.1025 0.0000 0.0000 ― 0.1026 0.1526 
 0.5 0.0000 0.0762 0.9371 0.4485 0.0000 0.4828 ― 0.6295 0.6664 
 1.0 0.0000 0.0000 0.2261 0.3782 0.0000 0.0003 0.4642 0.4745 ― 

100 0.2 0.0000 0.0000 0.0046 0.0896 0.0000 0.0000 0.6137 ― 0.3041 
 0.5 0.0000 0.0000 0.0000 0.0376 0.0000 0.0000 0.0259 0.0052 ― 
 1.0 0.0000 0.0000 0.0036 0.1991 0.0000 0.0000 0.2004 0.6788 ― 

Table 2. p-value of Permutation test for the Heterogeneous PTSP 

4.1.3 Comparison among the best performing scheme obtained in the study, the 
Queen GA and previous studies 
As indicated in the previous section, in eight out of the nine tested cases (except for n = 50 
and p = 1.0), the Queen GA either performs best or its performance not statistically 
significant different from the best ones obtained by the other eight selection schemes. The 
Queen as well as the the best performing scheme obtained in the study are compared 
against the previous studies in this section.  The heterogeneous PTSP data generated by 
Tang & Miller-Hooks (2004) has been investigated in several studies (Tang & Miller-Hooks, 
2004; Liu, 2006, 2007, 2008). The best average E[τ] values as well as the corresponding 
average CPU time in these studies (Previous Best) are listed in Table 3.  In Table 3, the 
definitions of n and p are the same as in Table 1.  E[τ] denotes the average value of the 
expected length of the a priori PTSP tour.  CPU is the average CPU running time in seconds.  
The “Previous Best” results for the heterogeneous PTSP data were obtained by Liu (2006, 
2007, 2008), except for n = 50 and p = 0.5, which were obtained by Tang & Miller-Hooks 
(2004). In Liu’s studies (as well as the results of this study), all implementations were 
performed on an Intel Pentium IV 2.8 GHz CPU personal computer with 512 MB memory 
(3479 MFlops), while TMH’s study was based on a 10-run average and was conducted on a 
DEC AlphaServer 1200/533 computer with 1 GB memory (1277 MFlops). The best average 
value of E[τ] among the three compared sets for each problem size with different presence 
probability interval is shown in shaded. 
 

n p Best in this study Queen Previous Best 
  E[τ] CPU (s) E[τ] CPU (s) E[τ] CPU (s) 

50 0.2 224.8313 28.7 224.8313 28.7 224.8314 45.4 
 0.5 341.3313 16.8 341.4989 16.2 341.3000* 72.4* 
 1.0 449.5391 6.5 451.2717 8.4 450.2215 12.4 

75 0.2 265.9293 108.9 265.9581 118.5 265.9315 240.6 
 0.5 403.4846 46.3 403.7050 50.1 403.2347 51.8 
 1.0 526.7646 28.6 526.7646 28.6 527.1907 41.5 

100 0.2 300.8245 288.1 300.8370 269.5 300.8495 689.9 
 0.5 461.5559 115.6 461.5559 115.6 462.2678 121.2 
 1.0 624.1439 68.8 624.1439 68.8 624.6369 96.7 

*Running on DEC AlphaServer 1200/533 computer with 1 GB memory (1277 MFlops) 
Table 3. Computational Results for the Heterogeneous PTSP 
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The results in Table 3 show that the best of the average E[τ] values obtained in this study are 
better than the ones obtained by the “Previous Best.” The only exception is when p = 0.5 and 
n = 75.  The best average E[τ] value yielded performs 0.06% worse than the one obtained by 
the previous study (Liu, 2008), when p = 0.5 and n = 75. Moreover, the computation efforts 
used to yield the best results in this study are all less than the one used in “Previous Best.”  
It suggests that the GA solution framework proposed in this study is a promising method 
for solving the heterogeneous PTSP.  As for the Queen GA, the results show that it performs 
better than the “Previous Best” in terms of average E[τ] value and computational effort 
when n = 100.  It suggests that the Queen GA is capable of effectively and efficiently solving 
relatively large-sized heterogeneous PTSP. 

4.2 Results of homogeneous PTSP 
4.2.1 Descriptive statistics of average E [τ ] values obtained by the homogeneous 
PTSP 
Average E[τ ] values found from nine different selection schemes for the homogeneous 
PTSP are reported in Table 4.  In Table 4, the definitions of n and p are the same as in Table1. 
The best average value of E[τ] among the nine selection schemes (i.e., F, F+T, F+E, F+T+E, R, 
R+T, R+E, R+T+E, Queen) for each problem size with different presence probability is 
shown in shaded.  As the similar results obtained in the heterogeneous PTSP, the average 
E[τ] values obtained by only using fitness-proportional (F) or rank-based (R) selection 
strategy are consistently worse than the ones obtained by the other seven selection 
strategies.  The solution quality becomes much better when adding tournament (T) and/or 
elitism (E) strategies to fitness-proportional (F) or rank-based (R) selection.  Moreover, 
except for p = 0.3 when n = 50, the average E[τ] values obtained by adding elitism to fitness-
proportional (F) selection strategy (i.e., F+E) performs better than the ones obtained by 
adding tournament to fitness-proportional (F) selection strategy (i.e., F+T).  Furthermore, 
except for p = 0.3, 0.4 when n = 50, the average E[τ] values obtained by adding elitism to 
rank-based (R) selection strategy (i.e., R+E) performs better than the ones obtained by 
adding tournament to rank-based (R) selection strategy (i.e., R+T).  Finally, the average E[τ] 
values obtained by adding elitism to rank-based (R) selection strategy are similar to the ones 
obtained by combining both elitism and tournament to rank-based (R) selection strategy.  
Overall the queen, F+T+E, R+E, and R+T+E are better selection strategies and yielded 
similar average E[τ] value for the homogeneous PTSP than the other five selection strategies. 

4.2.2 Inferential statistics analysis of nine selection schemes for homogeneous PTSP 
A set of two-sample permutation tests is conducted to investigate if any statistically 
significant differences exist between the best average E[τ] value obtained and the ones 
obtained by the other eight selection schemes.  Table 5 shows the p-values of the 
permutation tests, where α = 0.05 is considered statistically significant in this study.   
Several important findings are obtained.  First, according to the results of the permutation 
tests, the average E[τ] values obtained by F only, R only and F+T are significantly higher 
than the best ones obtained by the other six selection schemes for all of the tested cases.  
Second, the average E[τ] values obtained by Queen GA performs best in 8 out of 27 tested 
cases, and where they are not the best performing scheme, the average E[τ] values are not 
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n p F F+T F+E F+T+E R R+T R+E R+T+E Queen 
50 0.2 0.0000 0.0000 0.0040 1.0000 0.0000 0.0000 0.1044 0.7157 ― 
 0.5 0.0000 0.0056 0.0016 0.2814 0.0000 0.8413 0.0742 ― 0.0574 
 1.0 0.0000 0.0001 0.0301 0.0003 0.0000 ― 0.0037 0.0000 0.0009 
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Table 2. p-value of Permutation test for the Heterogeneous PTSP 

4.1.3 Comparison among the best performing scheme obtained in the study, the 
Queen GA and previous studies 
As indicated in the previous section, in eight out of the nine tested cases (except for n = 50 
and p = 1.0), the Queen GA either performs best or its performance not statistically 
significant different from the best ones obtained by the other eight selection schemes. The 
Queen as well as the the best performing scheme obtained in the study are compared 
against the previous studies in this section.  The heterogeneous PTSP data generated by 
Tang & Miller-Hooks (2004) has been investigated in several studies (Tang & Miller-Hooks, 
2004; Liu, 2006, 2007, 2008). The best average E[τ] values as well as the corresponding 
average CPU time in these studies (Previous Best) are listed in Table 3.  In Table 3, the 
definitions of n and p are the same as in Table 1.  E[τ] denotes the average value of the 
expected length of the a priori PTSP tour.  CPU is the average CPU running time in seconds.  
The “Previous Best” results for the heterogeneous PTSP data were obtained by Liu (2006, 
2007, 2008), except for n = 50 and p = 0.5, which were obtained by Tang & Miller-Hooks 
(2004). In Liu’s studies (as well as the results of this study), all implementations were 
performed on an Intel Pentium IV 2.8 GHz CPU personal computer with 512 MB memory 
(3479 MFlops), while TMH’s study was based on a 10-run average and was conducted on a 
DEC AlphaServer 1200/533 computer with 1 GB memory (1277 MFlops). The best average 
value of E[τ] among the three compared sets for each problem size with different presence 
probability interval is shown in shaded. 
 

n p Best in this study Queen Previous Best 
  E[τ] CPU (s) E[τ] CPU (s) E[τ] CPU (s) 

50 0.2 224.8313 28.7 224.8313 28.7 224.8314 45.4 
 0.5 341.3313 16.8 341.4989 16.2 341.3000* 72.4* 
 1.0 449.5391 6.5 451.2717 8.4 450.2215 12.4 

75 0.2 265.9293 108.9 265.9581 118.5 265.9315 240.6 
 0.5 403.4846 46.3 403.7050 50.1 403.2347 51.8 
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The results in Table 3 show that the best of the average E[τ] values obtained in this study are 
better than the ones obtained by the “Previous Best.” The only exception is when p = 0.5 and 
n = 75.  The best average E[τ] value yielded performs 0.06% worse than the one obtained by 
the previous study (Liu, 2008), when p = 0.5 and n = 75. Moreover, the computation efforts 
used to yield the best results in this study are all less than the one used in “Previous Best.”  
It suggests that the GA solution framework proposed in this study is a promising method 
for solving the heterogeneous PTSP.  As for the Queen GA, the results show that it performs 
better than the “Previous Best” in terms of average E[τ] value and computational effort 
when n = 100.  It suggests that the Queen GA is capable of effectively and efficiently solving 
relatively large-sized heterogeneous PTSP. 

4.2 Results of homogeneous PTSP 
4.2.1 Descriptive statistics of average E [τ ] values obtained by the homogeneous 
PTSP 
Average E[τ ] values found from nine different selection schemes for the homogeneous 
PTSP are reported in Table 4.  In Table 4, the definitions of n and p are the same as in Table1. 
The best average value of E[τ] among the nine selection schemes (i.e., F, F+T, F+E, F+T+E, R, 
R+T, R+E, R+T+E, Queen) for each problem size with different presence probability is 
shown in shaded.  As the similar results obtained in the heterogeneous PTSP, the average 
E[τ] values obtained by only using fitness-proportional (F) or rank-based (R) selection 
strategy are consistently worse than the ones obtained by the other seven selection 
strategies.  The solution quality becomes much better when adding tournament (T) and/or 
elitism (E) strategies to fitness-proportional (F) or rank-based (R) selection.  Moreover, 
except for p = 0.3 when n = 50, the average E[τ] values obtained by adding elitism to fitness-
proportional (F) selection strategy (i.e., F+E) performs better than the ones obtained by 
adding tournament to fitness-proportional (F) selection strategy (i.e., F+T).  Furthermore, 
except for p = 0.3, 0.4 when n = 50, the average E[τ] values obtained by adding elitism to 
rank-based (R) selection strategy (i.e., R+E) performs better than the ones obtained by 
adding tournament to rank-based (R) selection strategy (i.e., R+T).  Finally, the average E[τ] 
values obtained by adding elitism to rank-based (R) selection strategy are similar to the ones 
obtained by combining both elitism and tournament to rank-based (R) selection strategy.  
Overall the queen, F+T+E, R+E, and R+T+E are better selection strategies and yielded 
similar average E[τ] value for the homogeneous PTSP than the other five selection strategies. 

4.2.2 Inferential statistics analysis of nine selection schemes for homogeneous PTSP 
A set of two-sample permutation tests is conducted to investigate if any statistically 
significant differences exist between the best average E[τ] value obtained and the ones 
obtained by the other eight selection schemes.  Table 5 shows the p-values of the 
permutation tests, where α = 0.05 is considered statistically significant in this study.   
Several important findings are obtained.  First, according to the results of the permutation 
tests, the average E[τ] values obtained by F only, R only and F+T are significantly higher 
than the best ones obtained by the other six selection schemes for all of the tested cases.  
Second, the average E[τ] values obtained by Queen GA performs best in 8 out of 27 tested 
cases, and where they are not the best performing scheme, the average E[τ] values are not 
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statistically significant different to the best ones obtained by the other eight selection 
schemes, except for n = 75 and p = 0.6.  Third, for most of the test cases (70 out of 81 cases), 
the average E[τ] values obtained by F+T+E, R+E and R+T+E are not statistically significant 
different to the best ones obtained by these nine selection schemes.  Finally, the average E[τ] 
values obtained by F+E and R+T performs statistically worse than the best ones obtained by 
the nine selection schemes for most of the test cases (40 out of 54 cases). 
 

n p F F+T F+E F+T+E R R+T R+E R+T+E Queen 
50 0.1 233.907 233.550 233.497 233.493 233.584 233.513 233.492 233.492 233.492 
 0.2 312.887 311.251 311.079 311.033 311.488 311.034 310.998 311.006 310.995 
 0.3 371.020 366.525 366.788 366.170 367.575 366.097 366.424 366.632 366.492 
 0.4 413.906 406.654 405.985 405.792 408.614 405.010 405.656 405.699 405.466 
 0.5 467.415 456.167 453.551 453.791 459.147 454.205 453.581 453.486 453.204 
 0.6 515.228 498.553 494.441 493.196 503.028 496.461 492.888 492.565 492.738 
 0.7 537.288 519.762 510.409 509.883 525.096 516.295 509.516 509.762 509.492 
 0.8 580.616 562.011 551.838 552.437 568.825 557.246 550.880 551.649 551.506 
 0.9 586.400 565.562 562.089 561.712 572.469 561.706 560.520 561.090 561.496 

75 0.1 277.591 276.112 275.827 275.822 276.302 275.976 275.824 275.819 275.820 
 0.2 369.227 363.290 362.206 361.628 364.299 362.419 361.878 361.895 361.623 
 0.3 460.647 448.300 444.228 444.268 451.166 446.191 444.101 444.083 444.365 
 0.4 514.566 500.111 493.371 493.100 503.418 497.185 493.801 493.083 492.856 
 0.5 563.640 537.817 526.367 525.293 546.373 532.653 525.790 525.704 525.308 
 0.6 623.310 597.093 578.021 577.570 602.857 589.736 577.194 574.769 576.791 
 0.7 666.105 638.798 621.849 620.450 648.911 632.238 619.659 618.957 619.248 
 0.8 712.283 688.327 659.604 658.339 693.720 677.008 658.942 656.115 656.658 
 0.9 757.030 722.544 690.629 690.952 733.558 711.425 690.537 690.196 690.150 

100 0.1 310.330 306.549 305.727 305.682 307.103 306.172 305.685 305.676 305.682 
 0.2 435.561 422.562 418.959 418.552 424.865 420.063 418.046 418.428 418.515 
 0.3 526.932 507.731 497.024 496.876 512.953 502.780 496.402 497.076 497.298 
 0.4 619.191 593.193 575.482 574.381 600.909 586.779 574.386 574.636 574.569 
 0.5 679.219 648.563 618.385 616.023 657.506 637.732 617.572 616.625 616.519 
 0.6 733.975 703.389 662.915 660.517 711.493 689.266 660.917 659.644 659.688 
 0.7 809.507 775.264 730.042 726.416 786.035 761.061 726.758 727.200 726.707 
 0.8 857.957 811.857 751.417 749.322 827.972 795.440 750.532 748.208 749.040 
 0.9 880.283 844.058 791.853 790.753 856.049 830.113 791.278 789.900 788.850 

 

Table 4. Computational Results for the Homogeneous PTSP  

Solving the Probabilistic Travelling Salesman Problem Based on Genetic Algorithm  
with Queen Selection Scheme 

 

169 

n p F F+T F+E F+T+E R R+T R+E R+T+E Queen 
50 0.1 0.0000 0.0000 0.0075 0.7634 0.0000 0.0000 1.0000 1.0000 ― 
 0.2 0.0000 0.0000 0.0021 0.2200 0.0000 0.0945 0.9051 0.7110 ― 
 0.3 0.0000 0.0099 0.0048 0.6845 0.0000 ― 0.1424 0.0095 0.0581 
 0.4 0.0000 0.0000 0.0070 0.0409 0.0000 ― 0.0904 0.0404 0.1295 
 0.5 0.0000 0.0000 0.4667 0.1794 0.0000 0.0211 0.3636 0.5619 ― 
 0.6 0.0000 0.0000 0.0108 0.4328 0.0000 0.0000 0.6682 ― 0.7860 
 0.7 0.0000 0.0000 0.2819 0.5964 0.0000 0.0000 0.9782 0.7682 ― 
 0.8 0.0000 0.0000 0.1894 0.0571 0.0000 0.0000 ― 0.3047 0.4021 
 0.9 0.0000 0.0000 0.1670 0.1866 0.0000 0.2785 ― 0.4873 0.1266 

75 0.1 0.0000 0.0000 0.0000 0.0045 0.0000 0.0000 0.0027 ― 0.3458 
 0.2 0.0000 0.0000 0.0030 0.9778 0.0000 0.0000 0.2195 0.1902 ― 
 0.3 0.0000 0.0000 0.7352 0.6279 0.0000 0.0000 0.9672 ― 0.5809 
 0.4 0.0000 0.0000 0.4570 0.7199 0.0000 0.0000 0.1626 0.7544 ― 
 0.5 0.0000 0.0000 0.1553 ― 0.0000 0.0000 0.5710 0.5843 0.9881 
 0.6 0.0000 0.0000 0.0000 0.0020 0.0000 0.0000 0.0009 ― 0.0112 
 0.7 0.0000 0.0000 0.0068 0.1305 0.0000 0.0000 0.4880 ― 0.7738 
 0.8 0.0000 0.0000 0.0037 0.0406 0.0000 0.0000 0.0171 ― 0.5933 
 0.9 0.0000 0.0000 0.6335 0.4054 0.0000 0.0000 0.7243 0.9652 ― 

100 0.1 0.0000 0.0000 0.0000 0.3462 0.0000 0.0000 0.1212 ― 0.2154 
 0.2 0.0000 0.0000 0.0194 0.1442 0.0000 0.0000 ― 0.2872 0.2267 
 0.3 0.0000 0.0000 0.3428 0.4848 0.0000 0.0000 ― 0.2666 0.2004 
 0.4 0.0000 0.0000 0.1009 ― 0.0000 0.0000 0.9924 0.7035 0.7599 
 0.5 0.0000 0.0000 0.0045 ― 0.0000 0.0000 0.0663 0.4873 0.4821 
 0.6 0.0000 0.0000 0.0100 0.4620 0.0000 0.0000 0.2514 ― 0.9728 
 0.7 0.0000 0.0000 0.0012 ― 0.0000 0.0000 0.7460 0.4101 0.7955 
 0.8 0.0000 0.0000 0.0038 0.3420 0.0000 0.0000 0.0453 ― 0.4636 
 0.9 0.0000 0.0000 0.0149 0.1190 0.0000 0.0000 0.0362 0.3671 ― 

Table 5. p-value of Permutation test for the Homogeneous PTSP 

5. Concluding comments 
In this chapter, a genetic algorithm is developed to solve the PTSP.  The effectiveness and 
efficiency of nine different selection schemes were investigated for both the heterogeneous 
and homogeneous PTSP.  Extensive computational tests were performed and the 
permutation test was adopted to test the statistical significance of the nine selection 
schemes.  Several important findings are obtained.  First, fitness-proportional (F) or rank-
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statistically significant different to the best ones obtained by the other eight selection 
schemes, except for n = 75 and p = 0.6.  Third, for most of the test cases (70 out of 81 cases), 
the average E[τ] values obtained by F+T+E, R+E and R+T+E are not statistically significant 
different to the best ones obtained by these nine selection schemes.  Finally, the average E[τ] 
values obtained by F+E and R+T performs statistically worse than the best ones obtained by 
the nine selection schemes for most of the test cases (40 out of 54 cases). 
 

n p F F+T F+E F+T+E R R+T R+E R+T+E Queen 
50 0.1 233.907 233.550 233.497 233.493 233.584 233.513 233.492 233.492 233.492 
 0.2 312.887 311.251 311.079 311.033 311.488 311.034 310.998 311.006 310.995 
 0.3 371.020 366.525 366.788 366.170 367.575 366.097 366.424 366.632 366.492 
 0.4 413.906 406.654 405.985 405.792 408.614 405.010 405.656 405.699 405.466 
 0.5 467.415 456.167 453.551 453.791 459.147 454.205 453.581 453.486 453.204 
 0.6 515.228 498.553 494.441 493.196 503.028 496.461 492.888 492.565 492.738 
 0.7 537.288 519.762 510.409 509.883 525.096 516.295 509.516 509.762 509.492 
 0.8 580.616 562.011 551.838 552.437 568.825 557.246 550.880 551.649 551.506 
 0.9 586.400 565.562 562.089 561.712 572.469 561.706 560.520 561.090 561.496 

75 0.1 277.591 276.112 275.827 275.822 276.302 275.976 275.824 275.819 275.820 
 0.2 369.227 363.290 362.206 361.628 364.299 362.419 361.878 361.895 361.623 
 0.3 460.647 448.300 444.228 444.268 451.166 446.191 444.101 444.083 444.365 
 0.4 514.566 500.111 493.371 493.100 503.418 497.185 493.801 493.083 492.856 
 0.5 563.640 537.817 526.367 525.293 546.373 532.653 525.790 525.704 525.308 
 0.6 623.310 597.093 578.021 577.570 602.857 589.736 577.194 574.769 576.791 
 0.7 666.105 638.798 621.849 620.450 648.911 632.238 619.659 618.957 619.248 
 0.8 712.283 688.327 659.604 658.339 693.720 677.008 658.942 656.115 656.658 
 0.9 757.030 722.544 690.629 690.952 733.558 711.425 690.537 690.196 690.150 

100 0.1 310.330 306.549 305.727 305.682 307.103 306.172 305.685 305.676 305.682 
 0.2 435.561 422.562 418.959 418.552 424.865 420.063 418.046 418.428 418.515 
 0.3 526.932 507.731 497.024 496.876 512.953 502.780 496.402 497.076 497.298 
 0.4 619.191 593.193 575.482 574.381 600.909 586.779 574.386 574.636 574.569 
 0.5 679.219 648.563 618.385 616.023 657.506 637.732 617.572 616.625 616.519 
 0.6 733.975 703.389 662.915 660.517 711.493 689.266 660.917 659.644 659.688 
 0.7 809.507 775.264 730.042 726.416 786.035 761.061 726.758 727.200 726.707 
 0.8 857.957 811.857 751.417 749.322 827.972 795.440 750.532 748.208 749.040 
 0.9 880.283 844.058 791.853 790.753 856.049 830.113 791.278 789.900 788.850 
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n p F F+T F+E F+T+E R R+T R+E R+T+E Queen 
50 0.1 0.0000 0.0000 0.0075 0.7634 0.0000 0.0000 1.0000 1.0000 ― 
 0.2 0.0000 0.0000 0.0021 0.2200 0.0000 0.0945 0.9051 0.7110 ― 
 0.3 0.0000 0.0099 0.0048 0.6845 0.0000 ― 0.1424 0.0095 0.0581 
 0.4 0.0000 0.0000 0.0070 0.0409 0.0000 ― 0.0904 0.0404 0.1295 
 0.5 0.0000 0.0000 0.4667 0.1794 0.0000 0.0211 0.3636 0.5619 ― 
 0.6 0.0000 0.0000 0.0108 0.4328 0.0000 0.0000 0.6682 ― 0.7860 
 0.7 0.0000 0.0000 0.2819 0.5964 0.0000 0.0000 0.9782 0.7682 ― 
 0.8 0.0000 0.0000 0.1894 0.0571 0.0000 0.0000 ― 0.3047 0.4021 
 0.9 0.0000 0.0000 0.1670 0.1866 0.0000 0.2785 ― 0.4873 0.1266 

75 0.1 0.0000 0.0000 0.0000 0.0045 0.0000 0.0000 0.0027 ― 0.3458 
 0.2 0.0000 0.0000 0.0030 0.9778 0.0000 0.0000 0.2195 0.1902 ― 
 0.3 0.0000 0.0000 0.7352 0.6279 0.0000 0.0000 0.9672 ― 0.5809 
 0.4 0.0000 0.0000 0.4570 0.7199 0.0000 0.0000 0.1626 0.7544 ― 
 0.5 0.0000 0.0000 0.1553 ― 0.0000 0.0000 0.5710 0.5843 0.9881 
 0.6 0.0000 0.0000 0.0000 0.0020 0.0000 0.0000 0.0009 ― 0.0112 
 0.7 0.0000 0.0000 0.0068 0.1305 0.0000 0.0000 0.4880 ― 0.7738 
 0.8 0.0000 0.0000 0.0037 0.0406 0.0000 0.0000 0.0171 ― 0.5933 
 0.9 0.0000 0.0000 0.6335 0.4054 0.0000 0.0000 0.7243 0.9652 ― 

100 0.1 0.0000 0.0000 0.0000 0.3462 0.0000 0.0000 0.1212 ― 0.2154 
 0.2 0.0000 0.0000 0.0194 0.1442 0.0000 0.0000 ― 0.2872 0.2267 
 0.3 0.0000 0.0000 0.3428 0.4848 0.0000 0.0000 ― 0.2666 0.2004 
 0.4 0.0000 0.0000 0.1009 ― 0.0000 0.0000 0.9924 0.7035 0.7599 
 0.5 0.0000 0.0000 0.0045 ― 0.0000 0.0000 0.0663 0.4873 0.4821 
 0.6 0.0000 0.0000 0.0100 0.4620 0.0000 0.0000 0.2514 ― 0.9728 
 0.7 0.0000 0.0000 0.0012 ― 0.0000 0.0000 0.7460 0.4101 0.7955 
 0.8 0.0000 0.0000 0.0038 0.3420 0.0000 0.0000 0.0453 ― 0.4636 
 0.9 0.0000 0.0000 0.0149 0.1190 0.0000 0.0000 0.0362 0.3671 ― 

Table 5. p-value of Permutation test for the Homogeneous PTSP 

5. Concluding comments 
In this chapter, a genetic algorithm is developed to solve the PTSP.  The effectiveness and 
efficiency of nine different selection schemes were investigated for both the heterogeneous 
and homogeneous PTSP.  Extensive computational tests were performed and the 
permutation test was adopted to test the statistical significance of the nine selection 
schemes.  Several important findings are obtained.  First, fitness-proportional (F) or rank-
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based (R) selection should combine tournament (T) and/or elitism strategies to obtain 
acceptable outcomes for both the heterogeneous and homogeneous PTSP.   Second, the 
average E[τ] values obtained by keeping the best solution(s) to the successive generations 
can generally perform better than the ones obtained by only applying tournament selection 
to fitness-proportional (F) or rank-based (R) selection for both the heterogeneous and 
homogeneous PTSP.  Third, the queen, F+T+E, R+E, and R+T+E are better selection 
strategies and yielded similar average E[τ] value for the heterogeneous and homogeneous 
PTSP than the other five selection strategies.  Finally, the numerical results showed that the 
proposed solution procedure can further enhance the performance of the method proposed 
by previous studies in most of the tested cases for the heterogeneous PTSP in terms of 
objective function value and computation time.  These findings showed the potential of the 
proposed GA in effectively and efficiently solving the large-scale PTSP. 
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1. Introduction 
Path planning of autonomous mobile robot is pivotal technique for machine intelligence, 
which aims to find a non-collision path from initial position to objective position according 
to evaluation functions in an obstacle space[1]. It can be described as traveler salesman 
problem (TSP), a typical combination optimization problem, which belongs to the well-
known NP-hard optimization[2]. The mathematical definition can be regarded as a map G = 
(V, E), where each line e∈E has a nonnegative power ω(e). The aim is to find out a Hamilton 
circle noted with C of map G in order to obtain a minimum power W(C)=∑e∈E (C)ω(e). 
Some traditional methods such as greed arithmetic, vicinage arithmetic and dynamic 
programming algorithm[3] do not behave a good performance on combination explosion 
aroused by rapid increment in exponent within a solution set of mathematic model, also 
known as the very quick accretion in both aspects of space and time complication along with 
the increase of degrees. A very promising direction is the genetic algorithm (GA) except for 
the traditional methods. Genetic algorithm is numerical optimization method[4] based on the 
theory of genetics and natural selection. It is a generally probabilistic and adaptable concept 
for problem solving, especially suitable for solving difficulty optimization and evolution 
problems, where traditional methods are less efficient. 
An advanced genetic algorithm, niche pseudo-parallel genetic algorithm (NPPGA) is 
presented based on simple genetic algorithm (SGA), niche genetic algorithm (NGA) and 
parallel genetic algorithm (PGA) to further improve the GA for robot path optimization. 
Research on NPPGA is available for lots of practical problems such as path routing 
optimization, nets organization, job distribution, scheduling optimization etc. 

2. Mechanism of niche pseudo-parallel genetic algorithms 
The foundation of NPPGA is genetic algorithm, which is a class of global, adaptable, and 
probabilistic search optimization and revolution algorithm gleaned from the model of 
organic evolution and also simulates the genetics and evolution of biologic population in 
nature. GA adopts naturally evolutionary model such as selection, crossover, mutation, 
deletion and transference. Mathematically, this evolutionary process is a typical algorithm 
to find out the optimal solution via iteration search among multi-element in a NP set. As an 
optimal method applied with biologic genetics and evolutionary mechanism [5], GA totally 
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The foundation of NPPGA is genetic algorithm, which is a class of global, adaptable, and 
probabilistic search optimization and revolution algorithm gleaned from the model of 
organic evolution and also simulates the genetics and evolution of biologic population in 
nature. GA adopts naturally evolutionary model such as selection, crossover, mutation, 
deletion and transference. Mathematically, this evolutionary process is a typical algorithm 
to find out the optimal solution via iteration search among multi-element in a NP set. As an 
optimal method applied with biologic genetics and evolutionary mechanism [5], GA totally 
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embodies a classical biologically evolutionary theory depicted as natural selection. Simple 
genetic algorithm can be defined as SGA= (M, C, F, Mo, Ps, Pc, Pm, T) [3], where C is a fixed bit-
string code, F is a fitness evaluation function, Mo is an initial population of biologic colony 
and Ps, Pc, Pm are probabilities of selection, crossover and mutation respectively.  

2.1 Proposal of NPPGA 
Theoretically, genetic algorithm is able to trace on the optimal solution by a stochastic 
method on the sense of probability. On the contrary, GA has some prominent problems in 
practical application such as premature convergence, feebleness in local search, low rate of 
convergence etc. A simplex renewal from one population to another is hard to keep 
population diverse and avoid premature convergence. 
Simple genetic algorithm is totally a stochastic method, which aims to settle with the problem 
where several different individuals are required to optimize in a cryptic and parallel process 
[6]. However, the rate of evolutionary process is still lower because of its essentially serial 
mechanism. In addition, before tracing on the globally optimal solution, the SGA may 
converge to a local one, which causes population trend to un-animousness and results in 
premature. To further improve the GA and avoid these disadvantages, we firstly divided 
original population into several groups known as pseudo- parallel operation to accelerate the 
rate of genetic algorithm computation and maintain the population diversity in order to 
reduce the rate of premature simultaneously. Based on the former step, niche genetic 
mechanism is introduced into pseudo-parallel genetic algorithm to further restrain the 
premature phenomenon. A method based on sharing functions is proposed to transfer genetic 
information to keep population diversity and avert from rapid increment of some special 
individuals, in other words, we created several niches among the population by pseudo-
parallel technique to complete the process both of local and global solution optimization. 

2.2 Pseudo code and layered flow chart of NPPGA 
The Pseudo code of NPPGA is showed as following.  
Begin s:=0; 
initialize 1(0) : { (0),..., (0)} m

mP x x= ∈ℜ  where l}1,0{=ℜ ; 
evaluate 1(0) : { ( (0)),..., ( (0))}mP x x= Φ Φ  where ( (0)) ( ( ( (0))), (0))k kx f x Pδ γΦ = ; 
while ( ( ) )P t trueℑ ≠  do t:=0; )}(),...,(),...,(),({:)( 21 tPtPtPtPtP ni= ; 
       while ( ( ) )P i trueℑ ≠  do 
                   recombine: 

' '
{ , }( ) : ( ( )) {1,..., / }

ck p z ix t r P t k m n= ∀ ∈ ; 

                   mutate: " ' '
{ }( ) : ( ) {1,..., / }

mk p kx t m x k m n= ∀ ∈  

                   niche operator: "' ' "
{ }( ) : ( ) {1,..., / }k kx t x k m nγ=℘ ∀ ∈  with formula(1) and (2); 

                  delete: "" ' ""
{ }( ) : ( ) {1,..., / }k kx t d x k m nα= ∀ ∈ ; 

                  evaluate: '''' "" "" /
/( ) : { ( ),..., ( )} m n

i i m nP t x t x t= ∈ℜ ; "" ""
1 /{ ( ( )),..., ( ( ))}i i m nx t x tΦ Φ  

                                 where "" ""( ( )) ( ( ( ( ))), ( ))i k k ix t f x t P tδ γ ϖΦ = − ; 
                                select: ))((:)1( '''' tPstP ii =+  

                  where /" "" ""
1( ( )) ( ( )) / ( ( ))m n

s k i k i kjP x t x t x t
=

= Φ Φ∑ ; 

                  t:=t+1; end 
information exchange: )}(),({)1( '''' tPsPcsP i=+ ; s=s+1; end 
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Fig. 1 describes the layered structure of NPPGA by a flow chart. 

Fig. 1 Pseudo code of NPPGA 

 
Fig. 1. Flow chart of NPPGA 
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vii. Use a niche operator, which needs to combine )]([)/( ''' tPFnm iγ−  individuals in 
the subgroup )('''' tPi

 with the former q excellent individuals that are saved early 
into a new population Mi including )]([)/( ''' tPFqnm iγ−+  individuals, to wash out 
some inferior ones. When LXX ji <− |||| , a Hamming distance is computed by  

 qnmijqnmixxXX
nm

k
jkikji ++=−+=−=− ∑

=

/,...1,1/,...2,1,)(||||
/

1

2   (1) 

L is the distance between contiguous generations. A penalty function 
PenaltyF

ji xx =),min(
 is used after comparing fitness between iX  and

jX . The penalty 

criterion is 
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viii. Realign in a lower sequence according to each fitness of (m/n)+q individuals and 
store former q individuals again; 

ix. End niche heredity if evolutionary results fit with ending conditions, or renew 
independently evolutionary counter s←s+1 and turn to step iii while generating 
m/n individuals into next generation in step vii; 

5. Transfer information usually with stepping-stone model, island model and 
neighborhood model among Pi(t)(i=1,2,…,n) to obtain the next generation 

)](),([)1( ''' tPtPexchangeiP i←+ ; 
6. End parallel heredity when evolutionary results fit with ending conditions, otherwise, 

renew independently evolutionary counter t←t+1 and turn to step (4). 

3. Robot path optimization by NPPGA 
It is well known that the problem of “Robot touring around Pekin” is typically practical 
application of TSP. Based on discussion in section 2, mechanism of niche pseudo-parallel 
genetic algorithm is investigated. In this section, NPPGA is used to solve the traveling 
salesman problem especially in the model of path optimization of robots. Each individual 
code is described in bit-strings of fixed length 18, which stands for paths between each two 
cities. Then an entire serial named chromosome 

,1 ,2 ,( , ,..., )i i i i mX X X X=  can be obtained in each 

individual space m
miii XXXS },...,,{ ,2,1,=  that belongs to subgroup space nmS / . The selection 

operator that is known as survival probabilities in solving path optimization is in the 
canonical form [6] 

 
/

1

( )
{ ( ) }

( )
i

s s i m n

k
k

f X
p P T X X

f X

α
α

α

=

= = =
∑
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To optimize the robotic paths, crossover operator, emphasized as the most important search 
operator of genetic algorithm, is introduce by[3]  
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Small mutation and deletion rates are also used in solving this problem to guarantee that 
each individual do not differ genetically very much from its ancestor. In other words, it 
keeps the diversity of path space even though local convergence exists. Niche operator is 
demonstrated in Eqs. (1) and (2). Furthermore, we exchange different information of 
excellent path serials among subgroups based on islands model. All these parameters used 
in NPPGA are showed in table 1. 
 

Parameters Used in NPPGA 
Selection rate α=1 

Mutation operator Pm=0.0015 
Recombination operator Pr={0.72,4} 

Deletion operator γ=0.0027 
Niche operator Hamming Distance 

Length per object 
variable L=18 

Population size 50 

Table 1. Parameters of NPPGA 

In the experiment, a single step NPPGA is used to solving the problem of path optimization 
and evolution of “Robot Tour”. 8 optimal solutions can be obtained shown in table 2. The 
length of optimal path has been changed into standard units where (Remnant of optimal 
paths)= (length of paths)-(shortest distance) and (Ratio of relative paths) 
=(remnant)/(shortest distance). 
 

Path Path 1 Path 2 Path 3 Path 4 Path 5 Path 6 Path 7 Path 8 

Length of optimal paths 96.17 (NPPGA) 96.79 97.20 97.59 98.48 98.75 102.17 102.77 

Remnant of optimal paths 0 (NPPGA) 0.62 1.03 1.42 2.31 2.58 6.00 6.60 

0.26% (SGA) 0.86% 1.54% 2.2% 2.58% 3.73% 5.80% 6.92% 

0.18% (DPGA) 0.70% 1.32% 1.80% 1.93% 3.12% 5.95% 6.90% 
 

Ratio of relative path 
 0% (NPPGA) 0.640%1.071%1.477%2.042%2.683%6.239% 6.863% 

SGA 346 generations and 20760 count steps 

DPGA 294 generations and 19500 count steps 
 

Computation complexity
 NPPGA 276 generations and 16560 count steps 

Table 2. Experimental results in path optimization by single step NPPGA 
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To optimize the robotic paths, crossover operator, emphasized as the most important search 
operator of genetic algorithm, is introduce by[3]  
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Small mutation and deletion rates are also used in solving this problem to guarantee that 
each individual do not differ genetically very much from its ancestor. In other words, it 
keeps the diversity of path space even though local convergence exists. Niche operator is 
demonstrated in Eqs. (1) and (2). Furthermore, we exchange different information of 
excellent path serials among subgroups based on islands model. All these parameters used 
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Table 2. Experimental results in path optimization by single step NPPGA 
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According to experimental data, we illustrated an evolutionary process by niche pseudo-
parallel genetic algorithm in figure 2. Compared with SGA and DPGA, the performance 
conducted by NPPGA is better. The computation complexity of NPPGA is 16560 count steps 
within 276 generations while SGA and DPGA are 20760 and 19500 respectively. Global 
optimization path other than local solution can be achieved by NPPGA when generations 
approach less than 300. Simultaneously, a remnant comparison is shown in Fig. 3. Although 
NPPGA has the peak error for some individual evolutionary processes caused by stochastic 
researching, it perform a lowest remnant error to the optimal path while the remnant of 
DPGA is a little bit large than NPPGA. The shortest route can be described in the following 
serial.  
 
 
 
 
”start→dong_wu_yuan→zhong_guan_cun→yuan_ming_yuan→yi_he_yuan→xiang_shan→shi_sa
n_ling→ba_da_ling→yong_he_gong→bei_hai_gong_yuan→gu_gong→tian_an_men→wang_fu_ji
ng→beijing_zhan→tian_tan→shi_jie_gong_yuan→xi_dan→shi_ji_dan”  
 
 
 
 
The total distance is 96.17 in standard units and actually shorter in practical robot tour. 
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Fig. 2. Evolutionary process of NPPGA 
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Fig. 3. Remnant comparison of NPPGA 

4. Conclusion 
The research, based on combination of niche genetic algorithm and pseudo parallel genetic 
algorithm, comes into being NPPGA technique which both considers the rate of genetic 
evolution and diversity of population. The strategy seems to be able to restrain the 
premature among population and closely cooperate with each other to improve the overall 
search performance. We presented NPPGA and used a single step NPPGA to figure out the 
optimal paths in “Robot tour around Pekin”, which is a practical application of traveling 
salesman problem. Experiments show that the optimal route can be obtained. We believe 
that NPPGA and other advanced GAs will become a robust tool for path optimization and 
other potential applications. 
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1. Introduction 
An n × n matrix D = d[i, j] is said to be circulant, if the entries d[i, j] verifying (j − i) = k mod 
n, for some k, have the same value (for a survey on circulant matrix properties, see Davis 
(1979)). A directed (respectively, undirected) graph is circulant, if its adjacency matrix is 
circulant (respectively, symmetric, and circulant). Similarly, a weighted graph is circulant, if 
its weighted adjacency matrix is circulant. 
In the last years, it had been often investigated if a graph problem becomes easier when it is 
restricted to the circulant graphs. For example, the Maximum Clique problem, and the 
Minimum Graph Coloring problem remain NP-hard, and not approximable within a 
constant factor, when the general instance is forced to be a circulant undirected graphs, as 
shown by Codenotti, et al. (1998). On the other hand, Muzychuk (2004) has proved that the 
Graph Isomorphism problem restricted to circulant undirected graphs is in P, while the 
general case is, probably, harder. 
It is still an open question whether the Directed Hamiltonian Circuit problem, restricted to 
circulant (directed) graphs, remains NP-hard, or not. A solution in some special cases has 
been found by Garfinkel (1977), Fan Yang, et al. (1997), and Bogdanowicz (2005). The 
Hamiltonian Circuit problem admits, instead, a polynomial time algorithm on the circulant 
undirected graphs, as shown by Burkard, and Sandholzer (1991). It leads to a polynomial 
time algorithm for the Bottleneck Traveling Salesman Problem on the symmetric circulant 
matrices. 
Finally, in Gilmore, et al. (1985) it is shown that the Shortest Hamiltonian Path problem is 
polynomial time solvable on the circulant matrices, while the general case is NP-hard. The 
positive results contained in Burkard, and Sandholzer (1991), and in Gilmore, et al. (1985) 
have encouraged the research on the Symmetric Circulant Traveling Salesman problem, that 
is, the Sum Traveling Salesman Problem restricted to the symmetric, and circulant matrices. 
In this chapter we deal with such problem, called for short SCTSP. In §1–§3 the problem is 
introduced, and the notation is fixed. In §4–§6 an overview is given on the last 16 year 
results. Firstly, an upper bound (§4.1), a lower bound (§4.2), and a polynomial time 2-
approximation algorithm for the general case of SCTSP (§4.3) are discussed. No better result 
concerning the computational complexity of SCTSP is known. Secondly, some sufficient 
theorems solving particular cases of SCTSP are presented (§5). Finally, §6 is devoted to a 
recently introduced subcase of SCTSP. §7 completes the chapter by presenting open 
problems, remarks, and future developments. 
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We list here some abbreviations used throughout the chapter: 
• n denotes a positive integer greater than 1; 
• [m] denotes the set {1, 2, . . . ,m}, for any positive integer m; 
• a ≡m b denotes the relation a ≡ b mod m, and 〈a〉m denotes the integer (a mod m), for any 

positive integer m, and for any two integers a, b; 
•  denotes the tuple ( ), for any two integers s, s′ such that s ≥ 

s′ , and for any (s − s′ + 1) integers   . 

2. The symmetric circulant traveling salesman problem 
Let D = (d[i, j]) be an n × n matrix. Assume that d[i, j] = 0, if i = j , and that d[i, j] is a positive 
integer, if i ≠ j. Let Zn denote both its row index set, and its column index set. A Hamiltonian 

tour T for D is a cyclic permutation T : Zn → Zn . The (sum) cost of T is the integer 

 
(1)

The optimal sum cost of D is the integer 

 (2)

The Sum Traveling Salesman Problem asks for finding opt(D). It is a well known NP-hard 
problem. Moreover, no performance guarantee polynomial time approximation algorithm 
for it is known. 
An n × n matrix D = (d[i, j]) with entries in N ∪ {∞} is said to be circulant, if d[i, j] =  

d[0, 〈j − i〉n], for any i, j ∈ Zn . A symmetric circulant matrix is a circulant matrix which is also 

symmetric. As Example 1 below suggests, a symmetric circulant matrix has a strong algebraic 
structure: It is fully determined by the entries in the first half of its first row. 
 

Example 1 The following two matrices are symmetric circulant. 

 

Let SC(Nn×n) denote the set of all n×n symmetric circulant matrices with null principal diagonal 

entries, and positive integer entries otherwise. Note that D0 ∈ SC(N6×6), while D1 ∉ SC(N6×6). 
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The Symmetric Circulant Traveling Salesman problem (for short, SCTSP) asks for finding 
opt(D), when D is a matrix in SC(Nn×n). 

3. Definitions, and preliminaries 

Let D = (d[i, j]) be a matrix in SC(Nn×n). For any a ∈[⌊n/2⌋], the a-stripe of D is the set 

 (3)

The integer d[0, a] is denoted by d(a). It is called the a-stripe cost of D. Note that two 
different stripes have empty intersection. 
If T : Zn → Zn is a Hamiltonian tour for D, then sumD(T) depends just on the stripe costs of D: 

For any i∈Zn, {i, T(i)} belongs to D(ai), and costs d(ai), where ai = min{〈i − T(i)〉n, 〈T(i) − i〉n}. 

Indeed, ai ≤ ⌊n/2⌋ holds by definition, and ai > 0 holds, as T is a cyclic permutation. Thus,  
T(i) ≠ i . Finally, the following statement holds: 

 (4)

Indeed, if {i, j} ∈ D(a), then either 〈j − i〉n = a, or 〈i − j〉n = a. In the first case, (4) holds, as D is 
circulant, and, thus, d[i, j] = d[0, 〈j − i〉n] = d[0, a]. In the second case, (4) holds, as D is 
symmetric, and circulant, and, thus, d[i, j] = d[j, i] = d[0, 〈i − j〉n] = d[0, a]. 

Definition 2 Let D = (d[i, j]) be a matrix in SC(Nn×n). The ⌊n/2⌋-tuple  is a 

presentation for D, if d(at) ≤ d(at+1), for any integer 1 ≤ t < ⌊n/2⌋, and {a1, . . . , a⌊n/2⌋} = [⌊n/2⌋]. 

A presentation sorts the stripes of a matrix D∈SC(Nn×n) in non decreasing order with respect 

to their cost. Clearly, there exists just a presentation for D if and only if any two stripes have 
different stripe cost, and, thus, also the converse of (4) holds. In this case, we say that D has 
distinct stripe costs. 
Example 3 Let  be a presentation for D∈SC(Nn×n). As observed by Garfinkel in 

(1977), the permutation T1 : Zn → Zn , defined as T1(i) = 〈i + a1〉n , for any i∈Zn , is a Hamiltonian 

tour for D if and only if gcd(n, a1) = 1. In this case T1 is, clearly, optimal. 

Example 4 Let  be a presentation for D ∈ SC(Nn×n) such that gcd(n, a1, a2) > 1. A 

Hamiltonian tour T : Zn → Zn for D such that {i, T(i)} ∈ D(a1) ∪ D(a2), for any i ∈ Zn , cannot exist 

since the set {a1, a2} does not generate Zn . 

The previous examples suggest the following definition, that will play a crucial role in the 
next sections. 

Definition 5 Let  be a presentation for D ∈SC(Nn×n). The g -sequence of αD is the 

tuple  defined as follows: 
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(5)

Note that the g -sequence verifies the following properties: 

 (6)

 (7)

 (8)

In particular (8) holds as  = 1, for some t  ∈⌊n/2⌋. In the following, we write gt instead of 
gt(αD) if the context is clear. 

4. The circulant weighted undirected graph G (αD) 

An usual way of representing a weighted undirected graph G with node set {0, 1, . . . ,m − 1} 
is its weighted adjacency matrix: An m × m symmetric matrix DG whose general entry dG[i, j] 
corresponds either to 0, if i = j , or to the cost of {i, j}, if {i, j} is an edge in G, or to ∞, in the 
other cases. If DG is symmetric circulant, then G is said to be circulant. 

On the converse, a matrix D = (d[i, j]) in SC(Nn×n) can be thought as the weighted adjacency 

matrix of a complete circulant weighted undirected graph. More precisely, any A ⊂[⌊n/2⌋] 
determines a unique circulant weighted undirected graph having the following weighted 
adjacency matrix DA = (dA[i, j]): 

 
DA is symmetric circulant, since D∈SC(Nn×n). Suppose, now, that a presentation 

 for D is known. Since we are interested on a Hamiltonian tour for D with 
least possible cost, and αD sorts the stripes in non decreasing order with respect to their cost, 
it is advisable to study the weighted undirected graph associated to the set {a1, a2, . . . , a}, for 
any  ∈ [⌊n/2⌋]. 
Definition 6 Let D be a matrix in SC(Nn×n), and let  be a presentation for it. 

Let us fix  is the weighted undirected graph having Zn as node set, 

 as edge set, and, finally, d(at) as edge {i, j} cost, if {i, j} ∈D(at), for 
some t ∈ [ ]. 
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Fig. 1. The circulant weighted undirected graphs  

Example 7 Let us consider the matrix D0 ∈SC(N6×6) defined in Example 1. The stripes of D0 have the 

following costs: d0(1) = 4, d0(2) = 1, d0(3) = 6. Hence, there exists a unique presentation 
0Dα = (2, 1, 

3). In Figure 1 the circulant weighted undirected graphs  are 
depicted. 
 

The path in G (αD) of length l passing through the nodes v0, v1, . . . , vl  is denoted by  
[v0, v1, . . . , vl]. Say P such a path. v0 , and vl are called, respectively, the starting point, and 
the ending point of P . The (sum) cost of P is 

 
(9)

The path [u, u’] is an arc of P if u = vλ−1 , and u′ = vλ , for some λ ∈ [l]. Let P− denote the path 
[vl, vl−1, . . . , v0], and, for any v ∈ Zn , let (P + v) denote the path [v0 + v, v1 + v, . . . , vl + v], 

where each sum is performed modulo n. Note that both P−, and (P + v) are well defined. 
Moreover, for any λ ∈ [l], d[vλ−1, vλ] = d[vλ, vλ−1] holds as G (αD) is undirected, and  
d[vλ−1, v_] = d[vλ−1 + v, vλ + v] holds as G (αD) is circulant. Hence, both cD(P) = cD(P−), and  
cD(P) = cD(P + v) hold. 
Finally, the path [v0, v1] is an arc in D(at), if {v0, v1} ∈ D(at), for some t ∈ [ ]. 
A well known theorem due to Boesch, and Tindell (1984), and concerning the connectivity of 
a circulant weighted undirected graph can be restated for G (αD) as follows. 
Theorem 8 Let  be a presentation for D∈SC(Nn×n). Let us fix 

 has g pairwise isomorphic connected components. In particular, the set 
{v∈Zn : v ≡g i} induces a different connected component, for any i = 0, 1, . . . , g − 1. Finally, any 
connected component forms itself a circulant weighted undirected graph. 

PROOF. (Sketch) Let us fix a node v0 ∈ Zn. A node v ∈ Zn belongs to the same connected 
component of v0 if and only if there exists a path in G (αD) starting at v0 , and ending at v . 
Let P be a path starting at v0 . As the edge set of G (αD) is , any 
arc [u, u′] of P is an arc in D(at), and, thus, verifies u ≡n u′ ± at , for some t ∈ [ ] (see (3)). It 
follows that v is the ending point of a path starting at v0 if and only if there exists integers  
y1, . . . , y such that 
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(*) 

As g divides n by Definition 5, (*) implies that v ≡g  v0 holds. 
On the other hand, if v ≡g v0 , then (v − v0) ≡n g b, for some b ∈ Z. It follows by definition of 

g that gcd(n/ g , a1/ g , . . . , a  / g ) = 1. Thus, by Euclid’s lemma, there exists integers  

y1, . . . , y such that  By substituting it in  

follows. Hence, two nodes are in the same connected component if and only if they are 
equivalent modulo g. Finally, any connected component is isomorphic to the circulant 
weighted undirected graph having Zn/ g as node set, D(a1/ g )∪. . .∪D(a / g ) as edge set, and 

d[g ·i, g·j] as edge {i, j} cost.  
 

A Hamiltonian path for a graph is a path passing exactly once through an node in the graph. 
A shortest Hamiltonian path starting at a node v is a least possible cost one among those 
having v as starting point. The next theorem is a direct consequence of a result of Bach, et al. 
(see Chapter 4 in Gilmore, et al. (1985)). 
Theorem 9 Let   be a presentation for D ∈SC(Nn×n). An algorithm setting v0 = 0, 
and 

 
finds a shortest Hamiltonian path for G⌊n/2⌋(αD) starting at the node 0. Such path costs 

 

The algorithm described in Theorem 9 is a non deterministic one. For example, both choices 
v1 = a1 , and v1 = n − a1 are possible, as both arcs {0, a1}, and {0, n−a1} are in D(a1). Moreover, it 
is a nearest neighbor ruled one: For any 1 ≤ λ < n, and for any 

 holds, as αD is a presentation. Example 10 
below shows that the contribution given by αD is fundamental, as it forces to insert in the 
solution arcs belonging to the same stripe as far as possible. 
Example 10 Let D = (d[i, j]) be a matrix in SC(N6×6) having as strip costs d(1) = d(2) = 1, and d(3) 

= 2. Clearly, [0, 1, 2, 3, 4, 5] is a shortest Hamiltonian path of cost 5. An algorithm setting v0 = 0, 
and following the nearest neighbor rule 

 
may return the Hamiltonian path [0, 2, 3, 5, 4, 1] of cost 6, since it indifferently inserts in the 
solution arcs in D(1) (i.e., [0, 2], and [3, 5]), and arcs in D(2) (i.e., [2, 3], and [4, 5]), since d(1) = 
d(2) = 1 holds. 
Let us compute SHP(αD) by the formula given in Theorem 9. It follows from Definition 5 that 
g0 = n, and that g1 = gcd(n, a1) < n, as a1 is a stripe, and, then, a1 ≤ ⌊n/2⌋. Hence, the first 
summand is always greater than 0. And what about the other summands? As (6) holds, 

The Symmetric Circulant  Traveling Salesman Problem 

 

187 

there exist at most r indexes t, for some r ≤ log2 n, such that g t < g t−1 holds. Hence, at most r 
summands in SHP(αD) are greater than 0. Finally, as (7), and (8) hold, there exists an index 
t  such that gt = 1 holds if and only if t ≥ t . Therefore, the t-th summand for any t > t  is 
equal to 0. Hence, just a few number of stripes could be involved in the construction of a 
shortest Hamiltonian path for G⌊n/2⌋(αD) starting at 0. It suggests the following definition. 

Definition 11 Let  be a presentation for D∈SC(Nn×n).  

The r -tuple  is the stripe sequence (for short, s.s.) of αD, if ζ j+1 < ζ j , for any 1 ≤ j < r , 
and  ζj is called the j -th s.s. index of 
αD, for any j ∈[r]. 
 

Note that the higher is j , the lower is ζ j , and the higher is 
jζg  (αD). In particular, 

 

(10)

For any 1 ≤ j < r , the integer  is denoted by hj(αD). In the following, we 
write hj instead of hj(αD) if the context is clear. 

5. Bounds for the general case of SCTSP 
In this section the most remarkable results regarding the general case of SCTSP are reported. 
Unfortunately, such results do not allow to prove neither that SCTSP is in P, nor that it is an 
NP-hard problem. 

5.1 An upper bound for SCTSP 
The first author explicitly dealing with SCTSP is Van der Veen (1992). Its heuristic HT1 is a 
polynomial time algorithm for SCTSP in the case in which the matrix in input has distinct 
stripe costs. Van der Veen computes the cost of the Hamiltonian tour returned by HT1 just 
in some cases. Gerace, and Greco (2008b) propose the procedure H, a restyling of Van der 
Veen’s procedure. The main difference is the input instance: While HT1 accepts just matrices 
in SC(Nn×n) with distinct stripe costs, H works on any matrix in SC(Nn×n), once a presentation 
for it is given. In the following, we explain how H works. 
Let D be a matrix in SC(Nn×n), and let  be a presentation for it. For any  ∈ 

[⌊n/2⌋], let Δ (αD) be the connected component of G (αD) containing the node 0. It follows by 
Theorem 8 that its node set, say it V (αD), is {v∈Zn : v ≡

τg 0} 
First of all, we describe a procedure HP returning on input (αD,  ) a Hamiltonian path for  
Δ (αD) starting at the node 0. HP corresponds to Steps 2–3 of HT1. 
Suppose that  = 1. For any 0 ≤ λ < n/g1 , let vλ = 〈λ· a1〉n . Note that vλ ≡

1g 0. Let HP(αD, 1) = 

[v0, v1, . . . , vn/
1g −1]. Since g 1 = gcd(n, a1) by Definition 5, it follows that HP(αD, 1) passes 

through any node in V1(αD). Thus, it is a Hamiltonian path for Δ1 (αD). 
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(*) 
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Suppose, now, that  > 1. Let P0 = HP(αD,  −1). We distinguish two cases. If g−1 = g , then P0 

is a Hamiltonian path also for Δ (αD) by Theorem 8. In this case HP(αD,  ) returns P0. 
Otherwise, g−1 > g holds. As g = gcd(g−1, a ), and v∈V−1(αD) if and only if v ≡ g−1 0, it 
follows that 

 (**) 

Let z denote the ending point of P0 , and h the integer g−1 / g. For any μ∈ [h−1], let uμ denote 
the integer 〈μ(z+a )〉n , and Pμ the path (P0+uμ). Finally, let P be the path obtained by linking 
P0, P1, . . . , Ph−1 by the arcs [〈uμ−a 〉n, uμ], for any μ ∈ [h−1]. HP(αD,  ) returns P . Note that P 
passes through any node in V (αD), as P0 passes through any node in V−1(αD), and (**) 
holds. Hence, it is a Hamiltonian path for Δ (αD). 
 

 
 

Fig. 2. Shortest Hamiltonian paths for Δ1 (
0Dα ), and for Δ2 (

0Dα ) starting at 0 
 

Example 12 Let us consider the matrix D0 ∈SC(N6×6) defined in Example 1. Its unique presentation 

is 
0Dα  = (2, 1, 3), and G1(

0Dα ), and G2(
0Dα ) are depicted in Figure 1. The path shown in Figure 2 

are returned, respectively, by executing HP(
0Dα  , 1), and HP(

0Dα  , 2). 

Remark. Let / 2 .nτ ∈ ⎡ ⎤⎢ ⎥⎣ ⎦⎣ ⎦  The path HP(
0Dα ,)=[v0, v1,… 1gn −τ

v ] verifies v0=0, and 

 for any 1 ≤ λ < n/ g . Thus, HP is a 

deterministic nearest neighbor ruled algorithm. By applying Kruskal’s algorithm to Δ (αD), a 
minimum spanning tree T , whose weight is equal to the cost of HP(αD, ), is obtained. Thus, HP 
(αD, ) is a shortest Hamiltonian path forΔ (αD) starting at the node 0 (see also Corollary 6 in 
Gilmore, et al. (1985)). 
 

Let us define, now, the procedure H. 
 

Procedure H. 

Instance. A matrix D ∈SC(Nn×n), and a presentation αD
 for D. 

Step a. Execute Pr(αD, 1). 
Step b. Let H = [v0, v1, . . . , vn−1, v0] be the Hamiltonian cycle obtained in Step a. Return the 
Hamiltonian tour TH : Zn → Zn for D, defined as follows:  for any λ ∈Zn . 
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Procedure Pr. 
Instance. A presentation , and an integer j ≥ 1. 
Step 1. Let ζ1, . . . , ζr denote the s.s. indexes of αD. If j = 1, compute ζ1. 
Step 2. If ζj = 1, compute hj = g0/ g 1 . Set v0 = 0, and vλ = 〈vλ−1 + a

jζ
〉n , for any 1 ≤ λ < hj . Return 

the cycle [v0, v1, . . . , v 1jh − , v0]. 

Step 3. Compute ζj+1 , and hj = g 1j+ζ / g
jζ  . Execute HP(αD, ζj+1). Let P0 be the obtained path. 

Find an arc [u, u′] of P0 verifying (u′ − u) ≡n a 1j+ζ  . By deleting it, the paths Q0 , and R0 are 

obtained. Let uλ = 〈λ ·a
jζ  〉n , for any λ = 1, . . . , hj − 1. Set Qλ= (Q0 + uλ), Rλ = (R0 + uλ), for any λ 

= 1, . . . , hj − 2, and, finally, P 1jh −  = (P0 + u 1jh − ). 

Step 4. If hj is even, link up P0, Q1, R1, Q2, R2, . . . ,Q 2jh − ,R 2jh − , P 1jh −  by 2(hj − 1) arcs in D(a
jζ
) , 

as shown in Figure 3. Return the obtained cycle. 
 Step 5. Execute Pr(αD, j+1). Let Cj+1 be the obtained cycle. Find in Cj+1 an arc [v, v′] such that 
(v′−v) ≡n a 1j+ζ  . By deleting it a path *

0K  is obtained. Set K0 = ( *
0K + w), where w = 〈u′ − v′〉n . 

Step 6. Link up K0, Q1, R1, Q2, R2, . . . ,Q 2jh − ,R 2jh − , P 1jh −  by 2(hj −1) arcs in D(a
jζ  ), as shown 

in Figure 3. Return the obtained cycle. ■ 
 

 
Fig. 3. Pr(αD, j) in the case hj even (above), and hj odd (below). Note that hj is the number of 
connected components of G 1j+ζ (αD) contained in Δ

jζ
 (αD). 
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HP(αD, ) contains an arc [u, u′] such that (u′ − u) ≡n a if and only if g−1 > g holds, that is, if 
and only if  is a s.s. index of αD. Hence, Step 3 of Pr is well defined. Gerace, and Greco 
(2008b) prove that H is a correct polynomial time procedure, and that the cost of H(D, αD) is 
time O(n) computable (without running H) by the next theorem. 

Theorem 13 Let αD be a presentation for a matrix D ∈ SC(Nn×n), let 1( )r
jj

a =ζ be its s.s., and let  

ρ = max{j ∈ [r] : g
jζ
is odd}. If ρ̂ denotes the integer min{r − 1, ρ}, then the Hamiltonian tour  

H(D, αD) costs 

 
As a consequence of Theorem 13, the integer 

  (11)

is an upper bound for opt(D). If there exists just a presentation αD for D, and Pr(αD, 1) ends 
immediately with no more recursive calling, UB(D) is equal to the upper bound given in 
Van der Veen (1992), Theorem 7.2.5. 
 

In the general case D admits more than a presentation. As Example 14, and Example 15 below 
show, the cost of the Hamiltonian tour returned by H depends on the presentation. Since the 
number of the presentations for D could be exponential in n, UB(D) is not efficiently 
computable by determining sumD(H(D, αD)), for any presentation αD. 
Example 14 Let n = 108, and let D be the matrix in SC(Nn×n) having as stripe costs d(36) = 1, d(8) = 

d(16) = d(27) = 2, and d(k) = 3 + k, for any other k ∈[54]. We consider just two of the six possible 
presentations for D: the one verifying a1 = 36, a2 = 27, a3 = 16, a4 = 8 is denoted by  
αD = (at) 54

1t=  ; the one verifying b1 = 36, b2 = 8, b3 = 16, b4 = 27 is denoted by βD = (bt) 54
1t=  . Let us denote 

by 1( )r
jj

a =ζ , (respectively, by 1( )s
kk

b =ξ  the s.s. of αD (respectively, of βD). Let us compute  

sumD(H(D, αD)), and sumD(H(D, βD)) by following the arrows in the two schemes reported in Figure 
4 (the differences between them are pointed out in bold). Such schemes are obtained by making use of (5), 
of (10), of Theorem 9, and of Theorem 13. Note that sumD(H(D, αD)) > sumD(H(D, βD)). 

Example 15 Let n = 135, and let D be the matrix in SC(Nn×n) verifying d(45) = 1, d(5) = d(9) = 2, 

and d(k) = 3 + k, for any other k ∈[52]. There exist exactly two presentations for D. Let αD = (at) 67
1t=  

be the one verifying a1 = 45, a2 = 5, a3 = 9, and let βD = (bt) 67
1t=  be the one verifying b1 = 45, b2 = 9,  

b3 = 5. As above, let 1( )r
jj

a =ζ  , (respectively, 1( )s
kk

b =ξ  denotes the s.s. of αD (respectively, of βD), and 

let us compute sumD(H(D, αD)), and sumD(H(D, βD)) by following the arrows in the two schemes 
reported in Figure 5 (the differences are pointed out in bold). Note that sumD(H(D, αD)) > 
sumD(H(D, βD)) also in this case. 
 

In both examples H(D, βD) costs less than H(D, αD)). In the former, the presentation βD sorts 
the stripes having the same cost in a way that gt(βD) remains even as long as possible. In fact, 
g2(αD) is odd, while g2(βD) is even. In the latter, n is an odd number. Thus, gt(βD), and gt(αD) 
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Fig. 4. How to compute sumD(H(D, αD)), and sumD(H(D, βD)) in Example 14. 

are necessarily odd, for any t ∈[⌊n/2⌋]. Anyway, βD sorts the stripes having the same cost in 
a way that g2(βD) is as great as possible. 
Such considerations suggest the following definition. 

Definition 16 Let D be a matrix in SC(Nn×n), and let βD = (bt)
1

/2

t

n

=

⎢ ⎥⎣ ⎦ be a presentation for D. βD is 

sharp if gt(βD) odd implies that gt(αD) is an odd integer less than, or equal to gt(βD), for any t 
∈[⌊n/2⌋], and for any other presentation αD for D. 
A sharp presentation for a matrix in SC(Nn×n) is time O (n log n) computable by the 
procedure SP reported below. 
 

Procedure SP. 

Instance. A matrix D in SC(Nn×n). 

Step 1. Set S = [⌊n/2⌋], g = n, and t = 1. Sort in non decreasing order the stripe costs of D. Let 

(dt) /2
1

n
t
⎢ ⎥⎣ ⎦
=  the tuple so obtained. 

Step 2. While there exists a∈ S such that d(a) = dt , and gcd(g, a) is even set bt = a, S = S \ a,  
g = gcd(g, a), and t = t + 1. 
Step 3. While S ≠ 0, extract from S ∩ {a′ : d(a′) = dt} the element a maximizing gcd(g, a′). Set  
bt = a, S = S \ a, g = gcd(g, a), and t = t + 1. 
Step 4. Return the presentation (bt) /2

1
n

t
⎢ ⎥⎣ ⎦
=  . ■ 
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HP(αD, ) contains an arc [u, u′] such that (u′ − u) ≡n a if and only if g−1 > g holds, that is, if 
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time O(n) computable (without running H) by the next theorem. 
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a =ζ be its s.s., and let  

ρ = max{j ∈ [r] : g
jζ
is odd}. If ρ̂ denotes the integer min{r − 1, ρ}, then the Hamiltonian tour  
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As a consequence of Theorem 13, the integer 
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by 1( )r
jj

a =ζ , (respectively, by 1( )s
kk

b =ξ  the s.s. of αD (respectively, of βD). Let us compute  
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jj

a =ζ  , (respectively, 1( )s
kk
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In both examples H(D, βD) costs less than H(D, αD)). In the former, the presentation βD sorts 
the stripes having the same cost in a way that gt(βD) remains even as long as possible. In fact, 
g2(αD) is odd, while g2(βD) is even. In the latter, n is an odd number. Thus, gt(βD), and gt(αD) 
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Fig. 4. How to compute sumD(H(D, αD)), and sumD(H(D, βD)) in Example 14. 

are necessarily odd, for any t ∈[⌊n/2⌋]. Anyway, βD sorts the stripes having the same cost in 
a way that g2(βD) is as great as possible. 
Such considerations suggest the following definition. 

Definition 16 Let D be a matrix in SC(Nn×n), and let βD = (bt)
1

/2

t

n

=

⎢ ⎥⎣ ⎦ be a presentation for D. βD is 

sharp if gt(βD) odd implies that gt(αD) is an odd integer less than, or equal to gt(βD), for any t 
∈[⌊n/2⌋], and for any other presentation αD for D. 
A sharp presentation for a matrix in SC(Nn×n) is time O (n log n) computable by the 
procedure SP reported below. 
 

Procedure SP. 

Instance. A matrix D in SC(Nn×n). 

Step 1. Set S = [⌊n/2⌋], g = n, and t = 1. Sort in non decreasing order the stripe costs of D. Let 

(dt) /2
1

n
t
⎢ ⎥⎣ ⎦
=  the tuple so obtained. 

Step 2. While there exists a∈ S such that d(a) = dt , and gcd(g, a) is even set bt = a, S = S \ a,  
g = gcd(g, a), and t = t + 1. 
Step 3. While S ≠ 0, extract from S ∩ {a′ : d(a′) = dt} the element a maximizing gcd(g, a′). Set  
bt = a, S = S \ a, g = gcd(g, a), and t = t + 1. 
Step 4. Return the presentation (bt) /2

1
n

t
⎢ ⎥⎣ ⎦
=  . ■ 
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Fig. 5. How to compute sumD(H(D, αD)), and sumD(H(D, βD)) in Example 15. 

Let βD = SP(D). Gerace, and Greco (2008b) prove that UB(D) = sumD(H(D, βD)) holds, as βD is 
sharp. Since sumD(H(D, βD)) is time O(n) computable (see Theorem 13), it follows that UB(D) 
is a time O(n log n) computable upper bound for opt(D). 

5.2 A lower bound for SCTSP 
Let D be a matrix in SC(Nn×n). If D has distinct stripe costs, Theorem 7.4.2 in Van der Veen 

(1992) gives a lower bound for opt(D). By the same argument, Theorem 17 below shows that 
any presentation for D leads to a lower bound. 

Theorem 17 Let αD be a presentation for a matrix D ∈SC(Nn×n), and let 1( )r
jj

a =ζ be its s.s.. 

Then, SHP(αD) + d(a
1ζ
) ≤ opt(D) holds. 

PROOF. Let us fix an optimal Hamiltonian tour T : Zn → Zn for D. Setting v0 = T(0), and vλ = 
T(vλ−1), for any integer 1 ≤ λ < n, naturally induces a Hamiltonian cycle HT = [v0, v1, . . . , vn−1, 
v0] for G⌊n/2⌋(αD). It  follows from (1), and from (9) that cD(HT ) = sumD(T). If no arc [u, v] of HT 

would verify 
/2

1

{ , } ( )
n

t
t

u D a
⎢ ⎥⎣ ⎦

=ζ
∈ ∪v , then HT would be a Hamiltonian cycle also for G 11−ζ (αD), a 
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weighted undirected graph having g 11−ζ  > 1 connected components, as a consequence of 
Theorem 8, and of Definition 11. Hence, there exists an arc [u, v] in HT such that cD([u, v]) = 
d[u, v] ≥ d(a

1ζ
). By deleting [u, v] from HT a Hamiltonian path P for G⌊n/2⌋(αD) is obtained. 

Clearly, cD(P) ≥ SHP(αD) holds. Thus, 

sumD(T) = cD(HT ) = cD(P) + cD([u, v]) ≥ SHP(αD) + d(a
1ζ
). 

As sumD(T) = opt(D), the claim follows.  
 

Let βD = (bt) 
/2
1

n
t
⎢ ⎥⎣ ⎦
=  be a presentations for D, possibly different from αD. Since {a1, . . . , a⌊n/2⌋} = 

[⌊n/2⌋] = {b1, . . . , b⌊n/2⌋}, the weighted undirected graphs G⌊n/2⌋(αD), and G⌊n/2⌋(βD) coincide by 
Definition 6. It follows from Theorem 9 that SHP(αD) = SHP(βD) holds. As shown by Gerace, 
and Greco (2008b), d(a

1ζ
) = d(b ξ1

) also holds, where b ξ1
 denote the 1-st s.s. index of βD. 

It follows from Theorem 17 that the integer 

LB(D) = SHP(αD) + d(a
1ζ
) (12)

is a well defined lower bound for opt(D) holds not depending on the chosen presentation 

5.3 A 2-approximation algorithm for SCTSP 
A first 2-approximation algorithm for the general case of SCTSP is reported Gerace, and 

Irwing (1998). For any matrix D ∈SC(Nn×n), such algorithm makes use of the construction 
proposed by Burkard, and Sandholzer (1991) for solving the Hamiltonian circuit problem in 
a circulant undirected graph. The returned Hamiltonian tour has a costs greater than, or 
equal to UB(D). 
By the procedure SP, a sharp presentation βD for D can be found in polynomial time. If we 
apply H on input (D, βD), a Hamiltonian tour for D of cost UB(D) is obtained in polynomial 
time. Let H* denote the algorithm that, given D, returns H(D, βD). Clearly, H* is a 2-
approximation algorithm for SCTSP. Gerace, and Greco (2008b) proves that the analysis of 
H* is tight. 

6. When the optimal cost is equal to the lower bound 

Let D be a matrix in SC(Nn×n). Let αD be a presentation for it, and let 1( )r
jj

a =ζ be its s.s.. 

Theorem 18 below extends some results appearing in Van der Veen (1992), and in Gerace, 
and Irwing (1998). It is inspired by the following remark: According to (12), there exists a 
Hamiltonian tour for D of cost LB(D) if and only if there exists a shortest Hamiltonian path 
for G⌊n/2⌋(αD) starting at the node 0, and ending at a node v such that the arc [v, 0] costs 
d(a

1ζ
). Note that [v, 0] is not necessary an arc in D(a

1ζ
), if more than a stripe costs d(a

1ζ
). 

Theorem 18 Let D = (d[i, j]) be a matrix in SC(Nn×n). Suppose that there exists a presentation αD for 

D having 1( )r
jj

a =ζ as s.s., and that there exists v ∈Zn verifying d[v, 0] = d(a
1ζ
), and 
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Fig. 5. How to compute sumD(H(D, αD)), and sumD(H(D, βD)) in Example 15. 
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(1992) gives a lower bound for opt(D). By the same argument, Theorem 17 below shows that 
any presentation for D leads to a lower bound. 

Theorem 17 Let αD be a presentation for a matrix D ∈SC(Nn×n), and let 1( )r
jj

a =ζ be its s.s.. 

Then, SHP(αD) + d(a
1ζ
) ≤ opt(D) holds. 
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T(vλ−1), for any integer 1 ≤ λ < n, naturally induces a Hamiltonian cycle HT = [v0, v1, . . . , vn−1, 
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1

{ , } ( )
n

t
t

u D a
⎢ ⎥⎣ ⎦
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∈ ∪v , then HT would be a Hamiltonian cycle also for G 11−ζ (αD), a 
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weighted undirected graph having g 11−ζ  > 1 connected components, as a consequence of 
Theorem 8, and of Definition 11. Hence, there exists an arc [u, v] in HT such that cD([u, v]) = 
d[u, v] ≥ d(a

1ζ
). By deleting [u, v] from HT a Hamiltonian path P for G⌊n/2⌋(αD) is obtained. 

Clearly, cD(P) ≥ SHP(αD) holds. Thus, 

sumD(T) = cD(HT ) = cD(P) + cD([u, v]) ≥ SHP(αD) + d(a
1ζ
). 

As sumD(T) = opt(D), the claim follows.  
 

Let βD = (bt) 
/2
1

n
t
⎢ ⎥⎣ ⎦
=  be a presentations for D, possibly different from αD. Since {a1, . . . , a⌊n/2⌋} = 

[⌊n/2⌋] = {b1, . . . , b⌊n/2⌋}, the weighted undirected graphs G⌊n/2⌋(αD), and G⌊n/2⌋(βD) coincide by 
Definition 6. It follows from Theorem 9 that SHP(αD) = SHP(βD) holds. As shown by Gerace, 
and Greco (2008b), d(a
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) = d(b ξ1

) also holds, where b ξ1
 denote the 1-st s.s. index of βD. 

It follows from Theorem 17 that the integer 

LB(D) = SHP(αD) + d(a
1ζ
) (12)

is a well defined lower bound for opt(D) holds not depending on the chosen presentation 

5.3 A 2-approximation algorithm for SCTSP 
A first 2-approximation algorithm for the general case of SCTSP is reported Gerace, and 

Irwing (1998). For any matrix D ∈SC(Nn×n), such algorithm makes use of the construction 
proposed by Burkard, and Sandholzer (1991) for solving the Hamiltonian circuit problem in 
a circulant undirected graph. The returned Hamiltonian tour has a costs greater than, or 
equal to UB(D). 
By the procedure SP, a sharp presentation βD for D can be found in polynomial time. If we 
apply H on input (D, βD), a Hamiltonian tour for D of cost UB(D) is obtained in polynomial 
time. Let H* denote the algorithm that, given D, returns H(D, βD). Clearly, H* is a 2-
approximation algorithm for SCTSP. Gerace, and Greco (2008b) proves that the analysis of 
H* is tight. 

6. When the optimal cost is equal to the lower bound 

Let D be a matrix in SC(Nn×n). Let αD be a presentation for it, and let 1( )r
jj

a =ζ be its s.s.. 

Theorem 18 below extends some results appearing in Van der Veen (1992), and in Gerace, 
and Irwing (1998). It is inspired by the following remark: According to (12), there exists a 
Hamiltonian tour for D of cost LB(D) if and only if there exists a shortest Hamiltonian path 
for G⌊n/2⌋(αD) starting at the node 0, and ending at a node v such that the arc [v, 0] costs 
d(a

1ζ
). Note that [v, 0] is not necessary an arc in D(a

1ζ
), if more than a stripe costs d(a

1ζ
). 

Theorem 18 Let D = (d[i, j]) be a matrix in SC(Nn×n). Suppose that there exists a presentation αD for 

D having 1( )r
jj

a =ζ as s.s., and that there exists v ∈Zn verifying d[v, 0] = d(a
1ζ
), and 
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for some integers γr, . . . , γ2, γ1 such that 0 ≤ j ≤ g

1ζ
 holds, for any j ∈ [r]. Then, opt(D) = LB(D) 

holds. 
If D has distinct stripe costs, then the converse also holds. 
 

PROOF. (Sketch) Let αD be a presentation satisfying the hypotheses for some suitable 
integers v , γr, . . . , γ2, γ1 . Since αD is fixed, Theorem 7.3.1 in Van der Veen (1992) implies 

that there exists a shortest Hamiltonian path P for G⌊n/2⌋(αD) starting at 0, and ending at v . 

Let H be the Hamiltonian cycle for G⌊n/2⌋(αD) obtained by composing P with the arc [v, 0]. 
Since d[v, 0] = d(a

1ζ
), and Theorem 9 holds, H costs SHP(αD) + d(a

1ζ
) = LB(D). H naturally 

induces a Hamiltonian tour TH verifying cD(H) = sumD(TH). It follows from Theorem 17 that 
opt(D) = LB(D). 
Suppose that D has distinct stripe costs, and that opt(D) = LB(D). Let αD be the unique 
presentation for D, and let 1( )r

jj
a =ζ be its s.s.. Let T : Zn → Zn be a Hamiltonian tour for D of 

cost LB(D), and let i ∈ Zn be an integer maximizing d[i, T(i)]. Clearly, d[i, T(i)] ≥ d(a
1ζ
) holds 

(see also the proof of Theorem 17). Let P be the Hamiltonian path obtained by deleting the arc 

[i, T(i)] from the Hamiltonian cycle for G⌊n/2⌋(αD) induced by T . Since P starts at the node 
T(i), and ends at the node i , (P − T(i)) is a Hamiltonian path starting at 0, and ending at  
v = 〈i − T(i)〉n. It follows from Theorem 9 that (P − T(i)) is a shortest one, since cD(P) = cD(P − 
T(i)), and 

cD(P) = LB(D) − d[i, T(i)] = SHP(αD) + d(a
1ζ
) − d[i, T(i)] ≤ SHP(αD). 

Moreover, d[i, T(i)] = LB(D) − SHP(αD) = d(a
1ζ
) is verified. As D is circulant, d[v, 0] = d[i, T(i)] 

= d(a
1ζ
) also holds. As D has distinct stripe costs, Theorem 7.3.1 in Van der Veen (1992) 

implies that 
 
, for some integers γr, . . . , γ2, γ1 such 

that 0≤ γj ≤ gj holds, for any j ∈ [r]. The second claim of the theorem is thus proved.  
 

As already observed, the number of presentation for a matrix D∈SC(Nn×n) could be 

exponential in n. Hence, an algorithm based on the sufficient condition given in Theorem 18 
cannot efficiently determine if opt(D) = LB(D) holds. Proposition 19 below gives some 
conditions implying opt(D) = LB(D), once a presentation for D is fixed. In Garfinkel (1977) 
(respectively, in Van der Veen (1992)) appears a condition similar to condition (b) 
(respectively, to condition (c)). Finally, condition (d) is a consequence of Theorem 18. 

Proposition 19 Let D = (d[i, j]) be a matrix in SC(Nn×n). Let _D be a presentation for it, and let 

1( )r
jj

a =ζ be its s.s.. If one of the following condition occurs, then opt(D) = LB(D) holds: 

a) d(a
rζ

) = d(a
1ζ
); 
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b) r = 1; 
c) r ≥ 2, and g

2ζ
= 2; 

d) r ≥ 2, and there exist r−1 integers yr, . . . , y2 verifying 0 ≤ yj ≤ g
jζ
, for any 2 ≤ j ≤ r , and 

 
PROOF. (a) If d(a

rζ
) = d(a

1ζ
), then d(at) = d(a

rζ
), for any ζr ≤ t ≤ 1. In particular, d(a

jζ
) = 

d(a 1j+ζ ) holds, for any j∈[r − 1]. It follows from Theorem 13 that sumD(H(D, αD)) = SHP(αD) + 

d(a
1ζ
). The claim thus follows by making use of (12), and of Theorem 17.  

(b) It is a subcase of condition (a): If r = 1, then d(a
rζ

) = d(a
1ζ
). 

(c) It follows from Theorem 13 that, if r ≥ 2, and g
2ζ

= 2, then ρ = 1, and ρ̂ = 1. Since g
1ζ
= 1 

holds by (10), we have that h1 = g
2ζ

/ g
1ζ
= 2. Hence, sumD(H(D, αD)) = SHP(αD) + d(a

1ζ
) is 

verified. The claim thus follows by making use of (12), and of Theorem 17. 
(d) Let us set γ1 = 1, and γj = g

jζ
− yj , for any 2 ≤ j ≤ r . Trivially, g

jζ
− 2yj = 2j − g

jζ
holds, for 

any 2 ≤ j ≤ r . Since g
1ζ
= 1, also g

1ζ
= 2γ1 − g

1ζ
= 1 is verified. It follows from the hypothesis 

that 

 
g 11−ζ a

1ζ
 can be written as (g 11−ζ /g

1ζ
− 1)a

1ζ
+ a

1ζ
. Hence, 

 
Let v = n − a

1ζ
. As d[v, 0] = d(a

1ζ
) holds, αD, and v verifies the hypotheses of Theorem 18. The 

claim thus follows.  

7. 2-striped symmetric circulant matrices 

Let D be a matrix in SC(Nn×n), let αD = (at) /2
1

n
t
⎢ ⎥⎣ ⎦
= be a presentation for it, and let  be a fixed 

integer in [⌊n/2⌋]. Any Hamiltonian tour T: Zn → Zn such that {i, T(i)} ∈ D(at), for some i ∈Zn, 

and some t ≥  , verifies sumD(T) ≥ SHP(αD)+d(a ). Indeed, if P denotes the Hamiltonian path 
obtained by deleting the arc [i, T(i)] from the Hamiltonian cycle for G⌊n/2⌋(αD) induced by T, 
then cD(P) ≥ SHP(αD), and sumD(T) ≥ cD(P) + d(a ). Any such tour is not optimal if SHP(αD) + 
d(a ) > UB(D) holds, since a Hamiltonian tour for D of cost UB(D) always exists (see §4). 
Thus, we may ignore the at -stripe, for any t ≥  , if d(a ) > UB(D) − SHP(αD) holds. 
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Note that any other a-stripe cannot be a priori ignored, even if no presentation for D 
contains a in its s.s.. Thus, a first step for solving SCTSP is analyzing the case in which each 
presentation for D has the same s.s., and any stripe not belonging to the s.s. can be ignored. 

Definition 20 A matrix D∈SC(Nn×n) is an s-striped matrix, for some s ≥ 1, if a presentation 

αD = (at) /2
1

n
t
⎢ ⎥⎣ ⎦
= for it verifies the following properties: 

(i)    (as, as−1, . . . , a1) is the s.s. of αD, and d(at) < d(at+1), for any t ∈[s]; 
(ii)   d(as+1) > UB(D) − SHP(αD). 
 

Definition 20 does not depend on the presentation. Indeed, let βD = (bt) /2
1

n
t
⎢ ⎥⎣ ⎦
= be a presentation 

for D, possibly different from αD. As both αD, and βD sort in non decreasing order the multi-
set containing the stripe costs of D, then d(at) = d(bt) holds, for any t∈ [⌊n/2⌋]. In particular, 
d(bs+1) = d(as+1), and, thus, d(bs+1) verifies property (ii). As a consequence of property (i), no 
other stripe different from at costs d(at), for any t∈ [s]. Hence, at = bt , and gt(αD) = gt(βD) hold, 
for any t∈ [s], and, thus, (as, as−1, . . . , a1) is also the s.s. of βD. 
The case s = 1 is trivial: condition (b) in Proposition 19 holds, and thus opt(D) = LB(D). In this 
section we deal with the case s = 2. 

By D(n; d1, d2; a1, a2) we denote the 2-striped matrix in SC(Nn×n) verifying d(a1) = d1 , and  

d(a2) = d2 , for some presentation αD = (at) /2
1

n
t
⎢ ⎥⎣ ⎦
= . As any two presentations have (a2, a1) as s.s., 

we denote by g1 the integer g1(αD) = gcd(n, a1), and by G1 , and G2 the weighted undirected 
graphs G1(αD), and G2(αD). Note that g1 > 1, and that gcd(g1, a2) = 1, as a consequence of 
Definition 20, applied for s = 2. 
The weighted adjacency matrix of G2 is a symmetric circulant matrix with two stripes, 
according to the definition given in Gerace, and Greco (2008a). Aim of this section is 

restating for the 2-striped matrices in SC(Nn×n) the results obtained in Gerace, and Greco 

(2008a). Let D be the matrix D(n; d1, d2; a1, a2). As a consequence of Theorem 9, of Theorem 17, 
and of (11) (respectively, of Theorem 9, and of (12)), the integer UB(D) (respectively, LB(D)) 
verifies: 

 
(13)

If g1 = 2, condition (c) of Proposition 19 implies that opt(D) = LB(D). 
Definition 21 Let D be the matrix D(n; d1, d2; a1, a2), and let T : Zn → Zn be an Hamiltonian tour 

for D. T is feasible if {i, T(i)} ∈ D(a1) ∪ D(a2), for any i∈ Zn . 
Any stripe of D different from a1 , and a2 can be ignored. Thus, an optimal Hamiltonian tour 
for D is also a feasible one. As a consequence of Definition 6, Hamiltonian cycles for G2 , and 
feasible Hamiltonian tours for D are in correspondence. 
Let T : Zn → Zn be a feasible Hamiltonian tour for D, and let HT = [v0, v1 , . . . , vn−1, v0] be the 

Hamiltonian cycle for G2 associated to T . [vλ, v 1 nλ+ ] is a (+a1)-arc, for some λ ∈ Zn , if  
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(v 1 nλ+ − vλ) ≡n +a1 holds. In a similar way, (−a1)-arcs, (+a2)-arcs, and (−a2)-arcs are defined. 

π 2,T
+

 (respectively, π 2,T
− ) denotes the number of (+a2)-arcs (respectively, of (−a2)-arcs). If g1 ≥ 3, 

(π 2,T
+

 + π 2,T
−

 ) corresponds the number of arcs of HT belonging to D(a2), as the next remark 
shows. 
 

Remark. An arc is at the same time a (+a2)-arc, and a (−a2)-arc if and only if a2 ≡n −a2 , that is, if and 
only if n is even, and a2 = n/2. As already observed, g1 = gcd(n, a1) > 1, and 1 = gcd(n, a1, a2) = 
gcd(g1, n/2) hold. Thus, g1 = 2 holds if n is even, and a2 = n/2. 
 

Theorem 22 Let D be the matrix D(n; d1, d2; a1, a2). If g1 ≥ 3, there exists an optimal 
Hamiltonian tour T for D such that (π 2,T

+ − π 2,T
− ) ∈{0, g1}. In particular, if (π 2,T

+  −π 2,T
− ) = 0, then, 

opt(D) = UB(D) holds. 
PROOF. (Sketch) Let S : Zn → Zn be an optimal Hamiltonian tour for D. As g1 ≥ 3 holds, the 

number of arcs in D(a2) is (π 2,S
+

 + π 2,S
− ). Since either {i, S(i)} ∈D(a1), or {i, S(i)} ∈ D(a2) holds, 

for any i ∈ Zn , then 

opt(D) = sumD(S) = (n − (π 2,S
+

 + π 2,S
− )) ⋅ d1 + (π 2,S

+
 + π 2,S

− ) ⋅ d2. 

Clearly, LB(D) ≤ sumD(S) ≤ UB(D) holds. Hence, it follows from (13), and from d1 < d2 that g1 ≤ 
(π 2,S

+ + π 2,S
− ) ≤ 2(g1 − 1). On the other hand, (π 2,S

+   −π 2,S
− ) ≡g1 0, since any arc in D(a2) links two 

different connected components of G1 , and the starting one coincides with the ending one. 
Hence, (π 2,S

+ − π 2,S
− ) ∈{− g1, 0, g1}. If (π 2,S

+ − π 2,S
− ) ∈ {0, g1}, it suffices to take T = S. If (π 2,S

+ − π 2,S
− ) 

= − g1 , it suffices to take T = S−. 
Suppose that (π 2,T

+ − π 2,T
− ) = 0. Since (π 2,T

+ + π 2,T
− ) ≤ 2(g1 − 1) also holds, it follows that  

0 ≤π 2,T
+  = π 2,T

−  ≤ (g1 − 1). 

For any i∈ Zn , the nodes i , and T(i) belong to different connected components of G1 if and 

only if {i, T(i)} ∈ D(a2). G1 has g1 connected components, and the Hamiltonian cycle HT 

induced by T starts, and ends at the same connected components, after having passed 
through each other connected component. It follows that π 2,T

+
 = π 2,T

−
 ≥ (g1−1) also holds. The 

claim, thus, follows.  
Theorem 23 Let D be the matrix D(n; d1, d2; a1, a2). Assume that g1 ≥ 3 holds. Let AD = {y ∈ Z : 0 ≤ 

y < n/ g1, (n/ g1 − 1)( g1 − 2y)a1 + g1a2 ≡n 0}. If AD is not empty, let y1 , and y2 be, respectively, the 
minimum, and the maximum of AD, and let m = min{y1 − g1, n/ g1 − y2}. 
The following statements hold. 
(i)    If AD is empty, then opt(D) = UB(D). 
(ii)   AD is not empty, and m ≤ 0 if and only if opt(D) = LB(D). 
(iii) If AD is not empty, and m > 0, there exists a Hamiltonian tour for D of cost  
LB(D) + 2m ⋅(d2 − d1). 
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induced by T starts, and ends at the same connected components, after having passed 
through each other connected component. It follows that π 2,T
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 ≥ (g1−1) also holds. The 

claim, thus, follows.  
Theorem 23 Let D be the matrix D(n; d1, d2; a1, a2). Assume that g1 ≥ 3 holds. Let AD = {y ∈ Z : 0 ≤ 

y < n/ g1, (n/ g1 − 1)( g1 − 2y)a1 + g1a2 ≡n 0}. If AD is not empty, let y1 , and y2 be, respectively, the 
minimum, and the maximum of AD, and let m = min{y1 − g1, n/ g1 − y2}. 
The following statements hold. 
(i)    If AD is empty, then opt(D) = UB(D). 
(ii)   AD is not empty, and m ≤ 0 if and only if opt(D) = LB(D). 
(iii) If AD is not empty, and m > 0, there exists a Hamiltonian tour for D of cost  
LB(D) + 2m ⋅(d2 − d1). 
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Fig. 6. 1

mP+ , and 1
mP− , for a fixed m > 0 

PROOF. (Sketch) If AD is empty, it can be shown that no Hamiltonian tour T for D verifies 
(π 2,T

+ − π 2,T
− ) = g1 . Claim (i), thus, follows by Theorem 22. 

Suppose that AD is not empty, and that m ≤ 0 holds. As (n/ g1−y) > 0 holds, for any y ∈ AD, 
we have that m = (y1 − g1). It follows from m ≤ 0 that y1 verifies 0 ≤ y1 ≤ g1 , and from y1 ∈ AD 

that (n/ g1−1)( g1−2y1)a1+ g1a2 ≡n 0. As (a2, a1) is the s.s. of any presentation for D, condition (d) 
of Proposition 19 is verified. Thus, opt(D) = LB(D) follows. 
By arguing as in the proof of the second claim of Theorem 18, it can be shown that opt(D) = 
LB(D) implies that there exists y∈AD such that 0 ≤ y ≤ g1 . Clearly, m ≤ 0, in this case. Claim 
(ii) is thus proved. 
 

Suppose that AD is not empty, and that m > 0 holds. Then m is a positive integer less than n/2 
g1 . Let us denote by Δλ , for any λ ∈Z

1g  , the connected component of G1 having as node set 

{v ∈ Zn : v ≡
1g  λ a2}.Let 1

mP+ , and 1
mP−

 be the path in G2 described in Figure 61. They pass 

through any node in Δ0 , and in Δ1 , and cost (2n/ g1−2m) ⋅d1+(2+2m) ⋅d2 . For any λ ∈Z
1g , let 

 

                                                 
1 In the figures of this section, thin vertical lines represent (+a1)-arcs, bold vertical lines 
represent (−a1)-arcs, any other thin line represents a (+a2)-arc, and, finally, any other bold 
line represents a (−a2)-arcs. 
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Fig. 7. 1Qλ
+  , and 1Qλ

− , for a fixed λ ∈Z
1g
 

1Qλ
+ , and 1Qλ

−
 be the path in G2 described in Figure 7. They pass through any node in Δλ , and 

cost cD( Qε
λ ) = (n/ g1 − 1) ⋅d1 + d2 . For  = +1,−1, let mH ε

 be the path obtained by composing 

mPε , 2Qε , . . . 
1 1Qε
−g . mH ε starts at the node 0, and passes through any node in G2 . Its cost 

verifies 

 
 

If m = y1 − g1 , 1
mH + is a Hamiltonian cycle for G2 , as its ending point is 

 
 

If m = n/ g1 − y2 , 1
mH − is a Hamiltonian cycle for G2 as its ending point is 

 
 

The second part of claim (ii) thus follows, since either 1
mH + , or 1

mH − induced a Hamiltonian 
tour for D of the required cost.  
 

Example 24 Let D1 be the matrix D(32; 1, 2; 8, 1). It is easy to verify that g1 = gcd(32, 8) = 8, and 
that n/ g1 = 4. The equation 3(8 − 2y)8 + 8 ≡32 0 has no integer solutions. Thus, AD1 is empty. It 
follows from Theorem 23, and from (13) that opt(D1) = UB(D1) = 46. 
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mH − induced a Hamiltonian 
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Fig. 8. The Hamiltonian cycle 1
2H − for D(243; 18, 1; 1, 2) 

Let D2 be the matrix D(28; 1, 2; 7, 3). Note that g 1 = gcd(28, 7) = 7, and that n/ g1 = 4. The equation 
3(7 − 2y)7 + 21 ≡28 0 is solved by any even integer. Thus, A

2D  = {0, 2}, and m = min{0 − 4, 4 − 2} = 

−4 ≤ 0. It follows from Theorem 23, and from (13) that opt(D2) = LB(D2) = 32. 
Let D3 be the matrix D(243; 18, 1; 1, 2). Note that g1 = gcd(243, 18) = 9, and that n/ g1 = 27. 25 is 
the unique integer solutions in [0, 26] of the equation (2y−9)18+9 ≡243 0. Thus, A

3D = {25}, and m = 

min{25−9, 27−25} = 2. It follows from Theorem 23, and from (13) that 1
2H − induces a Hamiltonian 

tour for D3 of cost 256, while LB(D3) = 252, and UB(D3) = 259. The Hamiltonian cycle 1
2H −

 is 
depicted in Figure 8. 
 

Example 25 Let D4 the matrix D(45; 1, 2; 20, 9). It is easy to verify that g1 = 5, A
4D = {7}, and, 

thus, m = 2. Theorem 23 assures that a Hamiltonian tour for D4 of cost 54 exists, while 
UB(D4) = 53, as a consequence of (13).  
 

Let us give an overview on the results presented in this section. 
Let D be the matrix D(n; d1, d2; a1, a2). If g1 = 2, then opt(D) = LB(D). If g1 ≥ 3, let AD, and m be 
as in the hypothesis of Theorem 23. If AD is empty, Theorem 23 assures that opt(D) = UB(D). If 
AD is not empty, and m ≤ 0 holds, then Theorem 23 assures that opt(D) = LB(D). The converse 
also holds. Finally, if AD is not empty, and m > 0 holds, then there exists a Hamiltonian tour 
of cost LB(D) + 2m ⋅(d2 − d1). Example 25 shows that such Hamiltonian tour is not necessarily 
an optimal one. Anyway, Gerace, and Greco Greco (2008a) conjecture that 

opt(D) = min{UB(D), LB(D) + 2m ⋅(d2 − d1)}. 
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8. Conclusions 
In this chapter the attention has been focused on the Symmetric Circulant Traveling 
Salesman Problem (SCTSP), a subcase of the Traveling Salesman Problem explicitly 
introduced for the first time in 1992. The most remarkable results obtained in the last 16 
years are reported: In the general case, there are given an upper bound, a lower bound, and 
a polynomial time 2-approximation algorithm; In the so-called 2-striped case, there are 
given an algebraic characterization for those matrices having the optimal cost equal either to 
the upper bound, or to the lower bound, and a new Hamiltonian tour construction for the 
remaining matrices. 
At the moment the main research direction is that of generalizing to the s-striped case the 
results obtained in the 2-striped case. It seems the first necessary step in the direction of 
solving SCTSP. 
To sum up, the problem of finding a polynomial time solution for SCTSP seems harder, and 
more interesting than it was expected. In general, it is less easy than it was expected dealing 
with circulant graphs, and with their algebraic structure. As a matter of fact, also showing 
that Graph Isomorphism is polynomial time solvable in the circulant graph case has required a 
forty year research. 
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Fig. 8. The Hamiltonian cycle 1
2H − for D(243; 18, 1; 1, 2) 

Let D2 be the matrix D(28; 1, 2; 7, 3). Note that g 1 = gcd(28, 7) = 7, and that n/ g1 = 4. The equation 
3(7 − 2y)7 + 21 ≡28 0 is solved by any even integer. Thus, A

2D  = {0, 2}, and m = min{0 − 4, 4 − 2} = 

−4 ≤ 0. It follows from Theorem 23, and from (13) that opt(D2) = LB(D2) = 32. 
Let D3 be the matrix D(243; 18, 1; 1, 2). Note that g1 = gcd(243, 18) = 9, and that n/ g1 = 27. 25 is 
the unique integer solutions in [0, 26] of the equation (2y−9)18+9 ≡243 0. Thus, A

3D = {25}, and m = 

min{25−9, 27−25} = 2. It follows from Theorem 23, and from (13) that 1
2H − induces a Hamiltonian 

tour for D3 of cost 256, while LB(D3) = 252, and UB(D3) = 259. The Hamiltonian cycle 1
2H −

 is 
depicted in Figure 8. 
 

Example 25 Let D4 the matrix D(45; 1, 2; 20, 9). It is easy to verify that g1 = 5, A
4D = {7}, and, 

thus, m = 2. Theorem 23 assures that a Hamiltonian tour for D4 of cost 54 exists, while 
UB(D4) = 53, as a consequence of (13).  
 

Let us give an overview on the results presented in this section. 
Let D be the matrix D(n; d1, d2; a1, a2). If g1 = 2, then opt(D) = LB(D). If g1 ≥ 3, let AD, and m be 
as in the hypothesis of Theorem 23. If AD is empty, Theorem 23 assures that opt(D) = UB(D). If 
AD is not empty, and m ≤ 0 holds, then Theorem 23 assures that opt(D) = LB(D). The converse 
also holds. Finally, if AD is not empty, and m > 0 holds, then there exists a Hamiltonian tour 
of cost LB(D) + 2m ⋅(d2 − d1). Example 25 shows that such Hamiltonian tour is not necessarily 
an optimal one. Anyway, Gerace, and Greco Greco (2008a) conjecture that 

opt(D) = min{UB(D), LB(D) + 2m ⋅(d2 − d1)}. 
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8. Conclusions 
In this chapter the attention has been focused on the Symmetric Circulant Traveling 
Salesman Problem (SCTSP), a subcase of the Traveling Salesman Problem explicitly 
introduced for the first time in 1992. The most remarkable results obtained in the last 16 
years are reported: In the general case, there are given an upper bound, a lower bound, and 
a polynomial time 2-approximation algorithm; In the so-called 2-striped case, there are 
given an algebraic characterization for those matrices having the optimal cost equal either to 
the upper bound, or to the lower bound, and a new Hamiltonian tour construction for the 
remaining matrices. 
At the moment the main research direction is that of generalizing to the s-striped case the 
results obtained in the 2-striped case. It seems the first necessary step in the direction of 
solving SCTSP. 
To sum up, the problem of finding a polynomial time solution for SCTSP seems harder, and 
more interesting than it was expected. In general, it is less easy than it was expected dealing 
with circulant graphs, and with their algebraic structure. As a matter of fact, also showing 
that Graph Isomorphism is polynomial time solvable in the circulant graph case has required a 
forty year research. 
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