
Traveling Salesman Problem
Edited by Federico Greco

Edited by Federico Greco

The idea behind TSP was conceived by Austrian mathematician Karl Menger in mid
1930s who invited the research community to consider a problem from the everyday
life from a mathematical point of view. A traveling salesman has to visit exactly once

each one of a list of m cities and then return to the home city. He knows the cost of
traveling from any city i to any other city j. Thus, which is the tour of least possible

cost the salesman can take? In this book the problem of finding algorithmic technique
leading to good/optimal solutions for TSP (or for some other strictly related problems)

is considered. TSP is a very attractive problem for the research community because
it arises as a natural subproblem in many applications concerning the every day life.

Indeed, each application, in which an optimal ordering of a number of items has to be
chosen in a way that the total cost of a solution is determined by adding up the costs

arising from two successively items, can be modelled as a TSP instance. Thus, studying
TSP can never be considered as an abstract research with no real importance.

Photo by SergeKa / iStock

ISBN 978-953-7619-10-7

Traveling Salesm
an Problem

Travelling Salesman Problem

Edited by

Federico Greco

I-Tech

Travelling Salesman Problem

Edited by

Federico Greco

I-Tech

Traveling Salesman Problem
http://dx.doi.org/10.5772/66
Edited by Federico Greco

© The Editor(s) and the Author(s) 2008
The moral rights of the and the author(s) have been asserted.
All rights to the book as a whole are reserved by INTECH. The book as a whole (compilation) cannot be reproduced,
distributed or used for commercial or non-commercial purposes without INTECH’s written permission.
Enquiries concerning the use of the book should be directed to INTECH rights and permissions department
(permissions@intechopen.com).
Violations are liable to prosecution under the governing Copyright Law.

Individual chapters of this publication are distributed under the terms of the Creative Commons Attribution 3.0
Unported License which permits commercial use, distribution and reproduction of the individual chapters, provided
the original author(s) and source publication are appropriately acknowledged. If so indicated, certain images may not
be included under the Creative Commons license. In such cases users will need to obtain permission from the license
holder to reproduce the material. More details and guidelines concerning content reuse and adaptation can be
foundat http://www.intechopen.com/copyright-policy.html.

Notice

Statements and opinions expressed in the chapters are these of the individual contributors and not necessarily those
of the editors or publisher. No responsibility is accepted for the accuracy of information contained in the published
chapters. The publisher assumes no responsibility for any damage or injury to persons or property arising out of the
use of any materials, instructions, methods or ideas contained in the book.

First published in Croatia, 2008 by INTECH d.o.o.
eBook (PDF) Published by IN TECH d.o.o.
Place and year of publication of eBook (PDF): Rijeka, 2019.
IntechOpen is the global imprint of IN TECH d.o.o.
Printed in Croatia

Legal deposit, Croatia: National and University Library in Zagreb

Additional hard and PDF copies can be obtained from orders@intechopen.com

Traveling Salesman Problem
Edited by Federico Greco

p. cm.

ISBN 978-953-7619-10-7

eBook (PDF) ISBN 978-953-51-5750-2

Selection of our books indexed in the Book Citation Index
in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.
For more information visit www.intechopen.com

4,200+
Open access books available

151
Countries delivered to

12.2%
Contributors from top 500 universities

Our authors are among the

Top 1%
most cited scientists

116,000+
International authors and editors

125M+
Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

Preface

In the middle 1930s computer science was yet a not well defined academic discipline.
Actually, fundamental concepts, such as ‘algorithm’, or ‘computational problem’, has been
formalized just some year before.

In these years the Austrian mathematician Karl Menger invited the research community
to consider from a mathematical point of view the following problem taken from the every
day life. A traveling salesman has to visit exactly once each one of a list of m cities and then
return to the home city. He knows the cost of traveling from any city i to any other city j.
Thus, which is the tour of least possible cost the salesman can take?

The Traveling Salesman Problem (for short, TSP) was born.
More formally, a TSP instance is given by a complete graph G on a node set V=

{1,2,…m}, for some integer m, and by a cost function assigning a cost cij to the arc (i,j) , for
any i, j in V.

TSP is a representative of a large class of problems known as combinatorial
optimization problems. Among them, TSP is one of the most important, since it is very easy
to describe, but very difficult to solve.

Actually, TSP belongs to the NP-hard class. Hence, an efficient algorithm for TSP (that
is, an algorithm computing, for any TSP instance with m nodes, the tour of least possible
cost in polynomial time with respect to m) probably does not exist. More precisely, such an
algorithm exists if and only if the two computational classes P and NP coincide, a very
improbable hypothesis, according to the last years research developments.

From a practical point of view, it means that it is quite impossible finding an exact
algorithm for any TSP instance with m nodes, for large m, that has a behaviour considerably
better than the algorithm which computes any of the (m-1)! possible distinct tours, and then
returns the least costly one.

If we are looking for applications, a different approach can be used. Given a TSP
instance with m nodes, any tour passing once through any city is a feasible solution, and its
cost leads to an upper bound to the least possible cost. Algorithms that construct in
polynomial time with respect to m feasible solutions, and thus upper bounds for the
optimum value, are called heuristics. In general, these algorithms produce solutions but
without any quality guarantee as to how far is their cost from the least possible one. If it can
be shown that the cost of the returned solution is always less than k times the least possible
cost, for some real number k>1, the heuristic is called a k-approximation algorithm.

Preface

In the middle 1930s computer science was yet a not well defined academic discipline.
Actually, fundamental concepts, such as ‘algorithm’, or ‘computational problem’, has been
formalized just some year before.

In these years the Austrian mathematician Karl Menger invited the research community
to consider from a mathematical point of view the following problem taken from the every
day life. A traveling salesman has to visit exactly once each one of a list of m cities and then
return to the home city. He knows the cost of traveling from any city i to any other city j.
Thus, which is the tour of least possible cost the salesman can take?

The Traveling Salesman Problem (for short, TSP) was born.
More formally, a TSP instance is given by a complete graph G on a node set V=

{1,2,…m}, for some integer m, and by a cost function assigning a cost cij to the arc (i,j) , for
any i, j in V.

TSP is a representative of a large class of problems known as combinatorial
optimization problems. Among them, TSP is one of the most important, since it is very easy
to describe, but very difficult to solve.

Actually, TSP belongs to the NP-hard class. Hence, an efficient algorithm for TSP (that
is, an algorithm computing, for any TSP instance with m nodes, the tour of least possible
cost in polynomial time with respect to m) probably does not exist. More precisely, such an
algorithm exists if and only if the two computational classes P and NP coincide, a very
improbable hypothesis, according to the last years research developments.

From a practical point of view, it means that it is quite impossible finding an exact
algorithm for any TSP instance with m nodes, for large m, that has a behaviour considerably
better than the algorithm which computes any of the (m-1)! possible distinct tours, and then
returns the least costly one.

If we are looking for applications, a different approach can be used. Given a TSP
instance with m nodes, any tour passing once through any city is a feasible solution, and its
cost leads to an upper bound to the least possible cost. Algorithms that construct in
polynomial time with respect to m feasible solutions, and thus upper bounds for the
optimum value, are called heuristics. In general, these algorithms produce solutions but
without any quality guarantee as to how far is their cost from the least possible one. If it can
be shown that the cost of the returned solution is always less than k times the least possible
cost, for some real number k>1, the heuristic is called a k-approximation algorithm.

VIII

Unfortunately, k-approximation algorithm for TSP are not known, for any k>1.
Moreover, in a paper appeared in 2000, Papadimitriou, and Vempala have shown that a k-
approximation algorithm for TSP for any 97/96>k>1 exists if and only if P=NP. Hence, also
finding a good heuristic for TSP seems very hard.

Better results are known for NP-Hard subproblem of TSP. For example, a 3/2-
approximation algorithm is known for Metric TSP (in a metric TSP instance the cost function
verifies the triangular inequality).

Anyway, the extreme intractability of TSP has invited many researchers to test new
heuristic technique on this problem. The harder is the problem you test on, the more
significant are the result you obtain.

A large part of this book is devoted to some bio-inspired heuristic techniques that have
been developed in the last years. Such techniques take inspiration from the nature. Actually,
the animals that usually form great groups behave by instinct trying to satisfy the group
necessity in the best possible way. Similarly, the natural systems develop in order to
(locally) minimize their potential by finding a stationary point.

In chapter 1 [Population-Based Optimization Algorithms for Solving the Travelling
Salesman Problem] the following bio-inspired algorithmic techniques are considered:
Genetic Algorithms, Ant Colon Optimization, Particle Swarm Optimization, Intelligent
Water Drops, Artificial Immune Systems, Bee Colony Optimization, and Electromagnetism-
like Mechanisms. Every section briefly introduces one of these techniques and an algorithm
applying it for solving TSP. In the last section the obtained experimental results are
compared.

Chapter 2 [Bio-inspired Algorithms for TSP and Generalized TSP] is divided into two
parts. In the first part, a new algorithm using the Ant Colon Optimization technique is
considered. The obtained experimental results are then compared with other two algorithms
using the same technique. In the second part, the combinatorial optimization problem called
Generalized TSP (GTSP) is introduced, and a Genetic Algorithm for solving is proposed. We
recall that a GSTP instance provides a complete graph G = (V,E), and a cost function (as in a
TSP instance), together with a partition of the node set V into p subsets. A feasible solution
for GTSP is a tour passing at least once from each one of the p subsets of V. Clearly, GTSP is
a generalization of TSP.

In Chapter 3 [Approaches to the Travelling Salesman Problem Using Evolutionary
Computing Algorithms] an algorithm for TSP using the Genetic Local Search is considered.
It is a hybrid technique, as it combines a genetic algorithm approach by a local search
technique: As in a genetic algorithm the fitness of a population is the target, but a local
search optimization phase is applied whenever a new individual is created during the
evolutionary process. At the end of the chapter some experimental results are discussed.

Chapter 4 [Particle Swarm Optimization Algorithm for the Traveling Salesman
Problem] and Chapter 5 [A Modified Discrete Particle Swarm Optimization Algorithm for
the Generalized Traveling Salesman Problem] deals with the Particle Swarm Optimization
(PSO) technique. In a PSO algorithm the current solution is seen as a particle whose
movement in the solution space is controlled by a certain velocity operator. As the solution
space of a TSP instance is discrete, it is more correct referring to discrete PSO approach for
TSP.

 VII

In Chapter 4 the authors propose some velocity operators for a discrete PSO algorithm
for TSP, and compare by computational experiments the results of the proposed approach
with other known PSO heuristics for TSP.

In Chapter 5 a discrete PSO approach is considered for Generalized TSP. Afterwards,
the proposed algorithm is hybridized with a local search improvement heuristic. In the last
section some the computational results compare the proposed algorithm, and its
improvement with other known discrete PSO algorithm for GTSP.

In Chapter 6 [Solving TSP via Neural Networks] and in Chapter 7 [A Recurrent Neural
Network to Traveling Salesman Problem] Neural Network techniques for solving TSP are
considered.

In particular, Chapter 6 is devoted to the recent progress in the transiently chaotic
neural network (TCNN), a discrete-time neural network model, are presented. An algorithm
for TSP using such technique is then introduced, and the obtained results are compared
with other neural networks algorithms.

In Chapter 7 a technique based on the Wang’s Recurrent Neural Networks with the
“Winner Takes All” principle is used to solve the Assignment Problem (AP). By lightly
modifying such technique, an algorithm for TSP is derived. Finally, some TSP instances
taken from the TSP library are chosen for comparing the proposed algorithm with some
other algorithms using different techniques.

Chapter 8 [Solving the Probabilistic Travelling Salesman Problem Based on Genetic
Algorithm with Queen Selection Scheme] treats an extension of TSP, the Probabilistic TSP
(PTSP). A PTSP instance provides a complete graph G=(V,E), and a cost function (as in a TSP
instance), together with a real number 0 ≤ Pi ≤ 1 for each node i in V. Pi represents the
probability of the node i to be visited by a tour. Clearly, the goal of PTSP is to find a tour of
minimal expected cost. In this chapter an optimization procedure based on a Genetic
Algorithm framework is presented.

In Chapter 9 [Niche Pseudo-Parallel Genetic Algorithms for Path Optimization of
Autonomous Mobile Robot - A Specific Application of TSP] an application of TSP to the
Path Optimization of Autonomous Mobile Robot is considered. An autonomous mobile
robot has to find a non-collision path from initial position to objective position in an obstacle
space trying to minimize the path cost. This problem can be modelled as a TSP instance. The
authors consider a genetic algorithm, called Niche Pseudo-Parallel Genetic Algorithm, for
solving TSP.

The last Chapter [The Symmetric Circulant Traveling Salesman Problem] gives an
example of a theoretical research on TSP. Actually, it is interesting to investigate if TSP
becomes easier or remains hard (from a computational complexity point of view) when it is
restricted to a particular class of graphs. In this chapter the case in which the graph in the
instance is symmetric, and circulant is deeply analyzed, and an overview on the most recent
results is given.

By summing up, in this book the problem of finding algorithmic technique leading to
good/optimal solutions for TSP (or for some other strictly related problems) is considered.
An important thing has to be outlined here. As already said, TSP is a very attractive problem
for the research community. Anyway, it arises as a natural subproblem in many applications
concerning the every day life. Indeed, each application, in which an optimal ordering of a

VI

Unfortunately, k-approximation algorithm for TSP are not known, for any k>1.
Moreover, in a paper appeared in 2000, Papadimitriou, and Vempala have shown that a k-
approximation algorithm for TSP for any 97/96>k>1 exists if and only if P=NP. Hence, also
finding a good heuristic for TSP seems very hard.

Better results are known for NP-Hard subproblem of TSP. For example, a 3/2-
approximation algorithm is known for Metric TSP (in a metric TSP instance the cost function
verifies the triangular inequality).

Anyway, the extreme intractability of TSP has invited many researchers to test new
heuristic technique on this problem. The harder is the problem you test on, the more
significant are the result you obtain.

A large part of this book is devoted to some bio-inspired heuristic techniques that have
been developed in the last years. Such techniques take inspiration from the nature. Actually,
the animals that usually form great groups behave by instinct trying to satisfy the group
necessity in the best possible way. Similarly, the natural systems develop in order to
(locally) minimize their potential by finding a stationary point.

In chapter 1 [Population-Based Optimization Algorithms for Solving the Travelling
Salesman Problem] the following bio-inspired algorithmic techniques are considered:
Genetic Algorithms, Ant Colon Optimization, Particle Swarm Optimization, Intelligent
Water Drops, Artificial Immune Systems, Bee Colony Optimization, and Electromagnetism-
like Mechanisms. Every section briefly introduces one of these techniques and an algorithm
applying it for solving TSP. In the last section the obtained experimental results are
compared.

Chapter 2 [Bio-inspired Algorithms for TSP and Generalized TSP] is divided into two
parts. In the first part, a new algorithm using the Ant Colon Optimization technique is
considered. The obtained experimental results are then compared with other two algorithms
using the same technique. In the second part, the combinatorial optimization problem called
Generalized TSP (GTSP) is introduced, and a Genetic Algorithm for solving is proposed. We
recall that a GSTP instance provides a complete graph G = (V,E), and a cost function (as in a
TSP instance), together with a partition of the node set V into p subsets. A feasible solution
for GTSP is a tour passing at least once from each one of the p subsets of V. Clearly, GTSP is
a generalization of TSP.

In Chapter 3 [Approaches to the Travelling Salesman Problem Using Evolutionary
Computing Algorithms] an algorithm for TSP using the Genetic Local Search is considered.
It is a hybrid technique, as it combines a genetic algorithm approach by a local search
technique: As in a genetic algorithm the fitness of a population is the target, but a local
search optimization phase is applied whenever a new individual is created during the
evolutionary process. At the end of the chapter some experimental results are discussed.

Chapter 4 [Particle Swarm Optimization Algorithm for the Traveling Salesman
Problem] and Chapter 5 [A Modified Discrete Particle Swarm Optimization Algorithm for
the Generalized Traveling Salesman Problem] deals with the Particle Swarm Optimization
(PSO) technique. In a PSO algorithm the current solution is seen as a particle whose
movement in the solution space is controlled by a certain velocity operator. As the solution
space of a TSP instance is discrete, it is more correct referring to discrete PSO approach for
TSP.

 IX

In Chapter 4 the authors propose some velocity operators for a discrete PSO algorithm
for TSP, and compare by computational experiments the results of the proposed approach
with other known PSO heuristics for TSP.

In Chapter 5 a discrete PSO approach is considered for Generalized TSP. Afterwards,
the proposed algorithm is hybridized with a local search improvement heuristic. In the last
section some the computational results compare the proposed algorithm, and its
improvement with other known discrete PSO algorithm for GTSP.

In Chapter 6 [Solving TSP via Neural Networks] and in Chapter 7 [A Recurrent Neural
Network to Traveling Salesman Problem] Neural Network techniques for solving TSP are
considered.

In particular, Chapter 6 is devoted to the recent progress in the transiently chaotic
neural network (TCNN), a discrete-time neural network model, are presented. An algorithm
for TSP using such technique is then introduced, and the obtained results are compared
with other neural networks algorithms.

In Chapter 7 a technique based on the Wang’s Recurrent Neural Networks with the
“Winner Takes All” principle is used to solve the Assignment Problem (AP). By lightly
modifying such technique, an algorithm for TSP is derived. Finally, some TSP instances
taken from the TSP library are chosen for comparing the proposed algorithm with some
other algorithms using different techniques.

Chapter 8 [Solving the Probabilistic Travelling Salesman Problem Based on Genetic
Algorithm with Queen Selection Scheme] treats an extension of TSP, the Probabilistic TSP
(PTSP). A PTSP instance provides a complete graph G=(V,E), and a cost function (as in a TSP
instance), together with a real number 0 ≤ Pi ≤ 1 for each node i in V. Pi represents the
probability of the node i to be visited by a tour. Clearly, the goal of PTSP is to find a tour of
minimal expected cost. In this chapter an optimization procedure based on a Genetic
Algorithm framework is presented.

In Chapter 9 [Niche Pseudo-Parallel Genetic Algorithms for Path Optimization of
Autonomous Mobile Robot - A Specific Application of TSP] an application of TSP to the
Path Optimization of Autonomous Mobile Robot is considered. An autonomous mobile
robot has to find a non-collision path from initial position to objective position in an obstacle
space trying to minimize the path cost. This problem can be modelled as a TSP instance. The
authors consider a genetic algorithm, called Niche Pseudo-Parallel Genetic Algorithm, for
solving TSP.

The last Chapter [The Symmetric Circulant Traveling Salesman Problem] gives an
example of a theoretical research on TSP. Actually, it is interesting to investigate if TSP
becomes easier or remains hard (from a computational complexity point of view) when it is
restricted to a particular class of graphs. In this chapter the case in which the graph in the
instance is symmetric, and circulant is deeply analyzed, and an overview on the most recent
results is given.

By summing up, in this book the problem of finding algorithmic technique leading to
good/optimal solutions for TSP (or for some other strictly related problems) is considered.
An important thing has to be outlined here. As already said, TSP is a very attractive problem
for the research community. Anyway, it arises as a natural subproblem in many applications
concerning the every day life. Indeed, each application, in which an optimal ordering of a

X

number of items has to be chosen in a way that the total cost of a solution is determined by
adding up the costs arising from two successively items, can be modelled as a TSP instance.
Thus, studying TSP can be never considered as an abstract research with no real importance.

It is time to start with the book.
Enjoy the reading!

September 2008

Editor

Federico Greco
Universita degli studi di Perugia,

Italy

Contents

 Preface V

1. Population-Based Optimization Algorithms for Solving the Travelling
Salesman Problem

001

Mohammad Reza Bonyadi, Mostafa Rahimi Azghadi and Hamed Shah-Hosseini

2. Bio-inspired Algorithms for TSP and Generalized TSP 035
Zhifeng Hao, Han Huang and Ruichu Cai

3. Approaches to the Travelling Salesman Problem Using Evolutionary
Computing Algorithms

063

Jyh-Da Wei

4. Particle Swarm Optimization Algorithm for the Traveling Salesman
Problem

075

Elizabeth F. G. Goldbarg, Marco C. Goldbarg and Givanaldo R. de Souza

5. A Modified Discrete Particle Swarm Optimization Algorithm for the
Generalized Traveling Salesman Problem

097

Mehmet Fatih Tasgetiren, Yun-Chia Liang, Quan-Ke Pan and P. N. Suganthan

6. Solving TSP by Transiently Chaotic Neural Networks 117
Shyan-Shiou Chen and Chih-Wen Shih

7. A Recurrent Neural Network to Traveling Salesman Problem 135
Paulo Henrique Siqueira, Sérgio Scheer, and Maria Teresinha Arns Steiner

8. Solving the Probabilistic Travelling Salesman Problem Based on
Genetic Algorithm with Queen Selection Scheme

157

Yu-Hsin Liu

VIII

number of items has to be chosen in a way that the total cost of a solution is determined by
adding up the costs arising from two successively items, can be modelled as a TSP instance.
Thus, studying TSP can be never considered as an abstract research with no real importance.

It is time to start with the book.
Enjoy the reading!

September 2008

Editor

Federico Greco
Universita degli studi di Perugia,

Italy

Contents

 Preface VII

1. Population-Based Optimization Algorithms for Solving the Travelling
Salesman Problem

001

Mohammad Reza Bonyadi, Mostafa Rahimi Azghadi and Hamed Shah-Hosseini

2. Bio-inspired Algorithms for TSP and Generalized TSP 035
Zhifeng Hao, Han Huang and Ruichu Cai

3. Approaches to the Travelling Salesman Problem Using Evolutionary
Computing Algorithms

063

Jyh-Da Wei

4. Particle Swarm Optimization Algorithm for the Traveling Salesman
Problem

075

Elizabeth F. G. Goldbarg, Marco C. Goldbarg and Givanaldo R. de Souza

5. A Modified Discrete Particle Swarm Optimization Algorithm for the
Generalized Traveling Salesman Problem

097

Mehmet Fatih Tasgetiren, Yun-Chia Liang, Quan-Ke Pan and P. N. Suganthan

6. Solving TSP by Transiently Chaotic Neural Networks 117
Shyan-Shiou Chen and Chih-Wen Shih

7. A Recurrent Neural Network to Traveling Salesman Problem 135
Paulo Henrique Siqueira, Sérgio Scheer, and Maria Teresinha Arns Steiner

8. Solving the Probabilistic Travelling Salesman Problem Based on
Genetic Algorithm with Queen Selection Scheme

157

Yu-Hsin Liu

XII

9. Niche Pseudo-Parallel Genetic Algorithms for Path Optimization of
Autonomous Mobile Robot - A Specific Application of TSP

173

Zhihua Shen and Yingkai Zhao

10. The Symmetric Circulant Traveling Salesman Problem 181
Federico Greco and Ivan Gerace

1

Population-Based Optimization Algorithms for
Solving the Travelling Salesman Problem

Mohammad Reza Bonyadi, Mostafa Rahimi Azghadi
 and Hamed Shah-Hosseini

Department of Electrical and Computer Engineering,
Shahid Beheshti University,

Tehran, Iran

1. Introduction
The Travelling Salesman Problem or the TSP is a representative of a large class of problems
known as combinatorial optimization problems. In the ordinary form of the TSP, a map of
cities is given to the salesman and he has to visit all the cities only once to complete a tour
such that the length of the tour is the shortest among all possible tours for this map. The
data consist of weights assigned to the edges of a finite complete graph, and the objective is
to find a Hamiltonian cycle, a cycle passing through all the vertices, of the graph while
having the minimum total weight. In the TSP context, Hamiltonian cycles are commonly
called tours. For example, given the map shown in figure l, the lowest cost route would be
the one written (A, B, C, E, D, A), with the cost 31.

Fig. 1. The tour with A=>B =>C =>E =>D => A is the optimal tour.

In general, the TSP includes two different kinds, the Symmetric TSP and the Asymmetric
TSP. In the symmetric form known as STSP there is only one way between two adjacent
cities, i.e., the distance between cities A and B is equal to the distance between cities B and A
(Fig. 1). But in the ATSP (Asymmetric TSP) there is not such symmetry and it is possible to
have two different costs or distances between two cities. Hence, the number of tours in the
ATSP and STSP on n vertices (cities) is (n-1)! and (n-1)!/2, respectively. Please note that the
graphs which represent these TSPs are complete graphs. In this chapter we mostly consider
the STSP. It is known that the TSP is an NP-hard problem (Garey & Johnson, 1979) and is
often used for testing the optimization algorithms. Finding Hamiltonian cycles or traveling

X

9. Niche Pseudo-Parallel Genetic Algorithms for Path Optimization of
Autonomous Mobile Robot - A Specific Application of TSP

173

Zhihua Shen and Yingkai Zhao

10. The Symmetric Circulant Traveling Salesman Problem 181
Federico Greco and Ivan Gerace

1

Population-Based Optimization Algorithms for
Solving the Travelling Salesman Problem

Mohammad Reza Bonyadi, Mostafa Rahimi Azghadi
 and Hamed Shah-Hosseini

Department of Electrical and Computer Engineering,
Shahid Beheshti University,

Tehran, Iran

1. Introduction
The Travelling Salesman Problem or the TSP is a representative of a large class of problems
known as combinatorial optimization problems. In the ordinary form of the TSP, a map of
cities is given to the salesman and he has to visit all the cities only once to complete a tour
such that the length of the tour is the shortest among all possible tours for this map. The
data consist of weights assigned to the edges of a finite complete graph, and the objective is
to find a Hamiltonian cycle, a cycle passing through all the vertices, of the graph while
having the minimum total weight. In the TSP context, Hamiltonian cycles are commonly
called tours. For example, given the map shown in figure l, the lowest cost route would be
the one written (A, B, C, E, D, A), with the cost 31.

Fig. 1. The tour with A=>B =>C =>E =>D => A is the optimal tour.

In general, the TSP includes two different kinds, the Symmetric TSP and the Asymmetric
TSP. In the symmetric form known as STSP there is only one way between two adjacent
cities, i.e., the distance between cities A and B is equal to the distance between cities B and A
(Fig. 1). But in the ATSP (Asymmetric TSP) there is not such symmetry and it is possible to
have two different costs or distances between two cities. Hence, the number of tours in the
ATSP and STSP on n vertices (cities) is (n-1)! and (n-1)!/2, respectively. Please note that the
graphs which represent these TSPs are complete graphs. In this chapter we mostly consider
the STSP. It is known that the TSP is an NP-hard problem (Garey & Johnson, 1979) and is
often used for testing the optimization algorithms. Finding Hamiltonian cycles or traveling

 Travelling Salesman Problem

2

salesman tours is possible using a simple dynamic program using time and space O(2n nO(1)),
that finds Hamiltonian paths with specified endpoints for each induced subgraph of the
input graph (Eppstein, 2007). The TSP has many applications in different engineering and
optimization problems. The TSP is a useful problem in routing problems e.g. in a
transportation system.
There are different approaches for solving the TSP. Solving the TSP was an interesting
problem during recent decades. Almost every new approach for solving engineering and
optimization problems has been tested on the TSP as a general test bench. First steps in
solving the TSP were classical methods. These methods consist of heuristic and exact
methods. Heuristic methods like cutting planes and branch and bound (Padherg & Rinaldi,
1987), can only optimally solve small problems whereas the heuristic methods, such as 2-opt
(Lin & Kernighan, 1973), 3-opt, Markov chain (Martin et al., 1991), simulated annealing
(Kirkpatrick et al., 1983) and tabu search are good for large problems. Besides, some
algorithms based on greedy principles such as nearest neighbour, and spanning tree can be
introduced as efficient solving methods. Nevertheless, classical methods for solving the TSP
usually result in exponential computational complexities. Hence, new methods are required
to overcome this shortcoming. These methods include different kinds of optimization
techniques, nature based optimization algorithms, population based optimization
algorithms and etc. In this chapter we discuss some of these techniques which are
algorithms based on population.
Population based optimization algorithms are the techniques which are in the set of the
nature based optimization algorithms. The creatures and natural systems which are working
and developing in nature are one of the interesting and valuable sources of inspiration for
designing and inventing new systems and algorithms in different fields of science and
technology. Evolutionary Computation (Eiben & Smith, 2003), Neural Networks (Haykin,
99), Time Adaptive Self-Organizing Maps (Shah-Hosseini, 2006), Ant Systems (Dorigo &
Stutzle, 2004), Particle Swarm Optimization (Eberhart & Kennedy, 1995), Simulated
Annealing (Kirkpatrik, 1984), Bee Colony Optimization (Teodorovic et al., 2006) and DNA
Computing (Adleman, 1994) are among the problem solving techniques inspired from
observing nature.
In this chapter population based optimization algorithms have been introduced. Some of
these algorithms were mentioned above. Other algorithms are Intelligent Water Drops
(IWD) algorithm (Shah-Hosseini, 2007), Artificial Immune Systems (AIS) (Dasgupta, 1999)
and Electromagnetism-like Mechanisms (EM) (Birbil & Fang, 2003). In this chapter, every
section briefly introduces one of these population based optimization algorithms and
applies them for solving the TSP. Also, we try to note the important points of each algorithm
and every point we contribute to these algorithms has been stated. Section nine shows
experimental results based on the algorithms introduced in previous sections which are
implemented to solve different problems of the TSP using well-known datasets.

2. Evolutionary algorithms
2.1 Introduction
Evolutionary Algorithms (EAs) imitates the process of biological evolution in nature. These
are search methods which take their inspiration from natural selection and survival of the
fittest as exist in the biological world. EA conducts a search using a population of solutions.
Each iteration of an EA involves a competitive selection among all solutions in the

Population-Based Optimization Algorithms for Solving the Travelling Salesman Problem

3

population which results in survival of the fittest and deletion of the poor solutions from the
population. By swapping parts of a solution with another one, recombination is performed
and forms the new solution that it may be better than the previous ones. Also, a solution can
be mutated by manipulating a part of it. Recombination and mutation are used to evolve the
population towards regions of the space which good solutions may reside.
Four major evolutionary algorithm paradigms have been introduced during the last 50
years: genetic algorithm is a computational method, mainly proposed by Holland (Holland,
1975). Evolutionary strategies developed by Rechenberg (Rechenberg, 1965) and Schwefel
(Schwefel, 1981). Evolutionary programming introduced by Fogel (Fogel et al., 1966), and
finally we can mention genetic programming which proposed by Koza (Koza, 1992). Here
we introduce the GA (Genetic Algorithm) for solving the TSP. At the first, we prepare a brief
background on the GA.

2.2 Genetic algorithms
Genetic Algorithms focus on optimizing general combinatorial problems. GAs have long
been studied as problem solving tools for many search and optimization problems,
specifically those that are inherent in NP-Complete problems. Various candidate solutions
are considered during the search procedure in the system, and the population evolves until
a candidate solution satisfies the predefined criteria. In most GAs, a candidate solution,
called an individual, is represented by a binary string (Goldberg, 1989) i.e. a string of 0 or 1
elements. Each solution (individual) is represented as a sequence (chromosome) of elements
(genes) and is assigned a fitness value based on the value given by an evaluation function.
The fitness value measures how close the individual is to the optimum solution. A set of
individuals constitutes a population that evolves from one generation to the next through
the creation of new individuals and deletion of some old ones. The process starts with an
initial population created in some way, e.g. through a random process. Evolution can take
two forms:
Crossover:
Two selected chromosomes can be combined by a crossover operator, the result of which
will replace the lowest fitness chromosome in the population. Selection of each chromosome
is performed by an algorithm to ensure that the selection probability is proportional to the
fitness of the chromosome. A new chromosome has the chance to be better than the replaced
one. The process is oriented towards the sub-regions of the search space, where an optimal
solution is supposed to exist (Goldberg, 1989).
Mutation:
In mutation process, a gene from a selected chromosome is randomly changed. This
provides additional chances of entering unexplored sub-regions. Finally, the evolution is
stopped when either the goal is reached or a maximum CPU time has been spent (Goldberg,
1989).
In the following the GA operation pseudo code has been written:
1. Start
2. Population initialization
3. Repeat until (satisfying termination criteria)

• Selection
• Cross over
• Mutation

 Travelling Salesman Problem

2

salesman tours is possible using a simple dynamic program using time and space O(2n nO(1)),
that finds Hamiltonian paths with specified endpoints for each induced subgraph of the
input graph (Eppstein, 2007). The TSP has many applications in different engineering and
optimization problems. The TSP is a useful problem in routing problems e.g. in a
transportation system.
There are different approaches for solving the TSP. Solving the TSP was an interesting
problem during recent decades. Almost every new approach for solving engineering and
optimization problems has been tested on the TSP as a general test bench. First steps in
solving the TSP were classical methods. These methods consist of heuristic and exact
methods. Heuristic methods like cutting planes and branch and bound (Padherg & Rinaldi,
1987), can only optimally solve small problems whereas the heuristic methods, such as 2-opt
(Lin & Kernighan, 1973), 3-opt, Markov chain (Martin et al., 1991), simulated annealing
(Kirkpatrick et al., 1983) and tabu search are good for large problems. Besides, some
algorithms based on greedy principles such as nearest neighbour, and spanning tree can be
introduced as efficient solving methods. Nevertheless, classical methods for solving the TSP
usually result in exponential computational complexities. Hence, new methods are required
to overcome this shortcoming. These methods include different kinds of optimization
techniques, nature based optimization algorithms, population based optimization
algorithms and etc. In this chapter we discuss some of these techniques which are
algorithms based on population.
Population based optimization algorithms are the techniques which are in the set of the
nature based optimization algorithms. The creatures and natural systems which are working
and developing in nature are one of the interesting and valuable sources of inspiration for
designing and inventing new systems and algorithms in different fields of science and
technology. Evolutionary Computation (Eiben & Smith, 2003), Neural Networks (Haykin,
99), Time Adaptive Self-Organizing Maps (Shah-Hosseini, 2006), Ant Systems (Dorigo &
Stutzle, 2004), Particle Swarm Optimization (Eberhart & Kennedy, 1995), Simulated
Annealing (Kirkpatrik, 1984), Bee Colony Optimization (Teodorovic et al., 2006) and DNA
Computing (Adleman, 1994) are among the problem solving techniques inspired from
observing nature.
In this chapter population based optimization algorithms have been introduced. Some of
these algorithms were mentioned above. Other algorithms are Intelligent Water Drops
(IWD) algorithm (Shah-Hosseini, 2007), Artificial Immune Systems (AIS) (Dasgupta, 1999)
and Electromagnetism-like Mechanisms (EM) (Birbil & Fang, 2003). In this chapter, every
section briefly introduces one of these population based optimization algorithms and
applies them for solving the TSP. Also, we try to note the important points of each algorithm
and every point we contribute to these algorithms has been stated. Section nine shows
experimental results based on the algorithms introduced in previous sections which are
implemented to solve different problems of the TSP using well-known datasets.

2. Evolutionary algorithms
2.1 Introduction
Evolutionary Algorithms (EAs) imitates the process of biological evolution in nature. These
are search methods which take their inspiration from natural selection and survival of the
fittest as exist in the biological world. EA conducts a search using a population of solutions.
Each iteration of an EA involves a competitive selection among all solutions in the

Population-Based Optimization Algorithms for Solving the Travelling Salesman Problem

3

population which results in survival of the fittest and deletion of the poor solutions from the
population. By swapping parts of a solution with another one, recombination is performed
and forms the new solution that it may be better than the previous ones. Also, a solution can
be mutated by manipulating a part of it. Recombination and mutation are used to evolve the
population towards regions of the space which good solutions may reside.
Four major evolutionary algorithm paradigms have been introduced during the last 50
years: genetic algorithm is a computational method, mainly proposed by Holland (Holland,
1975). Evolutionary strategies developed by Rechenberg (Rechenberg, 1965) and Schwefel
(Schwefel, 1981). Evolutionary programming introduced by Fogel (Fogel et al., 1966), and
finally we can mention genetic programming which proposed by Koza (Koza, 1992). Here
we introduce the GA (Genetic Algorithm) for solving the TSP. At the first, we prepare a brief
background on the GA.

2.2 Genetic algorithms
Genetic Algorithms focus on optimizing general combinatorial problems. GAs have long
been studied as problem solving tools for many search and optimization problems,
specifically those that are inherent in NP-Complete problems. Various candidate solutions
are considered during the search procedure in the system, and the population evolves until
a candidate solution satisfies the predefined criteria. In most GAs, a candidate solution,
called an individual, is represented by a binary string (Goldberg, 1989) i.e. a string of 0 or 1
elements. Each solution (individual) is represented as a sequence (chromosome) of elements
(genes) and is assigned a fitness value based on the value given by an evaluation function.
The fitness value measures how close the individual is to the optimum solution. A set of
individuals constitutes a population that evolves from one generation to the next through
the creation of new individuals and deletion of some old ones. The process starts with an
initial population created in some way, e.g. through a random process. Evolution can take
two forms:
Crossover:
Two selected chromosomes can be combined by a crossover operator, the result of which
will replace the lowest fitness chromosome in the population. Selection of each chromosome
is performed by an algorithm to ensure that the selection probability is proportional to the
fitness of the chromosome. A new chromosome has the chance to be better than the replaced
one. The process is oriented towards the sub-regions of the search space, where an optimal
solution is supposed to exist (Goldberg, 1989).
Mutation:
In mutation process, a gene from a selected chromosome is randomly changed. This
provides additional chances of entering unexplored sub-regions. Finally, the evolution is
stopped when either the goal is reached or a maximum CPU time has been spent (Goldberg,
1989).
In the following the GA operation pseudo code has been written:
1. Start
2. Population initialization
3. Repeat until (satisfying termination criteria)

• Selection
• Cross over
• Mutation

 Travelling Salesman Problem

4

• Making new population with the fittest solutions
• Evaluation
• Checking the termination criterion

4. Take the best solution as output
5. End

2.3 Solving the TSP using GA
As mentioned earlier, the TSP is known as a classical NP-complete problem, which has
extremely large search spaces and is very difficult to solve (Louis & Gong, 2000). Hence,
classical methods for solving TSP usually result in exponential computational complexities.
These methods consist of heuristic and exact methods. Heuristic methods like cutting planes
and branch and bound (Padherg & Rinaldi, 1987), can only optimally solve small problems
while the heuristic methods, such as 2-opt (Lin & Kernighan, 1973), 3-opt, Markov chain
(Martin et al., 1991), simulated annealing (Kirkpatrick et al., 1983) and tabu search are good
for large problems. Besides, some algorithms based on greedy principles such as nearest
neighbour, and spanning tree can be used as efficient solving methods. Nevertheless,
because of the tremendous number of possible solutions and large search spaces, GAs seem
to be wise approaches for solving the TSP especially when they are accompanied with
carefully designed genetic operators (Jiao & Wang, 2000). GAs search the large space of
solutions toward best answer and the operators can help the search process become faster
and also they prepare the ability to avoid being trapped in local optima.
In recent years, solving the TSP using evolutionary algorithms and specially GAs has
attracted a lot of attention. Many studies have been performed and researchers try to
contribute to different parts of solving process. Some of researchers pose different forms of
GA operators (Yan et al., 2005) in comparison to the former ones and others attempt to
combine GA with other possible approaches like ACO (Lee, 2004), PSO and etc. In addition,
some authors implement a new evolutionary idea or combine some previous algorithms and
idea to create a new method (Bonyadi et al., 2007). Here we investigate some of these works
and compare their results. Due to the spread of related works we can not mention all of
them here. But The reader is referred to the prepared references for further information.
In all of the performed works, two instances are mentionable. First: all of the proposed
algorithms work toward finding the nearest answer to the best solution. Second: solving the
TSP in a more little time is a key point in this problem because of its special application
which require, finding the best feasible answer fast.
In (Bonyadi et al., 2007), the authors made some changes to two previous local search
algorithms i.e. the Shuffled Frog Leaping (SFL) and the Civilization and Society (CS) and
combined these two algorithms with the GA idea. In this study, as it is common in a
conventional GA, at first the elements of the population perform mutation or crossover in
random order. Then for every element of this population, a local search algorithm, which is
a mix of both SFL and CS, is performed. The results demonstrate significant improvements
in terms of time complexity and reaching better solutions in comparison to the GAs which
apply only SFL or CS in their usual forms. Hence, the main contribution in this work is
combining two previous search methods and using them with the GA, simultaneously. The
evaluation results of the proposed algorithm have been prepared in section nine.
In another work (Yan et al., 2005) a new algorithm based on Inver-over operator, for
combinatorial optimization problems has been proposed. Inver-over is based on simple

Population-Based Optimization Algorithms for Solving the Travelling Salesman Problem

5

inversion; however, knowledge taken from other individuals in the population influences its
action. In this algorithm some new strategies including selection operator, replace operator
and some new control strategy have been applied. The results prove that these changes are
very efficient to accelerate the convergence. A consequence, it is inferred that, one of the
points for contribution is operators. Suitable changes in the conventional form of operators
might lead to major differences in the search and optimization procedure.
Through the experiments, GAs are global search algorithms appropriate for problems with
huge search spaces. In addition, heuristic methods can be applied for search in local areas.
Hence, combination of these two search algorithms can result in producing high quality
solutions. Cooperation between Speediness of local search methods in regional search and
robustness of evolutionary methods in global search can be very useful to obtain the global
optimum. Recently, (Nguyen et al., 2007) proposed a hybrid GA to find high-quality
solutions for the TSP. The main contribution of this study is to show the suitable
combination of a GA as a global search with a heuristic local search which are very
promising for the TSP. In addition, the considerable improvements in the achieved results
prove that the effectiveness and efficiency of the local search in the performance of hybrid
GAs. Through these results, one of other points where it can be kept in mind is the design of
the GA in a case that it balances between local and global search. Moreover, many other
studies have been performed that all of them combine the local and global search
mechanisms for solving the TSP.
As mentioned earlier, one of the points that solving the TSP can contribute is recombination
operators i.e. mutation and crossover. Based on (Takahashi, 2005) there are two kinds of
crossover operators for solving the TSP. Conventional encoding of the TSP which is an array
representation of chromosomes where every element of this array is a gene that in the TSP
shows a city. The first kind of crossover operator corresponds to this chromosome structure.
In this operator two parents are selected and with exchanging of some parts in parents the
children are reproduced. The second type performs crossover operation with mentioning
epistasis. In this method it is tried to retain useful information about links of parent’s edges
which leads to convergence. Also, in (Tsai et al., 2004) another work on genetic operators
has been performed which resulted in good achievements.

3. Ant colony optimization (ACO)
3.1 Introduction
The ACO (Ant Colony Optimization) heuristic is inspired by the real ant behaviour (figure
2) in finding the shortest path between the nest and the food (Beckers et al., 1992). This is
achieved by a substance called pheromone that shows the trace of an ant. In its searching the
ant uses heuristic information which is its own knowledge of where the smell of the food
comes from and the other ants’ decision of the path toward the food by pheromone
information (Holldobler & Wilson, 1990).

Fig. 2. Real ant behaviour in finding the shortest path between the nest and the food

 Travelling Salesman Problem

4

• Making new population with the fittest solutions
• Evaluation
• Checking the termination criterion

4. Take the best solution as output
5. End

2.3 Solving the TSP using GA
As mentioned earlier, the TSP is known as a classical NP-complete problem, which has
extremely large search spaces and is very difficult to solve (Louis & Gong, 2000). Hence,
classical methods for solving TSP usually result in exponential computational complexities.
These methods consist of heuristic and exact methods. Heuristic methods like cutting planes
and branch and bound (Padherg & Rinaldi, 1987), can only optimally solve small problems
while the heuristic methods, such as 2-opt (Lin & Kernighan, 1973), 3-opt, Markov chain
(Martin et al., 1991), simulated annealing (Kirkpatrick et al., 1983) and tabu search are good
for large problems. Besides, some algorithms based on greedy principles such as nearest
neighbour, and spanning tree can be used as efficient solving methods. Nevertheless,
because of the tremendous number of possible solutions and large search spaces, GAs seem
to be wise approaches for solving the TSP especially when they are accompanied with
carefully designed genetic operators (Jiao & Wang, 2000). GAs search the large space of
solutions toward best answer and the operators can help the search process become faster
and also they prepare the ability to avoid being trapped in local optima.
In recent years, solving the TSP using evolutionary algorithms and specially GAs has
attracted a lot of attention. Many studies have been performed and researchers try to
contribute to different parts of solving process. Some of researchers pose different forms of
GA operators (Yan et al., 2005) in comparison to the former ones and others attempt to
combine GA with other possible approaches like ACO (Lee, 2004), PSO and etc. In addition,
some authors implement a new evolutionary idea or combine some previous algorithms and
idea to create a new method (Bonyadi et al., 2007). Here we investigate some of these works
and compare their results. Due to the spread of related works we can not mention all of
them here. But The reader is referred to the prepared references for further information.
In all of the performed works, two instances are mentionable. First: all of the proposed
algorithms work toward finding the nearest answer to the best solution. Second: solving the
TSP in a more little time is a key point in this problem because of its special application
which require, finding the best feasible answer fast.
In (Bonyadi et al., 2007), the authors made some changes to two previous local search
algorithms i.e. the Shuffled Frog Leaping (SFL) and the Civilization and Society (CS) and
combined these two algorithms with the GA idea. In this study, as it is common in a
conventional GA, at first the elements of the population perform mutation or crossover in
random order. Then for every element of this population, a local search algorithm, which is
a mix of both SFL and CS, is performed. The results demonstrate significant improvements
in terms of time complexity and reaching better solutions in comparison to the GAs which
apply only SFL or CS in their usual forms. Hence, the main contribution in this work is
combining two previous search methods and using them with the GA, simultaneously. The
evaluation results of the proposed algorithm have been prepared in section nine.
In another work (Yan et al., 2005) a new algorithm based on Inver-over operator, for
combinatorial optimization problems has been proposed. Inver-over is based on simple

Population-Based Optimization Algorithms for Solving the Travelling Salesman Problem

5

inversion; however, knowledge taken from other individuals in the population influences its
action. In this algorithm some new strategies including selection operator, replace operator
and some new control strategy have been applied. The results prove that these changes are
very efficient to accelerate the convergence. A consequence, it is inferred that, one of the
points for contribution is operators. Suitable changes in the conventional form of operators
might lead to major differences in the search and optimization procedure.
Through the experiments, GAs are global search algorithms appropriate for problems with
huge search spaces. In addition, heuristic methods can be applied for search in local areas.
Hence, combination of these two search algorithms can result in producing high quality
solutions. Cooperation between Speediness of local search methods in regional search and
robustness of evolutionary methods in global search can be very useful to obtain the global
optimum. Recently, (Nguyen et al., 2007) proposed a hybrid GA to find high-quality
solutions for the TSP. The main contribution of this study is to show the suitable
combination of a GA as a global search with a heuristic local search which are very
promising for the TSP. In addition, the considerable improvements in the achieved results
prove that the effectiveness and efficiency of the local search in the performance of hybrid
GAs. Through these results, one of other points where it can be kept in mind is the design of
the GA in a case that it balances between local and global search. Moreover, many other
studies have been performed that all of them combine the local and global search
mechanisms for solving the TSP.
As mentioned earlier, one of the points that solving the TSP can contribute is recombination
operators i.e. mutation and crossover. Based on (Takahashi, 2005) there are two kinds of
crossover operators for solving the TSP. Conventional encoding of the TSP which is an array
representation of chromosomes where every element of this array is a gene that in the TSP
shows a city. The first kind of crossover operator corresponds to this chromosome structure.
In this operator two parents are selected and with exchanging of some parts in parents the
children are reproduced. The second type performs crossover operation with mentioning
epistasis. In this method it is tried to retain useful information about links of parent’s edges
which leads to convergence. Also, in (Tsai et al., 2004) another work on genetic operators
has been performed which resulted in good achievements.

3. Ant colony optimization (ACO)
3.1 Introduction
The ACO (Ant Colony Optimization) heuristic is inspired by the real ant behaviour (figure
2) in finding the shortest path between the nest and the food (Beckers et al., 1992). This is
achieved by a substance called pheromone that shows the trace of an ant. In its searching the
ant uses heuristic information which is its own knowledge of where the smell of the food
comes from and the other ants’ decision of the path toward the food by pheromone
information (Holldobler & Wilson, 1990).

Fig. 2. Real ant behaviour in finding the shortest path between the nest and the food

 Travelling Salesman Problem

6

In fact the algorithm uses a set of artificial ants (individuals) which cooperate to the solution
of a problem by exchanging information via pheromone deposited on graph edges. The
ACO algorithm is employed to imitate the behaviour of real ants and is as follows:
Initialize
Loop
 Each ant is positioned on a starting node
 Loop
 Each ant applies a state transition rule to
 incrementally build a solution and a local
 pheromone updating rule
 Until all ants have built a complete solution
 A global pheromone updating rule is applied
Until end condition

3.2 State transition
Consider n is the city amount; m is the quantity of the ants in an ACO problem; dij is the
length of the path between adjacent cities i and j; ij (t) is the intensity of trail on edge (i, j) at
time t . At the beginning of the algorithm, an initialization algorithm determines the ants
positions on different cities and initial value ij (0), a small positive constant c for trail
intensity are set on edges. The first element of each ant’s tabu list is set to its starting city.
The state transition is given by equation 1, which ant k in city i chooses to move to city j :

⎪
⎩

⎪
⎨

⎧
∉

∑
∉

=

otherwise,0

 if,
))(())((

))(())((

)(
kallowedj

kallowedk
tiktik

tijtij

t
k
ijp

β
η

α
τ

β
η

α
τ

(1)

where allowedk = {N-tabuk}, which is the set of cities that remain to be visited by ant k
positioned on city i (to make the solution feasible) α and β are parameters that determine the
relative importance of trail versus visibility, and η = 1/d is the visibility of edge (i, j) .

3.3 Trial updating
In order to improve future solutions, the pheromone trails of the ants must be updated to
reflect the ant’s performance and the quality of the solutions found. The global updating
rule is implemented as follows. Once all ants have built their tours, pheromone is updated
on all edges according to the following formula (equations 2 to 4):

∑
=

Δ+=+
m

k
k
ijtijtij 1

)()1(τρττ (2)

where

⎪⎩

⎪
⎨
⎧

=Δ

otherwise,0

 cyclecurrent at ant kth by the visitedis),(edge if, ji
kL

Q
k
ijτ (3)

Population-Based Optimization Algorithms for Solving the Travelling Salesman Problem

7

∑
=

Δ=Δ
m

k
k
ijij 1

ττ (4)

ρ (0 < ρ < 1) is trail persistence, Lk is the length of the tour found by kth ant , Q is a constant
related to the quantity of trail laid by ants. In fact, pheromone placed on the edges plays the
role of a distributed long-term memory (Dorigo & Gambardella, 1997). The algorithm
iterates in a predefined number of iterations and the best solutions are saved as the results.

3.4 Solving the TSP using ACO
As it is mentioned, the ACO algorithm has good potential for problem solving and recently
has attracted a lot of attentions specifically for solving NP-Hard set of problems. One of the
earliest best works for solving the TSP uses the ACS (Ant Colony System) is presented in
(Dorigo & Gambardella, 1997). They use the ACS algorithm for solving the TSP and they
claim that the ACS outperforms other nature-inspired algorithms such as simulated
annealing and evolutionary computation. In addition, they compared ACS-3-opt, a version
of the ACS improved with a local search procedure, to some of the best performing
algorithms for symmetric and asymmetric TSPs.
One of the other recent approaches for solving the TSP is proposed in (Song et al., 2006). In
particular, the option that an ant hunts for the next step, the use of a combination of two
kinds of pheromone evaluation models, the change of size of population in the ant colony
during the run of the algorithm, and the mutation of pheromone have been studied. One of
the most powerful attitudes in their paper was choosing the appropriate ACO model that
proposed by M. Dorigo which were called ant-cycle, ant-quantity and ant-density models.
These three models differ in the way the pheromone trail is updated. In ant-cycle algorithm,
the trail is updated after all the ants finish their tours. In contrast, in the last two models,
each ant lays its pheromone at each step without waiting for the end of the tour (Song et al.,
2006). Furthermore they claim that in early stage of iterations, the convergence speed is
faster using ant-density model in comparison with the other two models. Thus, at the
beginning, the ant-density model is applied. Because the Ant-cycle system has the
advantage of utilizing the global information, it is used at the other times. A mutation
mechanism same as in genetic algorithm has been added to the improved ACO algorithm to
assist the algorithm to jumping out from local optima’s. In their proposed improved ACO, a
population sizing method is used which changes the number of individuals (ants).

4. Particle swarm optimization (PSO)
4.1 Introduction
Particle Swarm Optimization (PSO) uses swarming behaviours observed in flocks of birds,
schools of fish, or swarms of bees (figure 3), and even human social behaviour, from which
intelligence emerges (Kennedy & Eberhart, 2001).
The standard PSO model consists of a swarm of particles. They move iteratively through the
feasible problem space to find the new solutions. Each particle has a position represented by
a position-vector ix (i is the index of the particle), and a velocity represented by a velocity-

vector iv . Each particle remembers its own best position so far in a vector #
ix and its j-th

 Travelling Salesman Problem

6

In fact the algorithm uses a set of artificial ants (individuals) which cooperate to the solution
of a problem by exchanging information via pheromone deposited on graph edges. The
ACO algorithm is employed to imitate the behaviour of real ants and is as follows:
Initialize
Loop
 Each ant is positioned on a starting node
 Loop
 Each ant applies a state transition rule to
 incrementally build a solution and a local
 pheromone updating rule
 Until all ants have built a complete solution
 A global pheromone updating rule is applied
Until end condition

3.2 State transition
Consider n is the city amount; m is the quantity of the ants in an ACO problem; dij is the
length of the path between adjacent cities i and j; ij (t) is the intensity of trail on edge (i, j) at
time t . At the beginning of the algorithm, an initialization algorithm determines the ants
positions on different cities and initial value ij (0), a small positive constant c for trail
intensity are set on edges. The first element of each ant’s tabu list is set to its starting city.
The state transition is given by equation 1, which ant k in city i chooses to move to city j :

⎪
⎩

⎪
⎨

⎧
∉

∑
∉

=

otherwise,0

 if,
))(())((

))(())((

)(
kallowedj

kallowedk
tiktik

tijtij

t
k
ijp

β
η

α
τ

β
η

α
τ

(1)

where allowedk = {N-tabuk}, which is the set of cities that remain to be visited by ant k
positioned on city i (to make the solution feasible) α and β are parameters that determine the
relative importance of trail versus visibility, and η = 1/d is the visibility of edge (i, j) .

3.3 Trial updating
In order to improve future solutions, the pheromone trails of the ants must be updated to
reflect the ant’s performance and the quality of the solutions found. The global updating
rule is implemented as follows. Once all ants have built their tours, pheromone is updated
on all edges according to the following formula (equations 2 to 4):

∑
=

Δ+=+
m

k
k
ijtijtij 1

)()1(τρττ (2)

where

⎪⎩

⎪
⎨
⎧

=Δ

otherwise,0

 cyclecurrent at ant kth by the visitedis),(edge if, ji
kL

Q
k
ijτ (3)

Population-Based Optimization Algorithms for Solving the Travelling Salesman Problem

7

∑
=

Δ=Δ
m

k
k
ijij 1

ττ (4)

ρ (0 < ρ < 1) is trail persistence, Lk is the length of the tour found by kth ant , Q is a constant
related to the quantity of trail laid by ants. In fact, pheromone placed on the edges plays the
role of a distributed long-term memory (Dorigo & Gambardella, 1997). The algorithm
iterates in a predefined number of iterations and the best solutions are saved as the results.

3.4 Solving the TSP using ACO
As it is mentioned, the ACO algorithm has good potential for problem solving and recently
has attracted a lot of attentions specifically for solving NP-Hard set of problems. One of the
earliest best works for solving the TSP uses the ACS (Ant Colony System) is presented in
(Dorigo & Gambardella, 1997). They use the ACS algorithm for solving the TSP and they
claim that the ACS outperforms other nature-inspired algorithms such as simulated
annealing and evolutionary computation. In addition, they compared ACS-3-opt, a version
of the ACS improved with a local search procedure, to some of the best performing
algorithms for symmetric and asymmetric TSPs.
One of the other recent approaches for solving the TSP is proposed in (Song et al., 2006). In
particular, the option that an ant hunts for the next step, the use of a combination of two
kinds of pheromone evaluation models, the change of size of population in the ant colony
during the run of the algorithm, and the mutation of pheromone have been studied. One of
the most powerful attitudes in their paper was choosing the appropriate ACO model that
proposed by M. Dorigo which were called ant-cycle, ant-quantity and ant-density models.
These three models differ in the way the pheromone trail is updated. In ant-cycle algorithm,
the trail is updated after all the ants finish their tours. In contrast, in the last two models,
each ant lays its pheromone at each step without waiting for the end of the tour (Song et al.,
2006). Furthermore they claim that in early stage of iterations, the convergence speed is
faster using ant-density model in comparison with the other two models. Thus, at the
beginning, the ant-density model is applied. Because the Ant-cycle system has the
advantage of utilizing the global information, it is used at the other times. A mutation
mechanism same as in genetic algorithm has been added to the improved ACO algorithm to
assist the algorithm to jumping out from local optima’s. In their proposed improved ACO, a
population sizing method is used which changes the number of individuals (ants).

4. Particle swarm optimization (PSO)
4.1 Introduction
Particle Swarm Optimization (PSO) uses swarming behaviours observed in flocks of birds,
schools of fish, or swarms of bees (figure 3), and even human social behaviour, from which
intelligence emerges (Kennedy & Eberhart, 2001).
The standard PSO model consists of a swarm of particles. They move iteratively through the
feasible problem space to find the new solutions. Each particle has a position represented by
a position-vector ix (i is the index of the particle), and a velocity represented by a velocity-

vector iv . Each particle remembers its own best position so far in a vector #
ix and its j-th

 Travelling Salesman Problem

8

dimensional value is #
ijx . The best position-vector among the swarm heretofore is then

stored in a vector x* and its j-th dimension value is x*j .The PSO procedure is as follows:

Fig. 3. Birds or fish exhibit such a coordinated collective behaviour

Algorithm 1 Particle Swarm Algorithm
01. Begin
02. Parameter settings and swarm initialization
03. Evaluation
04. g = 1
05. While (the stopping criterion is not met) do
06. For each particle
07. Update velocity
08. Update position and local best position
09. Evaluation
10. EndFor
11. Update leader (global best particle)
12. g + +
15. End While
14. End
The PSO algorithm has several phases consist of Initialization, Evaluation, Update Velocity
and Update Position. These phases are described in more details (See figure 5).

4.2 Initialization
The initialization phase is used to determine the position of the m particles in the first
iteration. The random initialization is one of the most popular methods for this job. There is
no guarantee that a randomly generated particle be a good answer and this will make the
initialization more attractive. A good initialization algorithm make the optimization
algorithm more efficient and reliable. For initialization, some known prior knowledge of the
problem can help the algorithm to converge in less iterations. As an example, in 0-1
knapsack problem, there is a greedy algorithm which can generate good candidate answers
but not optimal one. This greedy algorithm can be used for initializing the population and
the optimization algorithm will continue the optimization from this good point.

4.3 Update velocity and position
In each iteration, each particle updates its velocity and position according to its heretofore
best position, its current velocity and some information of its neighbours. Equation 5 is used
for updating the velocity:

Population-Based Optimization Algorithms for Solving the Travelling Salesman Problem

9

() ()# *
1 1 2 2() (1) (1) (1) (1) (1)l l l l l

inertia Personalinfluence Socialinfluence

t w t c r x t x t c r x t x t= − + − − − + − − −v v
(5)

Where ()lx t is the position-vector in iteration t (i is the index of the particle), ()l tv is the

velocity-vector in iteration t. #
1 ()x t is the best position so far of particle i in iteration t and its

j-th dimensional value is # ()i jx t . The best position-vector among the swarm heretofore is
then stored in a vector x*(t) and its j-th dimension value is x*j(t). r1 and r2 are the random
numbers in the interval [0,1]. c1 is a positive constant, called as coefficient of the self-
recognition component, c2 is a positive constant, called as coefficient of the social
component. The variable w is called as the inertia factor, which value is typically setup to
vary linearly from 1 to near 0 during the iterated processing. In fact, a large inertia weight
facilitates global exploration (searching new areas), while a small one tends to facilitate local
exploration. Consequently a reduction on the number of iterations required to locate the
optimum solution (Yuhui & Eberhart, 1998). Figure 4 illustrates this reduction. The
algorithm invokes the equation 6 for updating the positions:

() (1) ()l l lx t x t t= − + v (6)

Fig. 4. The value of the inertia weight is decreased during a run

4.4 Solving the TSP using PSO
As it is described before, Particle Swarm Optimization (PSO) has a good potential for
problem solving. The susceptibilities and charms of this nature based algorithm convinced
researchers to use the PSO to solve NP-Hard problems such as TSP and Job-Scheduling.
Here, we investigate some of these proposed approaches for solving the TSP.
One of the attractive works for solving the TSP was cited in (Yuan et al.., 2007). They
propose a novel hybrid algorithm which invokes the sufficiency of both PSO and COA
(Chaotic Optimization Algorithm) (Zhang et al., 2001). In fact, they exert the COA to restrain
the particles from getting stock on local optima’s in rudimentary iterations. In other word,
they claim that the COA could considerably useful to keep particle’s global searching
ability.

 Travelling Salesman Problem

8

dimensional value is #
ijx . The best position-vector among the swarm heretofore is then

stored in a vector x* and its j-th dimension value is x*j .The PSO procedure is as follows:

Fig. 3. Birds or fish exhibit such a coordinated collective behaviour

Algorithm 1 Particle Swarm Algorithm
01. Begin
02. Parameter settings and swarm initialization
03. Evaluation
04. g = 1
05. While (the stopping criterion is not met) do
06. For each particle
07. Update velocity
08. Update position and local best position
09. Evaluation
10. EndFor
11. Update leader (global best particle)
12. g + +
15. End While
14. End
The PSO algorithm has several phases consist of Initialization, Evaluation, Update Velocity
and Update Position. These phases are described in more details (See figure 5).

4.2 Initialization
The initialization phase is used to determine the position of the m particles in the first
iteration. The random initialization is one of the most popular methods for this job. There is
no guarantee that a randomly generated particle be a good answer and this will make the
initialization more attractive. A good initialization algorithm make the optimization
algorithm more efficient and reliable. For initialization, some known prior knowledge of the
problem can help the algorithm to converge in less iterations. As an example, in 0-1
knapsack problem, there is a greedy algorithm which can generate good candidate answers
but not optimal one. This greedy algorithm can be used for initializing the population and
the optimization algorithm will continue the optimization from this good point.

4.3 Update velocity and position
In each iteration, each particle updates its velocity and position according to its heretofore
best position, its current velocity and some information of its neighbours. Equation 5 is used
for updating the velocity:

Population-Based Optimization Algorithms for Solving the Travelling Salesman Problem

9

() ()# *
1 1 2 2() (1) (1) (1) (1) (1)l l l l l

inertia Personalinfluence Socialinfluence

t w t c r x t x t c r x t x t= − + − − − + − − −v v
(5)

Where ()lx t is the position-vector in iteration t (i is the index of the particle), ()l tv is the

velocity-vector in iteration t. #
1 ()x t is the best position so far of particle i in iteration t and its

j-th dimensional value is # ()i jx t . The best position-vector among the swarm heretofore is
then stored in a vector x*(t) and its j-th dimension value is x*j(t). r1 and r2 are the random
numbers in the interval [0,1]. c1 is a positive constant, called as coefficient of the self-
recognition component, c2 is a positive constant, called as coefficient of the social
component. The variable w is called as the inertia factor, which value is typically setup to
vary linearly from 1 to near 0 during the iterated processing. In fact, a large inertia weight
facilitates global exploration (searching new areas), while a small one tends to facilitate local
exploration. Consequently a reduction on the number of iterations required to locate the
optimum solution (Yuhui & Eberhart, 1998). Figure 4 illustrates this reduction. The
algorithm invokes the equation 6 for updating the positions:

() (1) ()l l lx t x t t= − + v (6)

Fig. 4. The value of the inertia weight is decreased during a run

4.4 Solving the TSP using PSO
As it is described before, Particle Swarm Optimization (PSO) has a good potential for
problem solving. The susceptibilities and charms of this nature based algorithm convinced
researchers to use the PSO to solve NP-Hard problems such as TSP and Job-Scheduling.
Here, we investigate some of these proposed approaches for solving the TSP.
One of the attractive works for solving the TSP was cited in (Yuan et al.., 2007). They
propose a novel hybrid algorithm which invokes the sufficiency of both PSO and COA
(Chaotic Optimization Algorithm) (Zhang et al., 2001). In fact, they exert the COA to restrain
the particles from getting stock on local optima’s in rudimentary iterations. In other word,
they claim that the COA could considerably useful to keep particle’s global searching
ability.

 Travelling Salesman Problem

10

One of the other exciting algorithms based on PSO for solving TSP is introduced in (Pang et
al., 2004). In this paper they propose an algorithm based on PSO which uses the fuzzy
matrices for velocity and position vectors. In addition, they use the fuzzy multiplication and
addition operators for velocity and position updating formulas (equations (5) and (6)). The
mentioned PSO algorithm in previous sections modified to an algorithm which works based
on fuzzy means such as fuzzification and defuzzification. In each iteration, the position of
each generated solution has been defuzzified to determine the cost of the individual. This
cost will be used for updating the local best position.

(a)

(b)

(c)

(d)

Fig. 5. (a) Create a ‘population’ of agents (called particles) uniformly distributed over X
(feasible region) and Evaluate each particle’s position according to the objective function, (b)
Update particles’ velocities according to equation (5), (c) Move particles to their new
positions according to equation (6), (d) If a particle’s current position is better than its
previous best position, update it.

5. Intelligent water drops
5.1 Introduction
The last work on the population based optimization algorithms inspired by nature is a novel
problem solving method proposed by Hamed Shah-hosseini (Shah-hosseini, 2007). This
method is called “Intelligent Water Drops” or IWD algorithm which is based on the
processes that happen in the natural river systems and the actions and reactions that take
place between water drops in the river and the changes that happen in the environment that
river is flowing. Here we prepare a complete description on this new and interesting

Population-Based Optimization Algorithms for Solving the Travelling Salesman Problem

11

method. To start with, the inspiration of IWD, natural water drops, will be stated. After that
the IWD system has been introduced. And finally these ideas are embedded into the
proposed algorithm for solving the Traveling Salesman Problem or the TSP.

5.2 Natural water drops
In nature, we often see water drops moving in rivers, lakes, and seas. As water drops move,
they change their environment in which they are flowing. Moreover, the environment itself
has substantial effects on the paths that the water drops follow. Consider a hypothetical
river in which water is flowing and moving from high terrain to lower terrain and finally
joins a lake or sea. The paths that the river follows, based on our observation in nature, are
often full of twists and turns. We also know that the water drops have no visible eyes to be
able to find the destination (lake or river). If we put ourselves in place of a water drop of the
river, we feel that some force pulls us toward itself (gravity). This gravitational force as we
know from physics is straight toward the center of the earth. Therefore with no obstacles
and barriers, the water drops would follow a straight path toward the destination, which is
the shortest path from the source to the destination. However, due to different kinds of
obstacles in the way of this ideal path, the real path will have to be different from the ideal
path and we often see lots of twists and turns in a river path. In contrast, the water drops
always try to change the real path to make it a better path in order to approach the ideal
path. This continuous effort changes the path of the river as time passes by. One feature of a
water drop is the velocity that it flows which enables the water drop to transfer an amount
of soil from one place to another place in the front. This soil is usually transferred from fast
parts of the path to the slow parts. As the fast parts get deeper by being removed from soil,
they can hold more volume of water and thus may attract more water. The removed soils
which are carried in the water drops are unloaded in slower beds of the river. There are
other mechanisms which are involved in the river system which we don’t intend to consider
them all here.
In summary, a water drop in a river has a non-zero velocity. It often carries an amount of
soil. It can load some soil from an area of the river bed, often from fast flowing areas and
unload them in slower areas of the river bed. Obviously, a water drop prefers an easier path
to a harder path when it has to choose between several branches that exist in the path from
the source to the destination. Now we can introduce the intelligent water drops.

5.3 Intelligent water drops
Based on the observation on the behavior of water drops, we develop an artificial water
drop which possesses some of the remarkable properties of the natural water drop. This
Intelligent Water Drop, IWD for short, has two important properties:
1. The amount of the soil it carries now, Soil (IWD).
2. The velocity that it is moving now, Velocity (IWD).
flows in its environment. This environment depends on the problem at hand. In an
environment, there are usually lots of paths from a given source to a desired destination,
which the position of the destination may be known or unknown. If we know the position of
the destination, the goal is to find the best (often the shortest) path from the source to the
destination. In some cases, in which the destination is unknown, the goal is to find the
optimum destination in terms of cost or any suitable measure for the problem.

 Travelling Salesman Problem

10

One of the other exciting algorithms based on PSO for solving TSP is introduced in (Pang et
al., 2004). In this paper they propose an algorithm based on PSO which uses the fuzzy
matrices for velocity and position vectors. In addition, they use the fuzzy multiplication and
addition operators for velocity and position updating formulas (equations (5) and (6)). The
mentioned PSO algorithm in previous sections modified to an algorithm which works based
on fuzzy means such as fuzzification and defuzzification. In each iteration, the position of
each generated solution has been defuzzified to determine the cost of the individual. This
cost will be used for updating the local best position.

(a)

(b)

(c)

(d)

Fig. 5. (a) Create a ‘population’ of agents (called particles) uniformly distributed over X
(feasible region) and Evaluate each particle’s position according to the objective function, (b)
Update particles’ velocities according to equation (5), (c) Move particles to their new
positions according to equation (6), (d) If a particle’s current position is better than its
previous best position, update it.

5. Intelligent water drops
5.1 Introduction
The last work on the population based optimization algorithms inspired by nature is a novel
problem solving method proposed by Hamed Shah-hosseini (Shah-hosseini, 2007). This
method is called “Intelligent Water Drops” or IWD algorithm which is based on the
processes that happen in the natural river systems and the actions and reactions that take
place between water drops in the river and the changes that happen in the environment that
river is flowing. Here we prepare a complete description on this new and interesting

Population-Based Optimization Algorithms for Solving the Travelling Salesman Problem

11

method. To start with, the inspiration of IWD, natural water drops, will be stated. After that
the IWD system has been introduced. And finally these ideas are embedded into the
proposed algorithm for solving the Traveling Salesman Problem or the TSP.

5.2 Natural water drops
In nature, we often see water drops moving in rivers, lakes, and seas. As water drops move,
they change their environment in which they are flowing. Moreover, the environment itself
has substantial effects on the paths that the water drops follow. Consider a hypothetical
river in which water is flowing and moving from high terrain to lower terrain and finally
joins a lake or sea. The paths that the river follows, based on our observation in nature, are
often full of twists and turns. We also know that the water drops have no visible eyes to be
able to find the destination (lake or river). If we put ourselves in place of a water drop of the
river, we feel that some force pulls us toward itself (gravity). This gravitational force as we
know from physics is straight toward the center of the earth. Therefore with no obstacles
and barriers, the water drops would follow a straight path toward the destination, which is
the shortest path from the source to the destination. However, due to different kinds of
obstacles in the way of this ideal path, the real path will have to be different from the ideal
path and we often see lots of twists and turns in a river path. In contrast, the water drops
always try to change the real path to make it a better path in order to approach the ideal
path. This continuous effort changes the path of the river as time passes by. One feature of a
water drop is the velocity that it flows which enables the water drop to transfer an amount
of soil from one place to another place in the front. This soil is usually transferred from fast
parts of the path to the slow parts. As the fast parts get deeper by being removed from soil,
they can hold more volume of water and thus may attract more water. The removed soils
which are carried in the water drops are unloaded in slower beds of the river. There are
other mechanisms which are involved in the river system which we don’t intend to consider
them all here.
In summary, a water drop in a river has a non-zero velocity. It often carries an amount of
soil. It can load some soil from an area of the river bed, often from fast flowing areas and
unload them in slower areas of the river bed. Obviously, a water drop prefers an easier path
to a harder path when it has to choose between several branches that exist in the path from
the source to the destination. Now we can introduce the intelligent water drops.

5.3 Intelligent water drops
Based on the observation on the behavior of water drops, we develop an artificial water
drop which possesses some of the remarkable properties of the natural water drop. This
Intelligent Water Drop, IWD for short, has two important properties:
1. The amount of the soil it carries now, Soil (IWD).
2. The velocity that it is moving now, Velocity (IWD).
flows in its environment. This environment depends on the problem at hand. In an
environment, there are usually lots of paths from a given source to a desired destination,
which the position of the destination may be known or unknown. If we know the position of
the destination, the goal is to find the best (often the shortest) path from the source to the
destination. In some cases, in which the destination is unknown, the goal is to find the
optimum destination in terms of cost or any suitable measure for the problem.

 Travelling Salesman Problem

12

We consider an IWD moving in discrete finite-length steps. From its current location to its
next location, the IWD velocity is increased by the amount nonlinearly proportional to the
inverse of the soil between the two locations. Moreover, the IWD’s soil is increased by
removing some soil of the path joining the two locations. The amount of soil added to the
IWD is inversely (and nonlinearly) proportional to the time needed for the IWD to pass from
its current location to the next location. This duration of time is calculated by the simple
laws of physics for linear motion. Thus, the time taken is proportional to the velocity of the
IWD and inversely proportional to the distance between the two locations.
Another mechanism that exists in the behavior of an IWD is that it prefers the paths with
low soils on its beds to the paths with higher soils on its beds. To implement this behavior of
path choosing, we use a uniform random distribution among the soils of the available paths
such that the probability of the next path to choose is inversely proportional to the soils of
the available paths. The lower the soil of the path, the more chance it has for being selected
by the IWD.
In this part, we specifically express the steps for solving the TSP. The first step is how to
represent the TSP in a suitable way for the IWD. For the TSP, the cities are often modeled by
nodes of a graph, and the links in the graph represent the paths joining each two cities. Each
link or path has an amount of soil. An IWD can travel between cities through these links and
can change the amount of their soils. Therefore, each city in the TSP is denoted by a node in
the graph which holds the physical position of each city in terms of its two dimensional
coordinates while the links of the graph denote the paths between cities. To implement the
constraint that each IWD never visits a city twice, we consider a visited city list for the IWD
which this list includes the cities visited so far by the IWD. So, the possible cities for an IWD
to choose in its next step must not be from the cities in the visited list.

5.4 Solving the TSP using IWD
In the following, we present the proposed Intelligent Water Drop (IWD) algorithm for the
TSP:
1. Initialization of static parameters: set the number of water drops

IWDN , the number of
cities

CN , and the Cartesian coordinates of each city i such that []T
ii yxi ,)(=c to their

chosen constant values. The number of cities and their coordinates depend on the
problem at hand while the

IWDN is set by the user. Here, we choose IWDN to be equal to the
number of cities. For velocity updating, we use parameters 1000=va , 01.=vb and 1=vc . For

soil updating, we use parameters 1000=sa , 01.=sb and 1=sc . Moreover, the initial
soil on each link is denoted by the constant InitSoil such that the soil of the link
between every two cities i and j is set by InitSoiljisoil =),(. The initial velocity of IWDs
is denoted by the constant InitVel . Both parameters InitSoil and InitVel are also user
selected. In this paper, we choose 1000=InitSoil and 100=InitVel . The best tour is

denoted by BT which is still unknown and its length is initially set to infinity:

∞=)(BTLen . Moreover, we should specify the maximum number of iterations that the
algorithm should be repeated or some other terminating condition suitable for the
problem.

Population-Based Optimization Algorithms for Solving the Travelling Salesman Problem

13

2. Initialization of dynamic parameters: For every IWD, we create a visited city list
{ }=)(IWDcV set to the empty list. The velocity of each IWD is set to InitVel whereas

the initial soil of each IWD is set to zero.
3. For every IWD, randomly select a city and place that IWD on the city.
4. Update the visited city lists of all IWDs to include the cities just visited.
5. For each IWD, choose the next city j to be visited by the IWD when it is in city i with the

following probability (equation 7):

()
()∑

∉

=

)(
),(

),(
)(

IWDvck
kisoilf

jisoilf
jIWD

ip (7)

such that)),((

1
)),((

jisoilgs
jisoilf

+
=
ε and

⎪⎩

⎪
⎨
⎧

∉
−

≥
∉

=
elselisoil

IWDvcl
jisoil

lisoil
l

if jisoil
jisoilg

)),((
)(

min),(

0)),((
vc(IWD)

min),(
)),((. Here sε is a small positive number

to prevent a possible division by zero in the function (.)f . Here, we use 01.0=sε . The
function min(.) returns the minimum value among all available values for its argument.
Moreover,)(IWDvc is the visited city list of the IWD.
6. For each IWD moving from city i to city j, update its velocity based on equation 8.

),(.
)()1(

jisoilvcvb
va

tIWDveltIWDvel
+

+=+ (8)

such that)1(+tIWDvel is the updated velocity of the IWD.),(jisoil is the soil on the path
(link) joining the current city i and the new city j. With formula (8), the velocity of the IWD
increases less if the amount of the soil is high and the velocity would increase more if the
soil is low on the path.
7. For each IWD, compute the amount of the soil,),(jisoilΔ , that the current water drop

IWD loads from its the current path between two cities i and j using equation 9.

()IWDveljitimescsb
sa

jisoil
;, .

),(
+

=Δ (9)

such that () ()IWDvelv

jiIWDveljitime
,max

)()(
;,

ε

cc −
= which computes the time taken to travel

from city i to city j with the velocity IWDvel . Here, the function (.)c represents the two

 Travelling Salesman Problem

12

We consider an IWD moving in discrete finite-length steps. From its current location to its
next location, the IWD velocity is increased by the amount nonlinearly proportional to the
inverse of the soil between the two locations. Moreover, the IWD’s soil is increased by
removing some soil of the path joining the two locations. The amount of soil added to the
IWD is inversely (and nonlinearly) proportional to the time needed for the IWD to pass from
its current location to the next location. This duration of time is calculated by the simple
laws of physics for linear motion. Thus, the time taken is proportional to the velocity of the
IWD and inversely proportional to the distance between the two locations.
Another mechanism that exists in the behavior of an IWD is that it prefers the paths with
low soils on its beds to the paths with higher soils on its beds. To implement this behavior of
path choosing, we use a uniform random distribution among the soils of the available paths
such that the probability of the next path to choose is inversely proportional to the soils of
the available paths. The lower the soil of the path, the more chance it has for being selected
by the IWD.
In this part, we specifically express the steps for solving the TSP. The first step is how to
represent the TSP in a suitable way for the IWD. For the TSP, the cities are often modeled by
nodes of a graph, and the links in the graph represent the paths joining each two cities. Each
link or path has an amount of soil. An IWD can travel between cities through these links and
can change the amount of their soils. Therefore, each city in the TSP is denoted by a node in
the graph which holds the physical position of each city in terms of its two dimensional
coordinates while the links of the graph denote the paths between cities. To implement the
constraint that each IWD never visits a city twice, we consider a visited city list for the IWD
which this list includes the cities visited so far by the IWD. So, the possible cities for an IWD
to choose in its next step must not be from the cities in the visited list.

5.4 Solving the TSP using IWD
In the following, we present the proposed Intelligent Water Drop (IWD) algorithm for the
TSP:
1. Initialization of static parameters: set the number of water drops

IWDN , the number of
cities

CN , and the Cartesian coordinates of each city i such that []T
ii yxi ,)(=c to their

chosen constant values. The number of cities and their coordinates depend on the
problem at hand while the

IWDN is set by the user. Here, we choose IWDN to be equal to the
number of cities. For velocity updating, we use parameters 1000=va , 01.=vb and 1=vc . For

soil updating, we use parameters 1000=sa , 01.=sb and 1=sc . Moreover, the initial
soil on each link is denoted by the constant InitSoil such that the soil of the link
between every two cities i and j is set by InitSoiljisoil =),(. The initial velocity of IWDs
is denoted by the constant InitVel . Both parameters InitSoil and InitVel are also user
selected. In this paper, we choose 1000=InitSoil and 100=InitVel . The best tour is

denoted by BT which is still unknown and its length is initially set to infinity:

∞=)(BTLen . Moreover, we should specify the maximum number of iterations that the
algorithm should be repeated or some other terminating condition suitable for the
problem.

Population-Based Optimization Algorithms for Solving the Travelling Salesman Problem

13

2. Initialization of dynamic parameters: For every IWD, we create a visited city list
{ }=)(IWDcV set to the empty list. The velocity of each IWD is set to InitVel whereas

the initial soil of each IWD is set to zero.
3. For every IWD, randomly select a city and place that IWD on the city.
4. Update the visited city lists of all IWDs to include the cities just visited.
5. For each IWD, choose the next city j to be visited by the IWD when it is in city i with the

following probability (equation 7):

()
()∑

∉

=

)(
),(

),(
)(

IWDvck
kisoilf

jisoilf
jIWD

ip (7)

such that)),((

1
)),((

jisoilgs
jisoilf

+
=
ε and

⎪⎩

⎪
⎨
⎧

∉
−

≥
∉

=
elselisoil

IWDvcl
jisoil

lisoil
l

if jisoil
jisoilg

)),((
)(

min),(

0)),((
vc(IWD)

min),(
)),((. Here sε is a small positive number

to prevent a possible division by zero in the function (.)f . Here, we use 01.0=sε . The
function min(.) returns the minimum value among all available values for its argument.
Moreover,)(IWDvc is the visited city list of the IWD.
6. For each IWD moving from city i to city j, update its velocity based on equation 8.

),(.
)()1(

jisoilvcvb
va

tIWDveltIWDvel
+

+=+ (8)

such that)1(+tIWDvel is the updated velocity of the IWD.),(jisoil is the soil on the path
(link) joining the current city i and the new city j. With formula (8), the velocity of the IWD
increases less if the amount of the soil is high and the velocity would increase more if the
soil is low on the path.
7. For each IWD, compute the amount of the soil,),(jisoilΔ , that the current water drop

IWD loads from its the current path between two cities i and j using equation 9.

()IWDveljitimescsb
sa

jisoil
;, .

),(
+

=Δ (9)

such that () ()IWDvelv

jiIWDveljitime
,max

)()(
;,

ε

cc −
= which computes the time taken to travel

from city i to city j with the velocity IWDvel . Here, the function (.)c represents the two

 Travelling Salesman Problem

14

dimensional positional vector for the city. The function max(.,.)returns the maximum value
among its arguments, which is used here to threshold the negative velocities to a very small
positive number 0001.0=vε .
8. For each IWD, update the soil of the path traversed by that IWD using equation 10.

),(

),(.),(.)1(),(

jisoilIWDsoilIWDsoil

jisoiljisoiljisoil

Δ+=

Δ−−= ρρ
 (10)

where IWDsoil represents the soil that the IWD carries. The IWD goes from city i to city j.
The parameter ρ is a small positive number less than one. Here we use 9.0=ρ .
9. For each IWD, complete its tour by using steps 4 to 8 repeatedly. Then, calculate the

length of the tour traversed by the IWD, and find the tour with the minimum length
among all IWD tours in this iteration. We denote this minimum tour by MT .

10. Update the soils of paths included in the current minimum tour of the IWD, denoted
by MT which is computed based on equation 11.

() MTji
cNcN

IWDsoil
jisoiljisoil ∈∀

−
−−=),(

1

 . 2
 .),(.)1(),(ρρ (11)

11. 11. If the minimum tour MT is shorter than the best tour found so far denoted by BT ,
then we update the best tour by applying equation 12.

)()(MTLenBTLenandMTBT == (12)

12. Go to step 2 unless the maximum number of iterations is reached or the defined
termination condition is satisfied.

13. The algorithm stops here such that the best tour is kept in BT and its length is)(BTLen .
It is reminded that it is also possible to use only TM and remove step 11 of the IWD
algorithm. However, it is safer to keep the best tour BT of all iterations than to count on only
the minimum tour TM of the last iteration. The IWD algorithm is experimented by artificial
and some benchmark TSP environments. The proposed algorithm converges fast to
optimum solutions and finds good and promising results. This research (Shah-Hosseini,
2007) is the beginning of using water drops ideas to solve engineering problems. So, there is
much space to improve and develop the IWD algorithm.

6. Artificial immune systems
6.1 Introduction
Recently, there was an increasing interest in the area of Artificial Immune System (AIS) and
its application for solving various problems specifically for the TSP (Zeng & Gu, 2007), (Lu

Population-Based Optimization Algorithms for Solving the Travelling Salesman Problem

15

et al., 2007). AIS is inspired by natural immune mechanism and uses immunology idea in
order to develop systems capable of performing different tasks in various areas of research
such as pattern recognition, fault detection, diagnosis and a number of other fields including
optimization. Here we want to know the AIS completely. To start with, it might be useful to
become more familiar with natural immune system.
Natural immune systems consist of the structures and processes in the living body that
provide a defence system against invaders and also altered internal cells which lead to
disease. In a glance, immune system’s main tasks can be divided into three parts;
recognition, categorization and defence. As recognition part, the immune system firstly has
to recognize the invader and foreign antigens e.g. bacteria, viruses and etc. After
recognition, classification must be performed by immune systems, this is the second part.
And appropriate form of defence must to be applied for every category of foreign aggressive
phenomenon as the third part. The most significant aspect of the immune systems in
mammals is learning capability. Namely, the immune systems can grow during the life time
and is capable of using learning, memory and associative retrieval in order to solve
mentioned recognition and classification tasks. In addition, the studies show that the natural
immune systems are useful phenomena in information processing and can be helpful in
inspiration for problem solving and various optimization problems (Keko et al., 2003).

6.2 Artificial immune system
Like the natural immune systems the AIS is a set of techniques, which try to algorithmically
mimic natural immune systems' behaviour (Dasgupta, 99). As mentioned earlier, the
immune system is susceptible to all of the invaders, also the outer influences, like vaccines
which are artificial ways of raising individual's immunity. Vaccines are other factors that
can stimulate the immune system’s susceptibility. This feature is the key point of the AIS
structure. The vaccines in the AIS are abstracted forms of the preceding information.
Vaccination modifies genes based on the useful knowledge of the problem to achieve higher
fitness in comparison to the fitness that obtained from a random process when for example a
classical GA is applied. Once again it is necessary to point out that, vaccines contain some
important information about the problem and in consequence the vaccination process
employed in a right manner can be very useful in the performance of the algorithm. Like
classical GA and based on its structure the AIS can work. The GA operators (crossover and
mutation) search the problem space randomly and hence they don’t have enough capability
of meeting the actual problem at the local level. GAs are known as incapable of search fine
local tuning because they are global search algorithms. Immune method through
vaccination tries to overcome such blindness of crossover and mutation (Keko et al., 2003).
After vaccination, the immune method might leads to deterioration. This case happens
when vaccination leads to smaller fitness values than previous ones. Hence, another
important part of immune algorithm is prevention of deterioration when inserting vaccine.
In short, immune operators perform in four steps: firstly, an individual is selected,
randomly. Now as the second step, the vaccine is inserted at the individual’s randomly
chosen place. Vaccine insertion might leads to deterioration, the third step is checking for
deterioration. And finally the forth step is discarding every individual that shows
degeneration right after vaccine. This way of checking could be dangerous for diversity and
could result in algorithm's inability to avoid local optima, especially when combined with
small populations. The studies show that the use of immune systems resulted in faster

 Travelling Salesman Problem

14

dimensional positional vector for the city. The function max(.,.)returns the maximum value
among its arguments, which is used here to threshold the negative velocities to a very small
positive number 0001.0=vε .
8. For each IWD, update the soil of the path traversed by that IWD using equation 10.

),(

),(.),(.)1(),(

jisoilIWDsoilIWDsoil

jisoiljisoiljisoil

Δ+=

Δ−−= ρρ
 (10)

where IWDsoil represents the soil that the IWD carries. The IWD goes from city i to city j.
The parameter ρ is a small positive number less than one. Here we use 9.0=ρ .
9. For each IWD, complete its tour by using steps 4 to 8 repeatedly. Then, calculate the

length of the tour traversed by the IWD, and find the tour with the minimum length
among all IWD tours in this iteration. We denote this minimum tour by MT .

10. Update the soils of paths included in the current minimum tour of the IWD, denoted
by MT which is computed based on equation 11.

() MTji
cNcN

IWDsoil
jisoiljisoil ∈∀

−
−−=),(

1

 . 2
 .),(.)1(),(ρρ (11)

11. 11. If the minimum tour MT is shorter than the best tour found so far denoted by BT ,
then we update the best tour by applying equation 12.

)()(MTLenBTLenandMTBT == (12)

12. Go to step 2 unless the maximum number of iterations is reached or the defined
termination condition is satisfied.

13. The algorithm stops here such that the best tour is kept in BT and its length is)(BTLen .
It is reminded that it is also possible to use only TM and remove step 11 of the IWD
algorithm. However, it is safer to keep the best tour BT of all iterations than to count on only
the minimum tour TM of the last iteration. The IWD algorithm is experimented by artificial
and some benchmark TSP environments. The proposed algorithm converges fast to
optimum solutions and finds good and promising results. This research (Shah-Hosseini,
2007) is the beginning of using water drops ideas to solve engineering problems. So, there is
much space to improve and develop the IWD algorithm.

6. Artificial immune systems
6.1 Introduction
Recently, there was an increasing interest in the area of Artificial Immune System (AIS) and
its application for solving various problems specifically for the TSP (Zeng & Gu, 2007), (Lu

Population-Based Optimization Algorithms for Solving the Travelling Salesman Problem

15

et al., 2007). AIS is inspired by natural immune mechanism and uses immunology idea in
order to develop systems capable of performing different tasks in various areas of research
such as pattern recognition, fault detection, diagnosis and a number of other fields including
optimization. Here we want to know the AIS completely. To start with, it might be useful to
become more familiar with natural immune system.
Natural immune systems consist of the structures and processes in the living body that
provide a defence system against invaders and also altered internal cells which lead to
disease. In a glance, immune system’s main tasks can be divided into three parts;
recognition, categorization and defence. As recognition part, the immune system firstly has
to recognize the invader and foreign antigens e.g. bacteria, viruses and etc. After
recognition, classification must be performed by immune systems, this is the second part.
And appropriate form of defence must to be applied for every category of foreign aggressive
phenomenon as the third part. The most significant aspect of the immune systems in
mammals is learning capability. Namely, the immune systems can grow during the life time
and is capable of using learning, memory and associative retrieval in order to solve
mentioned recognition and classification tasks. In addition, the studies show that the natural
immune systems are useful phenomena in information processing and can be helpful in
inspiration for problem solving and various optimization problems (Keko et al., 2003).

6.2 Artificial immune system
Like the natural immune systems the AIS is a set of techniques, which try to algorithmically
mimic natural immune systems' behaviour (Dasgupta, 99). As mentioned earlier, the
immune system is susceptible to all of the invaders, also the outer influences, like vaccines
which are artificial ways of raising individual's immunity. Vaccines are other factors that
can stimulate the immune system’s susceptibility. This feature is the key point of the AIS
structure. The vaccines in the AIS are abstracted forms of the preceding information.
Vaccination modifies genes based on the useful knowledge of the problem to achieve higher
fitness in comparison to the fitness that obtained from a random process when for example a
classical GA is applied. Once again it is necessary to point out that, vaccines contain some
important information about the problem and in consequence the vaccination process
employed in a right manner can be very useful in the performance of the algorithm. Like
classical GA and based on its structure the AIS can work. The GA operators (crossover and
mutation) search the problem space randomly and hence they don’t have enough capability
of meeting the actual problem at the local level. GAs are known as incapable of search fine
local tuning because they are global search algorithms. Immune method through
vaccination tries to overcome such blindness of crossover and mutation (Keko et al., 2003).
After vaccination, the immune method might leads to deterioration. This case happens
when vaccination leads to smaller fitness values than previous ones. Hence, another
important part of immune algorithm is prevention of deterioration when inserting vaccine.
In short, immune operators perform in four steps: firstly, an individual is selected,
randomly. Now as the second step, the vaccine is inserted at the individual’s randomly
chosen place. Vaccine insertion might leads to deterioration, the third step is checking for
deterioration. And finally the forth step is discarding every individual that shows
degeneration right after vaccine. This way of checking could be dangerous for diversity and
could result in algorithm's inability to avoid local optima, especially when combined with
small populations. The studies show that the use of immune systems resulted in faster

 Travelling Salesman Problem

16

convergence when population is large enough and diversity is secured. The combination of
immune algorithm and GA, form the immune genetic algorithm (IGA). Many of previous
works that are performed on the TSP used IGA. Now, we first investigate the IGA and its
structure in detail and after that we have a look at some previous works around the TSP.
In summery, the IGA consists of these steps:
1. Creation of initial population in some way, e.g. through a random process
2. Abstract vaccines according to the former information
3. Checking the termination criterion (if it is satisfied go to step 10 and else go to next step)
4. Crossover on the randomly selected individuals
5. Mutation on the produced children
6. Vaccination on the former step outcome
7. Deterioration checking
8. Discarding every individual that shows degeneration right after vaccine
9. Go to step 3
10. End
As it is obvious from the ten steps which have been mentioned above, the IGA is very
similar to the conventional GA, but they are different in operators. The IGA has vaccine
operator to overcome the universality problem of the conventional GA. For more
information on IGA you can refer to many cited papers which are prepared at the end of this
chapter.

6.3 Solving the TSP using AIS and IGA
The first work in investigating potential application of the immune system in solving
numerical optimization problems was the study by Bersini and Varela (Bersini & Varela, 90),
who proposed immune employment mechanism. After that, many studies have been
performed that focus on the AIS and IGA. Also, the IGA and AIS have been applied for
solving the TSP in many cases. In (Jiao & Wang, 2000) the IGA and its parts have been
introduced in detail and the IGA has been shown as an algorithm that accomplished in two
steps: 1) a vaccination and 2) an immune selection. These phases are completely similar to
that we mentioned about IGA and AIS in this section. In the mentioned paper, it is proved
that the IGA theoretically converges with probability one. Besides, strategies and methods
of selecting vaccines and constructing an immune operator are also given. Also, the IGA has
been applied to the TSP and the results which are presented in this study illustrate that IGA
is able to restrain the degenerate phenomenon effectively during the evolutionary process
and can improve the searching ability, adaptability and greatly increase the converging
speed. Recently, some works have been performed on the TSP which employ IGA. In (Zeng
& Gu, 2007), a novel genetic algorithm based on immunity and growth for the TSP is
presented. In this paper at first, a reversal exchange crossover and mutation operator is
proposed which lead to preservation of the good sub-tours and making individuals various.
At the next part, a new immune operator is proposed to restrain individuals’ degeneracy. In
addition, a novel growth operator is proposed to obtain the optimal solution with more
chances. Results and investigations that performed in this study show that the algorithm is
feasible and effective as it is claimed. In addition, in another study (Lu et al., 2007), a
modified immune genetic algorithm is applied to solve the Travelling Salesman Problem.
This method called an improved IGA by its authors. In this paper, at first, a new selection
strategy is incorporated into the conventional genetic algorithm to improve the performance

Population-Based Optimization Algorithms for Solving the Travelling Salesman Problem

17

of genetic algorithm. Besides the authors changed the selection strategy and in a new form it
includes three computational procedures: evaluating the diversity of genes, calculating the
percentage of genes, and computing the selection probability of genes. Based on the
prepared results it is inferred that, by incorporating inoculating genes into conventional
procedures of genetic algorithm, the number of evolutional iterations to reach an optimal
solution can be significantly reduced and in consequence it results in faster answer in
comparison to conventional IGA.
In addition to the mentioned works, the biological immune idea can be combined with other
population based optimization algorithms which all of them are prepared in this chapter. As
an instance, the paper (Qin et al., 2006) proposes a new diversity guaranteed ant colony
algorithm by adopting the method of immune strategy to ant colony algorithm and
simulating the behaviour of biological immune system. This method has been applied to the
TSP benchmarks and results show that the presented algorithm has strong capability of
optimization; it has diversified solutions, high convergence speed and succeeds in avoiding
the stagnation and premature phenomena.
Based on the performed studies some points can be inferred as mentioned in the following
(Keko et al., 2003):
The simulation results show that the variation in population size has the same effect on the
GA and IGA. In both of the mentioned techniques, large population sizes require more
generation to achieve higher fitness, resulting in relatively slow rate of convergence. Hence
new ideas are required for faster convergence. Some of these new ideas had been presented
in some works as you see in some investigated papers.
Also, based on the simulation results, the running time of the IGA and the regular GA do
not have large differences, since in the IGA all the vaccines are determined before the
algorithm starts and when they are required they can be loaded from a look up table.
Combining immune operator with another local improving operator can be an additional
idea for getting better answers from the IGA.
One of the advantages of the IGA over the plain GA is that it is less susceptible to changing
control parameters such as crossover or mutation probability. The simulation results
demonstrate that changing these parameters has slight influence to the overall performance.
It is worth mentioning that more studies and attentions in the AIS and IGA are employing
other AIS features like adaptive vaccine selection.

7. Bee colony optimization
7.1 Introduction
Similar to other natural inspired and collective intelligence based algorithms such as PSO
which is taken from the bird’s life and ACO based on the ant colony social life, another kind
of artificial intelligence systems that can be useful in solving many engineering,
management, control and computational problems, is an algorithm inspired from Bee
colonies in nature. The Bee Colony Optimization (BCO) algorithms are interesting
metaheuristic algorithms that represent another direction in the field of swarm intelligence.
Here, firstly we introduce the bee system and bee colony optimization briefly and then some
recent works on the TSP which have used bee systems are investigated.

7.2 Bee colony optimization
The bee colony’s function according to nature is as follows. At first, each bee belonging to a
colony looks for the feed individually. When a bee finds the feed, it informs other bees by

 Travelling Salesman Problem

16

convergence when population is large enough and diversity is secured. The combination of
immune algorithm and GA, form the immune genetic algorithm (IGA). Many of previous
works that are performed on the TSP used IGA. Now, we first investigate the IGA and its
structure in detail and after that we have a look at some previous works around the TSP.
In summery, the IGA consists of these steps:
1. Creation of initial population in some way, e.g. through a random process
2. Abstract vaccines according to the former information
3. Checking the termination criterion (if it is satisfied go to step 10 and else go to next step)
4. Crossover on the randomly selected individuals
5. Mutation on the produced children
6. Vaccination on the former step outcome
7. Deterioration checking
8. Discarding every individual that shows degeneration right after vaccine
9. Go to step 3
10. End
As it is obvious from the ten steps which have been mentioned above, the IGA is very
similar to the conventional GA, but they are different in operators. The IGA has vaccine
operator to overcome the universality problem of the conventional GA. For more
information on IGA you can refer to many cited papers which are prepared at the end of this
chapter.

6.3 Solving the TSP using AIS and IGA
The first work in investigating potential application of the immune system in solving
numerical optimization problems was the study by Bersini and Varela (Bersini & Varela, 90),
who proposed immune employment mechanism. After that, many studies have been
performed that focus on the AIS and IGA. Also, the IGA and AIS have been applied for
solving the TSP in many cases. In (Jiao & Wang, 2000) the IGA and its parts have been
introduced in detail and the IGA has been shown as an algorithm that accomplished in two
steps: 1) a vaccination and 2) an immune selection. These phases are completely similar to
that we mentioned about IGA and AIS in this section. In the mentioned paper, it is proved
that the IGA theoretically converges with probability one. Besides, strategies and methods
of selecting vaccines and constructing an immune operator are also given. Also, the IGA has
been applied to the TSP and the results which are presented in this study illustrate that IGA
is able to restrain the degenerate phenomenon effectively during the evolutionary process
and can improve the searching ability, adaptability and greatly increase the converging
speed. Recently, some works have been performed on the TSP which employ IGA. In (Zeng
& Gu, 2007), a novel genetic algorithm based on immunity and growth for the TSP is
presented. In this paper at first, a reversal exchange crossover and mutation operator is
proposed which lead to preservation of the good sub-tours and making individuals various.
At the next part, a new immune operator is proposed to restrain individuals’ degeneracy. In
addition, a novel growth operator is proposed to obtain the optimal solution with more
chances. Results and investigations that performed in this study show that the algorithm is
feasible and effective as it is claimed. In addition, in another study (Lu et al., 2007), a
modified immune genetic algorithm is applied to solve the Travelling Salesman Problem.
This method called an improved IGA by its authors. In this paper, at first, a new selection
strategy is incorporated into the conventional genetic algorithm to improve the performance

Population-Based Optimization Algorithms for Solving the Travelling Salesman Problem

17

of genetic algorithm. Besides the authors changed the selection strategy and in a new form it
includes three computational procedures: evaluating the diversity of genes, calculating the
percentage of genes, and computing the selection probability of genes. Based on the
prepared results it is inferred that, by incorporating inoculating genes into conventional
procedures of genetic algorithm, the number of evolutional iterations to reach an optimal
solution can be significantly reduced and in consequence it results in faster answer in
comparison to conventional IGA.
In addition to the mentioned works, the biological immune idea can be combined with other
population based optimization algorithms which all of them are prepared in this chapter. As
an instance, the paper (Qin et al., 2006) proposes a new diversity guaranteed ant colony
algorithm by adopting the method of immune strategy to ant colony algorithm and
simulating the behaviour of biological immune system. This method has been applied to the
TSP benchmarks and results show that the presented algorithm has strong capability of
optimization; it has diversified solutions, high convergence speed and succeeds in avoiding
the stagnation and premature phenomena.
Based on the performed studies some points can be inferred as mentioned in the following
(Keko et al., 2003):
The simulation results show that the variation in population size has the same effect on the
GA and IGA. In both of the mentioned techniques, large population sizes require more
generation to achieve higher fitness, resulting in relatively slow rate of convergence. Hence
new ideas are required for faster convergence. Some of these new ideas had been presented
in some works as you see in some investigated papers.
Also, based on the simulation results, the running time of the IGA and the regular GA do
not have large differences, since in the IGA all the vaccines are determined before the
algorithm starts and when they are required they can be loaded from a look up table.
Combining immune operator with another local improving operator can be an additional
idea for getting better answers from the IGA.
One of the advantages of the IGA over the plain GA is that it is less susceptible to changing
control parameters such as crossover or mutation probability. The simulation results
demonstrate that changing these parameters has slight influence to the overall performance.
It is worth mentioning that more studies and attentions in the AIS and IGA are employing
other AIS features like adaptive vaccine selection.

7. Bee colony optimization
7.1 Introduction
Similar to other natural inspired and collective intelligence based algorithms such as PSO
which is taken from the bird’s life and ACO based on the ant colony social life, another kind
of artificial intelligence systems that can be useful in solving many engineering,
management, control and computational problems, is an algorithm inspired from Bee
colonies in nature. The Bee Colony Optimization (BCO) algorithms are interesting
metaheuristic algorithms that represent another direction in the field of swarm intelligence.
Here, firstly we introduce the bee system and bee colony optimization briefly and then some
recent works on the TSP which have used bee systems are investigated.

7.2 Bee colony optimization
The bee colony’s function according to nature is as follows. At first, each bee belonging to a
colony looks for the feed individually. When a bee finds the feed, it informs other bees by

 Travelling Salesman Problem

18

dancing. Other bees collect and carry the feed to the hive. After relinquishing the feed to the
hive, the bee can take three different actions.
1. Abandon the previous food source and become again uncommitted follower.
2. Continue to forage at the food source without recruiting the nestmates.
3. Dance and thus recruit the nestmates before the return to the food source.
With a certain probability that is dependent on the obtained feed quality, its distance from
the hive and the number of the bees which are now engaged with this feed resource, a bee
selects one of the stated actions and follows its work in a similar repetitive form (Teodorovic
& Dell’Orco, 2005). This behaviour can be applied to many complicated engineering
problems including computational, control, optimization, transportation, etc. In the
following we study such a method that focuses on the TSP solving.

7.3 BCO application
The BCO algorithm can be a significant method in local search applications. One of the most
primary works on the bees and their life is (Sato & Hagiwara, 97). In this study, the authors
applied bee system along with GA and introduced a modified and improved form of the
conventional GA. Based on this fact that the regular GA lacks the global search ability; the
improvement is regarding to overcome this shortcoming. Hence, a new GA inspired by the
bee colony’s function has been presented, the authors called it, bee system. The main
purpose of this modified GA (bee system) is to improve the local search ability of GAs
without degrading the global search ability. In the proposed bee system, firstly global search
is performed using the simple GA structure. Through this global search step, some
chromosomes with reasonable high fitness produced which are called superior
chromosome. These superior chromosomes are kept for the local search procedure and each
of them corresponds to a local population. At the beginning of the local search all of the
chromosomes in each local population make couple (cross over) with its population superior
chromosome. This crossover is named concentrated crossover which tries to search
concentratedly around the related superior chromosome. Another difference between the
bee system and ordinary GA is migration among the population. In this method, the bee
system selects one individual per predetermined generation, and transfers it to the
neighbouring population which is called migration. Using this migration technique, each
population tries to search independently and cooperatively. Moreover, for a more effective
search, a simplified Simplex Method named Pseudo-Simplex Method is introduced and
employed in the proposed bee system. All of the mentioned operators are in the local search
part. After passing the predetermined generations, the local search stops. If the best solution
found so far does not suffice the ending condition, the global search starts again and the
algorithm is repeated (Sato & Hagiwara, 97). It was a kind of application based on the bee
colony’s function which is used to solve the TSP. Simulation results depict that the
introduced method has a good potential to solve the TSP and other complicated problems.

7.4 Solving the TSP using BCO
Another study around bee colony and its applications is a work performed for
transportation modelling with focus on artificial life (ALife) approach (Lucic & Teodorovic,
2002). This paper shows that the ALife models that have been developed for solving
complex transportation problems are inspired by social insect’s behavior. Interaction
between individual insects in a colony of social insects has been well documented. The

Population-Based Optimization Algorithms for Solving the Travelling Salesman Problem

19

examples of such interactive behavior are bee dancing during the food procurement, ants’
pheromone secretion, and performance of specific acts which signal the other insects to start
performing the same actions. Based on these studies we can construct the artificial systems
such as bee systems. In the mentioned study, the artificial bee system has been applied to
solve the TSP. Assume that, the graph in which the traveling salesman route should be
discovered is shown by G = (N, A) that N= nodes (cities) and A= links connecting these
nodes. This graph can correspond to the network that the artificial bees are collecting nectar.
The hive can also be placed randomly in one of the network’s nodes. For solving the TSP
using the bee system it is necessary that two parameters correspond to each others, tour
length and nectar quantity. Here, it is assumed that the nectar quantity that is possible to
collect flying along a certain link is inversely proportional to the link length. In other words,
the shorter the link, the higher the nectar quantity along that link. The artificial bees collect
the nectar during the predetermined time interval. After that, the hive position is changed
randomly and artificial bees start to collect the nectar from the new hive location. Each
iteration is composed of a certain number of stages. The stage is an elementary time unit in
the bees’ environment. During one stage the artificial bee will visit nodes, create partial
traveling salesman tour, and after that return to the hive (the number of nodes to be visited
within one stage is prescribed by the analyst at the beginning of the search process). In the
hive the bee will participate in a decision making process. The artificial bee will decide
whether to abandon the food source and become again an uncommitted follower, continue
to forage at the food source without recruiting nestmates, or dance and thus recruit
nestmates before returning to the food source (Lucic & Teodorovic, 2002). During any stage,
bees are choosing nodes to be visited in a random manner. The randomness in not useful
here and the mentioned paper’s authors assumed that the probability of choosing node j by
the k-th bee, located in node i (during stage u +1 and iteration z) equals to equation 13:

()

1 ()
max(,1)

, (,), (,), , ,
11, ()

max(,1)
(,)

0,

zadij z n rijr z be i g u z j N u z k u zz k kadk il zP u zij n rilr z be
l N u zk

otherwise

−⎧ −⎪ ∑⎪ = −⎪ = ∈ ∀⎪ −⎪ −+ = ⎨ ∑⎪ = −⎪ ∑
⎪ ∈
⎪
⎪⎩

 (13)

Where:
i, j – Node indexes (i, j = 1, 2, …, N),
di,j – Length of link (i, j),
k – Bee index (k = 1, 2, …, B),
B – The total number of bees in the hive,
z – Iteration index (z = 1, 2, …, M),
M – Maximum number of iteration,
u – Stage index ()()11, 2,..., /Nu s−= ,

s – Number of nodes visited by every artificial bee during one stage,

 Travelling Salesman Problem

18

dancing. Other bees collect and carry the feed to the hive. After relinquishing the feed to the
hive, the bee can take three different actions.
1. Abandon the previous food source and become again uncommitted follower.
2. Continue to forage at the food source without recruiting the nestmates.
3. Dance and thus recruit the nestmates before the return to the food source.
With a certain probability that is dependent on the obtained feed quality, its distance from
the hive and the number of the bees which are now engaged with this feed resource, a bee
selects one of the stated actions and follows its work in a similar repetitive form (Teodorovic
& Dell’Orco, 2005). This behaviour can be applied to many complicated engineering
problems including computational, control, optimization, transportation, etc. In the
following we study such a method that focuses on the TSP solving.

7.3 BCO application
The BCO algorithm can be a significant method in local search applications. One of the most
primary works on the bees and their life is (Sato & Hagiwara, 97). In this study, the authors
applied bee system along with GA and introduced a modified and improved form of the
conventional GA. Based on this fact that the regular GA lacks the global search ability; the
improvement is regarding to overcome this shortcoming. Hence, a new GA inspired by the
bee colony’s function has been presented, the authors called it, bee system. The main
purpose of this modified GA (bee system) is to improve the local search ability of GAs
without degrading the global search ability. In the proposed bee system, firstly global search
is performed using the simple GA structure. Through this global search step, some
chromosomes with reasonable high fitness produced which are called superior
chromosome. These superior chromosomes are kept for the local search procedure and each
of them corresponds to a local population. At the beginning of the local search all of the
chromosomes in each local population make couple (cross over) with its population superior
chromosome. This crossover is named concentrated crossover which tries to search
concentratedly around the related superior chromosome. Another difference between the
bee system and ordinary GA is migration among the population. In this method, the bee
system selects one individual per predetermined generation, and transfers it to the
neighbouring population which is called migration. Using this migration technique, each
population tries to search independently and cooperatively. Moreover, for a more effective
search, a simplified Simplex Method named Pseudo-Simplex Method is introduced and
employed in the proposed bee system. All of the mentioned operators are in the local search
part. After passing the predetermined generations, the local search stops. If the best solution
found so far does not suffice the ending condition, the global search starts again and the
algorithm is repeated (Sato & Hagiwara, 97). It was a kind of application based on the bee
colony’s function which is used to solve the TSP. Simulation results depict that the
introduced method has a good potential to solve the TSP and other complicated problems.

7.4 Solving the TSP using BCO
Another study around bee colony and its applications is a work performed for
transportation modelling with focus on artificial life (ALife) approach (Lucic & Teodorovic,
2002). This paper shows that the ALife models that have been developed for solving
complex transportation problems are inspired by social insect’s behavior. Interaction
between individual insects in a colony of social insects has been well documented. The

Population-Based Optimization Algorithms for Solving the Travelling Salesman Problem

19

examples of such interactive behavior are bee dancing during the food procurement, ants’
pheromone secretion, and performance of specific acts which signal the other insects to start
performing the same actions. Based on these studies we can construct the artificial systems
such as bee systems. In the mentioned study, the artificial bee system has been applied to
solve the TSP. Assume that, the graph in which the traveling salesman route should be
discovered is shown by G = (N, A) that N= nodes (cities) and A= links connecting these
nodes. This graph can correspond to the network that the artificial bees are collecting nectar.
The hive can also be placed randomly in one of the network’s nodes. For solving the TSP
using the bee system it is necessary that two parameters correspond to each others, tour
length and nectar quantity. Here, it is assumed that the nectar quantity that is possible to
collect flying along a certain link is inversely proportional to the link length. In other words,
the shorter the link, the higher the nectar quantity along that link. The artificial bees collect
the nectar during the predetermined time interval. After that, the hive position is changed
randomly and artificial bees start to collect the nectar from the new hive location. Each
iteration is composed of a certain number of stages. The stage is an elementary time unit in
the bees’ environment. During one stage the artificial bee will visit nodes, create partial
traveling salesman tour, and after that return to the hive (the number of nodes to be visited
within one stage is prescribed by the analyst at the beginning of the search process). In the
hive the bee will participate in a decision making process. The artificial bee will decide
whether to abandon the food source and become again an uncommitted follower, continue
to forage at the food source without recruiting nestmates, or dance and thus recruit
nestmates before returning to the food source (Lucic & Teodorovic, 2002). During any stage,
bees are choosing nodes to be visited in a random manner. The randomness in not useful
here and the mentioned paper’s authors assumed that the probability of choosing node j by
the k-th bee, located in node i (during stage u +1 and iteration z) equals to equation 13:

()

1 ()
max(,1)

, (,), (,), , ,
11, ()

max(,1)
(,)

0,

zadij z n rijr z be i g u z j N u z k u zz k kadk il zP u zij n rilr z be
l N u zk

otherwise

−⎧ −⎪ ∑⎪ = −⎪ = ∈ ∀⎪ −⎪ −+ = ⎨ ∑⎪ = −⎪ ∑
⎪ ∈
⎪
⎪⎩

 (13)

Where:
i, j – Node indexes (i, j = 1, 2, …, N),
di,j – Length of link (i, j),
k – Bee index (k = 1, 2, …, B),
B – The total number of bees in the hive,
z – Iteration index (z = 1, 2, …, M),
M – Maximum number of iteration,
u – Stage index ()()11, 2,..., /Nu s−= ,

s – Number of nodes visited by every artificial bee during one stage,

 Travelling Salesman Problem

20

nil(r) – total number of bees that visited link (i, l) in r-th iteration,
b – Memory length,
gk(u, z) – Last node that bee k visits at the end of stage u in iteration z,
Nk(u, z) – Set of unvisited nodes for bee k at stage u in iteration z (in one stage bee will visits
s nodes; we have |Nk(u, z) | = |N| - us),
a – Input parameter given by analyst.
This equation is based on some simple rules in solving the TSP using the bee system. These
rules have been prepared as follows:
The greater distance between nodes i and j leads to the lower probability that the k-th bee
located in the node i will choose node j during stage u and iteration z.
The greater number of iterations (z) makes the higher influence of the distance. In other
words, at the beginning of the search process, artificial bees have “more freedom of flight”.
It means that, the bees have more chance to search the entire solution space. But when more
iterations have been performed the bees have less freedom to explore the solution space
such as the search at first, because, near the end of the search process, with a high
probability the solution is in our neighbourhood.
Probability of selecting a new link by a bee is related to the total number of the last bees
which had been visited this link, before this. The greater total number of bees results in a
higher probability of choosing that link in the future.
All of the above mentioned points have been employed in the equation 13. Another
important point in this problem is the bee decision about the following of the search process.
After relinquishing the food, the bee is making a decision about abandoning the food source
or continuing the foraging at the food source. It is assumed that every bee can obtain the
information about nectar quantity collected by every other bee. The probability that, at the
beginning of stage u + 1, bee k will use the same partial tour that is defined in stage u in
iteration z is equal to the following (equation 14):

() uz

zurL
zuwr

zukL

ezukp

)),(min(
),(

),(

,1
∈

−

−
=+

(14)

Where Lk (u, z) is the length of partial route that is discovered by bee k in stage u in iteration z.
Based on equation 14 if a bee has discovered the shortest partial travelling salesman tour in
stage u in iteration z, the bee will fly along the same partial tour with the probability equal
to one. Besides, the longer tour has the smaller chance to choose based on this equation. For
having a global search it is better that the individual bees have interaction with each others.
To follow this purpose the probability of that the artificial bee continues foraging at the food
source without recruiting nestmates is tuned to a very low value and hence the probability
of that the bee flies to the dance floor and dance with other bees becomes low. In other
words, when at the beginning of a new stage, the bee does not follow the previous partial
travelling salesman tour, it will follow other bees and interacts to their dancing. But the bee
must select one of the advertised dancing arenas (partial travelling salesman tour) in the
dancing area, and hence another selection must be performed. This selection can be carried
out in terms of two conditions: 1) the length of that partial tour and 2) the number of bees
which are engaged in that partial tour. It is clear that the selection can be done based on the

Population-Based Optimization Algorithms for Solving the Travelling Salesman Problem

21

smaller tour length and also the greater number of bees. Based on these conditions the
authors prepare a relation as it is shown in equation 15, where:
 θρ , – Parameters given by the analyst,

),(zuξα – The normalized value of the partial route length

),(zuξβ – The normalized value of the number of bees advertising the partial tour,

Y(u, z) – The set of partial tours that were visited by at least one bee.

zuzuY

zuY

zuzu
e

zuzu
e

zup ,),,(

),(

),(),(

),(),(

),(∀∈

∑
∈

−

−

= ξ

τ

θατρβτ

ξθαξρβ

ξ (15)

As it is shown in the mentioned work (Lucic & Teodorovic, 2002), this bee system has been
tested on a large number of well known test benches such as Eil51.tsp, Berlin52.tsp, St70.tsp,
Pr76.tsp, Kroa100.tsp, Eil101.tsp, Tsp225.tsp and A280.tsp. Also, for improving the results in
each step, the 2-opt or 3-opt algorithms have been applied. The results reveal that the
mentioned method is very efficient. In all instances with less than 100 nodes, the bee system
achieves the optimal solution and in the large cases it has a significant improvement in
comparison to the other prevalent methods. The simulation results have been organized in
section nine.
One of the recent work for solving the TSP using bee’s behaviour and BCO algorithm is
(Teodorovic et al., 2006). In this paper the authors propose the Bee Colony Optimization
Metaheuristic (BCO). Moreover, this study, describes two BCO algorithms that the authors
call them, the Bee System (BS) and the Fuzzy Bee System (FBS). In the case of FBS the agents
(artificial bees) use approximate reasoning and rules of fuzzy logic in their communication
and acting. In this way, the FBS is capable to solve deterministic combinatorial problems, as
well as combinatorial problems characterized by uncertainty. In this paper, The BCO as a
new computational paradigm is described in detail at first. After that the TSP as a case study
has been solved using the proposed bee system. The proposed bee system is similar to that
had been seen in the previous investigated study but in this paper the BCO algorithm has
been described completely. For further information about the BCO algorithm please refer to
the related resources prepared at the end of the chapter.

8. Electromagnetism
8.1 Introduction
The Electromagnetism-like mechanism is a heuristic that was introduced by (Birbil & Fang,
2003). The method utilizes an attraction-repulsion mechanism to move the sample points
towards the optimality. In other words, EM simulates the attraction-repulsion mechanism of
electromagnetism theory which is based on Coulomb’s law. The main concentration of the
first introduction of this heuristic was on the problems with bounded variables on the form
equal to equation 16.

Min(f(x)) s.t. x ∈[l,u] (16)

 Travelling Salesman Problem

20

nil(r) – total number of bees that visited link (i, l) in r-th iteration,
b – Memory length,
gk(u, z) – Last node that bee k visits at the end of stage u in iteration z,
Nk(u, z) – Set of unvisited nodes for bee k at stage u in iteration z (in one stage bee will visits
s nodes; we have |Nk(u, z) | = |N| - us),
a – Input parameter given by analyst.
This equation is based on some simple rules in solving the TSP using the bee system. These
rules have been prepared as follows:
The greater distance between nodes i and j leads to the lower probability that the k-th bee
located in the node i will choose node j during stage u and iteration z.
The greater number of iterations (z) makes the higher influence of the distance. In other
words, at the beginning of the search process, artificial bees have “more freedom of flight”.
It means that, the bees have more chance to search the entire solution space. But when more
iterations have been performed the bees have less freedom to explore the solution space
such as the search at first, because, near the end of the search process, with a high
probability the solution is in our neighbourhood.
Probability of selecting a new link by a bee is related to the total number of the last bees
which had been visited this link, before this. The greater total number of bees results in a
higher probability of choosing that link in the future.
All of the above mentioned points have been employed in the equation 13. Another
important point in this problem is the bee decision about the following of the search process.
After relinquishing the food, the bee is making a decision about abandoning the food source
or continuing the foraging at the food source. It is assumed that every bee can obtain the
information about nectar quantity collected by every other bee. The probability that, at the
beginning of stage u + 1, bee k will use the same partial tour that is defined in stage u in
iteration z is equal to the following (equation 14):

() uz

zurL
zuwr

zukL

ezukp

)),(min(
),(

),(

,1
∈

−

−
=+

(14)

Where Lk (u, z) is the length of partial route that is discovered by bee k in stage u in iteration z.
Based on equation 14 if a bee has discovered the shortest partial travelling salesman tour in
stage u in iteration z, the bee will fly along the same partial tour with the probability equal
to one. Besides, the longer tour has the smaller chance to choose based on this equation. For
having a global search it is better that the individual bees have interaction with each others.
To follow this purpose the probability of that the artificial bee continues foraging at the food
source without recruiting nestmates is tuned to a very low value and hence the probability
of that the bee flies to the dance floor and dance with other bees becomes low. In other
words, when at the beginning of a new stage, the bee does not follow the previous partial
travelling salesman tour, it will follow other bees and interacts to their dancing. But the bee
must select one of the advertised dancing arenas (partial travelling salesman tour) in the
dancing area, and hence another selection must be performed. This selection can be carried
out in terms of two conditions: 1) the length of that partial tour and 2) the number of bees
which are engaged in that partial tour. It is clear that the selection can be done based on the

Population-Based Optimization Algorithms for Solving the Travelling Salesman Problem

21

smaller tour length and also the greater number of bees. Based on these conditions the
authors prepare a relation as it is shown in equation 15, where:
 θρ , – Parameters given by the analyst,

),(zuξα – The normalized value of the partial route length

),(zuξβ – The normalized value of the number of bees advertising the partial tour,

Y(u, z) – The set of partial tours that were visited by at least one bee.

zuzuY

zuY

zuzu
e

zuzu
e

zup ,),,(

),(

),(),(

),(),(

),(∀∈

∑
∈

−

−

= ξ

τ

θατρβτ

ξθαξρβ

ξ (15)

As it is shown in the mentioned work (Lucic & Teodorovic, 2002), this bee system has been
tested on a large number of well known test benches such as Eil51.tsp, Berlin52.tsp, St70.tsp,
Pr76.tsp, Kroa100.tsp, Eil101.tsp, Tsp225.tsp and A280.tsp. Also, for improving the results in
each step, the 2-opt or 3-opt algorithms have been applied. The results reveal that the
mentioned method is very efficient. In all instances with less than 100 nodes, the bee system
achieves the optimal solution and in the large cases it has a significant improvement in
comparison to the other prevalent methods. The simulation results have been organized in
section nine.
One of the recent work for solving the TSP using bee’s behaviour and BCO algorithm is
(Teodorovic et al., 2006). In this paper the authors propose the Bee Colony Optimization
Metaheuristic (BCO). Moreover, this study, describes two BCO algorithms that the authors
call them, the Bee System (BS) and the Fuzzy Bee System (FBS). In the case of FBS the agents
(artificial bees) use approximate reasoning and rules of fuzzy logic in their communication
and acting. In this way, the FBS is capable to solve deterministic combinatorial problems, as
well as combinatorial problems characterized by uncertainty. In this paper, The BCO as a
new computational paradigm is described in detail at first. After that the TSP as a case study
has been solved using the proposed bee system. The proposed bee system is similar to that
had been seen in the previous investigated study but in this paper the BCO algorithm has
been described completely. For further information about the BCO algorithm please refer to
the related resources prepared at the end of the chapter.

8. Electromagnetism
8.1 Introduction
The Electromagnetism-like mechanism is a heuristic that was introduced by (Birbil & Fang,
2003). The method utilizes an attraction-repulsion mechanism to move the sample points
towards the optimality. In other words, EM simulates the attraction-repulsion mechanism of
electromagnetism theory which is based on Coulomb’s law. The main concentration of the
first introduction of this heuristic was on the problems with bounded variables on the form
equal to equation 16.

Min(f(x)) s.t. x ∈[l,u] (16)

 Travelling Salesman Problem

22

where l and u are defined as the following form (equation 17):

[,] { , 1,... }n k k kl u x x l x u k n= ∈ < < = (17)

-4

-2

 0

 2

 4
-4 -2 0 2 4

-60-40-20 0
 20 40 60 80 100

Fig. 6. A continuous optimization problem space

As an example, figure 6 illustrates continues problem space with l1=-60, l2=-4, l3=-4,
u1=+100, u2=+4 and u3=+4. The aim is to find the minimum value of the shown surface.
In stochastic global optimization, population based algorithms start with sample points
from feasible regions which are randomly selected. The regions of attraction are determined
according to objective function values and then a mechanism is invoked for exploration of
these candidate regions. The Genetic Algorithm is an example of this mechanism that
corresponds to the crossover, reproduction and mutation operators (Michalewicz, 1994).
Similarly, Birbil et al. construct a mechanism that encourages the points to converge to the
highly attractive valleys, and contrarily, discourages the points to move further away from
steeper hills. This is similar to the charge of particles in elementary electromagnetism. In this
approach, the charge of each point relates to the objective function value, which we are
trying to optimize and also determines the magnitude of attraction or repulsion of the point
over the sample population.
In addition, the combination force is exerted on the point via other points for finding a
direction for each point to move in subsequence iterations. Like the electromagnetic forces,
this force is calculated by adding vectorially the forces from each of the other points
calculated separately.
Finally, similar to the hybrid population-based algorithms (Glover & Laguna, 1995), we may
apply a local search procedure to improve some of the objective function values observed in
the population.
Consider a problem in the form of (16) and the following parameters are given:
n dimension of the problem.
uk upper bound in the kth dimension.
lk lower bound in the kth dimension.
f (x) pointer to the function that is minimized.
For solving such problem using Electromagnetism-Like method, the following algorithm is
introduced by Birbil et al.

Population-Based Optimization Algorithms for Solving the Travelling Salesman Problem

23

ALGORITHM 1. EM (m, MAXITER, LSIT ER, δ)
m: number of sample points
MAXITER: maximum number of iterations
LSIT ER: maximum number of local search iterations
δ: local search parameter, δ ∈ [0, 1]
1: Initialize ()
2: iteration ←1
3: while iteration <MAXITER do
4: Local (LSIT ER, δ)
5: F ←CalcF ()
6: Move (F)
7: iteration ←iteration + 1
8: end while
The algorithm consists of four phases. The first phase is the initialization which determines the
initial position of the particles, second is the local search which gathers the local information of
each particle to improve it to its best local position, third is about calculating the force of each
particle and finally moves the particles. These phases are described in more details as follows.

8.2 Initialization
The initialization procedure is used to determine the place of the m particles (size of
population) at first iteration in an n dimensional feasible space. The distribution of the
particles is uniform between the lower bound and upper bound of the corresponding
variable. f(x) is the objective function and xbest is the particle which has the best value of f(x).
The initialization algorithm is as follow:
ALGORITHM 2. Initialize ()
1: for i = 1 to m do
2: for k = 1 to n do
3: λ ← U (0,1)
4: ()i

k k k kx l u lλ← + −
5: end for
6: Calculate f (xi)
7: end for
8: xbest ← argmin{f (xi), ∀i}

8.3 Local search
The local search procedure is used for gathering local information about xi and replacing the
particle with its best potential in its neighbour. The invoked local search by Birbil et al.,
works as follows: for each particle, in each dimension select a random step length and move
the ith particle along the direction. If the attained point has the better objective value than the
xi, the xi will be replaced by this point.
In this part of algorithm, any local search algorithm can be used but the following algorithm
is introduced by Birbil et al.
This is a simple random line search algorithm applied coordinate by coordinate. This
procedure does not require any gradient information to perform the local search. Instead of
using other powerful local search methods (Solis & Wets, 1981), we have utilized this
procedure because we wanted to show that even with this trivial method, the algorithm
shows promising convergence properties.

 Travelling Salesman Problem

22

where l and u are defined as the following form (equation 17):

[,] { , 1,... }n k k kl u x x l x u k n= ∈ < < = (17)

-4

-2

 0

 2

 4
-4 -2 0 2 4

-60-40-20 0
 20 40 60 80 100

Fig. 6. A continuous optimization problem space

As an example, figure 6 illustrates continues problem space with l1=-60, l2=-4, l3=-4,
u1=+100, u2=+4 and u3=+4. The aim is to find the minimum value of the shown surface.
In stochastic global optimization, population based algorithms start with sample points
from feasible regions which are randomly selected. The regions of attraction are determined
according to objective function values and then a mechanism is invoked for exploration of
these candidate regions. The Genetic Algorithm is an example of this mechanism that
corresponds to the crossover, reproduction and mutation operators (Michalewicz, 1994).
Similarly, Birbil et al. construct a mechanism that encourages the points to converge to the
highly attractive valleys, and contrarily, discourages the points to move further away from
steeper hills. This is similar to the charge of particles in elementary electromagnetism. In this
approach, the charge of each point relates to the objective function value, which we are
trying to optimize and also determines the magnitude of attraction or repulsion of the point
over the sample population.
In addition, the combination force is exerted on the point via other points for finding a
direction for each point to move in subsequence iterations. Like the electromagnetic forces,
this force is calculated by adding vectorially the forces from each of the other points
calculated separately.
Finally, similar to the hybrid population-based algorithms (Glover & Laguna, 1995), we may
apply a local search procedure to improve some of the objective function values observed in
the population.
Consider a problem in the form of (16) and the following parameters are given:
n dimension of the problem.
uk upper bound in the kth dimension.
lk lower bound in the kth dimension.
f (x) pointer to the function that is minimized.
For solving such problem using Electromagnetism-Like method, the following algorithm is
introduced by Birbil et al.

Population-Based Optimization Algorithms for Solving the Travelling Salesman Problem

23

ALGORITHM 1. EM (m, MAXITER, LSIT ER, δ)
m: number of sample points
MAXITER: maximum number of iterations
LSIT ER: maximum number of local search iterations
δ: local search parameter, δ ∈ [0, 1]
1: Initialize ()
2: iteration ←1
3: while iteration <MAXITER do
4: Local (LSIT ER, δ)
5: F ←CalcF ()
6: Move (F)
7: iteration ←iteration + 1
8: end while
The algorithm consists of four phases. The first phase is the initialization which determines the
initial position of the particles, second is the local search which gathers the local information of
each particle to improve it to its best local position, third is about calculating the force of each
particle and finally moves the particles. These phases are described in more details as follows.

8.2 Initialization
The initialization procedure is used to determine the place of the m particles (size of
population) at first iteration in an n dimensional feasible space. The distribution of the
particles is uniform between the lower bound and upper bound of the corresponding
variable. f(x) is the objective function and xbest is the particle which has the best value of f(x).
The initialization algorithm is as follow:
ALGORITHM 2. Initialize ()
1: for i = 1 to m do
2: for k = 1 to n do
3: λ ← U (0,1)
4: ()i

k k k kx l u lλ← + −
5: end for
6: Calculate f (xi)
7: end for
8: xbest ← argmin{f (xi), ∀i}

8.3 Local search
The local search procedure is used for gathering local information about xi and replacing the
particle with its best potential in its neighbour. The invoked local search by Birbil et al.,
works as follows: for each particle, in each dimension select a random step length and move
the ith particle along the direction. If the attained point has the better objective value than the
xi, the xi will be replaced by this point.
In this part of algorithm, any local search algorithm can be used but the following algorithm
is introduced by Birbil et al.
This is a simple random line search algorithm applied coordinate by coordinate. This
procedure does not require any gradient information to perform the local search. Instead of
using other powerful local search methods (Solis & Wets, 1981), we have utilized this
procedure because we wanted to show that even with this trivial method, the algorithm
shows promising convergence properties.

 Travelling Salesman Problem

24

ALGORITHM 3. Local(LSITER, δ)
1: counter ←1
2: Length← δ(maxk{uk − lk})
3: for i = 1 to m do
4: for k = 1 to n do
5: λ1 ← U (0, 1)
6: while counter <LSITER do
7: y ← xi

8: λ2 ← U (0, 1)
9: if λ1 > 0.5 then
10: yk ← yk + λ2(Length)
11: else
12: yk ← yk − λ2(Length)
13: end if
14: if f (y) < f(xi) then
15: xi ← y
16: counter← LSIT ER − 1
17: end if
18: counter ←counter + 1
19: end while
20: end for
21: end for
22: xbest ← argmin{f (xi), ∀i}

8.4 Calculation of total force vector
The electrostatic force between two point charges is directly proportional to the magnitude
of each charge and inversely proportional to the square of the distance between the charges.
The fixed charge of particle i is shown as it is shown in equation 18 (Cowan, 1968):

(18)

where ql is the charge of the ith particle and f (xi) is its objective value. f (xbest) is the objective
value of the best individual and m is population size. In each iteration the charge of all
particles will be computed according to their objective values. The charge of each particle
determines the magnitude of an attraction and repulsion effect in the population. A better
solution encourages other particles to converge to attractive valleys whereas a bad solution
discourages particles to move toward this region. The force of particle i is calculate as follow
(equation 19):

(19)

Population-Based Optimization Algorithms for Solving the Travelling Salesman Problem

25

Figure 7 represents an example. As it is clear from the figure, the particles 1, 2 and 3 have
the objective values equal to 20, 15 and 10 respectively. The aim is calculating the force on
particle 2 for example. The problem is minimization and particle 3 is the best particle. So
particle 3 encourages the particle 2. Particle 1 is worse than the particle 2 and it represents a
repulsion force on particle 2 and finally the force F is calculated.

Fig. 7. F12 is the force from particle 1 to particle 2 (repulsion) and F32 is the force from particle
3 to particle 2 (attraction), F is the resultant force vector.

8.5 Movement according to the total force
After the total force vector for the ith particle is evaluated, the particle is moved in the
direction of the force with the step length of λ which is selected randomly between 0 and 1.
The following formula is used for the movement of particles:

(20)

Where RNG is a vector whose components denote the allowed feasible movement toward
the upper bound, uk, or the lower bound, lk, for the corresponding dimension (Algorithm 4,
lines 6–10).
The following algorithm shows the movement procedure. Note that the best particle is not
moved and is carried to the next generation.
ALGORITHM 4. Move(F)
1: for i = 1 to m do
2: if i ≠ best then
3: λ ← U (0, 1)
4: l

i

l

F
F

F
←

5: for k = 1 to n do
6: if 0i

kF > then

7: xki ←xki + λFki (uk – xki)
8: else
9: xki ←xki + λ Fki (xki − lk)
10: end if
11: end for
12: end if
13: end for

 Travelling Salesman Problem

24

ALGORITHM 3. Local(LSITER, δ)
1: counter ←1
2: Length← δ(maxk{uk − lk})
3: for i = 1 to m do
4: for k = 1 to n do
5: λ1 ← U (0, 1)
6: while counter <LSITER do
7: y ← xi

8: λ2 ← U (0, 1)
9: if λ1 > 0.5 then
10: yk ← yk + λ2(Length)
11: else
12: yk ← yk − λ2(Length)
13: end if
14: if f (y) < f(xi) then
15: xi ← y
16: counter← LSIT ER − 1
17: end if
18: counter ←counter + 1
19: end while
20: end for
21: end for
22: xbest ← argmin{f (xi), ∀i}

8.4 Calculation of total force vector
The electrostatic force between two point charges is directly proportional to the magnitude
of each charge and inversely proportional to the square of the distance between the charges.
The fixed charge of particle i is shown as it is shown in equation 18 (Cowan, 1968):

(18)

where ql is the charge of the ith particle and f (xi) is its objective value. f (xbest) is the objective
value of the best individual and m is population size. In each iteration the charge of all
particles will be computed according to their objective values. The charge of each particle
determines the magnitude of an attraction and repulsion effect in the population. A better
solution encourages other particles to converge to attractive valleys whereas a bad solution
discourages particles to move toward this region. The force of particle i is calculate as follow
(equation 19):

(19)

Population-Based Optimization Algorithms for Solving the Travelling Salesman Problem

25

Figure 7 represents an example. As it is clear from the figure, the particles 1, 2 and 3 have
the objective values equal to 20, 15 and 10 respectively. The aim is calculating the force on
particle 2 for example. The problem is minimization and particle 3 is the best particle. So
particle 3 encourages the particle 2. Particle 1 is worse than the particle 2 and it represents a
repulsion force on particle 2 and finally the force F is calculated.

Fig. 7. F12 is the force from particle 1 to particle 2 (repulsion) and F32 is the force from particle
3 to particle 2 (attraction), F is the resultant force vector.

8.5 Movement according to the total force
After the total force vector for the ith particle is evaluated, the particle is moved in the
direction of the force with the step length of λ which is selected randomly between 0 and 1.
The following formula is used for the movement of particles:

(20)

Where RNG is a vector whose components denote the allowed feasible movement toward
the upper bound, uk, or the lower bound, lk, for the corresponding dimension (Algorithm 4,
lines 6–10).
The following algorithm shows the movement procedure. Note that the best particle is not
moved and is carried to the next generation.
ALGORITHM 4. Move(F)
1: for i = 1 to m do
2: if i ≠ best then
3: λ ← U (0, 1)
4: l

i

l

F
F

F
←

5: for k = 1 to n do
6: if 0i

kF > then

7: xki ←xki + λFki (uk – xki)
8: else
9: xki ←xki + λ Fki (xki − lk)
10: end if
11: end for
12: end if
13: end for

 Travelling Salesman Problem

26

8.6 Termination criteria
There are 2 termination criteria introduced by Birbil et al. for electromagnetism as follow:
1. Maximum number of iterations. They claim that in general, 25 iterations per dimension

(i.e., MAXITER=25n) is satisfactory for converging to the optimum point for moderate
difficulty functions.

2. Successive number of iterations spent without changing the current best point. In other
word, if the current best point is not improved for certain number of iterations, the
algorithm may be stopped.

8.7 Solving the TSP using EM-like mechanism
One of the most attractive approaches for solving TSP using EM is cited in (Wu et al., 2006).
In this study, a hybrid algorithm based on EM and K-OPT is introduced. They used a
revised EM-like algorithm which proposed by (Birbil & Fang, 2005). In this version of EM, a
parameter v belong to (0, 1) is introduced. The perturbed point xp is selected as the farthest
point from the current best point, xbest, in the current population. The calculation of the total
force vector remains the same for all points except xp. For xp, the component forces are
perturbed by a random number λ, where λ is uniformly distributed between 0 and 1. The
directions of the component forces are perturbed; that is, if the random variable is less
than the parameter v then the direction of the component force is reversed. Besides, they use
a formulation for calculating the forces which proposed in (Maenhout & Vanhoucke, 2005)
for solving the Nurse Scheduling problem. As we know, TSP is an integer value problem
but the EM algorithm works in real valued problems (continues space). This problem makes
the transformation very significant. In the proposed approach in (Wu et al., 2006), one of the
well-known algorithms (Random Key (RK)) for transforming the continuous domain into
the discrete domain has been used. The concept of RK technique is simple and can be
applied easily. When we obtain a k-dimensional solution, we sort the value corresponding
to each dimension. Any sorting algorithm can be used in the method. The indices of the
sorted list will be the solution in discrete space. By applying the RK algorithm, any
continuous algorithm like EM will be able to work in a discrete space.

9. Experimental results
In this section some results of discussed population based methods for solving the TSP have
been prepared. At each subsection the mentioned algorithms and studies based on the some
cited paper have been compared.

9.1 Evolutionary algorithms
The first study that has been cited in section 2 was (Bonyadi et al., 2007). In this work some
changes to two previous local search algorithms i.e. Shuffled Frog Leaping (SFL) and
Civilization and Society (CS) have been made and these algorithms are combined with the
GA idea. The shown results illustrate that the mentioned hybrid algorithm has better results
in comparison to the GA using the SFL method. The results have been shown in Table 1.
In another work (Yan et al., 2005) a new algorithm based on Inver-over operator, for
combinatorial optimization problems has been proposed. The shown results prove that
these changes are very efficient to accelerate the convergence speed. As a consequence, it is

Population-Based Optimization Algorithms for Solving the Travelling Salesman Problem

27

inferred that, one of the points for contribution is operators. Suitable changes in the
conventional form of operators might lead to major differences in search and optimization
procedure. The mentioned results have been prepared in Table 2.

Algorithm Average path value for 80 point input (million)
GA 26

GA using SFL method 19

GA using Proposed approach 14
Exact solution 10

Table 1. (Bonyadi et al., 2007) simulation results

Instance Result in TSBLIB Optimum in TSBLIB Results by (Yan et al., 2005)
Eil76 538 545.387 544.369
Pr136 96772 96772 96770.924

Table 2. (Yan et al., 2005) simulation results

As mentioned earlier, one of the points that solving the TSP can contribute is recombination
operators i.e. mutation and crossover. Based on (Takahashi, 2005) there are two kinds of
crossover operators for solving the TSP. Takahashi tries to retain useful information about
links of parent’s edges which leads to convergence. The Takahashi’s experimental results
suggest that changing crossover operators at arbitrary time according to city data structure
is available to improve the performance of GAs.

9.2 ACO algorithms
The algorithm presented in (Dorigo & Gambardella, 1997) is listed in Table 3. As it is
mentioned, the paper uses an algorithm based on ACS for solving the TSP.

Problem name ACS results (Dorigo & Gambardella 1997) Optimum
Eil50 427.96 425
Eil75 542.37 535

Table 3. (Dorigo & Gambardella, 1997) simulation results

9.3 PSO algorithms
Table 4 illustrates the results of the paper presented in (Yuan et al., 2007) which works based
on ACO in combination with PSO.

Problem name Best Worst Average
Oliver30 425.6542 457.2354 432.2231

Att48 33534 39679 34556

Table 4. (Yuan et al., 2007) simulation results

 Travelling Salesman Problem

26

8.6 Termination criteria
There are 2 termination criteria introduced by Birbil et al. for electromagnetism as follow:
1. Maximum number of iterations. They claim that in general, 25 iterations per dimension

(i.e., MAXITER=25n) is satisfactory for converging to the optimum point for moderate
difficulty functions.

2. Successive number of iterations spent without changing the current best point. In other
word, if the current best point is not improved for certain number of iterations, the
algorithm may be stopped.

8.7 Solving the TSP using EM-like mechanism
One of the most attractive approaches for solving TSP using EM is cited in (Wu et al., 2006).
In this study, a hybrid algorithm based on EM and K-OPT is introduced. They used a
revised EM-like algorithm which proposed by (Birbil & Fang, 2005). In this version of EM, a
parameter v belong to (0, 1) is introduced. The perturbed point xp is selected as the farthest
point from the current best point, xbest, in the current population. The calculation of the total
force vector remains the same for all points except xp. For xp, the component forces are
perturbed by a random number λ, where λ is uniformly distributed between 0 and 1. The
directions of the component forces are perturbed; that is, if the random variable is less
than the parameter v then the direction of the component force is reversed. Besides, they use
a formulation for calculating the forces which proposed in (Maenhout & Vanhoucke, 2005)
for solving the Nurse Scheduling problem. As we know, TSP is an integer value problem
but the EM algorithm works in real valued problems (continues space). This problem makes
the transformation very significant. In the proposed approach in (Wu et al., 2006), one of the
well-known algorithms (Random Key (RK)) for transforming the continuous domain into
the discrete domain has been used. The concept of RK technique is simple and can be
applied easily. When we obtain a k-dimensional solution, we sort the value corresponding
to each dimension. Any sorting algorithm can be used in the method. The indices of the
sorted list will be the solution in discrete space. By applying the RK algorithm, any
continuous algorithm like EM will be able to work in a discrete space.

9. Experimental results
In this section some results of discussed population based methods for solving the TSP have
been prepared. At each subsection the mentioned algorithms and studies based on the some
cited paper have been compared.

9.1 Evolutionary algorithms
The first study that has been cited in section 2 was (Bonyadi et al., 2007). In this work some
changes to two previous local search algorithms i.e. Shuffled Frog Leaping (SFL) and
Civilization and Society (CS) have been made and these algorithms are combined with the
GA idea. The shown results illustrate that the mentioned hybrid algorithm has better results
in comparison to the GA using the SFL method. The results have been shown in Table 1.
In another work (Yan et al., 2005) a new algorithm based on Inver-over operator, for
combinatorial optimization problems has been proposed. The shown results prove that
these changes are very efficient to accelerate the convergence speed. As a consequence, it is

Population-Based Optimization Algorithms for Solving the Travelling Salesman Problem

27

inferred that, one of the points for contribution is operators. Suitable changes in the
conventional form of operators might lead to major differences in search and optimization
procedure. The mentioned results have been prepared in Table 2.

Algorithm Average path value for 80 point input (million)
GA 26

GA using SFL method 19

GA using Proposed approach 14
Exact solution 10

Table 1. (Bonyadi et al., 2007) simulation results

Instance Result in TSBLIB Optimum in TSBLIB Results by (Yan et al., 2005)
Eil76 538 545.387 544.369
Pr136 96772 96772 96770.924

Table 2. (Yan et al., 2005) simulation results

As mentioned earlier, one of the points that solving the TSP can contribute is recombination
operators i.e. mutation and crossover. Based on (Takahashi, 2005) there are two kinds of
crossover operators for solving the TSP. Takahashi tries to retain useful information about
links of parent’s edges which leads to convergence. The Takahashi’s experimental results
suggest that changing crossover operators at arbitrary time according to city data structure
is available to improve the performance of GAs.

9.2 ACO algorithms
The algorithm presented in (Dorigo & Gambardella, 1997) is listed in Table 3. As it is
mentioned, the paper uses an algorithm based on ACS for solving the TSP.

Problem name ACS results (Dorigo & Gambardella 1997) Optimum
Eil50 427.96 425
Eil75 542.37 535

Table 3. (Dorigo & Gambardella, 1997) simulation results

9.3 PSO algorithms
Table 4 illustrates the results of the paper presented in (Yuan et al., 2007) which works based
on ACO in combination with PSO.

Problem name Best Worst Average
Oliver30 425.6542 457.2354 432.2231

Att48 33534 39679 34556

Table 4. (Yuan et al., 2007) simulation results

 Travelling Salesman Problem

28

9.4 IWD algorithms
Based on the observation on the behavior of water drops, (Shah-Hosseini, 2007) develops an
artificial water drop which possesses some of the remarkable properties of the natural water
drop. The IWD algorithm is experimented by artificial and some benchmark TSP
environments. The results show that the proposed algorithm converges fast to optimum
solutions and finds good and promising results. Figures 8 and 9 depict the results of
running this algorithm on some TSP benchmarks.

Fig. 8. The best tour found by the proposed algorithm after 300 iterations for the 76-city
problem eil76. The algorithm gets a good local optimum with the tour length 559 which is
quite close to the global optimum 538.

Fig. 9. The best tour found by the proposed algorithm after 1500 iterations for the 100-city
problem kroA100. The algorithm gets a good local optimum with the tour length 23156
which is quite close to the global optimum 21282.

Figure 10 shows the average length of the best tours of the IWD algorithm in 10
independent runs for the TSP problems in which the cities are on a circle. The number of
cities is increased from 10 to 100 by the value of five, and in each case the best average tour
length over 10 runs is depicted.
Based on the simulation results, it is inferable that the IWD algorithm converges fast to
optimum solutions and finds good and promising results.

Population-Based Optimization Algorithms for Solving the Travelling Salesman Problem

29

0

100

200

300

400

1 3 5 7 9 11 13 15 17 19

Problem size (number of cities / 5 -1)

B
es

t T
ou

r L
en

gt
h

Fig. 10. The dotted lines show the global optimum tour length whereas the solid lines are the
best tour lengths obtained by the IWD algorithm.

9.5 AIS algorithms
The IGA and AIS have been applied for solving the TSP in many cases. In (Jiao & Wang,
2000) it is proved that the IGA is theoretically convergent with probability one. Besides,
strategies and methods of selecting vaccines and constructing an immune operator are also
given. The simulation results illustrate that IGA is able to restrain the degenerate
phenomenon effectively during the evolutionary process and can improve the searching
ability and adaptability, while greatly increase the converging speed.
In another work, (Zeng & Gu, 2007), a novel genetic algorithm based on immunity and
growth for the TSP is presented. The value obtained by the mentioned algorithm is prepared
in Table 5. Results and investigations that performed in this study show that the algorithm
is feasible and effective as it is claimed.

Problem Result in TSBLIB Results by (Zeng & Gu, 2007)
Eil51 429.983 428.872
Pr136 96772 96770.9

Table 5. (Zeng & Gu, 2007) simulation results

9.6 BCO algorithms
In section 7, one of the main work that had been studied was the study around bee colony
and its applications for transportation modelling with focus on artificial life (ALife)
approach (Lucic & Teodorovic, 2002). This paper shows that the ALife models that have
been developed for solving complex transportation problems are inspired by social insect’s
behavior. The proposed algorithm in this work has been tested on a large number of well
known TSP test benches such as Eil51.tsp, Berlin52.tsp, St70.tsp, Pr76.tsp, Kroa100.tsp,
Eil101.tsp, Tsp225.tsp and A280.tsp. Also, for improving the results in each step, the 2-opt or
3-opt algorithms have been applied. Table 6 demonstrates the algorithm results. The results
reveal that the mentioned method is very efficient. In all instances with less than 100 nodes,
the bee system achieves the optimal solution and in the large cases it has a significant
improvement in comparison to the other prevalent methods.

 Travelling Salesman Problem

28

9.4 IWD algorithms
Based on the observation on the behavior of water drops, (Shah-Hosseini, 2007) develops an
artificial water drop which possesses some of the remarkable properties of the natural water
drop. The IWD algorithm is experimented by artificial and some benchmark TSP
environments. The results show that the proposed algorithm converges fast to optimum
solutions and finds good and promising results. Figures 8 and 9 depict the results of
running this algorithm on some TSP benchmarks.

Fig. 8. The best tour found by the proposed algorithm after 300 iterations for the 76-city
problem eil76. The algorithm gets a good local optimum with the tour length 559 which is
quite close to the global optimum 538.

Fig. 9. The best tour found by the proposed algorithm after 1500 iterations for the 100-city
problem kroA100. The algorithm gets a good local optimum with the tour length 23156
which is quite close to the global optimum 21282.

Figure 10 shows the average length of the best tours of the IWD algorithm in 10
independent runs for the TSP problems in which the cities are on a circle. The number of
cities is increased from 10 to 100 by the value of five, and in each case the best average tour
length over 10 runs is depicted.
Based on the simulation results, it is inferable that the IWD algorithm converges fast to
optimum solutions and finds good and promising results.

Population-Based Optimization Algorithms for Solving the Travelling Salesman Problem

29

0

100

200

300

400

1 3 5 7 9 11 13 15 17 19

Problem size (number of cities / 5 -1)

B
es

t T
ou

r L
en

gt
h

Fig. 10. The dotted lines show the global optimum tour length whereas the solid lines are the
best tour lengths obtained by the IWD algorithm.

9.5 AIS algorithms
The IGA and AIS have been applied for solving the TSP in many cases. In (Jiao & Wang,
2000) it is proved that the IGA is theoretically convergent with probability one. Besides,
strategies and methods of selecting vaccines and constructing an immune operator are also
given. The simulation results illustrate that IGA is able to restrain the degenerate
phenomenon effectively during the evolutionary process and can improve the searching
ability and adaptability, while greatly increase the converging speed.
In another work, (Zeng & Gu, 2007), a novel genetic algorithm based on immunity and
growth for the TSP is presented. The value obtained by the mentioned algorithm is prepared
in Table 5. Results and investigations that performed in this study show that the algorithm
is feasible and effective as it is claimed.

Problem Result in TSBLIB Results by (Zeng & Gu, 2007)
Eil51 429.983 428.872
Pr136 96772 96770.9

Table 5. (Zeng & Gu, 2007) simulation results

9.6 BCO algorithms
In section 7, one of the main work that had been studied was the study around bee colony
and its applications for transportation modelling with focus on artificial life (ALife)
approach (Lucic & Teodorovic, 2002). This paper shows that the ALife models that have
been developed for solving complex transportation problems are inspired by social insect’s
behavior. The proposed algorithm in this work has been tested on a large number of well
known TSP test benches such as Eil51.tsp, Berlin52.tsp, St70.tsp, Pr76.tsp, Kroa100.tsp,
Eil101.tsp, Tsp225.tsp and A280.tsp. Also, for improving the results in each step, the 2-opt or
3-opt algorithms have been applied. Table 6 demonstrates the algorithm results. The results
reveal that the mentioned method is very efficient. In all instances with less than 100 nodes,
the bee system achieves the optimal solution and in the large cases it has a significant
improvement in comparison to the other prevalent methods.

 Travelling Salesman Problem

30

Problem Optimal value Best value in (Lucic &
Teodorovic, 2002)

Average value in (Lucic
& Teodorovic, 2002)

Eil51 428.87 428.87 428.87
Pr76 108159 108159 108159

Table 6. (Lucic & Teodorovic, 2002) simulation results obtained by the Bee System enriched
with 3-opt heuristic.
Another work on the field of BCO and for solving the TSP is (Teodorovic et al., 2006). In this
paper the authors propose the Bee Colony Optimization Metaheuristic (BCO). Moreover,
this study, describes two BCO algorithms that the authors call them, the Bee System (BS)
and the Fuzzy Bee System (FBS). In the case of FBS the agents (artificial bees) use
approximate reasoning and rules of fuzzy logic in their communication and acting. The
simulation results of the BS can be seen in Table 7.

Problem name Optimal value Best value by (Teodorovic et al., 2006)
Eil51 429.983 431.121
Pr76 108159 108790

Table 7. (Teodorovic et al., 2006) simulation results

9.7 Electromagnetism-like mechanisms
Table 8 illustrates the results for EM which introduced in (Wu et al., 2006).

9.8 Comparison of various algorithms
Figure 11 shows a comparison among various methods for two standard TSP problems
named st70 and kroa100.

Problem name Best Optimal Average
14 cities 30.879 30.879 31.80731
16 cities 3.2 3.2 3.30349

Table 8. (Wu et al., 2006) simulation results

(a)

(b)

Fig. 11. (a) The results of various algorithm applied on Kroa100, (b) The results of various algorithm
applied on st70 (The vertical axes show the best tour length obtained by each algorithm).

Population-Based Optimization Algorithms for Solving the Travelling Salesman Problem

31

10. Conclusion
Maybe this chapter is the first versatile study on the population based optimization
algorithms focused on solving the TSP. In this study, the state of the art of population based
optimization algorithms such as Evolutionary Algorithms (EA), Ant Colony Optimization
Algorithms (ACO), Particle Swarm Optimization Algorithms (PSO), Intelligent Water-Drops
Algorithm (IWD), Artificial Immune Systems (AIS), Bee Colony Optimization Algorithms
(BCO) and finally Electromagnetism-like Mechanisms (EM) has been introduced and
investigated. The chapter includes nine parts before this; first one is introduction on the TSP
and optimization algorithm, seven sections are about mentioned population based
optimization algorithms and some related works which use these methods for solving the
TSP, and finally the last part encompasses experimental results on the perused studies. All
the sections try to introduce the related population based algorithm truly. Then the authors
attempt to explore some useful studies that have been done by other researchers for solving
the TSP. In addition some important points, where contribution or innovation in different
parts of the related algorithm or in solving the TSP can be applied, have been pointed. The
experimental results demonstrate a brief comparison among the various population based
optimization methods. In this section you can find some tables, graphs and figures which
compare the presented methods with their counterparts in terms of efficiency using some
well known benchmarks on the TSP. The performed study shows that all of the stated
methods have some weakness and some strength points which are noticed at the related
section. As a consequence, the further research can focus on these points for amplification of
strengths and eliminating or improving the weaknesses. In addition, an innovative
population based method inspired by natural water drops behaviour is reviewed in this
chapter.

11. References
Adleman, L. M. (1994). Molecular computation of solutions to combinatorial problem.

Science, 1994, pp. 1021–1023.
Beckers, R. ; Deneubourg, J.L. ; Goss, S. (1992). Trails and U-turns in the selection of the

shortest path by the ant Lasius Niger. Journal of Theoretical Biology, Vol. 159, pp.
397–415, 1992.

Bersini, H. & Varela, F. J., (1990). Workshop on Parallel Problem Solving from Nature.
LNCS, Springer-Verlag 496 343, Proc. 1st.

Birbil, S. & Fang, Sh. (2003). An Electromagnetism-like Mechanism for Global Optimization.
Journal of Global Optimization, , Kluwer Academic Publishers, Vol. 25, (2003), pp.
263-282, ISSN 263–282, 2003.

Birbil, S. & FANG, Sh. (2005). Convergence of a Population Based Global Optimization
Algorithms. Journal of Global Optimization

Bonyadi, R. M.; Rahimi Azghadi S., M. & Shah-Hosseini, H. (2007). Solving Traveling
Salesman Problem Using Combinational Evolutionary Algorithm. In: IFIP
International Federation for Information Processing, Volume 247, Artificial Intelligence
and Innovations 2007: From Theory to Applications, eds. Boukis, C, Pnevmatikakis, L.,
Polymenakos, L., pp. 37-44, (Boston: Springer).

Cowan, E. W. (1968), Basic Electromagnetism, Academic Press, New York.

 Travelling Salesman Problem

30

Problem Optimal value Best value in (Lucic &
Teodorovic, 2002)

Average value in (Lucic
& Teodorovic, 2002)

Eil51 428.87 428.87 428.87
Pr76 108159 108159 108159

Table 6. (Lucic & Teodorovic, 2002) simulation results obtained by the Bee System enriched
with 3-opt heuristic.
Another work on the field of BCO and for solving the TSP is (Teodorovic et al., 2006). In this
paper the authors propose the Bee Colony Optimization Metaheuristic (BCO). Moreover,
this study, describes two BCO algorithms that the authors call them, the Bee System (BS)
and the Fuzzy Bee System (FBS). In the case of FBS the agents (artificial bees) use
approximate reasoning and rules of fuzzy logic in their communication and acting. The
simulation results of the BS can be seen in Table 7.

Problem name Optimal value Best value by (Teodorovic et al., 2006)
Eil51 429.983 431.121
Pr76 108159 108790

Table 7. (Teodorovic et al., 2006) simulation results

9.7 Electromagnetism-like mechanisms
Table 8 illustrates the results for EM which introduced in (Wu et al., 2006).

9.8 Comparison of various algorithms
Figure 11 shows a comparison among various methods for two standard TSP problems
named st70 and kroa100.

Problem name Best Optimal Average
14 cities 30.879 30.879 31.80731
16 cities 3.2 3.2 3.30349

Table 8. (Wu et al., 2006) simulation results

(a)

(b)

Fig. 11. (a) The results of various algorithm applied on Kroa100, (b) The results of various algorithm
applied on st70 (The vertical axes show the best tour length obtained by each algorithm).

Population-Based Optimization Algorithms for Solving the Travelling Salesman Problem

31

10. Conclusion
Maybe this chapter is the first versatile study on the population based optimization
algorithms focused on solving the TSP. In this study, the state of the art of population based
optimization algorithms such as Evolutionary Algorithms (EA), Ant Colony Optimization
Algorithms (ACO), Particle Swarm Optimization Algorithms (PSO), Intelligent Water-Drops
Algorithm (IWD), Artificial Immune Systems (AIS), Bee Colony Optimization Algorithms
(BCO) and finally Electromagnetism-like Mechanisms (EM) has been introduced and
investigated. The chapter includes nine parts before this; first one is introduction on the TSP
and optimization algorithm, seven sections are about mentioned population based
optimization algorithms and some related works which use these methods for solving the
TSP, and finally the last part encompasses experimental results on the perused studies. All
the sections try to introduce the related population based algorithm truly. Then the authors
attempt to explore some useful studies that have been done by other researchers for solving
the TSP. In addition some important points, where contribution or innovation in different
parts of the related algorithm or in solving the TSP can be applied, have been pointed. The
experimental results demonstrate a brief comparison among the various population based
optimization methods. In this section you can find some tables, graphs and figures which
compare the presented methods with their counterparts in terms of efficiency using some
well known benchmarks on the TSP. The performed study shows that all of the stated
methods have some weakness and some strength points which are noticed at the related
section. As a consequence, the further research can focus on these points for amplification of
strengths and eliminating or improving the weaknesses. In addition, an innovative
population based method inspired by natural water drops behaviour is reviewed in this
chapter.

11. References
Adleman, L. M. (1994). Molecular computation of solutions to combinatorial problem.

Science, 1994, pp. 1021–1023.
Beckers, R. ; Deneubourg, J.L. ; Goss, S. (1992). Trails and U-turns in the selection of the

shortest path by the ant Lasius Niger. Journal of Theoretical Biology, Vol. 159, pp.
397–415, 1992.

Bersini, H. & Varela, F. J., (1990). Workshop on Parallel Problem Solving from Nature.
LNCS, Springer-Verlag 496 343, Proc. 1st.

Birbil, S. & Fang, Sh. (2003). An Electromagnetism-like Mechanism for Global Optimization.
Journal of Global Optimization, , Kluwer Academic Publishers, Vol. 25, (2003), pp.
263-282, ISSN 263–282, 2003.

Birbil, S. & FANG, Sh. (2005). Convergence of a Population Based Global Optimization
Algorithms. Journal of Global Optimization

Bonyadi, R. M.; Rahimi Azghadi S., M. & Shah-Hosseini, H. (2007). Solving Traveling
Salesman Problem Using Combinational Evolutionary Algorithm. In: IFIP
International Federation for Information Processing, Volume 247, Artificial Intelligence
and Innovations 2007: From Theory to Applications, eds. Boukis, C, Pnevmatikakis, L.,
Polymenakos, L., pp. 37-44, (Boston: Springer).

Cowan, E. W. (1968), Basic Electromagnetism, Academic Press, New York.

 Travelling Salesman Problem

32

Dasgupta D. (Ed.), (1999). Artificial Immune Systems and Their Applications. Springer-Verlag.
Berlin.

Dorigo, M. & Stutzle, T. (2004). Ant colony optimization, Prentice hall,
Dorigo, M.; & Gambardella, L.M.; Ant Colony System: A Cooperative Learning Approach to

the Traveling Salesman Problem, IEEE TRANSACTIONS ON EVOLUTIONARY
COMPUTATION, VOL. 1, NO. 1, APRIL 1997, ISSN 1089–778X/97

Eberhart, C. & Kennedy, J. (1995). A new optimizer using particle swarm theory. In Proc.
Sixth Intl. Symposium on Micro Machine and Human Science, Nagoya, Japan, 1995, pp.
39–43.

Eiben A. E. & Smith, J. E. (2003). Introduction to Evolutionary Computing. Springer-Verlag.
Eppstein, D. (2007). TSP for Cubic Graphs. Journal of Graph Algorithms and Applications

(JGAA), Vol. 11, No. 1, pp. 61–81.
Fogel, L. J.; Owens, A. J. & Walsh, M. J., (1966). Artificial Intelligence through Simulated

Evolution. New York: John Wiley.
Garey, M. R. & Johnson, D. S. (1979). Computers and Intractability: A Guide to the Theory of NP-

Completeness. W. H. Freeman.
Glover, J. K. F. & Laguna, M. (1995), Genetic algorithms and tabu search: Hybrids for

optimization. Computers and Operations Research, 22: 111–134.
Goldberg, D. E., (1989). Genetic Algorithm in Search, Optimization and Learning, Reading, MA:

Addison-Wesley.
Haykin, S. (1999). Neural Networks, Prentice-Hall, second edition.
Holland, J. (1975). Adaptation in Natural and Artificial Systems, University of Michigan Press,

Ann Arbor.
Holldobler, B. & Wilson, E. O. (1990). The Ants. Berlin: Springer-Verlag.
Jiao L. & Wang L. (2000). Novel genetic algorithm based on immunity. IEEE Transactions on

Systems, Man and Cybernetics, Part A, vol. 30, no. 5, pp. 552 -561.
Keko, H.; Skok, M. & Skrlec, D. (2003). Artificial Immune Systems in Solving Routing

Problems. EUROCON 2003, pp. 62-66.
Kennedy, j. & Eberhart, R. (2001). Swarm Intelligence. Morgan Kaufmann.
Kirkpatrick, S.; Gelatt, C. D. & Vechi, M. P. (1983). Optimization by simulated annealing.

Science, vol. 220, no.4598, pp. 671-680.
Kirkpatrik, S. (1984). Optimization by simulated annealing: quantitative studies. Journal of

Statistical Physics, vol. 34, 1984, pp. 975-986.
Koza, J.R., (1992). Genetic Programming: On the Programming of Computers by Means of Natural

Selection, MIT Press. ISBN 0-262-11170-5.
Lee Z. J. (2004). A Hybrid Algorithm Applied to Traveling Salesman Problem. Proceedings of

the 2004 IEEE International Conference on Networking, Sensing & Control, pp. 237-242.
Lin, S. & Kernighan B., (1973). An effective heuristic algorithm for the traveling-salesman

problem. Operations Research, vol. 21, no. 2, pp. 498-516.
Louis S. J. & Gong L., (2000). Case injected genetic algorithms for traveling salesman

problems, Information Sciences, vol. 122, pp. 201-225.
Lu, J.; Fang, N.; Shao1, D. & Liu, C. (2007). An Improved Immune-Genetic Algorithm for the

Traveling Salesman Problem. Third International Conference on Natural Computation
(ICNC 2007).

Population-Based Optimization Algorithms for Solving the Travelling Salesman Problem

33

Lucic, P. & Teodorovic, D. (2002). Transportation Modeling: An Artificial Life Approach.
Proceedings of the 14th IEEE International Conference on Tools with Artificial Intelligence
(ICTAI’02).

Maenhout, B. & Vanhoucke, M. (2005). An Electromagnetic Meta-heuristic for the Nurse
Scheduling Problem, The 2nd Multidisciplinary International Conference on Scheduling:
Theory and Applications, New York, July (2005).

Martin, O.; Otto, S. & Felten E., (1991). Large-step markov chains for the traveling salesman
problem. Complex Systems, vol. 5, no. 3, pp. 299-326.

Michalewicz, Z. (1994), Genetic Algorithms + Data Structures = Evolution Programs, Springer,
Berlin.

Nguyen, H. D.; Yoshihara, I.; Yamamori, K. & Yasunaga, M. (2007). Implementation of an
Effective Hybrid GA for Large-Scale Traveling Salesman Problems. IEEE
Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics, Vol. 37, No. 1, pp.
92-99.

Padherg M. & Rinaldi R., (1987). Optimization of a 532-city symmetric travelling salesman
problem by branch and cut. Operations Research Letters, vol. 6, no.1, pp. 1-7.

Pang, W.; Wang, K.; Zhou, C.; Dong, L. (2004), Fuzzy Discrete Particle Swarm Optimization
for Solving Traveling Salesman Problem, Proceedings of the Fourth International
Conference on Computer and Information Technology (CIT’04).

Qin, L.; Chen, Y.; Luo, J.; Chen, L. & Guo, J. (2006). A Diversity Guaranteed Ant Colony
Algorithm Based on Immune Strategy. Proceedings of the First International Multi-
Symposiums on Computer and Computational Sciences (IMSCCS'06).

Rechenberg, I.; (1965). Cybernetic Solution Path of an Experimental Problem, Royal Aircraft
Establishment, Library Translation, No. 1122.

Sato, T. & Hagiwara, M. (1997). Bee System: Finding Solution by a Concentrated Search.
Computational Cybernetics and Simulation apos; 1997 IEEE International Conference on.
Vol. 4, pp.3954 – 3959.

Schwefel, H. P., (1981). Numerical optimization of computer models, Chichester: Wiley & Sons.
Shah-Hosseini, H. (2006). The time adaptive self-organizing map is a neural network based

on Artificial Immune System. In Proc. IEEE World Congress on Computational
Intelligence, Vancouver, Canada, July 2006, pp. 1007-1014.

Shah-Hosseini, H. (2007). Problem Solving by Intelligent Water Drops. 2007 IEEE Congress
on Evolutionary Computation (CEC 2007), pp. 3226-3231.

Solis, F. J. and Wets, R. J-B. (1981), Minimization by random search techniques, Mathematics
of Operations Research, 6: 19–30.

Song, X; Li, B.; Yang H. (2006); IMPROVED ANT COLONY ALGORITHM and ITS
APPLICATIONS in TSP, Proceedings of the Sixth International Conference on Intelligent
Systems Design and Applications (ISDA'06), 0-7695-2528-8/06

Takahashi, R. (2005). Solving the Traveling Salesman Problem through Genetic Algorithms
with Changing Crossover Operators. Proceedings of the Fourth International
Conference on Machine Learning and Applications (ICMLA’05).

Teodorovic, D. & Dell’Orco, M. (2005). Bee colony optimization: A cooperative learning
approach to complex transportation problems. Advanced OR and AI Methods in
Transportation, pp. 51-60.

 Travelling Salesman Problem

32

Dasgupta D. (Ed.), (1999). Artificial Immune Systems and Their Applications. Springer-Verlag.
Berlin.

Dorigo, M. & Stutzle, T. (2004). Ant colony optimization, Prentice hall,
Dorigo, M.; & Gambardella, L.M.; Ant Colony System: A Cooperative Learning Approach to

the Traveling Salesman Problem, IEEE TRANSACTIONS ON EVOLUTIONARY
COMPUTATION, VOL. 1, NO. 1, APRIL 1997, ISSN 1089–778X/97

Eberhart, C. & Kennedy, J. (1995). A new optimizer using particle swarm theory. In Proc.
Sixth Intl. Symposium on Micro Machine and Human Science, Nagoya, Japan, 1995, pp.
39–43.

Eiben A. E. & Smith, J. E. (2003). Introduction to Evolutionary Computing. Springer-Verlag.
Eppstein, D. (2007). TSP for Cubic Graphs. Journal of Graph Algorithms and Applications

(JGAA), Vol. 11, No. 1, pp. 61–81.
Fogel, L. J.; Owens, A. J. & Walsh, M. J., (1966). Artificial Intelligence through Simulated

Evolution. New York: John Wiley.
Garey, M. R. & Johnson, D. S. (1979). Computers and Intractability: A Guide to the Theory of NP-

Completeness. W. H. Freeman.
Glover, J. K. F. & Laguna, M. (1995), Genetic algorithms and tabu search: Hybrids for

optimization. Computers and Operations Research, 22: 111–134.
Goldberg, D. E., (1989). Genetic Algorithm in Search, Optimization and Learning, Reading, MA:

Addison-Wesley.
Haykin, S. (1999). Neural Networks, Prentice-Hall, second edition.
Holland, J. (1975). Adaptation in Natural and Artificial Systems, University of Michigan Press,

Ann Arbor.
Holldobler, B. & Wilson, E. O. (1990). The Ants. Berlin: Springer-Verlag.
Jiao L. & Wang L. (2000). Novel genetic algorithm based on immunity. IEEE Transactions on

Systems, Man and Cybernetics, Part A, vol. 30, no. 5, pp. 552 -561.
Keko, H.; Skok, M. & Skrlec, D. (2003). Artificial Immune Systems in Solving Routing

Problems. EUROCON 2003, pp. 62-66.
Kennedy, j. & Eberhart, R. (2001). Swarm Intelligence. Morgan Kaufmann.
Kirkpatrick, S.; Gelatt, C. D. & Vechi, M. P. (1983). Optimization by simulated annealing.

Science, vol. 220, no.4598, pp. 671-680.
Kirkpatrik, S. (1984). Optimization by simulated annealing: quantitative studies. Journal of

Statistical Physics, vol. 34, 1984, pp. 975-986.
Koza, J.R., (1992). Genetic Programming: On the Programming of Computers by Means of Natural

Selection, MIT Press. ISBN 0-262-11170-5.
Lee Z. J. (2004). A Hybrid Algorithm Applied to Traveling Salesman Problem. Proceedings of

the 2004 IEEE International Conference on Networking, Sensing & Control, pp. 237-242.
Lin, S. & Kernighan B., (1973). An effective heuristic algorithm for the traveling-salesman

problem. Operations Research, vol. 21, no. 2, pp. 498-516.
Louis S. J. & Gong L., (2000). Case injected genetic algorithms for traveling salesman

problems, Information Sciences, vol. 122, pp. 201-225.
Lu, J.; Fang, N.; Shao1, D. & Liu, C. (2007). An Improved Immune-Genetic Algorithm for the

Traveling Salesman Problem. Third International Conference on Natural Computation
(ICNC 2007).

Population-Based Optimization Algorithms for Solving the Travelling Salesman Problem

33

Lucic, P. & Teodorovic, D. (2002). Transportation Modeling: An Artificial Life Approach.
Proceedings of the 14th IEEE International Conference on Tools with Artificial Intelligence
(ICTAI’02).

Maenhout, B. & Vanhoucke, M. (2005). An Electromagnetic Meta-heuristic for the Nurse
Scheduling Problem, The 2nd Multidisciplinary International Conference on Scheduling:
Theory and Applications, New York, July (2005).

Martin, O.; Otto, S. & Felten E., (1991). Large-step markov chains for the traveling salesman
problem. Complex Systems, vol. 5, no. 3, pp. 299-326.

Michalewicz, Z. (1994), Genetic Algorithms + Data Structures = Evolution Programs, Springer,
Berlin.

Nguyen, H. D.; Yoshihara, I.; Yamamori, K. & Yasunaga, M. (2007). Implementation of an
Effective Hybrid GA for Large-Scale Traveling Salesman Problems. IEEE
Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics, Vol. 37, No. 1, pp.
92-99.

Padherg M. & Rinaldi R., (1987). Optimization of a 532-city symmetric travelling salesman
problem by branch and cut. Operations Research Letters, vol. 6, no.1, pp. 1-7.

Pang, W.; Wang, K.; Zhou, C.; Dong, L. (2004), Fuzzy Discrete Particle Swarm Optimization
for Solving Traveling Salesman Problem, Proceedings of the Fourth International
Conference on Computer and Information Technology (CIT’04).

Qin, L.; Chen, Y.; Luo, J.; Chen, L. & Guo, J. (2006). A Diversity Guaranteed Ant Colony
Algorithm Based on Immune Strategy. Proceedings of the First International Multi-
Symposiums on Computer and Computational Sciences (IMSCCS'06).

Rechenberg, I.; (1965). Cybernetic Solution Path of an Experimental Problem, Royal Aircraft
Establishment, Library Translation, No. 1122.

Sato, T. & Hagiwara, M. (1997). Bee System: Finding Solution by a Concentrated Search.
Computational Cybernetics and Simulation apos; 1997 IEEE International Conference on.
Vol. 4, pp.3954 – 3959.

Schwefel, H. P., (1981). Numerical optimization of computer models, Chichester: Wiley & Sons.
Shah-Hosseini, H. (2006). The time adaptive self-organizing map is a neural network based

on Artificial Immune System. In Proc. IEEE World Congress on Computational
Intelligence, Vancouver, Canada, July 2006, pp. 1007-1014.

Shah-Hosseini, H. (2007). Problem Solving by Intelligent Water Drops. 2007 IEEE Congress
on Evolutionary Computation (CEC 2007), pp. 3226-3231.

Solis, F. J. and Wets, R. J-B. (1981), Minimization by random search techniques, Mathematics
of Operations Research, 6: 19–30.

Song, X; Li, B.; Yang H. (2006); IMPROVED ANT COLONY ALGORITHM and ITS
APPLICATIONS in TSP, Proceedings of the Sixth International Conference on Intelligent
Systems Design and Applications (ISDA'06), 0-7695-2528-8/06

Takahashi, R. (2005). Solving the Traveling Salesman Problem through Genetic Algorithms
with Changing Crossover Operators. Proceedings of the Fourth International
Conference on Machine Learning and Applications (ICMLA’05).

Teodorovic, D. & Dell’Orco, M. (2005). Bee colony optimization: A cooperative learning
approach to complex transportation problems. Advanced OR and AI Methods in
Transportation, pp. 51-60.

 Travelling Salesman Problem

34

Teodorovic, D.; Lucic, P.; Markovic, G. & Dell’Orco, M. (2006). Bee Colony Optimization:
Principles and Applications. 8th Seminar on Neural Network Applications in Electrical
Engineering, NEUREL-2006.

Teodorovic, D.; Lucic, P.; Markovic, G. & Dell’Orco, M. (2006). Bee Colony Optimization:
Principles and Applications. 8th Seminar on Neural Network Applications in Electrical
Engineering, NEUREL-2006.

Tsai, H. K.; Yang, J. M.; Tsai, Y. F. & Kao, C. Y. (2004). An Evolutionary Algorithm for Large
Travelling Salesman Problems. IEEE Transactions on Systems, Man, and Cybernetics-
Part B: Cybernetics, Vol. 34, No. 4, pp. 1718-1729.

Wu, P.; Yang, K.; Fang, H. (2006). A Revised EM-like Algorithm + K-OPT Method for
Solving the Traveling Salesman Problem. Proceedings of the First International
Conference on Innovative Computing, Information and Control. ISBN 0-7695-2616-0/06

Yan, X. S.; Li H.; CAI, Z. H. & Kang L. S. (2005). A fast evolutionary algorithm for
combinatorial optimization problem. Proceedings of the Fourth International
Conference on Machine Learning and Cybernetics, pp. 3288-3292.

Yuan, Z.; Yang, L.; Wu, Y.; Liao, L.; Li, G. (2007). Chaotic Particle Swarm Optimization
Algorithm for Traveling Salesman Problem. Proceedings of the IEEE International
Conference on Automation and Logistics, 1-4244-1531-4, Jinan, China.

Yuhui, S. & Eberhart, R. (1998). A modified particle swarm optimizer. Proceedings of the IEEE
International Conference on Evolutionary Computation, pp 69–73, Piscataway, NJ, USA,
1998. IEEE Press.

Zeng, C. & Gu T. (2007). A Novel Immunity-Growth Genetic Algorithm for Traveling
Salesman Problem. Third International Conference on Natural Computation (ICNC
2007).

Zhang, G.P.; Wang, Z.O.; Yuan, G.L. (2001),A Chaotic Search Method for a Class of
Combinatorial Optimization Problems, Systems Engineering-Theory & Practice ,
pp.102-105

2

Bio-inspired Algorithms for TSP and
Generalized TSP

Zhifeng Hao, Han Huang and Ruichu Cai
South China University of Technology

China

1. Introduction
The Traveling Salesman Problem (TSP) is to find a Hamiltonian tour of minimal length on a
fully connected graph. The TSP is a NP-Complete, and there is no polynomial algorithm to
find the optimal result. Many bio-inspired algorithms has been proposed to address this
problem. Generally, generic algorithm (GA), ant colony optimization (ACO) and particle
swarm optimization (PSO) are three typical bio-inspired algorithm for TSP. In this section
we will give a brief introduction to the above three bio-inspired algorithms and their
application to the TSP.

1.1 GAs for TSP
GAs were introduced by Holland in the 1970s [1]. These algorithms are adaptive search
techniques based on the mechanisms of natural selection and the survival of the fittest
concept of biological evolution. By simulating biological evolution, GAs can solve searching
problem domains effectively and easily apply to many of the current engineering problems.
GAs have been widely used in many applications of TSP and its extensions throughout the
literature [2-4].
A particularly nice introduction to GAs is given in Goldberg’s book [5]. The main idea
behind GAs is to start with randomly generating initial solutions and implements the
“survival of the fittest” strategy to increasing better solutions through generations. A
traditional GA process includes initial population generation, fitness evaluation,
chromosome selection, applying genetic operators for reproduction, and suspension
condition.
In designing a GA, how to encode a search solution is a primary and key issue [6]. Many
optimization operators for TSP were proposed by Goldberg [5]. A commonly used encoding
strategy is transposition expression [7]. In the transposition expression strategy, each city of
the TSP is encoded as a gene of the chromosome with the constraint that each city appears
once and only once in the chromosome. Transposition expression is the most nature
expression for TSP which based on the order of tour. While such method may leads to
infeasible tour after traditional crossover operator [7]. This is a common occurrence for TSP.
Although feasibility can be maintained in many ways named ‘repair algorithms’, such
algorithms can consume a considerable amount of time and can inhibit convergence.

 Travelling Salesman Problem

34

Teodorovic, D.; Lucic, P.; Markovic, G. & Dell’Orco, M. (2006). Bee Colony Optimization:
Principles and Applications. 8th Seminar on Neural Network Applications in Electrical
Engineering, NEUREL-2006.

Teodorovic, D.; Lucic, P.; Markovic, G. & Dell’Orco, M. (2006). Bee Colony Optimization:
Principles and Applications. 8th Seminar on Neural Network Applications in Electrical
Engineering, NEUREL-2006.

Tsai, H. K.; Yang, J. M.; Tsai, Y. F. & Kao, C. Y. (2004). An Evolutionary Algorithm for Large
Travelling Salesman Problems. IEEE Transactions on Systems, Man, and Cybernetics-
Part B: Cybernetics, Vol. 34, No. 4, pp. 1718-1729.

Wu, P.; Yang, K.; Fang, H. (2006). A Revised EM-like Algorithm + K-OPT Method for
Solving the Traveling Salesman Problem. Proceedings of the First International
Conference on Innovative Computing, Information and Control. ISBN 0-7695-2616-0/06

Yan, X. S.; Li H.; CAI, Z. H. & Kang L. S. (2005). A fast evolutionary algorithm for
combinatorial optimization problem. Proceedings of the Fourth International
Conference on Machine Learning and Cybernetics, pp. 3288-3292.

Yuan, Z.; Yang, L.; Wu, Y.; Liao, L.; Li, G. (2007). Chaotic Particle Swarm Optimization
Algorithm for Traveling Salesman Problem. Proceedings of the IEEE International
Conference on Automation and Logistics, 1-4244-1531-4, Jinan, China.

Yuhui, S. & Eberhart, R. (1998). A modified particle swarm optimizer. Proceedings of the IEEE
International Conference on Evolutionary Computation, pp 69–73, Piscataway, NJ, USA,
1998. IEEE Press.

Zeng, C. & Gu T. (2007). A Novel Immunity-Growth Genetic Algorithm for Traveling
Salesman Problem. Third International Conference on Natural Computation (ICNC
2007).

Zhang, G.P.; Wang, Z.O.; Yuan, G.L. (2001),A Chaotic Search Method for a Class of
Combinatorial Optimization Problems, Systems Engineering-Theory & Practice ,
pp.102-105

2

Bio-inspired Algorithms for TSP and
Generalized TSP

Zhifeng Hao, Han Huang and Ruichu Cai
South China University of Technology

China

1. Introduction
The Traveling Salesman Problem (TSP) is to find a Hamiltonian tour of minimal length on a
fully connected graph. The TSP is a NP-Complete, and there is no polynomial algorithm to
find the optimal result. Many bio-inspired algorithms has been proposed to address this
problem. Generally, generic algorithm (GA), ant colony optimization (ACO) and particle
swarm optimization (PSO) are three typical bio-inspired algorithm for TSP. In this section
we will give a brief introduction to the above three bio-inspired algorithms and their
application to the TSP.

1.1 GAs for TSP
GAs were introduced by Holland in the 1970s [1]. These algorithms are adaptive search
techniques based on the mechanisms of natural selection and the survival of the fittest
concept of biological evolution. By simulating biological evolution, GAs can solve searching
problem domains effectively and easily apply to many of the current engineering problems.
GAs have been widely used in many applications of TSP and its extensions throughout the
literature [2-4].
A particularly nice introduction to GAs is given in Goldberg’s book [5]. The main idea
behind GAs is to start with randomly generating initial solutions and implements the
“survival of the fittest” strategy to increasing better solutions through generations. A
traditional GA process includes initial population generation, fitness evaluation,
chromosome selection, applying genetic operators for reproduction, and suspension
condition.
In designing a GA, how to encode a search solution is a primary and key issue [6]. Many
optimization operators for TSP were proposed by Goldberg [5]. A commonly used encoding
strategy is transposition expression [7]. In the transposition expression strategy, each city of
the TSP is encoded as a gene of the chromosome with the constraint that each city appears
once and only once in the chromosome. Transposition expression is the most nature
expression for TSP which based on the order of tour. While such method may leads to
infeasible tour after traditional crossover operator [7]. This is a common occurrence for TSP.
Although feasibility can be maintained in many ways named ‘repair algorithms’, such
algorithms can consume a considerable amount of time and can inhibit convergence.

 Travelling Salesman Problem

36

3 2 1 5 4 6 8 7

Figure 1. Transposition expression encoding method for TSP

Another typical encoding method is Random Keys encoding [8] which is introduced by
Bean. In Random Keys encoding a random numbers encode the structure of the solution.
Such representation ensures that feasible tours are maintained during the application of
genetic operators.
 In the GA, the crossover and mutation are two of most important method for the success of
the algorithm. A crossover operator generates new individuals through recombining the
current population hopefully to retain good features from the parents. Numbers of different
crossovers have been proposed in the literatures to solve the TSP using a GA. The partially
mapped crossover [5,11-12], linear order crossover [13] and order based crossover
[5,8,11,12,14] are the commonly used crossover strategy in the TSP context. Expect the
commonly used crossover strategy, many different crossover strategy are proposed for the
TSP problem, for example: sub-tour crossover[15,16], edge recombination [17-20], distance
preserving crossover [21-22], generic crossover [23], NGA [24], EAX [25-26], GSX [27-28],
heuristic based crossover [29-35].
A mutation operator is used to enhance the diversity and provide a chance to escape from
local optima. Many mutation operators were proposed such as inverse, insert, displace,
swap, hybrid mutation [34], and heuristic mutation. The former five are realized by small
alterations of genes. Heuristic mutation was proposed by Cheng and Gen [37-38], which
adopts a neighborhood strategy to improve the solution.
At present, the genetic algorithm to solve the TSP has been to promote large-scale TSP, as
well as a multiple TSP (MTSP) and generalized TSP. A lot of progress was made recently.
Arthur E. Carter and Cliff T. Ragsdale propose a new GA chromosome and related
operators for the MTSP [39]. H. D. Nguyen, et al described a hybrid GA based on a parallel
implementation of a multi population steady-state GA involving local search heuristics [40].
Samanlioglu et.al proposes a methodology uses a “target-vector approach” in which the
evaluation function is a weighted Tchebycheff metric with an ideal point for a symmetric
multi-objective traveling salesman problem [41-43].

1.2 Ant colony optimization (ACO) for TSP
Ant Colony Optimization (ACO), first proposed by M. Dorigo et al. [44-46], is a population-
based, general-purpose heuristic approach to combinational optimization problems. The
earliest ACO algorithm [44-45], Ant System (AS), was applied to the TSP (mainly because
the TSP is “a shortest path problem to which the ant colony metaphor is easily adapted and
that it is a didactic problem” [4]. After that, most improved ACO algorithms also used the
TSP as a test problem and the result is promising.
As the name suggests, ACO took inspiration from the foraging behavior of real ant colonies.
Ants deposit pheromone on the ground they cover while working, forming a pheromone
trail. Other ants tend to follow the pheromone trail. Consider an ant colony exploring the
paths between their nest to a food source. At the beginning, the ants choose paths randomly
in equal rate since there’s no pheromone on the paths help them make the decision. Suppose
that every ant walk in the same speed, shorter paths accumulate pheromone faster than
longer paths because ants on those paths return earlier. A moment later, the difference in the

Bio-inspired Algorithms for TSP and Generalized TSP

37

amount of pheromone on the paths becomes sufficient large so that the ants’ decision are
influenced and more ants select the shorter paths. Experiments show that this behavior can
lead the ant colony to the shortest path.

Figure 2. an ant colony exploits the paths between S and T. (A) The two paths are selected
with the same probability at first. (B) Ant 2 choosing the lower path returns to S earlier.
Thus pheromone on the lower path rises faster. (C) Most ants walk on the lower path after a
minute.

Typical ant algorithms stimulate the above foraging behavior of ant colonies using a set of
agents (artificial ants) and an indirect communication mechanism employing (artificial)
pheromone. A simple framework may look like this:

Loop /* at this level each loop is called iteration */
 Each ant is positioned on a starting node.
 Loop /* at this level each loop is called a step */
 Each ant applies a stochastic state transition rule to incrementally build a solution
 Until all ants have built a complete solution
 A pheromone updating rule is applied
Until End condition

The stochastic state transition rule and the pheromone updating rule are two factor to the
success of the ACO. And many strategies have been proposed for these two operators. The
Ant Colony System (ACS) [48-50] and MAX-MIN Ant System (MMAS) [51] are among the
most successful algorithms [52]. Recent researches focus most on extending the applications
of ACO algorithms to more challenge problems. There’re also some studies on the
convergence theory of ACO algorithms too [47, 53-58].

1.3 PSO for TSP
The particle swarm optimization (PSO) was originally presented by Kennedy and Eberhart
in 1995 [59]. It is an algorithm based stochastic optimization technique which inspired by
social behavior among individuals. In the PSO system, individuals (we call them particles)
move around a multidimensional search space. Each particle represents a potential solution
of the problem, and can remember the best position (so1ution) it has reached. All the
particles can share their information about the search space, so there is a global best
solution.
In each iteration, every particle adjusts its velocity iv and position ix according to the
following formulas:

1 1 , 2 2 ,() ()i i i pbest i i gbest i

i i i

v v c r x x c r x x

x x v

= + ∗ ∗ − + ∗ ∗ −

= +
 (1)

 Travelling Salesman Problem

36

3 2 1 5 4 6 8 7

Figure 1. Transposition expression encoding method for TSP

Another typical encoding method is Random Keys encoding [8] which is introduced by
Bean. In Random Keys encoding a random numbers encode the structure of the solution.
Such representation ensures that feasible tours are maintained during the application of
genetic operators.
 In the GA, the crossover and mutation are two of most important method for the success of
the algorithm. A crossover operator generates new individuals through recombining the
current population hopefully to retain good features from the parents. Numbers of different
crossovers have been proposed in the literatures to solve the TSP using a GA. The partially
mapped crossover [5,11-12], linear order crossover [13] and order based crossover
[5,8,11,12,14] are the commonly used crossover strategy in the TSP context. Expect the
commonly used crossover strategy, many different crossover strategy are proposed for the
TSP problem, for example: sub-tour crossover[15,16], edge recombination [17-20], distance
preserving crossover [21-22], generic crossover [23], NGA [24], EAX [25-26], GSX [27-28],
heuristic based crossover [29-35].
A mutation operator is used to enhance the diversity and provide a chance to escape from
local optima. Many mutation operators were proposed such as inverse, insert, displace,
swap, hybrid mutation [34], and heuristic mutation. The former five are realized by small
alterations of genes. Heuristic mutation was proposed by Cheng and Gen [37-38], which
adopts a neighborhood strategy to improve the solution.
At present, the genetic algorithm to solve the TSP has been to promote large-scale TSP, as
well as a multiple TSP (MTSP) and generalized TSP. A lot of progress was made recently.
Arthur E. Carter and Cliff T. Ragsdale propose a new GA chromosome and related
operators for the MTSP [39]. H. D. Nguyen, et al described a hybrid GA based on a parallel
implementation of a multi population steady-state GA involving local search heuristics [40].
Samanlioglu et.al proposes a methodology uses a “target-vector approach” in which the
evaluation function is a weighted Tchebycheff metric with an ideal point for a symmetric
multi-objective traveling salesman problem [41-43].

1.2 Ant colony optimization (ACO) for TSP
Ant Colony Optimization (ACO), first proposed by M. Dorigo et al. [44-46], is a population-
based, general-purpose heuristic approach to combinational optimization problems. The
earliest ACO algorithm [44-45], Ant System (AS), was applied to the TSP (mainly because
the TSP is “a shortest path problem to which the ant colony metaphor is easily adapted and
that it is a didactic problem” [4]. After that, most improved ACO algorithms also used the
TSP as a test problem and the result is promising.
As the name suggests, ACO took inspiration from the foraging behavior of real ant colonies.
Ants deposit pheromone on the ground they cover while working, forming a pheromone
trail. Other ants tend to follow the pheromone trail. Consider an ant colony exploring the
paths between their nest to a food source. At the beginning, the ants choose paths randomly
in equal rate since there’s no pheromone on the paths help them make the decision. Suppose
that every ant walk in the same speed, shorter paths accumulate pheromone faster than
longer paths because ants on those paths return earlier. A moment later, the difference in the

Bio-inspired Algorithms for TSP and Generalized TSP

37

amount of pheromone on the paths becomes sufficient large so that the ants’ decision are
influenced and more ants select the shorter paths. Experiments show that this behavior can
lead the ant colony to the shortest path.

Figure 2. an ant colony exploits the paths between S and T. (A) The two paths are selected
with the same probability at first. (B) Ant 2 choosing the lower path returns to S earlier.
Thus pheromone on the lower path rises faster. (C) Most ants walk on the lower path after a
minute.

Typical ant algorithms stimulate the above foraging behavior of ant colonies using a set of
agents (artificial ants) and an indirect communication mechanism employing (artificial)
pheromone. A simple framework may look like this:

Loop /* at this level each loop is called iteration */
 Each ant is positioned on a starting node.
 Loop /* at this level each loop is called a step */
 Each ant applies a stochastic state transition rule to incrementally build a solution
 Until all ants have built a complete solution
 A pheromone updating rule is applied
Until End condition

The stochastic state transition rule and the pheromone updating rule are two factor to the
success of the ACO. And many strategies have been proposed for these two operators. The
Ant Colony System (ACS) [48-50] and MAX-MIN Ant System (MMAS) [51] are among the
most successful algorithms [52]. Recent researches focus most on extending the applications
of ACO algorithms to more challenge problems. There’re also some studies on the
convergence theory of ACO algorithms too [47, 53-58].

1.3 PSO for TSP
The particle swarm optimization (PSO) was originally presented by Kennedy and Eberhart
in 1995 [59]. It is an algorithm based stochastic optimization technique which inspired by
social behavior among individuals. In the PSO system, individuals (we call them particles)
move around a multidimensional search space. Each particle represents a potential solution
of the problem, and can remember the best position (so1ution) it has reached. All the
particles can share their information about the search space, so there is a global best
solution.
In each iteration, every particle adjusts its velocity iv and position ix according to the
following formulas:

1 1 , 2 2 ,() ()i i i pbest i i gbest i

i i i

v v c r x x c r x x

x x v

= + ∗ ∗ − + ∗ ∗ −

= +
 (1)

 Travelling Salesman Problem

38

Where w is inertia weight, 1c and 2c are acceleration coefficients, 1r and 2r are two
independent random values between 0 and 1. xi,pbest is the best solution this particle has
reached; xi,gbest is the global best solution of all the particles until now.
Due to the continuous characters of the position of particles in PSO, the standard encoding
scheme of PSO can not be directly adopted for TSP. Much work was published to avoid
such problem. Clerc adopted discrete particle swarm optimization (DPSO)[60] to make PSO
suitable for solving TSP. Bo Liu, et al. proposes a PSO-based MA [61](PSOMA) for TSP,
which combined evolutionary searching mechanism of PSO and adaptive local search.
Yong-Qin Tao, et al. proposed a GRPSAC algorithm [62] combined ACO with PSO
organically and adds gene regulation operator at the same time, which make solution of TSP
problem more efficiency. Other recently work such as heuristic information method based
on improved fuzzy discrete PSO [63] and chaotic PSO algorithm [64] were proved to be
effective for TSP.

2. Ant colony optimization (ACO) for TSP
2.1 The method of ant colony optimization solving TSP
Among the bio-inspired algorithms, the ant colony optimization (ACO) is a popular
approach for TSP since it’s proposed by M.Dorigo in early nineties [65-66]. Ant colony
optimization (ACO) takes inspiration from the foraging behavior of some ant species. These
ants deposit pheromone on the ground in order to mark some favorable path that should be
followed by other ants of the colony. Ant colony optimization exploits a similar mechanism
for solving optimization problems.
In TSP, a set of cities is given and the distance between each of them is known. The goal is to
find a Hamiltonian tour of minimal length on a fully connected graph. This goal is very
similar with the ants to find the shortest path between the nest and the food source. In ant
colony optimization, the problem is tackled by simulating a number of artificial ants moving
on a graph that encodes the problem itself. A variable called pheromone is associated with
each edge and can be read and modified by ants. The artificial ants explore the pheromone
to find the most favorable path which is the shortest Hamiltonian Tour in TSP.
Ant colony optimization is an iterative algorithm. In an iterative step, each ant of the colony
builds a solution by walking from vertex to vertex on the graph with the constraint of not
visiting any vertex that has been visited before. The solution construction and the
pheromone updating are two main steps for the ACO. In the solution construction step, an
ant selects the next vertex to be visited according to a stochastic mechanism that is biased by
the pheromone. After the solution construction step, the pheromone is updated on the basis
of the quality of the solutions.
Under the above framework, many different version of the algorithm are proposed.
According to the M.Dorigo’s work [46,67], the Ant System (AS), MAX−MIN Ant System
(MMAS) and Ant Colony System (ACS) are three of most popular ant algorithms.
Following, we will give a short brief of those three algorithms on TSP.

2.1.1 Ant System (AS)
Ant System is the first ACO algorithm proposed in the literature [44,65-66]. Its main
characteristic is that, at each iteration, the pheromone values are updated by all the m ants
that have built a solution in the iteration itself. The pheromone ij, associated with the edge
joining cities i and j, is updated as follows:

Bio-inspired Algorithms for TSP and Generalized TSP

39

1

(1)
ij

m
k

ij ij
k

τ ρ τ τ
=

← − ⋅ + Δ∑ （1）

where ρ is the evaporation rate, m is the number of ants, and
ij

kτΔ is the quantity of

pheromone laid on edge (i, j) by ant k:

/ (,) ,

0 ,ij

kk Q L if ant k used edge i j in its tour
otherwise

τ
⎧

Δ = ⎨
⎩

 （2）

where Q is a constant, and kL is the length of the tour constructed by ant k.
In the construction of a solution, ants select the following city to be visited through a
stochastic mechanism. When ant k is in city i and has so far constructed the partial solution
Sp, the probability of going to city j is given by:

()

[()] []
()

[()] []()

0

gs gs

k gr gr
gs r J gk

k
t

if s J g
tP t

otherwise

α β

α β

τ η
τ η

∈

⎧
∈⎪⎪= ⎨

⎪
⎪⎩

∑ （3）

where ()kJ g is the set of cities not visited yet by ant k when at city g. The parameters α

and β control the relative importance of the pheromone versus the heuristic information ηij,

which is given by
1

ij
ijd

η = , where ijd is the distance between cities i and j.

2.1.2 MAX −MIN Ant System (MMAS)
The MAX −MIN Ant System [51] is an improvement over the original Ant System. In the
MMAS, only the best ant updates the pheromone trails and the value of the pheromone is
bound. The pheromone update is implemented as follows:

max max

min min

 (1) ,

 (1) ,

(1) ;

ij

ij

ij

best
ij

best
ij ij

best
ij

if

if

otherwise

τ ρ τ τ τ

τ τ ρ τ τ τ

ρ τ τ

⎧ − ⋅ + Δ >
⎪
⎪= − ⋅ + Δ <⎨
⎪

− ⋅ + Δ⎪⎩

 (4)

where maxτ and minτ min are respectively the upper and lower bounds imposed on the

pheromone and
ij

bestτΔ is:

 1 (,)
0 ;ij

bestbest L if i j belongs to thebest tour
otherwise

τ
⎧

Δ = ⎨
⎩

 (5)

 Travelling Salesman Problem

38

Where w is inertia weight, 1c and 2c are acceleration coefficients, 1r and 2r are two
independent random values between 0 and 1. xi,pbest is the best solution this particle has
reached; xi,gbest is the global best solution of all the particles until now.
Due to the continuous characters of the position of particles in PSO, the standard encoding
scheme of PSO can not be directly adopted for TSP. Much work was published to avoid
such problem. Clerc adopted discrete particle swarm optimization (DPSO)[60] to make PSO
suitable for solving TSP. Bo Liu, et al. proposes a PSO-based MA [61](PSOMA) for TSP,
which combined evolutionary searching mechanism of PSO and adaptive local search.
Yong-Qin Tao, et al. proposed a GRPSAC algorithm [62] combined ACO with PSO
organically and adds gene regulation operator at the same time, which make solution of TSP
problem more efficiency. Other recently work such as heuristic information method based
on improved fuzzy discrete PSO [63] and chaotic PSO algorithm [64] were proved to be
effective for TSP.

2. Ant colony optimization (ACO) for TSP
2.1 The method of ant colony optimization solving TSP
Among the bio-inspired algorithms, the ant colony optimization (ACO) is a popular
approach for TSP since it’s proposed by M.Dorigo in early nineties [65-66]. Ant colony
optimization (ACO) takes inspiration from the foraging behavior of some ant species. These
ants deposit pheromone on the ground in order to mark some favorable path that should be
followed by other ants of the colony. Ant colony optimization exploits a similar mechanism
for solving optimization problems.
In TSP, a set of cities is given and the distance between each of them is known. The goal is to
find a Hamiltonian tour of minimal length on a fully connected graph. This goal is very
similar with the ants to find the shortest path between the nest and the food source. In ant
colony optimization, the problem is tackled by simulating a number of artificial ants moving
on a graph that encodes the problem itself. A variable called pheromone is associated with
each edge and can be read and modified by ants. The artificial ants explore the pheromone
to find the most favorable path which is the shortest Hamiltonian Tour in TSP.
Ant colony optimization is an iterative algorithm. In an iterative step, each ant of the colony
builds a solution by walking from vertex to vertex on the graph with the constraint of not
visiting any vertex that has been visited before. The solution construction and the
pheromone updating are two main steps for the ACO. In the solution construction step, an
ant selects the next vertex to be visited according to a stochastic mechanism that is biased by
the pheromone. After the solution construction step, the pheromone is updated on the basis
of the quality of the solutions.
Under the above framework, many different version of the algorithm are proposed.
According to the M.Dorigo’s work [46,67], the Ant System (AS), MAX−MIN Ant System
(MMAS) and Ant Colony System (ACS) are three of most popular ant algorithms.
Following, we will give a short brief of those three algorithms on TSP.

2.1.1 Ant System (AS)
Ant System is the first ACO algorithm proposed in the literature [44,65-66]. Its main
characteristic is that, at each iteration, the pheromone values are updated by all the m ants
that have built a solution in the iteration itself. The pheromone ij, associated with the edge
joining cities i and j, is updated as follows:

Bio-inspired Algorithms for TSP and Generalized TSP

39

1

(1)
ij

m
k

ij ij
k

τ ρ τ τ
=

← − ⋅ + Δ∑ （1）

where ρ is the evaporation rate, m is the number of ants, and
ij

kτΔ is the quantity of

pheromone laid on edge (i, j) by ant k:

/ (,) ,

0 ,ij

kk Q L if ant k used edge i j in its tour
otherwise

τ
⎧

Δ = ⎨
⎩

 （2）

where Q is a constant, and kL is the length of the tour constructed by ant k.
In the construction of a solution, ants select the following city to be visited through a
stochastic mechanism. When ant k is in city i and has so far constructed the partial solution
Sp, the probability of going to city j is given by:

()

[()] []
()

[()] []()

0

gs gs

k gr gr
gs r J gk

k
t

if s J g
tP t

otherwise

α β

α β

τ η
τ η

∈

⎧
∈⎪⎪= ⎨

⎪
⎪⎩

∑ （3）

where ()kJ g is the set of cities not visited yet by ant k when at city g. The parameters α

and β control the relative importance of the pheromone versus the heuristic information ηij,

which is given by
1

ij
ijd

η = , where ijd is the distance between cities i and j.

2.1.2 MAX −MIN Ant System (MMAS)
The MAX −MIN Ant System [51] is an improvement over the original Ant System. In the
MMAS, only the best ant updates the pheromone trails and the value of the pheromone is
bound. The pheromone update is implemented as follows:

max max

min min

 (1) ,

 (1) ,

(1) ;

ij

ij

ij

best
ij

best
ij ij

best
ij

if

if

otherwise

τ ρ τ τ τ

τ τ ρ τ τ τ

ρ τ τ

⎧ − ⋅ + Δ >
⎪
⎪= − ⋅ + Δ <⎨
⎪

− ⋅ + Δ⎪⎩

 (4)

where maxτ and minτ min are respectively the upper and lower bounds imposed on the

pheromone and
ij

bestτΔ is:

 1 (,)
0 ;ij

bestbest L if i j belongs to thebest tour
otherwise

τ
⎧

Δ = ⎨
⎩

 (5)

 Travelling Salesman Problem

40

where bestL is the length of the tour of the best ant.

For the maxτ and minτ , they are typically obtained empirically and tuned on the specific

problem considered [68]. And some guidelines have been provided for defining minτ and

maxτ on the basis of analytical considerations [51].

2.1.3 Ant Colony System (ACS)
The ACS was considered the most efficient algorithm on the TSP problem. The main
contribution of ACS [48, 50, 69] is introducing a novel local pheromone update in addition
to the global pheromone.
The local pheromone update is performed by all the ants after each construction step. Each
ant applies it only to the last edge traversed:

 0(1)ij ijτ ϕ τ ϕ τ= − ⋅ + ⋅ (6)

where (]0,1ϕ∈ is the pheromone decay coefficient, and 0τ is the initial value of the

pheromone.
Using the local update strategy, the pheromone concentration on the traversed edges is
decreased. So, the subsequent ants are encouraged to choose other edges and to produce
different solutions. This makes it less likely that several ants produce identical solutions
during one iteration.

2.2 An adaptive strategy for weight parameter
Many strategies for ACO have been studied, but little theoretical work has been done on
ACO’s parameters α and β, which control the relative weight of pheromone trail and
heuristic value. In this part, we will theoretical show the importance and functioning of α
and β. The theoretical analysis show that a fixed β may not enable ACO to use both heuristic
and pheromone information for solution when α = 1. An adaptive β strategy and a new
ACO called adaptive weight ant colony system (AWACS) with the adaptive β and α = 1 is
introduced. The numerical experiment results show that the AWACS is more effective and
steady than traditional ACS.

2.2.1 Theoretical analysis of the weight parameter
 Given , ()ka b J g∈ , if () ()k k

ga gbP t P t> , which means that city a may be chosen by the ant

k as the next city to city g with higher probability than city b, then α and β satisfies the
following formula: () () [()] [] [()] []k k

ga gb ga ga gb gbP t P t t tα β α βτ η τ η> ⇔ > .

 When () ()ga gbt tτ τ= or ga gbη η= , for , 0α β∀ > , the formula above holds, so we have:

 () () ga gb ga gbk k
ga gb

ga gb ga gb

P t P t
η η τ τ
τ τ η η

> =⎧
> ⇔ ⎨ > =⎩

 (8)

Bio-inspired Algorithms for TSP and Generalized TSP

41

However, when () (), () 0, () 0ga gb ga gbt t t tτ τ τ τ≠ > > and ga gbη η≠ (() 0, () 0ga gbt tη η> >), one

has: () () [()] [] [()] [] log () log () (log log)k k
ga gb ga ga gb gb ga gb gb gaP t P t t t t tα β α β βτ η τ η τ τ η η

α
> ⇔ > ⇔ − > − .

And we have:

log () log ()
log log

log () log ()
log log

ga gb
gb ga

gb ga

ga gb
gb ga

gb ga

t t

t t

τ τβ η η
α η η

τ τβ η η
α η η

−⎧
< >⎪ −⎪

⎨ −⎪ > <⎪ −⎩

 (7)

Particularly, when α=1, which exists in ACO algorithms like ACS, a conclusion can be
drawn:

log () log ()

log log
() ()

log () log ()
log log

ga gb
gb ga

gb gak k
ga gb

ga gb
gb ga

gb ga

t t

P t P t
t t

τ τ
β η η

η η

τ τ
β η η

η η

−⎧
< >⎪ −⎪> ⇔ ⎨ −⎪ > <⎪ −⎩

 (8)

For the sake of convenience, some symbols about the pheromone trail are defined as
follows: max

()
() max { ()}

k
g grr J g

t tτ τ
∈

= is the highest pheromone trail among all the cities

feasible to be selected as next stop to city g . min

()
() min { ()}

k
g grr J g

t tτ τ
∈

= is the lowest one, and

1

()

() () ()
k

ave
g k gr

r J g

t J g tτ τ−

∈

= ∑ is the average pheromone trail, where ()kJ g is the

number of elements in the set ()kJ g . max 1

()
max { }

k
g grr J g

dη −

∈
= is the highest heuristic value of

elements in the set ()kJ g . min 1

()
min { }

k
g grr J g

dη −

∈
= stands for the lowest heuristic value, and

1 1 1

() ()

() ()
k k

ave

g k gr k gr
r J g r J g

J g J g dη η− − −

∈ ∈

= =∑ ∑ is the average heuristic value.

Let 1α = , two cases are discussed in the following:

① max min max[()] [] [()] []ave
g g g gt tα β α βτ η τ η> . It means that the ants will select the paths with

the maximum pheromone trail with a very high probability ACS. According to Formula (3),

one has
max

1max min

log () log ()
(,)

log log

ave

g g

g g

t t
M g t

τ τ
β

η η

−
< =

−
, because it is obvious that max min

g gη η>

holds in TSPLIB problems.
② min max max[()] [] [()] []ave

g g g gt tα β α βτ η τ η> . It means that the ants will select the

 paths with the maximum heuristic value with a very high probability in ACS. It is

 Travelling Salesman Problem

40

where bestL is the length of the tour of the best ant.

For the maxτ and minτ , they are typically obtained empirically and tuned on the specific

problem considered [68]. And some guidelines have been provided for defining minτ and

maxτ on the basis of analytical considerations [51].

2.1.3 Ant Colony System (ACS)
The ACS was considered the most efficient algorithm on the TSP problem. The main
contribution of ACS [48, 50, 69] is introducing a novel local pheromone update in addition
to the global pheromone.
The local pheromone update is performed by all the ants after each construction step. Each
ant applies it only to the last edge traversed:

 0(1)ij ijτ ϕ τ ϕ τ= − ⋅ + ⋅ (6)

where (]0,1ϕ∈ is the pheromone decay coefficient, and 0τ is the initial value of the

pheromone.
Using the local update strategy, the pheromone concentration on the traversed edges is
decreased. So, the subsequent ants are encouraged to choose other edges and to produce
different solutions. This makes it less likely that several ants produce identical solutions
during one iteration.

2.2 An adaptive strategy for weight parameter
Many strategies for ACO have been studied, but little theoretical work has been done on
ACO’s parameters α and β, which control the relative weight of pheromone trail and
heuristic value. In this part, we will theoretical show the importance and functioning of α
and β. The theoretical analysis show that a fixed β may not enable ACO to use both heuristic
and pheromone information for solution when α = 1. An adaptive β strategy and a new
ACO called adaptive weight ant colony system (AWACS) with the adaptive β and α = 1 is
introduced. The numerical experiment results show that the AWACS is more effective and
steady than traditional ACS.

2.2.1 Theoretical analysis of the weight parameter
 Given , ()ka b J g∈ , if () ()k k

ga gbP t P t> , which means that city a may be chosen by the ant

k as the next city to city g with higher probability than city b, then α and β satisfies the
following formula: () () [()] [] [()] []k k

ga gb ga ga gb gbP t P t t tα β α βτ η τ η> ⇔ > .

 When () ()ga gbt tτ τ= or ga gbη η= , for , 0α β∀ > , the formula above holds, so we have:

 () () ga gb ga gbk k
ga gb

ga gb ga gb

P t P t
η η τ τ
τ τ η η

> =⎧
> ⇔ ⎨ > =⎩

 (8)

Bio-inspired Algorithms for TSP and Generalized TSP

41

However, when () (), () 0, () 0ga gb ga gbt t t tτ τ τ τ≠ > > and ga gbη η≠ (() 0, () 0ga gbt tη η> >), one

has: () () [()] [] [()] [] log () log () (log log)k k
ga gb ga ga gb gb ga gb gb gaP t P t t t t tα β α β βτ η τ η τ τ η η

α
> ⇔ > ⇔ − > − .

And we have:

log () log ()
log log

log () log ()
log log

ga gb
gb ga

gb ga

ga gb
gb ga

gb ga

t t

t t

τ τβ η η
α η η

τ τβ η η
α η η

−⎧
< >⎪ −⎪

⎨ −⎪ > <⎪ −⎩

 (7)

Particularly, when α=1, which exists in ACO algorithms like ACS, a conclusion can be
drawn:

log () log ()

log log
() ()

log () log ()
log log

ga gb
gb ga

gb gak k
ga gb

ga gb
gb ga

gb ga

t t

P t P t
t t

τ τ
β η η

η η

τ τ
β η η

η η

−⎧
< >⎪ −⎪> ⇔ ⎨ −⎪ > <⎪ −⎩

 (8)

For the sake of convenience, some symbols about the pheromone trail are defined as
follows: max

()
() max { ()}

k
g grr J g

t tτ τ
∈

= is the highest pheromone trail among all the cities

feasible to be selected as next stop to city g . min

()
() min { ()}

k
g grr J g

t tτ τ
∈

= is the lowest one, and

1

()

() () ()
k

ave
g k gr

r J g

t J g tτ τ−

∈

= ∑ is the average pheromone trail, where ()kJ g is the

number of elements in the set ()kJ g . max 1

()
max { }

k
g grr J g

dη −

∈
= is the highest heuristic value of

elements in the set ()kJ g . min 1

()
min { }

k
g grr J g

dη −

∈
= stands for the lowest heuristic value, and

1 1 1

() ()

() ()
k k

ave

g k gr k gr
r J g r J g

J g J g dη η− − −

∈ ∈

= =∑ ∑ is the average heuristic value.

Let 1α = , two cases are discussed in the following:

① max min max[()] [] [()] []ave
g g g gt tα β α βτ η τ η> . It means that the ants will select the paths with

the maximum pheromone trail with a very high probability ACS. According to Formula (3),

one has
max

1max min

log () log ()
(,)

log log

ave

g g

g g

t t
M g t

τ τ
β

η η

−
< =

−
, because it is obvious that max min

g gη η>

holds in TSPLIB problems.
② min max max[()] [] [()] []ave

g g g gt tα β α βτ η τ η> . It means that the ants will select the

 paths with the maximum heuristic value with a very high probability in ACS. It is

 Travelling Salesman Problem

42

obvious that
min max

2max

log () log ()
(,)

log log
g g

ave

g g

t t
M g t

τ τ
β

η η

−
> =

−
 holds, when max ave

g gη η> and

min () 0g tτ > .

According to the analysis of case ① and ②, ACO may work as a non-heuristic searching
when 1 (,)M g tβ < , and as a greedy searching without using pheromone trail

when 2 (,)M g tβ > . Therefore, a fixed β may not enable ACO to find optimal solution by
using both heuristic and pheromone information. However, the process of ACO will not be
in the extreme as non-heuristic or greedy searching when

1 2(,) (,)M g t M g tβ≤ ≤ . So a new

adaptive parameter β is designed as follows:

max

max

log () log ()
1, (,)

log log

ave
g g

ave
g g

t t
g t

τ τ
α β

η η
−

= =
−

 (min () 0g tτ >) (9)

where 1 2(,) (,) (,)M g t g t M g tβ≤ ≤ can be proved.

Based on the adaptive parameter (,)g tβ strategy shown in Formula (4), a novel ACO
algorithm, which is called adaptive weight ant colony system (AWACS) can be described as
follows.

Initialize /* β is chosen in [0, 5] randomly, q0=0.6 */
Loop /* at this level each loop is called iteration */
 Each ant is positioned on a starting node.
 Loop /* at this level each loop is called a step */
 Each ant applies a stochastic state transition rule to incrementally build a solution
 and a local pheromone updating rule
 Until all ants have built a complete solution
 A global pheromone updating rule is applied
 β(g,t) is updated (g = 1,…,n) following Formula (11)
Until End condition

The proof of its convergence (g = 1,…,n) is the same as the one in Ref. [54]. According to the

work of Ref. [54], it still holds that min() 0g tτ > and max ()g tτ < +∞ (g = 1,…,n) when the

adaptive parameter β(g,t) strategy in Formula (4) is applied. Then, AWACS can be proved to
find the optimal solution with probability one following the conclusion given by T. Stützle
and M. Dorigo [54,69].

2.2.2 Numerical results and analyses
A comparison of the performance of ACS and AWACS is given in this section. In our
experiments, the parameters are set as follows: m = 10, α = ρ= 0.1, 1

0 ()nnnLτ −= . q0 is set

q0 =0.9 in ACS, and q0 =0.6 in AWACS , respectively. The initial value of β in AWACS is a

Bio-inspired Algorithms for TSP and Generalized TSP

43

random figure changing in the interval [1,5]. The initial feasible solutions of TSP are generated in
the way from Ref [49]. What’s more, no local search strategy is used in experiment.
The experiments are conducted on two set of TSP problems. In the first set of 10 TSP, the
distances between cities are measured by integers and in the left 10 TSP, and the distances
are measured by real values. The datasets can be found in TSPLIB: http://www.iwr.uni-
heidelberg.de/ iwr/comopt/soft/TSPLIB95/TSPLIB.html. The detail of the experiment
result is given at table 1, table 2 and table 3.

Instance Optimal Best
(ACS)

Best
(AWACS)

Average
(ACS)

Average
(AWACS)

Tavg(s)
(ACS)

Tavg (s)
(AWACS)

Best β
(ACS)

st70 654 657 657 675.9 675.5 16.9 27.4 4

rat99 unknown 1188 1188 1211.7 1199.4 53.2 59.7 3

pr107 unknown 44539 44398 44906.3 44783.9 39.5 55.4 4

pr124 unknown 59205 59067 59819.9 59646.6 59.2 42.3 4

eil101 612 614 613 634.6 631.4 22.4 76.3 5

rd100 7858 7909 7861 8100.4 8066.2 59.5 54.1 3

eil51 415 415 415 423.9 423.7 6.7 7.8 3

lin105 14345 14376 14354 14509.3 14465.6 73.7 50.8 4, 5

kroD100 21249 21486 21265 21893 21628.2 25.8 60 5

kroC100 20703 20703 20703 21165.3 20914.9 29.5 67.7 4

Table 1. Comparison I of the results obtained by ACS and AWACS

Instance Optimal Best
(ACS)

Best
(AWACS)

Average
(ACS)

Average
(AWACS)

Tavg(s)
(ACS)

Tavg (s)
(AWACS)

Best β
(ACS)

kroA100 21282 21285.44 21285.44 21345.78 21286.33 51.3 51.8 2, 3

kroE100 22068 22078.66 22068.75 22206.62 22117.16 56.3 64.5 5

berlin52 7542 7544.36 7544.36 7544.36 7544.36 8.7 9.8 5

kroB150 26130 26127.35 26127.71 26332.75 26214.10 177.8 164.8 5

ch150 6528 6530.90 6530.90 6594.94 6559.66 373.6 118.1 2

kroB100 22141 22139.07 22139.07 22335.72 22177.47 55.5 68.6 4

kroA150 26524 26618.33 26524.86 26809.08 26685.73 204.5 242.9 5

u159 42080 42075.67 42075.67 42472.04 42168.54 356.7 80.2 1

pr76 108159 108159.4 108159.4 108610.6 108581.7 50.5 42.8 1

pr136 96772 96870.89 96785.86 97854.16 97236.61 344.3 158.9 14,5

Table 2. Comparison II of the results obtained by ACS and AWACS

 Travelling Salesman Problem

42

obvious that
min max

2max

log () log ()
(,)

log log
g g

ave

g g

t t
M g t

τ τ
β

η η

−
> =

−
 holds, when max ave

g gη η> and

min () 0g tτ > .

According to the analysis of case ① and ②, ACO may work as a non-heuristic searching
when 1 (,)M g tβ < , and as a greedy searching without using pheromone trail

when 2 (,)M g tβ > . Therefore, a fixed β may not enable ACO to find optimal solution by
using both heuristic and pheromone information. However, the process of ACO will not be
in the extreme as non-heuristic or greedy searching when

1 2(,) (,)M g t M g tβ≤ ≤ . So a new

adaptive parameter β is designed as follows:

max

max

log () log ()
1, (,)

log log

ave
g g

ave
g g

t t
g t

τ τ
α β

η η
−

= =
−

 (min () 0g tτ >) (9)

where 1 2(,) (,) (,)M g t g t M g tβ≤ ≤ can be proved.

Based on the adaptive parameter (,)g tβ strategy shown in Formula (4), a novel ACO
algorithm, which is called adaptive weight ant colony system (AWACS) can be described as
follows.

Initialize /* β is chosen in [0, 5] randomly, q0=0.6 */
Loop /* at this level each loop is called iteration */
 Each ant is positioned on a starting node.
 Loop /* at this level each loop is called a step */
 Each ant applies a stochastic state transition rule to incrementally build a solution
 and a local pheromone updating rule
 Until all ants have built a complete solution
 A global pheromone updating rule is applied
 β(g,t) is updated (g = 1,…,n) following Formula (11)
Until End condition

The proof of its convergence (g = 1,…,n) is the same as the one in Ref. [54]. According to the

work of Ref. [54], it still holds that min() 0g tτ > and max ()g tτ < +∞ (g = 1,…,n) when the

adaptive parameter β(g,t) strategy in Formula (4) is applied. Then, AWACS can be proved to
find the optimal solution with probability one following the conclusion given by T. Stützle
and M. Dorigo [54,69].

2.2.2 Numerical results and analyses
A comparison of the performance of ACS and AWACS is given in this section. In our
experiments, the parameters are set as follows: m = 10, α = ρ= 0.1, 1

0 ()nnnLτ −= . q0 is set

q0 =0.9 in ACS, and q0 =0.6 in AWACS , respectively. The initial value of β in AWACS is a

Bio-inspired Algorithms for TSP and Generalized TSP

43

random figure changing in the interval [1,5]. The initial feasible solutions of TSP are generated in
the way from Ref [49]. What’s more, no local search strategy is used in experiment.
The experiments are conducted on two set of TSP problems. In the first set of 10 TSP, the
distances between cities are measured by integers and in the left 10 TSP, and the distances
are measured by real values. The datasets can be found in TSPLIB: http://www.iwr.uni-
heidelberg.de/ iwr/comopt/soft/TSPLIB95/TSPLIB.html. The detail of the experiment
result is given at table 1, table 2 and table 3.

Instance Optimal Best
(ACS)

Best
(AWACS)

Average
(ACS)

Average
(AWACS)

Tavg(s)
(ACS)

Tavg (s)
(AWACS)

Best β
(ACS)

st70 654 657 657 675.9 675.5 16.9 27.4 4

rat99 unknown 1188 1188 1211.7 1199.4 53.2 59.7 3

pr107 unknown 44539 44398 44906.3 44783.9 39.5 55.4 4

pr124 unknown 59205 59067 59819.9 59646.6 59.2 42.3 4

eil101 612 614 613 634.6 631.4 22.4 76.3 5

rd100 7858 7909 7861 8100.4 8066.2 59.5 54.1 3

eil51 415 415 415 423.9 423.7 6.7 7.8 3

lin105 14345 14376 14354 14509.3 14465.6 73.7 50.8 4, 5

kroD100 21249 21486 21265 21893 21628.2 25.8 60 5

kroC100 20703 20703 20703 21165.3 20914.9 29.5 67.7 4

Table 1. Comparison I of the results obtained by ACS and AWACS

Instance Optimal Best
(ACS)

Best
(AWACS)

Average
(ACS)

Average
(AWACS)

Tavg(s)
(ACS)

Tavg (s)
(AWACS)

Best β
(ACS)

kroA100 21282 21285.44 21285.44 21345.78 21286.33 51.3 51.8 2, 3

kroE100 22068 22078.66 22068.75 22206.62 22117.16 56.3 64.5 5

berlin52 7542 7544.36 7544.36 7544.36 7544.36 8.7 9.8 5

kroB150 26130 26127.35 26127.71 26332.75 26214.10 177.8 164.8 5

ch150 6528 6530.90 6530.90 6594.94 6559.66 373.6 118.1 2

kroB100 22141 22139.07 22139.07 22335.72 22177.47 55.5 68.6 4

kroA150 26524 26618.33 26524.86 26809.08 26685.73 204.5 242.9 5

u159 42080 42075.67 42075.67 42472.04 42168.54 356.7 80.2 1

pr76 108159 108159.4 108159.4 108610.6 108581.7 50.5 42.8 1

pr136 96772 96870.89 96785.86 97854.16 97236.61 344.3 158.9 14,5

Table 2. Comparison II of the results obtained by ACS and AWACS

 Travelling Salesman Problem

44

Instance
\Standard deviation AWACS

ACS
1β =

ACS
2β =

ACS
3β =

ACS
4β =

ACS
5β =

kroA100 8.49 460.04 338.84 183.55 625.81 447.03

kroE100 123.82 327.01 467.75 529.73 330.12 366.49

berlin52 0.00 376.98 376.19 357.76 548.34 0.00

kroB150 221.98 447.98 652.57 821.48 664.54 486.91

ch150 54.50 114.76 153.71 109.36 171.66 54.81

kroB100 132.37 554.43 579.73 1091.25 558.86 233.01

kroA150 384.39 522.81 942.11 974.79 640.34 432.72

u159 623.16 726.99 3531.45 2458.43 1509.09 1661.63

pr76 1158.43 1180.56 5058.92 2088.68 1677.73 1411.15

pr136 1300.78 2386.53 5303.40 4572.69 3304.40 2173.27

Table 3. Comparison of standard deviations of the tour lengths obtained by AWACS and
ACS

As shown in the above tables, there might be something like precision and time cost in the
result of our experiments different from those in the former research because of the different
program tools, systems and computing machines. Another possible reason is that the
distances between cities in the first 10 instances are measured by integer numbers. But ACS
and AWACS are running in the same setting, so the result remains helpful to compare the
performance of these two algorithms.
From Table 1-2, it could be seen that AWACS performs better than ACS with the fixed β.
The shortest lengths and the average lengths obtained by AWACS are shorter than those
found by ACS in all of the TSP instances. As Table 3 shows, it can be concluded that the
standard deviations of the tour lengths obtained by AWACS are smaller than those of ACS
with the fixedβ. Therefore, we can conclude that AWACS is proved to be more effective and
steady than ACS.
ACS has to change the best integer value of parameterβ with respect to different instances in
the experiments. AWACS can avoid the difficulty about how to choose the experimental
value ofβ, because its adaptive strategy can be considered as a function trying to find the
best setting for each path search via meeting the request of Formula 4. Though, the time cost
tavg of AWACS is more than ACS in some case, it is less than the sum of time ACS costs with
β =1,2,3,4,5 in all of the instances. As a result, the adaptive setting can save much time in

choosing the experimentalβ. Item tavg of AWACS is not less than ACS in all of the instances

because it needs to compute the value of β n (number of cities) times in each iteration.
However, the adaptive function of AWACS is feasible to use because of its acceptable time
cost.

Bio-inspired Algorithms for TSP and Generalized TSP

45

2.3 Bi-directional searching ant colony system
In 2.2, an adaptive strategy for the weight parameter is proposed by exploring the function
of the parameter in the stochastic mechanism. In this section, we will further explore the
stochastic mechanism and a bi-directional searching ant colony system is proposed.

2.3.1 Bi-directional searching strategy using adaptive weight parameter
In the proposed ACO algorithms, the state transition rule of the artificial ants is given as
follows:

(,)

(,)

()

[()] []
()

[()] []()

0
k

g t
gs gs

kg tk
gr grgs r J g

t
if s J g

tP t

otherwise

α β

α β

τ η
τ η

∈

⎧
∈⎪⎪= ⎨

⎪
⎪⎩

∑ (10)

The only difference between the (10) and (3) is the setting of the parameter (,)g tβ . In the
Bi-directional case, the parameter is set with one of the following two methods by
probability 0.5

0max min

maxlog () log ()
1). (,)

log log
g g

g g

avet t
g t

τ τ
β ε

η η
−

= −
−

min max

0max

log () log ()
2). (,)

log log
g g

g g
ave

t t
g t

τ τ
β ε

η η
−

= +
−

.

where max

()
() max{ ()}

k
g gii J g

t tτ τ
∈

= is the highest pheromone trail among all the cities feasible to

be selected as next stop to city g. min

()
() min { ()}

k
g gii J g

t tτ τ
∈

= is the lowest one, and

1

()

() () ()
k

ave
g k gi

i J g

t J g tτ τ−

∈

= ∑ is the average pheromone trail, where ()kJ g is the

number of elements in the set ()kJ g . max 1

()
max{ }

k
g gii J g

dη −

∈
= is the highest heuristic value of

elements in the set ()kJ g . min 1

()
min { }

k
g gii J g

dη −

∈
= stands for the lowest heuristic value,

1 1 1

() ()

() ()
k k

ave
g k gi k gi

i J g i J g

J g J g dη η− − −

∈ ∈

= =∑ ∑ is the average heuristic value, and ε0>0..

For the first method,
max max min (,) max (,)

max min (,) (,)

() ()

log () log () [()] [] [()] []
(,)

log log [()] [] [()] []
k k

ave g t ave g t
g g g g g g

g t g t
g g gr gr gr gr

r J g r J g

t t t t
g t

t t

α β α β

α β α β

τ τ τ η τ η
β

η η τ η τ η
∈ ∈

−
< ⇔ >

− ∑ ∑
.

It means that the ants will select the paths with the maximum pheromone trail by the higher
probability than most of the other feasible paths, even if they are paths with the highest
heuristic value.
For the second one,

min max min max (,) max (,)

max (,) (,)

() ()

log () log () [()] [] [()] []
(,)

log log [()] [] [()] []
k k

g t ave g t
g g g g g g

ave g t g t
g g gr gr gr gr

r J g r J g

t t t t
g t

t t

α β α β

α β α β

τ τ τ η τ η
β

η η τ η τ η
∈ ∈

−
> ⇔ >

− ∑ ∑

 Travelling Salesman Problem

44

Instance
\Standard deviation AWACS

ACS
1β =

ACS
2β =

ACS
3β =

ACS
4β =

ACS
5β =

kroA100 8.49 460.04 338.84 183.55 625.81 447.03

kroE100 123.82 327.01 467.75 529.73 330.12 366.49

berlin52 0.00 376.98 376.19 357.76 548.34 0.00

kroB150 221.98 447.98 652.57 821.48 664.54 486.91

ch150 54.50 114.76 153.71 109.36 171.66 54.81

kroB100 132.37 554.43 579.73 1091.25 558.86 233.01

kroA150 384.39 522.81 942.11 974.79 640.34 432.72

u159 623.16 726.99 3531.45 2458.43 1509.09 1661.63

pr76 1158.43 1180.56 5058.92 2088.68 1677.73 1411.15

pr136 1300.78 2386.53 5303.40 4572.69 3304.40 2173.27

Table 3. Comparison of standard deviations of the tour lengths obtained by AWACS and
ACS

As shown in the above tables, there might be something like precision and time cost in the
result of our experiments different from those in the former research because of the different
program tools, systems and computing machines. Another possible reason is that the
distances between cities in the first 10 instances are measured by integer numbers. But ACS
and AWACS are running in the same setting, so the result remains helpful to compare the
performance of these two algorithms.
From Table 1-2, it could be seen that AWACS performs better than ACS with the fixed β.
The shortest lengths and the average lengths obtained by AWACS are shorter than those
found by ACS in all of the TSP instances. As Table 3 shows, it can be concluded that the
standard deviations of the tour lengths obtained by AWACS are smaller than those of ACS
with the fixedβ. Therefore, we can conclude that AWACS is proved to be more effective and
steady than ACS.
ACS has to change the best integer value of parameterβ with respect to different instances in
the experiments. AWACS can avoid the difficulty about how to choose the experimental
value ofβ, because its adaptive strategy can be considered as a function trying to find the
best setting for each path search via meeting the request of Formula 4. Though, the time cost
tavg of AWACS is more than ACS in some case, it is less than the sum of time ACS costs with
β =1,2,3,4,5 in all of the instances. As a result, the adaptive setting can save much time in

choosing the experimentalβ. Item tavg of AWACS is not less than ACS in all of the instances

because it needs to compute the value of β n (number of cities) times in each iteration.
However, the adaptive function of AWACS is feasible to use because of its acceptable time
cost.

Bio-inspired Algorithms for TSP and Generalized TSP

45

2.3 Bi-directional searching ant colony system
In 2.2, an adaptive strategy for the weight parameter is proposed by exploring the function
of the parameter in the stochastic mechanism. In this section, we will further explore the
stochastic mechanism and a bi-directional searching ant colony system is proposed.

2.3.1 Bi-directional searching strategy using adaptive weight parameter
In the proposed ACO algorithms, the state transition rule of the artificial ants is given as
follows:

(,)

(,)

()

[()] []
()

[()] []()

0
k

g t
gs gs

kg tk
gr grgs r J g

t
if s J g

tP t

otherwise

α β

α β

τ η
τ η

∈

⎧
∈⎪⎪= ⎨

⎪
⎪⎩

∑ (10)

The only difference between the (10) and (3) is the setting of the parameter (,)g tβ . In the
Bi-directional case, the parameter is set with one of the following two methods by
probability 0.5

0max min

maxlog () log ()
1). (,)

log log
g g

g g

avet t
g t

τ τ
β ε

η η
−

= −
−

min max

0max

log () log ()
2). (,)

log log
g g

g g
ave

t t
g t

τ τ
β ε

η η
−

= +
−

.

where max

()
() max{ ()}

k
g gii J g

t tτ τ
∈

= is the highest pheromone trail among all the cities feasible to

be selected as next stop to city g. min

()
() min { ()}

k
g gii J g

t tτ τ
∈

= is the lowest one, and

1

()

() () ()
k

ave
g k gi

i J g

t J g tτ τ−

∈

= ∑ is the average pheromone trail, where ()kJ g is the

number of elements in the set ()kJ g . max 1

()
max{ }

k
g gii J g

dη −

∈
= is the highest heuristic value of

elements in the set ()kJ g . min 1

()
min { }

k
g gii J g

dη −

∈
= stands for the lowest heuristic value,

1 1 1

() ()

() ()
k k

ave
g k gi k gi

i J g i J g

J g J g dη η− − −

∈ ∈

= =∑ ∑ is the average heuristic value, and ε0>0..

For the first method,
max max min (,) max (,)

max min (,) (,)

() ()

log () log () [()] [] [()] []
(,)

log log [()] [] [()] []
k k

ave g t ave g t
g g g g g g

g t g t
g g gr gr gr gr

r J g r J g

t t t t
g t

t t

α β α β

α β α β

τ τ τ η τ η
β

η η τ η τ η
∈ ∈

−
< ⇔ >

− ∑ ∑
.

It means that the ants will select the paths with the maximum pheromone trail by the higher
probability than most of the other feasible paths, even if they are paths with the highest
heuristic value.
For the second one,

min max min max (,) max (,)

max (,) (,)

() ()

log () log () [()] [] [()] []
(,)

log log [()] [] [()] []
k k

g t ave g t
g g g g g g

ave g t g t
g g gr gr gr gr

r J g r J g

t t t t
g t

t t

α β α β

α β α β

τ τ τ η τ η
β

η η τ η τ η
∈ ∈

−
> ⇔ >

− ∑ ∑

 Travelling Salesman Problem

46

It means that the ants will select the paths with the maximum heuristic value by the higher
probability than most of the other feasible paths, even if they are paths with the highest
pheromone trail.
Combing the above two methods of the parameter setting, the new ACO algorithm BSACS
is designed as:
 Initialize
/*β is chosen between 0 and 5 randomly, q0=0.6 */
Loop /* at this level each loop is called iteration */
 Each ant is positioned on a starting node
 Loop /* at this level each loop is called a step */
 Each ant applies a state transition rule to incrementally build a solution and
 a local pheromone updating rule is applied
 Until all ants have built a complete solution
 A global pheromone updating rule is applied
β(g,t)is updated by either of the two methods by probability 0.5 (g=1,…,n)
Until End_condition

2.3.2 Numerical results and analyses
In this section, several large TSP instances of TSPIB [70] are tested by BSACS and ACS to
show the efficiency of the BSACS. The parameters are set as follows: m = 10, a = ρ= 0.1,

1
0 ()nnnLτ −= , and α=1. q0=0.9 in ACS, ε0=0.001 and q0=0.6 in BSACS , respectively. All

the instances are computed by BSACS 10 times, and so does ACS with each
β(β =1,2,3,4,5). As shown in Table 4 and Table 5, Item (1) is the length of the best tour
obtained by ACS and BSACS. Item (6) is the length of optimal solution published in the
TSPLIB: http://www.iwr.uniheidelberg.de/iwr/comopt/soft/TSPLIB95/TSPLIB.html.
Item (2) is the relative error which can be computed by 1 100%(2) ((1) (3)) (3)−= ×− × . Item
(1) and (2) show that BSACS can obtain better solution than ACS in all of the instances. Item
(4) is the average length of the solutions found by both ACS and BSACS. Item (5) is the best
value of β which can make ACS perform the best according to Item (1) or Item (4).
The experiment result shows that BSACS can perform better than ACS in every
computation. What’s more, ACS has to change the selection of β in different instances and

cannot solve different large size TSP problems steadily with a fixed value of β. The reason is
that ACS is not able to effectively use the pheromone trail and heuristic value in searching
when β of the transition rule is fixed and unchanged in iterations. This disadvantage could
be avoided by using BSACS because the new rule of BSACS (Formula 1) functions based on
both pheromone trail and heuristic value adaptively. For the computational complexity, the
BSACS need more time than ACS, because β(g,t)(g=1,…, n) has to be updated at each
iteration. However, it doesn’t mean that the cost of BSACS is more than ACS in the
application, because the cost of ACS for the best parameter selection (Item (5) in Table 2) has
not been calculated here. Therefore, BSACS can save the time in choosing the experimental
value of the parameter. Generally, the BSACS improves the performance of ACS in solving
large size TSP problems.

Bio-inspired Algorithms for TSP and Generalized TSP

47

Instance Algorithm (1)Best (2)%Error (3)Optimal
ACS 118773 0.423 bier127

BSACS 118372 0.076
118282

ACS 15888 0.68 d198
BSACS 15780 0.00

15780

ACS 128829 1.734 ts225
BSACS 126905 0.206

126643

ACS 51286 0.96 pcb442
BSACS 51271 0.93

50799

ACS 28147 1.67 att532
BSACS 27939 0.91

27686

ACS 38318 3.829 u574
BSACS 37662 2.052

36905

ACS 9015 2.37 rat783
BSACS 8819 0.14

8806

ACS 22977 3.27 fl1577
BSACS 22611 1.63

222490.

Table 4. Comparison of the best solution obtained by ACS and BSACS

Instance Algorithm (4)
Average

(5)Best β of
ACS

(6) tavg

(second)

ACS 119185.3 2, 3 45.6 bier127
BSACS 118826.8 - 91.0

ACS 16054.8 2 97.8 d198
BSACS 15842.1 - 124.5

ACS 129102.5 4, 5 32.0 ts225
BSACS 127262.8 - 67.0

ACS 51690.2 2 281.6 pcb442
BSACS 51642.8 - 461.2

ACS 28532.0 2 401.5 att532
BSACS 28163.7 - 539.7

ACS 38657.8 1, 5 305.3 u574
BSACS 38291.9 - 504.3

ACS 9066.0 2 1185.4 rat783
BSACS 8985.8 - 1559.8

ACS 23163.5 2 3884.0 fl1577
BSACS 22680.3 - 6290.2

Table 5. Comparison of the average solution obtained by ACS and BSAC

2.4 An adaptive volatility rate of pheromone trail
The following presents a trial work of setting the parameters of ACO adaptively. First, a tuning
rule for ρ is designed based on the quality of the solution constructed by artificial ants. Then, we
introduce the adaptive ρ to form a new ACO algorithm, which is tested to compute several
benchmark instances of traveling sales-man problem and film-copy deliverer problem.

 Travelling Salesman Problem

46

It means that the ants will select the paths with the maximum heuristic value by the higher
probability than most of the other feasible paths, even if they are paths with the highest
pheromone trail.
Combing the above two methods of the parameter setting, the new ACO algorithm BSACS
is designed as:
 Initialize
/*β is chosen between 0 and 5 randomly, q0=0.6 */
Loop /* at this level each loop is called iteration */
 Each ant is positioned on a starting node
 Loop /* at this level each loop is called a step */
 Each ant applies a state transition rule to incrementally build a solution and
 a local pheromone updating rule is applied
 Until all ants have built a complete solution
 A global pheromone updating rule is applied
β(g,t)is updated by either of the two methods by probability 0.5 (g=1,…,n)
Until End_condition

2.3.2 Numerical results and analyses
In this section, several large TSP instances of TSPIB [70] are tested by BSACS and ACS to
show the efficiency of the BSACS. The parameters are set as follows: m = 10, a = ρ= 0.1,

1
0 ()nnnLτ −= , and α=1. q0=0.9 in ACS, ε0=0.001 and q0=0.6 in BSACS , respectively. All

the instances are computed by BSACS 10 times, and so does ACS with each
β(β =1,2,3,4,5). As shown in Table 4 and Table 5, Item (1) is the length of the best tour
obtained by ACS and BSACS. Item (6) is the length of optimal solution published in the
TSPLIB: http://www.iwr.uniheidelberg.de/iwr/comopt/soft/TSPLIB95/TSPLIB.html.
Item (2) is the relative error which can be computed by 1 100%(2) ((1) (3)) (3)−= ×− × . Item
(1) and (2) show that BSACS can obtain better solution than ACS in all of the instances. Item
(4) is the average length of the solutions found by both ACS and BSACS. Item (5) is the best
value of β which can make ACS perform the best according to Item (1) or Item (4).
The experiment result shows that BSACS can perform better than ACS in every
computation. What’s more, ACS has to change the selection of β in different instances and

cannot solve different large size TSP problems steadily with a fixed value of β. The reason is
that ACS is not able to effectively use the pheromone trail and heuristic value in searching
when β of the transition rule is fixed and unchanged in iterations. This disadvantage could
be avoided by using BSACS because the new rule of BSACS (Formula 1) functions based on
both pheromone trail and heuristic value adaptively. For the computational complexity, the
BSACS need more time than ACS, because β(g,t)(g=1,…, n) has to be updated at each
iteration. However, it doesn’t mean that the cost of BSACS is more than ACS in the
application, because the cost of ACS for the best parameter selection (Item (5) in Table 2) has
not been calculated here. Therefore, BSACS can save the time in choosing the experimental
value of the parameter. Generally, the BSACS improves the performance of ACS in solving
large size TSP problems.

Bio-inspired Algorithms for TSP and Generalized TSP

47

Instance Algorithm (1)Best (2)%Error (3)Optimal
ACS 118773 0.423 bier127

BSACS 118372 0.076
118282

ACS 15888 0.68 d198
BSACS 15780 0.00

15780

ACS 128829 1.734 ts225
BSACS 126905 0.206

126643

ACS 51286 0.96 pcb442
BSACS 51271 0.93

50799

ACS 28147 1.67 att532
BSACS 27939 0.91

27686

ACS 38318 3.829 u574
BSACS 37662 2.052

36905

ACS 9015 2.37 rat783
BSACS 8819 0.14

8806

ACS 22977 3.27 fl1577
BSACS 22611 1.63

222490.

Table 4. Comparison of the best solution obtained by ACS and BSACS

Instance Algorithm (4)
Average

(5)Best β of
ACS

(6) tavg

(second)

ACS 119185.3 2, 3 45.6 bier127
BSACS 118826.8 - 91.0

ACS 16054.8 2 97.8 d198
BSACS 15842.1 - 124.5

ACS 129102.5 4, 5 32.0 ts225
BSACS 127262.8 - 67.0

ACS 51690.2 2 281.6 pcb442
BSACS 51642.8 - 461.2

ACS 28532.0 2 401.5 att532
BSACS 28163.7 - 539.7

ACS 38657.8 1, 5 305.3 u574
BSACS 38291.9 - 504.3

ACS 9066.0 2 1185.4 rat783
BSACS 8985.8 - 1559.8

ACS 23163.5 2 3884.0 fl1577
BSACS 22680.3 - 6290.2

Table 5. Comparison of the average solution obtained by ACS and BSAC

2.4 An adaptive volatility rate of pheromone trail
The following presents a trial work of setting the parameters of ACO adaptively. First, a tuning
rule for ρ is designed based on the quality of the solution constructed by artificial ants. Then, we
introduce the adaptive ρ to form a new ACO algorithm, which is tested to compute several
benchmark instances of traveling sales-man problem and film-copy deliverer problem.

 Travelling Salesman Problem

48

2.4.1 An adaptive volatility rate setting strategy
After constructing its tour, an artificial ant also modifies the amount of pheromone on the
visited edges by applying the pheromone updating rule. The rule is designed so that it tends
to give more pheromone to the edges which should be visited by ants. The classical
pheromone updating rule is as (1). And the optimal ρ was set ρ =0.1 experimentally [46, 49,
55], which means that 90 per cent of the original pheromone trail remains and its 10 per cent
is replaced by the increment.
In order to update the pheromone according to the quality of solutions found by ants, an
adaptive rule for volatility of the pheromone trail is designed as follows:

 1 1 1/()m m m PL L Lρ − − −= + (11)

whereLm is the length of the solution Sm found by ant m, and Lp is the length of the solution
Sp built based on the pheromone matrix, shown as

()
arg max {[(,)}

mu J r
s r uτ

∈
= where s is the

city selected as the next one to city r for any (r,s)∈ Sp.
The motivation of the proposed rule is: better solutions should contribute more pheromone,
and the worse ones contribute less. And a new ACO algorithm with the adaptive rule
(shown as Equation 3) is introduced as follows:

Initialize
/*β is chosen between 0 and 5 randomly, q0=0.6 */
Loop /* at this level each loop is called iteration */
 Each ant is positioned on a starting node
 Loop /* at this level each loop is called a step */
 Each ant applies a state transition rule to incrementally build a solution and
 a local pheromone updating rule is applied
 Each ant the calculate the ρi is based on its solution’s length
 Until all ants have built a complete solution
 ρbest is calculated based on the best solution Sbest.
 Carry out the pheromone updating rule with ρi (i=1,…,k) and ρbest.
Until End_condition

2.4.2 Numerical results
This section indicates the numerical results in the experiment that the proposed ACO
algorithm is used to solve TSP problems [69]. Several TSP instances are computed by ACS
[49], ACO [71] and the proposed ACO on a PC with an Intel Pentium 550MBHz Processor
and 256MB SDR Memory, and the results are shown in Table 1.
It should be noted that every instance is computed 20 times. The algorithms are both
programmed in Visual C++6.0 for Windows System. They would not stop until a better
solution could be found in 500 iterations, which is considered as a virtual convergence of the
algorithms. Table 6 shows that the proposed ACO algorithm (PACO) performs better than
ACS [49] and ACO [71]. The shortest lengths and the average lengths obtained by PACO are
shorter than those found by ACS and ACO in all of the TSP instances. Furthermore, it can be
concluded that the standard deviations of the tour lengths obtained by PACO are smaller
than those of another algorithms. Therefore, we can conclude that PACO is proved to be

Bio-inspired Algorithms for TSP and Generalized TSP

49

more effective and steady than ACS [49] and ACO [71]. Computation time cost of PACO is
not less than ACS and ACO in all of the instances because it needs to compute the value of
volatility rate k+1 times per iteration. Although all optimal tours of TSP problems cannot be
found by the tested algorithms, all of the errors for PACO are much less than that for
another two ACO approaches. The algorithms may make improvement in solving TSP when
reinforcing heuristic strategies like local search like ACS-3opt [49] and MMAS+rs [51] are
used.

Problem Algorithm best ave time(s) standard
deviation

ACS 21958 22088.8 65 1142.77
ACO 21863 22082.5 94.6 1265.30 kroA100

PACO 21682 22076.2 117.2 549.85
ACS 130577 133195 430.6 7038.30
ACO 130568 132984 439.3 7652.80 ts225

PACO 130507 131560 419.4 1434.98
ACS 84534 86913.8 378.4 4065.25
ACO 83659 87215.6 523.8 5206.70 pr226

PACO 81967 83462.2 762.2 3103.41
ACS 14883 15125.4 88.8 475.37
ACO 14795 15038.4 106.6 526.43 lin105

PACO 14736 14888 112.2 211.34
ACS 23014 23353.8 56.2 685.79
ACO 22691 23468.1 102.9 702.46 kroB100

PACO 22289 22728 169.6 668.26
ACS 21594 21942.6 54.8 509.77
ACO 21236 21909.8 78.1 814.53 kroC100

PACO 20775 21598.4 114.8 414.62
ACS 48554 49224.4 849.2 1785.21
ACO 48282 49196.7 902.7 2459.16 lin318

PACO 47885 49172.8 866.8 1108.34

Table 6. Comparison of the ACS [49], ACO [51] and the proposed ACO (PACO) in TSP
instances

3. Genetic algorithm for generalized TSP
3.1 Generalized TSP (GTSP)
The generalized traveling salesman problem (GTSP) is a kind of combinatorial optimization
problem, which has been introduced by Henry-Labordere [72] and Saksena [73] in the
context of computer record balancing and of visit sequencing through welfare agencies since
1960s. The GTSP can be described as the problem of seeking a special Hamiltonian cycle
with lowest cost in a complete weighted graph.

 Travelling Salesman Problem

48

2.4.1 An adaptive volatility rate setting strategy
After constructing its tour, an artificial ant also modifies the amount of pheromone on the
visited edges by applying the pheromone updating rule. The rule is designed so that it tends
to give more pheromone to the edges which should be visited by ants. The classical
pheromone updating rule is as (1). And the optimal ρ was set ρ =0.1 experimentally [46, 49,
55], which means that 90 per cent of the original pheromone trail remains and its 10 per cent
is replaced by the increment.
In order to update the pheromone according to the quality of solutions found by ants, an
adaptive rule for volatility of the pheromone trail is designed as follows:

 1 1 1/()m m m PL L Lρ − − −= + (11)

whereLm is the length of the solution Sm found by ant m, and Lp is the length of the solution
Sp built based on the pheromone matrix, shown as

()
arg max {[(,)}

mu J r
s r uτ

∈
= where s is the

city selected as the next one to city r for any (r,s)∈ Sp.
The motivation of the proposed rule is: better solutions should contribute more pheromone,
and the worse ones contribute less. And a new ACO algorithm with the adaptive rule
(shown as Equation 3) is introduced as follows:

Initialize
/*β is chosen between 0 and 5 randomly, q0=0.6 */
Loop /* at this level each loop is called iteration */
 Each ant is positioned on a starting node
 Loop /* at this level each loop is called a step */
 Each ant applies a state transition rule to incrementally build a solution and
 a local pheromone updating rule is applied
 Each ant the calculate the ρi is based on its solution’s length
 Until all ants have built a complete solution
 ρbest is calculated based on the best solution Sbest.
 Carry out the pheromone updating rule with ρi (i=1,…,k) and ρbest.
Until End_condition

2.4.2 Numerical results
This section indicates the numerical results in the experiment that the proposed ACO
algorithm is used to solve TSP problems [69]. Several TSP instances are computed by ACS
[49], ACO [71] and the proposed ACO on a PC with an Intel Pentium 550MBHz Processor
and 256MB SDR Memory, and the results are shown in Table 1.
It should be noted that every instance is computed 20 times. The algorithms are both
programmed in Visual C++6.0 for Windows System. They would not stop until a better
solution could be found in 500 iterations, which is considered as a virtual convergence of the
algorithms. Table 6 shows that the proposed ACO algorithm (PACO) performs better than
ACS [49] and ACO [71]. The shortest lengths and the average lengths obtained by PACO are
shorter than those found by ACS and ACO in all of the TSP instances. Furthermore, it can be
concluded that the standard deviations of the tour lengths obtained by PACO are smaller
than those of another algorithms. Therefore, we can conclude that PACO is proved to be

Bio-inspired Algorithms for TSP and Generalized TSP

49

more effective and steady than ACS [49] and ACO [71]. Computation time cost of PACO is
not less than ACS and ACO in all of the instances because it needs to compute the value of
volatility rate k+1 times per iteration. Although all optimal tours of TSP problems cannot be
found by the tested algorithms, all of the errors for PACO are much less than that for
another two ACO approaches. The algorithms may make improvement in solving TSP when
reinforcing heuristic strategies like local search like ACS-3opt [49] and MMAS+rs [51] are
used.

Problem Algorithm best ave time(s) standard
deviation

ACS 21958 22088.8 65 1142.77
ACO 21863 22082.5 94.6 1265.30 kroA100

PACO 21682 22076.2 117.2 549.85
ACS 130577 133195 430.6 7038.30
ACO 130568 132984 439.3 7652.80 ts225

PACO 130507 131560 419.4 1434.98
ACS 84534 86913.8 378.4 4065.25
ACO 83659 87215.6 523.8 5206.70 pr226

PACO 81967 83462.2 762.2 3103.41
ACS 14883 15125.4 88.8 475.37
ACO 14795 15038.4 106.6 526.43 lin105

PACO 14736 14888 112.2 211.34
ACS 23014 23353.8 56.2 685.79
ACO 22691 23468.1 102.9 702.46 kroB100

PACO 22289 22728 169.6 668.26
ACS 21594 21942.6 54.8 509.77
ACO 21236 21909.8 78.1 814.53 kroC100

PACO 20775 21598.4 114.8 414.62
ACS 48554 49224.4 849.2 1785.21
ACO 48282 49196.7 902.7 2459.16 lin318

PACO 47885 49172.8 866.8 1108.34

Table 6. Comparison of the ACS [49], ACO [51] and the proposed ACO (PACO) in TSP
instances

3. Genetic algorithm for generalized TSP
3.1 Generalized TSP (GTSP)
The generalized traveling salesman problem (GTSP) is a kind of combinatorial optimization
problem, which has been introduced by Henry-Labordere [72] and Saksena [73] in the
context of computer record balancing and of visit sequencing through welfare agencies since
1960s. The GTSP can be described as the problem of seeking a special Hamiltonian cycle
with lowest cost in a complete weighted graph.

 Travelling Salesman Problem

50

Let G=(V, E, M) be a complete weighted graph where { }1 2, , , (3),nV v v v n= >�

{ }| ,i j i jE e v v V= ∈ and { }| 0 0, , ()i j ij iiW w w and w i j N n= ≥ = ∀ ∈ are vertex set, edge

set, and cost set, respectively. The vertex set V is partitioned into m possibly intersecting
groups 1 2, , mV V V� with 1jV ≥ and 1

m
j jV V== ∪ . The GTSP is required to pass through all

of the groups, but not all of the vertices differing from that of TSP. For convenience, we also
call W as the cost matrix and take it as W=(wij)n×n. There are two different kinds of GTSP
under the abovementioned framework of the special Hamiltonian cycle [75-76]: (1) the cycle
passes exactly one vertex in each group (refer to Fig. 1) and (2) the cycle passes at least one
vertex in each group (refer to Fig. 2). The first kind of GTSP is also known as E-GTSP, where
E stands for equality [76]. In this paper we only discuss the GTSP for the first case and will
still call it as GTSP for convenience.

Figure 3. Exactly one vertex is visited in a GTSP cycle.

GTSP has extensive application fields. Laport et al. [75], Lien et al. [77], and Castelino et al.
[78] reported the applications of GTSP. Just as mentioned in Ref. [77], “for many real-world
problems that are inherently hierarchical, the GTSP offers a more accurate model than the
TSP.” Generally, GTSP provides a more ideal modeling tool for many real problems.
Furthermore, GTSP can include the grouped and isolated vertices at the same time
according to our present extension. Therefore, GTSP includes TSP theoretically (see Fig. 3)
and application fields of GTSP are wider than those of TSP.
Although since late 1960s GTSP has been proposed [72-74], the related reported works are
very limited compared with those on TSP [79–82] and the existing algorithms for GTSP are
mainly based on dynamic programming techniques [72-74,76,83-84]. However, because of
its NP-hard quality, only a few solutions of modest-size problems are supported by the
current hardware technology and most of them fail to obtain the results due to the huge
memory required in dynamic programming algorithms and the problem of lengthy
computational time.
The main methodology of the dynamic programming algorithms is to transform the GTSP
into TSP and then to solve the TSP using existing algorithms [76, 84–86]. The shortcomings
of these methods are that the transformation increases the problem dimension dramatically
and in some cases the dimension would expand up to more than three times of the original
[77, 87-89]. Therefore, although theoretically the GTSP could be solved using the

Bio-inspired Algorithms for TSP and Generalized TSP

51

corresponding transformed TSP, the technological limitation ruins its practical feasibility.
Some studies have been performed to discuss and solve the problem [90–92]. This study, we
will show some bio-inspired method on the GTSP problem.

3.2 Genetic algorithm for generalized TSP
Genetic algorithm (GA) is one of the powerful tools to deal with NP-hard combinatorial
optimization problems and has been widely applied for finding the solution of TSP due to
its high efficiency and strong searching ability. However, theoretical and application studies
related to using GA methods to solve GTSP are very few. The [90] and [93] are two of most
interesting work on this problem. In [90], a hybrid GTSP solving algorithm is proposed
based on random-key GA and local search method, the main difficult of the method it is
hard to handle large scale problems. In [93], a generalized chromosome is used and a
generalized chromosome- based GA (GCGA) is proposed accordingly. The advantages of
the GCGA are that it does not require the transformation from GTSP to TSP and remove the
limitation of triangle inequality of the cost matrix, which enables the GCGA to be able to run
with high efficiency.

3.2.1 Generalized chromosome
The solution of GTSP is a special Hamiltonian cycle, which passes through all of the groups.
The encoding for solution of GTSP is designed similarly to the one proposed by Huang et al.
[94]. A hybrid encoding, which includes a head encoded with binary number and a body
encoded with integer number, is given for the solution as figure 1 shows.

Figure 4. Hybrid Encoding for Solution of GTSP

In the body, there are m integer elements representing m groups (ˆm m m= + , m̂ supper
vertexes and m scattering vertexes[93]. In the head, there are m̂ binary elements
representing vertexes in groups.
Let ˆ1 1[,..., ,..., , ,..., ,...,]i m j me e e g g g be a GTSP solution, where ie (encoded in binary

number) is the sequence number of the vertex in Group i, and jg (encoded in integer

number) is the sequence number of the jth group in the cycle. The set of hybrid encoding can
be denoted by { }| , ,D x x h b h H b B= = ⊕ ∈ ∈ , and each solution for GTSP can be encoded as
x D∈ , where 1 ˆ ˆ{ | ,..., ; , }i imH h h e e e V i m= = ≤ ≤ represents the head and

1{ | ,..., }mB b b g g= =) represents the body.

3.2.2 The framework of the GCGA
The special designed operators are needed to conduct random search on the generalized
chromosome. The GCGA contains the following four operators: Initializing operator P,
Generalized crossover operator C, Generalized crossover operator C and Generalized

 Travelling Salesman Problem

50

Let G=(V, E, M) be a complete weighted graph where { }1 2, , , (3),nV v v v n= >�

{ }| ,i j i jE e v v V= ∈ and { }| 0 0, , ()i j ij iiW w w and w i j N n= ≥ = ∀ ∈ are vertex set, edge

set, and cost set, respectively. The vertex set V is partitioned into m possibly intersecting
groups 1 2, , mV V V� with 1jV ≥ and 1

m
j jV V== ∪ . The GTSP is required to pass through all

of the groups, but not all of the vertices differing from that of TSP. For convenience, we also
call W as the cost matrix and take it as W=(wij)n×n. There are two different kinds of GTSP
under the abovementioned framework of the special Hamiltonian cycle [75-76]: (1) the cycle
passes exactly one vertex in each group (refer to Fig. 1) and (2) the cycle passes at least one
vertex in each group (refer to Fig. 2). The first kind of GTSP is also known as E-GTSP, where
E stands for equality [76]. In this paper we only discuss the GTSP for the first case and will
still call it as GTSP for convenience.

Figure 3. Exactly one vertex is visited in a GTSP cycle.

GTSP has extensive application fields. Laport et al. [75], Lien et al. [77], and Castelino et al.
[78] reported the applications of GTSP. Just as mentioned in Ref. [77], “for many real-world
problems that are inherently hierarchical, the GTSP offers a more accurate model than the
TSP.” Generally, GTSP provides a more ideal modeling tool for many real problems.
Furthermore, GTSP can include the grouped and isolated vertices at the same time
according to our present extension. Therefore, GTSP includes TSP theoretically (see Fig. 3)
and application fields of GTSP are wider than those of TSP.
Although since late 1960s GTSP has been proposed [72-74], the related reported works are
very limited compared with those on TSP [79–82] and the existing algorithms for GTSP are
mainly based on dynamic programming techniques [72-74,76,83-84]. However, because of
its NP-hard quality, only a few solutions of modest-size problems are supported by the
current hardware technology and most of them fail to obtain the results due to the huge
memory required in dynamic programming algorithms and the problem of lengthy
computational time.
The main methodology of the dynamic programming algorithms is to transform the GTSP
into TSP and then to solve the TSP using existing algorithms [76, 84–86]. The shortcomings
of these methods are that the transformation increases the problem dimension dramatically
and in some cases the dimension would expand up to more than three times of the original
[77, 87-89]. Therefore, although theoretically the GTSP could be solved using the

Bio-inspired Algorithms for TSP and Generalized TSP

51

corresponding transformed TSP, the technological limitation ruins its practical feasibility.
Some studies have been performed to discuss and solve the problem [90–92]. This study, we
will show some bio-inspired method on the GTSP problem.

3.2 Genetic algorithm for generalized TSP
Genetic algorithm (GA) is one of the powerful tools to deal with NP-hard combinatorial
optimization problems and has been widely applied for finding the solution of TSP due to
its high efficiency and strong searching ability. However, theoretical and application studies
related to using GA methods to solve GTSP are very few. The [90] and [93] are two of most
interesting work on this problem. In [90], a hybrid GTSP solving algorithm is proposed
based on random-key GA and local search method, the main difficult of the method it is
hard to handle large scale problems. In [93], a generalized chromosome is used and a
generalized chromosome- based GA (GCGA) is proposed accordingly. The advantages of
the GCGA are that it does not require the transformation from GTSP to TSP and remove the
limitation of triangle inequality of the cost matrix, which enables the GCGA to be able to run
with high efficiency.

3.2.1 Generalized chromosome
The solution of GTSP is a special Hamiltonian cycle, which passes through all of the groups.
The encoding for solution of GTSP is designed similarly to the one proposed by Huang et al.
[94]. A hybrid encoding, which includes a head encoded with binary number and a body
encoded with integer number, is given for the solution as figure 1 shows.

Figure 4. Hybrid Encoding for Solution of GTSP

In the body, there are m integer elements representing m groups (ˆm m m= + , m̂ supper
vertexes and m scattering vertexes[93]. In the head, there are m̂ binary elements
representing vertexes in groups.
Let ˆ1 1[,..., ,..., , ,..., ,...,]i m j me e e g g g be a GTSP solution, where ie (encoded in binary

number) is the sequence number of the vertex in Group i, and jg (encoded in integer

number) is the sequence number of the jth group in the cycle. The set of hybrid encoding can
be denoted by { }| , ,D x x h b h H b B= = ⊕ ∈ ∈ , and each solution for GTSP can be encoded as
x D∈ , where 1 ˆ ˆ{ | ,..., ; , }i imH h h e e e V i m= = ≤ ≤ represents the head and

1{ | ,..., }mB b b g g= =) represents the body.

3.2.2 The framework of the GCGA
The special designed operators are needed to conduct random search on the generalized
chromosome. The GCGA contains the following four operators: Initializing operator P,
Generalized crossover operator C, Generalized crossover operator C and Generalized

 Travelling Salesman Problem

52

reversion operator R. We give a brief introduction to these five steps in this section. More
information about the GCGA can refer to [93].
1. Initializing operator P
Initializing operator P is used to generate an initial population. It is a two-element random
operator. Its two variables are H and B, and its result is a subset of D. Denoting P as a
population, then the initialization of P can be represented as PN=(H,B), where PN is an
operator to randomly generate an initial population with size N.
2. Generalized crossover operator C
To implement the crossover operation and generate new chromosomes, a generalized
crossover operator is defined as C:D×D→ D×D. It is a two-element random operator. Its
variables are the elements of D. The behavior of the operator is somewhat similar to the two-
point crossover in the standard GA. Let the two crossover points selected randomly be

1i and 2i (assume 1 2i i<), where
^ ~

1 (2)i random m m= + , and
^ ~

2 (2)i random m m= + . If

1 ˆi m> then the crossover takes place in the body parts. In this case, the effect of crossover
operator is equal to the conventional crossover in some extent, because the body parts of GC
are equivalent to two normal chromosomes. If 2 ˆi m≤ , then the crossover takes place in the
head parts. In this case, it is only needed to exchange the genes within the crossover
segments. If 1 2ˆi m i≤ < , then the generalized crossover can be treated as the combination
of the above cases.
3. Generalized mutation operator M
To increase the diversity of the gene segments, the generalized mutation operator M is
designed based on the insertion mutation used in standard GA. Preliminary gene

^ ~

2 (2)i random m m= + is randomly selected, which is taken as the gene to be mutated. The

difference between GCGA and standard GA is that if ˆi m< then the preliminary gene lies
in the head part and its corresponding body part also need to be generated.
4. Generalized reversion operator R
To enhance the convergent speed of the GCGA, the generalized reversion operator is
designed which is similar to the conventional reversion operation. Operator R can be used
to select two reversion points 1i and 2i according to 1 ˆ()i random m m= + , and

2 ˆ()i random m m= + . If the solution generated after the reversion operator, then the
operator R is taken, otherwise the operator won’t taken.

3.3 Improved Evolutionary Algorithm (EA) for GTSP
3.3.1 The framework of EA for GTSP
In this section, an improved EA for the GTSP (EA-GTSP) has been proposed. In the EA-
GTSP, the generalized chromosome described in 3.2 is used to encode the problem. And the
following three operators are specially designed to improve the efficiency of the algorithm
on the GTSP: crossover operator, mutation operator and local optimization strategy.
a. Crossover
At Step 3, pairs of solutions may be selected to carry out the crossover operator by the
crossover probability Pc. Given two solutions x x xS h b= ⊕ and y y yS h b= ⊕ selected at

Step 3 (hx, hy∈H.bx,by∈B), the process of crossover can be shown as follows:

Bio-inspired Algorithms for TSP and Generalized TSP

53

Two integer numbers 1 2,i i (1 2,i i ≤ m̂ ＋(m̂ ＋m), 1 2i i<) are generated randomly to set

the crossing position. If 1 m̂i > , then, (,)b b b bx y x y′ ′⊗ → , which is the same operator as the

GCGA, 'x h bx x′= ⊕ , 'y h by y′= ⊕ . If 2 m̂i ≤ , (,)h h h hx y x y′ ′⊗ → , ' 'x h bx x= ⊕ , ' 'y h by y= ⊕ .

If 1 m̂i < and 2 m̂i ≥ , (,)h h h hx y x y′ ′⊗ → and (,)b b b bx y x y′ ′⊗ → , x h bx x′ ′ ′= ⊕ and

y h by y′ ′ ′= ⊕ .

If the GTSP solution Sx costs less than Sy (2 m̂i ≤),

1 1 1 2 2 2
{ , ..., , . AND . , ..., . AND . , , ..., }ˆ1 1 1h e e e e e e e ex x xi xi yi xi yi xi xm

′ = − +

1 1 1 2 2 2
{ , ..., , . OR . , ..., . OR . , , ..., }ˆ1 1 1h e e e e e e e ey x xi xi yi xi yi xi xm

′ = − + ;

otherwise,

1 1 1 2 2 2
{ , ..., , .AND. , ..., .AND. , , ..., }ˆ1 1 1h e e e e e e e ex y yi xi yi xi yi yi ym′ = − +

1 1 1 2 2 2
{ , ..., , .OR . , ..., .OR . , , ..., }ˆ1 1 1h e e e e e e e ey y yi xi yi xi yi yi ym′ = − + .

If the GTSP solution Sx costs less than Sy (1 m̂i < and 2 m̂i ≥),

1 1 1
{ , ..., , . AND . , ..., . AND . }ˆ ˆ1 1h e e e e e ex x xi xi yi xm ym

′ = −

1 1 1
{ , ..., , . OR . , ..., . OR . }ˆ ˆ1 1h e e e e e ey x xi xi yi xm ym

′ = − ;

otherwise,

1 1 1
{ , ..., , . AND . , ..., . AND . }ˆ ˆ1 1h e e e e e ex y yi xi yi xm ym

′ = −

1 1 1
{ , ..., , . OR . , ..., . OR . }ˆ ˆ1 1h e e e e e ey y yi xi yi xm ym

′ = − .

b. Mutation
The mutation operator is added to help EA-GTSP converge to the global optimal solution.
Each solution is affected by the mutation operator by probability mP . There are two

procedures called head mutation and body mutation in the operator.
In the head mutation, given a head of a solution, the procedure of head mutation is:
Head mutation: h hz z′→ ,

3 3 3
{ ,..., , (), , ..., }ˆ1 1 1h e e rebuild e e ez z zi zi zi zm′ = − +

 Travelling Salesman Problem

52

reversion operator R. We give a brief introduction to these five steps in this section. More
information about the GCGA can refer to [93].
1. Initializing operator P
Initializing operator P is used to generate an initial population. It is a two-element random
operator. Its two variables are H and B, and its result is a subset of D. Denoting P as a
population, then the initialization of P can be represented as PN=(H,B), where PN is an
operator to randomly generate an initial population with size N.
2. Generalized crossover operator C
To implement the crossover operation and generate new chromosomes, a generalized
crossover operator is defined as C:D×D→ D×D. It is a two-element random operator. Its
variables are the elements of D. The behavior of the operator is somewhat similar to the two-
point crossover in the standard GA. Let the two crossover points selected randomly be

1i and 2i (assume 1 2i i<), where
^ ~

1 (2)i random m m= + , and
^ ~

2 (2)i random m m= + . If

1 ˆi m> then the crossover takes place in the body parts. In this case, the effect of crossover
operator is equal to the conventional crossover in some extent, because the body parts of GC
are equivalent to two normal chromosomes. If 2 ˆi m≤ , then the crossover takes place in the
head parts. In this case, it is only needed to exchange the genes within the crossover
segments. If 1 2ˆi m i≤ < , then the generalized crossover can be treated as the combination
of the above cases.
3. Generalized mutation operator M
To increase the diversity of the gene segments, the generalized mutation operator M is
designed based on the insertion mutation used in standard GA. Preliminary gene

^ ~

2 (2)i random m m= + is randomly selected, which is taken as the gene to be mutated. The

difference between GCGA and standard GA is that if ˆi m< then the preliminary gene lies
in the head part and its corresponding body part also need to be generated.
4. Generalized reversion operator R
To enhance the convergent speed of the GCGA, the generalized reversion operator is
designed which is similar to the conventional reversion operation. Operator R can be used
to select two reversion points 1i and 2i according to 1 ˆ()i random m m= + , and

2 ˆ()i random m m= + . If the solution generated after the reversion operator, then the
operator R is taken, otherwise the operator won’t taken.

3.3 Improved Evolutionary Algorithm (EA) for GTSP
3.3.1 The framework of EA for GTSP
In this section, an improved EA for the GTSP (EA-GTSP) has been proposed. In the EA-
GTSP, the generalized chromosome described in 3.2 is used to encode the problem. And the
following three operators are specially designed to improve the efficiency of the algorithm
on the GTSP: crossover operator, mutation operator and local optimization strategy.
a. Crossover
At Step 3, pairs of solutions may be selected to carry out the crossover operator by the
crossover probability Pc. Given two solutions x x xS h b= ⊕ and y y yS h b= ⊕ selected at

Step 3 (hx, hy∈H.bx,by∈B), the process of crossover can be shown as follows:

Bio-inspired Algorithms for TSP and Generalized TSP

53

Two integer numbers 1 2,i i (1 2,i i ≤ m̂ ＋(m̂ ＋m), 1 2i i<) are generated randomly to set

the crossing position. If 1 m̂i > , then, (,)b b b bx y x y′ ′⊗ → , which is the same operator as the

GCGA, 'x h bx x′= ⊕ , 'y h by y′= ⊕ . If 2 m̂i ≤ , (,)h h h hx y x y′ ′⊗ → , ' 'x h bx x= ⊕ , ' 'y h by y= ⊕ .

If 1 m̂i < and 2 m̂i ≥ , (,)h h h hx y x y′ ′⊗ → and (,)b b b bx y x y′ ′⊗ → , x h bx x′ ′ ′= ⊕ and

y h by y′ ′ ′= ⊕ .

If the GTSP solution Sx costs less than Sy (2 m̂i ≤),

1 1 1 2 2 2
{ , ..., , . AND . , ..., . AND . , , ..., }ˆ1 1 1h e e e e e e e ex x xi xi yi xi yi xi xm

′ = − +

1 1 1 2 2 2
{ , ..., , . OR . , ..., . OR . , , ..., }ˆ1 1 1h e e e e e e e ey x xi xi yi xi yi xi xm

′ = − + ;

otherwise,

1 1 1 2 2 2
{ , ..., , . AND. , ..., .AND. , , ..., }ˆ1 1 1h e e e e e e e ex y yi xi yi xi yi yi ym′ = − +

1 1 1 2 2 2
{ , ..., , .OR . , ..., .OR . , , ..., }ˆ1 1 1h e e e e e e e ey y yi xi yi xi yi yi ym′ = − + .

If the GTSP solution Sx costs less than Sy (1 m̂i < and 2 m̂i ≥),

1 1 1
{ , ..., , . AND . , ..., . AND . }ˆ ˆ1 1h e e e e e ex x xi xi yi xm ym

′ = −

1 1 1
{ , ..., , . OR . , ..., . OR . }ˆ ˆ1 1h e e e e e ey x xi xi yi xm ym

′ = − ;

otherwise,

1 1 1
{ , ..., , . AND . , ..., . AND . }ˆ ˆ1 1h e e e e e ex y yi xi yi xm ym

′ = −

1 1 1
{ , ..., , . OR . , ..., . OR . }ˆ ˆ1 1h e e e e e ey y yi xi yi xm ym

′ = − .

b. Mutation
The mutation operator is added to help EA-GTSP converge to the global optimal solution.
Each solution is affected by the mutation operator by probability mP . There are two

procedures called head mutation and body mutation in the operator.
In the head mutation, given a head of a solution, the procedure of head mutation is:
Head mutation: h hz z′→ ,

3 3 3
{ ,..., , (), , ..., }ˆ1 1 1h e e rebuild e e ez z zi zi zi zm′ = − +

 Travelling Salesman Problem

54

where
3 3 3

{ , ..., , , , ..., }ˆ1 1 1h e e e e ez z zi zi zi zm= − + .
3

()rebuild ezi will generate a segment of

binary bits randomly. Every binary element of solution SZ may be affected by

3
()rebuild ezi when mh mhr P< (mhr is generated randomly in [0,1] for each binary element

of the solution obtained at Steps 3 and 4).
In the body mutation, the procedure is described as follows:
Body mutation: 'b bz z→ , ' { ' , ..., ' , ' , ' , ..., ' }ˆ1 1 1b g g g g gz z zi zi zi zm= − +

where { , ..., , ..., }ˆ1b g g gz z zi zm= and mb mbr P< (mbr is generated randomly in [0,1] for

each solution obtained at Steps 3 and 4).
 So the mutation operator of the EA-GTSP is defined as follows:

Mutation of EA-GTSP: ' ' 'mutation
z z z z z zS h b S h b= ⊕ ⎯⎯⎯⎯→ = ⊕ .

c. Local Optimal Strategy
The local optimal strategy is helpful to find the best solution in a local searching space. Each
solutions of the population are optimized according to a heuristic algorithm as follows:

Input: GTSP solution Sq
For i =1 to m̂ do //optimization for head
 Choose a vertex in Group i to make Sq cost the lest
 End for
 For j =1 to m̂ m+ � -1 do //optimization for body
 Choose an order for gqjand gqj+1 to make Sq cost the least.
 End for
Output: a new solution S’q (Sq is changed into S’q.)

d. Decoding for solution of GTSP
Because the head encoding is designed as binary number, it needs to be decoded in the
following function.

[, ,] [. MOD . , , . MOD . , ..., . MOD .]ˆ1ˆ ˆ1 1
decoding

h e e e V e V e Vi mm i m
= ⎯⎯⎯⎯→… …

where Vi is the number of vertexes in Group i (iV).

Until now, we can summarize the algorithm of the improved EA for the GTSP as follows.
Initialize parameters.
Encode and initialize a population of solutions.
 /*β is chosen between 0 and 5 randomly, q0=0.6 */
Loop /* at this level each loop is called iteration */
 Crossover Operator: select pairs of solutions and change them into pairs of new Local
 solutions with the crossover operator by the crossover probability.
 Optimal Strategy: optimize all of the solutions with a heuristic algorithm locally.
 Mutation Operator: select several solutions by the mutation probability and change
End_condition
Decoding for solution of GTSP

Bio-inspired Algorithms for TSP and Generalized TSP

55

3.3.2 Numerical result
In this section, the efficiency of the EA-GTSP and other algorithms are compared on some
benchmark problems [93].

Problem
\five runs

EA-GTSP
Best

EA-GTSP
Average

GCGA
Best

GCGA
Average

HCGA
Best

HCGA
Average

30KROA150 11018 11018 11018 11022 11018 11018

30KROB150 12195 12195 12196 12314 12195 12195

31PR152 51573 51573 51586 53376 51573 51573
32U159 22664 22664 22664 22685 22664 22664

40KROA200 13408 13408 13408 13617 13408 13408

40KROB200 13113 13114 13120 13352 13113 13119

45TS225 68340 68403 68340 68789 68340 68432

46PR226 64007 64007 64007 64574 64007 64007

53GIL262 1011 1011 1011 1057 1011 1011

53PR264 29546 29546 29549 29791 29546 29546

60PR299 22617 22631 22638 22996 22631 22638

64LIN318 20769 20799 20977 22115 20788 20914

80RD400 6446 6480 6465 6604 6456 6498

84FL417 9663 9663 9663 9725 9663 9663

88PR439 60099 60249 61273 62674 60184 60558

89PCB442 21695 21735 21978 22634 21768 21860

Table 7. Comparison of solution among EA-GTSP, GCGA and HCGA

The instances can be obtained from TSPLIB library which were originally generated for
testing standard TSP algorithms. To test GTSP algorithms, Fischetti et al. [95] provided a
partition algorithm to convert the TSP instances to GTSP instances.
In our experiments, we set the population size as 100 (pop_size=100), crossover probability as
0.5 (0.5cP =), and mutation probability as 0.09 (Pm=0.09, Pmh=0.001, Pmb=0.005). The

algorithms would stop when no better solution could be found in 500 iterations. All of the
instances are computed by EA-GTSP, HCGA [94] and GCGA [93] twenty times on a PC with
2.0 GHz processor and 256 MB SDR memory, and the results are shown in Table 1.
In Table 7, not only the best solution obtained by EA-GTSP is shorter than the one obtained
by HCGA and GCGA does, but also the one on average, in all of the examples. It can show
global optimal function of EA-GTSP. In order to show the performance of EA-GTSP, there is
a comparison between it and several heuristic algorithms [96] by computing the same GTSP
instances. As Table 2 shows, EA-GTSP is more efficient and steady than all of the test
algorithms because it can get the best solution in most of the instances.

 Travelling Salesman Problem

54

where
3 3 3

{ , ..., , , , ..., }ˆ1 1 1h e e e e ez z zi zi zi zm= − + .
3

()rebuild ezi will generate a segment of

binary bits randomly. Every binary element of solution SZ may be affected by

3
()rebuild ezi when mh mhr P< (mhr is generated randomly in [0,1] for each binary element

of the solution obtained at Steps 3 and 4).
In the body mutation, the procedure is described as follows:
Body mutation: 'b bz z→ , ' { ' , ..., ' , ' , ' , ..., ' }ˆ1 1 1b g g g g gz z zi zi zi zm= − +

where { , ..., , ..., }ˆ1b g g gz z zi zm= and mb mbr P< (mbr is generated randomly in [0,1] for

each solution obtained at Steps 3 and 4).
 So the mutation operator of the EA-GTSP is defined as follows:

Mutation of EA-GTSP: ' ' 'mutation
z z z z z zS h b S h b= ⊕ ⎯⎯⎯⎯→ = ⊕ .

c. Local Optimal Strategy
The local optimal strategy is helpful to find the best solution in a local searching space. Each
solutions of the population are optimized according to a heuristic algorithm as follows:

Input: GTSP solution Sq
For i =1 to m̂ do //optimization for head
 Choose a vertex in Group i to make Sq cost the lest
 End for
 For j =1 to m̂ m+ � -1 do //optimization for body
 Choose an order for gqjand gqj+1 to make Sq cost the least.
 End for
Output: a new solution S’q (Sq is changed into S’q.)

d. Decoding for solution of GTSP
Because the head encoding is designed as binary number, it needs to be decoded in the
following function.

[, ,] [. MOD . , , . MOD . , ..., . MOD .]ˆ1ˆ ˆ1 1
decoding

h e e e V e V e Vi mm i m
= ⎯⎯⎯⎯→… …

where Vi is the number of vertexes in Group i (iV).

Until now, we can summarize the algorithm of the improved EA for the GTSP as follows.
Initialize parameters.
Encode and initialize a population of solutions.
 /*β is chosen between 0 and 5 randomly, q0=0.6 */
Loop /* at this level each loop is called iteration */
 Crossover Operator: select pairs of solutions and change them into pairs of new Local
 solutions with the crossover operator by the crossover probability.
 Optimal Strategy: optimize all of the solutions with a heuristic algorithm locally.
 Mutation Operator: select several solutions by the mutation probability and change
End_condition
Decoding for solution of GTSP

Bio-inspired Algorithms for TSP and Generalized TSP

55

3.3.2 Numerical result
In this section, the efficiency of the EA-GTSP and other algorithms are compared on some
benchmark problems [93].

Problem
\five runs

EA-GTSP
Best

EA-GTSP
Average

GCGA
Best

GCGA
Average

HCGA
Best

HCGA
Average

30KROA150 11018 11018 11018 11022 11018 11018

30KROB150 12195 12195 12196 12314 12195 12195

31PR152 51573 51573 51586 53376 51573 51573
32U159 22664 22664 22664 22685 22664 22664

40KROA200 13408 13408 13408 13617 13408 13408

40KROB200 13113 13114 13120 13352 13113 13119

45TS225 68340 68403 68340 68789 68340 68432

46PR226 64007 64007 64007 64574 64007 64007

53GIL262 1011 1011 1011 1057 1011 1011

53PR264 29546 29546 29549 29791 29546 29546

60PR299 22617 22631 22638 22996 22631 22638

64LIN318 20769 20799 20977 22115 20788 20914

80RD400 6446 6480 6465 6604 6456 6498

84FL417 9663 9663 9663 9725 9663 9663

88PR439 60099 60249 61273 62674 60184 60558

89PCB442 21695 21735 21978 22634 21768 21860

Table 7. Comparison of solution among EA-GTSP, GCGA and HCGA

The instances can be obtained from TSPLIB library which were originally generated for
testing standard TSP algorithms. To test GTSP algorithms, Fischetti et al. [95] provided a
partition algorithm to convert the TSP instances to GTSP instances.
In our experiments, we set the population size as 100 (pop_size=100), crossover probability as
0.5 (0.5cP =), and mutation probability as 0.09 (Pm=0.09, Pmh=0.001, Pmb=0.005). The

algorithms would stop when no better solution could be found in 500 iterations. All of the
instances are computed by EA-GTSP, HCGA [94] and GCGA [93] twenty times on a PC with
2.0 GHz processor and 256 MB SDR memory, and the results are shown in Table 1.
In Table 7, not only the best solution obtained by EA-GTSP is shorter than the one obtained
by HCGA and GCGA does, but also the one on average, in all of the examples. It can show
global optimal function of EA-GTSP. In order to show the performance of EA-GTSP, there is
a comparison between it and several heuristic algorithms [96] by computing the same GTSP
instances. As Table 2 shows, EA-GTSP is more efficient and steady than all of the test
algorithms because it can get the best solution in most of the instances.

 Travelling Salesman Problem

56

Problem\fi
ve runs

EA-
GTSP

NN
(G-opt)

NN
(G2-opt)

CI
(G-opt)

CI
(G2-opt)

MO
(G-opt)

MO
(G2-opt) CI2 GI3

30KROA150 11018 11018 11018 11018 11018 11018 11018 11018 11018

30KROB150 12195 12196 12196 12196 12196 12196 12196 12196 12196

31PR152 51573 52506 52506 51915 51915 51820 51820 51820 51820

32U159 22664 23296 23296 22664 22664 22923 22923 23254 23254

40KROA200 13408 14110 14110 14059 14059 13887 13887 13406 13406

40KROB200 13113 13932 13111 13117 13117 13117 13117 13111 13111

45TS225 68340 68340 68340 69279 69279 68756 68756 68756 68756

46PR226 64007 65811 65395 65395 65395 64007 64007 64007 64007

53GIL262 1011 1077 1032 1036 1036 1021 1021 1064 1064

53PR264 29546 31241 31241 31056 31056 30779 30779 29655 29655

60PR299 22617 24163 23069 23119 23119 23129 23129 23119 23119

64LIN318 20769 22233 21787 21858 21858 22403 22403 21719 21719

80RD400 6446 7083 6614 6550 6550 6546 6546 6439 6439

84FL417 9663 9754 9754 9662 9662 9697 9697 9932 9697

88PR439 60099 63736 62514 61126 61126 62091 62091 62215 62215

89PCB442 21695 23364 21704 23307 23307 22697 22697 22936 22936

Table 8. Comparison of solution among EA-GTSP, GCGA and HCG

4. Conclusion and discussions
The chapter introduces two examples of bio-inspired algorithm for traveling sales-man
problems and its extended version. The first algorithm, named ant colony optimization
(ACO) which is designed inspired by the natural ants’ behavior, is a novel method to deal
with TSPs. The experimental results prove the performance of ACO approach, which is
feasible to solve TSP instances as well as the traditional method. The research results about
the self-adaptive parameters of ACO are presented in the chapter, which indicates how to
set an optimal ACO algorithm for different TSPs. Another algorithm is genetic algorithm,
which is used to solve generalized traveling sales-man problem (GTSP) that is one extended
style of TSPs. The best-so-far genetic algorithm for GTSP is introduced in the final sub-
section. Bio-inspired algorithms are the feasible methods for TSPs, and can attain better
performance with the modified setting like self-adaptive parameters and hybrid coding,
which are described in the chapter.

Bio-inspired Algorithms for TSP and Generalized TSP

57

5. References
J.H. Holland, Adaptation in Natural and Artificial Systems. MIT Press, Cambridge, MA.

1975
R. Cheng, & M. Gen, Crossover on intensive search and traveling salesman problem.

Computers & Industrial Engineering, 27(1–4), pp. 485–488, 1994.
R. Cheng, M. Gen, & M. Sasaki, Film-copy deliverer problem using genetic algorithms.

Computers & Industrial Engineering, 29(1–4):pp. 549–553, 1995.
N. Kubota, T. Fukuda, & K. Shimojima, Virus-evolutionary genetic algorithm for a self-

organizing manufacturing system. Computers and Engineering, 30(4), 1015–1026,
1996.

D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning,
Addison–Wesley, Reading, MA.1989.

R. Cheng, M. Gen and Y. Tsujimura, “A tutorial survey of jobshop scheduling problems
using genetic algorithms – I. Representation”, Computers and Industrial
Engineering, pp. 983–997, 1996.

C. R. Reeves, “A genetic algorithm for flowshop sequencing”, Computers and Operations
Research, 22(1), pp. 5–13, 1995

J. C. Bean, Genetic algorithms and random keys for sequencing and optimization. ORSA
Journal on Computing, 6(2), pp.154–160,1994.

L. Davis, Job shop scheduling with genetic algorithms. In: Proceedings of the International
Conference on Genetic Algorithms, London, pp. 136–140, 1985.

D.E. Goldberg, R.J. Lingle, Alleles, loci and the traveling salesman problem. In: Proceedings
of the International Conference on Genetic Algorithms, London, pp.154–159, 1985.

I. Oliver, D. Smith, J. Holland, A study of permutation crossover operators on the traveling
salesman problem. In: Proceedings of the Second International Conference on
Genetic Algorithms, London, pp. 224–230, 1987.

T. Starkweather, et al., A comparison of genetic sequencing operators. In: Proceedings of the
Fourth International Conference on Genetic Algorithms, Los Altos, CA, pp. 69–76,
1991.

F. D. Croce, R. Tadei and G. Volta, “A genetic algorithm for the job shop problem”,
Computers and Operations Research, 22(1), pp. 15–24, 1995.

G. Syswerda, Uniform crossover in genetic algorithms.In: Proceedings of the Third
International Conference on Genetic Algorithms, Los Altos, pp. 502–508, 1989.

M. Yamamura, , T Ono, and S. Kobayashi, Character-preserving genetic algorithms for
traveling salesman problem, Journal of Japan Society for Artificial Intelligence, vol.
6.pp. 1049-1059, 1992.

M. Yamamura, T Ono, and S. Kobayashi, Emergent search on double circle TSPs using
subtour exchange crossover, in: Proceedings of the Third IEEE Conference on
Evolutionary Computation, IEEE Press, Nagoya, Japan, pp. 535-540, 1996.

J. Dzubera and D. Whitley, “Advanced correlation analysis of operators for the traveling
salesman problem,” in Parallel Problem Solving From Nature—PPSN III, Y.
Davidor, H.-P. Schwefel, and R. Männer, Eds. New York: Springer-Verlag, pp. 68–
77, 1994.

 Travelling Salesman Problem

56

Problem\fi
ve runs

EA-
GTSP

NN
(G-opt)

NN
(G2-opt)

CI
(G-opt)

CI
(G2-opt)

MO
(G-opt)

MO
(G2-opt) CI2 GI3

30KROA150 11018 11018 11018 11018 11018 11018 11018 11018 11018

30KROB150 12195 12196 12196 12196 12196 12196 12196 12196 12196

31PR152 51573 52506 52506 51915 51915 51820 51820 51820 51820

32U159 22664 23296 23296 22664 22664 22923 22923 23254 23254

40KROA200 13408 14110 14110 14059 14059 13887 13887 13406 13406

40KROB200 13113 13932 13111 13117 13117 13117 13117 13111 13111

45TS225 68340 68340 68340 69279 69279 68756 68756 68756 68756

46PR226 64007 65811 65395 65395 65395 64007 64007 64007 64007

53GIL262 1011 1077 1032 1036 1036 1021 1021 1064 1064

53PR264 29546 31241 31241 31056 31056 30779 30779 29655 29655

60PR299 22617 24163 23069 23119 23119 23129 23129 23119 23119

64LIN318 20769 22233 21787 21858 21858 22403 22403 21719 21719

80RD400 6446 7083 6614 6550 6550 6546 6546 6439 6439

84FL417 9663 9754 9754 9662 9662 9697 9697 9932 9697

88PR439 60099 63736 62514 61126 61126 62091 62091 62215 62215

89PCB442 21695 23364 21704 23307 23307 22697 22697 22936 22936

Table 8. Comparison of solution among EA-GTSP, GCGA and HCG

4. Conclusion and discussions
The chapter introduces two examples of bio-inspired algorithm for traveling sales-man
problems and its extended version. The first algorithm, named ant colony optimization
(ACO) which is designed inspired by the natural ants’ behavior, is a novel method to deal
with TSPs. The experimental results prove the performance of ACO approach, which is
feasible to solve TSP instances as well as the traditional method. The research results about
the self-adaptive parameters of ACO are presented in the chapter, which indicates how to
set an optimal ACO algorithm for different TSPs. Another algorithm is genetic algorithm,
which is used to solve generalized traveling sales-man problem (GTSP) that is one extended
style of TSPs. The best-so-far genetic algorithm for GTSP is introduced in the final sub-
section. Bio-inspired algorithms are the feasible methods for TSPs, and can attain better
performance with the modified setting like self-adaptive parameters and hybrid coding,
which are described in the chapter.

Bio-inspired Algorithms for TSP and Generalized TSP

57

5. References
J.H. Holland, Adaptation in Natural and Artificial Systems. MIT Press, Cambridge, MA.

1975
R. Cheng, & M. Gen, Crossover on intensive search and traveling salesman problem.

Computers & Industrial Engineering, 27(1–4), pp. 485–488, 1994.
R. Cheng, M. Gen, & M. Sasaki, Film-copy deliverer problem using genetic algorithms.

Computers & Industrial Engineering, 29(1–4):pp. 549–553, 1995.
N. Kubota, T. Fukuda, & K. Shimojima, Virus-evolutionary genetic algorithm for a self-

organizing manufacturing system. Computers and Engineering, 30(4), 1015–1026,
1996.

D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning,
Addison–Wesley, Reading, MA.1989.

R. Cheng, M. Gen and Y. Tsujimura, “A tutorial survey of jobshop scheduling problems
using genetic algorithms – I. Representation”, Computers and Industrial
Engineering, pp. 983–997, 1996.

C. R. Reeves, “A genetic algorithm for flowshop sequencing”, Computers and Operations
Research, 22(1), pp. 5–13, 1995

J. C. Bean, Genetic algorithms and random keys for sequencing and optimization. ORSA
Journal on Computing, 6(2), pp.154–160,1994.

L. Davis, Job shop scheduling with genetic algorithms. In: Proceedings of the International
Conference on Genetic Algorithms, London, pp. 136–140, 1985.

D.E. Goldberg, R.J. Lingle, Alleles, loci and the traveling salesman problem. In: Proceedings
of the International Conference on Genetic Algorithms, London, pp.154–159, 1985.

I. Oliver, D. Smith, J. Holland, A study of permutation crossover operators on the traveling
salesman problem. In: Proceedings of the Second International Conference on
Genetic Algorithms, London, pp. 224–230, 1987.

T. Starkweather, et al., A comparison of genetic sequencing operators. In: Proceedings of the
Fourth International Conference on Genetic Algorithms, Los Altos, CA, pp. 69–76,
1991.

F. D. Croce, R. Tadei and G. Volta, “A genetic algorithm for the job shop problem”,
Computers and Operations Research, 22(1), pp. 15–24, 1995.

G. Syswerda, Uniform crossover in genetic algorithms.In: Proceedings of the Third
International Conference on Genetic Algorithms, Los Altos, pp. 502–508, 1989.

M. Yamamura, , T Ono, and S. Kobayashi, Character-preserving genetic algorithms for
traveling salesman problem, Journal of Japan Society for Artificial Intelligence, vol.
6.pp. 1049-1059, 1992.

M. Yamamura, T Ono, and S. Kobayashi, Emergent search on double circle TSPs using
subtour exchange crossover, in: Proceedings of the Third IEEE Conference on
Evolutionary Computation, IEEE Press, Nagoya, Japan, pp. 535-540, 1996.

J. Dzubera and D. Whitley, “Advanced correlation analysis of operators for the traveling
salesman problem,” in Parallel Problem Solving From Nature—PPSN III, Y.
Davidor, H.-P. Schwefel, and R. Männer, Eds. New York: Springer-Verlag, pp. 68–
77, 1994.

 Travelling Salesman Problem

58

K. Mathias and D. Whitley, “Genetic operators, the fitness landscape, and the traveling
salesman problem,” in Parallel Problem Solving From Nature. Amsterdam, The
Netherlands: Elsevier, pp. 219–228, 1992.

H. D. Nguyen, I. Yoshihara, and M. Yasunaga, “Modified edge recombination operators of
genetic algorithms for the traveling salesman problem,” in Proc. 3rd Asia-Pacific
Conf. Simul. Evol. and Learn., Nagoya, Japan, pp. 2815–2820, 2000.

T. Starkweather, S. McDaniel, K. Mathias, C. Whitley, and D. Whitley, “A comparison of
genetic sequencing operators,” in Proc. 4th Int. Conf. Genetic Algorithms, pp. 69–
76, 1991.

B. Freisleben and P. Merz, “A genetic local search algorithm for solving symmetric and
asymmetric traveling salesman problems,” in Proc. IEEE Int. Conf. Evol. Comput.,
pp. 616–621, 1996.

P. Merz and B. Freisleben, “Genetic local search for the TSP: New results,”in Proc. IEEE Int.
Conf. Evol. Comput., pp. 159–164, 1997.

——, “Memetic algorithms for the traveling salesman problem,” Complex Syst., 13(4), pp.
297–345, 2001.

S. Jung and B. Moon, “The natural crossover for the 2D Euclidean TSP,” in Proc. Genetic and
Evol. Comput. Conf, pp. 1003–1010, 2001.

Y. Nagata and S. Kobayashi, “Edge assembly crossover: A high-power genetic algorithm for
the traveling salesman problem,” in Proc. 7th Int. Conf. Genetic Algorithms, pp.
450–457, 1997.

Y. Nagata, “The EAX algorithm considering diversity loss,” in Parallel Problem Solving
From Nature—PPSN VIII. New York: Springer-Verlag, pp. 332–341, 2004.

H. D. Nguyen, I. Yoshihara, K. Yamamori, and M. Yasunaga, “Greedy genetic algorithms for
symmetric and asymmetric TSPs,” IPSJ Trans. Math. Modeling and Appl., 43, SIG10
(TOM7), pp. 165–175, 2002.

H. Sengoku and I. Yoshihara, “A fast TSP solver using GA on JAVA,” in Proc. 3rd Int. Symp.
Artif. Life and Robot , pp. 283–288, 1998.

J. Grefenstette, et al. Genetic algorithms for the traveling salesman problem, in: Proceedings
of the First International Conference on Genetic Algorithms, Lawrence Erlbaum
Associates, Hillsdale, pp. 160-168,1985.

G. Liepins, et al. Greedy genetics, in: Proceedings of the First International Conference on
Genetic Algorithms, Lawrence Erlbaum Associates, Hillsdale, pp.90-99, 1985.

P.W. Poon, J.N. Carter. Genetic algorithm crossover operators for ordering applications.
Computers and Operations Research 22 (1), pp. 135–147,1995.

L. Qu, R. Sun, A synergetic approach to genetic algorithms for solving traveling salesman
problem. Information Sciences 117 (3–4), pp. 267–283, 1999.

C. Liaw. A hybrid genetic algorithm for the open shop scheduling problem. European
Journal of Operational Research 124 (1), pp. 28–42, 2000.

K. Katayama, H. Sakamoto, H. Narihisa. The efficiency of hybrid mutation genetic algorithm
for the traveling salesman problem. Mathematical and Computer Modeling 31 (10–
12), pp.197–203, 2000.

R. Knosala, T. Wal. A production scheduling problem using genetic algorithm. Journal of
Materials Processing Technology 109 (1–2), 90–95, 2001.

Bio-inspired Algorithms for TSP and Generalized TSP

59

C. Moon, et al., An efficient genetic algorithm for the traveling salesman problem with
precedence constraints. European Journal of Operational Research 140 (3), pp. 606–
617, 2002.

R. Cheng, M. Gen, Resource constrained project scheduling problem using genetic
algorithms. International Journal of Intelligent Automation and Soft Computing,
1996.

K. Katayama and H. Sakamoto. The Efficiency of Hybrid Mutation Genetic Algorithm for
the Travelling Salesman Problem. Mathematical and Computer Modelling 31,pp.
197-203,1990.

Arthur E. Carter, Cliff T. Ragsdale. A new approach to solving the multiple traveling
salesperson problem using genetic algorithms. European Journal of Operational
Research 175, pp. 246–257 , 2006.

H. D. Nguyen, et al. Implementation of an Effective Hybrid GA for Large-Scale Traveling
Salesman Problems: IEEE Transactions on Systems, Man and Cybernetics-Part B:
Cybernetics, 37(1):92-99,2007

F. Samanlioglu, M.E. Kurz, , & W.G. Ferrell Jr.. A genetic algorithm with random-keys
representation for a symmetric multiobjective traveling salesman problem. In:
Proceedings of the Institute of Industrial Engineers Annual Conference. Orlando:
Florida, 2006.

F. Samanlioglu, M. E. Kurz, W. G. Ferrell Jr., & Tangudu, S. A hybrid random-key genetic
algorithm for a symmetric traveling salesman problem. International Journal of
Operations Research, 2(1), 47–63, 2007.

F.Samanlioglu et al. A memetic random-key genetic algorithm for a symmetric multi-
objective traveling salesman problem. Computers & Industrial Engineering.
www.sciencedirect.com, 2008.

M. Dorigo, V. Maniezzo, and A. Colorni. Ant System: Optimization by a Colony of
Cooperating Agents. IEEE Transactions on Systems, Man, and Cybernetics-Part B:
CYBERNETIC, 26(1), FEBRUARY, 1996.

M. Dorigo. Optimization, Learning and Natural Algorithms (in Italian). PhD thesis,
Dipartimento di Elettronica e Informazione, Politecnico di Milano, IT, 1992.

M. Dorigo, G.D. Caro, L.M. Gambardella. Ant algorithms for Discrete Optimization.
Massachusetts Institute of Technology, Artificial Life 5, pp. 137-172, 1999.

W.J. Gutjahr. ACO algorithms with guaranteed convergence to the optimal solution.
Information Processing Letters 82, pp.145-153, 2002.

M. Dorigo and L.M. Gambardella. Ant colonies for the traveling salesman problem.
BioSystems, 43, pp. 73-81, 1997.

M. Dorigo and L.M. Gambardella. Ant Colony System: A cooperative learning approach to
the traveling salesman problem. IEEE Transactions on Evolutionary Computation,
1(1), pp. 53-66, 1997.

L.M. Gambardella and M. Dorigo. Solving symmetric and asymmetric TSPs by ant colonies.
Proceedings of IEEE International Conference on Evolutionary Computation. 1996.

T. Stutzle and H.H. Hoos. MAX-MIN Ant System. Future Generation Computer
Systems,16(8), pp. 889-914, 2000.

 Travelling Salesman Problem

58

K. Mathias and D. Whitley, “Genetic operators, the fitness landscape, and the traveling
salesman problem,” in Parallel Problem Solving From Nature. Amsterdam, The
Netherlands: Elsevier, pp. 219–228, 1992.

H. D. Nguyen, I. Yoshihara, and M. Yasunaga, “Modified edge recombination operators of
genetic algorithms for the traveling salesman problem,” in Proc. 3rd Asia-Pacific
Conf. Simul. Evol. and Learn., Nagoya, Japan, pp. 2815–2820, 2000.

T. Starkweather, S. McDaniel, K. Mathias, C. Whitley, and D. Whitley, “A comparison of
genetic sequencing operators,” in Proc. 4th Int. Conf. Genetic Algorithms, pp. 69–
76, 1991.

B. Freisleben and P. Merz, “A genetic local search algorithm for solving symmetric and
asymmetric traveling salesman problems,” in Proc. IEEE Int. Conf. Evol. Comput.,
pp. 616–621, 1996.

P. Merz and B. Freisleben, “Genetic local search for the TSP: New results,”in Proc. IEEE Int.
Conf. Evol. Comput., pp. 159–164, 1997.

——, “Memetic algorithms for the traveling salesman problem,” Complex Syst., 13(4), pp.
297–345, 2001.

S. Jung and B. Moon, “The natural crossover for the 2D Euclidean TSP,” in Proc. Genetic and
Evol. Comput. Conf, pp. 1003–1010, 2001.

Y. Nagata and S. Kobayashi, “Edge assembly crossover: A high-power genetic algorithm for
the traveling salesman problem,” in Proc. 7th Int. Conf. Genetic Algorithms, pp.
450–457, 1997.

Y. Nagata, “The EAX algorithm considering diversity loss,” in Parallel Problem Solving
From Nature—PPSN VIII. New York: Springer-Verlag, pp. 332–341, 2004.

H. D. Nguyen, I. Yoshihara, K. Yamamori, and M. Yasunaga, “Greedy genetic algorithms for
symmetric and asymmetric TSPs,” IPSJ Trans. Math. Modeling and Appl., 43, SIG10
(TOM7), pp. 165–175, 2002.

H. Sengoku and I. Yoshihara, “A fast TSP solver using GA on JAVA,” in Proc. 3rd Int. Symp.
Artif. Life and Robot , pp. 283–288, 1998.

J. Grefenstette, et al. Genetic algorithms for the traveling salesman problem, in: Proceedings
of the First International Conference on Genetic Algorithms, Lawrence Erlbaum
Associates, Hillsdale, pp. 160-168,1985.

G. Liepins, et al. Greedy genetics, in: Proceedings of the First International Conference on
Genetic Algorithms, Lawrence Erlbaum Associates, Hillsdale, pp.90-99, 1985.

P.W. Poon, J.N. Carter. Genetic algorithm crossover operators for ordering applications.
Computers and Operations Research 22 (1), pp. 135–147,1995.

L. Qu, R. Sun, A synergetic approach to genetic algorithms for solving traveling salesman
problem. Information Sciences 117 (3–4), pp. 267–283, 1999.

C. Liaw. A hybrid genetic algorithm for the open shop scheduling problem. European
Journal of Operational Research 124 (1), pp. 28–42, 2000.

K. Katayama, H. Sakamoto, H. Narihisa. The efficiency of hybrid mutation genetic algorithm
for the traveling salesman problem. Mathematical and Computer Modeling 31 (10–
12), pp.197–203, 2000.

R. Knosala, T. Wal. A production scheduling problem using genetic algorithm. Journal of
Materials Processing Technology 109 (1–2), 90–95, 2001.

Bio-inspired Algorithms for TSP and Generalized TSP

59

C. Moon, et al., An efficient genetic algorithm for the traveling salesman problem with
precedence constraints. European Journal of Operational Research 140 (3), pp. 606–
617, 2002.

R. Cheng, M. Gen, Resource constrained project scheduling problem using genetic
algorithms. International Journal of Intelligent Automation and Soft Computing,
1996.

K. Katayama and H. Sakamoto. The Efficiency of Hybrid Mutation Genetic Algorithm for
the Travelling Salesman Problem. Mathematical and Computer Modelling 31,pp.
197-203,1990.

Arthur E. Carter, Cliff T. Ragsdale. A new approach to solving the multiple traveling
salesperson problem using genetic algorithms. European Journal of Operational
Research 175, pp. 246–257 , 2006.

H. D. Nguyen, et al. Implementation of an Effective Hybrid GA for Large-Scale Traveling
Salesman Problems: IEEE Transactions on Systems, Man and Cybernetics-Part B:
Cybernetics, 37(1):92-99,2007

F. Samanlioglu, M.E. Kurz, , & W.G. Ferrell Jr.. A genetic algorithm with random-keys
representation for a symmetric multiobjective traveling salesman problem. In:
Proceedings of the Institute of Industrial Engineers Annual Conference. Orlando:
Florida, 2006.

F. Samanlioglu, M. E. Kurz, W. G. Ferrell Jr., & Tangudu, S. A hybrid random-key genetic
algorithm for a symmetric traveling salesman problem. International Journal of
Operations Research, 2(1), 47–63, 2007.

F.Samanlioglu et al. A memetic random-key genetic algorithm for a symmetric multi-
objective traveling salesman problem. Computers & Industrial Engineering.
www.sciencedirect.com, 2008.

M. Dorigo, V. Maniezzo, and A. Colorni. Ant System: Optimization by a Colony of
Cooperating Agents. IEEE Transactions on Systems, Man, and Cybernetics-Part B:
CYBERNETIC, 26(1), FEBRUARY, 1996.

M. Dorigo. Optimization, Learning and Natural Algorithms (in Italian). PhD thesis,
Dipartimento di Elettronica e Informazione, Politecnico di Milano, IT, 1992.

M. Dorigo, G.D. Caro, L.M. Gambardella. Ant algorithms for Discrete Optimization.
Massachusetts Institute of Technology, Artificial Life 5, pp. 137-172, 1999.

W.J. Gutjahr. ACO algorithms with guaranteed convergence to the optimal solution.
Information Processing Letters 82, pp.145-153, 2002.

M. Dorigo and L.M. Gambardella. Ant colonies for the traveling salesman problem.
BioSystems, 43, pp. 73-81, 1997.

M. Dorigo and L.M. Gambardella. Ant Colony System: A cooperative learning approach to
the traveling salesman problem. IEEE Transactions on Evolutionary Computation,
1(1), pp. 53-66, 1997.

L.M. Gambardella and M. Dorigo. Solving symmetric and asymmetric TSPs by ant colonies.
Proceedings of IEEE International Conference on Evolutionary Computation. 1996.

T. Stutzle and H.H. Hoos. MAX-MIN Ant System. Future Generation Computer
Systems,16(8), pp. 889-914, 2000.

 Travelling Salesman Problem

60

M. Dorigo, M. Birattari, T. Stutzle. Ant colony optimization. Computational Intelligence
Magazine, IEEE, Vol. 1, Nov., pp.28-39, 2006.

W.J. Gutjahr. A graph-based ant system and its convergence. Future Generation Computer
Systems 16(9), pp. 873-888, 2000.

T. Stutzle, M. Dorigo. A Short Convergence Proof for a Class of Ant colony Optimization
Algorithms. IEEE Transactions on Evolutionary Computation, 6(4), 2002.

M. Dorigo, C. Blum. Ant colony optimization theory: A survey. Theoretical Computer
Science, 344, pp. 243-278, 2005.

A. Badr, A. Fahmy. A proof of convergence for Ant algorithms. Information Sciences 160,
pp. 267-279, 2004.

S. Fidanova. ACO Algorithm with Additional Reinforcement. M. Dorigo et al. (Eds): ANTS
2002, LNCS 2463, pp. 292-293, 2002.

S. Fidanova. Convergence Proof for a Monte Carlo Method for Combinatorial Optimization
Problems. M. Bubak et al. (Eds.): ICCS 2004, LNCS 3039, pp. 523-530, 2004

 J. Kennedy and R.C. Eberhart. Particle Swarm Optimisation. In Proceedings of the
International Conference on Neural Networks, pp.1942–1948, 1995.

Clerc, M.. Discrete Particle Swarm Optimization, Illustrated by Traveling Salesman Problem.
In New Optimization Techniques in Engineering. Springer-Verlag, Berlin , 2004.

Bo Liu, Ling Wang, Yi-hui Jin, and De-xian Huang, An Effective PSO-Based Memetic
Algorithm for TSP, In: D.-S. Huang, K. Li, and G.W. Irwin (Eds.): ICIC 2006, LNCIS
345, pp. 1151 – 1156, 2006.

Yong-Qin Tao, Du-Wu Cui, Xiang-Lin Miao, and Hao Chen, An Improved Swarm
Intelligence Algorithm for Solving TSP Problem. In D.-S. Huang, L. Heutte, and M.
Loog (Eds.): ICIC 2007, LNAI 4682, pp. 813–822, 2007.

Bin Shen, Min Yao, and Wensheng Yi., Heuristic Information Based Improved Fuzzy
Discrete PSO Method for Solving TSP. In Computer Science, PRICAI 2006, LNAI
4099, pp. 859 – 863, 2006.

Yuan, Zhenglei, et al. Chaotic Particle Swarm Optimization Algorithm for Traveling
Salesman Problem.Automation and Logistics, 2007 IEEE International Conference
on 18-21. pp. 1121 – 1124, 2007.

M. Dorigo, V. Maniezzo, and A. Colorni, “Positive feedback as a search strategy,”
Dipartimento di Elettronica, Politecnico di Milano, Italy, Tech. Rep. 91-016, 1991.

M. Dorigo, “Optimization, learning and natural algorithms (in italian),” Ph.D. dissertation,
Dipartimento di Elettronica, Politecnico di Milano, Italy, 1992.

M. Dorigo and G. Di Caro, “The Ant Colony Optimization meta-heuristic,” in New Ideas in
Optimization, D. Corne et al., Eds., McGraw Hill, London, UK, pp. 11–32, 1999.

Sun, J., Xiong, S. W., Guo, F. M.: A new pheromone updating strategy in ant colony
optimization, Proceedings of 2004 International Conference on Machine Learning
and Cybernetics, 1, pp. 620-625, 2004

Dorigo, M., Stützle, T.: Ant Colony Optimization. MIT Press, Cambridge, MA. 2004.
G. Reinelt, "TSPLIB. A traveling salesman problem library," ORSA Journal on Computing,

3(4), pp. 376-384, 1991.

Bio-inspired Algorithms for TSP and Generalized TSP

61

K. Socha, J. Knowles, and M. Sampels, “A MAX–MIN ant system for the university
timetabling problem,” in Proc. ANTS 2002, ser. LNCS, M. Dorigo et al., Eds., vol.
2463, p. 1, Berlin, Germany: Springer Verlag, 2002.

A. L. Henry-Labordere, RIRO B 2, 43, 1969.
J. P. Saskena, CORS J. 8, 185, 1970.
S. S. Srivastava, S. Kumar, R. C. Garg, and P. Sen, CORS J. 7, 7 ,1969.
G. Laporte, A. Asef-vaziri, and C. Sriskandarajah, J. Oper.Res. Soc. 47, 1461, 1996.
M. Fischetti, J. J. Salazar, and P. Toth, Oper. Res. 45, 378, 1997.
Y. N. Lien, E. Ma, and B. W.-S. Wah, J. Chem. Inf. Comput. Sci. 74, 177, 1993.
K. Castelino, R. D’Souza, and P. K. Wright, http://kingkong.me.berkeley.edu/_kenneth/
N. E. Bowler, T. M. A. Fink, and R. C. Ball, Phys. Rev. E 68,036703, 2003.
M. Andrecut and M. K. Ali, Phys. Rev. E 63, 047103, 2001.
T. Munakata and Y. Nakamura, Phys. Rev. E 64, 046127, 2001.
J. Bentner, G. Bauer, G. M. Obermair, I. Morgenstern, and J.Schneider, Phys. Rev. E 64,

036701 2001.
G. Laporte and Y. Nobert, INFOR 21, 61, 1983.
C. E. Noon and J. C. Bean, Oper. Res. 39, 623, 1991.
D. Ben-Arieh, G. Gutin, M. Penn, A. Yeo, and A. Zverovitch,Int. J. Prod. Res. 41, 2581, 2003.
D. Ben-Arieh, G. Gutin, M. Penn, A. Yeo, and A. Zverovitch,Oper. Res. Lett. 31, 357, 2003.
V. Dimitrijevic and Z. Saric, J. Chem. Inf. Comput. Sci. 102,105, 1997.
G. Laporte and F. Semet, INFOR 37, 114, 1999.
C. E. Noon and J. C. Bean, INFOR 31, 39, 1993.
L. V. Snyder and M. S. Daskin, A Random-key genetic algorithm for the generalized

traveling salesman problem (Northwestern University, see, l-
snyder3@northweatern.edu, m-daskin@northwestern.edu)

O. Jellouli, in IEEE International Conference on Systems, Man, and Cybernetics, 4, pp. 2765–
2768, 2001.

Y. Matsuyama, Trans. Inst. Electron., Inf. Commun. Eng. D-II J74D-II, 416, 1991.
C. G., Wu, Y. C., Liang, H. P., Lee, and C., Lu, Generalized chromosome genetic algorithm

for generalized traveling salesman problems and its applications for machining,
Physical Review E. 69, 1, 2004

Huang H, Yang XW, Hao ZF, Liang YC, Wu CG, Zhao X. Hybrid chromosome genetic
algorithm for generalized traveling salesman problems, Lecture Notes in Computer
Science 3612: 137-140 2005.

M. Fischetti, J. J. Salazar, and P. Toth, Branch-and-cut algorithm for the symmetric
generalized traveling salesman problem, Operations Research. 45(3), pp.378-394,
1997.

J., Renaud, F. F., Boctor, An efficient composite heuristic for the symmetric generalized
traveling salesman problem, European Journal of Operational Research 108,
pp.571-584, 1998.

Huang H, Yang XW, Hao ZF, Cai RC. A novel ACO algorithm with adaptive parameter,
Lecture Notes in Bioinformatics 4115: 12-21 2006.

Huang H, Hao ZF. ACO for continuous optimization based on discrete encoding. Lecture
Notes in Computer Science 4150: 504-505 2006.

 Travelling Salesman Problem

60

M. Dorigo, M. Birattari, T. Stutzle. Ant colony optimization. Computational Intelligence
Magazine, IEEE, Vol. 1, Nov., pp.28-39, 2006.

W.J. Gutjahr. A graph-based ant system and its convergence. Future Generation Computer
Systems 16(9), pp. 873-888, 2000.

T. Stutzle, M. Dorigo. A Short Convergence Proof for a Class of Ant colony Optimization
Algorithms. IEEE Transactions on Evolutionary Computation, 6(4), 2002.

M. Dorigo, C. Blum. Ant colony optimization theory: A survey. Theoretical Computer
Science, 344, pp. 243-278, 2005.

A. Badr, A. Fahmy. A proof of convergence for Ant algorithms. Information Sciences 160,
pp. 267-279, 2004.

S. Fidanova. ACO Algorithm with Additional Reinforcement. M. Dorigo et al. (Eds): ANTS
2002, LNCS 2463, pp. 292-293, 2002.

S. Fidanova. Convergence Proof for a Monte Carlo Method for Combinatorial Optimization
Problems. M. Bubak et al. (Eds.): ICCS 2004, LNCS 3039, pp. 523-530, 2004

 J. Kennedy and R.C. Eberhart. Particle Swarm Optimisation. In Proceedings of the
International Conference on Neural Networks, pp.1942–1948, 1995.

Clerc, M.. Discrete Particle Swarm Optimization, Illustrated by Traveling Salesman Problem.
In New Optimization Techniques in Engineering. Springer-Verlag, Berlin , 2004.

Bo Liu, Ling Wang, Yi-hui Jin, and De-xian Huang, An Effective PSO-Based Memetic
Algorithm for TSP, In: D.-S. Huang, K. Li, and G.W. Irwin (Eds.): ICIC 2006, LNCIS
345, pp. 1151 – 1156, 2006.

Yong-Qin Tao, Du-Wu Cui, Xiang-Lin Miao, and Hao Chen, An Improved Swarm
Intelligence Algorithm for Solving TSP Problem. In D.-S. Huang, L. Heutte, and M.
Loog (Eds.): ICIC 2007, LNAI 4682, pp. 813–822, 2007.

Bin Shen, Min Yao, and Wensheng Yi., Heuristic Information Based Improved Fuzzy
Discrete PSO Method for Solving TSP. In Computer Science, PRICAI 2006, LNAI
4099, pp. 859 – 863, 2006.

Yuan, Zhenglei, et al. Chaotic Particle Swarm Optimization Algorithm for Traveling
Salesman Problem.Automation and Logistics, 2007 IEEE International Conference
on 18-21. pp. 1121 – 1124, 2007.

M. Dorigo, V. Maniezzo, and A. Colorni, “Positive feedback as a search strategy,”
Dipartimento di Elettronica, Politecnico di Milano, Italy, Tech. Rep. 91-016, 1991.

M. Dorigo, “Optimization, learning and natural algorithms (in italian),” Ph.D. dissertation,
Dipartimento di Elettronica, Politecnico di Milano, Italy, 1992.

M. Dorigo and G. Di Caro, “The Ant Colony Optimization meta-heuristic,” in New Ideas in
Optimization, D. Corne et al., Eds., McGraw Hill, London, UK, pp. 11–32, 1999.

Sun, J., Xiong, S. W., Guo, F. M.: A new pheromone updating strategy in ant colony
optimization, Proceedings of 2004 International Conference on Machine Learning
and Cybernetics, 1, pp. 620-625, 2004

Dorigo, M., Stützle, T.: Ant Colony Optimization. MIT Press, Cambridge, MA. 2004.
G. Reinelt, "TSPLIB. A traveling salesman problem library," ORSA Journal on Computing,

3(4), pp. 376-384, 1991.

Bio-inspired Algorithms for TSP and Generalized TSP

61

K. Socha, J. Knowles, and M. Sampels, “A MAX–MIN ant system for the university
timetabling problem,” in Proc. ANTS 2002, ser. LNCS, M. Dorigo et al., Eds., vol.
2463, p. 1, Berlin, Germany: Springer Verlag, 2002.

A. L. Henry-Labordere, RIRO B 2, 43, 1969.
J. P. Saskena, CORS J. 8, 185, 1970.
S. S. Srivastava, S. Kumar, R. C. Garg, and P. Sen, CORS J. 7, 7 ,1969.
G. Laporte, A. Asef-vaziri, and C. Sriskandarajah, J. Oper.Res. Soc. 47, 1461, 1996.
M. Fischetti, J. J. Salazar, and P. Toth, Oper. Res. 45, 378, 1997.
Y. N. Lien, E. Ma, and B. W.-S. Wah, J. Chem. Inf. Comput. Sci. 74, 177, 1993.
K. Castelino, R. D’Souza, and P. K. Wright, http://kingkong.me.berkeley.edu/_kenneth/
N. E. Bowler, T. M. A. Fink, and R. C. Ball, Phys. Rev. E 68,036703, 2003.
M. Andrecut and M. K. Ali, Phys. Rev. E 63, 047103, 2001.
T. Munakata and Y. Nakamura, Phys. Rev. E 64, 046127, 2001.
J. Bentner, G. Bauer, G. M. Obermair, I. Morgenstern, and J.Schneider, Phys. Rev. E 64,

036701 2001.
G. Laporte and Y. Nobert, INFOR 21, 61, 1983.
C. E. Noon and J. C. Bean, Oper. Res. 39, 623, 1991.
D. Ben-Arieh, G. Gutin, M. Penn, A. Yeo, and A. Zverovitch,Int. J. Prod. Res. 41, 2581, 2003.
D. Ben-Arieh, G. Gutin, M. Penn, A. Yeo, and A. Zverovitch,Oper. Res. Lett. 31, 357, 2003.
V. Dimitrijevic and Z. Saric, J. Chem. Inf. Comput. Sci. 102,105, 1997.
G. Laporte and F. Semet, INFOR 37, 114, 1999.
C. E. Noon and J. C. Bean, INFOR 31, 39, 1993.
L. V. Snyder and M. S. Daskin, A Random-key genetic algorithm for the generalized

traveling salesman problem (Northwestern University, see, l-
snyder3@northweatern.edu, m-daskin@northwestern.edu)

O. Jellouli, in IEEE International Conference on Systems, Man, and Cybernetics, 4, pp. 2765–
2768, 2001.

Y. Matsuyama, Trans. Inst. Electron., Inf. Commun. Eng. D-II J74D-II, 416, 1991.
C. G., Wu, Y. C., Liang, H. P., Lee, and C., Lu, Generalized chromosome genetic algorithm

for generalized traveling salesman problems and its applications for machining,
Physical Review E. 69, 1, 2004

Huang H, Yang XW, Hao ZF, Liang YC, Wu CG, Zhao X. Hybrid chromosome genetic
algorithm for generalized traveling salesman problems, Lecture Notes in Computer
Science 3612: 137-140 2005.

M. Fischetti, J. J. Salazar, and P. Toth, Branch-and-cut algorithm for the symmetric
generalized traveling salesman problem, Operations Research. 45(3), pp.378-394,
1997.

J., Renaud, F. F., Boctor, An efficient composite heuristic for the symmetric generalized
traveling salesman problem, European Journal of Operational Research 108,
pp.571-584, 1998.

Huang H, Yang XW, Hao ZF, Cai RC. A novel ACO algorithm with adaptive parameter,
Lecture Notes in Bioinformatics 4115: 12-21 2006.

Huang H, Hao ZF. ACO for continuous optimization based on discrete encoding. Lecture
Notes in Computer Science 4150: 504-505 2006.

 Travelling Salesman Problem

62

Huang H, Hao ZF. An ACO algorithm with bi-directional searching rule. Dynamics of
Continuous Discrete and Impulsive Systems-Series B-Applications & Algorithms
13: 71-75, 2006.

Hao ZF, Huang H, Zhang XL, Tu K. A time complexity analysis of ACO for linear functions,
Lecture Notes in Computer Science 4247: 513-520 2006.

Zhifeng Hao, Han Huang, Yong Qin, Ruichu Cai. An ACO Algorithm with Adaptive
Volatility Rate of Pheromone Trail, Lecture Notes in Computer Science 4490: 1167–
1170, 2007.

3

Approaches to the Travelling Salesman Problem
Using Evolutionary Computing Algorithms

Jyh-Da Wei
Chang-Gung University

Taiwan

1. Introduction
Genetic algorithms (GAs) were developed as problem independent search algorithms
(Goldberg, 1989; Holland, 1975; Man et al., 1999), which simulate the biological evolution to
search for an optimal solution to a problem. Figure 1(a) shows the main processes of genetic
algorithms. When developing a genetic algorithm, we analyze the properties of the problem
and determine the “gene encoding” policy -- Several parameters are chosen as genes and the
parameter set is regarded as a chromosome, which reflects an individual. Following the
gene encoding policy, we scatter many individuals in a population, and then repeatedly
evaluate the individuals' fitness values and select the fittest ones to reproduce the offspring
by crossover and mutation operators. Genetic algorithms follow the criterion of “survival of
the fittest” to develop increasingly fit individuals.
Hybrid with local search heuristics, Genetic Local Search (GLS) is an upgraded version that
replaces each individual with its local optimal neighbour. As shown in Fig. 1(b), a local
search process is launched in evaluation. GLS is thereby regarded as a method to mimic the
cultural evolution instead of biological evolution, and also referred to as Mimetic Algorithm
(MA) or Lamarckian Evolutionary Algorithm (Digalakis & Margaritis, 2004).
Using these “evolutionary computing algorithms” for combinatorial optimization problems
has been a well-studied problem-solving approach. The benefit of evolutionary computing
is not only its simplicity but also its ability to obtain global optima. Many research findings
have indicated that a well-adapted genetic local search algorithm can acquire a near-optimal
solution better than those found by simply local searching algorithms (Goldberg, 1989;
Pham & Karaboga, 2000). Therefore, numerous results on evolutionary optimization have
been published in recent years (Larranaga et al., 1999; Man et al., 1999; Mohammadian et al.,
2002). Using genetic algorithms to solve the travelling salesman problem (TSP) is one of the
popular approaches (Larranaga et al., 1999).
The TSP is a classical NP-hard combinatorial optimization problem which has been
extensively studied. Given n cities and the distances (costs) between each pair of cities, we
want to find a minimum-cost tour that visits each city exactly once. Assuming that di,j is the
cost traveling from city i to city j, the TSP is formulated as to find a permutation π of {1, 2,
…, n} that minimizes

1

(), (1) (), (1)
1

()
n

i i n
i

C d dπ π π ππ
−

+
=

= +∑ (1)

 Travelling Salesman Problem

62

Huang H, Hao ZF. An ACO algorithm with bi-directional searching rule. Dynamics of
Continuous Discrete and Impulsive Systems-Series B-Applications & Algorithms
13: 71-75, 2006.

Hao ZF, Huang H, Zhang XL, Tu K. A time complexity analysis of ACO for linear functions,
Lecture Notes in Computer Science 4247: 513-520 2006.

Zhifeng Hao, Han Huang, Yong Qin, Ruichu Cai. An ACO Algorithm with Adaptive
Volatility Rate of Pheromone Trail, Lecture Notes in Computer Science 4490: 1167–
1170, 2007.

3

Approaches to the Travelling Salesman Problem
Using Evolutionary Computing Algorithms

Jyh-Da Wei
Chang-Gung University

Taiwan

1. Introduction
Genetic algorithms (GAs) were developed as problem independent search algorithms
(Goldberg, 1989; Holland, 1975; Man et al., 1999), which simulate the biological evolution to
search for an optimal solution to a problem. Figure 1(a) shows the main processes of genetic
algorithms. When developing a genetic algorithm, we analyze the properties of the problem
and determine the “gene encoding” policy -- Several parameters are chosen as genes and the
parameter set is regarded as a chromosome, which reflects an individual. Following the
gene encoding policy, we scatter many individuals in a population, and then repeatedly
evaluate the individuals' fitness values and select the fittest ones to reproduce the offspring
by crossover and mutation operators. Genetic algorithms follow the criterion of “survival of
the fittest” to develop increasingly fit individuals.
Hybrid with local search heuristics, Genetic Local Search (GLS) is an upgraded version that
replaces each individual with its local optimal neighbour. As shown in Fig. 1(b), a local
search process is launched in evaluation. GLS is thereby regarded as a method to mimic the
cultural evolution instead of biological evolution, and also referred to as Mimetic Algorithm
(MA) or Lamarckian Evolutionary Algorithm (Digalakis & Margaritis, 2004).
Using these “evolutionary computing algorithms” for combinatorial optimization problems
has been a well-studied problem-solving approach. The benefit of evolutionary computing
is not only its simplicity but also its ability to obtain global optima. Many research findings
have indicated that a well-adapted genetic local search algorithm can acquire a near-optimal
solution better than those found by simply local searching algorithms (Goldberg, 1989;
Pham & Karaboga, 2000). Therefore, numerous results on evolutionary optimization have
been published in recent years (Larranaga et al., 1999; Man et al., 1999; Mohammadian et al.,
2002). Using genetic algorithms to solve the travelling salesman problem (TSP) is one of the
popular approaches (Larranaga et al., 1999).
The TSP is a classical NP-hard combinatorial optimization problem which has been
extensively studied. Given n cities and the distances (costs) between each pair of cities, we
want to find a minimum-cost tour that visits each city exactly once. Assuming that di,j is the
cost traveling from city i to city j, the TSP is formulated as to find a permutation π of {1, 2,
…, n} that minimizes

1

(), (1) (), (1)
1

()
n

i i n
i

C d dπ π π ππ
−

+
=

= +∑ (1)

 Travelling Salesman Problem

64

Figure 1. Genetic Algorithm (GA) and Genetic Local Search (GLS). (a) GA flowchart; (b) GLS
is a combination of GA and local search heuristics; (c) Priority-Based GLS (PB-GLS) uses a
greedy algorithm and a Lamarckian feedback process to alternate between genotype and
phenotype.

In the symmetric TSP (STSP), di,j is equal to dj,i for any two cities i and j, while in the
asymmetric TSP (ATSP) this condition might not hold. The Euclidean TSP is a special case of
STSP, where the cities are located in Rm space for some m, and the cost function satisfies the
triangle inequality, i.e., di,k + dk,j is greater than or equal to di,j for distinct i, j and k. The two-
dimensional Euclidean TSP is the most popular version studied in the literature.
According to Rego and Glover’s classification, the heuristic local search algorithms for the
TSP are divided into two categories (Rego & Glover, 2002). Tour construction procedures
build a tour by sequentially adding a new node into the current partial tour. Some instances
of these procedures include nearest neighbour, nearest insertion, and shortest edge first
algorithms (Johnson & McGeoch, 2002). On the other hand, tour improvement procedures
start with an initial tour and iteratively seek a better one to replace the current tour. The k-
opt and LK (Lin & Kernighan, 1973; Rego & Glover, 2002) algorithms are examples of these
procedures. Subsequently developed algorithms for the TSP also include stochastic search
methods, such as Tabu search (Fiechter, 1994; Zachariasen & Dam, 1995), simulated
annealing (Kirkpartrick et al., 1983; Moscato & Norman, 1992), ant colony (Dorigo &
Gambardella, 1997; Gambardella & Dorigo, 1995) and artificial neural networks (Miglino et
al., 1994; Naphade & Tuzun, 1995).
As convenient and powerful searching tools, evolutionary computing algorithms have been
applied to the TSP. Genetic algorithms and GLS algorithms are characterized by their
population-based global searching, and often find a near-optimal solution better than most
previously known methods. However, the TSP requires that each city be visited exactly
once. This critical requirement puts a great constraint for us to encode the genes. Directly
encoding cities into the chromosomes (the order representation to be given in more detail in

Approaches to the Travelling Salesman Problem Using Evolutionary Computing Algorithms

65

the next section) may not work altogether with traditional crossover methods. As Fig. 2
shows, the offspring becomes an illegal tour if we use traditional crossover operators.
To overcome this difficulty, new crossover operators built upon detection and repair
procedures have been developed. Although these operators make evolutionary computing
algorithms applicable to the TSP, they are ad hoc and lose generality in problem solving. In
Section 2, we provide a relevant survey of developing particular crossover operators for the
TSP. Then in Section 3, we present a priority-based encoding scheme instead. This
alternative method not only maintains the general-purpose characteristics of evolutionary
computing, but also acquires remarkable searching results. In Section 4, we discuss the
experimental results, and we give conclusions in Section 5.

Figure 2. Directly encoding cities into the chromosomes does not work altogether with
traditional crossover methods. The offspring may become an invalid TSP tour.

2. Specialized crossover operators for the TSP
Traditional genetic evolution appears to contradict the TSP definition. Therefore, we need
additional operators to assist genetic algorithms. Many of these operators depend on the
tour representation in the algorithms, such as the order, adjacency and locus
representations.
Order representation: The order representation is the most natural to represent a tour since
the TSP is a permutation problem. This tour representation encodes the cities in the
chromosome as gene values. For example, the partially matched crossover (PMX) (Goldberg
& Lingle, 1985; Goldberg, 1989) adopts two crossover points to enclose a crossover interval.
The genes (cities) within the crossover intervals are exchanged to initiate the offspring
chromosome, and then an automaton is established to transform the genes duplicated
outside the intervals.
Adjacency list representation: The adjacency list can also represent a tour. In this
representation, recording city j in position i reflects travelling from city i to city j. Because
adjacency lists might yield illegal tours, detection and repair procedures are also necessary.
For example, the greedy crossover (GX) (Boukreev, 2007; Julstrom, 1995) iteratively selects
the shortest edge from the parents to extend the current subtour. If this edge causes a cycle
that is not a complete tour, we need to choose another edge connecting to the current
subtour.
Adjacency matrix representation: Instead of adjacency lists, the matrix crossover (MX)
(Homaifar et al., 1992; Homaifar et al., 1992) uses adjacency matrix to represent the tour. In
this binary matrix, the element mi,j is 1, if city j is visited after city i; otherwise the value is 0.
Based on this encoding method, the MX exchanges columns of two parents to generate
offspring matrix. If the offspring matrix is infeasible due to duplicate adjacency or
disconnected cycles, repair procedures are also invoked.

 Travelling Salesman Problem

64

Figure 1. Genetic Algorithm (GA) and Genetic Local Search (GLS). (a) GA flowchart; (b) GLS
is a combination of GA and local search heuristics; (c) Priority-Based GLS (PB-GLS) uses a
greedy algorithm and a Lamarckian feedback process to alternate between genotype and
phenotype.

In the symmetric TSP (STSP), di,j is equal to dj,i for any two cities i and j, while in the
asymmetric TSP (ATSP) this condition might not hold. The Euclidean TSP is a special case of
STSP, where the cities are located in Rm space for some m, and the cost function satisfies the
triangle inequality, i.e., di,k + dk,j is greater than or equal to di,j for distinct i, j and k. The two-
dimensional Euclidean TSP is the most popular version studied in the literature.
According to Rego and Glover’s classification, the heuristic local search algorithms for the
TSP are divided into two categories (Rego & Glover, 2002). Tour construction procedures
build a tour by sequentially adding a new node into the current partial tour. Some instances
of these procedures include nearest neighbour, nearest insertion, and shortest edge first
algorithms (Johnson & McGeoch, 2002). On the other hand, tour improvement procedures
start with an initial tour and iteratively seek a better one to replace the current tour. The k-
opt and LK (Lin & Kernighan, 1973; Rego & Glover, 2002) algorithms are examples of these
procedures. Subsequently developed algorithms for the TSP also include stochastic search
methods, such as Tabu search (Fiechter, 1994; Zachariasen & Dam, 1995), simulated
annealing (Kirkpartrick et al., 1983; Moscato & Norman, 1992), ant colony (Dorigo &
Gambardella, 1997; Gambardella & Dorigo, 1995) and artificial neural networks (Miglino et
al., 1994; Naphade & Tuzun, 1995).
As convenient and powerful searching tools, evolutionary computing algorithms have been
applied to the TSP. Genetic algorithms and GLS algorithms are characterized by their
population-based global searching, and often find a near-optimal solution better than most
previously known methods. However, the TSP requires that each city be visited exactly
once. This critical requirement puts a great constraint for us to encode the genes. Directly
encoding cities into the chromosomes (the order representation to be given in more detail in

Approaches to the Travelling Salesman Problem Using Evolutionary Computing Algorithms

65

the next section) may not work altogether with traditional crossover methods. As Fig. 2
shows, the offspring becomes an illegal tour if we use traditional crossover operators.
To overcome this difficulty, new crossover operators built upon detection and repair
procedures have been developed. Although these operators make evolutionary computing
algorithms applicable to the TSP, they are ad hoc and lose generality in problem solving. In
Section 2, we provide a relevant survey of developing particular crossover operators for the
TSP. Then in Section 3, we present a priority-based encoding scheme instead. This
alternative method not only maintains the general-purpose characteristics of evolutionary
computing, but also acquires remarkable searching results. In Section 4, we discuss the
experimental results, and we give conclusions in Section 5.

Figure 2. Directly encoding cities into the chromosomes does not work altogether with
traditional crossover methods. The offspring may become an invalid TSP tour.

2. Specialized crossover operators for the TSP
Traditional genetic evolution appears to contradict the TSP definition. Therefore, we need
additional operators to assist genetic algorithms. Many of these operators depend on the
tour representation in the algorithms, such as the order, adjacency and locus
representations.
Order representation: The order representation is the most natural to represent a tour since
the TSP is a permutation problem. This tour representation encodes the cities in the
chromosome as gene values. For example, the partially matched crossover (PMX) (Goldberg
& Lingle, 1985; Goldberg, 1989) adopts two crossover points to enclose a crossover interval.
The genes (cities) within the crossover intervals are exchanged to initiate the offspring
chromosome, and then an automaton is established to transform the genes duplicated
outside the intervals.
Adjacency list representation: The adjacency list can also represent a tour. In this
representation, recording city j in position i reflects travelling from city i to city j. Because
adjacency lists might yield illegal tours, detection and repair procedures are also necessary.
For example, the greedy crossover (GX) (Boukreev, 2007; Julstrom, 1995) iteratively selects
the shortest edge from the parents to extend the current subtour. If this edge causes a cycle
that is not a complete tour, we need to choose another edge connecting to the current
subtour.
Adjacency matrix representation: Instead of adjacency lists, the matrix crossover (MX)
(Homaifar et al., 1992; Homaifar et al., 1992) uses adjacency matrix to represent the tour. In
this binary matrix, the element mi,j is 1, if city j is visited after city i; otherwise the value is 0.
Based on this encoding method, the MX exchanges columns of two parents to generate
offspring matrix. If the offspring matrix is infeasible due to duplicate adjacency or
disconnected cycles, repair procedures are also invoked.

 Travelling Salesman Problem

66

Locus representation: The locus representation regards the graphic image itself of a tour as
a chromosome. This representation retains geographical relationships among the cities, but
does not embody a gene-encoding method. Therefore, geometrical computations might be
necessary in the crossover operators. The natural crossover (NX) published in 2002 (Jung &
Moon, 2002) used the locus representation. This crossover operator randomly generates
curves to partition the chromosomal space. Cities in some regions inherit the paths from one
parent, and those in other regions inherit the paths from the other parent. Finally, repair
procedures are also needed to reconnect the subtours.
Other representation-independent approaches: There are genetic operators independent of
tour representations. These operators directly analyze the parent tours to create the
offspring. Edge-recombination crossover (ERX) (Whitley et al., 1989; Whitley et al., 1991)
collects the adjacency information from the parent tours and generates a new tour from this
information. Distance preserving crossover (DPX) (Freisleben & Merz, 1996) generates an
offspring satisfying the condition that the numbers of differences between the two parents
and the offspring are all the same. By doing so, this crossover operator allows “jumps” in
the search space. Although these approaches are representation independent, they also act
according to the principle that the offspring must inherit the characteristics of the two
parents.
The renowned approaches listed above can improve genetic algorithms to solve the TSP.
However, these approaches have some drawbacks. The order and adjacency list
representations do not ensure a unique representation for a TSP tour. This situation usually
retards the evolutionary process. The adjacency matrix representation is time-consuming
and does not have a significant performance. The locus representation is not general enough
even for an STSP case; and it can only perform on the Euclidean TSP. Most importantly,
these crossover operators are specialized mainly for the TSP and involve repair procedures
to generate a valid tour. In contrast with the original intention of genetic algorithms, these
operators are short of general practical values. In the next section, we present a Genetic
Local Search method with Priority-Based encoding, dubbed the “PB-GLS” model (Wei &
Lee, 2004; Wei & Lee, 2006). This model retains generality in applications, supports schema
analysis during searching process, and has been empirically proven to gain remarkable
search results for the travelling salesman problem.

3. Priority-based genetic local search
For a combinatorial optimization problem for which a near-optimal solution can be obtained
by using a greedy algorithm, certain entities, such as the nodes of the dMST and TSP
problems (Freisleben & Merz, 1996; Zeng & Wang, 2003) and the jobs in the flowshop
scheduling (Arroyo & Armentano, 2005) are selected step by step. Herein, the links between
two consecutively selected entities are called “consecutive selections”. The priority-based
encoding policy assigns priorities to all the links between entities and it is expected to set
high priority to the correct consecutive selections. The greedy algorithm employed remains
the same, except that we select the next entity in consideration of the link priority prior to
the original ranking key. By doing so, the greedy algorithm leads to a valid solution and the
priority encoding makes it possible to follow traditional genetic evolutions. This approach
does not lose generality in applications because we only need to provide a chromosome
conformation that is simply a priority assignment.

Approaches to the Travelling Salesman Problem Using Evolutionary Computing Algorithms

67

3.1 Priority-based encoding with local search method
As Fig. 1(c) shows, the priority-based encoding is based on Mendelian inheritance that
distinguishes genotype and phenotype in inheritance process. A greedy algorithm plays the
role as the biochemical process that transfers the genotype encoding to the phenotype of
each individual. The PB-GLS model further conducts a local search method to improve this
phenotype. After that, we need a Lamarckian feedback process for encoding the local
optimal solution and converting it back to its genotype. This process can be done if we
enable all consecutive selections in the given solution by assigning them with higher
priorities and disable potentially incorrect links by setting lower priorities. The range of
priorities can be determined experimentally, although two priority levels are sufficient in
any case.

3.2 Characteristics of the priority-based GLS
The priority-based genetic local search has three main features, i.e., broad applicability,
problem transformation, and simulation of Mendelian inheritance theory.
Broad applicability: The priority-based encoding policy suits to any problem whose
optimal solution can be approximated by a greedy algorithm, because the greedy algorithm
is characterized by two features, i.e., (a) the candidate entities are selected one after another
sequentially, and (b) the selected entities are not discarded thereafter.
Problem transformation: The PB-GLS transforms combination and permutation problems
into priority assignment problems. This problem transformation suggests a new direction to
tackle the given problems. Imagine that the perfect optimal solution contains some crucial
consecutive selections of problem entities (e.g. crucial edges in the TSP). Assigning higher
priorities to these links leads to a near-optimal solution. Naturally, priority-based encoding
allows us to analyze searching schema during the search process.
Simulation of Mendelian inheritance theory: We use greedy algorithms to simulate
chemical processes, and use the priority-based encoding policy to simulate the gene codes in
inheritance procedure. These priorities control the biochemical processes to “enable” and
“disable” some biological functions, and finally develop a phenotype that fits the definition
of the genotype.

3.3 Using the priority-based GLS to solve the TSP
A greedy algorithm known as double-ended nearest neighbour (DENN) is used to
demonstrate using the PB-GLS model to solve the TSP. Let E(A,B) denote the edge between
city A and city B, and assume E(A,B) is identical to E(B,A) for any two distinct cities A and
B. The DENN algorithm is described as follows:
Step 1 Sort the edges by their costs into a sequence S.
Step 2 Initialize a partial tour T = {S[1]}. Let S[1] = E(A,B) be the current subtour from A to B.
Step 3 Suppose the current subtour is from X to Y . We trace the sequence S to find the first

edge E(P,Q) that could extend the subtour at either end city X or city Y without
creating a cycle, i.e., a complete tour that does not visit all the cities.

Step 4 If the above edge E(P,Q) is found, add it into T to extend the current subtour and
repeat step 3; otherwise, add E(Y,X) into T and return T as the searching result.

Note that the current state is extended by adding new nodes (cities) repeatedly. We now
add priorities to the edges and change the sorting step by considering priorities of these
edges first and then their costs in the first step. This change never affects the validity of

 Travelling Salesman Problem

66

Locus representation: The locus representation regards the graphic image itself of a tour as
a chromosome. This representation retains geographical relationships among the cities, but
does not embody a gene-encoding method. Therefore, geometrical computations might be
necessary in the crossover operators. The natural crossover (NX) published in 2002 (Jung &
Moon, 2002) used the locus representation. This crossover operator randomly generates
curves to partition the chromosomal space. Cities in some regions inherit the paths from one
parent, and those in other regions inherit the paths from the other parent. Finally, repair
procedures are also needed to reconnect the subtours.
Other representation-independent approaches: There are genetic operators independent of
tour representations. These operators directly analyze the parent tours to create the
offspring. Edge-recombination crossover (ERX) (Whitley et al., 1989; Whitley et al., 1991)
collects the adjacency information from the parent tours and generates a new tour from this
information. Distance preserving crossover (DPX) (Freisleben & Merz, 1996) generates an
offspring satisfying the condition that the numbers of differences between the two parents
and the offspring are all the same. By doing so, this crossover operator allows “jumps” in
the search space. Although these approaches are representation independent, they also act
according to the principle that the offspring must inherit the characteristics of the two
parents.
The renowned approaches listed above can improve genetic algorithms to solve the TSP.
However, these approaches have some drawbacks. The order and adjacency list
representations do not ensure a unique representation for a TSP tour. This situation usually
retards the evolutionary process. The adjacency matrix representation is time-consuming
and does not have a significant performance. The locus representation is not general enough
even for an STSP case; and it can only perform on the Euclidean TSP. Most importantly,
these crossover operators are specialized mainly for the TSP and involve repair procedures
to generate a valid tour. In contrast with the original intention of genetic algorithms, these
operators are short of general practical values. In the next section, we present a Genetic
Local Search method with Priority-Based encoding, dubbed the “PB-GLS” model (Wei &
Lee, 2004; Wei & Lee, 2006). This model retains generality in applications, supports schema
analysis during searching process, and has been empirically proven to gain remarkable
search results for the travelling salesman problem.

3. Priority-based genetic local search
For a combinatorial optimization problem for which a near-optimal solution can be obtained
by using a greedy algorithm, certain entities, such as the nodes of the dMST and TSP
problems (Freisleben & Merz, 1996; Zeng & Wang, 2003) and the jobs in the flowshop
scheduling (Arroyo & Armentano, 2005) are selected step by step. Herein, the links between
two consecutively selected entities are called “consecutive selections”. The priority-based
encoding policy assigns priorities to all the links between entities and it is expected to set
high priority to the correct consecutive selections. The greedy algorithm employed remains
the same, except that we select the next entity in consideration of the link priority prior to
the original ranking key. By doing so, the greedy algorithm leads to a valid solution and the
priority encoding makes it possible to follow traditional genetic evolutions. This approach
does not lose generality in applications because we only need to provide a chromosome
conformation that is simply a priority assignment.

Approaches to the Travelling Salesman Problem Using Evolutionary Computing Algorithms

67

3.1 Priority-based encoding with local search method
As Fig. 1(c) shows, the priority-based encoding is based on Mendelian inheritance that
distinguishes genotype and phenotype in inheritance process. A greedy algorithm plays the
role as the biochemical process that transfers the genotype encoding to the phenotype of
each individual. The PB-GLS model further conducts a local search method to improve this
phenotype. After that, we need a Lamarckian feedback process for encoding the local
optimal solution and converting it back to its genotype. This process can be done if we
enable all consecutive selections in the given solution by assigning them with higher
priorities and disable potentially incorrect links by setting lower priorities. The range of
priorities can be determined experimentally, although two priority levels are sufficient in
any case.

3.2 Characteristics of the priority-based GLS
The priority-based genetic local search has three main features, i.e., broad applicability,
problem transformation, and simulation of Mendelian inheritance theory.
Broad applicability: The priority-based encoding policy suits to any problem whose
optimal solution can be approximated by a greedy algorithm, because the greedy algorithm
is characterized by two features, i.e., (a) the candidate entities are selected one after another
sequentially, and (b) the selected entities are not discarded thereafter.
Problem transformation: The PB-GLS transforms combination and permutation problems
into priority assignment problems. This problem transformation suggests a new direction to
tackle the given problems. Imagine that the perfect optimal solution contains some crucial
consecutive selections of problem entities (e.g. crucial edges in the TSP). Assigning higher
priorities to these links leads to a near-optimal solution. Naturally, priority-based encoding
allows us to analyze searching schema during the search process.
Simulation of Mendelian inheritance theory: We use greedy algorithms to simulate
chemical processes, and use the priority-based encoding policy to simulate the gene codes in
inheritance procedure. These priorities control the biochemical processes to “enable” and
“disable” some biological functions, and finally develop a phenotype that fits the definition
of the genotype.

3.3 Using the priority-based GLS to solve the TSP
A greedy algorithm known as double-ended nearest neighbour (DENN) is used to
demonstrate using the PB-GLS model to solve the TSP. Let E(A,B) denote the edge between
city A and city B, and assume E(A,B) is identical to E(B,A) for any two distinct cities A and
B. The DENN algorithm is described as follows:
Step 1 Sort the edges by their costs into a sequence S.
Step 2 Initialize a partial tour T = {S[1]}. Let S[1] = E(A,B) be the current subtour from A to B.
Step 3 Suppose the current subtour is from X to Y . We trace the sequence S to find the first

edge E(P,Q) that could extend the subtour at either end city X or city Y without
creating a cycle, i.e., a complete tour that does not visit all the cities.

Step 4 If the above edge E(P,Q) is found, add it into T to extend the current subtour and
repeat step 3; otherwise, add E(Y,X) into T and return T as the searching result.

Note that the current state is extended by adding new nodes (cities) repeatedly. We now
add priorities to the edges and change the sorting step by considering priorities of these
edges first and then their costs in the first step. This change never affects the validity of

 Travelling Salesman Problem

68

tours, because the other steps of this greedy algorithm remain unchanged. The most
concerned question is whether any tour can be represented by this encoding method.
Considering that a greedy algorithm never discards an object once this object is selected, we
can construct any given tour “T” by a greedy algorithm as the following formula describes:

((r, s, t, k, |{r,s,t,k}| 4) ({E(r,s), E(s,t)} T
C(k,s) min{C(r,s),C(s,t)} P(k,s) max{P(r,s), P(s,t)}))

 The greedy algorithm constructs T,

∀ = ⊆ ∧
≤ ⇒ >

⇒

 (2)

where C(a, b) and P(a, b) are the cost and priority of edge E(a, b) respectively, and a lower
priority value P(a, b) reflects a higher priority of edge E(a, b) to be included in the tour.
The above description implies that the priority-based encoding can be used to search the
global optimal solution. Two levels of priorities are sufficient to guarantee such an optimal
solution. Formula (2) is also used in the Lamarckian feedback process of the PB-GLS model.
We apply the LK heuristic (Lin & Kernighan, 1973) as the local search method in the
following experiments.

3.4 Complexity analysis
It is well-known that an exhausted search for a TSP has an exponential time complexity.
Suppose that n is the number of vertices. An exact solution takes O(n!) time, which is
prohibitively long. Therefore, polynomial-time heuristic search approaches are proposed.
Heuristic or local search algorithms have complexities ranging from O(n2) (e.g., nearest
neighbour, double ended nearest neighbour, and nearest insertion), O(n2 log(n)) (e.g.,
shortest edge first) to O(n2.2) (e.g., LK) or higher order (e.g., k-opt).
The genetic algorithms with specialized crossover operators have time complexity O(kmn2),
where k is the generation number and m is the population size. The n2 factor is due to the
fact that all the repair procedures need to scan all the possible pairs of the vertices which is
O(n2). If we combine genetic algorithms with a local search algorithm, the latter affects the
time complexity. For example, the genetic local search algorithm incorporating the DPX
operator with the LK heuristic (Freisleben & Merz, 1996) has time complexity O(kmn2.2).
This model, referred to as DPX-LK model, is currently known as the most powerful model
and will be compared with the PB-GLS model in the next section.
The time complexity of the PB-GLS model depends on the selected greedy algorithm, the
Lamarckian feedback process, and the local search heuristic. When the DENN algorithm
and LK heuristic are used, the PB-GLS needs O(n2) time to crossover the parent
chromosomes and O(n2+n2.2+n2) time to construct the tour, search the local optimum, and
feedback the upgraded gene information. Therefore, the total time complexity is also
O(kmn2.2).

4. Experimental results
In this section, we conduct three parts of experiments applying PB-GLS to solve the TSP.
The first part used our own data to demonstrate how priority encoding is used and how it
supports schema analysis. The second part used benchmark instances released by the
TSPLIB (http://www.iwr.uni-heidelberg.de/groups/comopt/software/tsplib9) and proved that the
PB-GLS model can find near-optimal solutions identical to the best known results, in cases
where the number of cities was no more than 400. In the last part, we generated sparsely

Approaches to the Travelling Salesman Problem Using Evolutionary Computing Algorithms

69

connected maps from the TSPLIB data instance and compared the experimental results
between the PB-GLS model and the currently most efficient DPX-LK hybrid searching
model. The PB-GLS model in these experiments uses Holland’s simple genetic algorithm
model with the uniform crossover operator and conducts the LK heuristic for local searching
every five generation. To reduce the searching space and simplify the result discussion,
priority encoding in these experiments used only two-level priority, i.e., the high priority
was 1 and the low priority was 2. The population size and mutation rate were set as 100 and
0.2 respectively.

Table 1. Cities in the first part of experiments

Figure 3. Experimental results of the TSP. (a) map of the cities of Table 1; (b) near-optimal
solution of the above listed cities; (c) near-optimal solution of the rd400 data instance.

Table 2. Searching results of the first part experiment (partially listed). The edges are sorted
by their costs. Columns from p1 to p4 are the converged priorities on four distinct
chromosomes.

 Travelling Salesman Problem

68

tours, because the other steps of this greedy algorithm remain unchanged. The most
concerned question is whether any tour can be represented by this encoding method.
Considering that a greedy algorithm never discards an object once this object is selected, we
can construct any given tour “T” by a greedy algorithm as the following formula describes:

((r, s, t, k, |{r,s,t,k}| 4) ({E(r,s), E(s,t)} T
C(k,s) min{C(r,s),C(s,t)} P(k,s) max{P(r,s), P(s,t)}))

 The greedy algorithm constructs T,

∀ = ⊆ ∧
≤ ⇒ >

⇒

 (2)

where C(a, b) and P(a, b) are the cost and priority of edge E(a, b) respectively, and a lower
priority value P(a, b) reflects a higher priority of edge E(a, b) to be included in the tour.
The above description implies that the priority-based encoding can be used to search the
global optimal solution. Two levels of priorities are sufficient to guarantee such an optimal
solution. Formula (2) is also used in the Lamarckian feedback process of the PB-GLS model.
We apply the LK heuristic (Lin & Kernighan, 1973) as the local search method in the
following experiments.

3.4 Complexity analysis
It is well-known that an exhausted search for a TSP has an exponential time complexity.
Suppose that n is the number of vertices. An exact solution takes O(n!) time, which is
prohibitively long. Therefore, polynomial-time heuristic search approaches are proposed.
Heuristic or local search algorithms have complexities ranging from O(n2) (e.g., nearest
neighbour, double ended nearest neighbour, and nearest insertion), O(n2 log(n)) (e.g.,
shortest edge first) to O(n2.2) (e.g., LK) or higher order (e.g., k-opt).
The genetic algorithms with specialized crossover operators have time complexity O(kmn2),
where k is the generation number and m is the population size. The n2 factor is due to the
fact that all the repair procedures need to scan all the possible pairs of the vertices which is
O(n2). If we combine genetic algorithms with a local search algorithm, the latter affects the
time complexity. For example, the genetic local search algorithm incorporating the DPX
operator with the LK heuristic (Freisleben & Merz, 1996) has time complexity O(kmn2.2).
This model, referred to as DPX-LK model, is currently known as the most powerful model
and will be compared with the PB-GLS model in the next section.
The time complexity of the PB-GLS model depends on the selected greedy algorithm, the
Lamarckian feedback process, and the local search heuristic. When the DENN algorithm
and LK heuristic are used, the PB-GLS needs O(n2) time to crossover the parent
chromosomes and O(n2+n2.2+n2) time to construct the tour, search the local optimum, and
feedback the upgraded gene information. Therefore, the total time complexity is also
O(kmn2.2).

4. Experimental results
In this section, we conduct three parts of experiments applying PB-GLS to solve the TSP.
The first part used our own data to demonstrate how priority encoding is used and how it
supports schema analysis. The second part used benchmark instances released by the
TSPLIB (http://www.iwr.uni-heidelberg.de/groups/comopt/software/tsplib9) and proved that the
PB-GLS model can find near-optimal solutions identical to the best known results, in cases
where the number of cities was no more than 400. In the last part, we generated sparsely

Approaches to the Travelling Salesman Problem Using Evolutionary Computing Algorithms

69

connected maps from the TSPLIB data instance and compared the experimental results
between the PB-GLS model and the currently most efficient DPX-LK hybrid searching
model. The PB-GLS model in these experiments uses Holland’s simple genetic algorithm
model with the uniform crossover operator and conducts the LK heuristic for local searching
every five generation. To reduce the searching space and simplify the result discussion,
priority encoding in these experiments used only two-level priority, i.e., the high priority
was 1 and the low priority was 2. The population size and mutation rate were set as 100 and
0.2 respectively.

Table 1. Cities in the first part of experiments

Figure 3. Experimental results of the TSP. (a) map of the cities of Table 1; (b) near-optimal
solution of the above listed cities; (c) near-optimal solution of the rd400 data instance.

Table 2. Searching results of the first part experiment (partially listed). The edges are sorted
by their costs. Columns from p1 to p4 are the converged priorities on four distinct
chromosomes.

 Travelling Salesman Problem

70

Table 1 lists the locations of the cities in the first part of experiments. These cities were
randomly generated in the [0, 1] × [0, 1] square. Figure 3(a) and (b) show the city map and
the near-optimal solution respectively, found by both the DPX-LK hybrid model and the PB-
GLS model within 100 generations. According to repeated experimental results, we believe
that this tour with cost=4.35 is very close to the optimal tour. Table 2 lists the searching
results of gene values partially, and the edges by their costs in ascending order. Columns
from p1 to p4 are four converged near-optimal chromosomes. All these chromosomes can
develop the near-optimal TSP tour that is shown in Fig. 3(b). The final column denotes
whether the edge under consideration is selected to be part of the tour.
Edges E(3, 5), E(7, 15) and E(13, 19) in the 45th, 53rd, and 57th rows are the longest three
edges contained in the tour. We can observe that they all receive a high priority. They are
likely the crucial edges in the optimal tour. Interestingly, the three edges excluded from the
tour, i.e., E(9, 10), E(9, 12) and E(11, 12), are also remarkable because they are quite short and
all receive a low priority. This result demonstrates that priority encoding allows schema
explanation in searching optimal TSP tours. This schema is also likely to be useful when the
number of cities increases or decreases.

Fig 4. Assuming p priority levels are used for searching in a sparsely connected map with k
edges and n cities, Kp(n)=logp(n!) represents the highest tolerable values of k to ensure the
searching space of PB-GLS less than that of the DPX-LK model, i.e., pk < n!.

Table 3. Applying DPX-LK and PB-GLS models to find TSP tours in sparsely connected
rd400 maps

In the second part of experiments, we used the instances released on the TSPLIB website to
test the PB-GLS method. Experimental results reveal that the PB-GLS can find near-optimal
solutions in maps with no more than 400 cities, such as the st70, ch150, a280 and rd400 data
instances. The solutions obtained are identical to the presently best known results. For

Approaches to the Travelling Salesman Problem Using Evolutionary Computing Algorithms

71

example, Fig. 3(c) is the experimental result for the rd400 data instance with the tour cost
equal to 15281.
The time complexity of the PB-GLS model is described in the previous section as O(kmn2.2),
where k, m and n are respectively the generation number, population size and city size. The
running time increases quickly as more cities are added. For the first part of experiments,
the searching result converged within 100 generations and took less than 3 seconds running
on Sun’s Ultra SPARC III Workstation with 750-MHz clock rate. In case of 400 cities, it takes
an average of 6216 generations and almost 3000-minute CPU time before the evolution
converges to the best known solution.
If we do not want to enlarge the population size and the generation number, it could be
necessary that we prune the longest edges from the chromosomes to improve the
performance for a large scale TSP. The pruning is reasonable because fully connected maps
are eventually not usual in the real word. In the third part of experiments, we generated
sparsely connected maps from rd400 data instance. In addition to the 400 edges in the best-
known optimal tour, another 1600, 2600, 3600, 4600, and 5600 edges were randomly selected
and added into the testing bed. We then conducted five experiments using these 2000, 3000,
4000, 5000 and 6000 edges as the test data respectively; these 400 nodes each had 10, 15, 20,
25 and 30 adjacent nodes in average. The PB-GLS model was compared with the DPX-LK
hybrid model.
Assuming the p priority levels are used for testing a data instance with k edges and n nodes,
the searching spaces of the PB-GLS model and the DPX-LK hybrid model are of sizes pk and
n! respectively. The condition to let pk < n! can be derived as

1

! log (!) (log)
n

k
p p

v
p n k n v

=

< ⇔ < =∑ (3)

Figure 4 draws the right part of formula (3), denoted as function Kp(n), with
{1, 2, ,1000}n∈ … and {2,3, 4}p∈ . Given p = 2 and n = 400, k must be less than 2886 to

ensure search space pk < n!. However, the experimental results listed in Table 3 reveal that
the PB-GLS model converged efficiently than the DPX-LK model even with k = 4000. This
result implies that using permutation based algorithms in search sparsely connected maps
may suffer an overhead that does not occur when we use priority-based algorithms.

5. Conclusion
Genetic algorithms and genetic local search are population based general-purpose search
algorithms that have been examined to search efficiently for the near-optimal solutions to
certain combinatorial optimization problems, such as the constraint satisfaction problem
(Marchiori & Steenbeek, 2000), flowshop scheduling problem (Arroyo & Armentano, 2005),
constraint minimum spanning tree problem (dMST) (Zeng & Wang, 2003), and travelling
salesman problem (TSP) (Freisleben & Merz, 1996). Notably, these optimization problems
usually have critical requirements that have forced researchers to develop new genetic
operators. For example, for the dMST we have an upper bound on the node degrees and for
the TSP we require that each city be visited exactly once.
Previous results made use of specialized genetic operators to enhance the GA and GLS.
Alternatively, we have presented another approach to the TSP using evolutionary
computing algorithms, i.e., the priority-based encoding method in conjunction with greedy

 Travelling Salesman Problem

70

Table 1 lists the locations of the cities in the first part of experiments. These cities were
randomly generated in the [0, 1] × [0, 1] square. Figure 3(a) and (b) show the city map and
the near-optimal solution respectively, found by both the DPX-LK hybrid model and the PB-
GLS model within 100 generations. According to repeated experimental results, we believe
that this tour with cost=4.35 is very close to the optimal tour. Table 2 lists the searching
results of gene values partially, and the edges by their costs in ascending order. Columns
from p1 to p4 are four converged near-optimal chromosomes. All these chromosomes can
develop the near-optimal TSP tour that is shown in Fig. 3(b). The final column denotes
whether the edge under consideration is selected to be part of the tour.
Edges E(3, 5), E(7, 15) and E(13, 19) in the 45th, 53rd, and 57th rows are the longest three
edges contained in the tour. We can observe that they all receive a high priority. They are
likely the crucial edges in the optimal tour. Interestingly, the three edges excluded from the
tour, i.e., E(9, 10), E(9, 12) and E(11, 12), are also remarkable because they are quite short and
all receive a low priority. This result demonstrates that priority encoding allows schema
explanation in searching optimal TSP tours. This schema is also likely to be useful when the
number of cities increases or decreases.

Fig 4. Assuming p priority levels are used for searching in a sparsely connected map with k
edges and n cities, Kp(n)=logp(n!) represents the highest tolerable values of k to ensure the
searching space of PB-GLS less than that of the DPX-LK model, i.e., pk < n!.

Table 3. Applying DPX-LK and PB-GLS models to find TSP tours in sparsely connected
rd400 maps

In the second part of experiments, we used the instances released on the TSPLIB website to
test the PB-GLS method. Experimental results reveal that the PB-GLS can find near-optimal
solutions in maps with no more than 400 cities, such as the st70, ch150, a280 and rd400 data
instances. The solutions obtained are identical to the presently best known results. For

Approaches to the Travelling Salesman Problem Using Evolutionary Computing Algorithms

71

example, Fig. 3(c) is the experimental result for the rd400 data instance with the tour cost
equal to 15281.
The time complexity of the PB-GLS model is described in the previous section as O(kmn2.2),
where k, m and n are respectively the generation number, population size and city size. The
running time increases quickly as more cities are added. For the first part of experiments,
the searching result converged within 100 generations and took less than 3 seconds running
on Sun’s Ultra SPARC III Workstation with 750-MHz clock rate. In case of 400 cities, it takes
an average of 6216 generations and almost 3000-minute CPU time before the evolution
converges to the best known solution.
If we do not want to enlarge the population size and the generation number, it could be
necessary that we prune the longest edges from the chromosomes to improve the
performance for a large scale TSP. The pruning is reasonable because fully connected maps
are eventually not usual in the real word. In the third part of experiments, we generated
sparsely connected maps from rd400 data instance. In addition to the 400 edges in the best-
known optimal tour, another 1600, 2600, 3600, 4600, and 5600 edges were randomly selected
and added into the testing bed. We then conducted five experiments using these 2000, 3000,
4000, 5000 and 6000 edges as the test data respectively; these 400 nodes each had 10, 15, 20,
25 and 30 adjacent nodes in average. The PB-GLS model was compared with the DPX-LK
hybrid model.
Assuming the p priority levels are used for testing a data instance with k edges and n nodes,
the searching spaces of the PB-GLS model and the DPX-LK hybrid model are of sizes pk and
n! respectively. The condition to let pk < n! can be derived as

1

! log (!) (log)
n

k
p p

v
p n k n v

=

< ⇔ < =∑ (3)

Figure 4 draws the right part of formula (3), denoted as function Kp(n), with
{1, 2, ,1000}n∈ … and {2,3, 4}p∈ . Given p = 2 and n = 400, k must be less than 2886 to

ensure search space pk < n!. However, the experimental results listed in Table 3 reveal that
the PB-GLS model converged efficiently than the DPX-LK model even with k = 4000. This
result implies that using permutation based algorithms in search sparsely connected maps
may suffer an overhead that does not occur when we use priority-based algorithms.

5. Conclusion
Genetic algorithms and genetic local search are population based general-purpose search
algorithms that have been examined to search efficiently for the near-optimal solutions to
certain combinatorial optimization problems, such as the constraint satisfaction problem
(Marchiori & Steenbeek, 2000), flowshop scheduling problem (Arroyo & Armentano, 2005),
constraint minimum spanning tree problem (dMST) (Zeng & Wang, 2003), and travelling
salesman problem (TSP) (Freisleben & Merz, 1996). Notably, these optimization problems
usually have critical requirements that have forced researchers to develop new genetic
operators. For example, for the dMST we have an upper bound on the node degrees and for
the TSP we require that each city be visited exactly once.
Previous results made use of specialized genetic operators to enhance the GA and GLS.
Alternatively, we have presented another approach to the TSP using evolutionary
computing algorithms, i.e., the priority-based encoding method in conjunction with greedy

 Travelling Salesman Problem

72

algorithms. This coding policy encodes link priorities as chromosomes, and then uses the
underlying greedy algorithms to construct the corresponding solution as the phenotype. By
doing so, traditional genetic algorithms can be exploited as usual.
Priority-based encoding supports not only broad applications but also schema analysis. In
addition, the priority-based genetic local search is empirically tested to achieve remarkable
searching results for the TSP by iteratively converging to crucial edges. According to
experimental results, this model found near-optimal solutions to TSPLIB instances -- in cases
where the number of cities is no more than 400, the results are identical to the best
previously known results. Experimental results also reveal that the permutation-based
algorithms using specialized GA operators have an overhead in searching sparsely
connected maps. This overhead does not occur when we use priority-based algorithms,
because it is not necessary to encode the disconnected links into the chromosome.

6. Acknowledgements
This work was supported in part by the Taiwan National Science Council under the Grants
NSC95-2221-E-001-016-MY3 and NSC-95-2752-E-002-005-PAE.

7. References
Arroyo, J. & Armentano, V. (2005): Genetic local search for multi-objective flowshop scheduling

problems, European Journal of Operational Research, Vol. 167, 717–738
Boukreev, K. (2007): Genetic algorithms and the traveling salesman problem, The Code Project

Website, (http://www.codeproject.com/cpp/tspapp.asp)
Digalakis, J. & Margaritis, K. (2004): Performance comparison of memetic algorithms, Applied

Mathematics and Computation, Vol. 158, 237–252
Dorigo, M. & Gambardella, L. M. (1997): Ant colony system: A cooperative learning approach to

the traveling salesman problem, IEEE Transactions on Evolutionary Computation, Vol.
1, 53–66

Fiechter, C. N. (1994): A parallel tabu search algorithm for large traveling salesman problems,
Discrete Applied Mathematics and Combinatorial Operations Research and
Computer Science, Vol. 51, 243–267

Freisleben, B. & Merz, P. (1996a): A genetic local search algorithm for solving symmetric and
asymmetric traveling salesman problems, Proceedings of the 1996 IEEE International
Conference on Evolutionary Computation, pp. 616–621

Freisleben, B. & Merz, P. (1996b): New genetic local search operators for the traveling
salesman problem, Proceedings of the Fourth Conference on Parallel Problem Solving
from Nature,Vol. 1141, (1996) pp. 890–899, Springer, Berlin

Gambardella, L. M. & Dorigo, M.: Ant-Q (1995): A reinforcement learning approach to the
traveling salesman problem, Proceedings of International Conference on Machine
Learning, pp. 252–260

Goldberg, D. E. & Lingle, R. (1985): Alleles, loci, and the traveling salesman problem,
Proceedings of an International Conference on Genetic Algorithms and Their Applications,
pp. 154–159, Pittsburgh, PA

Goldberg, D. E. (1989): Genetic Algorithms in Search, Optimization, and Machine Learning,
Addison-Wesley

Holland, J. H. (1975): Adaptation in Nature and Artificial Systems, The University of Michigan

Approaches to the Travelling Salesman Problem Using Evolutionary Computing Algorithms

73

Homaifar, A.; Guan, S. & Liepins, G. (1992): Schema analysis of the traveling salesman problem
using genetic algorithms, Complex Systems, Vol. 6, 533–552

Homaifar, A. & Guan, S., Liepins, G. (1993): A new approach on the traveling salesman
problem by the genetic algorithms, Proceedings of the Fifth International Conference on
Genetic Algorithms, pp. 460–466, San Mateo, CA, Morgan Kaufman

Johnson, D. S. & McGeoch, L. A. (2002): Experimental analysis of heuristics for the STSP, In:
Gutin, G. & Punnen, A. P. (Eds), The Traveling Salesman Problem and Its Variations,
369–443, Kluwer Academic Publishers, Dordrecht, Netherlands

Julstrom, B. A. (1995): Very greedy crossover in a genetic algorithm for the traveling
salesman problem, Proceedings of the 1995 ACM symposium on Applied computing, pp.
324–328

Jung, S. & Moon, B.R. (2002): Toward minimal restriction of genetic encoding and crossovers for
the two-dimensional Euclidean TSP. IEEE Transactions on Evolutionary Computation,
Vol. 6, 557–565

Kirkpartrick, S.; Gelatt Jr., C. D.; Vecchi, M. P. (1983): Optimization by simulated annealing,
Science, Vol. 220, 671–680

Larranaga, P.; Kuijpers, C. M. H.; Murga, R. H.; Inza, I. & Dizdarevic, S. (1999): Genetic
algorithms for the travelling salesman problems: A review of representations and operators,
Artificial Intelligence Review, Vol. 13, 129–170

Lin, S. & Kernighan, B. (1973): An effective heuristic algorithm for the traveling salesman tours,
Operations Research, Vol. 21, 498–516

Man, K.; Tang, K. & Kwong, S. (1999): Genetic Algorithms :Concepts and Designs, Springer,
London

Marchiori, E. & Steenbeek, A.(2000): A genetic local search algorithm for random binary
constraint satisfaction problems, SAC Vol. 1, 458–462

Miglino, O.; Menczer, D. & Bovet, P. (1994): A neuro-ethological approach for the TSP: Changing
methaphors in connectionist models, Journal of Biological Systems, Vol. 2, 357–366

Mohammadian, M.; Sarker, R. & Yao, X. (2002): Evolutionary Optimization, Kluwer Academic
Publishers, Boston

Moscato, P. & Norman, M.G. (1992): A “memetic” approach for the traveling salesman
problem implementation of a computational ecology for combinatorial
optimization on message-passing systems, In: Valero, M.; Onate, E.; Jane, M.;
Larriba, J. L.& Suarez, B. (Eds), Parallel Computing and Transputer Applications, 177–
186, Amsterdam IOS Press

Naphade, K. S. & Tuzun, D. (1995): Initializing the Hopfield-tank network for the TSP using
a convex hull: A computational study, Proceedings of the Artificial Neural Networks in
Engineering conference, Vol. 5, pp. 399–404, St. Louis

Pham, D. T. & Karaboga, D. (2000): Intelligent Optimization Techniques: Genetic
Algorithms,Tabu Search, Simulated Annealing and Neural Networks, Springer, London

Rego, C. & Glover, F. (2002): Local search and metaheuristics, In: Gutin, G. & Punnen, A. P.
(Eds.), The Traveling Salesman Problem and Its Variations, 309–368, Kluwer Academic
Publishers, Dordrecht, Netherlands

Wei, J. D. & Lee, D. T. (2004): A new approach to the traveling salesman problem using
genetic algorithms with priority encoding, Proceedings of the 2004 IEEE Congress on
Evolutionary Computation, pp. 1457–1464

 Travelling Salesman Problem

72

algorithms. This coding policy encodes link priorities as chromosomes, and then uses the
underlying greedy algorithms to construct the corresponding solution as the phenotype. By
doing so, traditional genetic algorithms can be exploited as usual.
Priority-based encoding supports not only broad applications but also schema analysis. In
addition, the priority-based genetic local search is empirically tested to achieve remarkable
searching results for the TSP by iteratively converging to crucial edges. According to
experimental results, this model found near-optimal solutions to TSPLIB instances -- in cases
where the number of cities is no more than 400, the results are identical to the best
previously known results. Experimental results also reveal that the permutation-based
algorithms using specialized GA operators have an overhead in searching sparsely
connected maps. This overhead does not occur when we use priority-based algorithms,
because it is not necessary to encode the disconnected links into the chromosome.

6. Acknowledgements
This work was supported in part by the Taiwan National Science Council under the Grants
NSC95-2221-E-001-016-MY3 and NSC-95-2752-E-002-005-PAE.

7. References
Arroyo, J. & Armentano, V. (2005): Genetic local search for multi-objective flowshop scheduling

problems, European Journal of Operational Research, Vol. 167, 717–738
Boukreev, K. (2007): Genetic algorithms and the traveling salesman problem, The Code Project

Website, (http://www.codeproject.com/cpp/tspapp.asp)
Digalakis, J. & Margaritis, K. (2004): Performance comparison of memetic algorithms, Applied

Mathematics and Computation, Vol. 158, 237–252
Dorigo, M. & Gambardella, L. M. (1997): Ant colony system: A cooperative learning approach to

the traveling salesman problem, IEEE Transactions on Evolutionary Computation, Vol.
1, 53–66

Fiechter, C. N. (1994): A parallel tabu search algorithm for large traveling salesman problems,
Discrete Applied Mathematics and Combinatorial Operations Research and
Computer Science, Vol. 51, 243–267

Freisleben, B. & Merz, P. (1996a): A genetic local search algorithm for solving symmetric and
asymmetric traveling salesman problems, Proceedings of the 1996 IEEE International
Conference on Evolutionary Computation, pp. 616–621

Freisleben, B. & Merz, P. (1996b): New genetic local search operators for the traveling
salesman problem, Proceedings of the Fourth Conference on Parallel Problem Solving
from Nature,Vol. 1141, (1996) pp. 890–899, Springer, Berlin

Gambardella, L. M. & Dorigo, M.: Ant-Q (1995): A reinforcement learning approach to the
traveling salesman problem, Proceedings of International Conference on Machine
Learning, pp. 252–260

Goldberg, D. E. & Lingle, R. (1985): Alleles, loci, and the traveling salesman problem,
Proceedings of an International Conference on Genetic Algorithms and Their Applications,
pp. 154–159, Pittsburgh, PA

Goldberg, D. E. (1989): Genetic Algorithms in Search, Optimization, and Machine Learning,
Addison-Wesley

Holland, J. H. (1975): Adaptation in Nature and Artificial Systems, The University of Michigan

Approaches to the Travelling Salesman Problem Using Evolutionary Computing Algorithms

73

Homaifar, A.; Guan, S. & Liepins, G. (1992): Schema analysis of the traveling salesman problem
using genetic algorithms, Complex Systems, Vol. 6, 533–552

Homaifar, A. & Guan, S., Liepins, G. (1993): A new approach on the traveling salesman
problem by the genetic algorithms, Proceedings of the Fifth International Conference on
Genetic Algorithms, pp. 460–466, San Mateo, CA, Morgan Kaufman

Johnson, D. S. & McGeoch, L. A. (2002): Experimental analysis of heuristics for the STSP, In:
Gutin, G. & Punnen, A. P. (Eds), The Traveling Salesman Problem and Its Variations,
369–443, Kluwer Academic Publishers, Dordrecht, Netherlands

Julstrom, B. A. (1995): Very greedy crossover in a genetic algorithm for the traveling
salesman problem, Proceedings of the 1995 ACM symposium on Applied computing, pp.
324–328

Jung, S. & Moon, B.R. (2002): Toward minimal restriction of genetic encoding and crossovers for
the two-dimensional Euclidean TSP. IEEE Transactions on Evolutionary Computation,
Vol. 6, 557–565

Kirkpartrick, S.; Gelatt Jr., C. D.; Vecchi, M. P. (1983): Optimization by simulated annealing,
Science, Vol. 220, 671–680

Larranaga, P.; Kuijpers, C. M. H.; Murga, R. H.; Inza, I. & Dizdarevic, S. (1999): Genetic
algorithms for the travelling salesman problems: A review of representations and operators,
Artificial Intelligence Review, Vol. 13, 129–170

Lin, S. & Kernighan, B. (1973): An effective heuristic algorithm for the traveling salesman tours,
Operations Research, Vol. 21, 498–516

Man, K.; Tang, K. & Kwong, S. (1999): Genetic Algorithms :Concepts and Designs, Springer,
London

Marchiori, E. & Steenbeek, A.(2000): A genetic local search algorithm for random binary
constraint satisfaction problems, SAC Vol. 1, 458–462

Miglino, O.; Menczer, D. & Bovet, P. (1994): A neuro-ethological approach for the TSP: Changing
methaphors in connectionist models, Journal of Biological Systems, Vol. 2, 357–366

Mohammadian, M.; Sarker, R. & Yao, X. (2002): Evolutionary Optimization, Kluwer Academic
Publishers, Boston

Moscato, P. & Norman, M.G. (1992): A “memetic” approach for the traveling salesman
problem implementation of a computational ecology for combinatorial
optimization on message-passing systems, In: Valero, M.; Onate, E.; Jane, M.;
Larriba, J. L.& Suarez, B. (Eds), Parallel Computing and Transputer Applications, 177–
186, Amsterdam IOS Press

Naphade, K. S. & Tuzun, D. (1995): Initializing the Hopfield-tank network for the TSP using
a convex hull: A computational study, Proceedings of the Artificial Neural Networks in
Engineering conference, Vol. 5, pp. 399–404, St. Louis

Pham, D. T. & Karaboga, D. (2000): Intelligent Optimization Techniques: Genetic
Algorithms,Tabu Search, Simulated Annealing and Neural Networks, Springer, London

Rego, C. & Glover, F. (2002): Local search and metaheuristics, In: Gutin, G. & Punnen, A. P.
(Eds.), The Traveling Salesman Problem and Its Variations, 309–368, Kluwer Academic
Publishers, Dordrecht, Netherlands

Wei, J. D. & Lee, D. T. (2004): A new approach to the traveling salesman problem using
genetic algorithms with priority encoding, Proceedings of the 2004 IEEE Congress on
Evolutionary Computation, pp. 1457–1464

 Travelling Salesman Problem

74

Wei, J. D. & Lee, D. T. (2006): Priority-based genetic local search and it’s application to the
traveling salesman problem, Lecture Notes in Computer Science, No. 4274, 424–432

Whitley, D.; Starkweather, T. & Fuquay, D. (1989): Scheduling problems and traveling
salesman: the genetic edge recombination, Proceedings of the third international
conference on Genetic algorithms, pp. 133–140

Whitley, D.; Starkweather, T. & Shaner, D. (1991): The traveling salesman and sequence
scheduling: Quality solutions using genetic edge recombination; In: Davis, L. (Ed.),
Handbook of Genetic Algorithms, 350–372, Van Nstrand Reinhold, New York

Zachariasen, M. & Dam, M. (1995): Tabu search on the geometric traveling salesman
problem, Proceedings of Metaheuristics International Conference, pp. 571–587, Colorado

Zeng, Y. & Wang, Y. P. (2003): A new genetic algorithm with local search method for
degree-constrained minimum spanning tree problem, Proceedings of the Fifth
International Conference on Computational Intelligence and Multimedia Applications, pp.
218–222

4

Particle Swarm Optimization Algorithm for the
Traveling Salesman Problem

Elizabeth F. G. Goldbarg, Marco C. Goldbarg and Givanaldo R. de Souza
Universidade Federal do Rio Grande do Norte

Brazil

1. Introduction
Particle swarm optimization, PSO, is an evolutionary computation technique inspired in the
behavior of bird flocks. PSO algorithms were first introduced by Kennedy & Eberhart (1995)
for optimizing continuous nonlinear functions. The fundamentals of this metaheuristic
approach rely on researches where the movements of social creatures were simulated by
computers (Reeves, 1983; Reynolds, 1987; Heppner & Grenander, 1990). The research in PSO
algorithms has significantly grown in the last few years and a number of successful
applications concerning single and multi-objective optimization have been presented
(Kennedy& Eberhart, 2001; Coello et al., 2004). This popularity is partially due to the fact
that in the canonical PSO algorithm only a small number of parameters have to be tuned
and also due to the easiness of implementation of the algorithms based on this technique.
Motivated by the success of PSO algorithms with continuous problems, researchers that deal
with discrete optimization problems have investigated ways to adapt the original proposal
to the discrete case. In many of those researches, the new approaches are illustrated with the
Traveling Salesman Problem, TSP, once it has been an important test ground for most
algorithmic ideas.
Given a graph G = (N,E), where N = {1,...,n} and E = {1,...,m}, and costs, cij, associated with
each edge linking vertices i and j, the TSP consists in finding the minimal total length
Hamiltonian cycle of G. The length is calculated by the summation of the costs of the edges
in the considered cycle. If for all pairs of nodes {i,j}, the costs cij and cji are equal then the
problem is said to be symmetric, otherwise it is said to be asymmetric. The main importance
of TSP regarding applicability is due to its variations, nevertheless some applications of the
basic problem in real world problems are reported for different areas such as VLSI chip
fabrication, X-ray crystallography, genome map and broadcast schedule, among others.
Although, a great research effort has been done to accomplish the task of adapting PSO to
discrete problems, many approaches still obtain results very far from the best results known
for the TSP. Some of those works are summarized in section 2.
An effective PSO approach for the TSP is presented by Goldbarg et al. (2006a), where
distinct types of velocity operators are considered, each of them concerning one movement
the particles are allowed to do. This proposal is presented and extended in this chapter,
where search strategies for Combinatorial Optimization problems are associated with the
velocity operators. Rather than a metaheuristic technique, the PSO approach in this context

 Travelling Salesman Problem

74

Wei, J. D. & Lee, D. T. (2006): Priority-based genetic local search and it’s application to the
traveling salesman problem, Lecture Notes in Computer Science, No. 4274, 424–432

Whitley, D.; Starkweather, T. & Fuquay, D. (1989): Scheduling problems and traveling
salesman: the genetic edge recombination, Proceedings of the third international
conference on Genetic algorithms, pp. 133–140

Whitley, D.; Starkweather, T. & Shaner, D. (1991): The traveling salesman and sequence
scheduling: Quality solutions using genetic edge recombination; In: Davis, L. (Ed.),
Handbook of Genetic Algorithms, 350–372, Van Nstrand Reinhold, New York

Zachariasen, M. & Dam, M. (1995): Tabu search on the geometric traveling salesman
problem, Proceedings of Metaheuristics International Conference, pp. 571–587, Colorado

Zeng, Y. & Wang, Y. P. (2003): A new genetic algorithm with local search method for
degree-constrained minimum spanning tree problem, Proceedings of the Fifth
International Conference on Computational Intelligence and Multimedia Applications, pp.
218–222

4

Particle Swarm Optimization Algorithm for the
Traveling Salesman Problem

Elizabeth F. G. Goldbarg, Marco C. Goldbarg and Givanaldo R. de Souza
Universidade Federal do Rio Grande do Norte

Brazil

1. Introduction
Particle swarm optimization, PSO, is an evolutionary computation technique inspired in the
behavior of bird flocks. PSO algorithms were first introduced by Kennedy & Eberhart (1995)
for optimizing continuous nonlinear functions. The fundamentals of this metaheuristic
approach rely on researches where the movements of social creatures were simulated by
computers (Reeves, 1983; Reynolds, 1987; Heppner & Grenander, 1990). The research in PSO
algorithms has significantly grown in the last few years and a number of successful
applications concerning single and multi-objective optimization have been presented
(Kennedy& Eberhart, 2001; Coello et al., 2004). This popularity is partially due to the fact
that in the canonical PSO algorithm only a small number of parameters have to be tuned
and also due to the easiness of implementation of the algorithms based on this technique.
Motivated by the success of PSO algorithms with continuous problems, researchers that deal
with discrete optimization problems have investigated ways to adapt the original proposal
to the discrete case. In many of those researches, the new approaches are illustrated with the
Traveling Salesman Problem, TSP, once it has been an important test ground for most
algorithmic ideas.
Given a graph G = (N,E), where N = {1,...,n} and E = {1,...,m}, and costs, cij, associated with
each edge linking vertices i and j, the TSP consists in finding the minimal total length
Hamiltonian cycle of G. The length is calculated by the summation of the costs of the edges
in the considered cycle. If for all pairs of nodes {i,j}, the costs cij and cji are equal then the
problem is said to be symmetric, otherwise it is said to be asymmetric. The main importance
of TSP regarding applicability is due to its variations, nevertheless some applications of the
basic problem in real world problems are reported for different areas such as VLSI chip
fabrication, X-ray crystallography, genome map and broadcast schedule, among others.
Although, a great research effort has been done to accomplish the task of adapting PSO to
discrete problems, many approaches still obtain results very far from the best results known
for the TSP. Some of those works are summarized in section 2.
An effective PSO approach for the TSP is presented by Goldbarg et al. (2006a), where
distinct types of velocity operators are considered, each of them concerning one movement
the particles are allowed to do. This proposal is presented and extended in this chapter,
where search strategies for Combinatorial Optimization problems are associated with the
velocity operators. Rather than a metaheuristic technique, the PSO approach in this context

 Travelling Salesman Problem

76

can be thought as a framework for heuristics hybridization. The extension of the approach
proposed previously comprehends methods to combine the distinct velocity operators.
Computational experiments with a large set of benchmark instances show that the proposed
algorithms produce high quality solutions when compared with effective heuristics for the
TSP.
The chapter begins with a brief review of Particle Swarm Optimization. Some proposals for
applying this metaheuristic technique to discrete optimization problems and, in particular,
to the Traveling Salesman Problem are presented in section 2. In section 3, our proposal for
velocity operators in the discrete context is presented. Computational experiments compare
the results of the proposed approach with other PSO heuristics presented previously for the
TSP. In section 4, the combination of velocity operators is investigated. Conclusions and
directions for future works are presented in sections 5 and 6, respectively.

2. Particle swarm optimization
Kennedy & Eberhart (1995) proposed the bio-inspired PSO approach, which can be seen as a
population-based algorithm that performs a parallel search on a space of solutions. In the
optimization context, several solutions of a given problem constitute a population (the
swarm). Each solution is seen as a social organism, also called particle. The method attempts
to imitate the behavior of real creatures making the particles “fly” over a solution space.
These particles search the problem’s solution space balancing the intensification and the
diversification efforts. Each particle has a value associated with it. In general, particles are
evaluated with the objective function of the considered optimization problem. A velocity is
also assigned to each particle in order to direct the “flight” through the problem’s solution
space. The artificial creatures have a tendency to follow the best ones among them. At each
iteration step, a new velocity value is calculated for each particle. This velocity value is used
to update the particle’s position. The process iterates until reaching a stopping condition.
In the classical PSO algorithm, each particle
• has a position and a velocity
• knows its own position and the value associated with it
• knows the best position it has ever achieved, and the value associated with it
• knows its neighbors, their best positions and their values
The best position a given particle has ever achieved is called pbest. In some versions of
particle swarm algorithms the particles also track the best position achieved so far by any
particle of the swarm. This position is called gbest. By changing their velocities with
individualistic moves or toward pbest and gbest, the particles change their positions. The
move of a particle is a composite of three possible choices (Onwubolu & Clerc, 2004):
• To follow its own way
• To go back to its best previous position
• To go towards its best neighbor’s previous or present position
The neighborhood may be physical or social. Physical neighborhoods take distances into
account, thus a distance metric has to be established. This approach tends to be time
consuming, since each iteration distances must be computed. In general, social
neighborhoods are based upon “relationships” defined at the very beginning of the
algorithm.
A general framework of a particle swarm optimization algorithm is presented in figure 1.
Initially, a population of particles is generated. After, all particles are evaluated and, if

Particle Swarm Optimization Algorithm for the Traveling Salesman Problem

77

necessary, pbestp is replaced by xp, p’s position. The best position achieved so far by any of
the p’s neighbors is set to gbestp. Finally, the velocities and positions of each particle are
updated. The procedure compute_velocity() receives three inputs. This is done to show that,
in general, p’s position, xp, pbestp and gbestp are used to update p’s velocity, vp. The process is
repeated until some stopping condition is satisfied.

procedure PSO
 Initialize a population of particles
 do
 for each particle p with position xp do
 if (xp is better than pbestp) then
 pbestp ← xp
 end_if
 end_for
 Define gbestp as the best position found so far by any of p’s neighbors
 for each particle p do
 vp ← Compute_velocity(xp, pbestp, gbestp)
 xp ← update_ position(xp, vp)
 end_for
 while (a stop criterion is not satisfied)

Fig. 1. Framework of a particle swarm optimization algorithm

Kennedy & Eberhart (1995) suggest equations (1) and (2) to update the particle’s velocity
and position, respectively. In these equations, xp(t) and vp(t) are the particle’s position and
velocity at instant t, pbestp(t) is the best position the particle achieved up to instant t, gbestp(t)
is the best position that any of p’s neighbors has achieved up to instant t, c1 is a cognitive
coefficient that quantifies how much the particle trusts its experience, c2 is a social coefficient
that quantifies how much the particle trusts its best neighbor, rand1 and rand2 are random
numbers.

 vp(t) = vp(t-1) + c1.rand1.(pbestp(t-1) – xp(t-1)) + c2.rand2 .(gbestp(t-1) – xp(t-1)) (1)

 xp(t) = xp(t-1) + vp(t) (2)

An inertia factor is introduced in equation (1) by Shi & Eberhart (1998). Considering the
inertia factor w, equation (3) replaces equation (1). The inertia factor multiplies the velocity
of the previous iteration. It is decreased throughout the algorithm execution. The inertia
factor creates a tendency for the particle to continue moving in the same direction it was
going previously. The motivation for the use of the inertia factor was to be able to better
control intensification and diversification. Shi & Eberhart (1998) observed that suitable
values for the inertia factor yielded a good trade-off between exploration and exploitation.

 vp(t) = wvp(t-1) + c1.rand1.(pbestp(t-1) – xp(t-1)) + c2.rand2 .(gbestp(t-1) – xp(t-1)) (3)

Constriction factors were introduced by Clerc (1999) who observed that the use of a
constriction factor was necessary to insure the convergence of the PSO algorithm. A simple
way to incorporate a constriction factor in PSO algorithms is to replace equation (1) by
equations (4) and (5), where K is the constriction factor. In equation (5), c1 and c2 are usually
set to 1.49445 (Eberhart & Shi, 2001).

 Travelling Salesman Problem

76

can be thought as a framework for heuristics hybridization. The extension of the approach
proposed previously comprehends methods to combine the distinct velocity operators.
Computational experiments with a large set of benchmark instances show that the proposed
algorithms produce high quality solutions when compared with effective heuristics for the
TSP.
The chapter begins with a brief review of Particle Swarm Optimization. Some proposals for
applying this metaheuristic technique to discrete optimization problems and, in particular,
to the Traveling Salesman Problem are presented in section 2. In section 3, our proposal for
velocity operators in the discrete context is presented. Computational experiments compare
the results of the proposed approach with other PSO heuristics presented previously for the
TSP. In section 4, the combination of velocity operators is investigated. Conclusions and
directions for future works are presented in sections 5 and 6, respectively.

2. Particle swarm optimization
Kennedy & Eberhart (1995) proposed the bio-inspired PSO approach, which can be seen as a
population-based algorithm that performs a parallel search on a space of solutions. In the
optimization context, several solutions of a given problem constitute a population (the
swarm). Each solution is seen as a social organism, also called particle. The method attempts
to imitate the behavior of real creatures making the particles “fly” over a solution space.
These particles search the problem’s solution space balancing the intensification and the
diversification efforts. Each particle has a value associated with it. In general, particles are
evaluated with the objective function of the considered optimization problem. A velocity is
also assigned to each particle in order to direct the “flight” through the problem’s solution
space. The artificial creatures have a tendency to follow the best ones among them. At each
iteration step, a new velocity value is calculated for each particle. This velocity value is used
to update the particle’s position. The process iterates until reaching a stopping condition.
In the classical PSO algorithm, each particle
• has a position and a velocity
• knows its own position and the value associated with it
• knows the best position it has ever achieved, and the value associated with it
• knows its neighbors, their best positions and their values
The best position a given particle has ever achieved is called pbest. In some versions of
particle swarm algorithms the particles also track the best position achieved so far by any
particle of the swarm. This position is called gbest. By changing their velocities with
individualistic moves or toward pbest and gbest, the particles change their positions. The
move of a particle is a composite of three possible choices (Onwubolu & Clerc, 2004):
• To follow its own way
• To go back to its best previous position
• To go towards its best neighbor’s previous or present position
The neighborhood may be physical or social. Physical neighborhoods take distances into
account, thus a distance metric has to be established. This approach tends to be time
consuming, since each iteration distances must be computed. In general, social
neighborhoods are based upon “relationships” defined at the very beginning of the
algorithm.
A general framework of a particle swarm optimization algorithm is presented in figure 1.
Initially, a population of particles is generated. After, all particles are evaluated and, if

Particle Swarm Optimization Algorithm for the Traveling Salesman Problem

77

necessary, pbestp is replaced by xp, p’s position. The best position achieved so far by any of
the p’s neighbors is set to gbestp. Finally, the velocities and positions of each particle are
updated. The procedure compute_velocity() receives three inputs. This is done to show that,
in general, p’s position, xp, pbestp and gbestp are used to update p’s velocity, vp. The process is
repeated until some stopping condition is satisfied.

procedure PSO
 Initialize a population of particles
 do
 for each particle p with position xp do
 if (xp is better than pbestp) then
 pbestp ← xp
 end_if
 end_for
 Define gbestp as the best position found so far by any of p’s neighbors
 for each particle p do
 vp ← Compute_velocity(xp, pbestp, gbestp)
 xp ← update_ position(xp, vp)
 end_for
 while (a stop criterion is not satisfied)

Fig. 1. Framework of a particle swarm optimization algorithm

Kennedy & Eberhart (1995) suggest equations (1) and (2) to update the particle’s velocity
and position, respectively. In these equations, xp(t) and vp(t) are the particle’s position and
velocity at instant t, pbestp(t) is the best position the particle achieved up to instant t, gbestp(t)
is the best position that any of p’s neighbors has achieved up to instant t, c1 is a cognitive
coefficient that quantifies how much the particle trusts its experience, c2 is a social coefficient
that quantifies how much the particle trusts its best neighbor, rand1 and rand2 are random
numbers.

 vp(t) = vp(t-1) + c1.rand1.(pbestp(t-1) – xp(t-1)) + c2.rand2 .(gbestp(t-1) – xp(t-1)) (1)

 xp(t) = xp(t-1) + vp(t) (2)

An inertia factor is introduced in equation (1) by Shi & Eberhart (1998). Considering the
inertia factor w, equation (3) replaces equation (1). The inertia factor multiplies the velocity
of the previous iteration. It is decreased throughout the algorithm execution. The inertia
factor creates a tendency for the particle to continue moving in the same direction it was
going previously. The motivation for the use of the inertia factor was to be able to better
control intensification and diversification. Shi & Eberhart (1998) observed that suitable
values for the inertia factor yielded a good trade-off between exploration and exploitation.

 vp(t) = wvp(t-1) + c1.rand1.(pbestp(t-1) – xp(t-1)) + c2.rand2 .(gbestp(t-1) – xp(t-1)) (3)

Constriction factors were introduced by Clerc (1999) who observed that the use of a
constriction factor was necessary to insure the convergence of the PSO algorithm. A simple
way to incorporate a constriction factor in PSO algorithms is to replace equation (1) by
equations (4) and (5), where K is the constriction factor. In equation (5), c1 and c2 are usually
set to 1.49445 (Eberhart & Shi, 2001).

 Travelling Salesman Problem

78

 vp(t) = K[vp(t-1) + c1.rand1.(pbestp(t-1) – xp(t-1)) + c2.rand2 .(gbestp(t-1) – xp(t-1))] (4)

1 22

2 , , 4
2 4

K c cα α
α α α

= = + >
− − −

 (5)

The canonical PSO algorithm, however, needs an adaptation in order to be applied to
discrete optimization problems. Kennedy & Eberhart (1997) propose a discrete binary PSO
version, defining particles’ trajectories and velocities in terms of changes of probabilities that
a bit is set to 0 or 1 (Shi et al., 2007). The particles move in a state space restricted to 0 and 1
with a certain probability that is a function of individual and social factors. The probability
of xp(t) = 1, Pr(xp = 1), is a function of xp(t-1), vp(t-1), pbestp(t-1) and gbestp(t-1). The probability
of xp(t) = 0 equals 1 - Pr(xp = 1). Thus equation (2) is replaced by equation (6), where rand3 is
a random number, ψ(vp(t)) is a logistic transformation which can constrain vp(t) to the
interval [0,1] and can be considered as a probability.

 () ()()
⎩
⎨
⎧ <

=
otherwise

tvrandif
tx p

p ,0
,1 3 ψ (6)

PSO for permutation problems is investigated by several researchers. In several of these
research works the TSP is the target problem.
Hu et al. (2003) define velocity as a vector of probabilities in which each element
corresponds to the probability of exchanging two elements of the permutation vector that
represents a given particle position. Pairwise exchanging operations, also called 2-swap or 2-
exchange, are very popular neighborhoods in local search algorithms for permutation
problems. Let V be the velocity of a particle whose position is given by the permutation
vector P. Given integers i and j, V[i] is the probability of elements P[i] and P[j] be exchanged.
The element P[j] corresponds to Pnbest[i], where Pnbest is the vector that represents the
permutation associated with the position of the best neighbor of the considered particle.
The authors introduce a mutation operator in order to avoid premature convergence of their
algorithm. The mutation operator does a 2-swap move with two elements chosen at random
in the considered permutation vector.
Another approach is proposed by Clerc (2004) that utilizes the Traveling Salesman Problem
to illustrate the PSO concepts for discrete optimization problems. In the following we list the
basic ingredients Clerc (2004) states that are necessary to construct a PSO algorithm for
discrete optimization problems:
• a search space, S = {si}
• an objective function f on S, such that f(si) = ci
• a semi-order on C = {ci} , such that for every ci, cj ∈ C, we can establish whether ci ≥ cj or

cj ≥ ci
• a distance d in the search space, in case we want to consider physical neighborhoods.
S may be a finite set of states and f a discrete function, and, if it is possible to define
particles’ positions, velocity and ways to move a particle from one position to another, it is
possible to use PSO. Clerc (2004) presents also some operations with position and velocity
such as: the opposite of a velocity, the addition of position and velocity (move), the
subtraction of two positions, the addition and subtraction of two velocities and the
multiplication of velocity by a constant. A distance is also defined to be utilized with
physical neighborhoods. To illustrate his ideas about tackling discrete optimization

Particle Swarm Optimization Algorithm for the Traveling Salesman Problem

79

problems with PSO, Clerc (2004) develops several algorithm variants with those operations
and methods and applies them to the asymmetric TSP instance br17.atsp. In his algorithm
the positions are defined as TSP tours represented in vectors of permutations of the |N|
vertices of the graph correspondent to the considered instance. These vertices are also
referred as cities, and the position of a particle is represented by a sequence (n1, …, n|N|,
n|N|+1), n1 = n|N|+1. The value assigned to each particle is calculated with the TSP objective
function, thus corresponding to the tour length. The velocity is defined as a list of pairs (i,j),
where i and j are the indices of the elements of the permutation vector that will be
exchanged. This approach was applied to tackle the real problem of finding out the best
path for drilling operations (Onwubolu & Clerc, 2004) .
Wang et al. (2003) present a PSO algorithm for the TSP utilizing, basically, the same
structure proposed by Clerc (2004) and apply their algorithm to the benchmark instance
burma14.
Hendtlass (2003) proposes the inclusion of a memory for the particles in order to improve
diversity. The memory of each particle is a list of solutions (target points) that can be used as
an alternative for the current local optimal point. There is a probability of choosing one of
the points of the particle’s memory instead of the current gbestp. The size of the memory list
and the probability are new parameters added to the standard PSO algorithm. The
algorithm is applied to the benchmark TSP instance burma14. The results obtained with
algorithmic versions with several parameter settings are compared with the results of an
Ant Colony Optimization algorithm. The author shows that his algorithm outperformed the
PSO version without the use of memory and presented quality of solution comparable to the
results produced by the ACO algorithm, for instance burma14.
Pang et al. (2004a) extend the work of Wang et al. (2003). Their algorithm alternates among
the continuous and the discrete (permutation) space. |N|-dimensional vectors in the
continuous Cartesian space are used for positions and velocities. The discrete representation
of the particles’ positions is done in the permutation space. They present methods to
transform the positions from one space to the other. They alternate between the two spaces
until a stopping condition is reached. The particle’s position and velocity are updated in the
continuous space. Then, they move to the discrete space, where a local search procedure is
applied to all particles’ positions. Two local search procedures are tested in their algorithms:
the 2-swap and the 2-opt (Flood, 1956). After that, they make the reverse transformation to
the continuous space. In order to avoid premature convergence, Pang et al. (2004a) use a
chaotic operator. This operator changes randomly the position and velocity in the
continuous space, multiplying these vectors by a random number. Four versions of their
algorithm are applied to four benchmark instances with 14 to 51 cities: burma14, eil51, eil76
and berlin52. The algorithm variations comprise the presence or not of chaotic variables and
the two local search procedures. In the set of instances tested, the results showed that the
version that includes chaotic variables and the 2-opt local search presented the best results.
Pang et al. (2004b) present a fuzzy-based PSO algorithm for the TSP. The position of each
particle is a matrix P = [pij], where pij ∈ (0,1) represents the degree of membership of the i-th
city to the j-th position of a given tour. The velocity is also defined as a matrix and the
operations resulting from equations (2) and (3) are defined accordingly. A method to decode
the matrix position to a tour solution is presented. The value associated with each particle is
the length of the tour represented by the particle’s position. They apply their algorithm to
instances burma14 and berlin52. No average results or comparisons with other algorithms
are reported.

 Travelling Salesman Problem

78

 vp(t) = K[vp(t-1) + c1.rand1.(pbestp(t-1) – xp(t-1)) + c2.rand2 .(gbestp(t-1) – xp(t-1))] (4)

1 22

2 , , 4
2 4

K c cα α
α α α

= = + >
− − −

 (5)

The canonical PSO algorithm, however, needs an adaptation in order to be applied to
discrete optimization problems. Kennedy & Eberhart (1997) propose a discrete binary PSO
version, defining particles’ trajectories and velocities in terms of changes of probabilities that
a bit is set to 0 or 1 (Shi et al., 2007). The particles move in a state space restricted to 0 and 1
with a certain probability that is a function of individual and social factors. The probability
of xp(t) = 1, Pr(xp = 1), is a function of xp(t-1), vp(t-1), pbestp(t-1) and gbestp(t-1). The probability
of xp(t) = 0 equals 1 - Pr(xp = 1). Thus equation (2) is replaced by equation (6), where rand3 is
a random number, ψ(vp(t)) is a logistic transformation which can constrain vp(t) to the
interval [0,1] and can be considered as a probability.

 () ()()
⎩
⎨
⎧ <

=
otherwise

tvrandif
tx p

p ,0
,1 3 ψ (6)

PSO for permutation problems is investigated by several researchers. In several of these
research works the TSP is the target problem.
Hu et al. (2003) define velocity as a vector of probabilities in which each element
corresponds to the probability of exchanging two elements of the permutation vector that
represents a given particle position. Pairwise exchanging operations, also called 2-swap or 2-
exchange, are very popular neighborhoods in local search algorithms for permutation
problems. Let V be the velocity of a particle whose position is given by the permutation
vector P. Given integers i and j, V[i] is the probability of elements P[i] and P[j] be exchanged.
The element P[j] corresponds to Pnbest[i], where Pnbest is the vector that represents the
permutation associated with the position of the best neighbor of the considered particle.
The authors introduce a mutation operator in order to avoid premature convergence of their
algorithm. The mutation operator does a 2-swap move with two elements chosen at random
in the considered permutation vector.
Another approach is proposed by Clerc (2004) that utilizes the Traveling Salesman Problem
to illustrate the PSO concepts for discrete optimization problems. In the following we list the
basic ingredients Clerc (2004) states that are necessary to construct a PSO algorithm for
discrete optimization problems:
• a search space, S = {si}
• an objective function f on S, such that f(si) = ci
• a semi-order on C = {ci} , such that for every ci, cj ∈ C, we can establish whether ci ≥ cj or

cj ≥ ci
• a distance d in the search space, in case we want to consider physical neighborhoods.
S may be a finite set of states and f a discrete function, and, if it is possible to define
particles’ positions, velocity and ways to move a particle from one position to another, it is
possible to use PSO. Clerc (2004) presents also some operations with position and velocity
such as: the opposite of a velocity, the addition of position and velocity (move), the
subtraction of two positions, the addition and subtraction of two velocities and the
multiplication of velocity by a constant. A distance is also defined to be utilized with
physical neighborhoods. To illustrate his ideas about tackling discrete optimization

Particle Swarm Optimization Algorithm for the Traveling Salesman Problem

79

problems with PSO, Clerc (2004) develops several algorithm variants with those operations
and methods and applies them to the asymmetric TSP instance br17.atsp. In his algorithm
the positions are defined as TSP tours represented in vectors of permutations of the |N|
vertices of the graph correspondent to the considered instance. These vertices are also
referred as cities, and the position of a particle is represented by a sequence (n1, …, n|N|,
n|N|+1), n1 = n|N|+1. The value assigned to each particle is calculated with the TSP objective
function, thus corresponding to the tour length. The velocity is defined as a list of pairs (i,j),
where i and j are the indices of the elements of the permutation vector that will be
exchanged. This approach was applied to tackle the real problem of finding out the best
path for drilling operations (Onwubolu & Clerc, 2004) .
Wang et al. (2003) present a PSO algorithm for the TSP utilizing, basically, the same
structure proposed by Clerc (2004) and apply their algorithm to the benchmark instance
burma14.
Hendtlass (2003) proposes the inclusion of a memory for the particles in order to improve
diversity. The memory of each particle is a list of solutions (target points) that can be used as
an alternative for the current local optimal point. There is a probability of choosing one of
the points of the particle’s memory instead of the current gbestp. The size of the memory list
and the probability are new parameters added to the standard PSO algorithm. The
algorithm is applied to the benchmark TSP instance burma14. The results obtained with
algorithmic versions with several parameter settings are compared with the results of an
Ant Colony Optimization algorithm. The author shows that his algorithm outperformed the
PSO version without the use of memory and presented quality of solution comparable to the
results produced by the ACO algorithm, for instance burma14.
Pang et al. (2004a) extend the work of Wang et al. (2003). Their algorithm alternates among
the continuous and the discrete (permutation) space. |N|-dimensional vectors in the
continuous Cartesian space are used for positions and velocities. The discrete representation
of the particles’ positions is done in the permutation space. They present methods to
transform the positions from one space to the other. They alternate between the two spaces
until a stopping condition is reached. The particle’s position and velocity are updated in the
continuous space. Then, they move to the discrete space, where a local search procedure is
applied to all particles’ positions. Two local search procedures are tested in their algorithms:
the 2-swap and the 2-opt (Flood, 1956). After that, they make the reverse transformation to
the continuous space. In order to avoid premature convergence, Pang et al. (2004a) use a
chaotic operator. This operator changes randomly the position and velocity in the
continuous space, multiplying these vectors by a random number. Four versions of their
algorithm are applied to four benchmark instances with 14 to 51 cities: burma14, eil51, eil76
and berlin52. The algorithm variations comprise the presence or not of chaotic variables and
the two local search procedures. In the set of instances tested, the results showed that the
version that includes chaotic variables and the 2-opt local search presented the best results.
Pang et al. (2004b) present a fuzzy-based PSO algorithm for the TSP. The position of each
particle is a matrix P = [pij], where pij ∈ (0,1) represents the degree of membership of the i-th
city to the j-th position of a given tour. The velocity is also defined as a matrix and the
operations resulting from equations (2) and (3) are defined accordingly. A method to decode
the matrix position to a tour solution is presented. The value associated with each particle is
the length of the tour represented by the particle’s position. They apply their algorithm to
instances burma14 and berlin52. No average results or comparisons with other algorithms
are reported.

 Travelling Salesman Problem

80

A hybrid approach that joins PSO, Genetic Algorithms and Fast Local Search is presented by
Machado & Lopes (2005) for the TSP. The positions of the particles represent TSP tours as
permutations of |N| cities. The value assigned to each particle (fitness) is the rate between a
constant Dmin and the cost of the tour represented in the particle’s position. If the optimal
solution is known, then Dmin equals the optimal tour cost. If the optimum is not known, Dmin
is set to 1. Velocity is defined regarding only pbestp and gbestp and the equation of velocity is
reduced to equation (7). The distance between two positions is calculated with a version of
the Hamming distance for permutations. With the use of equation (7) for velocity, the
particles tend to converge to pbestp and gbestp. At each iteration step, the average distance
between all particles and the best global solution is computed. If this distance is lower than
0.05|N|, then random positions are generated for all particles. The same occurs when some
subset of particles is close enough. If a subset of particles is close enough to the best local
solution, then the positions of the particles of the considered subset are generated randomly.
The solutions are recombined by means of the OX operator and then submitted to the fast
local search procedure introduced by Voudouris & Tsang (1999). The hybrid PSO is applied
to the following symmetric TSP benchmark instances: pr76, rat195, pr299, pr439, d657,
pr1002, d1291, rl1304, d2103.

 vp(t) = c1.rand1.(pbestp(t-1) – xp(t-1)) + c2.rand2 .(gbestp(t-1) – xp(t-1)) (7)

Goldbarg et al. (2006a) present a PSO algorithm for the TSP where the idea of distinct
velocity operators is introduced. The velocity operators are defined according to the possible
movements a particle is allowed to do. In the previous section, three alternatives for
movements are identified. The three alternatives can be divided into two categories:
independent and dependent moves. The independent move concerns the first parcel of
equations (1) and (3). The other two parcels of those equations depend on pbestp and gbestp,
thus referring to dependent moves. Based on those movement classes, Goldbarg et al.
(2006a) use local search procedures as velocity operators for independent moves and path-
relinking (Glover et al., 2000) for dependent moves. At each iteration step, one of the three
alternative moves is assigned to a particle and the correspondent velocity operator is
applied in order to modify the particles position. For each particle, only one type of
movement is allowed per iteration. A probability is assigned to each movement alternative.
Initially, independent moves are more likely to occur than dependent moves. During the
algorithm execution, the probabilities are modified, such that the probabilities assigned to
the dependent moves are increased and the probability assigned to independent moves is
decreased. This algorithmic proposal obtained very promising results. It was applied to 35
benchmark TSP instances with 51 to 7397 cities. The results were comparable to the results
of state-of-the-art algorithms for the TSP. A detailed discussion of this approach and the
results it obtained is presented in section 3.
Yuan et al. (2007) and Shi et al. (2007) propose extensions for the approach presented by
Wang et al. (2003). Both algorithms define subtraction in terms of sequences of 2-swap
operations as defined in the path-relinking velocity operator presented by Goldbarg et al.
(2006a), including some uncertainty for the exchange of two elements.
Yuan et al. (2007) propose new concepts for “chaos variables” and memory for particles. The
memory of each particle is an |N|-dimensional vector of chaos variables. The chaos
variables are numbers in the interval (0,1) and are generated with a method proposed by the
authors. Based on the memory list of a particle p, they define the permutation that

Particle Swarm Optimization Algorithm for the Traveling Salesman Problem

81

represents p’s position. They sort the elements of the memory list. The resulting order leads
to a permutation of the elements in the memory list. This permutation is the representation
of p’s position. They apply their algorithm to four benchmark instances with 14 to 51 cities:
burma14, oliver30, att48, eil51. The results obtained for instances oliver30 and att48 are
compared with the results obtained by algorithms based on: Simulated Annealing, Genetic
Algorithm and Ant Colony Systems. Their algorithm outperforms the others regarding
quality of solution of these two instances.
Shi et al. (2007) adds to their algorithm a procedure that aims at eliminating edge crossings
in the TSP tours represented by the particles’ positions. They apply their algorithm to five
benchmark instances: eil51, berlin52, st70, eil76 and pr70.
Zhong et al. (2007) present a PSO approach where a mutation factor (c3) is introduced in the
formula that updates the particle’s position (equation (2)). The new formula is presented in
equation (8). The factor introduces some diversity in the algorithm. The position of a particle
is represented as a set of edges instead of a permutation as in the previous approaches. The
velocity is defined as a list of edges with a probability associated with each element of the
list. During the iterations if pbestp is identical to gbestp then, pbestp is not replaced by the
current position of p. The authors apply their algorithm to six benchmark TSP instances:
burma14, eil51, eil76, berlin52, kroA100 and kroA200. The results are compared with the
results of Pang et al. (2004a) and with an Ant Colony Optimization algorithm. They show
that their algorithm outperforms the others regarding average solutions.

 xp(t) = c3.rand.xp(t-1) + vp(t) (8)

Fang et al. (2007) present a PSO algorithm for the TSP where an annealing scheme is used to
accept the movement of a particle. They apply their algorithm to instances oliver30 and
att48. The results are compared with the results of algorithms based on: Simulated
Annealing, Genetic Algorithms and Ant Colony. In the two instances tested, their algorithm
presents the best average results.
A comparison among some of the previous algorithms and the approach proposed in this
chapter is presented in the next section.

3. New velocity operators for discrete PSO
In PSO algorithms the velocity is the basic mechanism for accomplishing the search in the
space of solutions of optimization problems. In most applications, the particles’ positions
represent the solutions of the investigated problem. The positions are updated by means of
velocity operators that direct the search to promising regions of the space of solutions. There
are two classes of movement a particle is allowed to do: independent and dependent moves.
Independent moves are those in which the particle moves without knowing any other
positions besides its own on the current instant. This type of movement depends only on the
current particle position and on a velocity operator. The other case arises when the particle
needs to know the position of pbest or gbest. This distinction between the movements leads
us to a unary and a binary concept for velocity operators. In the unary operations only one
particle is accepted as input. The particle’s position is transformed according to a unary
velocity operator. The binary operations accept two particles and alter the position of one of
them considering the position of the other. In this context, m-ary operations can be defined
where m particles are accepted and the position of one of them is altered considering the
positions of the remaining m-1 particles, in accordance with an m-ary velocity operator.

 Travelling Salesman Problem

80

A hybrid approach that joins PSO, Genetic Algorithms and Fast Local Search is presented by
Machado & Lopes (2005) for the TSP. The positions of the particles represent TSP tours as
permutations of |N| cities. The value assigned to each particle (fitness) is the rate between a
constant Dmin and the cost of the tour represented in the particle’s position. If the optimal
solution is known, then Dmin equals the optimal tour cost. If the optimum is not known, Dmin
is set to 1. Velocity is defined regarding only pbestp and gbestp and the equation of velocity is
reduced to equation (7). The distance between two positions is calculated with a version of
the Hamming distance for permutations. With the use of equation (7) for velocity, the
particles tend to converge to pbestp and gbestp. At each iteration step, the average distance
between all particles and the best global solution is computed. If this distance is lower than
0.05|N|, then random positions are generated for all particles. The same occurs when some
subset of particles is close enough. If a subset of particles is close enough to the best local
solution, then the positions of the particles of the considered subset are generated randomly.
The solutions are recombined by means of the OX operator and then submitted to the fast
local search procedure introduced by Voudouris & Tsang (1999). The hybrid PSO is applied
to the following symmetric TSP benchmark instances: pr76, rat195, pr299, pr439, d657,
pr1002, d1291, rl1304, d2103.

 vp(t) = c1.rand1.(pbestp(t-1) – xp(t-1)) + c2.rand2 .(gbestp(t-1) – xp(t-1)) (7)

Goldbarg et al. (2006a) present a PSO algorithm for the TSP where the idea of distinct
velocity operators is introduced. The velocity operators are defined according to the possible
movements a particle is allowed to do. In the previous section, three alternatives for
movements are identified. The three alternatives can be divided into two categories:
independent and dependent moves. The independent move concerns the first parcel of
equations (1) and (3). The other two parcels of those equations depend on pbestp and gbestp,
thus referring to dependent moves. Based on those movement classes, Goldbarg et al.
(2006a) use local search procedures as velocity operators for independent moves and path-
relinking (Glover et al., 2000) for dependent moves. At each iteration step, one of the three
alternative moves is assigned to a particle and the correspondent velocity operator is
applied in order to modify the particles position. For each particle, only one type of
movement is allowed per iteration. A probability is assigned to each movement alternative.
Initially, independent moves are more likely to occur than dependent moves. During the
algorithm execution, the probabilities are modified, such that the probabilities assigned to
the dependent moves are increased and the probability assigned to independent moves is
decreased. This algorithmic proposal obtained very promising results. It was applied to 35
benchmark TSP instances with 51 to 7397 cities. The results were comparable to the results
of state-of-the-art algorithms for the TSP. A detailed discussion of this approach and the
results it obtained is presented in section 3.
Yuan et al. (2007) and Shi et al. (2007) propose extensions for the approach presented by
Wang et al. (2003). Both algorithms define subtraction in terms of sequences of 2-swap
operations as defined in the path-relinking velocity operator presented by Goldbarg et al.
(2006a), including some uncertainty for the exchange of two elements.
Yuan et al. (2007) propose new concepts for “chaos variables” and memory for particles. The
memory of each particle is an |N|-dimensional vector of chaos variables. The chaos
variables are numbers in the interval (0,1) and are generated with a method proposed by the
authors. Based on the memory list of a particle p, they define the permutation that

Particle Swarm Optimization Algorithm for the Traveling Salesman Problem

81

represents p’s position. They sort the elements of the memory list. The resulting order leads
to a permutation of the elements in the memory list. This permutation is the representation
of p’s position. They apply their algorithm to four benchmark instances with 14 to 51 cities:
burma14, oliver30, att48, eil51. The results obtained for instances oliver30 and att48 are
compared with the results obtained by algorithms based on: Simulated Annealing, Genetic
Algorithm and Ant Colony Systems. Their algorithm outperforms the others regarding
quality of solution of these two instances.
Shi et al. (2007) adds to their algorithm a procedure that aims at eliminating edge crossings
in the TSP tours represented by the particles’ positions. They apply their algorithm to five
benchmark instances: eil51, berlin52, st70, eil76 and pr70.
Zhong et al. (2007) present a PSO approach where a mutation factor (c3) is introduced in the
formula that updates the particle’s position (equation (2)). The new formula is presented in
equation (8). The factor introduces some diversity in the algorithm. The position of a particle
is represented as a set of edges instead of a permutation as in the previous approaches. The
velocity is defined as a list of edges with a probability associated with each element of the
list. During the iterations if pbestp is identical to gbestp then, pbestp is not replaced by the
current position of p. The authors apply their algorithm to six benchmark TSP instances:
burma14, eil51, eil76, berlin52, kroA100 and kroA200. The results are compared with the
results of Pang et al. (2004a) and with an Ant Colony Optimization algorithm. They show
that their algorithm outperforms the others regarding average solutions.

 xp(t) = c3.rand.xp(t-1) + vp(t) (8)

Fang et al. (2007) present a PSO algorithm for the TSP where an annealing scheme is used to
accept the movement of a particle. They apply their algorithm to instances oliver30 and
att48. The results are compared with the results of algorithms based on: Simulated
Annealing, Genetic Algorithms and Ant Colony. In the two instances tested, their algorithm
presents the best average results.
A comparison among some of the previous algorithms and the approach proposed in this
chapter is presented in the next section.

3. New velocity operators for discrete PSO
In PSO algorithms the velocity is the basic mechanism for accomplishing the search in the
space of solutions of optimization problems. In most applications, the particles’ positions
represent the solutions of the investigated problem. The positions are updated by means of
velocity operators that direct the search to promising regions of the space of solutions. There
are two classes of movement a particle is allowed to do: independent and dependent moves.
Independent moves are those in which the particle moves without knowing any other
positions besides its own on the current instant. This type of movement depends only on the
current particle position and on a velocity operator. The other case arises when the particle
needs to know the position of pbest or gbest. This distinction between the movements leads
us to a unary and a binary concept for velocity operators. In the unary operations only one
particle is accepted as input. The particle’s position is transformed according to a unary
velocity operator. The binary operations accept two particles and alter the position of one of
them considering the position of the other. In this context, m-ary operations can be defined
where m particles are accepted and the position of one of them is altered considering the
positions of the remaining m-1 particles, in accordance with an m-ary velocity operator.

 Travelling Salesman Problem

82

In order to modify the position of a given particle, the velocity operators are identified with
heuristic methods. Basically, two approaches are utilized for designing the search strategies:
the improvement methods and the metaheuristic techniques. As defined by Burkard (2002),
the local search algorithms constitute the class of improvement methods. Given a
neighborhood structure defined over a search space, a local search procedure begins with a
solution and search the neighborhood of the current solution for an improvement. The
metaheuristics are general frameworks for heuristics design. A review of the TSP and some
well known methods utilized to solve it are presented by Gutin & Punnen (2002).
In this chapter, any search strategy where a given solution is transformed with no
knowledge of other solutions is a unary velocity operator. Search strategies where a
solution interacts with other m-1 solutions are classified as m-ary velocity operators. For
example, local search and mutation are defined as unary velocity operators, recombination
of two solutions, such as crossover in Genetic Algorithms, and path-relinking are defined as
binary velocity operators and recombination operations among m solutions, such as in
Scatter Search algorithms (Glover et al., 2000), are defined as m-ary velocity operators.
The proposed approach is illustrated with unary and binary velocity operators utilizing
local search and path-relinking strategies, respectively.
Path-relinking is an intensification technique which ideas were originally proposed by
Glover (1963) in the context of methods to obtain improved local decision rules for job shop
scheduling problems (Glover et al., 2000). The strategy consists in generating a path between
two solutions creating new intermediary solutions. This idea is very close to the movement
of a particle from one position to another. Given an origin solution, x1, and a target solution,
x2, a path from x1 to x2 leads to a sequence x1, x1 (1), x1 (2), …, x1 (r) = x2, where x1(i+1) is
obtained from x1(i) by a move that introduces in x1(i+1) an attribute that reduces the distance
between attributes of the origin and target solutions.
The framework of PSO for discrete optimization problems proposed by Goldbarg et al.
(2006a, 2006b) is shown in figure 2. In this proposal equation (3) is replaced by equation (9),
where v1 is a unary velocity operator, v2 and v3 are binary velocity operators. The
coefficients c0, c1 and c2 have the same meaning stated previously and the signal ⊕
represents a composition.

 vp(t) = c0v1(xp(t-1)) ⊕ c1v2(pbestp(t-1),xp(t-1)) ⊕ c2v3(gbestp(t-1),xp(t-1)) (9)

In initial applications of the proposed approach, only one of the three primitive moves is
associated to each particle of the swarm at each iteration step (Goldbarg et al., 2006a, 2006b).
Thus, c0, c1, c2 ∈ {0,1} and c0 + c1 + c2 = 1 in equation (9). The assignment is done randomly.
Initial probabilities are associated with each possible move and, during the execution, these
probabilities are updated. Initially, a high value is set to pr1, the probability of particle p to
follow its own way, a lower value is set to pr2, the probability of particle p goes towards
pbestp and the lowest value is associated with the third option, to go towards gbestp. The
algorithm utilizes the concept of social neighborhood and the gbestp of all particles is
associated with the best current solution, gbest. The initial values set to pr1, pr2 and pr3 are
0.9, 0.05 and 0.05, respectively. As the algorithm runs, pr1 is decreased and the other
probabilities are increased. At the final iterations, the highest value is associated with the
option of going towards gbest and the lowest probability is associated with the first move
option.

Particle Swarm Optimization Algorithm for the Traveling Salesman Problem

83

procedure Discrete_PSO
 /* Define initial probabilities for particles’ moves:*/
 pr1 ← a1 /*to follow its own way*/
 pr2 ← a2 /*to go towards pbest*/
 pr3 ← a3 /*to go towards gbest*/
 /* a1+ a2+ a3=1 */
 Initialize the population of particles
 do
 for each particle p
 valuep ← Evaluate(xp)
 if (value(xp) < value(pbestp)) then
 pbestp ← xp
 if (value(xp) < value(gbest)) then
 gbest ← xp

 end_for
 for each particle p
 velocityp ← define_velocity(pr1, pr2, pr3)
 xp ← update(xp,velocityp)
 end_for
 /* Update probabilities*/
 pr1 = pr1×0.95; pr2 = pr2×1.01; pr3 = 1-(pr1+ pr2)
 while (a stop criterion is not satisfied)

Fig. 2. Pseudo-code of PSO for discrete optimization problems

In the application to the TSP, Goldbarg et al. (2006a) implement two versions of the PSO
algorithm defined by two local search procedures utilized to implement v1. In the first
version a local search procedure based on an inversion neighborhood is used. The Lin-
Kernighan (Lin & Kernighan, 1973) neighborhood is used in the second version. In both
versions v2 and v3 are implemented with the same path-relinking procedure. The particles’
positions are represented as permutations of the |N| cities.
In the inversion neighborhood, given a sequence x1 = (n1, …, ni, ni+1,…, nj-1, nj, …, n|N|) and
two indices i and j, the sequence x2 is x1’s neighbor if x2 = (n1, …, nj, nj-1,…, ni+1, ni, …, n|N|) .
The difference between indices i and j varies from 1 to |N|-1. When v1 is applied to a
particle p, the local search procedure starts inverting sequences of two elements in p’s
position, then sequences of three elements are inverted, and so on.
The Lin-Kernighan neighborhood is a recognized efficient improvement method for the
TSP. The basic LK algorithm has a number of decisions to be made and depending on the
strategies adopted by programmers distinct implementations of this algorithm may result
on different performances. The literature contains reports of many LK implementations with
widely varying behavior (Johnson & McGeoch, 2002). The work of Goldbarg et al. (2006a)
uses the LK implementation of Applegate et al. (1999).
The path-relinking implemented for the binary velocity operators exchanges adjacent
elements of the origin solution. The permutations are considered as circular lists. At first, the
origin solution is rotated until its first element be equal the first element of the target
solution. Then the second element of the target solution is considered. The correspondent
element in the origin solution is shifted left until reaching the second position in the
sequence that represents the solution. The process continues until the origin solution reaches

 Travelling Salesman Problem

82

In order to modify the position of a given particle, the velocity operators are identified with
heuristic methods. Basically, two approaches are utilized for designing the search strategies:
the improvement methods and the metaheuristic techniques. As defined by Burkard (2002),
the local search algorithms constitute the class of improvement methods. Given a
neighborhood structure defined over a search space, a local search procedure begins with a
solution and search the neighborhood of the current solution for an improvement. The
metaheuristics are general frameworks for heuristics design. A review of the TSP and some
well known methods utilized to solve it are presented by Gutin & Punnen (2002).
In this chapter, any search strategy where a given solution is transformed with no
knowledge of other solutions is a unary velocity operator. Search strategies where a
solution interacts with other m-1 solutions are classified as m-ary velocity operators. For
example, local search and mutation are defined as unary velocity operators, recombination
of two solutions, such as crossover in Genetic Algorithms, and path-relinking are defined as
binary velocity operators and recombination operations among m solutions, such as in
Scatter Search algorithms (Glover et al., 2000), are defined as m-ary velocity operators.
The proposed approach is illustrated with unary and binary velocity operators utilizing
local search and path-relinking strategies, respectively.
Path-relinking is an intensification technique which ideas were originally proposed by
Glover (1963) in the context of methods to obtain improved local decision rules for job shop
scheduling problems (Glover et al., 2000). The strategy consists in generating a path between
two solutions creating new intermediary solutions. This idea is very close to the movement
of a particle from one position to another. Given an origin solution, x1, and a target solution,
x2, a path from x1 to x2 leads to a sequence x1, x1 (1), x1 (2), …, x1 (r) = x2, where x1(i+1) is
obtained from x1(i) by a move that introduces in x1(i+1) an attribute that reduces the distance
between attributes of the origin and target solutions.
The framework of PSO for discrete optimization problems proposed by Goldbarg et al.
(2006a, 2006b) is shown in figure 2. In this proposal equation (3) is replaced by equation (9),
where v1 is a unary velocity operator, v2 and v3 are binary velocity operators. The
coefficients c0, c1 and c2 have the same meaning stated previously and the signal ⊕
represents a composition.

 vp(t) = c0v1(xp(t-1)) ⊕ c1v2(pbestp(t-1),xp(t-1)) ⊕ c2v3(gbestp(t-1),xp(t-1)) (9)

In initial applications of the proposed approach, only one of the three primitive moves is
associated to each particle of the swarm at each iteration step (Goldbarg et al., 2006a, 2006b).
Thus, c0, c1, c2 ∈ {0,1} and c0 + c1 + c2 = 1 in equation (9). The assignment is done randomly.
Initial probabilities are associated with each possible move and, during the execution, these
probabilities are updated. Initially, a high value is set to pr1, the probability of particle p to
follow its own way, a lower value is set to pr2, the probability of particle p goes towards
pbestp and the lowest value is associated with the third option, to go towards gbestp. The
algorithm utilizes the concept of social neighborhood and the gbestp of all particles is
associated with the best current solution, gbest. The initial values set to pr1, pr2 and pr3 are
0.9, 0.05 and 0.05, respectively. As the algorithm runs, pr1 is decreased and the other
probabilities are increased. At the final iterations, the highest value is associated with the
option of going towards gbest and the lowest probability is associated with the first move
option.

Particle Swarm Optimization Algorithm for the Traveling Salesman Problem

83

procedure Discrete_PSO
 /* Define initial probabilities for particles’ moves:*/
 pr1 ← a1 /*to follow its own way*/
 pr2 ← a2 /*to go towards pbest*/
 pr3 ← a3 /*to go towards gbest*/
 /* a1+ a2+ a3=1 */
 Initialize the population of particles
 do
 for each particle p
 valuep ← Evaluate(xp)
 if (value(xp) < value(pbestp)) then
 pbestp ← xp
 if (value(xp) < value(gbest)) then
 gbest ← xp

 end_for
 for each particle p
 velocityp ← define_velocity(pr1, pr2, pr3)
 xp ← update(xp,velocityp)
 end_for
 /* Update probabilities*/
 pr1 = pr1×0.95; pr2 = pr2×1.01; pr3 = 1-(pr1+ pr2)
 while (a stop criterion is not satisfied)

Fig. 2. Pseudo-code of PSO for discrete optimization problems

In the application to the TSP, Goldbarg et al. (2006a) implement two versions of the PSO
algorithm defined by two local search procedures utilized to implement v1. In the first
version a local search procedure based on an inversion neighborhood is used. The Lin-
Kernighan (Lin & Kernighan, 1973) neighborhood is used in the second version. In both
versions v2 and v3 are implemented with the same path-relinking procedure. The particles’
positions are represented as permutations of the |N| cities.
In the inversion neighborhood, given a sequence x1 = (n1, …, ni, ni+1,…, nj-1, nj, …, n|N|) and
two indices i and j, the sequence x2 is x1’s neighbor if x2 = (n1, …, nj, nj-1,…, ni+1, ni, …, n|N|) .
The difference between indices i and j varies from 1 to |N|-1. When v1 is applied to a
particle p, the local search procedure starts inverting sequences of two elements in p’s
position, then sequences of three elements are inverted, and so on.
The Lin-Kernighan neighborhood is a recognized efficient improvement method for the
TSP. The basic LK algorithm has a number of decisions to be made and depending on the
strategies adopted by programmers distinct implementations of this algorithm may result
on different performances. The literature contains reports of many LK implementations with
widely varying behavior (Johnson & McGeoch, 2002). The work of Goldbarg et al. (2006a)
uses the LK implementation of Applegate et al. (1999).
The path-relinking implemented for the binary velocity operators exchanges adjacent
elements of the origin solution. The permutations are considered as circular lists. At first, the
origin solution is rotated until its first element be equal the first element of the target
solution. Then the second element of the target solution is considered. The correspondent
element in the origin solution is shifted left until reaching the second position in the
sequence that represents the solution. The process continues until the origin solution reaches

 Travelling Salesman Problem

84

the target solution. This procedure leads to time complexity O(n2). The path-relinking is
applied simultaneously from the origin to the target solution and vice-versa (back and
forward). Swap-left and swap-right operations are used. The permutation sequence
representing the best solution found replaces the position of the considered particle. An
example of the path-relinking procedure is shown in figure 3.

54321 54321 24153 24153

Origin Target
21543 21543

Rotation

21453 21453

24153 24153

21543 21543

Fig. 3. Path-relinking

In the following, a discussion about the results obtained by PSO proposals for the TSP is
presented. PSO-INV and PSO-LK denote the two algorithmic versions of the proposed
approach with the inversion and the LK neighborhoods, respectively. These algorithms run
on a Pentium IV with 3.0 GHz, 1 Gb using Linux. The maximum processing times are 60
seconds for instances with |N| < 1000 and 300 seconds for instances with
1000 ≤ |N| < 5000. Other three stop criteria are used: to find the optimal solution, to reach a
maximum number of iterations (200) or to reach a maximum number of iterations with no
improvement of the best current solution (20). The population has 20 particles. Once most
papers report results for instance eil51, berlin52 and eil76, table 1 shows a comparison
between the proposed approach and other PSO algorithms concerning these instances. The
compared algorithms are listed in the first column of table 1. The traced lines represent
results not reported in the correspondent work. Results in table 1 are given in terms of the
percent difference from the optimal solution (gap), calculated with equation (10), where av
and optimal denote, respectively, the average solution found by the investigated algorithm
and the best solution known for the correspondent instance.

 100av optimalgap
optimal
−

= × (10)

Only Pang et al. (2004) and Zhong et al. (2007) report average processing times. Pang et al.
(2004) use a Pentium IV with 2 GHz, 256 Mb running Windows 2000. Zhong et al. (2007) use
a Celeron with 2.26 GHz, 256 Mb, running Windows XP. Running time comparisons are, in
general, difficult to make, even when the codes are developed in the same machines and the
same compiler options are used. A re-implementation of those algorithms could introduce
errors and the results obtained with the new implementations could produce results that
differ largely from the published ones. The proposed algorithm was executed in a platform
superior than the other algorithms of table 1. Nevertheless, even if the processing times of
the other algorithms were divided by a factor of 3 (an estimate that favors those algorithms),
table 1 shows that the two versions of the proposed algorithm exhibit processing times
significantly lower than the others.

Particle Swarm Optimization Algorithm for the Traveling Salesman Problem

85

Instance Algorithm Min Average T(s)
Pang et al. (2004a) --- 3.498 30

Shi et al. (2007) 0.235 2.575 ---
Zhang et al. (2007) --- 2.529 ---
Zhong et al. (2007) 0.235 1.793 4.06

PSO-INV 0.704 2.582 0.16

eil51

PSO-LK 0 0 < 0.01
Pang et al. (2004a) --- 2.151 120

Shi et al. (2007) 0 3.846 ---
Zhong et al. (2007) 0 0.753 4.12

PSO-INV 0 2.592 0.17
berlin52

PSO-LK 0 0 < 0.01
Pang et al. (2004a) --- 4.222 60

Shi et al. (2007) 1.487 4.167 ---
Zhong et al. (2007) 0.372 2.550 11.59

PSO-INV 2.416 4.656 0.40
eil76

PSO-LK 0 0 0.01

Table 1. Results of distinct PSO approaches

Although the inversion neighborhood is not specialized for the TSP, table 1 shows that PSO-
INV exhibits better average results than the algorithms of Pang et al. (2004) and Shi et al.
(2007) for instances eil51 and berlin52, respectively. Concerning the group of tested
instances PSO-INV presents results that are comparable with the results presented by Pang
et al. (2004a), Zhang et al. (2007) and Shi et al. (2007). Except for the PSO-LK, the algorithm
presented by Zhong et al. (2007) outperforms the others regarding quality of solution. A
comparison between the results obtained for instances with more than 50 cities by the PSO-
LK and the algorithm presented by Zhong et al. (2007) is shown in table 2. The proposed
algorithm outperforms the algorithm of Zhong et al. (2007) regarding quality of solution and
processing times in the five tested instances.

Zhong et al. (2007) PSO-LK Instance
Min Average T(s) Min Average T(s)

eil51 0.002 1.793 4.06 0 0 0
berlin52 0 0.753 4.12 0 0 0

eil76 0.004 2.550 11.59 0 0 0.01
kroA100 0.001 1.914 23.95 0 0 0.02
kroA200 0.007 3.427 198.55 0 0 0.08

Table 2. Comparison between PSO-LK and the algorithm of Zhong et al (2007)

PSO-INV performs poorly when compared with PSO-LK. Table 3 presents a comparison, in
terms of percent deviation from the optimal solution, between the best and average results
found by these two algorithms for 8 instances with 195 to 2103 cities. Table 3 shows that the
PSO-LK outperforms PSO-INV with a significant difference among the results reported.
This is not a surprise, since the local search procedure embedded in the former version is
more powerful than the local search procedure of the latter.
Among the PSO approaches for the TSP, the hybrid algorithm presented by Machado &
Lopes (2005) presents results for the largest instances. A comparison between the quality of

 Travelling Salesman Problem

84

the target solution. This procedure leads to time complexity O(n2). The path-relinking is
applied simultaneously from the origin to the target solution and vice-versa (back and
forward). Swap-left and swap-right operations are used. The permutation sequence
representing the best solution found replaces the position of the considered particle. An
example of the path-relinking procedure is shown in figure 3.

54321 54321 24153 24153

Origin Target
21543 21543

Rotation

21453 21453

24153 24153

21543 21543

Fig. 3. Path-relinking

In the following, a discussion about the results obtained by PSO proposals for the TSP is
presented. PSO-INV and PSO-LK denote the two algorithmic versions of the proposed
approach with the inversion and the LK neighborhoods, respectively. These algorithms run
on a Pentium IV with 3.0 GHz, 1 Gb using Linux. The maximum processing times are 60
seconds for instances with |N| < 1000 and 300 seconds for instances with
1000 ≤ |N| < 5000. Other three stop criteria are used: to find the optimal solution, to reach a
maximum number of iterations (200) or to reach a maximum number of iterations with no
improvement of the best current solution (20). The population has 20 particles. Once most
papers report results for instance eil51, berlin52 and eil76, table 1 shows a comparison
between the proposed approach and other PSO algorithms concerning these instances. The
compared algorithms are listed in the first column of table 1. The traced lines represent
results not reported in the correspondent work. Results in table 1 are given in terms of the
percent difference from the optimal solution (gap), calculated with equation (10), where av
and optimal denote, respectively, the average solution found by the investigated algorithm
and the best solution known for the correspondent instance.

 100av optimalgap
optimal
−

= × (10)

Only Pang et al. (2004) and Zhong et al. (2007) report average processing times. Pang et al.
(2004) use a Pentium IV with 2 GHz, 256 Mb running Windows 2000. Zhong et al. (2007) use
a Celeron with 2.26 GHz, 256 Mb, running Windows XP. Running time comparisons are, in
general, difficult to make, even when the codes are developed in the same machines and the
same compiler options are used. A re-implementation of those algorithms could introduce
errors and the results obtained with the new implementations could produce results that
differ largely from the published ones. The proposed algorithm was executed in a platform
superior than the other algorithms of table 1. Nevertheless, even if the processing times of
the other algorithms were divided by a factor of 3 (an estimate that favors those algorithms),
table 1 shows that the two versions of the proposed algorithm exhibit processing times
significantly lower than the others.

Particle Swarm Optimization Algorithm for the Traveling Salesman Problem

85

Instance Algorithm Min Average T(s)
Pang et al. (2004a) --- 3.498 30

Shi et al. (2007) 0.235 2.575 ---
Zhang et al. (2007) --- 2.529 ---
Zhong et al. (2007) 0.235 1.793 4.06

PSO-INV 0.704 2.582 0.16

eil51

PSO-LK 0 0 < 0.01
Pang et al. (2004a) --- 2.151 120

Shi et al. (2007) 0 3.846 ---
Zhong et al. (2007) 0 0.753 4.12

PSO-INV 0 2.592 0.17
berlin52

PSO-LK 0 0 < 0.01
Pang et al. (2004a) --- 4.222 60

Shi et al. (2007) 1.487 4.167 ---
Zhong et al. (2007) 0.372 2.550 11.59

PSO-INV 2.416 4.656 0.40
eil76

PSO-LK 0 0 0.01

Table 1. Results of distinct PSO approaches

Although the inversion neighborhood is not specialized for the TSP, table 1 shows that PSO-
INV exhibits better average results than the algorithms of Pang et al. (2004) and Shi et al.
(2007) for instances eil51 and berlin52, respectively. Concerning the group of tested
instances PSO-INV presents results that are comparable with the results presented by Pang
et al. (2004a), Zhang et al. (2007) and Shi et al. (2007). Except for the PSO-LK, the algorithm
presented by Zhong et al. (2007) outperforms the others regarding quality of solution. A
comparison between the results obtained for instances with more than 50 cities by the PSO-
LK and the algorithm presented by Zhong et al. (2007) is shown in table 2. The proposed
algorithm outperforms the algorithm of Zhong et al. (2007) regarding quality of solution and
processing times in the five tested instances.

Zhong et al. (2007) PSO-LK Instance
Min Average T(s) Min Average T(s)

eil51 0.002 1.793 4.06 0 0 0
berlin52 0 0.753 4.12 0 0 0

eil76 0.004 2.550 11.59 0 0 0.01
kroA100 0.001 1.914 23.95 0 0 0.02
kroA200 0.007 3.427 198.55 0 0 0.08

Table 2. Comparison between PSO-LK and the algorithm of Zhong et al (2007)

PSO-INV performs poorly when compared with PSO-LK. Table 3 presents a comparison, in
terms of percent deviation from the optimal solution, between the best and average results
found by these two algorithms for 8 instances with 195 to 2103 cities. Table 3 shows that the
PSO-LK outperforms PSO-INV with a significant difference among the results reported.
This is not a surprise, since the local search procedure embedded in the former version is
more powerful than the local search procedure of the latter.
Among the PSO approaches for the TSP, the hybrid algorithm presented by Machado &
Lopes (2005) presents results for the largest instances. A comparison between the quality of

 Travelling Salesman Problem

86

solutions obtained by this algorithm (M&L) and the PSO-LK is shown in table 4, where is
shown that the proposed approach outperforms the algorithm of Machado & Lopes (2005)
in all tested instances. The average differences from the optimal solution obtained by
Machado & Lopes (2005) and the PSO-LK regarding the tested instances are, respectively,
3.832 and 0.005.

PSO-INV PSO-LK Instances Min Av Min Av
rat195 5.8114 8.7581 0 0
pr299 5.8476 7.9952 0 0
pr439 4.4200 8.0111 0 0
d657 6.9656 9.6157 0 0

pr1002 9.8574 11.1900 0 0
d1291 13.2104 15.5505 0 0.0113
rl1304 10.4432 11.9942 0 0
d2103 16.7383 18.4180 0.0087 0.0267

Table 3. Quality of solutions obtained by the two versions of the proposed algorithm

Instance M & L PSO-LK
rat195 0.983 0
pr299 0.590 0
pr439 2.956 0
d657 3.849 0

pr1002 6.699 0
d1291 4.581 0.0113
rl1304 3.245 0
d2103 7.749 0.0267

Table 4. Quality of solutions obtained by Machado & Lopes (2005) and PSO-LK

Although the LK is a powerful neighborhood for the TSP, the good performance exhibited
by the PSO-LK is not only due to the use of this neighborhood. The differences between the
results obtained by the LK procedure and the PSO-LK algorithm are shown in table 4. This
experiment aimed at finding out if the proposed PSO approach was able to improve the LK
results. Table 5 shows the results for 30 symmetric instances. The cells with dark
background show the results where an improvement with the PSO approach is obtained.
Twenty independent runs of each algorithm were performed. Table 5 shows that all average
solutions are improved. A statistical analysis shows that, in average, improvements of 88%
and 89% were achieved on the best and average results, respectively. The Mann-Whitney U-
test was applied to verify if the average solutions are statistically different. The Mann-
Withney U-test, also called Mann-Whitney-Wilcoxon test or Wilcoxon rank-sum test, is a
non-parametric test used to verify the null hypothesis that two samples come from the same
population (Conover, 1971). The p-values obtained are shown in the last column of table 5.
Let avLK and avPSO-LK denote the average solution obtained by the LK and the PSO-LK
algorithms, respectively, then the p-values show that, with a level of significance of 0.05, the
null hypothesis that verifies if avLK = avPSO-LK is rejected for all instances.

Particle Swarm Optimization Algorithm for the Traveling Salesman Problem

87

LK PSO-LK Instance Min Average Min Average p-value

pr439 0.0000 0.0463 0.0000 0.0000 0.004233
pcb442 0.0000 0.1119 0.0000 0.0000 0.018562
d493 0.0029 0.1216 0.0000 0.0000 0.000000

rat575 0.0295 0.1277 0.0000 0.0052 0.000000
p654 0.0000 0.0078 0.0000 0.0000 0.001932
d657 0.0020 0.1500 0.0000 0.0000 0.000000

rat783 0.0000 0.0704 0.0000 0.0000 0.000000
dsj1000 0.0731 0.2973 0.0027 0.0041 0.000000
pr1002 0.0000 0.1318 0.0000 0.0000 0.000000
u1060 0.0085 0.1786 0.0000 0.0049 0.000000

vm1084 0.0017 0.0669 0.0000 0.0052 0.000000
pcb1173 0.0000 0.1814 0.0000 0.0003 0.000000
d1291 0.0039 0.4333 0.0000 0.0113 0.000000
rl1304 0.0202 0.3984 0.0000 0.0000 0.000000
rl1323 0.0463 0.2300 0.0000 0.0079 0.000001

nrw1379 0.0547 0.1354 0.0018 0.0160 0.000000
fl1400 0.0000 0.1215 0.0000 0.0000 0.000021
fl1577 0.7371 2.2974 0.0000 0.0420 0.000000

vm1748 0.0903 0.1311 0.0000 0.0009 0.000000
u1817 0.1976 0.5938 0.0454 0.1408 0.000000
rl1889 0.1836 0.3844 0.0000 0.0165 0.000000
d2103 0.0597 0.3085 0.0087 0.0267 0.000000
u2152 0.2381 0.5548 0.0062 0.1135 0.000000
pr2392 0.0775 0.3904 0.0000 0.0112 0.000000

pcb3038 0.1598 0.2568 0.0123 0.0686 0.000000
fl3795 0.5665 1.0920 0.0000 0.0403 0.000000

fnl4461 0.0882 0.1717 0.0794 0.1155 0.000000
rl5915 0.3528 0.5343 0.0755 0.1554 0.000000
rl5934 0.2221 0.4761 0.0309 0.1545 0.000000

pla7397 0.1278 0.2912 0.0075 0.0253 0.000000

Table 5. Comparison between LK and PSO-LK

4. Composing velocity operators
The composition of velocities can be thought as an arrangement of velocity operators. This
arrangement defines the sequence that determines the order of application of each velocity
operator to a given particle. For example, let v1, v2, v3 be the three velocity operators defined
in the last section, A1 and A2 be two sequences of application of these velocity operators,
A1=(v1, v2, v3), A2=(v3, v1, v2). Regardless the coefficients of equation (9), two examples of
algorithms for the composition of the velocities are presented in figures 4(a) and 4(b). The
meaning of those coefficients is explained further. In the algorithm shown in figure 4(a), the
composition of velocities is implicit, once the results of the application of the velocity
operators v1 and v2 are inputs for the next operation. A possible implementation for the

 Travelling Salesman Problem

86

solutions obtained by this algorithm (M&L) and the PSO-LK is shown in table 4, where is
shown that the proposed approach outperforms the algorithm of Machado & Lopes (2005)
in all tested instances. The average differences from the optimal solution obtained by
Machado & Lopes (2005) and the PSO-LK regarding the tested instances are, respectively,
3.832 and 0.005.

PSO-INV PSO-LK Instances Min Av Min Av
rat195 5.8114 8.7581 0 0
pr299 5.8476 7.9952 0 0
pr439 4.4200 8.0111 0 0
d657 6.9656 9.6157 0 0

pr1002 9.8574 11.1900 0 0
d1291 13.2104 15.5505 0 0.0113
rl1304 10.4432 11.9942 0 0
d2103 16.7383 18.4180 0.0087 0.0267

Table 3. Quality of solutions obtained by the two versions of the proposed algorithm

Instance M & L PSO-LK
rat195 0.983 0
pr299 0.590 0
pr439 2.956 0
d657 3.849 0

pr1002 6.699 0
d1291 4.581 0.0113
rl1304 3.245 0
d2103 7.749 0.0267

Table 4. Quality of solutions obtained by Machado & Lopes (2005) and PSO-LK

Although the LK is a powerful neighborhood for the TSP, the good performance exhibited
by the PSO-LK is not only due to the use of this neighborhood. The differences between the
results obtained by the LK procedure and the PSO-LK algorithm are shown in table 4. This
experiment aimed at finding out if the proposed PSO approach was able to improve the LK
results. Table 5 shows the results for 30 symmetric instances. The cells with dark
background show the results where an improvement with the PSO approach is obtained.
Twenty independent runs of each algorithm were performed. Table 5 shows that all average
solutions are improved. A statistical analysis shows that, in average, improvements of 88%
and 89% were achieved on the best and average results, respectively. The Mann-Whitney U-
test was applied to verify if the average solutions are statistically different. The Mann-
Withney U-test, also called Mann-Whitney-Wilcoxon test or Wilcoxon rank-sum test, is a
non-parametric test used to verify the null hypothesis that two samples come from the same
population (Conover, 1971). The p-values obtained are shown in the last column of table 5.
Let avLK and avPSO-LK denote the average solution obtained by the LK and the PSO-LK
algorithms, respectively, then the p-values show that, with a level of significance of 0.05, the
null hypothesis that verifies if avLK = avPSO-LK is rejected for all instances.

Particle Swarm Optimization Algorithm for the Traveling Salesman Problem

87

LK PSO-LK Instance Min Average Min Average p-value

pr439 0.0000 0.0463 0.0000 0.0000 0.004233
pcb442 0.0000 0.1119 0.0000 0.0000 0.018562
d493 0.0029 0.1216 0.0000 0.0000 0.000000

rat575 0.0295 0.1277 0.0000 0.0052 0.000000
p654 0.0000 0.0078 0.0000 0.0000 0.001932
d657 0.0020 0.1500 0.0000 0.0000 0.000000

rat783 0.0000 0.0704 0.0000 0.0000 0.000000
dsj1000 0.0731 0.2973 0.0027 0.0041 0.000000
pr1002 0.0000 0.1318 0.0000 0.0000 0.000000
u1060 0.0085 0.1786 0.0000 0.0049 0.000000

vm1084 0.0017 0.0669 0.0000 0.0052 0.000000
pcb1173 0.0000 0.1814 0.0000 0.0003 0.000000
d1291 0.0039 0.4333 0.0000 0.0113 0.000000
rl1304 0.0202 0.3984 0.0000 0.0000 0.000000
rl1323 0.0463 0.2300 0.0000 0.0079 0.000001

nrw1379 0.0547 0.1354 0.0018 0.0160 0.000000
fl1400 0.0000 0.1215 0.0000 0.0000 0.000021
fl1577 0.7371 2.2974 0.0000 0.0420 0.000000

vm1748 0.0903 0.1311 0.0000 0.0009 0.000000
u1817 0.1976 0.5938 0.0454 0.1408 0.000000
rl1889 0.1836 0.3844 0.0000 0.0165 0.000000
d2103 0.0597 0.3085 0.0087 0.0267 0.000000
u2152 0.2381 0.5548 0.0062 0.1135 0.000000
pr2392 0.0775 0.3904 0.0000 0.0112 0.000000

pcb3038 0.1598 0.2568 0.0123 0.0686 0.000000
fl3795 0.5665 1.0920 0.0000 0.0403 0.000000

fnl4461 0.0882 0.1717 0.0794 0.1155 0.000000
rl5915 0.3528 0.5343 0.0755 0.1554 0.000000
rl5934 0.2221 0.4761 0.0309 0.1545 0.000000

pla7397 0.1278 0.2912 0.0075 0.0253 0.000000

Table 5. Comparison between LK and PSO-LK

4. Composing velocity operators
The composition of velocities can be thought as an arrangement of velocity operators. This
arrangement defines the sequence that determines the order of application of each velocity
operator to a given particle. For example, let v1, v2, v3 be the three velocity operators defined
in the last section, A1 and A2 be two sequences of application of these velocity operators,
A1=(v1, v2, v3), A2=(v3, v1, v2). Regardless the coefficients of equation (9), two examples of
algorithms for the composition of the velocities are presented in figures 4(a) and 4(b). The
meaning of those coefficients is explained further. In the algorithm shown in figure 4(a), the
composition of velocities is implicit, once the results of the application of the velocity
operators v1 and v2 are inputs for the next operation. A possible implementation for the

 Travelling Salesman Problem

88

composition of velocities with sequence A2 is illustrated in figure 4(b), where a method to
compose the results of each application of the velocity operators has to be defined.

procedure update_position(xp, pbestp, gbestp)
 y1 ← v1(xp)
 y2 ← v2(y1, pbestp)
 y3 ← v3(y2, gbestp)
 return(y3)

 procedure update_position(xp, pbestp, gbestp)
 y1 ← v3(xp, gbestp)
 y2 ← v1(xp)
 y3 ← v2(xp, pbestp)
 return(y1 ⊕ y2 ⊕ y3)

(a) (b)
Fig. 4. Composition of velocities to update xp with sequences (a) A1 and (b) A2

Besides the six ways to combine velocities v1, v2 and v3, there is, still, the possibility of
repeating velocity operators in the same sequence. For example, the sequence
A = (v1,v2,v3,v1) can be implemented with the algorithm of figure 4(a), replacing the
statement return(y3) by the statements y4←v1(y3) and return(y4).
In order to accomplish the task of composing velocities, stopping conditions for the
application of each velocity operator can also be defined. Let A = (a1, a2, …, am) be a sequence
where each ai, 1 ≤ i ≤ m, is a pair (vj, sk), vj ∈ V, the set of velocity operators, and sk is vj’s
stopping condition. Thus, given a sequence A with q elements, the first velocity operator is
applied to particle p until reaching its corresponding stopping condition, then the process
continues with the second velocity operator until the q-th element of sequence A.
In this work two velocity operators are considered: local search (v1) and path-relinking
(v2=v3). Some stopping conditions that can be adopted for v1 are: to execute a maximum
number of local search iterations, to find a solution that improves the input solution by a
given amount, to find a local optimum (corresponds to a standard local search run). Some
stopping conditions for v2 are: to reach the target solution (corresponds to the standard
path-relinking), to find a solution better than the origin and target solutions, to find a
solution better than the worst among the two input solutions, to stop after a maximum
number of iterations, or, given the distance d between the two input solutions, to stop after
doing ⎣d/z⎦ iterations, where z is an integer z ≤ d.
In this context, the coefficients of equation (9) can be thought as representing stopping
conditions. For example, let c0, c1, c2 be three numbers in the interval [0,1] and itmax1, itmax2,
itmax3 be the maximum number of iterations for the operations with velocities v1, v2 and v3,
respectively. Then ci×vi+1(⋅), i = 0,1,2, represents the application of velocity operator vi+1 with
a maximum of ci×itmaxi+1 iterations.
Consider the algorithm of figure 2, with the following modifications:
• pr1, pr2, pr3 are the probabilities associated with compositions represented by sequences

A1, A2 and A3, respectively.
• The statements
 velocityp ← define_velocity(pr1, pr2, pr3)
 xp ← update(xp,velocityp)
 are replaced by
 compp ← define_composition(pr1, pr2, pr3)
 xp ← update(xp,compp)
In order to test the potential of composing velocities, two variants of the basic algorithm
shown in figure 2 are investigated. The sequences A1, A2 and A3 of the first algorithmic
version are: A1 = ((v1,s1)), A2 = ((v2,s2), (v1,s1)), A3 = ((v3,s2), (v1,s1)). The stopping conditions s1

Particle Swarm Optimization Algorithm for the Traveling Salesman Problem

89

and s2 are, respectively, to find a local optimum and to find a solution better than the worst
among the two input solutions. Figure 5(a) shows an illustrative scheme of sequence A2.
Once the path-relinking is considered for v2 and v3, the scheme of figure 5(a) is also valid if
v2 is replaced by v3. In the second variant of the basic algorithm the sequences are:
A1 = ((v1,s1)), A2 = ((v2,s2), (v1,s1), (v2,s3)), A3 = ((v3,s2), (v1,s1),(v3,s3)). The stopping condition s3
is to reach the target solution. The illustrative scheme of the sequence A3 (also valid for A2) is
shown in figure 5(b).

Origin Target

(v2,s2)

(v1,s1)

 Origin Target

(v3,s2)

(v1,s1)
(v3,s3)

(a) (b)

Fig. 5. Sequences (a) A2 = ((v2,s2), (v1,s1)) and (b) A3 = ((v3,s2), (v1,s1),(v3,s3)).
Tables 6 and 7 show a comparison between the results obtained by the basic PSO-LK and
the first and second algorithmic versions, respectively. The elements of columns Min and Av
are the percent deviation from the best known solution of the best and average solutions
found by the correspondent algorithm in 20 independent runs. The average processing
times in seconds are presented in column T(s). The cells with the best results have a dark
background. The p-values shown in the last column of tables 6 and 7 are the result of the
hypothesis test with the average values presented for each instance.
In preliminary experiments the values 10, 15, 20 and 25 were tested for the size of the swarm
and the values 20, 50 and 100 were tested for the maximum number of iterations. The best
trade-off between quality of solution and processing time was reached with 20 particles and
maximum of 20 iterations. The tests were done in a Pentium IV, 3.0 GHz, 1 Gb of RAM.
Table 6 shows that both algorithmic versions find the best average solutions of 10 instances,
the PSO-LK finds 1 best solution and the PSO-LK-C1 finds 6 best solutions. Observing the p-
values of the 20 instances where different average solutions were found, the table shows
that, with a level of significance 0.05, significant differences exist only for instances nrw1379
and pr2392. Thus, both versions present similar performance regarding quality of solution
for the majority of the tested instances. Nevertheless, the processing times of the algorithmic
version with the composition of velocities are significantly lower than those presented by
the basic algorithmic version at 27 instances. The algorithm with the composition of
velocities spends, in average, half the processing time spent by the basic algorithm. Thus
with half of the processing effort, the algorithm is able to find solutions as good as the basic
PSO-LK.
Similar results are observed in table 7. The PSO-LK and the PSO-LK-C2 find the best
average solutions of 10 and 11 instances, respectively. Regarding the best solution found by
each algorithm, table 7 shows that the PSO-LK-C2 finds 6 best results and the PSO-LK does
not find any best result. The p-values of the 21 instances for which the algorithms found
different average solutions show that a significant difference exists only for instance pr2392.
In average, the processing times of PSO-LK-C2 are 1.27 times better than the ones presented
by the PSO-LK.

 Travelling Salesman Problem

88

composition of velocities with sequence A2 is illustrated in figure 4(b), where a method to
compose the results of each application of the velocity operators has to be defined.

procedure update_position(xp, pbestp, gbestp)
 y1 ← v1(xp)
 y2 ← v2(y1, pbestp)
 y3 ← v3(y2, gbestp)
 return(y3)

 procedure update_position(xp, pbestp, gbestp)
 y1 ← v3(xp, gbestp)
 y2 ← v1(xp)
 y3 ← v2(xp, pbestp)
 return(y1 ⊕ y2 ⊕ y3)

(a) (b)
Fig. 4. Composition of velocities to update xp with sequences (a) A1 and (b) A2

Besides the six ways to combine velocities v1, v2 and v3, there is, still, the possibility of
repeating velocity operators in the same sequence. For example, the sequence
A = (v1,v2,v3,v1) can be implemented with the algorithm of figure 4(a), replacing the
statement return(y3) by the statements y4←v1(y3) and return(y4).
In order to accomplish the task of composing velocities, stopping conditions for the
application of each velocity operator can also be defined. Let A = (a1, a2, …, am) be a sequence
where each ai, 1 ≤ i ≤ m, is a pair (vj, sk), vj ∈ V, the set of velocity operators, and sk is vj’s
stopping condition. Thus, given a sequence A with q elements, the first velocity operator is
applied to particle p until reaching its corresponding stopping condition, then the process
continues with the second velocity operator until the q-th element of sequence A.
In this work two velocity operators are considered: local search (v1) and path-relinking
(v2=v3). Some stopping conditions that can be adopted for v1 are: to execute a maximum
number of local search iterations, to find a solution that improves the input solution by a
given amount, to find a local optimum (corresponds to a standard local search run). Some
stopping conditions for v2 are: to reach the target solution (corresponds to the standard
path-relinking), to find a solution better than the origin and target solutions, to find a
solution better than the worst among the two input solutions, to stop after a maximum
number of iterations, or, given the distance d between the two input solutions, to stop after
doing ⎣d/z⎦ iterations, where z is an integer z ≤ d.
In this context, the coefficients of equation (9) can be thought as representing stopping
conditions. For example, let c0, c1, c2 be three numbers in the interval [0,1] and itmax1, itmax2,
itmax3 be the maximum number of iterations for the operations with velocities v1, v2 and v3,
respectively. Then ci×vi+1(⋅), i = 0,1,2, represents the application of velocity operator vi+1 with
a maximum of ci×itmaxi+1 iterations.
Consider the algorithm of figure 2, with the following modifications:
• pr1, pr2, pr3 are the probabilities associated with compositions represented by sequences

A1, A2 and A3, respectively.
• The statements
 velocityp ← define_velocity(pr1, pr2, pr3)
 xp ← update(xp,velocityp)
 are replaced by
 compp ← define_composition(pr1, pr2, pr3)
 xp ← update(xp,compp)
In order to test the potential of composing velocities, two variants of the basic algorithm
shown in figure 2 are investigated. The sequences A1, A2 and A3 of the first algorithmic
version are: A1 = ((v1,s1)), A2 = ((v2,s2), (v1,s1)), A3 = ((v3,s2), (v1,s1)). The stopping conditions s1

Particle Swarm Optimization Algorithm for the Traveling Salesman Problem

89

and s2 are, respectively, to find a local optimum and to find a solution better than the worst
among the two input solutions. Figure 5(a) shows an illustrative scheme of sequence A2.
Once the path-relinking is considered for v2 and v3, the scheme of figure 5(a) is also valid if
v2 is replaced by v3. In the second variant of the basic algorithm the sequences are:
A1 = ((v1,s1)), A2 = ((v2,s2), (v1,s1), (v2,s3)), A3 = ((v3,s2), (v1,s1),(v3,s3)). The stopping condition s3
is to reach the target solution. The illustrative scheme of the sequence A3 (also valid for A2) is
shown in figure 5(b).

Origin Target

(v2,s2)

(v1,s1)

 Origin Target

(v3,s2)

(v1,s1)
(v3,s3)

(a) (b)

Fig. 5. Sequences (a) A2 = ((v2,s2), (v1,s1)) and (b) A3 = ((v3,s2), (v1,s1),(v3,s3)).
Tables 6 and 7 show a comparison between the results obtained by the basic PSO-LK and
the first and second algorithmic versions, respectively. The elements of columns Min and Av
are the percent deviation from the best known solution of the best and average solutions
found by the correspondent algorithm in 20 independent runs. The average processing
times in seconds are presented in column T(s). The cells with the best results have a dark
background. The p-values shown in the last column of tables 6 and 7 are the result of the
hypothesis test with the average values presented for each instance.
In preliminary experiments the values 10, 15, 20 and 25 were tested for the size of the swarm
and the values 20, 50 and 100 were tested for the maximum number of iterations. The best
trade-off between quality of solution and processing time was reached with 20 particles and
maximum of 20 iterations. The tests were done in a Pentium IV, 3.0 GHz, 1 Gb of RAM.
Table 6 shows that both algorithmic versions find the best average solutions of 10 instances,
the PSO-LK finds 1 best solution and the PSO-LK-C1 finds 6 best solutions. Observing the p-
values of the 20 instances where different average solutions were found, the table shows
that, with a level of significance 0.05, significant differences exist only for instances nrw1379
and pr2392. Thus, both versions present similar performance regarding quality of solution
for the majority of the tested instances. Nevertheless, the processing times of the algorithmic
version with the composition of velocities are significantly lower than those presented by
the basic algorithmic version at 27 instances. The algorithm with the composition of
velocities spends, in average, half the processing time spent by the basic algorithm. Thus
with half of the processing effort, the algorithm is able to find solutions as good as the basic
PSO-LK.
Similar results are observed in table 7. The PSO-LK and the PSO-LK-C2 find the best
average solutions of 10 and 11 instances, respectively. Regarding the best solution found by
each algorithm, table 7 shows that the PSO-LK-C2 finds 6 best results and the PSO-LK does
not find any best result. The p-values of the 21 instances for which the algorithms found
different average solutions show that a significant difference exists only for instance pr2392.
In average, the processing times of PSO-LK-C2 are 1.27 times better than the ones presented
by the PSO-LK.

 Travelling Salesman Problem

90

PSO-LK PSO-LK-C1
Instances

Min Av T(s) Min Av T(s)
p-level

pr439 0 0 0.78 0 0 0.38 -----

pcb442 0 0 0.80 0 0 0.39 -----

d493 0 0 19.38 0 0 13.52 -----

rat575 0 0 6.47 0 0.0007 3.83 0.317318

p654 0 0 1.90 0 0 0.87 -----

d657 0 0 12.42 0 0 8.35 -----

rat783 0 0 5.25 0 0 1.92 -----

dsj1000 0.0027 0.0031 178.48 0.0027 0.0027 82.27 0.077143

pr1002 0 0 9.50 0 0 3.32 -----

u1060 0 0 38.18 0 0.0008 22.87 0.151953

vm1084 0 0.0010 34.74 0 0.0016 25.05 0.958539

pcb1173 0 0.0001 48.18 0 0.0003 32.65 0.156717

d1291 0 0 29.86 0 0 8.81 -----

rl1304 0 0 21.62 0 0 5.57 -----

rl1323 0 0.0092 225.32 0 0.0030 66.60 0.068481

nrw1379 0.0017 0.0085 417.80 0 0.0058 181.75 0.041205

fl1400 0 0 15.42 0 0 5.68 -----

fl1577 0 0.0135 461.99 0 0.0200 248.85 0.237805

vm1748 0 0.0018 854.17 0 0 382.28 0.317318

u1817 0 0.0863 789.18 0.0367 0.1068 410.16 0.297390

rl1889 0 0.0073 894.43 0 0.0037 348.68 0.229728

d2103 0 0.0043 1137.53 0 0.0123 417.53 0.751641

u2152 0 0.0717 1415.32 0 0.0711 512.12 0.989112

pr2392 0 0.0021 577.78 0 0 86.43 0.018578

pcb3038 0.0101 0.0396 323.94 0 0.0343 1772.8 0.336582

fl3795 0 0.0142 621.63 0 0.0214 131.10 0.636875

fnl4461 0.0296 0.0462 583.78 0.0104 0.0421 952.61 0.386402

rl5915 0.0122 0.0633 1359.25 0.0025 0.0435 1029.21 0.083396

rl5934 0.0012 0.0650 983.04 0 0.0797 1443.5 0.645471

pla7397 0.0075 0.0253 1563.22 0.0004 0.0348 826.38 0.158900

Table 6. Comparison between PSO-LK and PSO-LK-C1

Particle Swarm Optimization Algorithm for the Traveling Salesman Problem

91

PSO-LK PSO-LK-C2
Instances

Min Av T(s) Min Av T(s)
p-level

pr439 0 0 0.78 0 0 0.59 ----

pcb442 0 0 0.80 0 0 0.6 ----

d493 0 0 19.38 0 0 16.3 ----

rat575 0 0 6.47 0 0.0007 4.17 0.317318

p654 0 0 1.90 0 0 1.46 ----

d657 0 0 12.42 0 0 9.72 ----

rat783 0 0 5.25 0 0 3.76 ----

dsj1000 0.0027 0.0031 178.48 0.0027 0.0028 103.01 0.097603

pr1002 0 0 9.50 0 0 6.33 ----

u1060 0 0 38.18 0 0.0013 26.88 0.075373

vm1084 0 0.0010 34.74 0 0.0016 29.57 0.958539

pcb1173 0 0.0001 48.18 0 0.0003 34.53 0.297961

d1291 0 0 29.86 0 0.0073 27.46 0.152088

rl1304 0 0 21.62 0 0 10.44 ----

rl1323 0 0.0092 225.32 0 0.0055 127.55 0.618230

nrw1379 0.0017 0.0085 417.80 0 0.0080 259.99 0.587686

fl1400 0 0 15.42 0 0 11.2 ----

fl1577 0 0.0135 461.99 0 0.1144 303.77 0.102963

vm1748 0 0.0018 854.17 0 0 485.22 0.317318

u1817 0 0.0863 789.18 0 0.0811 454.81 0.684114

rl1889 0 0.0073 894.43 0 0.0070 389.12 0.844488

d2103 0 0.0043 1137.53 0 0.0128 443.39 0.655928

u2152 0 0.0717 1415.32 0 0.0609 680.38 0.390349

pr2392 0 0.0021 577.78 0 0 145.84 0.018578

pcb3038 0.0101 0.0396 323.94 0.0036 0.0387 1930.7 0.849722

fl3795 0 0.0142 621.63 0 0.0285 408.86 0.381866

fnl4461 0.0296 0.0462 583.78 0.0148 0.0452 1148.8 0.108256

rl5915 0.0122 0.0633 1359.25 0.0109 0.0499 984.11 0.194137

rl5934 0.0012 0.0650 983.04 0 0.0659 1142.78 0.913724

pla7397 0.0075 0.0253 1563.22 0.0007 0.0298 763.47 0.684311

Table 7. Comparison between PSO-LK and PSO-LK-C2

 Travelling Salesman Problem

90

PSO-LK PSO-LK-C1
Instances

Min Av T(s) Min Av T(s)
p-level

pr439 0 0 0.78 0 0 0.38 -----

pcb442 0 0 0.80 0 0 0.39 -----

d493 0 0 19.38 0 0 13.52 -----

rat575 0 0 6.47 0 0.0007 3.83 0.317318

p654 0 0 1.90 0 0 0.87 -----

d657 0 0 12.42 0 0 8.35 -----

rat783 0 0 5.25 0 0 1.92 -----

dsj1000 0.0027 0.0031 178.48 0.0027 0.0027 82.27 0.077143

pr1002 0 0 9.50 0 0 3.32 -----

u1060 0 0 38.18 0 0.0008 22.87 0.151953

vm1084 0 0.0010 34.74 0 0.0016 25.05 0.958539

pcb1173 0 0.0001 48.18 0 0.0003 32.65 0.156717

d1291 0 0 29.86 0 0 8.81 -----

rl1304 0 0 21.62 0 0 5.57 -----

rl1323 0 0.0092 225.32 0 0.0030 66.60 0.068481

nrw1379 0.0017 0.0085 417.80 0 0.0058 181.75 0.041205

fl1400 0 0 15.42 0 0 5.68 -----

fl1577 0 0.0135 461.99 0 0.0200 248.85 0.237805

vm1748 0 0.0018 854.17 0 0 382.28 0.317318

u1817 0 0.0863 789.18 0.0367 0.1068 410.16 0.297390

rl1889 0 0.0073 894.43 0 0.0037 348.68 0.229728

d2103 0 0.0043 1137.53 0 0.0123 417.53 0.751641

u2152 0 0.0717 1415.32 0 0.0711 512.12 0.989112

pr2392 0 0.0021 577.78 0 0 86.43 0.018578

pcb3038 0.0101 0.0396 323.94 0 0.0343 1772.8 0.336582

fl3795 0 0.0142 621.63 0 0.0214 131.10 0.636875

fnl4461 0.0296 0.0462 583.78 0.0104 0.0421 952.61 0.386402

rl5915 0.0122 0.0633 1359.25 0.0025 0.0435 1029.21 0.083396

rl5934 0.0012 0.0650 983.04 0 0.0797 1443.5 0.645471

pla7397 0.0075 0.0253 1563.22 0.0004 0.0348 826.38 0.158900

Table 6. Comparison between PSO-LK and PSO-LK-C1

Particle Swarm Optimization Algorithm for the Traveling Salesman Problem

91

PSO-LK PSO-LK-C2
Instances

Min Av T(s) Min Av T(s)
p-level

pr439 0 0 0.78 0 0 0.59 ----

pcb442 0 0 0.80 0 0 0.6 ----

d493 0 0 19.38 0 0 16.3 ----

rat575 0 0 6.47 0 0.0007 4.17 0.317318

p654 0 0 1.90 0 0 1.46 ----

d657 0 0 12.42 0 0 9.72 ----

rat783 0 0 5.25 0 0 3.76 ----

dsj1000 0.0027 0.0031 178.48 0.0027 0.0028 103.01 0.097603

pr1002 0 0 9.50 0 0 6.33 ----

u1060 0 0 38.18 0 0.0013 26.88 0.075373

vm1084 0 0.0010 34.74 0 0.0016 29.57 0.958539

pcb1173 0 0.0001 48.18 0 0.0003 34.53 0.297961

d1291 0 0 29.86 0 0.0073 27.46 0.152088

rl1304 0 0 21.62 0 0 10.44 ----

rl1323 0 0.0092 225.32 0 0.0055 127.55 0.618230

nrw1379 0.0017 0.0085 417.80 0 0.0080 259.99 0.587686

fl1400 0 0 15.42 0 0 11.2 ----

fl1577 0 0.0135 461.99 0 0.1144 303.77 0.102963

vm1748 0 0.0018 854.17 0 0 485.22 0.317318

u1817 0 0.0863 789.18 0 0.0811 454.81 0.684114

rl1889 0 0.0073 894.43 0 0.0070 389.12 0.844488

d2103 0 0.0043 1137.53 0 0.0128 443.39 0.655928

u2152 0 0.0717 1415.32 0 0.0609 680.38 0.390349

pr2392 0 0.0021 577.78 0 0 145.84 0.018578

pcb3038 0.0101 0.0396 323.94 0.0036 0.0387 1930.7 0.849722

fl3795 0 0.0142 621.63 0 0.0285 408.86 0.381866

fnl4461 0.0296 0.0462 583.78 0.0148 0.0452 1148.8 0.108256

rl5915 0.0122 0.0633 1359.25 0.0109 0.0499 984.11 0.194137

rl5934 0.0012 0.0650 983.04 0 0.0659 1142.78 0.913724

pla7397 0.0075 0.0253 1563.22 0.0007 0.0298 763.47 0.684311

Table 7. Comparison between PSO-LK and PSO-LK-C2

 Travelling Salesman Problem

92

A comparison between the performance, regarding quality of solution, of PSO-LK-C1 and
four effective heuristics for the TSP is shown in tables 8 and 9, where 23 symmetric instances
with |N| ranging from 1000 to 7397 are considered. The heuristics are: the Nguyen,
Yoshihara, Yamamori and Yasunada iterated Lin-Kernighan variant (reported at
http://www.research.att.com/~dsj/chtsp/), ILK-NYYY, the iterated Lin-Kernighan variant
presented by Johnson & McGeoch (1997), ILK-JM, the Tourmerge (Cook & Seymour, 2003)
and the LK implementation presented by Helsgaun (2000), ILK-H. The results of the first
three heuristics were obtained in the DIMACS Challenge page (at
http://www.research.att.com/~dsj/chtsp/results.html).
The columns of table 8 corresponding to the ILK-NYYY and the ILK-JM show the best tours
obtained in ten |N| iterations runs. The table shows that the PSO-LK-C1 obtains better
values than the ILK-NYYY and the ILK-JM at 13 and 16 instances, respectively. The ILK-
NYYY presents the best minimal solution for instance dsj1000. The last line of table 8 shows
the average results of the three algorithms. It is observed that, in average, the solutions
obtained by the PSO-LK-C1 are, approximately, 8 and 24 times better than the solutions
presented by the ILK-NYYY and the ILK-JM, respectively.

Instance PSO-
LK-C1

ILK-NYYY
Nb10

ILK-JM
Nb10

dsj1000 0.0027 0 0.0063
pr1002 0 0 0.1482
u1060 0 0.0085 0.0210

vm1084 0 0.0217 0.0217
pcb1173 0 0 0.0088
d1291 0 0 0
rl1304 0 0 0
rl1323 0 0.01 0

nrw1379 0 0.0247 0.0018
fl1400 0 0 0
fl1577 0 0 0

vm1748 0 0 0
u1817 0.0367 0.1643 0.2657
rl1889 0 0.0082 0.0041
d2103 0 0.0559 0
u2152 0 0 0.1743
pr2392 0 0.0050 0.1495

pcb3038 0 0.0247 0.1213
fl3795 0 0 0.0104

fnl4461 0.0104 0.0449 0.1358
rl5915 0.0025 0.0580 0.0168
rl5934 0 0.0115 0.1723

pla7397 0.0004 0.0209 0.0497
Mean 0.0023 0.0199 0.0569

Table 8. Best solutions of PSO-LK-C1 and two iterative LK

Particle Swarm Optimization Algorithm for the Traveling Salesman Problem

93

Table 9 shows a comparison between the best and average results found by the PSO-LK-C1,
the Tourmerge and the ILK-H. Regarding the minimal values, the proposed algorithm
presents better results than the Tourmerge at 6 of the 21 instances the latter algorithm
reports results. The Tourmerge presents one minimal result better than the proposed
algorithm. The ILK-H presents 4 minimal results that are better than the ones presented by
the PSO-LK-C1. Compared with the former, the latter algorithm presents the best minimal
results of 2 instances. Considering the average solutions, the PSO-LK-C1 presents better
results than the Tourmerge and the ILK-H at 14 and 12 instances, respectively. The
Tourmerge and the ILK-H present better average results than the PSO algorithm for 5 and 8
instances, respectively. The last line of table 9 summarizes the results of each column. The
proposed algorithm presents the best statistics regarding the average solutions.

PSO-LK-C1 Tourmerge ILK-H Instance Min Average Min Average Min Average
dsj1000 0.0027 0.0027 0.0027 0.0478 0 0.035
pr1002 0 0 0 0.0197 0 0
u1060 0 0.0008 0 0.0049 0 0

vm1084 0 0.0016 0 0.0013 0 0.007
pcb1173 0 0.0003 0 0.0018 0 0.002
d1291 0 0 0 0.0492 0 0.033
rl1304 0 0 0 0.1150 0 0.019
rl1323 0 0.0030 0.01 0.0411 0 0.018

nrw1379 0 0.0058 0 0.0071 0 0.006
fl1400 0 0 0 0 0 0.162
fl1577 0 0.0200 0 0.0225 0 0.046

vm1748 0 0 0 0 0 0.023
u1817 0.0367 0.1068 0.0332 0.0804 0 0.078
rl1889 0 0.0037 0.0082 0.0682 0 0.002
d2103 0 0.0123 0.0199 0.3170 --- ---
u2152 0 0.0711 0 0.0794 0 0.029
pr2392 0 0 0 0.0019 0 0

pcb3038 0 0.0343 0.0036 0.0327 0 0
fl3795 0 0.0214 0 0.0556 0 0.072

fnl4461 0.0104 0.0421 --- --- 0 0.001
rl5915 0.0025 0.0435 0.0057 0.0237 0.009 0.028
rl5934 0 0.0797 0.0023 0.0104 0.005 0.089

pla7397 0.0104 0.0348 --- --- 0 0.001
Mean 0.002291 0.019926 0.004076 0.046652 0.000636 0.029591

Table 9. Minimal and average results presented by PSO-LK-C1 and Tourmerge

5. Conclusion
This chapter summarized the research done to develop PSO algorithms for the TSP. Many of
the PSO algorithms presented previously for the investigated problem do not tackle large
instances and present results far from the best known heuristic solutions obtained by
effective algorithms. The chapter presented an approach to design effective PSO algorithms

 Travelling Salesman Problem

92

A comparison between the performance, regarding quality of solution, of PSO-LK-C1 and
four effective heuristics for the TSP is shown in tables 8 and 9, where 23 symmetric instances
with |N| ranging from 1000 to 7397 are considered. The heuristics are: the Nguyen,
Yoshihara, Yamamori and Yasunada iterated Lin-Kernighan variant (reported at
http://www.research.att.com/~dsj/chtsp/), ILK-NYYY, the iterated Lin-Kernighan variant
presented by Johnson & McGeoch (1997), ILK-JM, the Tourmerge (Cook & Seymour, 2003)
and the LK implementation presented by Helsgaun (2000), ILK-H. The results of the first
three heuristics were obtained in the DIMACS Challenge page (at
http://www.research.att.com/~dsj/chtsp/results.html).
The columns of table 8 corresponding to the ILK-NYYY and the ILK-JM show the best tours
obtained in ten |N| iterations runs. The table shows that the PSO-LK-C1 obtains better
values than the ILK-NYYY and the ILK-JM at 13 and 16 instances, respectively. The ILK-
NYYY presents the best minimal solution for instance dsj1000. The last line of table 8 shows
the average results of the three algorithms. It is observed that, in average, the solutions
obtained by the PSO-LK-C1 are, approximately, 8 and 24 times better than the solutions
presented by the ILK-NYYY and the ILK-JM, respectively.

Instance PSO-
LK-C1

ILK-NYYY
Nb10

ILK-JM
Nb10

dsj1000 0.0027 0 0.0063
pr1002 0 0 0.1482
u1060 0 0.0085 0.0210

vm1084 0 0.0217 0.0217
pcb1173 0 0 0.0088
d1291 0 0 0
rl1304 0 0 0
rl1323 0 0.01 0

nrw1379 0 0.0247 0.0018
fl1400 0 0 0
fl1577 0 0 0

vm1748 0 0 0
u1817 0.0367 0.1643 0.2657
rl1889 0 0.0082 0.0041
d2103 0 0.0559 0
u2152 0 0 0.1743
pr2392 0 0.0050 0.1495

pcb3038 0 0.0247 0.1213
fl3795 0 0 0.0104

fnl4461 0.0104 0.0449 0.1358
rl5915 0.0025 0.0580 0.0168
rl5934 0 0.0115 0.1723

pla7397 0.0004 0.0209 0.0497
Mean 0.0023 0.0199 0.0569

Table 8. Best solutions of PSO-LK-C1 and two iterative LK

Particle Swarm Optimization Algorithm for the Traveling Salesman Problem

93

Table 9 shows a comparison between the best and average results found by the PSO-LK-C1,
the Tourmerge and the ILK-H. Regarding the minimal values, the proposed algorithm
presents better results than the Tourmerge at 6 of the 21 instances the latter algorithm
reports results. The Tourmerge presents one minimal result better than the proposed
algorithm. The ILK-H presents 4 minimal results that are better than the ones presented by
the PSO-LK-C1. Compared with the former, the latter algorithm presents the best minimal
results of 2 instances. Considering the average solutions, the PSO-LK-C1 presents better
results than the Tourmerge and the ILK-H at 14 and 12 instances, respectively. The
Tourmerge and the ILK-H present better average results than the PSO algorithm for 5 and 8
instances, respectively. The last line of table 9 summarizes the results of each column. The
proposed algorithm presents the best statistics regarding the average solutions.

PSO-LK-C1 Tourmerge ILK-H Instance Min Average Min Average Min Average
dsj1000 0.0027 0.0027 0.0027 0.0478 0 0.035
pr1002 0 0 0 0.0197 0 0
u1060 0 0.0008 0 0.0049 0 0

vm1084 0 0.0016 0 0.0013 0 0.007
pcb1173 0 0.0003 0 0.0018 0 0.002
d1291 0 0 0 0.0492 0 0.033
rl1304 0 0 0 0.1150 0 0.019
rl1323 0 0.0030 0.01 0.0411 0 0.018

nrw1379 0 0.0058 0 0.0071 0 0.006
fl1400 0 0 0 0 0 0.162
fl1577 0 0.0200 0 0.0225 0 0.046

vm1748 0 0 0 0 0 0.023
u1817 0.0367 0.1068 0.0332 0.0804 0 0.078
rl1889 0 0.0037 0.0082 0.0682 0 0.002
d2103 0 0.0123 0.0199 0.3170 --- ---
u2152 0 0.0711 0 0.0794 0 0.029
pr2392 0 0 0 0.0019 0 0

pcb3038 0 0.0343 0.0036 0.0327 0 0
fl3795 0 0.0214 0 0.0556 0 0.072

fnl4461 0.0104 0.0421 --- --- 0 0.001
rl5915 0.0025 0.0435 0.0057 0.0237 0.009 0.028
rl5934 0 0.0797 0.0023 0.0104 0.005 0.089

pla7397 0.0104 0.0348 --- --- 0 0.001
Mean 0.002291 0.019926 0.004076 0.046652 0.000636 0.029591

Table 9. Minimal and average results presented by PSO-LK-C1 and Tourmerge

5. Conclusion
This chapter summarized the research done to develop PSO algorithms for the TSP. Many of
the PSO algorithms presented previously for the investigated problem do not tackle large
instances and present results far from the best known heuristic solutions obtained by
effective algorithms. The chapter presented an approach to design effective PSO algorithms

 Travelling Salesman Problem

94

for the TSP that can be extended to other discrete optimization problems. The new
approach, first introduced by Goldbarg et al. (2006a), differentiates velocity operators
according to the type of move the particle does. Additionally, methods to compose the
velocity operators were proposed. Computational experiments with instances up to 7397
cities were presented. The results of those experiments show that the proposed method
produces high quality solutions, when compared with four effective heuristics designed
specifically for the investigated problem.
The composition of velocities allows building a number of possible implementations for the
search strategies chosen to be used in the PSO algorithm. Therefore, rather than a
metaheuristic, the Particle Swarm approach can be thought as a framework for heuristics
hybridization in the context of discrete optimization problems.

6. Future works
In future works other methods to compose velocities and heuristics hybridization under the
PSO framework will be investigated. Another idea to be explored in future researches is
variable velocities. The proposed approach will be applied to the Generalized TSP and to the
Bi-objective TSP.

7. References
Applegate, D.; Bixby, R.; Chvatal, V. & Cook, W. (1999). Finding Tours in the TSP, Technical

Report TR99-05, Department of Computational and Applied Mathematics, Rice
University

Burkard, R. E. (2002). The traveling salesman problem, In: Handbook of Applied Optimization,
Pardalos, P.M. & Resende, M.G.C. (Ed.), pp. 616-624, Oxford University Press,
ISBN: 0195125940, USA

Clerc, M. (1999). The swarm and the queen: Towards a deterministic and adaptive particle
swarm optimization, Proceedings of the 1999 Congress on Evolutionary Computation,
pp. 1951-1957, ISBN: 0780355369, Washington, DC, June 1999, IEEE

Clerc, M. (2004). Discrete particle swarm optimization, illustrated by the traveling salesman
problem. In: Studies in Fuzziness and Soft Computing New optimization techniques in
engineering, Babu, B.V. & Onwubolu, G.C. (Eds.), Vol. 141, , pp. 219–239, Springer
ISBN: 978-3-5402-0167-0, Berlin

Coello, C.A.C.; Pulido, G.T. & Lechuga, M.S. (2004). Handling multiple objectives with
particle swarm optimization, IEEE Transactions on Evolutionary Computation, Vol. 8,
No. 3, pp. 256-279, ISSN: 1089-778X

Conover, W.J. (1971). Practical Nonparametric Statistics, Wiley, ISBN: 978-0-4711-6068-7, New
York

Cook, W.J. & Seymour, P. (2003). Tour merging via branch-decomposition, INFORMS
Journal on Computing, Vol. 15, pp. 233-248, ISSN: 1091-9856

Eberhart, R.C. & Shi, Y. (2000). Comparing inertia weights and constriction factors in
particle swarm optimization. Proceedings of the 2000 Congress on Evolutionary
Computation, Vol. 1, No. 2, pp. 84-88, ISBN: 0780363752, La Jolla, San Diego, CA ,
July 2000, IEEE, Piscataway, NJ

Particle Swarm Optimization Algorithm for the Traveling Salesman Problem

95

Eberhart, R. C. & Shi, Y. (2001) Particle swarm optimization: developments, applications and
resources, Proceedings of the 2001 Congress on Evolutionary Computation, Vol. 1, pp.
81-86, ISBN: 0780366573, Seoul, South Korea, May 2001, IEEE, Piscataway, NJ

Fang, L.; Chen, P. & Liu, S. (2007). Particle swarm optimization with simulated annealing for
TSP, Proceedings of the 6th WSEAS International Conference on Artificial Intelligence,
Knowledge Engineering and Data Bases, Long, C. A.; Mladenov, V. M. & Bojkovic Z.
(Eds.), pp. 206-210, ISBN: 978-9-6084-5759-1, Corfu Island, Greece, February 2007

Flood, M.M. (1956). The traveling-salesman problem, Operations Research, Vol. 4, pp. 61-75,
ISSN: 0030-364X

Glover, F. (1963). Parametric Combinations of Local Job Shop Rules, Chapter IV, ONR Research
Memorandum No. 117, Carnegie Mellon University, Pittsburgh

Glover, F.; Laguna, M. & Martí, R. (2000). Fundamentals of scatter search and path relinking.
Control and Cybernetics, Vol. 29, No. 3, pp. 653-684, ISSN: 0324-8569.

Goldbarg, E.F.G; Souza, G.R. & Goldbarg, M.C. (2006a). Particle swarm for the traveling
salesman problem, Proceedings of the EvoCOP 2006, Gottlieb, J. & Raidl, G.R. (Ed.),
Lecture Notes in Computer Science, Vol. 3906, pp. 99-110, ISBN: 3540331786,
Budapest, Hungary, April 2006, Springer, Berlin

Goldbarg, E.F.G; Souza, G.R. & Goldbarg, M.C. (2006b). Particle swarm optimization for the
bi-objective degree-constrained minimum spanning tree, Proceedings of the 2006
Congress on Evolutionary Computation, Vol. 1, pp. 420-427, ISBN: 0780394879,
Vancouver, BC, Canada, July 2006, IEEE

Gutin, G. & Punnen, A.P. (2002). Traveling Salesman Problem and Its Variations, Kluwer
Academic Publishers, ISBN: 0387444599, Dordrecht.

Helsgaun, K. (2000). An effective implementation of the Lin-Kernighan traveling salesman
heuristic, European Journal of Operational Research, Vol. 126, pp. 106-130, ISSN: 0377-
2217

Hendtlass, T. (2003). Preserving diversity in particle swarm optimization, Developments in
Applied Artificial Intelligence, Proceedings of the 16th International Conference on
Industrial and Engineering Applications of Artificial Intelligence and Expert Systems
IEA/AIE 2003, Laughborough, UK, June 2003, In: Lecture Notes in Computer
Science, Vol. 2718, pp. 4104-4108, ISBN: 978-3-5404-0455-2, Springer, Berlin

Heppner, F. & Grenander, U. (1990). A stochastic nonlinear model for coordinated bird
flocks, In: The Ubiquity of Caos, Krasner, S. (Ed.), pp.233-238, ISBN: 0871683504,
AAAS Publications, Washington, DC

Hu, X.; Eberhart, R.C. & Shi, Y. (2003). Swarm intelligence for permutation optimization: A
case study of n-queens problem, Proceedings of the 2003 IEEE Swarm Intelligence
Symposium, pp. 243-246, ISBN: 0780379144, Indianapolis, USA, April 2003, IEEE

Johnson, D. S. & McGeoch, L.A. (1997). The traveling salesman problem: A case study in
local optimization, In: Local Search in Combinatorial Optimization, Aarts, E.H.L. &
Lenstra, J.K., pp. 215-310, ISBN: 978-0-6911-1522-1, John Wiley & Sons, New York

Johnson, D. S. & McGeoch, L.A. (2002). Experimental analysis of heuristics for the STSP, In:
Traveling Salesman Problem and Its Variations, Guttin, G. & Punnen, A.P. (Eds.), pp.
369-443 , ISBN: 1402006640, Kluwer Academic, Dordrecht

Kennedy, J. & Eberhart, R.C. (1995). Particle swarm optimization, Proceedings of the IEEE
International Conference on Neural Networks, Vol. 4, pp. 1942-1948, ISBN: 0780327683,
Perth, Western Australia November 1995, IEEE

 Travelling Salesman Problem

94

for the TSP that can be extended to other discrete optimization problems. The new
approach, first introduced by Goldbarg et al. (2006a), differentiates velocity operators
according to the type of move the particle does. Additionally, methods to compose the
velocity operators were proposed. Computational experiments with instances up to 7397
cities were presented. The results of those experiments show that the proposed method
produces high quality solutions, when compared with four effective heuristics designed
specifically for the investigated problem.
The composition of velocities allows building a number of possible implementations for the
search strategies chosen to be used in the PSO algorithm. Therefore, rather than a
metaheuristic, the Particle Swarm approach can be thought as a framework for heuristics
hybridization in the context of discrete optimization problems.

6. Future works
In future works other methods to compose velocities and heuristics hybridization under the
PSO framework will be investigated. Another idea to be explored in future researches is
variable velocities. The proposed approach will be applied to the Generalized TSP and to the
Bi-objective TSP.

7. References
Applegate, D.; Bixby, R.; Chvatal, V. & Cook, W. (1999). Finding Tours in the TSP, Technical

Report TR99-05, Department of Computational and Applied Mathematics, Rice
University

Burkard, R. E. (2002). The traveling salesman problem, In: Handbook of Applied Optimization,
Pardalos, P.M. & Resende, M.G.C. (Ed.), pp. 616-624, Oxford University Press,
ISBN: 0195125940, USA

Clerc, M. (1999). The swarm and the queen: Towards a deterministic and adaptive particle
swarm optimization, Proceedings of the 1999 Congress on Evolutionary Computation,
pp. 1951-1957, ISBN: 0780355369, Washington, DC, June 1999, IEEE

Clerc, M. (2004). Discrete particle swarm optimization, illustrated by the traveling salesman
problem. In: Studies in Fuzziness and Soft Computing New optimization techniques in
engineering, Babu, B.V. & Onwubolu, G.C. (Eds.), Vol. 141, , pp. 219–239, Springer
ISBN: 978-3-5402-0167-0, Berlin

Coello, C.A.C.; Pulido, G.T. & Lechuga, M.S. (2004). Handling multiple objectives with
particle swarm optimization, IEEE Transactions on Evolutionary Computation, Vol. 8,
No. 3, pp. 256-279, ISSN: 1089-778X

Conover, W.J. (1971). Practical Nonparametric Statistics, Wiley, ISBN: 978-0-4711-6068-7, New
York

Cook, W.J. & Seymour, P. (2003). Tour merging via branch-decomposition, INFORMS
Journal on Computing, Vol. 15, pp. 233-248, ISSN: 1091-9856

Eberhart, R.C. & Shi, Y. (2000). Comparing inertia weights and constriction factors in
particle swarm optimization. Proceedings of the 2000 Congress on Evolutionary
Computation, Vol. 1, No. 2, pp. 84-88, ISBN: 0780363752, La Jolla, San Diego, CA ,
July 2000, IEEE, Piscataway, NJ

Particle Swarm Optimization Algorithm for the Traveling Salesman Problem

95

Eberhart, R. C. & Shi, Y. (2001) Particle swarm optimization: developments, applications and
resources, Proceedings of the 2001 Congress on Evolutionary Computation, Vol. 1, pp.
81-86, ISBN: 0780366573, Seoul, South Korea, May 2001, IEEE, Piscataway, NJ

Fang, L.; Chen, P. & Liu, S. (2007). Particle swarm optimization with simulated annealing for
TSP, Proceedings of the 6th WSEAS International Conference on Artificial Intelligence,
Knowledge Engineering and Data Bases, Long, C. A.; Mladenov, V. M. & Bojkovic Z.
(Eds.), pp. 206-210, ISBN: 978-9-6084-5759-1, Corfu Island, Greece, February 2007

Flood, M.M. (1956). The traveling-salesman problem, Operations Research, Vol. 4, pp. 61-75,
ISSN: 0030-364X

Glover, F. (1963). Parametric Combinations of Local Job Shop Rules, Chapter IV, ONR Research
Memorandum No. 117, Carnegie Mellon University, Pittsburgh

Glover, F.; Laguna, M. & Martí, R. (2000). Fundamentals of scatter search and path relinking.
Control and Cybernetics, Vol. 29, No. 3, pp. 653-684, ISSN: 0324-8569.

Goldbarg, E.F.G; Souza, G.R. & Goldbarg, M.C. (2006a). Particle swarm for the traveling
salesman problem, Proceedings of the EvoCOP 2006, Gottlieb, J. & Raidl, G.R. (Ed.),
Lecture Notes in Computer Science, Vol. 3906, pp. 99-110, ISBN: 3540331786,
Budapest, Hungary, April 2006, Springer, Berlin

Goldbarg, E.F.G; Souza, G.R. & Goldbarg, M.C. (2006b). Particle swarm optimization for the
bi-objective degree-constrained minimum spanning tree, Proceedings of the 2006
Congress on Evolutionary Computation, Vol. 1, pp. 420-427, ISBN: 0780394879,
Vancouver, BC, Canada, July 2006, IEEE

Gutin, G. & Punnen, A.P. (2002). Traveling Salesman Problem and Its Variations, Kluwer
Academic Publishers, ISBN: 0387444599, Dordrecht.

Helsgaun, K. (2000). An effective implementation of the Lin-Kernighan traveling salesman
heuristic, European Journal of Operational Research, Vol. 126, pp. 106-130, ISSN: 0377-
2217

Hendtlass, T. (2003). Preserving diversity in particle swarm optimization, Developments in
Applied Artificial Intelligence, Proceedings of the 16th International Conference on
Industrial and Engineering Applications of Artificial Intelligence and Expert Systems
IEA/AIE 2003, Laughborough, UK, June 2003, In: Lecture Notes in Computer
Science, Vol. 2718, pp. 4104-4108, ISBN: 978-3-5404-0455-2, Springer, Berlin

Heppner, F. & Grenander, U. (1990). A stochastic nonlinear model for coordinated bird
flocks, In: The Ubiquity of Caos, Krasner, S. (Ed.), pp.233-238, ISBN: 0871683504,
AAAS Publications, Washington, DC

Hu, X.; Eberhart, R.C. & Shi, Y. (2003). Swarm intelligence for permutation optimization: A
case study of n-queens problem, Proceedings of the 2003 IEEE Swarm Intelligence
Symposium, pp. 243-246, ISBN: 0780379144, Indianapolis, USA, April 2003, IEEE

Johnson, D. S. & McGeoch, L.A. (1997). The traveling salesman problem: A case study in
local optimization, In: Local Search in Combinatorial Optimization, Aarts, E.H.L. &
Lenstra, J.K., pp. 215-310, ISBN: 978-0-6911-1522-1, John Wiley & Sons, New York

Johnson, D. S. & McGeoch, L.A. (2002). Experimental analysis of heuristics for the STSP, In:
Traveling Salesman Problem and Its Variations, Guttin, G. & Punnen, A.P. (Eds.), pp.
369-443 , ISBN: 1402006640, Kluwer Academic, Dordrecht

Kennedy, J. & Eberhart, R.C. (1995). Particle swarm optimization, Proceedings of the IEEE
International Conference on Neural Networks, Vol. 4, pp. 1942-1948, ISBN: 0780327683,
Perth, Western Australia November 1995, IEEE

 Travelling Salesman Problem

96

Kennedy, J. & Eberhart, R.C. (1997) A discrete binary version of the particle swarm
algorithm, Proceedings of the IEEE International Conference on Systems, Man, and
Cybernetics, Vol. 5, No. 2, pp. 4104 - 4109, ISBN: 0780340531, Orlando, Florida,
October 1997, IEEE

Kennedy, J. & Eberhart, R.C. (2001) Swarm Intelligence, Morgan Kaufmann, ISBN:
1558605959, San Francisco, CA.

Lin, S. & Kernighan, B. (1973). An effective heuristic algorithm for the traveling-salesman
problem, Operations Research, Vol. 21, pp. 498-516, ISSN: 0030-364X

Machado, T.R. & Lopes, H.S. (2005). A hybrid particle swarm optimization model for the
traveling salesman problem, In: Natural Computing Algorithms, Ribeiro, H.;
Albrecht, R.F. & Dobnikar, A. (Eds.), pp. 255-258, ISBN: 3211249346, Springer, Wien

Onwubolu, G.C. & Clerc, M. (2004). Optimal path for automated drilling operations by a
new heuristic approach using particle swarm optimization, International Journal of
Production Research, Vol. 42, No. 3, pp. 473–491, ISSN: 0020-7543

Pang, W.; Wang, K.; Zhou, C.; Dong, L.; Liu, M.; Zhang, H. & Wang, J. (2004a) Modified
particle swarm optimization based on space transformation for solving traveling
salesman problem, In: Proceedings of the Third International Conference on Machine
Learning and Cybernetics, Shangai, China, August 2004, pp. 2342-2346, ISBN:
0780384032, IEEE

Pang, W.; Wang, K.; Zhou, C. & Dong, L. (2004b) Fuzzy discrete particle swarm
optimization for solving traveling salesman problem, In: Proceedings of the Fourth
International Conference on Computer and Information Technology, Wuhan, China,
September 2004, pp. 796-800, ISBN: 0769522165, IEEE

Reeves, W.T. (1983). Particle systems technique for modeling a class of fuzzy objects. ACM
Transactions on Graphics, Vol. 17, No. 3, pp. 359-376, ISSN: 0730-0301

Reynolds, C. W. (1987). Flocks, herds and schools: A distributed behavioural model.
Computer Graphics, Vol. 21, No. 4, pp. 24-34, ISBN: 0897912276

Shi, Y. & Eberhart, R. C. (1998). Parameter selection in particle swarm optimization, In
Evolutionary Programming VII: Proceedings of Seventh International Conference on
Evolutionary Programming - EP98, San Diego, California, USA, March 1998, Lecture
Notes in Computer Science, Vol. 1447, pp. 591-600, ISBN: 3540648917, Springer-
Verlag, New York

Shi, X.H.; Liang, Y.C.; Lee, H.P.; Lu, C. & Wang, Q.X. (2007). Particle swarm optimization-
based algorithms for TSP and generalized TSP, Information Processing Letters, Vol.
103, pp. 169-176, ISSN: 0020-0190

Voudouris, C. & Tsang, E. (1999). Guide local search and its application to the traveling
salesman problem, European Journal of Operational Research, Vol. 113, pp. 469-499,
ISSN: 0377-2217

Yuan, Z.; Yang, L.; Wu, Y.; Liao, L. & Li, G. (2007). Chaotic particle swarm optimization
algorithm for Traveling Salesman Problem, In: Proceedings of the IEEE International
Conference on Automation and Logistics, Jinan, China, August 2007, pp. 1121-1124.,
ISBN: 978-1-4244-1531-1, IEEE

Zhong, W.; Zhang, J. & Che, W. (2007). A novel discrete particle swarm optimization to
solve traveling salesman problem, In: Proceedings of the 2007 IEEE Congress on
Evolutionary Computation, Singapore, September 2007, pp. 3283-3287, ISBN: 978-1-
4244-1340-9, IEEE

5

A Modified Discrete Particle Swarm
Optimization Algorithm for the Generalized

Traveling Salesman Problem
Mehmet Fatih Tasgetiren1, Yun-Chia Liang2, Quan-Ke Pan3

and P. N. Suganthan4

1Department of Operations Management and Business Statistics,
 Sultan Qaboos University Muscat,

 2Department of Industrial Engineering and Management, Yuan Ze University,
 3College of Computer Science, Liaocheng University, Liaocheng,

4School of Electrical and Electronic Engineering, Nanyang Technological University,
1Sultanate of Oman

2Taiwan, R.O.C
3P.R. China

4Singapore

1. Introduction
A variant of the traveling salesman problem (TSP) is known as the generalized traveling
salesman problem (GTSP), where a tour does not necessarily visit all the nodes since the set
N of nodes is divided into m sets or clusters, mNN ,..,1 with NNN m =∪∪ ..1 and

φ=∩ kj NN if kj ≠ . The objective is to find a minimum tour length containing at least a

node from each cluster jN . Several applications of the GTSP can be found in postal routing
[1], computer file processing [2], order picking in warehouses [3], process planning for
rotational parts [4], and the routing of clients through welfare agencies [5]. Furthermore,
many other combinatorial optimization problems can be reduced to the GTSP problem [1].
TSP is NP-Hard and hence the GTSP is NP-hard because if the set N of nodes is partitioned
into N subsets with each containing one node, it results in a TSP.
Regarding the literature for the GTSP, it was first addressed in [2, 5, 6]. Exact algorithms can
be found in Laporte et al. [7, 8], Laporte & Nobert [9], Fischetti et al. [10, 11], and others in
[12, 13]. On the other hand, several worthy heuristic approaches are applied to the GTSP.
Noon [3] presented several heuristics for the GTSP among which the most promising one is
an adaptation of the well-known nearest-neighbor heuristic for the TSP. Similar adaptations
of the farthest-insertion, nearest-insertion, and cheapest-insertion heuristics are proposed in
Fischetti et al. [11]. GI3 (Generalized Initilialization, Insertion, and Improvement) is one of
the most sophisticated heuristics, which is developed by Renaud & Boctor [14]. GI3 is a
generalization of the I3 heuristic presented in Renaud et al. [15]. The application of the
metaheuristic algorithms specifically to the GTSP is very rare in the litearture. A random

 Travelling Salesman Problem

96

Kennedy, J. & Eberhart, R.C. (1997) A discrete binary version of the particle swarm
algorithm, Proceedings of the IEEE International Conference on Systems, Man, and
Cybernetics, Vol. 5, No. 2, pp. 4104 - 4109, ISBN: 0780340531, Orlando, Florida,
October 1997, IEEE

Kennedy, J. & Eberhart, R.C. (2001) Swarm Intelligence, Morgan Kaufmann, ISBN:
1558605959, San Francisco, CA.

Lin, S. & Kernighan, B. (1973). An effective heuristic algorithm for the traveling-salesman
problem, Operations Research, Vol. 21, pp. 498-516, ISSN: 0030-364X

Machado, T.R. & Lopes, H.S. (2005). A hybrid particle swarm optimization model for the
traveling salesman problem, In: Natural Computing Algorithms, Ribeiro, H.;
Albrecht, R.F. & Dobnikar, A. (Eds.), pp. 255-258, ISBN: 3211249346, Springer, Wien

Onwubolu, G.C. & Clerc, M. (2004). Optimal path for automated drilling operations by a
new heuristic approach using particle swarm optimization, International Journal of
Production Research, Vol. 42, No. 3, pp. 473–491, ISSN: 0020-7543

Pang, W.; Wang, K.; Zhou, C.; Dong, L.; Liu, M.; Zhang, H. & Wang, J. (2004a) Modified
particle swarm optimization based on space transformation for solving traveling
salesman problem, In: Proceedings of the Third International Conference on Machine
Learning and Cybernetics, Shangai, China, August 2004, pp. 2342-2346, ISBN:
0780384032, IEEE

Pang, W.; Wang, K.; Zhou, C. & Dong, L. (2004b) Fuzzy discrete particle swarm
optimization for solving traveling salesman problem, In: Proceedings of the Fourth
International Conference on Computer and Information Technology, Wuhan, China,
September 2004, pp. 796-800, ISBN: 0769522165, IEEE

Reeves, W.T. (1983). Particle systems technique for modeling a class of fuzzy objects. ACM
Transactions on Graphics, Vol. 17, No. 3, pp. 359-376, ISSN: 0730-0301

Reynolds, C. W. (1987). Flocks, herds and schools: A distributed behavioural model.
Computer Graphics, Vol. 21, No. 4, pp. 24-34, ISBN: 0897912276

Shi, Y. & Eberhart, R. C. (1998). Parameter selection in particle swarm optimization, In
Evolutionary Programming VII: Proceedings of Seventh International Conference on
Evolutionary Programming - EP98, San Diego, California, USA, March 1998, Lecture
Notes in Computer Science, Vol. 1447, pp. 591-600, ISBN: 3540648917, Springer-
Verlag, New York

Shi, X.H.; Liang, Y.C.; Lee, H.P.; Lu, C. & Wang, Q.X. (2007). Particle swarm optimization-
based algorithms for TSP and generalized TSP, Information Processing Letters, Vol.
103, pp. 169-176, ISSN: 0020-0190

Voudouris, C. & Tsang, E. (1999). Guide local search and its application to the traveling
salesman problem, European Journal of Operational Research, Vol. 113, pp. 469-499,
ISSN: 0377-2217

Yuan, Z.; Yang, L.; Wu, Y.; Liao, L. & Li, G. (2007). Chaotic particle swarm optimization
algorithm for Traveling Salesman Problem, In: Proceedings of the IEEE International
Conference on Automation and Logistics, Jinan, China, August 2007, pp. 1121-1124.,
ISBN: 978-1-4244-1531-1, IEEE

Zhong, W.; Zhang, J. & Che, W. (2007). A novel discrete particle swarm optimization to
solve traveling salesman problem, In: Proceedings of the 2007 IEEE Congress on
Evolutionary Computation, Singapore, September 2007, pp. 3283-3287, ISBN: 978-1-
4244-1340-9, IEEE

5

A Modified Discrete Particle Swarm
Optimization Algorithm for the Generalized

Traveling Salesman Problem
Mehmet Fatih Tasgetiren1, Yun-Chia Liang2, Quan-Ke Pan3

and P. N. Suganthan4

1Department of Operations Management and Business Statistics,
 Sultan Qaboos University Muscat,

 2Department of Industrial Engineering and Management, Yuan Ze University,
 3College of Computer Science, Liaocheng University, Liaocheng,

4School of Electrical and Electronic Engineering, Nanyang Technological University,
1Sultanate of Oman

2Taiwan, R.O.C
3P.R. China

4Singapore

1. Introduction
A variant of the traveling salesman problem (TSP) is known as the generalized traveling
salesman problem (GTSP), where a tour does not necessarily visit all the nodes since the set
N of nodes is divided into m sets or clusters, mNN ,..,1 with NNN m =∪∪ ..1 and

φ=∩ kj NN if kj ≠ . The objective is to find a minimum tour length containing at least a

node from each cluster jN . Several applications of the GTSP can be found in postal routing
[1], computer file processing [2], order picking in warehouses [3], process planning for
rotational parts [4], and the routing of clients through welfare agencies [5]. Furthermore,
many other combinatorial optimization problems can be reduced to the GTSP problem [1].
TSP is NP-Hard and hence the GTSP is NP-hard because if the set N of nodes is partitioned
into N subsets with each containing one node, it results in a TSP.
Regarding the literature for the GTSP, it was first addressed in [2, 5, 6]. Exact algorithms can
be found in Laporte et al. [7, 8], Laporte & Nobert [9], Fischetti et al. [10, 11], and others in
[12, 13]. On the other hand, several worthy heuristic approaches are applied to the GTSP.
Noon [3] presented several heuristics for the GTSP among which the most promising one is
an adaptation of the well-known nearest-neighbor heuristic for the TSP. Similar adaptations
of the farthest-insertion, nearest-insertion, and cheapest-insertion heuristics are proposed in
Fischetti et al. [11]. GI3 (Generalized Initilialization, Insertion, and Improvement) is one of
the most sophisticated heuristics, which is developed by Renaud & Boctor [14]. GI3 is a
generalization of the I3 heuristic presented in Renaud et al. [15]. The application of the
metaheuristic algorithms specifically to the GTSP is very rare in the litearture. A random

 Travelling Salesman Problem

98

key genetic algorithm (RKGA) is proposed by Snyder & Daskin [16], which ignited the
metaheuristic research on the GTSP. In the RKGA, random key representation is used and
solutions generated by the RKGA are improved by using two local search heuristics
namely, 2-opt and “swap” procedures. Note that their “swap” procedure provides a speed-
up method in the search process. It is basically concerned with removing a node j from a
tour, and inserting all possible nodes k’s from the corresponding cluster in an edge ()vu, in
a tour (i.e., between the node u and the node v) with a modified nearest-neighbor criterion.
They have been separately implemented by embedding them in the level-I improvement and
level-II improvement procedures.
For each individual in the population, they store the original (pre-improvement) cost and
the final cost after improvements have been made. When a new individual is created, they
compare its pre-improvement cost to the pre-improvement cost of the individual at position

Np× in the previous (sorted) population, where []1,0∈p is a parameter of the algorithm
and 05.0=p in Snyder & Daskin [16]. These two improvement procedures are implemented
as follows:
1. If the new solution is worse than the pre-improvement cost of this individual, the level-I

improvement is used by applying one 2-opt exchange and one “swap” procedure
(assuming a profitable one can be found) and store the resulting individual.

2. On the other hand, if the new solution is better, the level-II improvement is used by
applying 2-opt until no profitable 2-opt can be found, then applying “swap” procedures
until no profitable swaps can be found, and repeat until no improvements have been
made in a given pass.

The RKGA focuses on designing the local search to spend more time on improving solutions
that seem promising in comparison to previous solutions and to spend less time on the
others. In both level-I and level-II improvement, a ‘‘first-improving’’ strategy is employed
where the first move of a given type improving the objective value is implemented, rather
than searching for the best such move before choosing one. Thereafter, Tasgetiren et al. [17,
18, 19] presented a discrete particle swarm optimization algorithm a genetic algorithm (GA)
and an iterated greedy algorithm, respectively whereas Silberholz & Golden proposed
another genetic algorithm in [20] which is denoted as mrOXGA.
The GSTP may deal with either symmetric where the distance from node j to node k is the
same as the distance from k to j or asymmetric distances where the distance from node j to
node k is not the same as the distance from k to j. In this paper, meta-heuristics are presented
to solve the GTSP on a standard set of benchmark instances with symmetric distances.
 Particle swarm Optimization (PSO) is one of the most recent evolutionary meta-heuristic
methods, which receives growing interest from the researchers. It is based on the metaphor
of social interaction and communication such as bird flocking and fish schooling. PSO was
first introduced to optimize various continuous nonlinear functions by Eberhart & Kennedy
[21]. Distinctly different from other evolutionary-type methods such as GA and ES, PSO
algorithms maintain the members of the entire population through the search procedure. In
a PSO algorithm, each individual is called a particle, and each particle moves around in the
multi-dimensional search space with a velocity constantly updated by the particle’s own
experience, the experience of the particle’s neighbors, or the experience of the whole swarm.
That is, the search information is socially shared among particles to direct the population
towards the best position in the search space. The comprehensive surveys of the PSO
algorithms and applications can be found in Kennedy et al. [22] and Clerc [23].

A Modified Discrete Particle Swarm Optimization Algorithm
for the Generalized Traveling Salesman Problem

99

In this paper, a DPSO algorithm is presented to solve the GTSP on a standard set of
benchmark instances with symmetric distances. Furthermore, the DPSO algorithm is
hybridized with local search improvement heuristics to intensify the search process; hence
to further improve the solution quality.
The remaining chapter is organized as follows. Section 2 introduces the DPSO algorithm
and its basic components. Section 3 presents the computational results on benchmark
problems. Finally, Section 4 summarizes the concluding remarks.

2. Discrete particle swarm optimization algorithm
In the standard PSO algorithm, all particles have their position, velocity, and fitness values.
Particles fly through the m-dimensional space by learning from the historical information
emerged from the swarm population. For this reason, particles are inclined to fly towards
better search area over the course of evolution. Let NP denote the swarm size represented as

[]k
NP

kkk xxxx ,...,, 21= . Then each particle in the swarm population has the following attributes:

A current position represented as []k
im

k
i

k
i

k
i xxxx ,..,, 21= ; a current velocity represented as

[]k
im

k
i

k
i

k
i vvvv ,..,, 21= ; a current personal best position represented as []k

im
k
i

k
i

k
i pppp ,...,, 21= ; and

a current global best position represented as []k
m

kkk gggg ,...,, 21= . Assuming that the
function f is to be minimized, the current velocity of the jth dimension of the ith particle is
updated as follows.

 () ()11
22

11
11

11 −−−−−− −+−+= k
ij

k
j

k
ij

k
ij

k
ij

kk
ij xgrcxprcvwv (1)

where kw is the inertia weight which is a parameter to control the impact of the previous
velocities on the current velocity; c1 and c2 are acceleration coefficients and r1 and r2 are
uniform random numbers between [0,1]. The current position of the jth dimension of the ith
particle at the generation k is updated using the previous position and current velocity of
the particle as follows:

 k
ij

k
ij

k
ij vxx += −1 (2)

The personal best position of each particle is updated using

 () ()
() ()⎪⎩

⎪
⎨
⎧

<
≥

= −

−−

1

11

k
i

k
i

k
i

k
i

k
i

k
ik

i pfxfifx
pfxfifpp (3)

Finally, the global best position found so far in the swarm population is obtained for
NPi ≤≤1 as

() () ()

⎪⎩

⎪
⎨
⎧ <

=
−

−

elseg

gfpfifPf
g

k

kk
i

k
ik

ipk

1

1minminarg
 (4)

Standard PSO equations cannot be used to generate binary/discrete values since positions
are real-valued. Pan et al. [24, 25, 26] have presented a DPSO optimization algorithm to
tackle the binary/discrete spaces, where particles are updated as follows:

 Travelling Salesman Problem

98

key genetic algorithm (RKGA) is proposed by Snyder & Daskin [16], which ignited the
metaheuristic research on the GTSP. In the RKGA, random key representation is used and
solutions generated by the RKGA are improved by using two local search heuristics
namely, 2-opt and “swap” procedures. Note that their “swap” procedure provides a speed-
up method in the search process. It is basically concerned with removing a node j from a
tour, and inserting all possible nodes k’s from the corresponding cluster in an edge ()vu, in
a tour (i.e., between the node u and the node v) with a modified nearest-neighbor criterion.
They have been separately implemented by embedding them in the level-I improvement and
level-II improvement procedures.
For each individual in the population, they store the original (pre-improvement) cost and
the final cost after improvements have been made. When a new individual is created, they
compare its pre-improvement cost to the pre-improvement cost of the individual at position

Np× in the previous (sorted) population, where []1,0∈p is a parameter of the algorithm
and 05.0=p in Snyder & Daskin [16]. These two improvement procedures are implemented
as follows:
1. If the new solution is worse than the pre-improvement cost of this individual, the level-I

improvement is used by applying one 2-opt exchange and one “swap” procedure
(assuming a profitable one can be found) and store the resulting individual.

2. On the other hand, if the new solution is better, the level-II improvement is used by
applying 2-opt until no profitable 2-opt can be found, then applying “swap” procedures
until no profitable swaps can be found, and repeat until no improvements have been
made in a given pass.

The RKGA focuses on designing the local search to spend more time on improving solutions
that seem promising in comparison to previous solutions and to spend less time on the
others. In both level-I and level-II improvement, a ‘‘first-improving’’ strategy is employed
where the first move of a given type improving the objective value is implemented, rather
than searching for the best such move before choosing one. Thereafter, Tasgetiren et al. [17,
18, 19] presented a discrete particle swarm optimization algorithm a genetic algorithm (GA)
and an iterated greedy algorithm, respectively whereas Silberholz & Golden proposed
another genetic algorithm in [20] which is denoted as mrOXGA.
The GSTP may deal with either symmetric where the distance from node j to node k is the
same as the distance from k to j or asymmetric distances where the distance from node j to
node k is not the same as the distance from k to j. In this paper, meta-heuristics are presented
to solve the GTSP on a standard set of benchmark instances with symmetric distances.
 Particle swarm Optimization (PSO) is one of the most recent evolutionary meta-heuristic
methods, which receives growing interest from the researchers. It is based on the metaphor
of social interaction and communication such as bird flocking and fish schooling. PSO was
first introduced to optimize various continuous nonlinear functions by Eberhart & Kennedy
[21]. Distinctly different from other evolutionary-type methods such as GA and ES, PSO
algorithms maintain the members of the entire population through the search procedure. In
a PSO algorithm, each individual is called a particle, and each particle moves around in the
multi-dimensional search space with a velocity constantly updated by the particle’s own
experience, the experience of the particle’s neighbors, or the experience of the whole swarm.
That is, the search information is socially shared among particles to direct the population
towards the best position in the search space. The comprehensive surveys of the PSO
algorithms and applications can be found in Kennedy et al. [22] and Clerc [23].

A Modified Discrete Particle Swarm Optimization Algorithm
for the Generalized Traveling Salesman Problem

99

In this paper, a DPSO algorithm is presented to solve the GTSP on a standard set of
benchmark instances with symmetric distances. Furthermore, the DPSO algorithm is
hybridized with local search improvement heuristics to intensify the search process; hence
to further improve the solution quality.
The remaining chapter is organized as follows. Section 2 introduces the DPSO algorithm
and its basic components. Section 3 presents the computational results on benchmark
problems. Finally, Section 4 summarizes the concluding remarks.

2. Discrete particle swarm optimization algorithm
In the standard PSO algorithm, all particles have their position, velocity, and fitness values.
Particles fly through the m-dimensional space by learning from the historical information
emerged from the swarm population. For this reason, particles are inclined to fly towards
better search area over the course of evolution. Let NP denote the swarm size represented as

[]k
NP

kkk xxxx ,...,, 21= . Then each particle in the swarm population has the following attributes:

A current position represented as []k
im

k
i

k
i

k
i xxxx ,..,, 21= ; a current velocity represented as

[]k
im

k
i

k
i

k
i vvvv ,..,, 21= ; a current personal best position represented as []k

im
k
i

k
i

k
i pppp ,...,, 21= ; and

a current global best position represented as []k
m

kkk gggg ,...,, 21= . Assuming that the
function f is to be minimized, the current velocity of the jth dimension of the ith particle is
updated as follows.

 () ()11
22

11
11

11 −−−−−− −+−+= k
ij

k
j

k
ij

k
ij

k
ij

kk
ij xgrcxprcvwv (1)

where kw is the inertia weight which is a parameter to control the impact of the previous
velocities on the current velocity; c1 and c2 are acceleration coefficients and r1 and r2 are
uniform random numbers between [0,1]. The current position of the jth dimension of the ith
particle at the generation k is updated using the previous position and current velocity of
the particle as follows:

 k
ij

k
ij

k
ij vxx += −1 (2)

The personal best position of each particle is updated using

 () ()
() ()⎪⎩

⎪
⎨
⎧

<
≥

= −

−−

1

11

k
i

k
i

k
i

k
i

k
i

k
ik

i pfxfifx
pfxfifpp (3)

Finally, the global best position found so far in the swarm population is obtained for
NPi ≤≤1 as

() () ()

⎪⎩

⎪
⎨
⎧ <

=
−

−

elseg

gfpfifPf
g

k

kk
i

k
ik

ipk

1

1minminarg
 (4)

Standard PSO equations cannot be used to generate binary/discrete values since positions
are real-valued. Pan et al. [24, 25, 26] have presented a DPSO optimization algorithm to
tackle the binary/discrete spaces, where particles are updated as follows:

 Travelling Salesman Problem

100

 ()()()111
12 ,, −−−⊕⊕⊕= kk

i
k
i

k
i gpxFwCRcCRcx ρ (5)

The update equation (5) consists of three components: The first component is
()1−⊕= k

i
k
i xFwa ρ , which represents the velocity of the particle. In the component

()1−⊕= k
i

k
i xFwa ρ , ρF represents the mutation or perturbation operator with the mutation

strength of ρ and the mutation probability of w . In other words, a uniform random number
r is generated between 0 and 1. If r is less than w then the mutation operator is applied to
generate a perturbed particle by ()1−= k

i
k
i xFa ρ , otherwise current particle is mutated as

()1−= k
i

k
i xinserta . In addition, the mutation strength d is the degree of perturbation, i.e.,

single insert move or double insert move or some constructive heuristics generating distinct
solutions and so on. In this paper, we employ the destruction and construction (DC)
procedure of the IG algorithm in the mutation phase.
The second component is ()1

1 , −⊕= k
i

k
i

k
i paCRcb , which is the “cognition” part of the particle

representing the private thinking of the particle itself. In the component
()1

1 , −⊕= k
i

k
i

k
i pbCRcb , CR represents the crossover operator with the probability of 1c .

Note that k
ia and 1−k

ip will be the first and second parents for the crossover operator,

respectively. It results either in ()1, −= k
i

k
id

k
i paFb or in k

i
k
i ab = depending on the choice of a

uniform random number.
The third component is ()kk

i
k
i gbCRcx ,2 ⊕= , which is the “social” part of the particle

representing the collaboration among particles. In the component ()1
2 , −⊕= kk

i
k
i gbCRcx ,

CR represents the crossover operator with the probability of 2c . Note that k
ib and 1−kg

will be the first and second parents for the crossover operator, respectively. It results either
in ()1, −= kk

i
k
i gbCRx or in k

i
k
i bx = depending on the choice of a uniform random number.

The basic idea behind the DPSO algorithm is to provide information exchange amongst the
population members, personal best solutions and the global best solution.
However, combining the particle with both personal best and then global best solution
through crossover operator may cause a particle losing some genetic information. Instead,
we propose a modification to our DPSO algorithm in this paper utilizing either the “social”
or “cognitive” genetic information during the particle update process. It is achieved as
follows:

⎪⎩

⎪
⎨
⎧ <

= −

−

elsegaCR
crifpaCR

x kk
i

k
i

k
ik

i),(
),(

1
1

1

 (6)

In other words, after mutation operator, the particle is updated by recombining the
temporary mutated individual with either the personal best or global best solution
depending on a search directing probability of 1c . For the DPSO algorithm, the gbest (global
neighborhood) model of Kennedy et al. [22] was followed. The pseudo code of the DPSO
algorithm with the local search is given in Fig. 1.

A Modified Discrete Particle Swarm Optimization Algorithm
for the Generalized Traveling Salesman Problem

101

Procedure DPSO
Initialize parameters
Initialize particles of population
Evaluate particles of population
Apply local search to population individuals %Optional
While (not termination) Do
 Find personal best
 Find global best
 Update particles of population
 Evaluate particles of population
 Apply local search to population individuals %Optional
Endwhile
Return Global best
Endprocedure

Fig. 1. Generic Outline of DPSO Algorithm with Local Search.

2.1 Solution representation
We employ a path representation for the GTSP in this paper. In the path representation,
each consecutive node is listed in order. An advantage of this representation is due to its
simplicity in objective function evaluation since the total cost of a path can easily be
calculated by summing the costs (distances) of each pair of adjacent nodes. However, a
distadvantge of this representation is due to the fact that there is no quarantee that a
randomly selected solution will be a valid GTSP tour because there is no quarantee that
each cluster is represented exactly once in the path without some repair procedures. In order
to handle the decision of which node should be chosen from a given cluster in the GTSP
solution, we include both cluster and tour information in solutions. In other words, a GTSP
solution consists of both an array of permutation of clusters (jn) and an array of nodes (jπ)
to be visited in m dimensions/clusters. In this way, each solution is guaranteed to be a GTSP
solution. The solution representation together with the necessary distance information for
calculating the objective function value ()xF of the solution x is illustrated in Table 1 where

1+jjd ππ shows the distance from node jπ to node 1+jπ . The initial solution is constructed in

such a way that first a permutation of clusters is determined randomly, then since each
cluster contains one or more nodes, a tour is established by randomly choosing a single
node from each corresponding cluster. By including cluster information in solution
representation, which node must be visited in a tour can be determined easily with either a
random selection or a systematic way. For example, in the pair ()jjn π, , jn stands for the
cluster in the jth dimension whereas jπ represents the node to be visited from cluster jn .

 j 1 2 ... m-1 m 1
jn 1n 2n ... 1−mn mn 1n

x jπ 1π 2π ... 1−mπ mπ 1π

 1+jj
d ππ

21ππd 32ππd ... mm
d ππ 1−

1ππm

d

() =xF =+∑
= + 11 1 ππππ m

m

j jj dd +
21ππd +

32ππd ... +
− mm

d ππ 1 1ππm
d

Table 1. Solution Representation

 Travelling Salesman Problem

100

 ()()()111
12 ,, −−−⊕⊕⊕= kk

i
k
i

k
i gpxFwCRcCRcx ρ (5)

The update equation (5) consists of three components: The first component is
()1−⊕= k

i
k
i xFwa ρ , which represents the velocity of the particle. In the component

()1−⊕= k
i

k
i xFwa ρ , ρF represents the mutation or perturbation operator with the mutation

strength of ρ and the mutation probability of w . In other words, a uniform random number
r is generated between 0 and 1. If r is less than w then the mutation operator is applied to
generate a perturbed particle by ()1−= k

i
k
i xFa ρ , otherwise current particle is mutated as

()1−= k
i

k
i xinserta . In addition, the mutation strength d is the degree of perturbation, i.e.,

single insert move or double insert move or some constructive heuristics generating distinct
solutions and so on. In this paper, we employ the destruction and construction (DC)
procedure of the IG algorithm in the mutation phase.
The second component is ()1

1 , −⊕= k
i

k
i

k
i paCRcb , which is the “cognition” part of the particle

representing the private thinking of the particle itself. In the component
()1

1 , −⊕= k
i

k
i

k
i pbCRcb , CR represents the crossover operator with the probability of 1c .

Note that k
ia and 1−k

ip will be the first and second parents for the crossover operator,

respectively. It results either in ()1, −= k
i

k
id

k
i paFb or in k

i
k
i ab = depending on the choice of a

uniform random number.
The third component is ()kk

i
k
i gbCRcx ,2 ⊕= , which is the “social” part of the particle

representing the collaboration among particles. In the component ()1
2 , −⊕= kk

i
k
i gbCRcx ,

CR represents the crossover operator with the probability of 2c . Note that k
ib and 1−kg

will be the first and second parents for the crossover operator, respectively. It results either
in ()1, −= kk

i
k
i gbCRx or in k

i
k
i bx = depending on the choice of a uniform random number.

The basic idea behind the DPSO algorithm is to provide information exchange amongst the
population members, personal best solutions and the global best solution.
However, combining the particle with both personal best and then global best solution
through crossover operator may cause a particle losing some genetic information. Instead,
we propose a modification to our DPSO algorithm in this paper utilizing either the “social”
or “cognitive” genetic information during the particle update process. It is achieved as
follows:

⎪⎩

⎪
⎨
⎧ <

= −

−

elsegaCR
crifpaCR

x kk
i

k
i

k
ik

i),(
),(

1
1

1

 (6)

In other words, after mutation operator, the particle is updated by recombining the
temporary mutated individual with either the personal best or global best solution
depending on a search directing probability of 1c . For the DPSO algorithm, the gbest (global
neighborhood) model of Kennedy et al. [22] was followed. The pseudo code of the DPSO
algorithm with the local search is given in Fig. 1.

A Modified Discrete Particle Swarm Optimization Algorithm
for the Generalized Traveling Salesman Problem

101

Procedure DPSO
Initialize parameters
Initialize particles of population
Evaluate particles of population
Apply local search to population individuals %Optional
While (not termination) Do
 Find personal best
 Find global best
 Update particles of population
 Evaluate particles of population
 Apply local search to population individuals %Optional
Endwhile
Return Global best
Endprocedure

Fig. 1. Generic Outline of DPSO Algorithm with Local Search.

2.1 Solution representation
We employ a path representation for the GTSP in this paper. In the path representation,
each consecutive node is listed in order. An advantage of this representation is due to its
simplicity in objective function evaluation since the total cost of a path can easily be
calculated by summing the costs (distances) of each pair of adjacent nodes. However, a
distadvantge of this representation is due to the fact that there is no quarantee that a
randomly selected solution will be a valid GTSP tour because there is no quarantee that
each cluster is represented exactly once in the path without some repair procedures. In order
to handle the decision of which node should be chosen from a given cluster in the GTSP
solution, we include both cluster and tour information in solutions. In other words, a GTSP
solution consists of both an array of permutation of clusters (jn) and an array of nodes (jπ)
to be visited in m dimensions/clusters. In this way, each solution is guaranteed to be a GTSP
solution. The solution representation together with the necessary distance information for
calculating the objective function value ()xF of the solution x is illustrated in Table 1 where

1+jjd ππ shows the distance from node jπ to node 1+jπ . The initial solution is constructed in

such a way that first a permutation of clusters is determined randomly, then since each
cluster contains one or more nodes, a tour is established by randomly choosing a single
node from each corresponding cluster. By including cluster information in solution
representation, which node must be visited in a tour can be determined easily with either a
random selection or a systematic way. For example, in the pair ()jjn π, , jn stands for the
cluster in the jth dimension whereas jπ represents the node to be visited from cluster jn .

 j 1 2 ... m-1 m 1
jn 1n 2n ... 1−mn mn 1n

x jπ 1π 2π ... 1−mπ mπ 1π

 1+jj
d ππ

21ππd 32ππd ... mm
d ππ 1−

1ππm

d

() =xF =+∑
= + 11 1 ππππ m

m

j jj dd +
21ππd +

32ππd ... +
− mm

d ππ 1 1ππm
d

Table 1. Solution Representation

 Travelling Salesman Problem

102

As illustrated in Table 1, the objective function value of a solution x is the total tour length
and given by

 () ∑ +=
−

=
+

1

1 11

m

j mjj
ddxF ππππ (1)

For example, consider a GTSP instance of 11EIL51 from TSPLIB library [27], which has fifty
one nodes divided into eleven clusters. So the clusters are { }41,40,191 =N , { }36,35,20,32 =N ,

{ }43,243 =N , { }39,334 =N , { }5 11,12,27,32, 46,47,51 ,N = { }6 2,16,21, 29,34,50 ,N =

{ }7 8, 22,26, 28,31 ,N = { }8 13,14,18,25 ,N = { }9 4,15,17,37, 42, 44,45 ,N =
{ }48,23,7,6,110 =N , and { }49,38,30,10,9,511 =N . Table 2 illustrates a random GTSP solution

with the distance information
1+jj

d ππ and the objective function ()xF for the instance

11EIL51. In addition, the whole distance matrix and other detailed information about the
instance 11EIL51 can be found in http://www.ntu.edu.sg/home/EPNSugan.

 j 1 2 3 4 5 6 7 8 9 10 11 1
jn 10 5 7 2 6 11 4 9 1 8 3 10

x jπ 1 51 22 20 50 10 33 44 41 25 24 1

 1+jj
d ππ 51,1d 22,51d 20,22d 50,20d 10,50d 33,10d 44,33d 41,44d 25,41d 24,25d 1,24d

()xF 201 14 21 15 21 17 12 17 20 21 14 29

Table 2. GTSP Solution for Instance 11EIL51

As to the construction of the initial random solution as mentioned before, first a random
permutation of clusters is established; then a corresponding node is randomly chosen from
each cluster to establish the tour. To be more specific, for example, in Table 2, 52 =n refers
to the cluster 5N , and the corresponding node 512 =π refers to the node 51 chosen
randomly from the cluster 5N .

2.2 NEH heuristic
Due to the availability of the insertion methods that we have already proposed in [17, 18,
19], it is possible to apply the NEH heuristic of Nawaz et al. [28] to the GTSP. Without
considering cluster information for simplicity, the NEH heuristic for the GTSP can be
summarized as follows:
1. Determine an initial tour of nodes. Let this tour be x .
2. The first two nodes (that is, 1π and 2π) are chosen and two possible partial tours of

these two nodes are evaluated. Note that since a tour must be Hamiltanion cycle, partial
tours will be evaluated with the first node being the last node, too. As an example,
partial tours, ()121 ,, πππ and ()212 ,, πππ are evaluated.

3. Repeat the following steps until all nodes are inserted. In the kth step, node kπ at
position k is taken and tentatively inserted into all the possible k positions of the
partial tour that are already partially completed. Select these k tentative partial tours

A Modified Discrete Particle Swarm Optimization Algorithm
for the Generalized Traveling Salesman Problem

103

that results in the minimum objective function value or a cost function suitably
predefined.

To picture out how the NEH heuristic can be adopted for the GTSP, consider a solution
with five nodes as { }5,2,4,1,3=x . The following example illustrates the implementation of
the NEH heuristic for the GTSP:
1. Current solution is { }3,1,4,2,5 .x =
2. Evaluate the first two nodes as follows: { }3,1,3 and { }1,3,1 . Assume that the first partial

tour has a better objective function value than the second one. So the current partial
tour will be { }3,1 .

3. Insertions:
• Insert node 4 into three possible positions of the current partial tour as follows:

{ }4,1,3,4 , { }3,1,4,3 and { }3,4,1,3 . Assume that the best objective function value is with
the partial tour { }3,1,4,3 . So the current partial tour will be { }1,4,3 .

• Next, insert node 2 into four possible positions of the current partial tour as
follows: { }2,1,4,3,2 , { }3,1,4,2,3 , { }3,1,2,4,3 and { }3,2,1,4,3 . Assume that the best
objective function value is with the partial tour { }3,1,4,2,3 . So the current partial
tour will be { }1,4,2,3 .

• Finally, insert node 5 into five possible positions of the current partial tour as
follows: { }5,1,4,2,3,5 , { }3,1,4,2,5,3 , { }3,1,4,5,2,3 , { }3,1,5,4,2,3 and { }3,5,1,4,2,3 . Assume
that the best objective function value is with the partial tour { }3,1,5,4,2,3 . So the final
complete tour will be { }1,5,4,2,3=x .

2.3 Destruction and construction procedure
We employ the destruction and construction (DC) procedure of the iterated greedy (IG)
algorithm in [29] in the DPSO algorithm. In the destruction step, a given number d of
nodes, randomly chosen and without repetition, are removed from the solution. This results
in two partial solutions. The first one with the size d of nodes is called Rx and includes the
removed nodes in the order where they are removed. The second one with the size dm − of
nodes is the original one without the removed nodes, which is called Dx . It should be
pointed out that we consider each corresponding cluster when the destruction and
construction procedures are carried out in order to keep the feasibility of the GTSP tour.
Note that the perturbation scheme is embedded in the destruction phase where p nodes
from Rx are randomly chosen without repetition and they are replaced by some other nodes
from the corresponding clusters.
The construction phase requires a constructive heuristic procedure. We employ the NEH
heuristic described in the previous section. In order to reinsert the set Rx into the
destructed solution Dx in a greedy manner, the first node R

1π in Rx is inserted into all

possible 1+− dm positions in the destructed solution Dx generating 1+− dm partial
solutions. Among these 1+− dm partial solutions including node R

1π , the best partial
solution with the minimum tour length is chosen and kept for the next iteration. Then the

 Travelling Salesman Problem

102

As illustrated in Table 1, the objective function value of a solution x is the total tour length
and given by

 () ∑ +=
−

=
+

1

1 11

m

j mjj
ddxF ππππ (1)

For example, consider a GTSP instance of 11EIL51 from TSPLIB library [27], which has fifty
one nodes divided into eleven clusters. So the clusters are { }41,40,191 =N , { }36,35,20,32 =N ,

{ }43,243 =N , { }39,334 =N , { }5 11,12,27,32, 46,47,51 ,N = { }6 2,16,21, 29,34,50 ,N =

{ }7 8, 22,26, 28,31 ,N = { }8 13,14,18,25 ,N = { }9 4,15,17,37, 42, 44,45 ,N =
{ }48,23,7,6,110 =N , and { }49,38,30,10,9,511 =N . Table 2 illustrates a random GTSP solution

with the distance information
1+jj

d ππ and the objective function ()xF for the instance

11EIL51. In addition, the whole distance matrix and other detailed information about the
instance 11EIL51 can be found in http://www.ntu.edu.sg/home/EPNSugan.

 j 1 2 3 4 5 6 7 8 9 10 11 1
jn 10 5 7 2 6 11 4 9 1 8 3 10

x jπ 1 51 22 20 50 10 33 44 41 25 24 1

 1+jj
d ππ 51,1d 22,51d 20,22d 50,20d 10,50d 33,10d 44,33d 41,44d 25,41d 24,25d 1,24d

()xF 201 14 21 15 21 17 12 17 20 21 14 29

Table 2. GTSP Solution for Instance 11EIL51

As to the construction of the initial random solution as mentioned before, first a random
permutation of clusters is established; then a corresponding node is randomly chosen from
each cluster to establish the tour. To be more specific, for example, in Table 2, 52 =n refers
to the cluster 5N , and the corresponding node 512 =π refers to the node 51 chosen
randomly from the cluster 5N .

2.2 NEH heuristic
Due to the availability of the insertion methods that we have already proposed in [17, 18,
19], it is possible to apply the NEH heuristic of Nawaz et al. [28] to the GTSP. Without
considering cluster information for simplicity, the NEH heuristic for the GTSP can be
summarized as follows:
1. Determine an initial tour of nodes. Let this tour be x .
2. The first two nodes (that is, 1π and 2π) are chosen and two possible partial tours of

these two nodes are evaluated. Note that since a tour must be Hamiltanion cycle, partial
tours will be evaluated with the first node being the last node, too. As an example,
partial tours, ()121 ,, πππ and ()212 ,, πππ are evaluated.

3. Repeat the following steps until all nodes are inserted. In the kth step, node kπ at
position k is taken and tentatively inserted into all the possible k positions of the
partial tour that are already partially completed. Select these k tentative partial tours

A Modified Discrete Particle Swarm Optimization Algorithm
for the Generalized Traveling Salesman Problem

103

that results in the minimum objective function value or a cost function suitably
predefined.

To picture out how the NEH heuristic can be adopted for the GTSP, consider a solution
with five nodes as { }5,2,4,1,3=x . The following example illustrates the implementation of
the NEH heuristic for the GTSP:
1. Current solution is { }3,1,4,2,5 .x =
2. Evaluate the first two nodes as follows: { }3,1,3 and { }1,3,1 . Assume that the first partial

tour has a better objective function value than the second one. So the current partial
tour will be { }3,1 .

3. Insertions:
• Insert node 4 into three possible positions of the current partial tour as follows:

{ }4,1,3,4 , { }3,1,4,3 and { }3,4,1,3 . Assume that the best objective function value is with
the partial tour { }3,1,4,3 . So the current partial tour will be { }1,4,3 .

• Next, insert node 2 into four possible positions of the current partial tour as
follows: { }2,1,4,3,2 , { }3,1,4,2,3 , { }3,1,2,4,3 and { }3,2,1,4,3 . Assume that the best
objective function value is with the partial tour { }3,1,4,2,3 . So the current partial
tour will be { }1,4,2,3 .

• Finally, insert node 5 into five possible positions of the current partial tour as
follows: { }5,1,4,2,3,5 , { }3,1,4,2,5,3 , { }3,1,4,5,2,3 , { }3,1,5,4,2,3 and { }3,5,1,4,2,3 . Assume
that the best objective function value is with the partial tour { }3,1,5,4,2,3 . So the final
complete tour will be { }1,5,4,2,3=x .

2.3 Destruction and construction procedure
We employ the destruction and construction (DC) procedure of the iterated greedy (IG)
algorithm in [29] in the DPSO algorithm. In the destruction step, a given number d of
nodes, randomly chosen and without repetition, are removed from the solution. This results
in two partial solutions. The first one with the size d of nodes is called Rx and includes the
removed nodes in the order where they are removed. The second one with the size dm − of
nodes is the original one without the removed nodes, which is called Dx . It should be
pointed out that we consider each corresponding cluster when the destruction and
construction procedures are carried out in order to keep the feasibility of the GTSP tour.
Note that the perturbation scheme is embedded in the destruction phase where p nodes
from Rx are randomly chosen without repetition and they are replaced by some other nodes
from the corresponding clusters.
The construction phase requires a constructive heuristic procedure. We employ the NEH
heuristic described in the previous section. In order to reinsert the set Rx into the
destructed solution Dx in a greedy manner, the first node R

1π in Rx is inserted into all

possible 1+− dm positions in the destructed solution Dx generating 1+− dm partial
solutions. Among these 1+− dm partial solutions including node R

1π , the best partial
solution with the minimum tour length is chosen and kept for the next iteration. Then the

 Travelling Salesman Problem

104

second node R
2π in Rx is considered and so on until Rx is empty or a final solution is

obtained. Hence Dx is again of size m .
To figure out how DC can be adopted for the GTSP, consider a solution with five nodes as

{ }5,2,4,1,3=x . Again, we do not consider cluster information for simplicity:
1. Current solution is { }3,1,4,2,5 .x =
2. Remove nodes 1 and 5 randomly from the current solution to establish two partial

solutions as { }2,4,3=Dx and { }5,1=Rx .

3. Insert node 1 into four possible positions of the current partial tour { }2,4,3=Dx as
follows: { }1,2,4,3,1 , { }3,2,4,1,3 , { }3,2,1,4,3 and { }3,1,2,4,3 . Assume that the best
objective function value is with the partial tour { }3,2,1,4,3 . So the current partial tour

will be { }2,1,4,3=Dx .

4. Next, insert node 5 into five possible positions of the current partial tour { }2,1,4,3=Dx
as follows: { }5,2,1,4,3,5 , { }3,2,1,4,5,3 , { }3,2,1,5,4,3 , { }3,2,5,1,4,3 and { }3,5,2,1,4,3 . Assume
that the best objective function value is with the final tour { }5,2,1,4,3,5 . So the final
complete tour will be { }2,1,4,3,5=x .

In order to highlight the difference between the NEH insertion and the one proposed in by
Rosenkrantz et al. [30], we give the same example as follows:
1. Current solution is { }5,2,4,1,3=x
2. Revove nodes 1 and 5 randomly from the current solution to establish two partial

solutions as { }2,4,3=Dx and { }5,1=Rx .

3. Insert node 1 into two possible positions of the current partial tour { }2,4,3=Dx as

follows: { }3,2,4,1,3 and { }3,2,1,4,3 because there are only two edges in Dx . Assume that
the best objective function value is with the partial tour { }3,2,1,4,3 . So the current partial

tour will be { }2,1,4,3=Dx .

4. Next, insert node 5 into three possible positions of the current partial tour { }2,1,4,3=Dx
as follows: { }2,1,4,5,3 , { }3,2,1,5,4,3 and { }3,2,5,1,4,3 because there are only three edges in

Dx . Assume that the best objective function value is with the final tour { }2,1,4,5,3 . So the
final complete tour will be { }3,2,1,4,5,3

As seen in the examples above, the NEH heuristic considers ()1+n insertions at each step
whereas the Rosenkrantz et al. [30] makes ()1−n insertions in order to find a complete tour.

2.4 Insertion methods
The following insertion methods are proposed by the authors in [19]. These greedy speed-
up methods are based on the insertion of the pair ()R

k
R
kn π, into 1+− dm possible positions

of a partial or destructed solution xd. Note that as an example only a single pair is
considered to be removed from the current solution, perturbed with another node from the
same cluster and reinserted into the partial solution. For this reason, the destruction size and

A Modified Discrete Particle Swarm Optimization Algorithm
for the Generalized Traveling Salesman Problem

105

the perturbation strength are equal to one (i.e., 1=== kdρ). As a matter of fact, the

insertion of node R
kπ into 1−− dm possible positions is actually proposed by Rosenkrantz

et al. [30] for the TSP. Snyder & Daskin [16] have adopted it for the GTSP. It is based on the
removal and the insertion of node R

kπ in an edge ()D
v

D
u ππ , of a partial tour. However, it

avoids the insertion of node R
kπ on the first and the last position of any given partial tour.

We illustrate these possible three insertions using the partial solution Dx of the instance
11EIL51 having eleven clusters and nodes. Suppose that the pair ()51,5 is removed from the
solution in Table 1; perturbed with node 27 from the same cluster 5N . So the current partial
solution after removal and the pair to be reinserted are given in Tables 3A and 3B,
respectively.

 j 1 2 3 4 5 6 7 8 9 10 1
D
jn 10 7 2 6 11 4 9 1 8 3 10

Dx D
jπ 1 22 20 50 10 33 44 41 25 24 1

 D
j

D
j

d
1+ππ 22,1d 20,22d 50,20d 10,50d 33,10d 44,33d 41,44d 25,41d 24,25d 1,24d

()DxF 173 7 15 21 17 12 17 20 21 14 29

Table 3A. Current Partial Solution

 k 1
R
kn 5

Rx R
kπ 27

Table 3B. Partial Solution to Be Inserted

A. Insertion of pair (),R R
k kn π in the first position of the partial solution

a.
1

Remove D D
m

d
π π

=

b.
1

Add R D D R
k m k

d d
π π π π

= +

c. () () Add RemoveDF x F x= + −

Example A:

1
Remove D D

m
d
π π

=

10 1
Remove D Dd

π π
=

24,1Remove d=

1
Add R D D R

k m k
d d
π π π π

= +

1 1 10 1
Add R D D Rd d

π π π π
= +

27,1 24,27Add d d= +

() () Add RemoveDF x F x= + −

 Travelling Salesman Problem

104

second node R
2π in Rx is considered and so on until Rx is empty or a final solution is

obtained. Hence Dx is again of size m .
To figure out how DC can be adopted for the GTSP, consider a solution with five nodes as

{ }5,2,4,1,3=x . Again, we do not consider cluster information for simplicity:
1. Current solution is { }3,1,4,2,5 .x =
2. Remove nodes 1 and 5 randomly from the current solution to establish two partial

solutions as { }2,4,3=Dx and { }5,1=Rx .

3. Insert node 1 into four possible positions of the current partial tour { }2,4,3=Dx as
follows: { }1,2,4,3,1 , { }3,2,4,1,3 , { }3,2,1,4,3 and { }3,1,2,4,3 . Assume that the best
objective function value is with the partial tour { }3,2,1,4,3 . So the current partial tour

will be { }2,1,4,3=Dx .

4. Next, insert node 5 into five possible positions of the current partial tour { }2,1,4,3=Dx
as follows: { }5,2,1,4,3,5 , { }3,2,1,4,5,3 , { }3,2,1,5,4,3 , { }3,2,5,1,4,3 and { }3,5,2,1,4,3 . Assume
that the best objective function value is with the final tour { }5,2,1,4,3,5 . So the final
complete tour will be { }2,1,4,3,5=x .

In order to highlight the difference between the NEH insertion and the one proposed in by
Rosenkrantz et al. [30], we give the same example as follows:
1. Current solution is { }5,2,4,1,3=x
2. Revove nodes 1 and 5 randomly from the current solution to establish two partial

solutions as { }2,4,3=Dx and { }5,1=Rx .

3. Insert node 1 into two possible positions of the current partial tour { }2,4,3=Dx as

follows: { }3,2,4,1,3 and { }3,2,1,4,3 because there are only two edges in Dx . Assume that
the best objective function value is with the partial tour { }3,2,1,4,3 . So the current partial

tour will be { }2,1,4,3=Dx .

4. Next, insert node 5 into three possible positions of the current partial tour { }2,1,4,3=Dx
as follows: { }2,1,4,5,3 , { }3,2,1,5,4,3 and { }3,2,5,1,4,3 because there are only three edges in

Dx . Assume that the best objective function value is with the final tour { }2,1,4,5,3 . So the
final complete tour will be { }3,2,1,4,5,3

As seen in the examples above, the NEH heuristic considers ()1+n insertions at each step
whereas the Rosenkrantz et al. [30] makes ()1−n insertions in order to find a complete tour.

2.4 Insertion methods
The following insertion methods are proposed by the authors in [19]. These greedy speed-
up methods are based on the insertion of the pair ()R

k
R
kn π, into 1+− dm possible positions

of a partial or destructed solution xd. Note that as an example only a single pair is
considered to be removed from the current solution, perturbed with another node from the
same cluster and reinserted into the partial solution. For this reason, the destruction size and

A Modified Discrete Particle Swarm Optimization Algorithm
for the Generalized Traveling Salesman Problem

105

the perturbation strength are equal to one (i.e., 1=== kdρ). As a matter of fact, the

insertion of node R
kπ into 1−− dm possible positions is actually proposed by Rosenkrantz

et al. [30] for the TSP. Snyder & Daskin [16] have adopted it for the GTSP. It is based on the
removal and the insertion of node R

kπ in an edge ()D
v

D
u ππ , of a partial tour. However, it

avoids the insertion of node R
kπ on the first and the last position of any given partial tour.

We illustrate these possible three insertions using the partial solution Dx of the instance
11EIL51 having eleven clusters and nodes. Suppose that the pair ()51,5 is removed from the
solution in Table 1; perturbed with node 27 from the same cluster 5N . So the current partial
solution after removal and the pair to be reinserted are given in Tables 3A and 3B,
respectively.

 j 1 2 3 4 5 6 7 8 9 10 1
D
jn 10 7 2 6 11 4 9 1 8 3 10

Dx D
jπ 1 22 20 50 10 33 44 41 25 24 1

 D
j

D
j

d
1+ππ 22,1d 20,22d 50,20d 10,50d 33,10d 44,33d 41,44d 25,41d 24,25d 1,24d

()DxF 173 7 15 21 17 12 17 20 21 14 29

Table 3A. Current Partial Solution

 k 1
R
kn 5

Rx R
kπ 27

Table 3B. Partial Solution to Be Inserted

A. Insertion of pair (),R R
k kn π in the first position of the partial solution

a.
1

Remove D D
m

d
π π

=

b.
1

Add R D D R
k m k

d d
π π π π

= +

c. () () Add RemoveDF x F x= + −

Example A:

1
Remove D D

m
d
π π

=

10 1
Remove D Dd

π π
=

24,1Remove d=

1
Add R D D R

k m k
d d
π π π π

= +

1 1 10 1
Add R D D Rd d

π π π π
= +

27,1 24,27Add d d= +

() () Add RemoveDF x F x= + −

 Travelling Salesman Problem

106

() 1,2427,241,271,2424,2525,4141,4444,3333,1010,5050,2020,2222,1 dddddddddddddxF −+++++++++++=

() 27,241,2724,2525,4141,4444,3333,1010,5050,2020,2222,1 dddddddddddxF ++++++++++=

 j 1 2 3 4 5 6 7 8 9 10 11 1

jn 5 10 7 2 6 11 4 9 1 8 3 5
x jπ 27 1 22 20 50 10 33 44 41 25 24 27

 1+jjd ππ 1,27d 22,1d 20,22d 50,20d 10,50d 33,10d 44,33d 41,44d 25,41d 24,25d 27,24d
()xF 174 8 7 15 21 17 12 17 20 21 14 22

Table 3C. Insertion of pair () ()27,5, =R
k

R
kn π into the first position of partial solution

B. Insertion of pair (),R R
k kn π in the last position of partial solution

a.
1

Remove D D
m

d
π π

=

b.
1

Add D R R D
m k k

d d
π π π π

= +

c. () () Add RemoveDF x F x= + −

Example B:

1
Remove D D

m
d
π π

=

10 1
Remove D Dd

π π
=

24,1Remove d=

1
Add D R R D

m k k
d d
π π π π

= +

10 1 1 1
Add D R R Dd d

π π π π
= +

24,27 27,1Add d d= +

() () Add RemoveDF x F x= + −

() 1,241,2727,241,2424,2525,4141,4444,3333,1010,5050,2020,2222,1 dddddddddddddxF −+++++++++++=

() 1,2727,2424,2525,4141,4444,3333,1010,5050,2020,2222,1 dddddddddddxF ++++++++++=

 j 1 2 3 4 5 6 7 8 9 10 11 1

jn 10 7 2 6 11 4 9 1 8 3 5 10
x jπ 1 22 20 50 10 33 44 41 25 24 27 1

 1+jjd ππ 22,1d 20,22d 50,20d 10,50d 33,10d 44,33d 41,44d 25,41d 24,25d 27,24d 1,27d
()xF 174 7 15 21 17 12 17 20 21 14 22 8

Table 3D. Insertion of the pair () ()27,5, =R
k

R
kn π into the last position of partial solution

A Modified Discrete Particle Swarm Optimization Algorithm
for the Generalized Traveling Salesman Problem

107

Note that even though both tours generated in the examples A and B are different, the
insertion of pair () ()27,5, =R

k
R
kn π into the first and last positions of the partial solution Dx is

equivalent to each other in terms of distance information that they have. In addition, note
that both solutions are optimal.
C. Insertion of pair (),R R

k kn π between the edge (),D D
u un π and (),D D

v vn π

a. Remove D D
u v

d
π π

=

b. Add D R R D
u k k v

d d
π π π π

= +

c. () () Add RemoveDF x F x= + −

Example C:
6=u
7=v

Remove D D
u v

d
π π

=

6 7
Remove D Dd

π π
=

33,44Remove d=

Add D R R D
u k k v

d d
π π π π

= +

6 1 1 7
Add D R R Dd d

π π π π
= +

33,27 27,44Add d d= +

() () Add RemoveDF x F x= + −

() 44,3344,2727,331,2424,2525,4141,4444,3333,1010,5050,2020,2222,1 dddddddddddddxF −+++++++++++=

() 44,2727,331,2424,2525,4141,4433,1010,5050,2020,2222,1 dddddddddddxF ++++++++++=

 j 1 2 3 4 5 6 7 8 9 10 11 1
jn 10 7 2 6 11 4 5 9 1 8 3 10

x jπ 1 22 20 50 10 33 27 44 41 25 24 1

 1+jjd ππ 22,1d 20,22d 50,20d 10,50d 33,10d 27,33d 44,27d 41,44d 25,41d 24,25d 1,24d
()xF 223 7 15 21 17 12 41 33 20 21 14 22

Table 3E. Insertion of the pair () ()27,5, =R
k

R
kn π between pairs () ()33,4, =D

u
D
un π and () ()44,9, =D

v
D
vn π .

It is important to note that above insertion methods, especially insertion to the first and the
last nodes, make the NEH heuristic applicable in the destruction and construction procedure
to establish a final complete solution. For this reason, the insertion methods given above are
neccessary for an IG algorithm to solve the GTSP.

2.5 Hybridization with local search
The hybridization of DPSO algorithm with local search heuristics is trivial. It can be
achieved through the improvement of each solution generated in the construction phase by
some local search methods. As improvement heuristics, a simple local search (LS) method

 Travelling Salesman Problem

106

() 1,2427,241,271,2424,2525,4141,4444,3333,1010,5050,2020,2222,1 dddddddddddddxF −+++++++++++=

() 27,241,2724,2525,4141,4444,3333,1010,5050,2020,2222,1 dddddddddddxF ++++++++++=

 j 1 2 3 4 5 6 7 8 9 10 11 1

jn 5 10 7 2 6 11 4 9 1 8 3 5
x jπ 27 1 22 20 50 10 33 44 41 25 24 27

 1+jjd ππ 1,27d 22,1d 20,22d 50,20d 10,50d 33,10d 44,33d 41,44d 25,41d 24,25d 27,24d
()xF 174 8 7 15 21 17 12 17 20 21 14 22

Table 3C. Insertion of pair () ()27,5, =R
k

R
kn π into the first position of partial solution

B. Insertion of pair (),R R
k kn π in the last position of partial solution

a.
1

Remove D D
m

d
π π

=

b.
1

Add D R R D
m k k

d d
π π π π

= +

c. () () Add RemoveDF x F x= + −

Example B:

1
Remove D D

m
d
π π

=

10 1
Remove D Dd

π π
=

24,1Remove d=

1
Add D R R D

m k k
d d
π π π π

= +

10 1 1 1
Add D R R Dd d

π π π π
= +

24,27 27,1Add d d= +

() () Add RemoveDF x F x= + −

() 1,241,2727,241,2424,2525,4141,4444,3333,1010,5050,2020,2222,1 dddddddddddddxF −+++++++++++=

() 1,2727,2424,2525,4141,4444,3333,1010,5050,2020,2222,1 dddddddddddxF ++++++++++=

 j 1 2 3 4 5 6 7 8 9 10 11 1

jn 10 7 2 6 11 4 9 1 8 3 5 10
x jπ 1 22 20 50 10 33 44 41 25 24 27 1

 1+jjd ππ 22,1d 20,22d 50,20d 10,50d 33,10d 44,33d 41,44d 25,41d 24,25d 27,24d 1,27d
()xF 174 7 15 21 17 12 17 20 21 14 22 8

Table 3D. Insertion of the pair () ()27,5, =R
k

R
kn π into the last position of partial solution

A Modified Discrete Particle Swarm Optimization Algorithm
for the Generalized Traveling Salesman Problem

107

Note that even though both tours generated in the examples A and B are different, the
insertion of pair () ()27,5, =R

k
R
kn π into the first and last positions of the partial solution Dx is

equivalent to each other in terms of distance information that they have. In addition, note
that both solutions are optimal.
C. Insertion of pair (),R R

k kn π between the edge (),D D
u un π and (),D D

v vn π

a. Remove D D
u v

d
π π

=

b. Add D R R D
u k k v

d d
π π π π

= +

c. () () Add RemoveDF x F x= + −

Example C:
6=u
7=v

Remove D D
u v

d
π π

=

6 7
Remove D Dd

π π
=

33,44Remove d=

Add D R R D
u k k v

d d
π π π π

= +

6 1 1 7
Add D R R Dd d

π π π π
= +

33,27 27,44Add d d= +

() () Add RemoveDF x F x= + −

() 44,3344,2727,331,2424,2525,4141,4444,3333,1010,5050,2020,2222,1 dddddddddddddxF −+++++++++++=

() 44,2727,331,2424,2525,4141,4433,1010,5050,2020,2222,1 dddddddddddxF ++++++++++=

 j 1 2 3 4 5 6 7 8 9 10 11 1
jn 10 7 2 6 11 4 5 9 1 8 3 10

x jπ 1 22 20 50 10 33 27 44 41 25 24 1

 1+jjd ππ 22,1d 20,22d 50,20d 10,50d 33,10d 27,33d 44,27d 41,44d 25,41d 24,25d 1,24d
()xF 223 7 15 21 17 12 41 33 20 21 14 22

Table 3E. Insertion of the pair () ()27,5, =R
k

R
kn π between pairs () ()33,4, =D

u
D
un π and () ()44,9, =D

v
D
vn π .

It is important to note that above insertion methods, especially insertion to the first and the
last nodes, make the NEH heuristic applicable in the destruction and construction procedure
to establish a final complete solution. For this reason, the insertion methods given above are
neccessary for an IG algorithm to solve the GTSP.

2.5 Hybridization with local search
The hybridization of DPSO algorithm with local search heuristics is trivial. It can be
achieved through the improvement of each solution generated in the construction phase by
some local search methods. As improvement heuristics, a simple local search (LS) method

 Travelling Salesman Problem

108

and the 2-opt heuristic [31] were separately applied to the reconstructed solution. Note that
the 2-opt heuristic is employed with the first improvement strategy in this study. Regarding
the LS heuristic, we choose a simple one that is again based on the DC procedure. In other
words, the destruction and construction procedures with the destruction size and the
perturbation strength equal to one (i.e., 1== dρ) are used in the LS procedure whereas the
LS size is fixed at 5×= nclusterw in order to intensify the search on the local minima. We will
denote the hybrid DPSO algorithm with both local search improvement heuristics as
mDPSO from now on. The pseudo code of the LS procedure is given in Fig. 2 whereas the
proposed mDPSO algorithm is given in Fig. 3.

()xGTSPLSprocedure _
 1:=h
 () dowhwhile ≤

 ()xDCx =:* % d=1 and p=1
 () ()() thenxfxfif ≤*

 *: xx =
 1:=h
 else
 1: += hh
 endif
 endwhile
 xreturn

reendprocedu

Fig. 2. Local Search Employed

_procedure DPSO GTSP
Set 1c , w , NP , maxt

1000/: ntGetTickCout A =

()00
2

0
1 ,..,, NPxxx=Π %NEH_RANDOM population individuals and evaluate

()
NPi

ixf
,..,2,1:

0

=
 %Evaluate population

NPi
ii xp
,..,2,1:

00

=
= %Initialize bestsofar population

()
NPi

ii xopttwox
,..,2,1

00 _
=

= %Apply two-opt

()
NPi
ii xLSx

,..,2,1

00

=
= %Apply LS local search

(){ }
NPi

ixfg
,..,2,1

00 minarg
=

= %Find gbest solution

0: gxB = %Set bestsofar
1:=k

1000/: ntGetTickCoutB =

A Modified Discrete Particle Swarm Optimization Algorithm
for the Generalized Traveling Salesman Problem

109

()() dotttwhile AB max<−

 ()
NPi

k
id

k
i xDCwa

,..,2,1

1

=

−⊕= ρ %Temporary population individual by destruction and

 construction
 () (){ }

NPi

k
iBB afxfx

,..,2,1:
,minarg

=
= %Update bestsofar

 ()
NPi

kkk
i

k
i gpaCRcx

,..,2,1:

11
1 ,,

=

−−⊕= %Update population individual by Eq. [6]

 ()
NPi

k
ixf

,..,2,1:=
 %Evaluate population

 () (){ }
NPi

k
i

k
i

k
i pfxfp

,..,2,1:

1,minarg
=

−= %Update personal best

 ()
NPi

k
i

k
i xopttwox

,..,2,1
_
=

= %Apply two-opt

 ()
NPi

k
i

k
i xLSx

,..,2,1=
= %Apply LS local search

 () (){ }
NPi

k
i

k
i

k
i gfpfg

,..,2,1:

1,minarg
=

−= %Update global best solution

 () (){ }k
BB gfxfx ,minarg= %Update bestsofar

1: += kk
endwhile

Bxreturn
reendprocedu

Fig. 3. DPSO Algorithm with Improvement Heuristics.

2.6 Crossover operator
In this paper, the traditional two-cut crossover operator is used in the mDPSO algorithm.
The two-cut crossover operator is is illustrated in Table 4.

j 1 2 3 4 5 6 7 8 9 10 11 1
jn 10 5 7 2 6 4 11 9 8 1 3 10

1P
jπ 1 51 22 20 50 33 10 44 25 41 24 1

jn 10 6 7 11 5 1 2 9 8 4 3 10
2P

jπ 1 50 22 10 27 41 20 44 25 33 24 1
j 1 2 3 4 5 6 7 8 9 10 11 1

jn 10 7 5 1 6 4 11 2 9 8 3 10
1O

jπ 1 22 27 41 50 33 10 20 44 25 24 1
Table 4. Two-Cut Crossover Operator.

2.7 Insert mutation operator
The insert mutation operator is basically related to first determining a cluster randomly,
then removing the corresponding node from the tour of the individual, and replacing that

 Travelling Salesman Problem

108

and the 2-opt heuristic [31] were separately applied to the reconstructed solution. Note that
the 2-opt heuristic is employed with the first improvement strategy in this study. Regarding
the LS heuristic, we choose a simple one that is again based on the DC procedure. In other
words, the destruction and construction procedures with the destruction size and the
perturbation strength equal to one (i.e., 1== dρ) are used in the LS procedure whereas the
LS size is fixed at 5×= nclusterw in order to intensify the search on the local minima. We will
denote the hybrid DPSO algorithm with both local search improvement heuristics as
mDPSO from now on. The pseudo code of the LS procedure is given in Fig. 2 whereas the
proposed mDPSO algorithm is given in Fig. 3.

()xGTSPLSprocedure _
 1:=h
 () dowhwhile ≤

 ()xDCx =:* % d=1 and p=1
 () ()() thenxfxfif ≤*

 *: xx =
 1:=h
 else
 1: += hh
 endif
 endwhile
 xreturn

reendprocedu

Fig. 2. Local Search Employed

_procedure DPSO GTSP
Set 1c , w , NP , maxt

1000/: ntGetTickCout A =

()00
2

0
1 ,..,, NPxxx=Π %NEH_RANDOM population individuals and evaluate

()
NPi

ixf
,..,2,1:

0

=
 %Evaluate population

NPi
ii xp
,..,2,1:

00

=
= %Initialize bestsofar population

()
NPi

ii xopttwox
,..,2,1

00 _
=

= %Apply two-opt

()
NPi
ii xLSx

,..,2,1

00

=
= %Apply LS local search

(){ }
NPi

ixfg
,..,2,1

00 minarg
=

= %Find gbest solution

0: gxB = %Set bestsofar
1:=k

1000/: ntGetTickCoutB =

A Modified Discrete Particle Swarm Optimization Algorithm
for the Generalized Traveling Salesman Problem

109

()() dotttwhile AB max<−

 ()
NPi

k
id

k
i xDCwa

,..,2,1

1

=

−⊕= ρ %Temporary population individual by destruction and

 construction
 () (){ }

NPi

k
iBB afxfx

,..,2,1:
,minarg

=
= %Update bestsofar

 ()
NPi

kkk
i

k
i gpaCRcx

,..,2,1:

11
1 ,,

=

−−⊕= %Update population individual by Eq. [6]

 ()
NPi

k
ixf

,..,2,1:=
 %Evaluate population

 () (){ }
NPi

k
i

k
i

k
i pfxfp

,..,2,1:

1,minarg
=

−= %Update personal best

 ()
NPi

k
i

k
i xopttwox

,..,2,1
_
=

= %Apply two-opt

 ()
NPi

k
i

k
i xLSx

,..,2,1=
= %Apply LS local search

 () (){ }
NPi

k
i

k
i

k
i gfpfg

,..,2,1:

1,minarg
=

−= %Update global best solution

 () (){ }k
BB gfxfx ,minarg= %Update bestsofar

1: += kk
endwhile

Bxreturn
reendprocedu

Fig. 3. DPSO Algorithm with Improvement Heuristics.

2.6 Crossover operator
In this paper, the traditional two-cut crossover operator is used in the mDPSO algorithm.
The two-cut crossover operator is is illustrated in Table 4.

j 1 2 3 4 5 6 7 8 9 10 11 1
jn 10 5 7 2 6 4 11 9 8 1 3 10

1P
jπ 1 51 22 20 50 33 10 44 25 41 24 1

jn 10 6 7 11 5 1 2 9 8 4 3 10
2P

jπ 1 50 22 10 27 41 20 44 25 33 24 1
j 1 2 3 4 5 6 7 8 9 10 11 1

jn 10 7 5 1 6 4 11 2 9 8 3 10
1O

jπ 1 22 27 41 50 33 10 20 44 25 24 1
Table 4. Two-Cut Crossover Operator.

2.7 Insert mutation operator
The insert mutation operator is basically related to first determining a cluster randomly,
then removing the corresponding node from the tour of the individual, and replacing that

 Travelling Salesman Problem

110

particular node with another node from the same cluster randomly. As shown in Table 5,
the cluster 52 =n is randomly chosen and its corresponding node 512 =π is replaced by the
node 272 =π from the same cluster 52 =n using the GTSP instance of 11EIL51.

 j 1 2 3 4 5 6 7 8 9 10 11 1
jn 10 5 7 2 6 4 11 9 8 1 3 10

x
jπ 1 51 22 20 50 33 10 44 25 41 24 1

j 1 2 3 4 5 6 7 8 9 10 11 1
jn 10 5 7 2 6 4 11 9 8 1 3 10

x
jπ 1 27 22 20 50 33 10 44 25 41 24 1

Table 5. Insert Mutation Operator

3. Computational results
We consider RKGA and mrOXGA for comparison in this paper since they produced some
of the best heuristic results for the GTSP. The first benchmark set contains between 51 (11)
and 442 (89) nodes (clusters) and the optimal objective function value for each of the
problems is available. The second benchmark set contains between 493 (99) and 1084 (217)
nodes. Since optimal solutions are not available for larger instances, we compare our results
to Silberholz & Golden [20]. The DPSO algorithm was coded in Visual C++ and run on an
Intel P IV 3.20GHz with 512MB memory. The population size was fixed at 30. The initial
population is constructed randomly and then the NEH heuristic was applied to each
random solution. Destruction size and perturbation strength were taken as 5 and 3,
respectively. The traditional two-cut crossover is employed where the search direction and
mutation probabilities are taken as 5.01 =c and 9.0=w , respectively. The DPSO algorithm
was terminated when the best so far solution was not improved after 50 consecutive
generations. Five runs were carried out for each problem instance to report the statistics
based on the relative percent deviations (Δ) from optimal solutions. For the computational
effort consideration, avgt denotes average CPU time in seconds to reach the best solution
found so far during the run, i.e., the point of time that the best so far solution does not
improve thereafter. optn stands for the number of optimal solutions found by each
algorithm whereas avgf represents the average objective function values out of five runs.
We compare the mDPSO algorithm to two genetic algorithms, namely, RKGA by Snyder &
Daskin [16] and mrOXGA by Silberholz & Golden [20] where RKGA is re-implemented
under the same machine environment. Table 6 summarizes the solution quality in terms of
relative percent deviations from the optimal values and CPU time requirements for all three
algorithms. Note that our machine has a similar speed as Silberholz & Golden [20]. A two-
sided paired t-test which compares the results on Table 6 with a null hypothesis that the
algorithms were identical generated p-values of 0.167 and 0.009 for mDPSO vs. mrOXGA
and mDPSO vs. RKGA, suggesting near-identical results between mDPSO and mrOXGA.
On the other hand, the paired t-test confirms that the differences between mDPSO and
RKGA were significant on the behalf of mDPSO subject to the fact that RKGA was
computationally less expensive than both mDPSO and mrOXGA when solely the optimal
instances are considered.

A Modified Discrete Particle Swarm Optimization Algorithm
for the Generalized Traveling Salesman Problem

111

 mDPSO mrOXGA RKGA
Instance optn avgΔ avgt avgΔ avgt avgΔ avgt

11EIL51 5 0.00 0.10 0.00 0.26 0.00 0.08
14ST70 5 0.00 0.12 0.00 0.35 0.00 0.07
16EIL76 5 0.00 0.13 0.00 0.37 0.00 0.11
16PR76 5 0.00 0.17 0.00 0.45 0.00 0.16

20KROA100 5 0.00 0.24 0.00 0.63 0.00 0.25
20KROB100 5 0.00 0.23 0.00 0.60 0.00 0.22
20KROC100 5 0.00 0.23 0.00 0.62 0.00 0.23
20KROD100 5 0.00 0.24 0.00 0.67 0.00 0.43
20KROE100 5 0.00 0.23 0.00 0.58 0.00 0.15

20RAT99 5 0.00 0.21 0.00 0.50 0.00 0.24
20RD100 5 0.00 0.23 0.00 0.51 0.00 0.29
21EIL101 5 0.00 0.19 0.00 0.48 0.00 0.18
21LIN105 5 0.00 0.25 0.00 0.60 0.00 0.33
22PR107 5 0.00 0.23 0.00 0.53 0.00 0.20
25PR124 5 0.00 0.41 0.00 0.68 0.00 0.26

26BIER127 5 0.00 0.44 0.00 0.78 0.00 0.28
28PR136 5 0.00 0.52 0.00 0.79 0.16 0.36
29PR144 5 0.00 0.46 0.00 1.00 0.00 0.44

30KROA150 5 0.00 0.47 0.00 0.98 0.00 0.32
30KROB150 5 0.00 0.60 0.00 0.98 0.00 0.71

31PR152 5 0.00 1.38 0.00 0.97 0.00 0.38
32U159 5 0.00 0.64 0.00 0.98 0.00 0.55

39RAT195 5 0.00 0.99 0.00 1.37 0.00 1.33
40D198 5 0.00 1.77 0.00 1.63 0.07 1.47

40KROA200 5 0.00 1.11 0.00 1.66 0.00 0.95
40KROB200 5 0.00 2.44 0.05 1.63 0.01 1.29

45TS225 2 0.05 1.75 0.14 1.71 0.28 1.09
46PR226 5 0.00 0.74 0.00 1.54 0.00 1.09
53GIL262 5 0.00 4.76 0.45 3.64 0.55 3.05
53PR264 5 0.00 1.11 0.00 2.36 0.09 2.72
60PR299 1 0.07 5.66 0.05 4.59 0.16 4.08

64LIN318 5 0.00 5.72 0.00 8.08 0.54 5.39
80RD400 4 0.02 13.66 0.58 14.58 0.72 10.27
84FL417 4 0.00 13.06 0.04 8.15 0.06 6.18
88PR439 3 0.00 16.15 0.00 19.06 0.83 15.09

89PCB442 3 0.15 28.59 0.01 23.43 1.23 11.74
Avg 4.64 0.01 2.92 0.04 2.99 0.13 2.00

Machine P IV 3.20 GHz P IV 3.00 GHz

Table 6. Comparison for Optimal Instances

 Travelling Salesman Problem

110

particular node with another node from the same cluster randomly. As shown in Table 5,
the cluster 52 =n is randomly chosen and its corresponding node 512 =π is replaced by the
node 272 =π from the same cluster 52 =n using the GTSP instance of 11EIL51.

 j 1 2 3 4 5 6 7 8 9 10 11 1
jn 10 5 7 2 6 4 11 9 8 1 3 10

x
jπ 1 51 22 20 50 33 10 44 25 41 24 1

j 1 2 3 4 5 6 7 8 9 10 11 1
jn 10 5 7 2 6 4 11 9 8 1 3 10

x
jπ 1 27 22 20 50 33 10 44 25 41 24 1

Table 5. Insert Mutation Operator

3. Computational results
We consider RKGA and mrOXGA for comparison in this paper since they produced some
of the best heuristic results for the GTSP. The first benchmark set contains between 51 (11)
and 442 (89) nodes (clusters) and the optimal objective function value for each of the
problems is available. The second benchmark set contains between 493 (99) and 1084 (217)
nodes. Since optimal solutions are not available for larger instances, we compare our results
to Silberholz & Golden [20]. The DPSO algorithm was coded in Visual C++ and run on an
Intel P IV 3.20GHz with 512MB memory. The population size was fixed at 30. The initial
population is constructed randomly and then the NEH heuristic was applied to each
random solution. Destruction size and perturbation strength were taken as 5 and 3,
respectively. The traditional two-cut crossover is employed where the search direction and
mutation probabilities are taken as 5.01 =c and 9.0=w , respectively. The DPSO algorithm
was terminated when the best so far solution was not improved after 50 consecutive
generations. Five runs were carried out for each problem instance to report the statistics
based on the relative percent deviations (Δ) from optimal solutions. For the computational
effort consideration, avgt denotes average CPU time in seconds to reach the best solution
found so far during the run, i.e., the point of time that the best so far solution does not
improve thereafter. optn stands for the number of optimal solutions found by each
algorithm whereas avgf represents the average objective function values out of five runs.
We compare the mDPSO algorithm to two genetic algorithms, namely, RKGA by Snyder &
Daskin [16] and mrOXGA by Silberholz & Golden [20] where RKGA is re-implemented
under the same machine environment. Table 6 summarizes the solution quality in terms of
relative percent deviations from the optimal values and CPU time requirements for all three
algorithms. Note that our machine has a similar speed as Silberholz & Golden [20]. A two-
sided paired t-test which compares the results on Table 6 with a null hypothesis that the
algorithms were identical generated p-values of 0.167 and 0.009 for mDPSO vs. mrOXGA
and mDPSO vs. RKGA, suggesting near-identical results between mDPSO and mrOXGA.
On the other hand, the paired t-test confirms that the differences between mDPSO and
RKGA were significant on the behalf of mDPSO subject to the fact that RKGA was
computationally less expensive than both mDPSO and mrOXGA when solely the optimal
instances are considered.

A Modified Discrete Particle Swarm Optimization Algorithm
for the Generalized Traveling Salesman Problem

111

 mDPSO mrOXGA RKGA
Instance optn avgΔ avgt avgΔ avgt avgΔ avgt

11EIL51 5 0.00 0.10 0.00 0.26 0.00 0.08
14ST70 5 0.00 0.12 0.00 0.35 0.00 0.07
16EIL76 5 0.00 0.13 0.00 0.37 0.00 0.11
16PR76 5 0.00 0.17 0.00 0.45 0.00 0.16

20KROA100 5 0.00 0.24 0.00 0.63 0.00 0.25
20KROB100 5 0.00 0.23 0.00 0.60 0.00 0.22
20KROC100 5 0.00 0.23 0.00 0.62 0.00 0.23
20KROD100 5 0.00 0.24 0.00 0.67 0.00 0.43
20KROE100 5 0.00 0.23 0.00 0.58 0.00 0.15

20RAT99 5 0.00 0.21 0.00 0.50 0.00 0.24
20RD100 5 0.00 0.23 0.00 0.51 0.00 0.29
21EIL101 5 0.00 0.19 0.00 0.48 0.00 0.18
21LIN105 5 0.00 0.25 0.00 0.60 0.00 0.33
22PR107 5 0.00 0.23 0.00 0.53 0.00 0.20
25PR124 5 0.00 0.41 0.00 0.68 0.00 0.26

26BIER127 5 0.00 0.44 0.00 0.78 0.00 0.28
28PR136 5 0.00 0.52 0.00 0.79 0.16 0.36
29PR144 5 0.00 0.46 0.00 1.00 0.00 0.44

30KROA150 5 0.00 0.47 0.00 0.98 0.00 0.32
30KROB150 5 0.00 0.60 0.00 0.98 0.00 0.71

31PR152 5 0.00 1.38 0.00 0.97 0.00 0.38
32U159 5 0.00 0.64 0.00 0.98 0.00 0.55

39RAT195 5 0.00 0.99 0.00 1.37 0.00 1.33
40D198 5 0.00 1.77 0.00 1.63 0.07 1.47

40KROA200 5 0.00 1.11 0.00 1.66 0.00 0.95
40KROB200 5 0.00 2.44 0.05 1.63 0.01 1.29

45TS225 2 0.05 1.75 0.14 1.71 0.28 1.09
46PR226 5 0.00 0.74 0.00 1.54 0.00 1.09
53GIL262 5 0.00 4.76 0.45 3.64 0.55 3.05
53PR264 5 0.00 1.11 0.00 2.36 0.09 2.72
60PR299 1 0.07 5.66 0.05 4.59 0.16 4.08

64LIN318 5 0.00 5.72 0.00 8.08 0.54 5.39
80RD400 4 0.02 13.66 0.58 14.58 0.72 10.27
84FL417 4 0.00 13.06 0.04 8.15 0.06 6.18
88PR439 3 0.00 16.15 0.00 19.06 0.83 15.09

89PCB442 3 0.15 28.59 0.01 23.43 1.23 11.74
Avg 4.64 0.01 2.92 0.04 2.99 0.13 2.00

Machine P IV 3.20 GHz P IV 3.00 GHz

Table 6. Comparison for Optimal Instances

 Travelling Salesman Problem

112

 mDPSO mrOXGA RKGA
Instance avgf avgt avgf avgt avgf avgt

11EIL51 174.0 100.0 174.0 259.2 174.0 78.2
14ST70 316.0 120.0 316.0 353.0 316.0 65.6
16EIL76 209.0 130.0 209.0 369.0 209.0 106.4
16PR76 64925.0 170.0 64925.0 447.0 64925.0 156.2

20KROA100 9711.0 240.0 9711.0 628.2 9711.0 249.8
20KROB100 10328.0 230.0 10328.0 603.2 10328.0 215.6
20KROC100 9554.0 230.0 9554.0 621.8 9554.0 225.0
20KROD100 9450.0 240.0 9450.0 668.8 9450.0 434.4
20KROE100 9523.0 230.0 9523.0 575.0 9523.0 147.0

20RAT99 497.0 210.0 497.0 500.0 497.0 243.8
20RD100 3650.0 230.0 3650.0 506.2 3650.0 290.8
21EIL101 249.0 190.0 249.0 478.2 249.0 184.6
21LIN105 8213.0 250.0 8213.0 603.2 8213.0 334.4
22PR107 27898.0 230.0 27898.6 534.4 27898.6 I97.0
25PR124 36605.0 410.0 36605.0 678.0 36605.0 259.0

26BIER127 72418.0 440.0 72418.0 784.4 72418.0 275.2
28PR136 42570.0 520.0 42570.0 793.8 42639.8 362.8
29PR144 45886.0 460.0 45886.0 1003.2 45887.4 437.6

30KROA150 11018.0 470.0 11018.0 981.2 11018.0 319.0
30KROB150 12196.0 600.0 12196.0 978.4 12196.0 712.4

31PR152 51576.0 1380.0 51576.0 965.4 51576.0 381.2
32U159 22664.0 640.0 22664.0 984.4 22664.0 553.2

39RAT195 854.0 990.0 854.0 1374.8 854.0 1325.0
40D198 10557.0 1770.0 10557.0 1628.2 10564.0 1468.6

40KROA200 13406.0 1110.0 13406.0 1659.4 13406.0 950.2
40KROB200 13111.0 2440.0 13117.6 1631.4 13112.2 1294.2

45TS225 68376.0 1750.0 68435.2 1706.2 68530.8 1087.4
46PR226 64007.0 740.0 64007.0 1540.6 64007.0 1094.0
53GIL262 1013.0 4760.0 1017.6 3637.4 1018.6 3046.8
53PR264 29549.0 1110.0 29549.0 2359.4 29574.8 2718.6
60PR299 22631.0 5660.0 22627.0 4593.8 22650.2 4084.4

64LIN318 20765.0 5720.0 20765.0 8084.4 20877.8 5387.6
80RD400 6362.4 13660.0 6397.8 14578.2 6407.0 10265.6
84FL417 9651.2 13060.0 9654.6 8152.8 9657.0 6175.2
88PR439 60099.4 16150.0 60099.0 19059.6 60595.4 15087.6

89PCB442 21690.0 28590.0 21658.2 23434.4 21923.0 11743.8
99D493 20118.6 23193.8 20117.2 35718.8 20260.4 14887.8

115RAT575 2419.8 33521.6 2414.8 48481.0 2442.4 46834.4
131P654 27432.4 39847.0 27508.2 32672.0 27448.4 46996.8
132D657 22714.6 64956.2 22599.0 132243.6 22857.6 58449.8
145U724 17422.8 141587.8 17370.6 161815.2 17806.2 59625.2

157RAT783 3297.2 114315.8 3300.2 152147.0 3341.0 89362.4
201PR1002 115759.4 231546.6 114582.2 464356.4 117421.2 332406.2
212U1060 107316.4 341759.6 108390.4 594637.4 110158.0 216999.8

217VM1084 131716.8 310097.4 131884.6 562040.6 133743.4 390115.6
Overal Avg 27553.3 31245.7 27554.3 50930.4 27741.3 30169.1

Table 7. Comparision to Silberholz & Golden [20]

A Modified Discrete Particle Swarm Optimization Algorithm
for the Generalized Traveling Salesman Problem

113

Silberholz & Golden [20] provided larger problem instances ranging from 493 (99) to 1084
(217) nodes (clusters) where no optimal solutions are available. However, they provided the
results of mrOXGA and RKGA. We compare the mDPSO results to those presented in
Silberholz & Golden [20]. As seen in Table 7, mDPSO generated consistently better results
than both RKGA and mrOXGA in terms of solution quality even if the larger instances
are considered. In particular, 4 out 9 larger instances are further improved by mDPSO.
The paired t-test on the objective function values on Table 7 confirms that the differences
between mDPSO and RKGA were significant since p-value was 0.030 (null hypothesis is
rejected) whereas mDPSO was equivalent to mrOXGA since p-value was 0.979. In terms
of CPU times, the paired t-test on the CPU times confirms that the differences between
mDPSO and mrOXGA were significant since the p-values was 0.040 whereas it was failed
to reject the null hypothesis of being equal difference between mDPSO and RKGA since
the p-value was 0.700. The paired t-test indicates that mDPSO was able to generate lower
objective function values with less CPU times than mrOXGA. On the other hand, mDPSO
yielded much better objective function values with identical CPU times than RKGA.
Finally, the detailed statistics accumulated for the mDPSO algorithm during the runs are
given in Table 8. Briefly, the statistics about the objective function values, CPU times,
number of generations, average number of 2-opts, and average number of DC,
respectively.

4. Conclusions
The mDPSO algorithm proposed employs the destruction and construction procedure of
the iterated greedy algorithm (IG) in its mutation phase. Its performance is enhanced by
employing a population initialization scheme based on an NEH constructive heuristic for
which some speed-up methods previously developed by authors are used for greedy node
insertions. Furthermore, the mDPSO algorithm is hybridized with local search heuristics
to achieve further improvements in the solution quality. To evaluate its performance, the
mDPSO algorithm is tested on a set of benchmark instances with symmetric Euclidean
distances ranging from 51 (11) to 1084 (217) nodes (clusters) from the literature.
Furthermore, the mDPSO algorithm was able to find optimal solutions for a large
percentage of problem instances from a set of test problems in the literature. It was also
able to further improve 4 out of 9 larger instances from the literature. Both solution
quality and computation times are competitive to or even better than the best performing
algorithms from the literature.

5. Acknowledgment
The first author dedicates this paper to Dr. Alice E. Smith from Industrial and Systems
Engineering Department at Auburn University. He is grateful to Dr. Thomas Stützle from
IRIDIA, University of Brussels, for his generosity in providing his IG code. We are also
greatiful to Dr. Gregory Gutin and Daniel Karapetyan from University of London for
preparing the larger GTSP instances. In addition, P. N. Suganthan acknowledges the
financial support offered by the A*Star (Agency for Science, Technology and Research)
under the grant # 052 101 0020.

 Travelling Salesman Problem

112

 mDPSO mrOXGA RKGA
Instance avgf avgt avgf avgt avgf avgt

11EIL51 174.0 100.0 174.0 259.2 174.0 78.2
14ST70 316.0 120.0 316.0 353.0 316.0 65.6
16EIL76 209.0 130.0 209.0 369.0 209.0 106.4
16PR76 64925.0 170.0 64925.0 447.0 64925.0 156.2

20KROA100 9711.0 240.0 9711.0 628.2 9711.0 249.8
20KROB100 10328.0 230.0 10328.0 603.2 10328.0 215.6
20KROC100 9554.0 230.0 9554.0 621.8 9554.0 225.0
20KROD100 9450.0 240.0 9450.0 668.8 9450.0 434.4
20KROE100 9523.0 230.0 9523.0 575.0 9523.0 147.0

20RAT99 497.0 210.0 497.0 500.0 497.0 243.8
20RD100 3650.0 230.0 3650.0 506.2 3650.0 290.8
21EIL101 249.0 190.0 249.0 478.2 249.0 184.6
21LIN105 8213.0 250.0 8213.0 603.2 8213.0 334.4
22PR107 27898.0 230.0 27898.6 534.4 27898.6 I97.0
25PR124 36605.0 410.0 36605.0 678.0 36605.0 259.0

26BIER127 72418.0 440.0 72418.0 784.4 72418.0 275.2
28PR136 42570.0 520.0 42570.0 793.8 42639.8 362.8
29PR144 45886.0 460.0 45886.0 1003.2 45887.4 437.6

30KROA150 11018.0 470.0 11018.0 981.2 11018.0 319.0
30KROB150 12196.0 600.0 12196.0 978.4 12196.0 712.4

31PR152 51576.0 1380.0 51576.0 965.4 51576.0 381.2
32U159 22664.0 640.0 22664.0 984.4 22664.0 553.2

39RAT195 854.0 990.0 854.0 1374.8 854.0 1325.0
40D198 10557.0 1770.0 10557.0 1628.2 10564.0 1468.6

40KROA200 13406.0 1110.0 13406.0 1659.4 13406.0 950.2
40KROB200 13111.0 2440.0 13117.6 1631.4 13112.2 1294.2

45TS225 68376.0 1750.0 68435.2 1706.2 68530.8 1087.4
46PR226 64007.0 740.0 64007.0 1540.6 64007.0 1094.0
53GIL262 1013.0 4760.0 1017.6 3637.4 1018.6 3046.8
53PR264 29549.0 1110.0 29549.0 2359.4 29574.8 2718.6
60PR299 22631.0 5660.0 22627.0 4593.8 22650.2 4084.4

64LIN318 20765.0 5720.0 20765.0 8084.4 20877.8 5387.6
80RD400 6362.4 13660.0 6397.8 14578.2 6407.0 10265.6
84FL417 9651.2 13060.0 9654.6 8152.8 9657.0 6175.2
88PR439 60099.4 16150.0 60099.0 19059.6 60595.4 15087.6

89PCB442 21690.0 28590.0 21658.2 23434.4 21923.0 11743.8
99D493 20118.6 23193.8 20117.2 35718.8 20260.4 14887.8

115RAT575 2419.8 33521.6 2414.8 48481.0 2442.4 46834.4
131P654 27432.4 39847.0 27508.2 32672.0 27448.4 46996.8
132D657 22714.6 64956.2 22599.0 132243.6 22857.6 58449.8
145U724 17422.8 141587.8 17370.6 161815.2 17806.2 59625.2

157RAT783 3297.2 114315.8 3300.2 152147.0 3341.0 89362.4
201PR1002 115759.4 231546.6 114582.2 464356.4 117421.2 332406.2
212U1060 107316.4 341759.6 108390.4 594637.4 110158.0 216999.8

217VM1084 131716.8 310097.4 131884.6 562040.6 133743.4 390115.6
Overal Avg 27553.3 31245.7 27554.3 50930.4 27741.3 30169.1

Table 7. Comparision to Silberholz & Golden [20]

A Modified Discrete Particle Swarm Optimization Algorithm
for the Generalized Traveling Salesman Problem

113

Silberholz & Golden [20] provided larger problem instances ranging from 493 (99) to 1084
(217) nodes (clusters) where no optimal solutions are available. However, they provided the
results of mrOXGA and RKGA. We compare the mDPSO results to those presented in
Silberholz & Golden [20]. As seen in Table 7, mDPSO generated consistently better results
than both RKGA and mrOXGA in terms of solution quality even if the larger instances
are considered. In particular, 4 out 9 larger instances are further improved by mDPSO.
The paired t-test on the objective function values on Table 7 confirms that the differences
between mDPSO and RKGA were significant since p-value was 0.030 (null hypothesis is
rejected) whereas mDPSO was equivalent to mrOXGA since p-value was 0.979. In terms
of CPU times, the paired t-test on the CPU times confirms that the differences between
mDPSO and mrOXGA were significant since the p-values was 0.040 whereas it was failed
to reject the null hypothesis of being equal difference between mDPSO and RKGA since
the p-value was 0.700. The paired t-test indicates that mDPSO was able to generate lower
objective function values with less CPU times than mrOXGA. On the other hand, mDPSO
yielded much better objective function values with identical CPU times than RKGA.
Finally, the detailed statistics accumulated for the mDPSO algorithm during the runs are
given in Table 8. Briefly, the statistics about the objective function values, CPU times,
number of generations, average number of 2-opts, and average number of DC,
respectively.

4. Conclusions
The mDPSO algorithm proposed employs the destruction and construction procedure of
the iterated greedy algorithm (IG) in its mutation phase. Its performance is enhanced by
employing a population initialization scheme based on an NEH constructive heuristic for
which some speed-up methods previously developed by authors are used for greedy node
insertions. Furthermore, the mDPSO algorithm is hybridized with local search heuristics
to achieve further improvements in the solution quality. To evaluate its performance, the
mDPSO algorithm is tested on a set of benchmark instances with symmetric Euclidean
distances ranging from 51 (11) to 1084 (217) nodes (clusters) from the literature.
Furthermore, the mDPSO algorithm was able to find optimal solutions for a large
percentage of problem instances from a set of test problems in the literature. It was also
able to further improve 4 out of 9 larger instances from the literature. Both solution
quality and computation times are competitive to or even better than the best performing
algorithms from the literature.

5. Acknowledgment
The first author dedicates this paper to Dr. Alice E. Smith from Industrial and Systems
Engineering Department at Auburn University. He is grateful to Dr. Thomas Stützle from
IRIDIA, University of Brussels, for his generosity in providing his IG code. We are also
greatiful to Dr. Gregory Gutin and Daniel Karapetyan from University of London for
preparing the larger GTSP instances. In addition, P. N. Suganthan acknowledges the
financial support offered by the A*Star (Agency for Science, Technology and Research)
under the grant # 052 101 0020.

 Travelling Salesman Problem

114

Instance avgf
 minf maxf avgt mint maxt avgg ming maxg opt2 DC

11EIL51 174.0 174.0 174.0 0.1 0.1 0.2 1.0 1.0 1.0 2.0 7346.6
14ST70 316.0 316.0 316.0 0.1 0.1 0.1 1.0 1.0 1.0 2.0 10387.8
16EIL76 209.0 209.0 209.0 0.1 0.1 0.1 1.0 1.0 1.0 2.0 11026.4
16PR76 64925.0 64925.0 64925.0 0.2 0.2 0.2 1.0 1.0 1.0 2.0 14108.2

20KROA100 9711.0 9711.0 9711.0 0.2 0.2 0.3 1.0 1.0 1.0 2.0 19958.6
20KROB100 10328.0 10328.0 10328.0 0.2 0.2 0.3 1.0 1.0 1.0 2.0 18637.0
20KROC100 9554.0 9554.0 9554.0 0.2 0.2 0.3 1.0 1.0 1.0 2.0 18370.0
20KROD100 9450.0 9450.0 9450.0 0.2 0.2 0.3 1.0 1.0 1.0 2.0 19146.4
20KROE100 9523.0 9523.0 9523.0 0.2 0.2 0.3 1.0 1.0 1.0 2.0 19235.8

20RAT99 497.0 497.0 497.0 0.2 0.2 0.2 1.0 1.0 1.0 2.0 17025.2
20RD100 3650.0 3650.0 3650.0 0.2 0.2 0.2 1.0 1.0 1.0 2.0 18345.6
21EIL101 249.0 249.0 249.0 0.2 0.2 0.2 1.0 1.0 1.0 2.0 15256.0
21LIN105 8213.0 8213.0 8213.0 0.3 0.2 0.3 1.0 1.0 1.0 2.0 20275.6
22PR107 27898.0 27898.0 27898.0 0.2 0.2 0.2 1.0 1.0 1.0 2.0 17978.0
25PR124 36605.0 36605.0 36605.0 0.4 0.3 0.7 1.8 1.0 4.0 2.8 31702.0

26BIER127 72418.0 72418.0 72418.0 0.4 0.3 0.6 1.8 1.0 3.0 2.8 34417.4
28PR136 42570.0 42570.0 42570.0 0.5 0.4 0.8 2.0 1.0 4.0 3.0 39157.2
29PR144 45886.0 45886.0 45886.0 0.5 0.4 0.7 1.4 1.0 3.0 2.4 34640.6

30KROA150 11018.0 11018.0 11018.0 0.5 0.4 0.6 1.2 1.0 2.0 2.2 35139.2
30KROB150 12196.0 12196.0 12196.0 0.6 0.4 1.3 2.2 1.0 7.0 3.2 44800.0

31PR152 51576.0 51576.0 51576.0 1.4 0.5 2.3 6.6 1.0 13.0 7.6 102702.0
32U159 22664.0 22664.0 22664.0 0.6 0.5 1.0 2.2 1.0 5.0 3.2 47115.2

39RAT195 854.0 854.0 854.0 1.0 0.6 1.2 2.6 1.0 4.0 3.6 68885.4
40D198 10557.0 10557.0 10557.0 1.8 0.7 2.5 5.8 1.0 10.0 6.8 123194.6

40KROA200 13406.0 13406.0 13406.0 1.1 0.7 1.3 2.8 1.0 4.0 3.8 76493.0
40KROB200 13111.0 13111.0 13111.0 2.4 1.2 4.1 9.6 3.0 16.0 10.6 169724.4

45TS225 68376.0 68340.0 68400.0 1.7 0.7 3.3 6.2 1.0 16.0 37.2 418896.2
46PR226 64007.0 64007.0 64007.0 0.7 0.7 0.8 1.0 1.0 1.0 2.0 48324.4
53GIL262 1013.0 1013.0 1013.0 4.8 2.0 9.1 16.2 4.0 37.0 17.2 300605.2
53PR264 29549.0 29549.0 29549.0 1.1 1.0 1.4 1.2 1.0 2.0 2.2 68722.2
60PR299 22631.0 22615.0 22635.0 5.7 4.0 7.9 13.8 8.0 29.0 54.8 860095.2
64LIN318 20765.0 20765.0 20765.0 5.7 3.2 9.7 12.4 5.0 30.0 13.4 334602.4
80RD400 6362.4 6361.0 6368.0 13.7 6.7 17.3 18.6 8.0 30.0 29.6 911334.6
84FL417 9651.2 9651.0 9652.0 13.1 11.0 15.7 32.6 24.0 44.0 43.6 829024.2
88PR439 60099.4 60099.0 60100.0 16.2 8.2 24.8 28.4 9.0 48.0 49.4 1173370.8

89PCB442 21690.0 21657.0 21802.0 28.6 8.1 59.6 57.2 10.0 125.0 78.2 1813548.8
99D493 20118.6 20045.0 20271.0 23.2 9.7 39.6 30.4 7.0 67.0 81.4 2240001.4

115RAT575 2419.8 2388.0 2449.0 33.5 20.5 43.4 32.0 18.0 50.0 83.0 2681845.4
131P654 27432.4 27432.0 27433.0 39.8 11.8 54.7 58.0 12.0 83.0 109.0 2740248.6
132D657 22714.6 22543.0 22906.0 65.0 38.1 85.1 61.2 22.0 91.0 112.2 3891504.4
145U724 17422.8 17257.0 17569.0 141.6 64.8 209.1 100.2 38.0 171.0 151.2 6502515.2

157RAT783 3297.2 3283.0 3324.0 114.3 80.2 157.3 70.2 47.0 99.0 121.2 5182433.0
201PR1002 115759.4 114731.0 116644.0 231.5 131.5 325.1 70.2 40.0 125.0 121.2 7972666.2
212U1060 107316.4 106659.0 107937.0 341.8 169.7 514.4 125.4 65.0 208.0 176.4 10209723.6

217VM1084 131716.8 131165.0 132394.0 310.1 133.9 389.8 113.6 36.0 156.0 164.6 9468416.8
Avg 27553.3 27491.5 27617.2 31.2 15.9 44.2 20.1 8.5 33.4 34.0 1304065.5

Table 8. Experimental Data Collected for mDPSO

A Modified Discrete Particle Swarm Optimization Algorithm
for the Generalized Traveling Salesman Problem

115

6. References
G. Laporte, A. Asef-Vaziri, C. Sriskandarajah, Some applications of the generalized

travelling salesman problem, Journal of the Operational Research Society 47 (12)
(1996) 461–1467.

A. Henry-Labordere, The record balancing problem—A dynamic programming solution of a
generalized travelling salesman problem, Revue Francaise D Informatique
DeRecherche Operationnelle 3 (NB2) (1969) 43–49.

C.E. Noon, The generalized traveling salesman problem, Ph.D. thesis, University of
Michigan, 1988.

D. Ben-Arieh, G. Gutin, M. Penn, A. Yeo, A. Zverovitch, Process planning for rotational
parts using the generalized traveling salesman problem, International Journal of
Production Research 41 (11) (2003) 2581–2596.

J.P. Saskena, Mathematical model of scheduling clients through welfare agencies, Journal of
the Canadian Operational Research Society 8 (1970) 185–200.

S.S. Srivastava, S. Kumar, R.C. Garg, P. Sen, Generalized traveling salesman problem
through n sets of nodes, Journal of the Canadian Operational Research Society 7
(1970) 97–101.

G. Laporte, H. Mercure, Y. Nobert, Finding the shortest Hamiltonian circuit through n
clusters: A Lagrangian approach, Congressus Numerantium 48 (1985) 277–290.

G. Laporte, H. Mercure, Y. Nobert, Generalized travelling salesman problem through n-sets
of nodes—The asymmetrical case, Discrete Applied Mathematics 18 (2) (1987) 185–
197.

G. Laporte, Y. Nobert, Generalized traveling salesman problem through n-sets of nodes—
An integer programming approach, INFOR 21 (1) (1983) 61–75.

M. Fischetti, J.J. Salazar-Gonzalez, P. Toth, The symmetrical generalized traveling salesman
polytope, Networks 26(2) (1995) 113–123.

M. Fischetti, J.J. Salazar-Gonza´lez, P. Toth, A branch-and-cut algorithm for the symmetric
generalized travelling salesman problem, Operations Research 45 (3) (1997) 378–
394.

A.G. Chentsov, L.N. Korotayeva, The dynamic programming method in the generalized
traveling salesman problem, Mathematical and Computer Modelling 25 (1) (1997)
93–105.

C.E. Noon, J.C. Bean, A Lagrangian based approach for the asymmetric generalized
traveling salesman problem, Operations Research 39 (4) (1991) 623–632.

J. Renaud, F.F. Boctor, An efficient composite heuristic for the symmetric generalized
traveling salesman problem, European Journal of Operational Research 108 (3)
(1998) 571–584.

J. Renaud, F.F. Boctor, G. Laporte, A fast composite heuristic for the symmetric traveling
salesman problem, INFORMS Journal on Computing 4 (1996) 134–143.

L.V. Snyder and M.S. Daskin, A random-key genetic algorithm for the generalized traveling
salesman problem, European Journal of Operational research 174 (2006) 38-53.

M.F. Tasgetiren, P.N. Suganthan, Q.-K. Pan, A discrete particle swarm optimization
algorithm for the generalized traveling salesman problem, In the Proceedings of the
9th annual conference on genetic and evolutionary computation (GECCO2007),
2007, London, UK, pp.158-167.

 Travelling Salesman Problem

114

Instance avgf
 minf maxf avgt mint maxt avgg ming maxg opt2 DC

11EIL51 174.0 174.0 174.0 0.1 0.1 0.2 1.0 1.0 1.0 2.0 7346.6
14ST70 316.0 316.0 316.0 0.1 0.1 0.1 1.0 1.0 1.0 2.0 10387.8
16EIL76 209.0 209.0 209.0 0.1 0.1 0.1 1.0 1.0 1.0 2.0 11026.4
16PR76 64925.0 64925.0 64925.0 0.2 0.2 0.2 1.0 1.0 1.0 2.0 14108.2

20KROA100 9711.0 9711.0 9711.0 0.2 0.2 0.3 1.0 1.0 1.0 2.0 19958.6
20KROB100 10328.0 10328.0 10328.0 0.2 0.2 0.3 1.0 1.0 1.0 2.0 18637.0
20KROC100 9554.0 9554.0 9554.0 0.2 0.2 0.3 1.0 1.0 1.0 2.0 18370.0
20KROD100 9450.0 9450.0 9450.0 0.2 0.2 0.3 1.0 1.0 1.0 2.0 19146.4
20KROE100 9523.0 9523.0 9523.0 0.2 0.2 0.3 1.0 1.0 1.0 2.0 19235.8

20RAT99 497.0 497.0 497.0 0.2 0.2 0.2 1.0 1.0 1.0 2.0 17025.2
20RD100 3650.0 3650.0 3650.0 0.2 0.2 0.2 1.0 1.0 1.0 2.0 18345.6
21EIL101 249.0 249.0 249.0 0.2 0.2 0.2 1.0 1.0 1.0 2.0 15256.0
21LIN105 8213.0 8213.0 8213.0 0.3 0.2 0.3 1.0 1.0 1.0 2.0 20275.6
22PR107 27898.0 27898.0 27898.0 0.2 0.2 0.2 1.0 1.0 1.0 2.0 17978.0
25PR124 36605.0 36605.0 36605.0 0.4 0.3 0.7 1.8 1.0 4.0 2.8 31702.0

26BIER127 72418.0 72418.0 72418.0 0.4 0.3 0.6 1.8 1.0 3.0 2.8 34417.4
28PR136 42570.0 42570.0 42570.0 0.5 0.4 0.8 2.0 1.0 4.0 3.0 39157.2
29PR144 45886.0 45886.0 45886.0 0.5 0.4 0.7 1.4 1.0 3.0 2.4 34640.6

30KROA150 11018.0 11018.0 11018.0 0.5 0.4 0.6 1.2 1.0 2.0 2.2 35139.2
30KROB150 12196.0 12196.0 12196.0 0.6 0.4 1.3 2.2 1.0 7.0 3.2 44800.0

31PR152 51576.0 51576.0 51576.0 1.4 0.5 2.3 6.6 1.0 13.0 7.6 102702.0
32U159 22664.0 22664.0 22664.0 0.6 0.5 1.0 2.2 1.0 5.0 3.2 47115.2

39RAT195 854.0 854.0 854.0 1.0 0.6 1.2 2.6 1.0 4.0 3.6 68885.4
40D198 10557.0 10557.0 10557.0 1.8 0.7 2.5 5.8 1.0 10.0 6.8 123194.6

40KROA200 13406.0 13406.0 13406.0 1.1 0.7 1.3 2.8 1.0 4.0 3.8 76493.0
40KROB200 13111.0 13111.0 13111.0 2.4 1.2 4.1 9.6 3.0 16.0 10.6 169724.4

45TS225 68376.0 68340.0 68400.0 1.7 0.7 3.3 6.2 1.0 16.0 37.2 418896.2
46PR226 64007.0 64007.0 64007.0 0.7 0.7 0.8 1.0 1.0 1.0 2.0 48324.4
53GIL262 1013.0 1013.0 1013.0 4.8 2.0 9.1 16.2 4.0 37.0 17.2 300605.2
53PR264 29549.0 29549.0 29549.0 1.1 1.0 1.4 1.2 1.0 2.0 2.2 68722.2
60PR299 22631.0 22615.0 22635.0 5.7 4.0 7.9 13.8 8.0 29.0 54.8 860095.2
64LIN318 20765.0 20765.0 20765.0 5.7 3.2 9.7 12.4 5.0 30.0 13.4 334602.4
80RD400 6362.4 6361.0 6368.0 13.7 6.7 17.3 18.6 8.0 30.0 29.6 911334.6
84FL417 9651.2 9651.0 9652.0 13.1 11.0 15.7 32.6 24.0 44.0 43.6 829024.2
88PR439 60099.4 60099.0 60100.0 16.2 8.2 24.8 28.4 9.0 48.0 49.4 1173370.8

89PCB442 21690.0 21657.0 21802.0 28.6 8.1 59.6 57.2 10.0 125.0 78.2 1813548.8
99D493 20118.6 20045.0 20271.0 23.2 9.7 39.6 30.4 7.0 67.0 81.4 2240001.4

115RAT575 2419.8 2388.0 2449.0 33.5 20.5 43.4 32.0 18.0 50.0 83.0 2681845.4
131P654 27432.4 27432.0 27433.0 39.8 11.8 54.7 58.0 12.0 83.0 109.0 2740248.6
132D657 22714.6 22543.0 22906.0 65.0 38.1 85.1 61.2 22.0 91.0 112.2 3891504.4
145U724 17422.8 17257.0 17569.0 141.6 64.8 209.1 100.2 38.0 171.0 151.2 6502515.2

157RAT783 3297.2 3283.0 3324.0 114.3 80.2 157.3 70.2 47.0 99.0 121.2 5182433.0
201PR1002 115759.4 114731.0 116644.0 231.5 131.5 325.1 70.2 40.0 125.0 121.2 7972666.2
212U1060 107316.4 106659.0 107937.0 341.8 169.7 514.4 125.4 65.0 208.0 176.4 10209723.6

217VM1084 131716.8 131165.0 132394.0 310.1 133.9 389.8 113.6 36.0 156.0 164.6 9468416.8
Avg 27553.3 27491.5 27617.2 31.2 15.9 44.2 20.1 8.5 33.4 34.0 1304065.5

Table 8. Experimental Data Collected for mDPSO

A Modified Discrete Particle Swarm Optimization Algorithm
for the Generalized Traveling Salesman Problem

115

6. References
G. Laporte, A. Asef-Vaziri, C. Sriskandarajah, Some applications of the generalized

travelling salesman problem, Journal of the Operational Research Society 47 (12)
(1996) 461–1467.

A. Henry-Labordere, The record balancing problem—A dynamic programming solution of a
generalized travelling salesman problem, Revue Francaise D Informatique
DeRecherche Operationnelle 3 (NB2) (1969) 43–49.

C.E. Noon, The generalized traveling salesman problem, Ph.D. thesis, University of
Michigan, 1988.

D. Ben-Arieh, G. Gutin, M. Penn, A. Yeo, A. Zverovitch, Process planning for rotational
parts using the generalized traveling salesman problem, International Journal of
Production Research 41 (11) (2003) 2581–2596.

J.P. Saskena, Mathematical model of scheduling clients through welfare agencies, Journal of
the Canadian Operational Research Society 8 (1970) 185–200.

S.S. Srivastava, S. Kumar, R.C. Garg, P. Sen, Generalized traveling salesman problem
through n sets of nodes, Journal of the Canadian Operational Research Society 7
(1970) 97–101.

G. Laporte, H. Mercure, Y. Nobert, Finding the shortest Hamiltonian circuit through n
clusters: A Lagrangian approach, Congressus Numerantium 48 (1985) 277–290.

G. Laporte, H. Mercure, Y. Nobert, Generalized travelling salesman problem through n-sets
of nodes—The asymmetrical case, Discrete Applied Mathematics 18 (2) (1987) 185–
197.

G. Laporte, Y. Nobert, Generalized traveling salesman problem through n-sets of nodes—
An integer programming approach, INFOR 21 (1) (1983) 61–75.

M. Fischetti, J.J. Salazar-Gonzalez, P. Toth, The symmetrical generalized traveling salesman
polytope, Networks 26(2) (1995) 113–123.

M. Fischetti, J.J. Salazar-Gonza´lez, P. Toth, A branch-and-cut algorithm for the symmetric
generalized travelling salesman problem, Operations Research 45 (3) (1997) 378–
394.

A.G. Chentsov, L.N. Korotayeva, The dynamic programming method in the generalized
traveling salesman problem, Mathematical and Computer Modelling 25 (1) (1997)
93–105.

C.E. Noon, J.C. Bean, A Lagrangian based approach for the asymmetric generalized
traveling salesman problem, Operations Research 39 (4) (1991) 623–632.

J. Renaud, F.F. Boctor, An efficient composite heuristic for the symmetric generalized
traveling salesman problem, European Journal of Operational Research 108 (3)
(1998) 571–584.

J. Renaud, F.F. Boctor, G. Laporte, A fast composite heuristic for the symmetric traveling
salesman problem, INFORMS Journal on Computing 4 (1996) 134–143.

L.V. Snyder and M.S. Daskin, A random-key genetic algorithm for the generalized traveling
salesman problem, European Journal of Operational research 174 (2006) 38-53.

M.F. Tasgetiren, P.N. Suganthan, Q.-K. Pan, A discrete particle swarm optimization
algorithm for the generalized traveling salesman problem, In the Proceedings of the
9th annual conference on genetic and evolutionary computation (GECCO2007),
2007, London, UK, pp.158-167.

 Travelling Salesman Problem

116

M.F. Tasgetiren, P.N. Suganthan, Q.-K. Pan, Y.-C. Liang, A genetic algorithm for the
generalized traveling salesman problem, In the Proceeding of the World Congress
on Evolutionary Computation (CEC2007), 2007, Singapore, p:2382-2389.

M.F. Tasgetiren, P.N. Suganthan, Q.-K. Pan, Y.-C. Liang, A hybrid iterated greedy algorithm
for the generalized traveling salesman problem, 2006, Under second revision by
European Journal of Operational Research.

J. Silberholz, B. Golden, The generalized traveling salesman problem: A new genetic
algorithm approach, In: Edward K. B. et al. (Eds.), Extending the horizons:
Advances in Computing, Optimization and Decision Technologies. Vol. 37,
Springer-Verlag, pp. 165-181.

R.C. Eberhart, J. Kennedy A new optimizer using particle swarm theory. Proceedings of the
Sixth International Symposium on Micro Machine and Human Science, Nagoya,
Japan, 1995. p. 39-43.

J. Kennedy, R. C. Eberhart, and Y. Shi, Swarm Intelligence. San Mateo, Morgan Kaufmann,
CA, USA, 2001.

M. Clerc Particle Swarm Optimization, ISTE Ltd., France, 2006.
Q.-K. Pan, M.F. Tasgetiren, Y.-C. Liang, 2006a, Minimizing total earliness and tardiness

penalties with a common due date on a single machine using a discrete
particle swarm optimization algorithm. In: Proceedings of Ant Colony
Optimization and Swarm Intelligence (ANTS2006), LNCS 4150, Springer-Verlag,
pp. 460-467.

Q.-K. Pan, M.F. Tasgetiren, Y.-C. Liang, 2006b, A discrete particle swarm optimization
algorithm for the permutation flowshop sequencing problem with makespan
criterion. In: Proceedings of the 26th SGAI International Conference on Innovative
Techniques and Applications of Artificial Intelligence (AI-2006), Cambridge, UK,
pp. 19-31.

Q.-K. Pan, M.F. Tasgetiren, Y.-C. Liang, 2007a, A discrete particle swarm optimization
algorithm for the no-wait flowshop scheduling problem with makespan and total
flowtime criteria. Computers and Operations Research 35(9) (2008) 2807-2839.

G. Reinelt, TSPLIB—A traveling salesman problem library, ORSA Journal on Computing 4
(1996) 134–143.

M. Nawaz, E.E. Enscore Jr., I.A. Ham., Heuristic algorithm for the m-machine, n-job flow
shop sequencing problem. OMEGA; 11(1) (1983) 91-95.

R. Ruiz and T. Stutzle, A simple and effective iterated greedy algorithm for the permutation
flowshop scheduling problem, European Journal of Operational Research 174
(2006)38-53.

D. Rosenkrantz, R. Stearns, P. Lewis, Approximate algorithms for the traveling salesman
problem. Proceedings of the 15th Annual Symposium of Switching and Automata
Theory 1974 .33-42.

S. Lin, B.W. Kernighan, An effective heuristic algorithm for the traveling salesman problem
Operations Research, 21 (1973) 498-516.

6

Solving TSP by Transiently
Chaotic Neural Networks

Shyan-Shiou Chen1 and Chih-Wen Shih2

1Department of Mathematics, National Taiwan Normal University, Taipei,
2Department of Applied Mathematics, National Chiao Tung University, Hsinchu,

Taiwan, R.O.C.

1. Introduction
Inspired by the information processing of human neural systems, the artificial neural
networks (ANNs) have been developed and applied to solve problems in various disciplines
with varying degrees of success. For example, ANNs have been applied to memory storage,
pattern recognition, categorization, error correction, decision making, and machine learning
in object oriented machine. Various computational schemes and algorithms have been
devised for solving the travelling salesman problem which is a difficult NP-hard
combinatorial optimization problem. The use of ANN as a computational machine to solve
combinatorial optimization problems, including TSP, dates back to 1985 by Hopfield and
Tank (1985). Although the achievement of such an application broadens the capacity of
ANNs, there remain several insufficiencies to be improved for such a computational task, cf.
(Smith, 1999). They include that the computations can easily get trapped at local minimum
of the objective function, feasibility of computational outputs, and suitable choice of
parameters. Improvements of feasibility and solution quality for the scheme have been
reported subsequently. Among them, there is a success in adding the chaotic ingredient into
the network to enhance the global searching ability. Chaotic behavior is an inside essence of
stochastic processes in nonlinear deterministic system. Recently, chaotic neural networks
have been paid much attention to, and contribute toward solving TSP. Chaotic phenomena
arise from nonlinear system, and the discrete-time analogue of Hopfield’s model can admit
such a dynamics. Notably, the discrete-time neural network models can also be
implemented into analogue circuits, cf. (Hänggi et al., 1999 ; Harrer & Nossek, 1992).
The chapter aims at introducing recent progress in discrete-time neural network models, in
particular, the transiently chaotic neural network (TCNN) and the advantage of adopting
piecewise linear activation function. We shall demonstrate the use of TCNN in solving the
TSP and compare the results with other neural networks. The chaotic ingredients improve
the shortcoming of the previous ODE models in which the outputs strongly depend on the
initial conditions and are easily trapped at the local minimum of objective function. There
are transiently chaotic phase and convergent phase for the TCNN. The parameters for
convergent phase are confirmed by the nonautonomous discrete-time LaSalle’s invariant
principle, whereas the ones for chaotic phase are derived by applying the Marotto’s
theorem. The Marotto’s theorem which generalizes the Li-York’s theorem on chaos from
one-dimension to multi-dimension has found its best application in the discrete-time neural
network model considered herein.

 Travelling Salesman Problem

116

M.F. Tasgetiren, P.N. Suganthan, Q.-K. Pan, Y.-C. Liang, A genetic algorithm for the
generalized traveling salesman problem, In the Proceeding of the World Congress
on Evolutionary Computation (CEC2007), 2007, Singapore, p:2382-2389.

M.F. Tasgetiren, P.N. Suganthan, Q.-K. Pan, Y.-C. Liang, A hybrid iterated greedy algorithm
for the generalized traveling salesman problem, 2006, Under second revision by
European Journal of Operational Research.

J. Silberholz, B. Golden, The generalized traveling salesman problem: A new genetic
algorithm approach, In: Edward K. B. et al. (Eds.), Extending the horizons:
Advances in Computing, Optimization and Decision Technologies. Vol. 37,
Springer-Verlag, pp. 165-181.

R.C. Eberhart, J. Kennedy A new optimizer using particle swarm theory. Proceedings of the
Sixth International Symposium on Micro Machine and Human Science, Nagoya,
Japan, 1995. p. 39-43.

J. Kennedy, R. C. Eberhart, and Y. Shi, Swarm Intelligence. San Mateo, Morgan Kaufmann,
CA, USA, 2001.

M. Clerc Particle Swarm Optimization, ISTE Ltd., France, 2006.
Q.-K. Pan, M.F. Tasgetiren, Y.-C. Liang, 2006a, Minimizing total earliness and tardiness

penalties with a common due date on a single machine using a discrete
particle swarm optimization algorithm. In: Proceedings of Ant Colony
Optimization and Swarm Intelligence (ANTS2006), LNCS 4150, Springer-Verlag,
pp. 460-467.

Q.-K. Pan, M.F. Tasgetiren, Y.-C. Liang, 2006b, A discrete particle swarm optimization
algorithm for the permutation flowshop sequencing problem with makespan
criterion. In: Proceedings of the 26th SGAI International Conference on Innovative
Techniques and Applications of Artificial Intelligence (AI-2006), Cambridge, UK,
pp. 19-31.

Q.-K. Pan, M.F. Tasgetiren, Y.-C. Liang, 2007a, A discrete particle swarm optimization
algorithm for the no-wait flowshop scheduling problem with makespan and total
flowtime criteria. Computers and Operations Research 35(9) (2008) 2807-2839.

G. Reinelt, TSPLIB—A traveling salesman problem library, ORSA Journal on Computing 4
(1996) 134–143.

M. Nawaz, E.E. Enscore Jr., I.A. Ham., Heuristic algorithm for the m-machine, n-job flow
shop sequencing problem. OMEGA; 11(1) (1983) 91-95.

R. Ruiz and T. Stutzle, A simple and effective iterated greedy algorithm for the permutation
flowshop scheduling problem, European Journal of Operational Research 174
(2006)38-53.

D. Rosenkrantz, R. Stearns, P. Lewis, Approximate algorithms for the traveling salesman
problem. Proceedings of the 15th Annual Symposium of Switching and Automata
Theory 1974 .33-42.

S. Lin, B.W. Kernighan, An effective heuristic algorithm for the traveling salesman problem
Operations Research, 21 (1973) 498-516.

6

Solving TSP by Transiently
Chaotic Neural Networks

Shyan-Shiou Chen1 and Chih-Wen Shih2

1Department of Mathematics, National Taiwan Normal University, Taipei,
2Department of Applied Mathematics, National Chiao Tung University, Hsinchu,

Taiwan, R.O.C.

1. Introduction
Inspired by the information processing of human neural systems, the artificial neural
networks (ANNs) have been developed and applied to solve problems in various disciplines
with varying degrees of success. For example, ANNs have been applied to memory storage,
pattern recognition, categorization, error correction, decision making, and machine learning
in object oriented machine. Various computational schemes and algorithms have been
devised for solving the travelling salesman problem which is a difficult NP-hard
combinatorial optimization problem. The use of ANN as a computational machine to solve
combinatorial optimization problems, including TSP, dates back to 1985 by Hopfield and
Tank (1985). Although the achievement of such an application broadens the capacity of
ANNs, there remain several insufficiencies to be improved for such a computational task, cf.
(Smith, 1999). They include that the computations can easily get trapped at local minimum
of the objective function, feasibility of computational outputs, and suitable choice of
parameters. Improvements of feasibility and solution quality for the scheme have been
reported subsequently. Among them, there is a success in adding the chaotic ingredient into
the network to enhance the global searching ability. Chaotic behavior is an inside essence of
stochastic processes in nonlinear deterministic system. Recently, chaotic neural networks
have been paid much attention to, and contribute toward solving TSP. Chaotic phenomena
arise from nonlinear system, and the discrete-time analogue of Hopfield’s model can admit
such a dynamics. Notably, the discrete-time neural network models can also be
implemented into analogue circuits, cf. (Hänggi et al., 1999 ; Harrer & Nossek, 1992).
The chapter aims at introducing recent progress in discrete-time neural network models, in
particular, the transiently chaotic neural network (TCNN) and the advantage of adopting
piecewise linear activation function. We shall demonstrate the use of TCNN in solving the
TSP and compare the results with other neural networks. The chaotic ingredients improve
the shortcoming of the previous ODE models in which the outputs strongly depend on the
initial conditions and are easily trapped at the local minimum of objective function. There
are transiently chaotic phase and convergent phase for the TCNN. The parameters for
convergent phase are confirmed by the nonautonomous discrete-time LaSalle’s invariant
principle, whereas the ones for chaotic phase are derived by applying the Marotto’s
theorem. The Marotto’s theorem which generalizes the Li-York’s theorem on chaos from
one-dimension to multi-dimension has found its best application in the discrete-time neural
network model considered herein.

 Travelling Salesman Problem

118

In Section 2, we will introduce the setting of solving the TSP by the neural networks,
including the description of objective functions to be minimized at optimal routes, and the
original work by Hopfield and Tank. In Section 3, we review the LaSalle’s invariant
principle, the Marotto’s theorem, and introduce the discrete-time analogue of Hopfield’s
network. The recent progress in the transiently chaotic neural network is summarized in
Section 4. We arrange some numerical simulations in applying the TCNN with piecewise
linear activation function in Section 5. Finally, the chapter is concluded with some
discussions.

2. Solving TSP via Hopfield neural network

Suppose there are N cities indexed by i= 1, 2,…, N and the distance between city i and city
k is dik. The optimal solution to the TSP consists of an ordered list of the N cities. The list
expresses the order of the cities visited and indicates the path with shortest total tour length.
Let us describe how to map the TSP into the computational networks. For each city, its final
location in the ordered list is to be specified by the asymptotic output states of a set of N
neurons. For example, for a 10-city problem, if city i is the seventh city visited in an optimal
solution, then it is represented by the corresponding outputs of 10 neurons:

0 0 0 0 0 010 0 0.

Accordingly, N2 neurons will be needed in the computational network for a N-city TSP. We
thus arrange the outputs of these neurons into a N× N matrix. In such a representation, an
ideal output matrix with only one entry equal to one in each row and in each column, and
other entries all zero, will then correspond to a feasible solution of the TSP.
Thereafter, the TSP with N cities can be formulated as the following optimization problem:

(1) (1)
1 1 1

1Minimize () ()
2

N N N

ij ik j k j k
i j k

E d y y y− +
= = =

= + ,∑∑∑y (1)

where matrix y=[yij] is constrained by

1 1

1and 1
N N

ij ij
i j

y y
= =

= = ,∑ ∑ (2)

for all i,j =1,…,N, and yi0=yiN and yi1=yi(N+1). The variables yij∈[0,1], i,j =1,…,N, can also be
regarded as the probability for the i th city to be visited the j th time. If every yij is either 0
or 1, then the constraint Eq. (2) means that every city must be visited only once. Under such
a circumstances, the optimal solution of the objective function E(y) equals the shortest
distance of the traveling route. Notably, any shift of an optimal solution also yields an
optimal solution (with the same shortest tour length). Thus, the optimal solution is not
unique.
The main idea of using neural networks to solve TSP is to search the global minimum of the
objective function which involves the data of TSP, through evolutions of the states of the
network. Hopfield & Tank (1985) considered the following objective function

Solving TSP by Transiently Chaotic Neural Networks

119

 231 2

1 1 1 1 1 1
() ()

2 2 2

N N N N N N N N

ij ik ij kj ij
i j k j j i k i i j

E y y y y y Nγγ γ
= = ≠ = = ≠ = =

= + + −∑∑∑ ∑∑∑ ∑∑y (3)

 4
(1) (1)

1 1 1
()

2

N N N

ij ik j k j k
i j k

d y y yγ
− +

= = =

+ + .∑∑∑ (4)

Note that the minimum, i.e., zero, of (3) is attained at a feasible solution. They aimed at
using the Hopfield network to locate the global minimum of this objective function. The
Hopfield network is a continuous-time ODE system which consists of a fully interconnected
system of computational elements or neurons arranged in, say, lattice L:

L

dx xC w y I L
dt R ∈

= − + + , ∈ ,∑i i
i ij j i

ji

i (5)

 ()y g x= .i i i (6)

The synapse (or weight) between two neurons is defined by wij, which may be positive or
negative depending on whether the action of neurons is in an excitatory or inhibitory
manner; xi is the internal state of neuron i, and yi with 0 1y≤ ≤i is the external (output) state

of neuron i. The parameter Ci (resp. Ri) is the input capacitance of the cell membrane (resp.
the transmembrane resistance) of neuron i. The activation function gi is a monotonically
increasing function and thus has an inverse. Typical gi is given by

1() (1 tanh())
2

g ξ ξ ε= + / ,i

where ε is a parameter controlling the slope of the activation function. The gradient
descent dynamics of the neural network provides a decreasing property of the objective
function for the TSP. For convenience of expression and derivation, we consider (5) on the
one-dimensional array {1,2,…,n}. There exists a Lyapunov function (energy function for the
network)

 1

0
1 1 1 1

1 1 ()
2

i
n n n n y

ij i j i i i
i j i i i

V w y y I y g d
R

ξ ξ−

= = = =

= − − + .∑∑ ∑ ∑ ∫ (7)

The time derivative of V along a solution ()tx is computed as

1 1 1

2

1

()

()[]() .

n n n
i i i i

ij j i i
i j ii

n
i i i

i
i i

dy x dy dxdV w y I C
dt dt R dt dt

dg x dxC
dx dt

= = =

=

= − − + = −

= −

∑ ∑ ∑

∑

Due to the increasing property of the activation function gi, we obtain

 Travelling Salesman Problem

118

In Section 2, we will introduce the setting of solving the TSP by the neural networks,
including the description of objective functions to be minimized at optimal routes, and the
original work by Hopfield and Tank. In Section 3, we review the LaSalle’s invariant
principle, the Marotto’s theorem, and introduce the discrete-time analogue of Hopfield’s
network. The recent progress in the transiently chaotic neural network is summarized in
Section 4. We arrange some numerical simulations in applying the TCNN with piecewise
linear activation function in Section 5. Finally, the chapter is concluded with some
discussions.

2. Solving TSP via Hopfield neural network

Suppose there are N cities indexed by i= 1, 2,…, N and the distance between city i and city
k is dik. The optimal solution to the TSP consists of an ordered list of the N cities. The list
expresses the order of the cities visited and indicates the path with shortest total tour length.
Let us describe how to map the TSP into the computational networks. For each city, its final
location in the ordered list is to be specified by the asymptotic output states of a set of N
neurons. For example, for a 10-city problem, if city i is the seventh city visited in an optimal
solution, then it is represented by the corresponding outputs of 10 neurons:

0 0 0 0 0 010 0 0.

Accordingly, N2 neurons will be needed in the computational network for a N-city TSP. We
thus arrange the outputs of these neurons into a N× N matrix. In such a representation, an
ideal output matrix with only one entry equal to one in each row and in each column, and
other entries all zero, will then correspond to a feasible solution of the TSP.
Thereafter, the TSP with N cities can be formulated as the following optimization problem:

(1) (1)
1 1 1

1Minimize () ()
2

N N N

ij ik j k j k
i j k

E d y y y− +
= = =

= + ,∑∑∑y (1)

where matrix y=[yij] is constrained by

1 1

1and 1
N N

ij ij
i j

y y
= =

= = ,∑ ∑ (2)

for all i,j =1,…,N, and yi0=yiN and yi1=yi(N+1). The variables yij∈[0,1], i,j =1,…,N, can also be
regarded as the probability for the i th city to be visited the j th time. If every yij is either 0
or 1, then the constraint Eq. (2) means that every city must be visited only once. Under such
a circumstances, the optimal solution of the objective function E(y) equals the shortest
distance of the traveling route. Notably, any shift of an optimal solution also yields an
optimal solution (with the same shortest tour length). Thus, the optimal solution is not
unique.
The main idea of using neural networks to solve TSP is to search the global minimum of the
objective function which involves the data of TSP, through evolutions of the states of the
network. Hopfield & Tank (1985) considered the following objective function

Solving TSP by Transiently Chaotic Neural Networks

119

 231 2

1 1 1 1 1 1
() ()

2 2 2

N N N N N N N N

ij ik ij kj ij
i j k j j i k i i j

E y y y y y Nγγ γ
= = ≠ = = ≠ = =

= + + −∑∑∑ ∑∑∑ ∑∑y (3)

 4
(1) (1)

1 1 1
()

2

N N N

ij ik j k j k
i j k

d y y yγ
− +

= = =

+ + .∑∑∑ (4)

Note that the minimum, i.e., zero, of (3) is attained at a feasible solution. They aimed at
using the Hopfield network to locate the global minimum of this objective function. The
Hopfield network is a continuous-time ODE system which consists of a fully interconnected
system of computational elements or neurons arranged in, say, lattice L:

L

dx xC w y I L
dt R ∈

= − + + , ∈ ,∑i i
i ij j i

ji

i (5)

 ()y g x= .i i i (6)

The synapse (or weight) between two neurons is defined by wij, which may be positive or
negative depending on whether the action of neurons is in an excitatory or inhibitory
manner; xi is the internal state of neuron i, and yi with 0 1y≤ ≤i is the external (output) state

of neuron i. The parameter Ci (resp. Ri) is the input capacitance of the cell membrane (resp.
the transmembrane resistance) of neuron i. The activation function gi is a monotonically
increasing function and thus has an inverse. Typical gi is given by

1() (1 tanh())
2

g ξ ξ ε= + / ,i

where ε is a parameter controlling the slope of the activation function. The gradient
descent dynamics of the neural network provides a decreasing property of the objective
function for the TSP. For convenience of expression and derivation, we consider (5) on the
one-dimensional array {1,2,…,n}. There exists a Lyapunov function (energy function for the
network)

 1

0
1 1 1 1

1 1 ()
2

i
n n n n y

ij i j i i i
i j i i i

V w y y I y g d
R

ξ ξ−

= = = =

= − − + .∑∑ ∑ ∑ ∫ (7)

The time derivative of V along a solution ()tx is computed as

1 1 1

2

1

()

()[]() .

n n n
i i i i

ij j i i
i j ii

n
i i i

i
i i

dy x dy dxdV w y I C
dt dt R dt dt

dg x dxC
dx dt

= = =

=

= − − + = −

= −

∑ ∑ ∑

∑

Due to the increasing property of the activation function gi, we obtain

 Travelling Salesman Problem

120

 0 and 0 if 0idxdV dV
dt dt dt

≤ , = = . (8)

3. Discrete-time dynamical systems
Biological neurons are much more complicated than the simple threshold elements in
ANNs. Chaotic behaviors have actually been observed experimentally in biological
neurons, as pointed out in Aihara et al. (1990) and the references therein.
Discrete-time dynamical systems have attracted much attention in recent years, thanks to its
capacity of applications and underlying sophisticated mathematical theory. Indeed, not
only that discrete-time counterparts of classical theorems for continuous-time systems have
been developed successfully, but also the chaotic behaviors for discrete-time systems can be
characterized lucidly.
Due to the shortcomings that solutions get trapped at local minimum of objective function,
and dependence of performance upon choosing initial conditions in continuous-time
systems, researchers have attempted to introduce the chaotic ingredient into the networks.
The stage was thus set for the development of discrete-time neural networks, cf. (Aihara et
al., 1990; Chen & Aihara, 1995; Nozawa, 1992; Yamada & Aihara, 1997). In particular,
Nozawa (1992) showed that the Euler approximation of the continuous-time Hopfield
neural network with a negative self-feedback connection possesses chaotic dynamics, and
has a much better searching ability in solving the TSP than the original continuous-time
Hopfield neural network.
Notably, although it has been reported in (Bersini,1998; Bersini & Senser, 2002) that there
exist chaotic behaviours in continuous-time Hopfield-type neural networks, it is still
unknown whether the same concept or technique can be applied to the TSP problem.
We shall introduce the discrete-time Hopfield neural network in Subsection 3.1; then review
the LaSalle’s invariant principle for convergent dynamics and the Marotto’s theorem for
chaos, for discrete-time dynamical systems in Subsections 3.2, 3.3, respectively.

3.1 Discrete-time Hopfield neural networks
Discrete-time neural network model of Hopfield type can be described by the following
equations: for i = 1,…,n,

1

(1) () ()
n

i i ij j i
j

x t x t w y t Iμ
=

+ = + + .∑ (9)

Here, xi is the internal state of neuron i; yi is the output of neuron i; μ is the damping factor;
wii is the self-feedback connection weight; wij is the connection weight from neuron j to
neuron i; iI is the input bias. The parameter μ (resp. ωij, Ii) in Eq. (9) can be compared to

1
i i

t
C R
Δ− (resp. ij

i

t
C

ω Δ , i

i

I t
C
Δ) in terms of the parameters in Eq. (5), where tΔ is the discretization

time step. System (9) is the Euler approximation of Eq. (5). There also exists a Lyapunov
function for the discrete-time system (9):

 1

0
1 1 1 1

1() (1) ()
2

i
n n n n y

ij i j i i i
i j i i

V w y y I y g dμ ξ ξ−

= = = =

= − − − − ,∑∑ ∑ ∑∫y (10)

Solving TSP by Transiently Chaotic Neural Networks

121

where again ()i i iy g x= . It has been shown in (Chen & Aihara, 1997; Chen & Shih, 2002) that,
under some conditions, the energy function (10) is decreasing along the solution of the
system:

((1)) (()) 0 for allV t V t t+ − ≤ , ∈ .y y N

Notably, the Lyapunov function (10) for the discrete-time network and the one (7) for the
continuous-time network are quite similar. The existence of Lyapunov function basically
guarantees the convergence of evolutions for the system to certain steady states, by the
LaSalle’s invariant principle. The transiently chaotic neural network is developed from this
discrete-time network with transient chaos imbedded in. Before introducing the theory for
the TCNN, let us review the LaSalle’s invariant principle and the Marotto’s theorem.

3.2 LaSalle’s invariant principle
Long-time asymptotic behaviors of solutions for a dynamical system, such as neural
network, are always important concerns. In 1960, LaSalle discovered the relation between
Lyapunov function and Birkhoff limit set. Extended from the Lyapunov direct method, a
uniform concept was developed to describe the asymptotic behaviors in terms of limit set.
By the invariant property of limit set, a basic theory for the stability of motion of dynamical
systems was derived. In this section, we review the invariant principle for both autonomous
and non-autonomous discrete-time dynamical systems, cf. (LaSalle, 1976). First, we consider
an autonomous difference equation

 (1) (()) nt t R t+ = , ∈ , ∈ ,x F x x N (11)

where n nR R: →F is continuous. We assume that ∗x is a fixed point (i.e. ()∗ ∗=F x x).
Suppose there exists a continuous, positive definite, and radially unbounded function

nV G R G R: → , ⊂ with

() 0V GΔ ≤ , ∀ ∈x x

where () (()) ()V V VΔ = −x F x x , then every solution to Eq. (11) converges to the largest
invariant set M contained in { () 0}G V∈ | Δ =x x . If the set M only contains the equilibrium
x* , then x* is asymptotically stable. The function V satisfying () 0VΔ ≤x for all G∈x is
said to be a Lyapunov function on set G.
Now we consider a discrete-time non-autonomous system. Let N be the set of positive
integers. For a given continuous function n nR R: × ⎯→F N , we consider the non-
autonomous dynamical system

 (1) (())t t t+ = , .x F x (12)

A sequence of points { () | 1 2 }t t = , ,x in Rn is a solution of (12) if (1) (())t t t+ = ,x F x , for
all t∈N . Let { () | (1) }O t t= ∈ , =x x x xN be the orbit of x. We say that p is a ω -limit point

of Ox if there exists a sequence of positive integers { }kt with kt →∞ as k →∞ , such

 Travelling Salesman Problem

120

 0 and 0 if 0idxdV dV
dt dt dt

≤ , = = . (8)

3. Discrete-time dynamical systems
Biological neurons are much more complicated than the simple threshold elements in
ANNs. Chaotic behaviors have actually been observed experimentally in biological
neurons, as pointed out in Aihara et al. (1990) and the references therein.
Discrete-time dynamical systems have attracted much attention in recent years, thanks to its
capacity of applications and underlying sophisticated mathematical theory. Indeed, not
only that discrete-time counterparts of classical theorems for continuous-time systems have
been developed successfully, but also the chaotic behaviors for discrete-time systems can be
characterized lucidly.
Due to the shortcomings that solutions get trapped at local minimum of objective function,
and dependence of performance upon choosing initial conditions in continuous-time
systems, researchers have attempted to introduce the chaotic ingredient into the networks.
The stage was thus set for the development of discrete-time neural networks, cf. (Aihara et
al., 1990; Chen & Aihara, 1995; Nozawa, 1992; Yamada & Aihara, 1997). In particular,
Nozawa (1992) showed that the Euler approximation of the continuous-time Hopfield
neural network with a negative self-feedback connection possesses chaotic dynamics, and
has a much better searching ability in solving the TSP than the original continuous-time
Hopfield neural network.
Notably, although it has been reported in (Bersini,1998; Bersini & Senser, 2002) that there
exist chaotic behaviours in continuous-time Hopfield-type neural networks, it is still
unknown whether the same concept or technique can be applied to the TSP problem.
We shall introduce the discrete-time Hopfield neural network in Subsection 3.1; then review
the LaSalle’s invariant principle for convergent dynamics and the Marotto’s theorem for
chaos, for discrete-time dynamical systems in Subsections 3.2, 3.3, respectively.

3.1 Discrete-time Hopfield neural networks
Discrete-time neural network model of Hopfield type can be described by the following
equations: for i = 1,…,n,

1

(1) () ()
n

i i ij j i
j

x t x t w y t Iμ
=

+ = + + .∑ (9)

Here, xi is the internal state of neuron i; yi is the output of neuron i; μ is the damping factor;
wii is the self-feedback connection weight; wij is the connection weight from neuron j to
neuron i; iI is the input bias. The parameter μ (resp. ωij, Ii) in Eq. (9) can be compared to

1
i i

t
C R
Δ− (resp. ij

i

t
C

ω Δ , i

i

I t
C
Δ) in terms of the parameters in Eq. (5), where tΔ is the discretization

time step. System (9) is the Euler approximation of Eq. (5). There also exists a Lyapunov
function for the discrete-time system (9):

 1

0
1 1 1 1

1() (1) ()
2

i
n n n n y

ij i j i i i
i j i i

V w y y I y g dμ ξ ξ−

= = = =

= − − − − ,∑∑ ∑ ∑∫y (10)

Solving TSP by Transiently Chaotic Neural Networks

121

where again ()i i iy g x= . It has been shown in (Chen & Aihara, 1997; Chen & Shih, 2002) that,
under some conditions, the energy function (10) is decreasing along the solution of the
system:

((1)) (()) 0 for allV t V t t+ − ≤ , ∈ .y y N

Notably, the Lyapunov function (10) for the discrete-time network and the one (7) for the
continuous-time network are quite similar. The existence of Lyapunov function basically
guarantees the convergence of evolutions for the system to certain steady states, by the
LaSalle’s invariant principle. The transiently chaotic neural network is developed from this
discrete-time network with transient chaos imbedded in. Before introducing the theory for
the TCNN, let us review the LaSalle’s invariant principle and the Marotto’s theorem.

3.2 LaSalle’s invariant principle
Long-time asymptotic behaviors of solutions for a dynamical system, such as neural
network, are always important concerns. In 1960, LaSalle discovered the relation between
Lyapunov function and Birkhoff limit set. Extended from the Lyapunov direct method, a
uniform concept was developed to describe the asymptotic behaviors in terms of limit set.
By the invariant property of limit set, a basic theory for the stability of motion of dynamical
systems was derived. In this section, we review the invariant principle for both autonomous
and non-autonomous discrete-time dynamical systems, cf. (LaSalle, 1976). First, we consider
an autonomous difference equation

 (1) (()) nt t R t+ = , ∈ , ∈ ,x F x x N (11)

where n nR R: →F is continuous. We assume that ∗x is a fixed point (i.e. ()∗ ∗=F x x).
Suppose there exists a continuous, positive definite, and radially unbounded function

nV G R G R: → , ⊂ with

() 0V GΔ ≤ , ∀ ∈x x

where () (()) ()V V VΔ = −x F x x , then every solution to Eq. (11) converges to the largest
invariant set M contained in { () 0}G V∈ | Δ =x x . If the set M only contains the equilibrium
x* , then x* is asymptotically stable. The function V satisfying () 0VΔ ≤x for all G∈x is
said to be a Lyapunov function on set G.
Now we consider a discrete-time non-autonomous system. Let N be the set of positive
integers. For a given continuous function n nR R: × ⎯→F N , we consider the non-
autonomous dynamical system

 (1) (())t t t+ = , .x F x (12)

A sequence of points { () | 1 2 }t t = , ,x in Rn is a solution of (12) if (1) (())t t t+ = ,x F x , for
all t∈N . Let { () | (1) }O t t= ∈ , =x x x xN be the orbit of x. We say that p is a ω -limit point

of Ox if there exists a sequence of positive integers { }kt with kt →∞ as k →∞ , such

 Travelling Salesman Problem

122

that lim ()k kt→∞=p x . Denote by ()ω x the set of all ω -limit points of Ox . Let Ni represent

the set of all positive integers larger than ni, for some positive integer in . Let nRΩ⊆ and

Ω be its closure. For a function
0V R: ×Ω⎯→N , we define () (1 ()) ()V t V t t V t, = + , , − ,x F x x

so that if { ()}tx is a solution of Eq. (12), then (()) (1 (1)) (())V t t V t t V t t, = + , + − ,x x x . V is said
to be a Lyapunov function for (12) if
i. each ()V t,⋅ is continuous, and

ii. for each ∈Ωp , there exists a neighborhood U of p such that ()V t,x is bounded

below for U∈ ∩Ωx and 1t∈N , 1 0n n≥ , and

iii. there exists a non-degenerate continuous function 0Q R: Ω→ such that

0() () 0V t Q, ≤ − ≤x x for all ∈Ωx and for all 2t∈N , 2 1n n≥ ,
or

iii.’ there exist a non-degenerate continuous function 0Q R: Ω→ and an equi-continuous

family of functions ()Q t R, ⋅ : Ω→ such that
0lim () () 0t Q t Q→∞ | , − |=x x for all ∈Ωx and

() () 0V t Q t, ≤ − , ≤x x for all
2()t N, ∈ ×Ωx , 2 1n n≥ .

If there exists such a Lyapunov function V, then the LaSalle’s invariant principle states that
the ω -limit set of any point x lies in 0S , i.e. 0() Sω ⊂x , where

 0 0{ () 0}S Q= ∈Ω : = .x x (13)

3.3 Marotto’s theorem on chaos
Originally, a chaotic phenomenon was numerically found in the research of Lorenz on
weather prediction in 1963. Later, the mathematical definition of chaos was initiated by Li &
Yorke (1975) for one-dimensional continuous maps. A criterion of existence of chaos has
been termed as “period three implies chaos" therein. More precisely, let f I I: → be a
continuous map of the compact interval I of the real line R into itself; if f has a periodic point
of period three, then f exhibits chaotic behavior. Three years later, the above result was
generalized by Marotto (1978). He proposed the definition of “snapback repeller" and
proved that “snapback repellers imply chaos" for multi-dimensional maps. The definition of
snapback repeller was further clarified in (Marotto, 2005).
The theorem has provided the best analytic argument of chaos for multi-dimensional maps.
The detailed description of chaos in the sense of Marotto is as follows. Let us define a

system as 1 ()k kF+ =x x where n
k R∈x , and F is C1 or piecewise C1 with non-smooth

points at suitable locations. A fixed point x is said to be a snapback repeller (see Fig. 1) of F if
all eigenvalues of ()DF x exceeding one in magnitude, and there exists a point 0 ≠x x in a

repelling neighborhood of x , such that 0()mF =x x for some m∈N , and

Solving TSP by Transiently Chaotic Neural Networks

123

0det(()) 0jDF ≠x , for all 1 j m≤ ≤ . If F has a snapback repeller, then the dynamical system
defined by F is chaotic in the following sense: (i) There exists a positive integer m0 such that
for each integer p ≥ m0, F has p-periodic points. (ii) There exists a scrambled set, that is, an
uncountable set L containing no periodic points such that the following pertains: (a)

()F L L⊂ ; (b) for every y∈L and any periodic point x of F,

() () 0limsup k k

k

F F
→∞

|| − ||> ;y x

 (c) for every x, y ∈L with ≠x y ,

() () 0limsup k k

k

F F
→∞

|| − ||> ;y x

(iii) There exists an uncountable subset L0 of L such that for every x, y ∈L0,

() () 0liminf k k

k

F F
→∞

|| − ||= .y x

Fig. 1. Diagram of a snapback repeller. The point X is a snapback repeller. The point 0X is

a snapback point such that Fm(X0)= X for some integer m. Note that the value of F at the (m-
1)-th point is the snapback repeller X .

Notably, (ii) (b) describes that any point in the scrambled set L does not converge to any
periodic point of F under the iteration of F. It bears a sense that there only exist unstable
periodic points in the system. (ii)(c) shows that there only exist unstable points in the
scrambled set L. In other words, points in the scrambled set do not attract each other. (iii)
describes that distances between the iterations of any pair of points in an uncountable subset
of L approach zero. Although it seems that there exists no rule for the dynamical behavior,
the behavior is controlled by the underlying deterministic system. It is not similar to the
concept of randomness of a stochastic system. The chaotic behavior is very random but
ordered.

 Travelling Salesman Problem

122

that lim ()k kt→∞=p x . Denote by ()ω x the set of all ω -limit points of Ox . Let Ni represent

the set of all positive integers larger than ni, for some positive integer in . Let nRΩ⊆ and

Ω be its closure. For a function
0V R: ×Ω⎯→N , we define () (1 ()) ()V t V t t V t, = + , , − ,x F x x

so that if { ()}tx is a solution of Eq. (12), then (()) (1 (1)) (())V t t V t t V t t, = + , + − ,x x x . V is said
to be a Lyapunov function for (12) if
i. each ()V t,⋅ is continuous, and

ii. for each ∈Ωp , there exists a neighborhood U of p such that ()V t,x is bounded

below for U∈ ∩Ωx and 1t∈N , 1 0n n≥ , and

iii. there exists a non-degenerate continuous function 0Q R: Ω→ such that

0() () 0V t Q, ≤ − ≤x x for all ∈Ωx and for all 2t∈N , 2 1n n≥ ,
or

iii.’ there exist a non-degenerate continuous function 0Q R: Ω→ and an equi-continuous

family of functions ()Q t R, ⋅ : Ω→ such that
0lim () () 0t Q t Q→∞ | , − |=x x for all ∈Ωx and

() () 0V t Q t, ≤ − , ≤x x for all
2()t N, ∈ ×Ωx , 2 1n n≥ .

If there exists such a Lyapunov function V, then the LaSalle’s invariant principle states that
the ω -limit set of any point x lies in 0S , i.e. 0() Sω ⊂x , where

 0 0{ () 0}S Q= ∈Ω : = .x x (13)

3.3 Marotto’s theorem on chaos
Originally, a chaotic phenomenon was numerically found in the research of Lorenz on
weather prediction in 1963. Later, the mathematical definition of chaos was initiated by Li &
Yorke (1975) for one-dimensional continuous maps. A criterion of existence of chaos has
been termed as “period three implies chaos" therein. More precisely, let f I I: → be a
continuous map of the compact interval I of the real line R into itself; if f has a periodic point
of period three, then f exhibits chaotic behavior. Three years later, the above result was
generalized by Marotto (1978). He proposed the definition of “snapback repeller" and
proved that “snapback repellers imply chaos" for multi-dimensional maps. The definition of
snapback repeller was further clarified in (Marotto, 2005).
The theorem has provided the best analytic argument of chaos for multi-dimensional maps.
The detailed description of chaos in the sense of Marotto is as follows. Let us define a

system as 1 ()k kF+ =x x where n
k R∈x , and F is C1 or piecewise C1 with non-smooth

points at suitable locations. A fixed point x is said to be a snapback repeller (see Fig. 1) of F if
all eigenvalues of ()DF x exceeding one in magnitude, and there exists a point 0 ≠x x in a

repelling neighborhood of x , such that 0()mF =x x for some m∈N , and

Solving TSP by Transiently Chaotic Neural Networks

123

0det(()) 0jDF ≠x , for all 1 j m≤ ≤ . If F has a snapback repeller, then the dynamical system
defined by F is chaotic in the following sense: (i) There exists a positive integer m0 such that
for each integer p ≥ m0, F has p-periodic points. (ii) There exists a scrambled set, that is, an
uncountable set L containing no periodic points such that the following pertains: (a)

()F L L⊂ ; (b) for every y∈L and any periodic point x of F,

() () 0limsup k k

k

F F
→∞

|| − ||> ;y x

 (c) for every x, y ∈L with ≠x y ,

() () 0limsup k k

k

F F
→∞

|| − ||> ;y x

(iii) There exists an uncountable subset L0 of L such that for every x, y ∈L0,

() () 0liminf k k

k

F F
→∞

|| − ||= .y x

Fig. 1. Diagram of a snapback repeller. The point X is a snapback repeller. The point 0X is

a snapback point such that Fm(X0)= X for some integer m. Note that the value of F at the (m-
1)-th point is the snapback repeller X .

Notably, (ii) (b) describes that any point in the scrambled set L does not converge to any
periodic point of F under the iteration of F. It bears a sense that there only exist unstable
periodic points in the system. (ii)(c) shows that there only exist unstable points in the
scrambled set L. In other words, points in the scrambled set do not attract each other. (iii)
describes that distances between the iterations of any pair of points in an uncountable subset
of L approach zero. Although it seems that there exists no rule for the dynamical behavior,
the behavior is controlled by the underlying deterministic system. It is not similar to the
concept of randomness of a stochastic system. The chaotic behavior is very random but
ordered.

 Travelling Salesman Problem

124

Let us illustrate the existence of period-three points and a snap-back repeller in the sense of
Li-Yorke and Marotto respectively, for the logistic map, () (1) [0 1]f x x x xμ μ= − , ∈ , , as an

example. The period-three points and a snap-back repeller are presented in Fig. (2). There
exists chaos in the sense of Li-Yorke (resp. Marotto) for the logistic map fμ with 4μ = .

Fig. 2. The blue line is the graph of logistic map with 4μ = . Black line illustrates the period
3 trajectory. The dotted line depicts a homoclinic orbit with snap-back points. This logistic
map possesses Li-Yorke’s and Marotto’s chaos.

4. Transiently chaotic neural networks
The transiently chaotic neural network (TCNN) is equipped with a chaotic phase which
prevails in the first stage of computation to enhance global searching and reduce the effect
of variations from choosing initial values. This procedure can be realized by a suitable
choice of parameters which typically starts from sufficiently large negative self-feedback
connection weights. The process is then cooled down, as the self-feedback connection
weights increases, while maintaining decreasing property of the energy (objective) function,
and finally settles at a state with lower value of objective function. The characteristic of
dynamical phenomena from chaotic phase to convergent phase is called “chaotic simulated
annealing".
The TCNN, inherited from the Hopfield type network, was first proposed by Chen & Aihara
(1995, 1997, 1999). Later, Chen & Shih (2002) performed a systematic analysis on the chaotic
behaviors of the TCNN. The existence of chaos is proved by a geometrical formulation
combined with the use of Marotto’s theorem. The analysis has provided the ranges of

Solving TSP by Transiently Chaotic Neural Networks

125

parameters for the chaotic phase and convergent phase. Recently, Chen and Shih (2007)
further extended the TCNN to the setting with piecewise linear activation function, which
not only improves the performance of computation, but also admits more succinct and
crystal mathematical description on the chaotic phase than the TCNN with the logistic
activation function. Such a setting fits into the revised version of theorem in (Marotto, 2005)
pertinently.
Let us describe the model equation for the TCNN.

0

1

(1) () ()[()] [()]
n

i i ii i i ij j i
j j i

x t x t t y t a y t vμ ω α ω
= , ≠

+ = − − + + ,∑ (14)

 (1) (1) ()ii iit tω β ω| + |=| − |, (15)

for i=1,…,n, t∈N, (positive integers), where xi is the internal state of neuron i; yi is the output
of neuron i, which corresponds to xi through an activation function; μ with 0 1μ< < is the

damping factor of nerve membrane; iiω is the self-feedback connection weight; 0ia is the

self-recurrent bias of neuron i; ijω is the connection weight from neuron j to neuron i; iv is

the input bias of neuron i; β with 0 1β< < , is the damping factor for iiω ; α is a positive
scaling parameter. Equation (15) represents an exponential cooling schedule in the
annealing procedure. The activation function adopted in (Chen & Aihara, 1995; 1997; 1999)
is the logistic function given by

() 1 [1 exp(())]i iy t x t ε= / + − / ,

which is depicted in Fig. 3 (b).

(a)

(b)

Fig. 3. The graphs of (a) the piecewise linear and (b) the logistic activation function.

 Travelling Salesman Problem

124

Let us illustrate the existence of period-three points and a snap-back repeller in the sense of
Li-Yorke and Marotto respectively, for the logistic map, () (1) [0 1]f x x x xμ μ= − , ∈ , , as an

example. The period-three points and a snap-back repeller are presented in Fig. (2). There
exists chaos in the sense of Li-Yorke (resp. Marotto) for the logistic map fμ with 4μ = .

Fig. 2. The blue line is the graph of logistic map with 4μ = . Black line illustrates the period
3 trajectory. The dotted line depicts a homoclinic orbit with snap-back points. This logistic
map possesses Li-Yorke’s and Marotto’s chaos.

4. Transiently chaotic neural networks
The transiently chaotic neural network (TCNN) is equipped with a chaotic phase which
prevails in the first stage of computation to enhance global searching and reduce the effect
of variations from choosing initial values. This procedure can be realized by a suitable
choice of parameters which typically starts from sufficiently large negative self-feedback
connection weights. The process is then cooled down, as the self-feedback connection
weights increases, while maintaining decreasing property of the energy (objective) function,
and finally settles at a state with lower value of objective function. The characteristic of
dynamical phenomena from chaotic phase to convergent phase is called “chaotic simulated
annealing".
The TCNN, inherited from the Hopfield type network, was first proposed by Chen & Aihara
(1995, 1997, 1999). Later, Chen & Shih (2002) performed a systematic analysis on the chaotic
behaviors of the TCNN. The existence of chaos is proved by a geometrical formulation
combined with the use of Marotto’s theorem. The analysis has provided the ranges of

Solving TSP by Transiently Chaotic Neural Networks

125

parameters for the chaotic phase and convergent phase. Recently, Chen and Shih (2007)
further extended the TCNN to the setting with piecewise linear activation function, which
not only improves the performance of computation, but also admits more succinct and
crystal mathematical description on the chaotic phase than the TCNN with the logistic
activation function. Such a setting fits into the revised version of theorem in (Marotto, 2005)
pertinently.
Let us describe the model equation for the TCNN.

0

1

(1) () ()[()] [()]
n

i i ii i i ij j i
j j i

x t x t t y t a y t vμ ω α ω
= , ≠

+ = − − + + ,∑ (14)

 (1) (1) ()ii iit tω β ω| + |=| − |, (15)

for i=1,…,n, t∈N, (positive integers), where xi is the internal state of neuron i; yi is the output
of neuron i, which corresponds to xi through an activation function; μ with 0 1μ< < is the

damping factor of nerve membrane; iiω is the self-feedback connection weight; 0ia is the

self-recurrent bias of neuron i; ijω is the connection weight from neuron j to neuron i; iv is

the input bias of neuron i; β with 0 1β< < , is the damping factor for iiω ; α is a positive
scaling parameter. Equation (15) represents an exponential cooling schedule in the
annealing procedure. The activation function adopted in (Chen & Aihara, 1995; 1997; 1999)
is the logistic function given by

() 1 [1 exp(())]i iy t x t ε= / + − / ,

which is depicted in Fig. 3 (b).

(a)

(b)

Fig. 3. The graphs of (a) the piecewise linear and (b) the logistic activation function.

 Travelling Salesman Problem

126

One may also consider more general annealing process:

 ()
0

1

(1) () (1) [()] [()]
n

q t
i i i i ij j i

j j i

x t x t y t a y t vμ β ω α ω
= , ≠

+ = + − − + + ,∑ (16)

where i=1,…,n, 0 1β< < ; ()q t satisfies the condition that there exists an n1∈N such that
() 0q t t− ≥ for all 1t n> . The standard annealing process simply takes ()q t t= .

The disadvantage of using the logistic activation function is that the output values for some
neurons may be neither close to one nor to zero, as demonstrated in Fig. (4). Although it is
possible to avoid such a situation by choosing high gain of the logistic activation function,
i.e., small ε , taking the piecewise linear output function (Fig. 3 (a)) leads to much better
performance.

Fig. 4. An example that the TCNN with the logistic activation function has an infeasible
solution, i.e., there exists an output entry yi which approaches 0.6012, neither close to 1 nor
to 0, after 1400 iterations.

4.1 Piecewise linear activation function
Chen & Shih (2007) proposed a transiently chaotic neural network (TCNN) with piecewise
linear activation function, instead of the logistic one, as follows:

 ()
0

1
(1) () (1) [()] ()

n
q t

i i i i ij j i
j

x t x t y t a w y t vμ β ω
=

+ = + − − + + ,∑ (17)

where i=1,…,n, and xi and yi satisfy the following relation

 () ()() (()) [2 1 1] 4 0,i i
i i

x t x ty t g x tε ε
ε ε

= := + | + | − | − | / , > (18)

That is, we consider the following time-dependent map on Rn:

 ()
0

1
() (1) [()] ()

n
q t

i i i i ij j i
j

F t x g x a g x vε εμ β ω ω
=

, = + − − + + .∑x (19)

Corresponding to this piecewise linear activation function, for a fixed 0ε > , we partition
the real line into the left (), middle (m), right (r) parts; namely,

m r() [] ()ε ε ε εΩ := −∞,− , Ω := − , , Ω := ,∞ . (20)

Solving TSP by Transiently Chaotic Neural Networks

127

Consequently, Rn can be partitioned into the following subsets:

1 1{() r m 1 }

n i

n
q q n i q ix x R x q `` " `` " `` " i nΩ = , , ∈ | ∈Ω ; = , , ; = , , , (21)

as illustrated in Fig. 5 for n=2. We may call m mΩ the interior region, each
1 nq qΩ , with

riq `` " `` "= , , for all i , an saturated region; each
1 nq qΩ , with iq `` "= , or r`` " , for

some i, and mjq `` "= for some j, a mixed region.

Fig. 5. Illustration of
1 2q qΩ in R2, where q1 and q2 are `` " or m`` " or r`` "

Through introducing upper and lower bounds for the map (19), the existence of snap-back
repellers in each of the 3n regions, hence Marotto’s chaos, for the system can be established.
Let us quote the parameter conditions and the theorem. Consider

(A) 0ω > , 1 1
20 μ

ω ε
−< < , 1

0 0h aμ
ω ωε−− − + > , 1

0 1h aμ
ω ωε− + + < ,

(B) 1 1
0 0 02 2(1) [() (1)]a h a h a hω

μ εμε ω ω ω μ ω ω+ − − > − + / − − − + − .

Theorem 1 (Chen & Shih, 2007). If the parameters 0()i ia hμ ω ε, , , , , satisfy (A) and (B) with
a0=a0i, h=hi, for every i=1,…,n, then there exist snap-back repellers for the TCNN with
activation function (18).

On the other hand, system (17) admits a time-dependent Lyapunov function

 2

1 1 1 1

1() (1) ()
2

n n n n
t

ij i j i i i i
i j i i

V t y y v y y y cω μ ε
= = = =

, = − − − − − + ,∑∑ ∑ ∑x (22)

 Travelling Salesman Problem

126

One may also consider more general annealing process:

 ()
0

1

(1) () (1) [()] [()]
n

q t
i i i i ij j i

j j i

x t x t y t a y t vμ β ω α ω
= , ≠

+ = + − − + + ,∑ (16)

where i=1,…,n, 0 1β< < ; ()q t satisfies the condition that there exists an n1∈N such that
() 0q t t− ≥ for all 1t n> . The standard annealing process simply takes ()q t t= .

The disadvantage of using the logistic activation function is that the output values for some
neurons may be neither close to one nor to zero, as demonstrated in Fig. (4). Although it is
possible to avoid such a situation by choosing high gain of the logistic activation function,
i.e., small ε , taking the piecewise linear output function (Fig. 3 (a)) leads to much better
performance.

Fig. 4. An example that the TCNN with the logistic activation function has an infeasible
solution, i.e., there exists an output entry yi which approaches 0.6012, neither close to 1 nor
to 0, after 1400 iterations.

4.1 Piecewise linear activation function
Chen & Shih (2007) proposed a transiently chaotic neural network (TCNN) with piecewise
linear activation function, instead of the logistic one, as follows:

 ()
0

1
(1) () (1) [()] ()

n
q t

i i i i ij j i
j

x t x t y t a w y t vμ β ω
=

+ = + − − + + ,∑ (17)

where i=1,…,n, and xi and yi satisfy the following relation

 () ()() (()) [2 1 1] 4 0,i i
i i

x t x ty t g x tε ε
ε ε

= := + | + | − | − | / , > (18)

That is, we consider the following time-dependent map on Rn:

 ()
0

1
() (1) [()] ()

n
q t

i i i i ij j i
j

F t x g x a g x vε εμ β ω ω
=

, = + − − + + .∑x (19)

Corresponding to this piecewise linear activation function, for a fixed 0ε > , we partition
the real line into the left (), middle (m), right (r) parts; namely,

m r() [] ()ε ε ε εΩ := −∞,− , Ω := − , , Ω := ,∞ . (20)

Solving TSP by Transiently Chaotic Neural Networks

127

Consequently, Rn can be partitioned into the following subsets:

1 1{() r m 1 }

n i

n
q q n i q ix x R x q `` " `` " `` " i nΩ = , , ∈ | ∈Ω ; = , , ; = , , , (21)

as illustrated in Fig. 5 for n=2. We may call m mΩ the interior region, each
1 nq qΩ , with

riq `` " `` "= , , for all i , an saturated region; each
1 nq qΩ , with iq `` "= , or r`` " , for

some i, and mjq `` "= for some j, a mixed region.

Fig. 5. Illustration of
1 2q qΩ in R2, where q1 and q2 are `` " or m`` " or r`` "

Through introducing upper and lower bounds for the map (19), the existence of snap-back
repellers in each of the 3n regions, hence Marotto’s chaos, for the system can be established.
Let us quote the parameter conditions and the theorem. Consider

(A) 0ω > , 1 1
20 μ

ω ε
−< < , 1

0 0h aμ
ω ωε−− − + > , 1

0 1h aμ
ω ωε− + + < ,

(B) 1 1
0 0 02 2(1) [() (1)]a h a h a hω

μ εμε ω ω ω μ ω ω+ − − > − + / − − − + − .

Theorem 1 (Chen & Shih, 2007). If the parameters 0()i ia hμ ω ε, , , , , satisfy (A) and (B) with
a0=a0i, h=hi, for every i=1,…,n, then there exist snap-back repellers for the TCNN with
activation function (18).

On the other hand, system (17) admits a time-dependent Lyapunov function

 2

1 1 1 1

1() (1) ()
2

n n n n
t

ij i j i i i i
i j i i

V t y y v y y y cω μ ε
= = = =

, = − − − − − + ,∑∑ ∑ ∑x (22)

 Travelling Salesman Problem

128

where ()i iy g xε= , i=1,…,n, and 0< c <1. Note that V is globally Lipschitz, but not C1. Let

[]ij n nW ω ×= . By applying the LaSalle’s invariant principle, the following convergent
theorem can be derived.
Theorem 2 (Chen & Shih, 2007). If 0 1μ≤ ≤ , 0ε > , 1 1c

β−| |< and the matrix

2 (1)W Iε μ+ − is positive-definite, then there exists 2 2 1n n n∈ , >N so that

(1 (1)) (())V t t V t t+ , + ≤ ,x x for t≥n2 and V is a Lyapunov function for system (17) on N2×Rn.

The conditions for chaotic and convergent dynamical phases for the TCNN are all
computable. The range of the parameters satisfying these conditions can also be depicted
numerically. There are other advantages in adopting the piecewise linear activation
function. Note that the feasible and optimal solutions lie in the saturated regions

1 nq qΩ ,

with riq `` " `` "= , , for all i. One can further impose conditions so that the fixed points in
the interior and mixed regions are unstable. Accordingly, iterations from almost any initial
value converge to outputs with component equal to either 0 or 1. Details for these
discussions can be found in (Chen & Shih, 2007).
On the other hand, the following objective function is considered in (Chen & Aihara, 1995)

2 21

1 1 1 1

() [(1) (1)]
2

N N N N

ik ik
i k k i

E y yγ
= = = =

= − + −∑ ∑ ∑ ∑y

 2
(1) (1)

1 1 1

()
2

N N N

ij ik j k j k
i j k

d y y yγ
− +

= = =

+ + ,∑∑∑ (23)

where 1γ and 2γ are parameters which are selected to reflect the relative importance of the
constraints and the cost function of the tour length, respectively.
To apply the TCNN to the TSP, we reformulate the setting of TSP with two-dimensional
indices into the one-dimensional form. Restated, by letting s(i,j)=j+(i-1)N, where N is the
number of cities for the TSP, Eq. (23) becomes

 2 21 1
1() 2
2

T
N N

E W I Nγ γ
×

= − − + ,y y y y (24)

where, 2 2N N
I

×
 is the identity matrix of size 2 2N N× , 21 ()()s i j N

y y y,= , , , ,y and

 1 2[1 1]N N N N N N N NW I I D Bγ γ× × × ×= − ⊗ + ⊗ − ⊗ ; (25)

1N N× is the matrix whose entries are all one, []T
ijD d= and []ijB b= with 0i jb , = except that

1i ib , + = 1i ib , − = 1 Nb , = 1 1Nb , = ; the 2 2N N× block matrix A B⊗ is defined by the formula

[] []ij ijA B a B⊗ = , where []ijA a= and []ijB b= . The TCNN for the TSP is adjusted to

2

()
0 1

1

(1) () (1) [()] () 2
N

q t
i i i i ij j

j
x t x t y t a W y tμ β ω γ

=

+ = + − − + + ,∑ (26)

Solving TSP by Transiently Chaotic Neural Networks

129

where [] diag[] 2ijW W W W= := − / , i=1,…,N2. According to previous discussions, there is a
Lyapunov function for Eq. (17):

2 2 2 2

2
1

1 1 1 1

1() 2 (1) ()
2

N N N N
t

ij i j i i i
i j i i

V t W y y y y y cγ μ ε
= = = =

, = − − − − − + .∑∑ ∑ ∑y (27)

Notice that the Lyapunov function (27) can be compared to a constant shift of the objective
function (24) when 1c| |< , ε is sufficiently small and as t is large.

5. Numerical simulations
Let us describe the method to suitably choose the parameters in the numerical simulation.
Due to the deterministic nature for the TCNN (17), parameters are selected such that its
dynamical behaviors have some stable properties. Therefore, we take a parameter μ with
0< μ < 1 for boundedness of iterations for the TCNN. Set ω=0, and choose 0ia hε , , , where

2max{ 1 }ih h i N= : = , , ,
2

11
{ 2 }N

i ikk
h W γ

=
= | | + | |∑ , 21i N= , , , so that the TCNN with

these parameters is in convergent phase. In convergent phase, any iteration is going to settle
at a fixed point. Next, we let ω| | increase from 0 to see if parameters 0()ia hμ ε ω, , , ,
enter the chaotic regime which has been justified in (Chen & Shih, 2002; 2007). These
computations can be assisted by a computer programming. If the output matrix does not
tend to a permutation matrix, one can enlarge slightly the parameter 1γ in Eq. (25).
In this section, we quote the numerical simulations in (Chen & Shih, 2007) to demonstrate
the computation performance of using the TCNN (17) to find the optimal route of the TSP.
We consider the five cities {1 2 3 4 10}, , , , with coordinates in Table 1. These are data from
the ten-city TSP problem in (Hopfield & Tank, 1985). The positions of the ten cities and the
optimal route are presented in Fig. 6.

Fig. 6. Illustration of the locations of 10 cities for the Hopfield-Tank original data. The best
way to travel for ten (resp. five) cities is in terms of the solid line (resp. dotted line)
connection.

 Travelling Salesman Problem

128

where ()i iy g xε= , i=1,…,n, and 0< c <1. Note that V is globally Lipschitz, but not C1. Let

[]ij n nW ω ×= . By applying the LaSalle’s invariant principle, the following convergent
theorem can be derived.
Theorem 2 (Chen & Shih, 2007). If 0 1μ≤ ≤ , 0ε > , 1 1c

β−| |< and the matrix

2 (1)W Iε μ+ − is positive-definite, then there exists 2 2 1n n n∈ , >N so that

(1 (1)) (())V t t V t t+ , + ≤ ,x x for t≥n2 and V is a Lyapunov function for system (17) on N2×Rn.

The conditions for chaotic and convergent dynamical phases for the TCNN are all
computable. The range of the parameters satisfying these conditions can also be depicted
numerically. There are other advantages in adopting the piecewise linear activation
function. Note that the feasible and optimal solutions lie in the saturated regions

1 nq qΩ ,

with riq `` " `` "= , , for all i. One can further impose conditions so that the fixed points in
the interior and mixed regions are unstable. Accordingly, iterations from almost any initial
value converge to outputs with component equal to either 0 or 1. Details for these
discussions can be found in (Chen & Shih, 2007).
On the other hand, the following objective function is considered in (Chen & Aihara, 1995)

2 21

1 1 1 1

() [(1) (1)]
2

N N N N

ik ik
i k k i

E y yγ
= = = =

= − + −∑ ∑ ∑ ∑y

 2
(1) (1)

1 1 1

()
2

N N N

ij ik j k j k
i j k

d y y yγ
− +

= = =

+ + ,∑∑∑ (23)

where 1γ and 2γ are parameters which are selected to reflect the relative importance of the
constraints and the cost function of the tour length, respectively.
To apply the TCNN to the TSP, we reformulate the setting of TSP with two-dimensional
indices into the one-dimensional form. Restated, by letting s(i,j)=j+(i-1)N, where N is the
number of cities for the TSP, Eq. (23) becomes

 2 21 1
1() 2
2

T
N N

E W I Nγ γ
×

= − − + ,y y y y (24)

where, 2 2N N
I

×
 is the identity matrix of size 2 2N N× , 21 ()()s i j N

y y y,= , , , ,y and

 1 2[1 1]N N N N N N N NW I I D Bγ γ× × × ×= − ⊗ + ⊗ − ⊗ ; (25)

1N N× is the matrix whose entries are all one, []T
ijD d= and []ijB b= with 0i jb , = except that

1i ib , + = 1i ib , − = 1 Nb , = 1 1Nb , = ; the 2 2N N× block matrix A B⊗ is defined by the formula

[] []ij ijA B a B⊗ = , where []ijA a= and []ijB b= . The TCNN for the TSP is adjusted to

2

()
0 1

1

(1) () (1) [()] () 2
N

q t
i i i i ij j

j
x t x t y t a W y tμ β ω γ

=

+ = + − − + + ,∑ (26)

Solving TSP by Transiently Chaotic Neural Networks

129

where [] diag[] 2ijW W W W= := − / , i=1,…,N2. According to previous discussions, there is a
Lyapunov function for Eq. (17):

2 2 2 2

2
1

1 1 1 1

1() 2 (1) ()
2

N N N N
t

ij i j i i i
i j i i

V t W y y y y y cγ μ ε
= = = =

, = − − − − − + .∑∑ ∑ ∑y (27)

Notice that the Lyapunov function (27) can be compared to a constant shift of the objective
function (24) when 1c| |< , ε is sufficiently small and as t is large.

5. Numerical simulations
Let us describe the method to suitably choose the parameters in the numerical simulation.
Due to the deterministic nature for the TCNN (17), parameters are selected such that its
dynamical behaviors have some stable properties. Therefore, we take a parameter μ with
0< μ < 1 for boundedness of iterations for the TCNN. Set ω=0, and choose 0ia hε , , , where

2max{ 1 }ih h i N= : = , , ,
2

11
{ 2 }N

i ikk
h W γ

=
= | | + | |∑ , 21i N= , , , so that the TCNN with

these parameters is in convergent phase. In convergent phase, any iteration is going to settle
at a fixed point. Next, we let ω| | increase from 0 to see if parameters 0()ia hμ ε ω, , , ,
enter the chaotic regime which has been justified in (Chen & Shih, 2002; 2007). These
computations can be assisted by a computer programming. If the output matrix does not
tend to a permutation matrix, one can enlarge slightly the parameter 1γ in Eq. (25).
In this section, we quote the numerical simulations in (Chen & Shih, 2007) to demonstrate
the computation performance of using the TCNN (17) to find the optimal route of the TSP.
We consider the five cities {1 2 3 4 10}, , , , with coordinates in Table 1. These are data from
the ten-city TSP problem in (Hopfield & Tank, 1985). The positions of the ten cities and the
optimal route are presented in Fig. 6.

Fig. 6. Illustration of the locations of 10 cities for the Hopfield-Tank original data. The best
way to travel for ten (resp. five) cities is in terms of the solid line (resp. dotted line)
connection.

 Travelling Salesman Problem

130

In our simulation, the parameters for the TCNN (17) are set as

0 9μ = . ; 0 005β = . ; 0 01ε = . ; 0 0 65ia = . ;

0 08ω = − . ; 1 0 015γ = . , 2 0 015γ = . ; ()q t t= .

Recall that coefficients 1γ and 2γ reflect the relative strength of the constraint and the tour
length energy terms (23). An optimal route trajectory is demonstrated in Fig. 7. Our
simulation indicates that the order of the best route for the TSP is 4 1 10 2 3 . The
other best routes include 1 10 2 3 4 and 4 3 2 10 1. Actually, all of
them represent the same loop. Three diagrams in Fig. 8 are plotted to show the evolutions
of constraint part and tour length part in the objective function.

City No. x-axis y-axis
1 .4 .445
2 .245 .155
3 .165 .235
4 .225 .77

10 .625 .27

Table 1. Coordinates of positions for 5 cities.

Fig. 7. Evolutions of outputs yij in Eq. (17). The trajectory approaches one, in the subfigures
with a black point.

Solving TSP by Transiently Chaotic Neural Networks

131

(a)

(b)

(c)

Fig. 8. Evolutions of (a) E, (b) the constraint term; (c) the tour-legnth term, in Eq. (23).

As another observation on the convergent and chaotic phases, we compute the Lyapunov
exponents for the one-neuron equation:

 0(1) () [(())] (1)tx t x t g x t a hεμ ω ω β ω+ = + − + , = − (28)

with parameters set as

0 9 0 65 0 01 0a hμ ε= . ; = . ; = . ; = .

 Travelling Salesman Problem

130

In our simulation, the parameters for the TCNN (17) are set as

0 9μ = . ; 0 005β = . ; 0 01ε = . ; 0 0 65ia = . ;

0 08ω = − . ; 1 0 015γ = . , 2 0 015γ = . ; ()q t t= .

Recall that coefficients 1γ and 2γ reflect the relative strength of the constraint and the tour
length energy terms (23). An optimal route trajectory is demonstrated in Fig. 7. Our
simulation indicates that the order of the best route for the TSP is 4 1 10 2 3 . The
other best routes include 1 10 2 3 4 and 4 3 2 10 1. Actually, all of
them represent the same loop. Three diagrams in Fig. 8 are plotted to show the evolutions
of constraint part and tour length part in the objective function.

City No. x-axis y-axis
1 .4 .445
2 .245 .155
3 .165 .235
4 .225 .77

10 .625 .27

Table 1. Coordinates of positions for 5 cities.

Fig. 7. Evolutions of outputs yij in Eq. (17). The trajectory approaches one, in the subfigures
with a black point.

Solving TSP by Transiently Chaotic Neural Networks

131

(a)

(b)

(c)

Fig. 8. Evolutions of (a) E, (b) the constraint term; (c) the tour-legnth term, in Eq. (23).

As another observation on the convergent and chaotic phases, we compute the Lyapunov
exponents for the one-neuron equation:

 0(1) () [(())] (1)tx t x t g x t a hεμ ω ω β ω+ = + − + , = − (28)

with parameters set as

0 9 0 65 0 01 0a hμ ε= . ; = . ; = . ; = .

 Travelling Salesman Problem

132

Let us consider 0[0]ω ω∈ , with 0 0 08ω = − . . If the system possesses a chaotic behavior, its

maximal Lyapunov exponent is positive along the chaotic trajectory, and vice versa. The
maximal Lyapunov exponent means the average of the maximal eigenvalue for linear part
of the system along the chaotic trajectory in the ergodic sense. If the maximal Lyapunov
exponent is negative, the system corresponds to stable phase. Notably, for a one-neuron
map, there is only one Lyapunov exponent. The bifurcation diagram of Lyapunov exponent
for the map (28) with parameters 0[0]ω ω∈ , is shown in Fig. (9). It follows from Fig. (9)

that there is a bifurcation point near 0 0 04ω = − . . In other words, the behavior changes near

the point, and transforms from chaotic phase to stable phase. However, since our algorithm

is based on 0(1)tω β ω= − , we also present the correspondence between iteration number

t and parameter ω in Fig. (10). Similar computations can be applied to the
multidimensional systems.

Fig. 9. Bifurcation diagram of Lyapunov exponent for one-dimensional map (28).

Fig. 10. Correspondence between iteration number t and parameter ω .

6. Conclusions
It has been more than two decades since artificial neural networks were employed to solve
TSP. Among the efforts in improving the performance of this computational scheme,
substantial achievements have been made in incorporating chaos into the system and
developing mathematical analysis for finding the parameters in the chaotic regime and
convergent regime. There are several advantages in employing the piecewise linear
activation function. We have observed that the TCNN with piecewise linear activation
function has better performance than with the logistic activation function in the

Solving TSP by Transiently Chaotic Neural Networks

133

applications. In addition, the parameter conditions derived in this framework are much
simpler than the ones for logistic activation functions.
There are certainly some further improvements to be developed; for example, in the
decision of timing to cool down the process from the chaotic phase; observing and
realization of the rotational symmetry and reversal symmetry in the solution structure,
as well as conditions for stability of feasible solutions and instability of infeasible
solutions.

7. Acknowledgements
This work is partially supported by The National Science Council, and the MOEATU
program, of R.O.C. on Taiwan.

8. References
Aihara, K.; Takabe, T. & Toyoda, M. (1990). Chaotic neural network. Phys. Lett. A, 144,

pp. 333–340.
Bersini, H. (1998). The frustrated and compositional nature of chaos in small Hopfield

networks. Neural Networks, 11, pp. 1017–1025.
Bersini, H. & Senser, P. (2002). The connections between the grustrated chaos and the

intermittency chaos in small Hopfield networks. Neural Networks, 15 , pp. 1197–
1204.

Chen, L. & Aihara, K. (1995). Chaotic simulated annealing by neural network model with
transient chaos. Neural Networks, 8, pp. 915–930.

Chen, L. & Aihara, K. (1997). Chaos and asymptotical stability in discrete-time neural
networks. Phys. D, 104 , pp. 286–325.

Chen, L. & Aihara, K. (1999). Global searching ability of chaotic neural networks. IEEE
Trans. Circuits Systems I Fund. Theory Appl., 46 , pp. 974–993.

Chen, S. S. & Shih, C. W. (2002). Transversal homoclinic orbits in a transiently chaotic neural
network. Chaos, 12, pp. 654–671.

Chen, S. S. & Shih, C. W. (2007). Transiently chaotic neural networks with piecewise linear
output functions. Chaos, Solitons & Fractals, doi:10.1016/j.chaos.2007.01.103.

Hänggi, M.; Reddy, H. C. & Moschytz, G. S. (1999). Unifying results in CNN theory using
delta operator. IEEE International Symposium on Circuits and Systems, 3, pp. 547–550.

Harrer, H. & Nossek, J. A. (1992). An analog implementation of discrete-time CNNs. IEEE
Transactions on Neural Networks, 3, pp. 466–476.

Hopfield, J. J. & Tank, D. W. (1985). Neural computation of decisions in optimization
problems. Biol. Cybernet., 52, pp. 141–152.

LaSalle, J. P. (1976). The stability of dynamical systems. Regional Conference Series in Applied
Mathematics. Philadelphia, PA:SIAM.

Li, T. & Yorke, J. (1975). Periodic three implies chaos. Am Math Monthly, 82, pp. 985–992.
Lorenz, E. (1963) Deterministic nonperiodic flow. J. of Atmospheric Science, 20, pp. 130–141.

Marotto, F. R. (1978). Snap-back repellers imply chaos in nR . J. Math. Anal. Appl., 63,
pp. 199–223.

 Travelling Salesman Problem

132

Let us consider 0[0]ω ω∈ , with 0 0 08ω = − . . If the system possesses a chaotic behavior, its

maximal Lyapunov exponent is positive along the chaotic trajectory, and vice versa. The
maximal Lyapunov exponent means the average of the maximal eigenvalue for linear part
of the system along the chaotic trajectory in the ergodic sense. If the maximal Lyapunov
exponent is negative, the system corresponds to stable phase. Notably, for a one-neuron
map, there is only one Lyapunov exponent. The bifurcation diagram of Lyapunov exponent
for the map (28) with parameters 0[0]ω ω∈ , is shown in Fig. (9). It follows from Fig. (9)

that there is a bifurcation point near 0 0 04ω = − . . In other words, the behavior changes near

the point, and transforms from chaotic phase to stable phase. However, since our algorithm

is based on 0(1)tω β ω= − , we also present the correspondence between iteration number

t and parameter ω in Fig. (10). Similar computations can be applied to the
multidimensional systems.

Fig. 9. Bifurcation diagram of Lyapunov exponent for one-dimensional map (28).

Fig. 10. Correspondence between iteration number t and parameter ω .

6. Conclusions
It has been more than two decades since artificial neural networks were employed to solve
TSP. Among the efforts in improving the performance of this computational scheme,
substantial achievements have been made in incorporating chaos into the system and
developing mathematical analysis for finding the parameters in the chaotic regime and
convergent regime. There are several advantages in employing the piecewise linear
activation function. We have observed that the TCNN with piecewise linear activation
function has better performance than with the logistic activation function in the

Solving TSP by Transiently Chaotic Neural Networks

133

applications. In addition, the parameter conditions derived in this framework are much
simpler than the ones for logistic activation functions.
There are certainly some further improvements to be developed; for example, in the
decision of timing to cool down the process from the chaotic phase; observing and
realization of the rotational symmetry and reversal symmetry in the solution structure,
as well as conditions for stability of feasible solutions and instability of infeasible
solutions.

7. Acknowledgements
This work is partially supported by The National Science Council, and the MOEATU
program, of R.O.C. on Taiwan.

8. References
Aihara, K.; Takabe, T. & Toyoda, M. (1990). Chaotic neural network. Phys. Lett. A, 144,

pp. 333–340.
Bersini, H. (1998). The frustrated and compositional nature of chaos in small Hopfield

networks. Neural Networks, 11, pp. 1017–1025.
Bersini, H. & Senser, P. (2002). The connections between the grustrated chaos and the

intermittency chaos in small Hopfield networks. Neural Networks, 15 , pp. 1197–
1204.

Chen, L. & Aihara, K. (1995). Chaotic simulated annealing by neural network model with
transient chaos. Neural Networks, 8, pp. 915–930.

Chen, L. & Aihara, K. (1997). Chaos and asymptotical stability in discrete-time neural
networks. Phys. D, 104 , pp. 286–325.

Chen, L. & Aihara, K. (1999). Global searching ability of chaotic neural networks. IEEE
Trans. Circuits Systems I Fund. Theory Appl., 46 , pp. 974–993.

Chen, S. S. & Shih, C. W. (2002). Transversal homoclinic orbits in a transiently chaotic neural
network. Chaos, 12, pp. 654–671.

Chen, S. S. & Shih, C. W. (2007). Transiently chaotic neural networks with piecewise linear
output functions. Chaos, Solitons & Fractals, doi:10.1016/j.chaos.2007.01.103.

Hänggi, M.; Reddy, H. C. & Moschytz, G. S. (1999). Unifying results in CNN theory using
delta operator. IEEE International Symposium on Circuits and Systems, 3, pp. 547–550.

Harrer, H. & Nossek, J. A. (1992). An analog implementation of discrete-time CNNs. IEEE
Transactions on Neural Networks, 3, pp. 466–476.

Hopfield, J. J. & Tank, D. W. (1985). Neural computation of decisions in optimization
problems. Biol. Cybernet., 52, pp. 141–152.

LaSalle, J. P. (1976). The stability of dynamical systems. Regional Conference Series in Applied
Mathematics. Philadelphia, PA:SIAM.

Li, T. & Yorke, J. (1975). Periodic three implies chaos. Am Math Monthly, 82, pp. 985–992.
Lorenz, E. (1963) Deterministic nonperiodic flow. J. of Atmospheric Science, 20, pp. 130–141.

Marotto, F. R. (1978). Snap-back repellers imply chaos in nR . J. Math. Anal. Appl., 63,
pp. 199–223.

 Travelling Salesman Problem

134

Marotto, F. R. (2005). On redefining a snap-back repeller. Chaos Solitons & Fractals, 25,
pp. 25–28.

Nozawa, H. (1992). A neural network model as a globally coupled map and applications
based on chaos. Chaos, 2, pp. 377–386.

Smith, K. (1999). Neural networks for combinatorial optimization: a review of more than a
decade of research. INFORMS J. on Computing, 11(1), pp. 15–34.

Yamada, T. & Aihara, K. (1997) Nonlinear neurodynamics and combinatorial optimization
in chaotic neural networks. J. Intell. Fuzzy Syst., 5, pp. 53–68.

7

A Recurrent Neural Network to Traveling
Salesman Problem

Paulo Henrique Siqueira, Sérgio Scheer, and Maria Teresinha Arns Steiner
Federal University of Paraná

Curitiba, Paraná,
 Brazil

1. Introduction
One technique that uses Wang’s Recurrent Neural Networks with the “Winner Takes All”
principle is presented to solve two classical problems of combinatorial optimization:
Assignment Problem (AP) and Traveling Salesman Problem (TSP).
With a set of appropriate choices for the parameters in Wang’s Recurrent Neural Network,
this technique appears to be efficient in solving the mentioned problems in real time. In
cases of solutions that are very close to each other or multiple optimal solutions to
Assignment Problem, the Wang’s Neural Network does not converge. The proposed
technique solves these types of problems by applying the “Winner Takes All” principle to
Wang’s Recurrent Neural Network, and could be applied to solve the Traveling Salesman
Problem as well. This application to the Traveling Salesman Problem can easily be
implemented, since the formulation of this problem is the same that of the Assignment
Problem, with the additional constraint of Hamiltonian circuit.
Comparisons between some traditional ways to adjust parameters of Recurrent Neural
Networks are made, and some proposals concerning to parameters with dispersion
measures of the cost matrix coefficients to the Assignment Problem are shown. Wang’s
Neural Network with principle Winner Takes All performs only 1% of the average number
of iterations of Wang’s Neural Network without this principle. In this work 100 matrices
with dimension varying of 3×3 to 20×20 are tested to choose the better combination of
parameters to Wang’s recurrent neural network.
When the Wang’s Neural Network presents feasible solutions for the Assignment Problem,
the "Winner Takes All" principle is applied to the values of the Neural Network’s decision
variables, with the additional constraint that the new solution must form a feasible route for
the Traveling Salesman Problem.
The results from this new technique are compared to other heuristics, with data from the
TSPLIB (Traveling Salesman Problem Library). The 2-opt local search technique is applied to
the final solutions of the proposed technique and shows a considerable improvement of the
results. The results of problem “dantzig42” of TSPLIB and an example with some iterations
of technique proposed in this work are shown.
This work is divided in 11 sections, including this introduction. In section 2, the Assignment
Problem is defined. In section 3, the Wang’s recurrent neural network is presented and a

 Travelling Salesman Problem

134

Marotto, F. R. (2005). On redefining a snap-back repeller. Chaos Solitons & Fractals, 25,
pp. 25–28.

Nozawa, H. (1992). A neural network model as a globally coupled map and applications
based on chaos. Chaos, 2, pp. 377–386.

Smith, K. (1999). Neural networks for combinatorial optimization: a review of more than a
decade of research. INFORMS J. on Computing, 11(1), pp. 15–34.

Yamada, T. & Aihara, K. (1997) Nonlinear neurodynamics and combinatorial optimization
in chaotic neural networks. J. Intell. Fuzzy Syst., 5, pp. 53–68.

7

A Recurrent Neural Network to Traveling
Salesman Problem

Paulo Henrique Siqueira, Sérgio Scheer, and Maria Teresinha Arns Steiner
Federal University of Paraná

Curitiba, Paraná,
 Brazil

1. Introduction
One technique that uses Wang’s Recurrent Neural Networks with the “Winner Takes All”
principle is presented to solve two classical problems of combinatorial optimization:
Assignment Problem (AP) and Traveling Salesman Problem (TSP).
With a set of appropriate choices for the parameters in Wang’s Recurrent Neural Network,
this technique appears to be efficient in solving the mentioned problems in real time. In
cases of solutions that are very close to each other or multiple optimal solutions to
Assignment Problem, the Wang’s Neural Network does not converge. The proposed
technique solves these types of problems by applying the “Winner Takes All” principle to
Wang’s Recurrent Neural Network, and could be applied to solve the Traveling Salesman
Problem as well. This application to the Traveling Salesman Problem can easily be
implemented, since the formulation of this problem is the same that of the Assignment
Problem, with the additional constraint of Hamiltonian circuit.
Comparisons between some traditional ways to adjust parameters of Recurrent Neural
Networks are made, and some proposals concerning to parameters with dispersion
measures of the cost matrix coefficients to the Assignment Problem are shown. Wang’s
Neural Network with principle Winner Takes All performs only 1% of the average number
of iterations of Wang’s Neural Network without this principle. In this work 100 matrices
with dimension varying of 3×3 to 20×20 are tested to choose the better combination of
parameters to Wang’s recurrent neural network.
When the Wang’s Neural Network presents feasible solutions for the Assignment Problem,
the "Winner Takes All" principle is applied to the values of the Neural Network’s decision
variables, with the additional constraint that the new solution must form a feasible route for
the Traveling Salesman Problem.
The results from this new technique are compared to other heuristics, with data from the
TSPLIB (Traveling Salesman Problem Library). The 2-opt local search technique is applied to
the final solutions of the proposed technique and shows a considerable improvement of the
results. The results of problem “dantzig42” of TSPLIB and an example with some iterations
of technique proposed in this work are shown.
This work is divided in 11 sections, including this introduction. In section 2, the Assignment
Problem is defined. In section 3, the Wang’s recurrent neural network is presented and a

 Travelling Salesman Problem

136

problem with multiple optimal solutions is shown. In section 4, the technique based on the
“Winner takes all“ principle is presented and an example of application to Assignment
Problem is shown. In section 5, some alternatives for parameters of Wang’s neural network
to Assignment Problem are presented. In section 6 the results to 100 matrices are shown. In
Section 7, it is presented the formulation of Traveling Salesman Problem. In section 8 the
application of Wang’s neural network with “Winner Takes all“ is shown with five examples
of TSPLIB. In Section 9, results to others problems of TSPLIB are compared to the ones
obtained trhrough other techniques. Findings are presented in section 10, and section 11
contains the references.

2. The assignment problem
The objective of this problem is assigning a number of elements to the same number of
positions, and minimizing the linear cost function. This problem is known in literature as
Linear Assignment Problem or problem of Matching with Costs (Ajuha et al., 1993; Siqueira
et al., 2004), and can be formulated as follows:

 Minimize C =∑∑
= =

n

i

n

j
ijijxc

1 1

 (1)

 Subject to 1
1

=∑
=

n

i
ijx , j = 1, 2, ..., n (2)

 1
1

=∑
=

n

j
ijx , i = 1, 2, ..., n (3)

 xij ∈ {0, 1}, i, j = 1, 2, ..., n, (4)

where cij and xij are, respectively, the cost and the decision variable associated to the
assignment of element i to position j. The usual representation form of c in the Hungarian
method is the matrix form. When xij = 1, element i is assigned to position j.
The objective function (1) represents the total cost to be minimized. The set of constraints (2)
and (3) guarantees that each element i will be assigned for exactly one position j. The set (4)
represents the zero-one integrality constraints of the decision variables xij. The set of
constraints (4) can be replaced by:

 0≥ijx , i, j = 1, 2, ..., n. (5)

Beyond traditional techniques, as the Hungarian method and the Simplex method, some
ways of solving this problem has been presented in the last years. In problems of great scale,
i.e., when the problem’s cost matrix is very large, the traditional techniques do not reveal
efficiency, because the number of restrictions and the computational time are increased.
Since the Hopfield and Tank’s publication (Hopfield & Tank, 1985), lots of works about the
use of Neural Networks to solving optimization problems had been developed (Matsuda,
1998; Wang, 1992 and 1997). The Hopfield’s Neural Network, converges to the optimal
solution of any Linear Programming problem, in particular for the AP.

A Recurrent Neural Network to Traveling Salesman Problem

137

Wang, 1992, considered a Recurrent Neural Network to solve the Assignment Problem,
however, the necessary number of iterations to achieve an optimal solution is increased in
problems of great scale. Moreover, in problems with solutions that are very close to each
other or multiple optimal solutions, such network does not converge.
In this work, one technique based on the “Winner Takes All“ principle is presented,
revealing efficiency solving the problems found in the use of Wang’s Recurrent Neural
Network. Some criteria to adjust the parameters of the Wang’s Neural Network are
presented: some traditional ways and others that use dispersion measures between the cost
matrix’ coefficients.

3. The Wang’s recurrent neural network to assignment problem

Consider the 12 ×n vectors cT, that contains all the rows of matrix c; x, that contains the
decision elements xij, and b, that contains the number “1“ in all positions. The matrix form of
the problem described in (1)-(4) is due Hung & Wang, 2003:

 Minimize C = cTx (6)

 Subject to Ax = b (7)

0≥ijx , i, j = 1, 2, ..., n,

where matrix A has the following form:

22

21 ...
... nn

nBBB
III

A ×ℜ∈⎥
⎦

⎤
⎢
⎣

⎡
=

where I is an n × n identity matrix, and each Bi matrix, for i = 1, 2..., n, contains zeros, with
exception of ith row, that contains the number “1“ in all positions.
The Recurrent Neural Network proposed by Wang (published in Wang, 1992; Wang, 1997;
and Hung & Wang, 2003) is characterized by the following differential equation:

 ∑ ∑
= =

−
−+−−=

n

k

n

l

t

ijijljik
ij ectxtx
dt

tdu

1 1

)()(
)(

τληθηη , (8)

where xij = g(uij(t)) and the equilibrium state of this Neural Network is a solution for the
Assignment Problem, where g is the sigmoid function with a β parameter, i.e.,

 g(u) = ue β−+1
1 . (9)

The threshold is defined as the 12 ×n vector θ = ATb = (2, 2, ..., 2). Parameters η, λ and τ are
constants, and empirically chosen (Hung & Wang, 2003), affecting the convergence of the
network. Parameter η serves to penalize violations in the problem’s constraints’ set, defined
by (1)-(4). Parameters λ and τ control the objective function’s minimization of the
Assignment Problem (1). The Neural Network matrix form can be written as:

 τλθη
t

cetWx
dt

tdu −
−−−=))(()(, (10)

 Travelling Salesman Problem

136

problem with multiple optimal solutions is shown. In section 4, the technique based on the
“Winner takes all“ principle is presented and an example of application to Assignment
Problem is shown. In section 5, some alternatives for parameters of Wang’s neural network
to Assignment Problem are presented. In section 6 the results to 100 matrices are shown. In
Section 7, it is presented the formulation of Traveling Salesman Problem. In section 8 the
application of Wang’s neural network with “Winner Takes all“ is shown with five examples
of TSPLIB. In Section 9, results to others problems of TSPLIB are compared to the ones
obtained trhrough other techniques. Findings are presented in section 10, and section 11
contains the references.

2. The assignment problem
The objective of this problem is assigning a number of elements to the same number of
positions, and minimizing the linear cost function. This problem is known in literature as
Linear Assignment Problem or problem of Matching with Costs (Ajuha et al., 1993; Siqueira
et al., 2004), and can be formulated as follows:

 Minimize C =∑∑
= =

n

i

n

j
ijijxc

1 1

 (1)

 Subject to 1
1

=∑
=

n

i
ijx , j = 1, 2, ..., n (2)

 1
1

=∑
=

n

j
ijx , i = 1, 2, ..., n (3)

 xij ∈ {0, 1}, i, j = 1, 2, ..., n, (4)

where cij and xij are, respectively, the cost and the decision variable associated to the
assignment of element i to position j. The usual representation form of c in the Hungarian
method is the matrix form. When xij = 1, element i is assigned to position j.
The objective function (1) represents the total cost to be minimized. The set of constraints (2)
and (3) guarantees that each element i will be assigned for exactly one position j. The set (4)
represents the zero-one integrality constraints of the decision variables xij. The set of
constraints (4) can be replaced by:

 0≥ijx , i, j = 1, 2, ..., n. (5)

Beyond traditional techniques, as the Hungarian method and the Simplex method, some
ways of solving this problem has been presented in the last years. In problems of great scale,
i.e., when the problem’s cost matrix is very large, the traditional techniques do not reveal
efficiency, because the number of restrictions and the computational time are increased.
Since the Hopfield and Tank’s publication (Hopfield & Tank, 1985), lots of works about the
use of Neural Networks to solving optimization problems had been developed (Matsuda,
1998; Wang, 1992 and 1997). The Hopfield’s Neural Network, converges to the optimal
solution of any Linear Programming problem, in particular for the AP.

A Recurrent Neural Network to Traveling Salesman Problem

137

Wang, 1992, considered a Recurrent Neural Network to solve the Assignment Problem,
however, the necessary number of iterations to achieve an optimal solution is increased in
problems of great scale. Moreover, in problems with solutions that are very close to each
other or multiple optimal solutions, such network does not converge.
In this work, one technique based on the “Winner Takes All“ principle is presented,
revealing efficiency solving the problems found in the use of Wang’s Recurrent Neural
Network. Some criteria to adjust the parameters of the Wang’s Neural Network are
presented: some traditional ways and others that use dispersion measures between the cost
matrix’ coefficients.

3. The Wang’s recurrent neural network to assignment problem

Consider the 12 ×n vectors cT, that contains all the rows of matrix c; x, that contains the
decision elements xij, and b, that contains the number “1“ in all positions. The matrix form of
the problem described in (1)-(4) is due Hung & Wang, 2003:

 Minimize C = cTx (6)

 Subject to Ax = b (7)

0≥ijx , i, j = 1, 2, ..., n,

where matrix A has the following form:

22

21 ...
... nn

nBBB
III

A ×ℜ∈⎥
⎦

⎤
⎢
⎣

⎡
=

where I is an n × n identity matrix, and each Bi matrix, for i = 1, 2..., n, contains zeros, with
exception of ith row, that contains the number “1“ in all positions.
The Recurrent Neural Network proposed by Wang (published in Wang, 1992; Wang, 1997;
and Hung & Wang, 2003) is characterized by the following differential equation:

 ∑ ∑
= =

−
−+−−=

n

k

n

l

t

ijijljik
ij ectxtx
dt

tdu

1 1

)()(
)(

τληθηη , (8)

where xij = g(uij(t)) and the equilibrium state of this Neural Network is a solution for the
Assignment Problem, where g is the sigmoid function with a β parameter, i.e.,

 g(u) = ue β−+1
1 . (9)

The threshold is defined as the 12 ×n vector θ = ATb = (2, 2, ..., 2). Parameters η, λ and τ are
constants, and empirically chosen (Hung & Wang, 2003), affecting the convergence of the
network. Parameter η serves to penalize violations in the problem’s constraints’ set, defined
by (1)-(4). Parameters λ and τ control the objective function’s minimization of the
Assignment Problem (1). The Neural Network matrix form can be written as:

 τλθη
t

cetWx
dt

tdu −
−−−=))(()(, (10)

 Travelling Salesman Problem

138

where x = g(u(t)) and W = ATA. The convergence properties of Wang’s Neural Network are
demonstrated in Wang 1993, 1994 & 1995, and Hung & Wang, 2003.

3.1 Multiple optimal solutions and closer optimal solutions
In some cost matrices, the optimal solutions are very closer to each other, or in a different
way, some optimal solutions are admissible. The cost matrix c given below:

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

2.002.02.06.02.02.20
01.0107.219.06.0
2.002.02.06.02.02.20

01.0107.219.06.0
5.11.005.11.002.03.0
2.002.02.06.02.02.20
5.54.33.05.54.03.001

01.0107.219.06.0

c , (11)

has the solutions x* and x̂ given below:

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

00000000
33.033.0033.00000
0025.00025.005.0
33.033.0033.00000
005.0005.000
0025.00025.005.0
00000010
33.033.0033.00000

*x and ,

00100000
01000000
00000100
10000000
00001000
00000001
00000010
00010000

ˆ

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=x

where x* is found after 4,715 iterations using the Wang’s neural network, and x̂ is an
optimal solution.
The solution x* isn’t feasible, therefore, some elements xij* violate the set of restrictions (4),
showing that the Wang’s neural network needs adjustments for these cases. The simple
decision to place unitary value for any one of the elements xij* that possess value 0.5 in
solution x* can become unfeasible or determine a local optimal solution. Another adjustment
that can be made is the modification of the costs’ matrix’ coefficients, eliminating ties in the
corresponding costs of the variable xij* that possess value different from “0“ and “1“. In this
way, it can be found a local optimal solution when the modifications are not made in the
adequate form. Hence, these decisions can cause unsatisfactory results.

4. Wang’s neural network and “Winner Takes All” principle to assignment
problem
The method considered in this work uses one technique based on the ”Winner Takes All”
principle, speeding up the convergence of the Wang’s Neural Network, besides correcting
eventual problems that can appear due the multiple optimal solutions or very closer optimal
solutions (Siqueira et al., 2005).

A Recurrent Neural Network to Traveling Salesman Problem

139

The second term of equation (10), Wx(t) − θ, measures the violation of the constraints to the
Assignment Problem. After a certain number of iterations, this term does not suffer
substantial changes in its value, evidencing the fact that problem’s restrictions are almost
satisfied. At this moment, the method considered in this section can be applied.
When all elements of x satisfy the condition Wx(t) − θ φ≤ , where φ ∈ [0, 2], the proposed
technique can be used in all iterations of the Wang’s Neural Network, until a good approach
of the Assignment Problem be found. An algorithm of this technique is presented as follows:
Step 1: Find a solution x of the AP, using the Wang’s recurrent neural network. If Wx(t) − θ

φ≤ , then go to Step 2. Else, find another solution x.
Step 2: Given the matrix of decision x, after a certain number of iterations of the Wang’s

recurrent neural network. Let the matrix x , where x = x, m = 1, and go to step 3.
Step 3: Find the mth biggest array element of decision, x kl. The value of this element is

replaced by the half of all elements sum of row k and column l of matrix x, or either,

2
1

1 1
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+= ∑ ∑

= =

n

i

n

j
kjilkl xxx . (12)

 The other elements of row k and column l become nulls. Go to step 4.
Step 4: If m ≤ n, makes m = m + 1, and go to step 3. Else, go to step 5.
Step 5: If a good approach to an AP solution is found, stop. Else, make x = x , execute the

Wang’s neural network again and go to Step 2.

4.1 Illustrative example
Consider the matrix below, which it is a partial solution of the Assignment Problem defined
by matrix C, in (13), after 14 iterations of the Wang’s recurrent neural network. The biggest
array element of x is in row 1, column 7.

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

2907.0251.02592.00353.00829.00138.00031.01142.0
0144.00369.02016.03053.001562.0174.01681.0
2186.00136.00025.000366.02956.02823.02037.0
0061.00306.00024.03931.0272.02674.000711.0
1571.00598.00747.01131.00521.02184.02412.01456.0
0024.00425.03438.003449.00688.00709.01754.0
01866.01648.01484.01525.00168.02827.00056.0

3551.0422.0*0033.00514.01083.00168.00011.00.0808

x

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

7.03.1031.17.34.54.1
8.32.301.09.67.07.06.0
9.04.49.45.88.102.05.0
9.56.469.05.02.17.78.2
9.04.29.01.10.1005.0
8.62.44.08.91.08.29.27.1
2.85.14.02.12.03.32.03.1

01.04.42.24.01.31.64.1

c (13)

 Travelling Salesman Problem

138

where x = g(u(t)) and W = ATA. The convergence properties of Wang’s Neural Network are
demonstrated in Wang 1993, 1994 & 1995, and Hung & Wang, 2003.

3.1 Multiple optimal solutions and closer optimal solutions
In some cost matrices, the optimal solutions are very closer to each other, or in a different
way, some optimal solutions are admissible. The cost matrix c given below:

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

2.002.02.06.02.02.20
01.0107.219.06.0
2.002.02.06.02.02.20

01.0107.219.06.0
5.11.005.11.002.03.0
2.002.02.06.02.02.20
5.54.33.05.54.03.001

01.0107.219.06.0

c , (11)

has the solutions x* and x̂ given below:

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

00000000
33.033.0033.00000
0025.00025.005.0
33.033.0033.00000
005.0005.000
0025.00025.005.0
00000010
33.033.0033.00000

*x and ,

00100000
01000000
00000100
10000000
00001000
00000001
00000010
00010000

ˆ

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=x

where x* is found after 4,715 iterations using the Wang’s neural network, and x̂ is an
optimal solution.
The solution x* isn’t feasible, therefore, some elements xij* violate the set of restrictions (4),
showing that the Wang’s neural network needs adjustments for these cases. The simple
decision to place unitary value for any one of the elements xij* that possess value 0.5 in
solution x* can become unfeasible or determine a local optimal solution. Another adjustment
that can be made is the modification of the costs’ matrix’ coefficients, eliminating ties in the
corresponding costs of the variable xij* that possess value different from “0“ and “1“. In this
way, it can be found a local optimal solution when the modifications are not made in the
adequate form. Hence, these decisions can cause unsatisfactory results.

4. Wang’s neural network and “Winner Takes All” principle to assignment
problem
The method considered in this work uses one technique based on the ”Winner Takes All”
principle, speeding up the convergence of the Wang’s Neural Network, besides correcting
eventual problems that can appear due the multiple optimal solutions or very closer optimal
solutions (Siqueira et al., 2005).

A Recurrent Neural Network to Traveling Salesman Problem

139

The second term of equation (10), Wx(t) − θ, measures the violation of the constraints to the
Assignment Problem. After a certain number of iterations, this term does not suffer
substantial changes in its value, evidencing the fact that problem’s restrictions are almost
satisfied. At this moment, the method considered in this section can be applied.
When all elements of x satisfy the condition Wx(t) − θ φ≤ , where φ ∈ [0, 2], the proposed
technique can be used in all iterations of the Wang’s Neural Network, until a good approach
of the Assignment Problem be found. An algorithm of this technique is presented as follows:
Step 1: Find a solution x of the AP, using the Wang’s recurrent neural network. If Wx(t) − θ

φ≤ , then go to Step 2. Else, find another solution x.
Step 2: Given the matrix of decision x, after a certain number of iterations of the Wang’s

recurrent neural network. Let the matrix x , where x = x, m = 1, and go to step 3.
Step 3: Find the mth biggest array element of decision, x kl. The value of this element is

replaced by the half of all elements sum of row k and column l of matrix x, or either,

2
1

1 1
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+= ∑ ∑

= =

n

i

n

j
kjilkl xxx . (12)

 The other elements of row k and column l become nulls. Go to step 4.
Step 4: If m ≤ n, makes m = m + 1, and go to step 3. Else, go to step 5.
Step 5: If a good approach to an AP solution is found, stop. Else, make x = x , execute the

Wang’s neural network again and go to Step 2.

4.1 Illustrative example
Consider the matrix below, which it is a partial solution of the Assignment Problem defined
by matrix C, in (13), after 14 iterations of the Wang’s recurrent neural network. The biggest
array element of x is in row 1, column 7.

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

2907.0251.02592.00353.00829.00138.00031.01142.0
0144.00369.02016.03053.001562.0174.01681.0
2186.00136.00025.000366.02956.02823.02037.0
0061.00306.00024.03931.0272.02674.000711.0
1571.00598.00747.01131.00521.02184.02412.01456.0
0024.00425.03438.003449.00688.00709.01754.0
01866.01648.01484.01525.00168.02827.00056.0

3551.0422.0*0033.00514.01083.00168.00011.00.0808

x

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

7.03.1031.17.34.54.1
8.32.301.09.67.07.06.0
9.04.49.45.88.102.05.0
9.56.469.05.02.17.78.2
9.04.29.01.10.1005.0
8.62.44.08.91.08.29.27.1
2.85.14.02.12.03.32.03.1

01.04.42.24.01.31.64.1

c (13)

 Travelling Salesman Problem

140

After the update of this element through equation (12), the result given below is found. The
second biggest element of x is in row 5, column 5.

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

2907.002592.00353.00829.00138.00031.01142.0
0144.002016.03053.001562.0174.01681.0
2186.0.00025.000366.02956.02823.02037.0
0061.000024.0393.0*272.02674.000711.0
1571.000747.01131.00521.02184.02412.01456.0
0024.003438.003449.00688.00709.01754.0
001648.01484.01525.00168.02827.00056.0
00412.1000000

x

After the update of all elements of x , get the following solution:

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

0473.10000000
000544.100000
0.00000533.100
0000446.10000
00000000632.1
00000491.1000
0000000564.10
00412.1000000

x .

This solution is presented to the Wang’s neural network, and after finding another x
solution, a new x solution is calculated through the “Winner Takes All“ principle.
This procedure is made until a good approach to feasible solution is found. In this example,
after more 5 iterations, the matrix x presents one approach of the optimal solutions:

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

9991.00000000
000003.100000
0.0000100
0009985.00000
0000000999.0
00009994.0000
0000009996.00
09992.0000000

x .

Two important aspects of this technique that must be taken in consideration are the
following: the reduced number of iterations necessary to find a feasible solution, and the
absence of problems related to the matrices with multiple optimal solutions. The
adjustments of the Wang’s neural network parameters are essential to guarantee the
convergence of this technique, and some forms of adjusting are presented on the next
section.

A Recurrent Neural Network to Traveling Salesman Problem

141

5. The parameters of Wang’s recurrent neural network
In this work, the used parameters play basic roles for the convergence of the Wang’s neural
network. In all the tested matrices, η = 1 had been considered, and parameters τ and λ had
been calculated in many ways, described as follows (Siqueira et al., 2005).
One of the most usual forms to calculate parameter λ for the AP can be found in Wang, 1992,
where λ is given by:

 λ = η/Cmax , (14)

where Cmax = max{cij; i, j = 1, 2, ..., n}.
The use of dispersion measures between the c matrix coefficients had revealed to be efficient
adjusting parameters τ and λ. Considering δ as the standard deviation between the c cost
matrix’ coefficients, the parameter λ can be given as:

 λ = η/δ. (15)

Another way to adjust λ is to consider it a vector, defined by:

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

nδδδ
ηλ 1,...,1,1

21
, (16)

where δi, for i = 1, 2..., n, represents the standard deviation of each row of the matrix c. Each
element of the vector λ is used to update the corresponding row of the x decision matrix.
This form to calculate λ revealed to be more efficient in cost matrices with great dispersion
between its values, as shown by the results presented in the next section.
A variation of the expression (14), that uses the same principle of the expression (16), is to
define λ by the vector:

 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

maxmax2max1

1,...,1,1
nccc

ηλ , (17)

where ci max = max{cij; j = 1, 2, …, n}, for each i = 1, 2, …,n. This definition to λ also produces
good results in matrices with great dispersion between its coefficients.
The parameter τ depends on the necessary number of iterations for the convergence of the
Wang’s neural network. When the presented correction “Winner Takes All“ technique isn’t
used, the necessary number of iterations for the convergence of the Wang’s neural netowork
varies between 1,000 and 15,000 iterations. In this case, τ is a constant, such that:

 000,15000,1 ≤≤τ . (18)

When the “Winner Takes All“ correction is used, the necessary number of iterations varies
between 5 and 300. Hence, the value of τ is such that:

 3005 ≤≤τ . (19)

In this work, two other forms of τ parameter adjustment had been used, besides considering
it constant, in the intervals showed in expressions (18) and (19). In one of the techniques, τ is
given by:

 Travelling Salesman Problem

140

After the update of this element through equation (12), the result given below is found. The
second biggest element of x is in row 5, column 5.

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

2907.002592.00353.00829.00138.00031.01142.0
0144.002016.03053.001562.0174.01681.0
2186.0.00025.000366.02956.02823.02037.0
0061.000024.0393.0*272.02674.000711.0
1571.000747.01131.00521.02184.02412.01456.0
0024.003438.003449.00688.00709.01754.0
001648.01484.01525.00168.02827.00056.0
00412.1000000

x

After the update of all elements of x , get the following solution:

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

0473.10000000
000544.100000
0.00000533.100
0000446.10000
00000000632.1
00000491.1000
0000000564.10
00412.1000000

x .

This solution is presented to the Wang’s neural network, and after finding another x
solution, a new x solution is calculated through the “Winner Takes All“ principle.
This procedure is made until a good approach to feasible solution is found. In this example,
after more 5 iterations, the matrix x presents one approach of the optimal solutions:

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

9991.00000000
000003.100000
0.0000100
0009985.00000
0000000999.0
00009994.0000
0000009996.00
09992.0000000

x .

Two important aspects of this technique that must be taken in consideration are the
following: the reduced number of iterations necessary to find a feasible solution, and the
absence of problems related to the matrices with multiple optimal solutions. The
adjustments of the Wang’s neural network parameters are essential to guarantee the
convergence of this technique, and some forms of adjusting are presented on the next
section.

A Recurrent Neural Network to Traveling Salesman Problem

141

5. The parameters of Wang’s recurrent neural network
In this work, the used parameters play basic roles for the convergence of the Wang’s neural
network. In all the tested matrices, η = 1 had been considered, and parameters τ and λ had
been calculated in many ways, described as follows (Siqueira et al., 2005).
One of the most usual forms to calculate parameter λ for the AP can be found in Wang, 1992,
where λ is given by:

 λ = η/Cmax , (14)

where Cmax = max{cij; i, j = 1, 2, ..., n}.
The use of dispersion measures between the c matrix coefficients had revealed to be efficient
adjusting parameters τ and λ. Considering δ as the standard deviation between the c cost
matrix’ coefficients, the parameter λ can be given as:

 λ = η/δ. (15)

Another way to adjust λ is to consider it a vector, defined by:

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

nδδδ
ηλ 1,...,1,1

21
, (16)

where δi, for i = 1, 2..., n, represents the standard deviation of each row of the matrix c. Each
element of the vector λ is used to update the corresponding row of the x decision matrix.
This form to calculate λ revealed to be more efficient in cost matrices with great dispersion
between its values, as shown by the results presented in the next section.
A variation of the expression (14), that uses the same principle of the expression (16), is to
define λ by the vector:

 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

maxmax2max1

1,...,1,1
nccc

ηλ , (17)

where ci max = max{cij; j = 1, 2, …, n}, for each i = 1, 2, …,n. This definition to λ also produces
good results in matrices with great dispersion between its coefficients.
The parameter τ depends on the necessary number of iterations for the convergence of the
Wang’s neural network. When the presented correction “Winner Takes All“ technique isn’t
used, the necessary number of iterations for the convergence of the Wang’s neural netowork
varies between 1,000 and 15,000 iterations. In this case, τ is a constant, such that:

 000,15000,1 ≤≤τ . (18)

When the “Winner Takes All“ correction is used, the necessary number of iterations varies
between 5 and 300. Hence, the value of τ is such that:

 3005 ≤≤τ . (19)

In this work, two other forms of τ parameter adjustment had been used, besides considering
it constant, in the intervals showed in expressions (18) and (19). In one of the techniques, τ is
given by:

 Travelling Salesman Problem

142

 ()nnδμδμδμ
μ

τ ,...,,1
2211= , (20)

where μi are the coefficients average of ith row of matrix c, δi is the standard deviation of ith
row of matrix c, and μ is the average between the values of all the coefficients of c.
The second proposal of adjustment for τ uses the third term of definition of neural network
of Wang (8). When cij = cmax, the term −λicij exp(−t /τi) = ki must satisfied g(ki) ≅ 0, so xij has
minor value, minimizing the final cost of the Assignment Problem. Isolating τ, and
considering cij = cmax and λi = 1/δi, where i = 1, 2..., n, τ is got, as follows:

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−

=

max
ln

c
k

t

i

i
i

λ

τ , (21)

The parameters’ application results given by (14)-(21) are presented on next section.

6. Results to assignment problem
In this work, 100 matrices (with dimensions varying of 3×3 until 20×20) had been used to
test the techniques of adjustments to parameters presented in previous section, beyond the
proposed “Winner Takes All” correction applied to the Wang’s recurrent neural network.
These matrices had been generated randomly, with some cases of multiple optimal solutions
and very closer optimal solutions.
The results to 47 tested matrices with only one optimal global appear in Table 1, and results
to 53 matrices with multiple optimal solutions and/or very closer optimal solutions appear
in Table 2. Table 3 shown results to all matrices tested to Assignment Problem.
To adjust λ, the following expressions had been used on Tables 1, 2 and 3: (14) in the first
and last column; (15) in the second column; (17) in the third column; and (16) in fourth and
fifth columns. To calculate τ, the following expressions they had been used: (19) in the three
firsts columns; (20) in the fourth column; (21) in the fifth column; and (18) in the last column.
The results of the Wang’s neural network application, without the use of the proposed
correction in this work, are meet in the last column of Tables 1, 2 and 3. In the last row of the
Tables 1, 2 and 3 the numbers of iterations of each technique is given by the average
between the numbers of iterations found for all tested matrices.

parameter λ λ =
maxC

η λ = δ
η λi =

maxic
η λ = δ

η λi =
iδ

η λ =
maxC

η

parameter τ 5 ≤ τ ≤ 300 5 ≤ τ ≤ 300 5 ≤ τ ≤ 300 μ
δμ

τ ii
i =

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −

−
=

max
ln

c
k

t

i

i
i

λ

τ
1,000 ≤ τ ≤

≤ 15,000

global optimality 40 45 40 40 46 47
local optimality 7 2 7 7 1 0
infeasibility 0 0 0 0 0 0
global optim.(%) 85 96 85 85 98 100
average error (%) 2.35 0.98 0.74 5.10 0.02 0
iterations (average) 37 46 41 72 51 3,625

Table 1. Results for 47 matrices with only one optimal solution

A Recurrent Neural Network to Traveling Salesman Problem

143

parameter λ λ =
maxC

η λ = δ
η λi =

maxic
η λ = δ

η λi =
iδ

η λ =
maxC

η

parameter τ 5 ≤ τ ≤ 300 5 ≤ τ ≤ 300 5 ≤ τ ≤ 300 μ
δμ

τ ii
i =

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −

−
=

max
ln

c
k

t

i

i
i

λ

τ
1,000 ≤ τ ≤
≤ 15,000

global optimality 33 43 32 39 46 0
local optimality 20 10 21 14 7 0
infeasibility 0 0 0 0 0 53
global optim.(%) 62 81 60 74 87 0
average error (%) 4.87 1.63 6.37 4.79 2.14 -
iterations (average) 39 42 41 76 47 6,164

Table 2. Results for 53 matrices with multiple optimal solutions
The results had been considered satisfactory, and the adjustments of the parameters that
result in better solutions for the “Winner Takes All“ correction are those that use the
standard deviation and the average between the elements of matrix of costs, and the use of
parameters in vector form revealed to be more efficient for these matrices. The results
shown in Tables 1, 2 and 3 reveal that the dispersion techniques between the coefficients of
matrix c are more efficient for the use of the correction “Winner Takes All“ in matrices with
multiple optimal solutions.

parameter λ λ =
maxC

η λ = δ
η λi =

maxic
η λ = δ

η λi =
iδ

η λ =
maxC

η

parameter τ 5 ≤ τ ≤ 300 5 ≤ τ ≤ 300 5 ≤ τ ≤ 300 μ
δμ

τ ii
i =

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−

=

max
ln

c
k

t

i

i
i

λ

τ
1,000 ≤ τ ≤
≤ 15,000

global optim.(%) 73 88 72 79 92 47
local optimality 27 12 28 21 8 0
infeasibility 0 0 0 0 0 53
average error (%) 3.17 1.19 2.57 5.00 0.71 -
iterations (average) 38 44 41 74 49 4,970

Table 3. Results for all matrices
The pure Wang’s neural network has slower convergence when the adjustments described
by (15)-(17) and (19)-(21) are applied for the parameters λ and τ, respectively. Better results
are found with combination of parameters (16) and (21), as shown in Tables 1, 2 and 3. This
combination is used to solve the Traveling Salesman Problem.
These results shows that the “Winner Takes All“ principle, applied to the Wang’s neural
network, produces good results to Assignment Problem, mainly in matrices with multiple
optimal solutions. The parameters to Wang’s neural network presented in section 5 show
the efficiency of this technique for great scale problems, because the average number of
iterations necessary to find feasible solutions for the Assignment Problem was considerably
reduced, compared to the pure Wang’s neural network.
The application of “Winner Take All“ principle to Wang’s recurrent neural network to solve
the Traveling Salesman Problem is presented on next sections.

 Travelling Salesman Problem

142

 ()nnδμδμδμ
μ

τ ,...,,1
2211= , (20)

where μi are the coefficients average of ith row of matrix c, δi is the standard deviation of ith
row of matrix c, and μ is the average between the values of all the coefficients of c.
The second proposal of adjustment for τ uses the third term of definition of neural network
of Wang (8). When cij = cmax, the term −λicij exp(−t /τi) = ki must satisfied g(ki) ≅ 0, so xij has
minor value, minimizing the final cost of the Assignment Problem. Isolating τ, and
considering cij = cmax and λi = 1/δi, where i = 1, 2..., n, τ is got, as follows:

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−

=

max
ln

c
k

t

i

i
i

λ

τ , (21)

The parameters’ application results given by (14)-(21) are presented on next section.

6. Results to assignment problem
In this work, 100 matrices (with dimensions varying of 3×3 until 20×20) had been used to
test the techniques of adjustments to parameters presented in previous section, beyond the
proposed “Winner Takes All” correction applied to the Wang’s recurrent neural network.
These matrices had been generated randomly, with some cases of multiple optimal solutions
and very closer optimal solutions.
The results to 47 tested matrices with only one optimal global appear in Table 1, and results
to 53 matrices with multiple optimal solutions and/or very closer optimal solutions appear
in Table 2. Table 3 shown results to all matrices tested to Assignment Problem.
To adjust λ, the following expressions had been used on Tables 1, 2 and 3: (14) in the first
and last column; (15) in the second column; (17) in the third column; and (16) in fourth and
fifth columns. To calculate τ, the following expressions they had been used: (19) in the three
firsts columns; (20) in the fourth column; (21) in the fifth column; and (18) in the last column.
The results of the Wang’s neural network application, without the use of the proposed
correction in this work, are meet in the last column of Tables 1, 2 and 3. In the last row of the
Tables 1, 2 and 3 the numbers of iterations of each technique is given by the average
between the numbers of iterations found for all tested matrices.

parameter λ λ =
maxC

η λ = δ
η λi =

maxic
η λ = δ

η λi =
iδ

η λ =
maxC

η

parameter τ 5 ≤ τ ≤ 300 5 ≤ τ ≤ 300 5 ≤ τ ≤ 300 μ
δμ

τ ii
i =

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −

−
=

max
ln

c
k

t

i

i
i

λ

τ
1,000 ≤ τ ≤

≤ 15,000

global optimality 40 45 40 40 46 47
local optimality 7 2 7 7 1 0
infeasibility 0 0 0 0 0 0
global optim.(%) 85 96 85 85 98 100
average error (%) 2.35 0.98 0.74 5.10 0.02 0
iterations (average) 37 46 41 72 51 3,625

Table 1. Results for 47 matrices with only one optimal solution

A Recurrent Neural Network to Traveling Salesman Problem

143

parameter λ λ =
maxC

η λ = δ
η λi =

maxic
η λ = δ

η λi =
iδ

η λ =
maxC

η

parameter τ 5 ≤ τ ≤ 300 5 ≤ τ ≤ 300 5 ≤ τ ≤ 300 μ
δμ

τ ii
i =

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −

−
=

max
ln

c
k

t

i

i
i

λ

τ
1,000 ≤ τ ≤
≤ 15,000

global optimality 33 43 32 39 46 0
local optimality 20 10 21 14 7 0
infeasibility 0 0 0 0 0 53
global optim.(%) 62 81 60 74 87 0
average error (%) 4.87 1.63 6.37 4.79 2.14 -
iterations (average) 39 42 41 76 47 6,164

Table 2. Results for 53 matrices with multiple optimal solutions
The results had been considered satisfactory, and the adjustments of the parameters that
result in better solutions for the “Winner Takes All“ correction are those that use the
standard deviation and the average between the elements of matrix of costs, and the use of
parameters in vector form revealed to be more efficient for these matrices. The results
shown in Tables 1, 2 and 3 reveal that the dispersion techniques between the coefficients of
matrix c are more efficient for the use of the correction “Winner Takes All“ in matrices with
multiple optimal solutions.

parameter λ λ =
maxC

η λ = δ
η λi =

maxic
η λ = δ

η λi =
iδ

η λ =
maxC

η

parameter τ 5 ≤ τ ≤ 300 5 ≤ τ ≤ 300 5 ≤ τ ≤ 300 μ
δμ

τ ii
i =

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−

=

max
ln

c
k

t

i

i
i

λ

τ
1,000 ≤ τ ≤
≤ 15,000

global optim.(%) 73 88 72 79 92 47
local optimality 27 12 28 21 8 0
infeasibility 0 0 0 0 0 53
average error (%) 3.17 1.19 2.57 5.00 0.71 -
iterations (average) 38 44 41 74 49 4,970

Table 3. Results for all matrices
The pure Wang’s neural network has slower convergence when the adjustments described
by (15)-(17) and (19)-(21) are applied for the parameters λ and τ, respectively. Better results
are found with combination of parameters (16) and (21), as shown in Tables 1, 2 and 3. This
combination is used to solve the Traveling Salesman Problem.
These results shows that the “Winner Takes All“ principle, applied to the Wang’s neural
network, produces good results to Assignment Problem, mainly in matrices with multiple
optimal solutions. The parameters to Wang’s neural network presented in section 5 show
the efficiency of this technique for great scale problems, because the average number of
iterations necessary to find feasible solutions for the Assignment Problem was considerably
reduced, compared to the pure Wang’s neural network.
The application of “Winner Take All“ principle to Wang’s recurrent neural network to solve
the Traveling Salesman Problem is presented on next sections.

 Travelling Salesman Problem

144

7. The traveling salesman problem
The formulation of Traveling Salesman Problem is the same of Assignment Problem, with
the additional constraint of Hamiltonian circuit, i.e., the feasible route must form a cycle
which visits each city exactly once, and returns to the starting city:

 Minimize C =∑∑
= =

n

i

n

j
ijijxc

1 1

 (22)

 Subject to 1
1

=∑
=

n

i
ijx , j = 1, 2, ..., n (23)

 1
1

=∑
=

n

j
ijx , i = 1, 2, ..., n (24)

 xij ∈ {0, 1}, i, j = 1, 2, ..., n (25)

 x~ forms a Hamiltonian cycle (26)

where the vector x~ has the whole sequence of the route that was found, i.e., the solution for
the Traveling Salesman Problem.
The Traveling Salesman Problem is a classical problem of combinatorial optimization in the
Operations Research area. The purpose is to find a minimum total cost Hamiltonian cycle
(Ahuja et al.,1993). There are several practical uses for this problem, such as Vehicle Routing
(Laporte, 1992) and Drilling Problems (Onwubolu & Clerc, 2004).
This problem has been used during the last years as a basis for comparison in order to
improve several optimization techniques, such as Genetic Algorithms (Affenzeller &
Wanger, 2003), Simulated Annealing (Budinich, 1996), Tabu Search (Liu et al., 2003), Local
Search (Bianchi et al., 2005), Ant Colony (Chu et al., 2004) and Neural Networks (Leung et
al., 2004; Siqueira et al., 2007).
The main types of Neural Network used to solve the Traveling Salesman Problem are:
Hopfield’s Recurrent Networks (Wang et al., 2002) and Kohonen’s Self-Organizing Maps
(Leung et al., 2003). In a Hopfield’s Network, the main idea is to automatically find a
solution for the Traveling Salesman Problem by means of an equilibrium state of the
equation system defined for the Traveling Salesman Problem. By using Kohonen’s Maps for
the Traveling Salesman Problem, the final route is determined through the cities
corresponding to those neurons that have weights that are closest to the pair of coordinates
ascribed to each city in the problem.
Wang’s recurrent neural network with the “Winner Takes All” principle can be applied to
solve the Traveling Salesman Problem on this way: solving this problem as if it were an
Assignment Problem by means of the Wang’s neural network, and, furthermore, using the
“Winner Takes All” principle on the solutions found with the Wang’s neural network, with
the constraint that the solutions found must form a feasible route for the Traveling Salesman

A Recurrent Neural Network to Traveling Salesman Problem

145

Problem. The parameters used for the Wang’s neural network are those that show the best
solutions for the Assignment Problem, as shown on Tables 1, 2 and 3 of previous section.
The solutions found with the heuristic technique proposed in this work are compared with
the solutions from the Self-Organizing Maps (SOM) and the Simulated Annealing (SA) for
the symmetrical TSP, and with other heuristics for the asymmetrical TSP. The 2-opt Local
Search technique (Bianchi et al., 2005) is used to improve the solutions found with the
technique proposed in this work. The data used for the comparisons are from the TSPLIB
database (Reinelt, 1991).

8. Wang’s neural network and “Winner Takes All” principle to traveling
salesman problem
The algorithm presented on section 4 to Assignment Problem can be easily modified to solve
the Traveling Salesman Problem:
Step 1: Determine a maximum number of routes rmax. Find a solution x to Assignment

Problem using the Wang’s neural netowork. If Wx(t) − θ φ≤ , then go to Step 2.
Otherwise, find another solution x.

Step 2: Given the decision matrix, consider matrix x , where x = x, m = 1 and go to Step 3.
Step 3: Choose a row k in decision matrix x . Do p = k, x~ (m) = k and go to Step 4.
Step 4: Find the biggest element of row k, x kl. This element’s value is given by the half of

the sum of all elements of row k and of column l of matrix x, i.e.,

2
1

1 1
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+= ∑ ∑

= =

n

i

n

j
kjilkl xxx . (27)

The other elements of row k and column l become null. So that sub-routes are not
formed, the other elements of column k must also be null. Do x~ (m + 1) = l; to
continue the Traveling Salesman Problem route, make k = l and go to Step 5.

Step 5: If m < n, then make m = m + 1 and go to Step 4. Otherwise, do

2
1

1 1
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+= ∑ ∑

= =

n

i

n

j
kjipkp xxx , (28)

x~ (n + 1) = p, determine the route’s cost, C, and go to Step 6.
Step 6: If C < Cmin, then do Cmin = C and x = x . Make r = r + 1. If r < rmax, then run the

Wang’s neural network again and go to Step 2, otherwise Stop.

8.1 Illustrative examples applied to problems of TSPLIB
Consider the symmetrical Traveling Salesman Problem with 14-city instances burma14, due
Zaw & Win (Reinelt, 1991), as shown in Fig. 1. After 17 iterations, the Wang’s neural
network presents the following solution for the Assignment Problem:

 Travelling Salesman Problem

144

7. The traveling salesman problem
The formulation of Traveling Salesman Problem is the same of Assignment Problem, with
the additional constraint of Hamiltonian circuit, i.e., the feasible route must form a cycle
which visits each city exactly once, and returns to the starting city:

 Minimize C =∑∑
= =

n

i

n

j
ijijxc

1 1

 (22)

 Subject to 1
1

=∑
=

n

i
ijx , j = 1, 2, ..., n (23)

 1
1

=∑
=

n

j
ijx , i = 1, 2, ..., n (24)

 xij ∈ {0, 1}, i, j = 1, 2, ..., n (25)

 x~ forms a Hamiltonian cycle (26)

where the vector x~ has the whole sequence of the route that was found, i.e., the solution for
the Traveling Salesman Problem.
The Traveling Salesman Problem is a classical problem of combinatorial optimization in the
Operations Research area. The purpose is to find a minimum total cost Hamiltonian cycle
(Ahuja et al.,1993). There are several practical uses for this problem, such as Vehicle Routing
(Laporte, 1992) and Drilling Problems (Onwubolu & Clerc, 2004).
This problem has been used during the last years as a basis for comparison in order to
improve several optimization techniques, such as Genetic Algorithms (Affenzeller &
Wanger, 2003), Simulated Annealing (Budinich, 1996), Tabu Search (Liu et al., 2003), Local
Search (Bianchi et al., 2005), Ant Colony (Chu et al., 2004) and Neural Networks (Leung et
al., 2004; Siqueira et al., 2007).
The main types of Neural Network used to solve the Traveling Salesman Problem are:
Hopfield’s Recurrent Networks (Wang et al., 2002) and Kohonen’s Self-Organizing Maps
(Leung et al., 2003). In a Hopfield’s Network, the main idea is to automatically find a
solution for the Traveling Salesman Problem by means of an equilibrium state of the
equation system defined for the Traveling Salesman Problem. By using Kohonen’s Maps for
the Traveling Salesman Problem, the final route is determined through the cities
corresponding to those neurons that have weights that are closest to the pair of coordinates
ascribed to each city in the problem.
Wang’s recurrent neural network with the “Winner Takes All” principle can be applied to
solve the Traveling Salesman Problem on this way: solving this problem as if it were an
Assignment Problem by means of the Wang’s neural network, and, furthermore, using the
“Winner Takes All” principle on the solutions found with the Wang’s neural network, with
the constraint that the solutions found must form a feasible route for the Traveling Salesman

A Recurrent Neural Network to Traveling Salesman Problem

145

Problem. The parameters used for the Wang’s neural network are those that show the best
solutions for the Assignment Problem, as shown on Tables 1, 2 and 3 of previous section.
The solutions found with the heuristic technique proposed in this work are compared with
the solutions from the Self-Organizing Maps (SOM) and the Simulated Annealing (SA) for
the symmetrical TSP, and with other heuristics for the asymmetrical TSP. The 2-opt Local
Search technique (Bianchi et al., 2005) is used to improve the solutions found with the
technique proposed in this work. The data used for the comparisons are from the TSPLIB
database (Reinelt, 1991).

8. Wang’s neural network and “Winner Takes All” principle to traveling
salesman problem
The algorithm presented on section 4 to Assignment Problem can be easily modified to solve
the Traveling Salesman Problem:
Step 1: Determine a maximum number of routes rmax. Find a solution x to Assignment

Problem using the Wang’s neural netowork. If Wx(t) − θ φ≤ , then go to Step 2.
Otherwise, find another solution x.

Step 2: Given the decision matrix, consider matrix x , where x = x, m = 1 and go to Step 3.
Step 3: Choose a row k in decision matrix x . Do p = k, x~ (m) = k and go to Step 4.
Step 4: Find the biggest element of row k, x kl. This element’s value is given by the half of

the sum of all elements of row k and of column l of matrix x, i.e.,

2
1

1 1
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+= ∑ ∑

= =

n

i

n

j
kjilkl xxx . (27)

The other elements of row k and column l become null. So that sub-routes are not
formed, the other elements of column k must also be null. Do x~ (m + 1) = l; to
continue the Traveling Salesman Problem route, make k = l and go to Step 5.

Step 5: If m < n, then make m = m + 1 and go to Step 4. Otherwise, do

2
1

1 1
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+= ∑ ∑

= =

n

i

n

j
kjipkp xxx , (28)

x~ (n + 1) = p, determine the route’s cost, C, and go to Step 6.
Step 6: If C < Cmin, then do Cmin = C and x = x . Make r = r + 1. If r < rmax, then run the

Wang’s neural network again and go to Step 2, otherwise Stop.

8.1 Illustrative examples applied to problems of TSPLIB
Consider the symmetrical Traveling Salesman Problem with 14-city instances burma14, due
Zaw & Win (Reinelt, 1991), as shown in Fig. 1. After 17 iterations, the Wang’s neural
network presents the following solution for the Assignment Problem:

 Travelling Salesman Problem

146

⎟⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

008.013.002.001.002.005.009.01.005.014.02.006.003.0
08.0008.008.003.007.01.024.008.004.003.003.005.006.0
12.007.0002.001.002.003.012.021.016.014.009.003.002.0
03.006.002.0021.022.013.004.002.002.001.003.009.014.0
03.006.002.017.0019.011.004.002.003.002.003.012.014.0
03.006.002.022.023.0012.004.002.002.001.003.01.014.0
04.008.002.015.012.014.0004.002.002.002.004.014.018.0*
09.023.014.004.002.003.005.0015.009.005.004.003.003.0
09.007.02.002.001.002.002.012.0023.013.007.002.002.0
07.007.013.002.002.002.003.01.018.0017.008.003.002.0
12.004.013.002.001.001.002.006.012.02.0022.004.002.0
19.004.009.002.002.002.004.005.007.006.024.0009.004.0
06.005.002.01.013.01.014.003.002.001.003.009.0018.0
04.006.002.014.016.015.016.003.002.002.002.004.017.00

x

In this decision matrix, a city is chosen to start the route, for instance, city 8, this is, p = 8. In
row p of the decision matrix the biggest element is chosen, thus defining the Traveling
Salesman’s destiny when he leaves city p. The biggest element of row p is in column 1,
therefore, k = p = 8 and l = 1. After the decision matrix x is updated by means of equation
(27), the route goes on with k = 1:

⎟⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

008.013.002.001.002.005.009.01.005.014.02.006.00
08.0008.008.003.007.01.024.008.004.003.003.005.00
12.007.0002.001.002.003.012.021.016.014.009.003.00
03.006.002.0021.022.013.004.002.002.001.003.009.00
03.006.002.017.0019.011.004.002.003.002.003.012.00
03.006.002.022.023.0012.004.002.002.001.003.01.00
000000000000001.1
09.023.014.004.002.003.005.0015.009.005.004.003.00
09.007.02.002.001.002.002.012.0023.013.007.002.00
07.007.013.002.002.002.003.01.018.0017.008.003.00
12.004.013.002.001.001.002.006.012.02.0022.004.00
19.004.009.002.002.002.004.005.007.006.024.0009.00
06.005.002.01.013.01.014.003.002.001.003.009.000
04.006.002.014.016.015.016.003.002.002.002.004.017.0*0

x

The biggest element of row 1 in matrix x is in column 2, therefore, l = 2. This procedure is
executed until all rows are updated, thus defining the route: x~ = (8, 1, 2, 10, 9, 11, 13, 7, 6, 5,
4, 3, 14, 12, 8), as shown in Fig. 1a, with a cost of 34.03, which represents an average error of
10.19%.

A Recurrent Neural Network to Traveling Salesman Problem

147

⎟⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

0000.100000000000
000000000.1000000
00000099.00000000
099.0000000000000
0000099.000000000
00001.10000000000
000000000000001.1
0000000000.100000
00000000001.10000
000000000099.0000
0000000000099.000
99.00000000000000
000099.0000000000
00000000000099.00

x

This solution is presented to the Wang’s neural network, by making x = x . After more 16
iterations the neural network the following decision matrix is presented:

⎟⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

01.013.003.002.003.006.009.012.006.015.026.008.004.0
09.0007.008.004.008.013.025.009.005.003.004.006.007.0
1.007.0001.001.001.003.009.02.015.012.009.002.002.0

02.007.001.0021.021.013.003.002.002.001.003.009.012.0
03.006.002.017.002.012.003.002.003.002.004.013.013.0
03.007.001.021.025.0013.003.002.002.001.003.01.013.0
04.008.002.014.012.014.0004.002.002.002.004.014.017.0
1.028.013.004.002.004.006.0018.011.005.005.003.003.0

07.007.014.001.001.001.002.009.0021.01.007.002.001.0
07.009.012.002.003.002.003.01.02.0018.009.003.002.0
12.005.011.002.003.002.003.006.014.023.0026.004.002.0
17.005.007.002.002.002.004.004.007.006.023.0009.003.0
07.007.002.011.015.012.018.003.002.002.003.011.0019.0
04.007.002.015.018.016.019.003.002.002.002.005.018.00

x ’

Through the “Winner Takes All” principle, an approximation for the optimal solution of this
problem is found with the route: x~ = (2, 1, 10, 9, 11, 8, 13, 7, 12, 6, 5, 4, 3, 14, 2), with a cost of
30.88 (Fig. 2b).

 Travelling Salesman Problem

146

⎟⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

008.013.002.001.002.005.009.01.005.014.02.006.003.0
08.0008.008.003.007.01.024.008.004.003.003.005.006.0
12.007.0002.001.002.003.012.021.016.014.009.003.002.0
03.006.002.0021.022.013.004.002.002.001.003.009.014.0
03.006.002.017.0019.011.004.002.003.002.003.012.014.0
03.006.002.022.023.0012.004.002.002.001.003.01.014.0
04.008.002.015.012.014.0004.002.002.002.004.014.018.0*
09.023.014.004.002.003.005.0015.009.005.004.003.003.0
09.007.02.002.001.002.002.012.0023.013.007.002.002.0
07.007.013.002.002.002.003.01.018.0017.008.003.002.0
12.004.013.002.001.001.002.006.012.02.0022.004.002.0
19.004.009.002.002.002.004.005.007.006.024.0009.004.0
06.005.002.01.013.01.014.003.002.001.003.009.0018.0
04.006.002.014.016.015.016.003.002.002.002.004.017.00

x

In this decision matrix, a city is chosen to start the route, for instance, city 8, this is, p = 8. In
row p of the decision matrix the biggest element is chosen, thus defining the Traveling
Salesman’s destiny when he leaves city p. The biggest element of row p is in column 1,
therefore, k = p = 8 and l = 1. After the decision matrix x is updated by means of equation
(27), the route goes on with k = 1:

⎟⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

008.013.002.001.002.005.009.01.005.014.02.006.00
08.0008.008.003.007.01.024.008.004.003.003.005.00
12.007.0002.001.002.003.012.021.016.014.009.003.00
03.006.002.0021.022.013.004.002.002.001.003.009.00
03.006.002.017.0019.011.004.002.003.002.003.012.00
03.006.002.022.023.0012.004.002.002.001.003.01.00
000000000000001.1
09.023.014.004.002.003.005.0015.009.005.004.003.00
09.007.02.002.001.002.002.012.0023.013.007.002.00
07.007.013.002.002.002.003.01.018.0017.008.003.00
12.004.013.002.001.001.002.006.012.02.0022.004.00
19.004.009.002.002.002.004.005.007.006.024.0009.00
06.005.002.01.013.01.014.003.002.001.003.009.000
04.006.002.014.016.015.016.003.002.002.002.004.017.0*0

x

The biggest element of row 1 in matrix x is in column 2, therefore, l = 2. This procedure is
executed until all rows are updated, thus defining the route: x~ = (8, 1, 2, 10, 9, 11, 13, 7, 6, 5,
4, 3, 14, 12, 8), as shown in Fig. 1a, with a cost of 34.03, which represents an average error of
10.19%.

A Recurrent Neural Network to Traveling Salesman Problem

147

⎟⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

0000.100000000000
000000000.1000000
00000099.00000000
099.0000000000000
0000099.000000000
00001.10000000000
000000000000001.1
0000000000.100000
00000000001.10000
000000000099.0000
0000000000099.000
99.00000000000000
000099.0000000000
00000000000099.00

x

This solution is presented to the Wang’s neural network, by making x = x . After more 16
iterations the neural network the following decision matrix is presented:

⎟⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

01.013.003.002.003.006.009.012.006.015.026.008.004.0
09.0007.008.004.008.013.025.009.005.003.004.006.007.0
1.007.0001.001.001.003.009.02.015.012.009.002.002.0

02.007.001.0021.021.013.003.002.002.001.003.009.012.0
03.006.002.017.002.012.003.002.003.002.004.013.013.0
03.007.001.021.025.0013.003.002.002.001.003.01.013.0
04.008.002.014.012.014.0004.002.002.002.004.014.017.0
1.028.013.004.002.004.006.0018.011.005.005.003.003.0

07.007.014.001.001.001.002.009.0021.01.007.002.001.0
07.009.012.002.003.002.003.01.02.0018.009.003.002.0
12.005.011.002.003.002.003.006.014.023.0026.004.002.0
17.005.007.002.002.002.004.004.007.006.023.0009.003.0
07.007.002.011.015.012.018.003.002.002.003.011.0019.0
04.007.002.015.018.016.019.003.002.002.002.005.018.00

x ’

Through the “Winner Takes All” principle, an approximation for the optimal solution of this
problem is found with the route: x~ = (2, 1, 10, 9, 11, 8, 13, 7, 12, 6, 5, 4, 3, 14, 2), with a cost of
30.88 (Fig. 2b).

 Travelling Salesman Problem

148

⎟⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

00000000000000.10
000000000.1000000
0000000001.100000
00000099.00000000
0000099.000000000
00001.10000000000
099.0000000000000
0099.000000000000
00000000001.10000
000000000099.0000
0000000000099.000
99.00000000000000
000000000000000.1
000099.0000000000

x

Consider the symmetrical Traveling Salesman Problem with 42-city instance by Dantzig
(Reinelt, 1991), as shown in Fig. 3 and 4. This problem contains coordinates of cities in the
United States, and after 25 epochs the condition Wx(t) − θ φ≤ is satisfied with 01.0=φ and
the Wang’s neural network presents the first solution 1

~x for the Traveling Salesman
Problem, as shown in Fig. 3a.

(a) (b)

Fig. 2. (a) Feasible solution found to burma14 through the proposed method, with an
average error of 10.19%. (b) Optimal solution found through the proposed method

The solution 1
~x is presented to Wang’s neural network, and after 20 iterations an improved

solution is reached, with the average error decreasing from 19.56% to 0.83% as shown in Fig.
3a and 3b.
An improvement to heuristic Wang’s neural network is the application of local search 2-opt
heuristic on Step 5 of the algorithm shown in this section. This application is made after the
expression (27), to the Wang’s neural network solution in the algorithm, just as an
improvement. The results of Wang’s neural network with 2-opt on problem dantzig42 is
shown in Fig. 4, where after 72 epochs an optimal solution is found.

A Recurrent Neural Network to Traveling Salesman Problem

149

(a) (b)

Fig. 3. Solutions found to dantzig42 data without 2-opt improvement. (a) First feasible tour
found through the proposed heuristic, with an average error of 19.56%. (b) Tour with 0.83%
of average error, after 29 iterations.
Others examples of results found to symmetrical Traveling Salesman problems are (Reinelt,
1991): the 58-city instance of Brazil, due Ferreira, shown in Fig. 5; the 532-city instances of
United States due Padberg and Rinaldi, shown in Fig. 6; and the drilling problem u724 due
Reinelt, shown in Fig. 7.

(a) (b)

(c) (d)

Fig. 4. Solutions found to dantzig42 data with 2-opt improvement. (a) First feasible solution
found, in 26 epochs and average error of 8.77%. (b) 36 epochs and error 1.5%. (c) 45 epochs
and error 0.57%. (d) 72 epochs and optimal solution found.

 Travelling Salesman Problem

148

⎟⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

00000000000000.10
000000000.1000000
0000000001.100000
00000099.00000000
0000099.000000000
00001.10000000000
099.0000000000000
0099.000000000000
00000000001.10000
000000000099.0000
0000000000099.000
99.00000000000000
000000000000000.1
000099.0000000000

x

Consider the symmetrical Traveling Salesman Problem with 42-city instance by Dantzig
(Reinelt, 1991), as shown in Fig. 3 and 4. This problem contains coordinates of cities in the
United States, and after 25 epochs the condition Wx(t) − θ φ≤ is satisfied with 01.0=φ and
the Wang’s neural network presents the first solution 1

~x for the Traveling Salesman
Problem, as shown in Fig. 3a.

(a) (b)

Fig. 2. (a) Feasible solution found to burma14 through the proposed method, with an
average error of 10.19%. (b) Optimal solution found through the proposed method

The solution 1
~x is presented to Wang’s neural network, and after 20 iterations an improved

solution is reached, with the average error decreasing from 19.56% to 0.83% as shown in Fig.
3a and 3b.
An improvement to heuristic Wang’s neural network is the application of local search 2-opt
heuristic on Step 5 of the algorithm shown in this section. This application is made after the
expression (27), to the Wang’s neural network solution in the algorithm, just as an
improvement. The results of Wang’s neural network with 2-opt on problem dantzig42 is
shown in Fig. 4, where after 72 epochs an optimal solution is found.

A Recurrent Neural Network to Traveling Salesman Problem

149

(a) (b)

Fig. 3. Solutions found to dantzig42 data without 2-opt improvement. (a) First feasible tour
found through the proposed heuristic, with an average error of 19.56%. (b) Tour with 0.83%
of average error, after 29 iterations.
Others examples of results found to symmetrical Traveling Salesman problems are (Reinelt,
1991): the 58-city instance of Brazil, due Ferreira, shown in Fig. 5; the 532-city instances of
United States due Padberg and Rinaldi, shown in Fig. 6; and the drilling problem u724 due
Reinelt, shown in Fig. 7.

(a) (b)

(c) (d)

Fig. 4. Solutions found to dantzig42 data with 2-opt improvement. (a) First feasible solution
found, in 26 epochs and average error of 8.77%. (b) 36 epochs and error 1.5%. (c) 45 epochs
and error 0.57%. (d) 72 epochs and optimal solution found.

 Travelling Salesman Problem

150

(a) (b)

Fig. 5. Solutions found to brazil58 data. (a) Feasible solution found without local search
improvement with 81 epochs and average error of 2.9%. (b) Optimal solution found with 2-
opt improvement with 88 epochs.

(a) (b)

Fig. 6. Solutions found to att532 data. (a) Feasible solution found without local search
improvement with 411 epochs and average error of 14.58%. (b) Feasible solution found with
local search improvement with 427 epochs and average error of 1.27%.

(a) (b)

Fig. 7. Solutions found to u724 data. (a) Feasible solution found without local search
improvement with 469 epochs and average error of 16.85%. (b) Feasible solution found with
local search improvement with 516 epochs and average error of 6.28%.

A Recurrent Neural Network to Traveling Salesman Problem

151

The next Section shows the results of applying this technique to some of the TSPLIB’s
problems for symmetrical and asymmetrical Traveling Salesman problems.

9. Comparisons of technique proposed with others heuristics to some
TSPLIB’s problems
The results found with the technique proposed to problems of TSPLIB with symmetrical
cases are compared with Self Organizing Maps and Simulated Annealing results. In
asymmetrical problems of TSPLIB, the technique proposed are compared with heurist of
insertion of arcs. In both cases the local search technique was applied to results found with
Wang’s Recurrent Neural Network with “Winner Takes All”.
For symmetrical problems, the following methods were used to compare with the technique
presented in this work:
• the method that involves statistical methods between neurons’ weights of Self

Organizing Maps (Aras et al., 1999) and has a global version (KniesG: Kohonen
Network Incorporating Explicit Statistics Global), where all cities are used in the neuron
dispersion process, and a local version (KniesL), where only some represented cities are
used in the neuron dispersion step;

• the Simulated Annealing technique (Budinich, 1996), using the 2-opt improvement
technique;

• Budinich’s Self Organizing Map, which consists of a traditional Self Organizing Map
applied to the Traveling Salesman Problem, presented in Budinich, 1996;

• the expanded Self Organizing Map (ESOM), which, in each iteration, places the neurons
close to their corresponding input data (cities) and, at the same time, places them at the
convex contour determined by the cities (Leung et al., 2004);

• the efficient and integrated Self Organizing Map (eISOM), where the ESOM procedures
are used and the winning neuron is placed at the mean point among its closest
neighboring neurons(Jin et al., 2003);

• the efficient Self Organizing Map technique (SETSP), which defines the updating forms
for parameters that use the number of cities of problem (Vieira et al., 2003);

• and Kohonen’s cooperative adaptive network (CAN) uses the idea of cooperation
between the neurons’ close neighbors and uses a number of neurons that is larger than
the number of cities in the problem (Cochrane & Beasley, 2003).

The computational complexity of the proposed heuristic is O(n2 + n) (Wang, 1997),
considered competitive when compared to the complexity of mentioned Self Organizing
Map, which have complexity O(n2) (Leung et al., 2004). The CAN technique has a
computational complexity of O(n2log(n)) (Cochrane & Beasley, 2003), while the Simulated
Annealing technique has a complexity of O(n4log(n)) (Liu et al., 2003).
The results for the proposed heuristic in this paper, together with the 2-opt improvement,
presented an average error range from 0 to 3.31%, as shown in the 2-opt column of Table 4.
The methods that use improvement techniques to their solutions are Simulated Annealing,
CAN and Wang’s neural network with “Winner Takes All”.
The technique proposed in this paper, with 2-opt, present better results that Simulated
Annealing and CAN methods in almost every problem, with the only exception in the lin105
problem. Without the improvement 2-opt, the results of problems eil76, eil51, eil101 and

 Travelling Salesman Problem

150

(a) (b)

Fig. 5. Solutions found to brazil58 data. (a) Feasible solution found without local search
improvement with 81 epochs and average error of 2.9%. (b) Optimal solution found with 2-
opt improvement with 88 epochs.

(a) (b)

Fig. 6. Solutions found to att532 data. (a) Feasible solution found without local search
improvement with 411 epochs and average error of 14.58%. (b) Feasible solution found with
local search improvement with 427 epochs and average error of 1.27%.

(a) (b)

Fig. 7. Solutions found to u724 data. (a) Feasible solution found without local search
improvement with 469 epochs and average error of 16.85%. (b) Feasible solution found with
local search improvement with 516 epochs and average error of 6.28%.

A Recurrent Neural Network to Traveling Salesman Problem

151

The next Section shows the results of applying this technique to some of the TSPLIB’s
problems for symmetrical and asymmetrical Traveling Salesman problems.

9. Comparisons of technique proposed with others heuristics to some
TSPLIB’s problems
The results found with the technique proposed to problems of TSPLIB with symmetrical
cases are compared with Self Organizing Maps and Simulated Annealing results. In
asymmetrical problems of TSPLIB, the technique proposed are compared with heurist of
insertion of arcs. In both cases the local search technique was applied to results found with
Wang’s Recurrent Neural Network with “Winner Takes All”.
For symmetrical problems, the following methods were used to compare with the technique
presented in this work:
• the method that involves statistical methods between neurons’ weights of Self

Organizing Maps (Aras et al., 1999) and has a global version (KniesG: Kohonen
Network Incorporating Explicit Statistics Global), where all cities are used in the neuron
dispersion process, and a local version (KniesL), where only some represented cities are
used in the neuron dispersion step;

• the Simulated Annealing technique (Budinich, 1996), using the 2-opt improvement
technique;

• Budinich’s Self Organizing Map, which consists of a traditional Self Organizing Map
applied to the Traveling Salesman Problem, presented in Budinich, 1996;

• the expanded Self Organizing Map (ESOM), which, in each iteration, places the neurons
close to their corresponding input data (cities) and, at the same time, places them at the
convex contour determined by the cities (Leung et al., 2004);

• the efficient and integrated Self Organizing Map (eISOM), where the ESOM procedures
are used and the winning neuron is placed at the mean point among its closest
neighboring neurons(Jin et al., 2003);

• the efficient Self Organizing Map technique (SETSP), which defines the updating forms
for parameters that use the number of cities of problem (Vieira et al., 2003);

• and Kohonen’s cooperative adaptive network (CAN) uses the idea of cooperation
between the neurons’ close neighbors and uses a number of neurons that is larger than
the number of cities in the problem (Cochrane & Beasley, 2003).

The computational complexity of the proposed heuristic is O(n2 + n) (Wang, 1997),
considered competitive when compared to the complexity of mentioned Self Organizing
Map, which have complexity O(n2) (Leung et al., 2004). The CAN technique has a
computational complexity of O(n2log(n)) (Cochrane & Beasley, 2003), while the Simulated
Annealing technique has a complexity of O(n4log(n)) (Liu et al., 2003).
The results for the proposed heuristic in this paper, together with the 2-opt improvement,
presented an average error range from 0 to 3.31%, as shown in the 2-opt column of Table 4.
The methods that use improvement techniques to their solutions are Simulated Annealing,
CAN and Wang’s neural network with “Winner Takes All”.
The technique proposed in this paper, with 2-opt, present better results that Simulated
Annealing and CAN methods in almost every problem, with the only exception in the lin105
problem. Without the improvement 2-opt, the results of problems eil76, eil51, eil101 and

 Travelling Salesman Problem

152

rat195 are better than the results of the other neural networks that do not use improvement
techniques in its solutions.
In Table 4 are shown the average errors of the techniques mentioned above. The "pure"
technique proposed in this work to Traveling Salesman Problem, the proposed technique
with the 2-opt improvement algorithm, as well as the best (max) and worst (min) results of
each problem considered are also shown.

average error (%)

for 8 algorithms presented on TSPLIB WRNN with WTA
TSP’s
name n optimal

solution

KniesG KniesL SA Budinich ESom EiSom Setsp CAN Max Min 2-opt

eil51 51 430 2.86 2.86 2.33 3.10 2.10 2.56 2.22 0.94 1.16 1.16 0

st70 70 678.6 2.33 1.51 2.14 1.70 2.09 NC 1.60 1.33 4.04 2.71 0

eil76 76 545.4 5.48 4.98 5.54 5.32 3.89 NC 4.23 2.04 2.49 1.03 0

gr96 96 514 NC NC 4.12 2.09 1.03 NC NC NC 6.61 4.28 0

rd100 100 7,910 2.62 2.09 3.26 3.16 1.96 NC 2.60 1.23 7.17 6.83 0.08

eil101 101 629 5.63 4.66 5.74 5.24 3.43 3.59 NC 1.11 7.95 3.02 0.48

lin105 105 14,383 1.29 1.98 1.87 1.71 0.25 NC 1.30 0 5.94 4.33 0.20

pr107 107 44,303 0.42 0.73 1.54 1.32 1.48 NC 0.41 0.17 3.14 3.14 0

pr124 124 59,030 0.49 0.08 1.26 1.62 0.67 NC NC 2.36 2.63 0.33 0

bier127 127 118,282 3.08 2.76 3.52 3.61 1.70 NC 1.85 0.69 5.08 4.22 0.37

pr136 136 96,772 5.15 4.53 4.90 5.20 4.31 NC 4.40 3.94 6.86 5.99 1.21

pr152 152 73,682 1.29 0.97 2.64 2.04 0.89 NC 1.17 0.74 3.27 3.23 0

rat195 195 2,323 11.92 12.24 13.29 11.48 7.13 NC 11.19 5.27 8.82 5.55 3.31

kroa200 200 29,368 6.57 5.72 5.61 6.13 2.91 1.64 3.12 0.92 12.25 8.95 0.62

lin318 318 42,029 NC NC 7.56 8.19 4.11 2.05 NC 2.65 8.65 8.35 1.90

pcb442 442 50,784 10.45 11.07 9.15 8.43 7.43 6.11 10.16 5.89 13.18 9.16 2.87

att532 532 27,686 6.8 6.74 5.38 5.67 4.95 3.35 NC 3.32 15.43 14.58 1.28

Table 4. Results of the experiments for the symmetrical problems of TSP, with techniques
presented on TSPLIB: KniesG, KniesL, SA, Budinich’s SOM, ESOM, EISOM, SETSP, CAN
and a technique presented on this paper: WRNN with WTA. The solutions presented in
bold characters show the best results for each problem, disregarding the results with the 2-
opt technique. (NC = not compared)
For the asymmetrical problems, the techniques used to compare with the technique
proposed in this work were (Glover et al., 2001):
• the Karp-Steele path methods (KSP) and general Karp-Steele (GKS), which begin with

one cycle and by removing arcs and placing new arcs, transform the initial cycle into a

A Recurrent Neural Network to Traveling Salesman Problem

153

Hamiltonian one. The difference between these two techniques is that the GKS uses all
of the cycle’s vertices for the changes in the cycle’s arcs;

• the path recursive contraction (PRC) that consists in forming an initial cycle and
transforming it into a Hamiltonian cycle by removing arcs from every sub-cycle;

• the contraction or path heuristic (COP), which is a combination of the GKS and RPC
techniques;

• the “greedy” heuristic (GR) that chooses the smallest arc in the graph, contracts this arc
creating a new graph, and keeps this procedure up to the last arc, thus creating a route;

• and the random insertion heuristic (RI) that initially chooses 2 vertices, inserts one
vertex that had not been chosen, thus creating a cycle, and repeats this procedure until
it creates a route including all vertices.

average error (%)

for 6 algorithms WRNN with WTA
TSP’s
name n optimal

solution
GR RI KSP GKS PRC COP max Min 2-opt

br17 17 39 102.56 0 0 0 0 0 0 0 0
ftv33 33 1,286 31.34 11.82 13.14 8.09 21.62 9.49 7.00 0 0
ftv35 35 1,473 24.37 9.37 1.56 1.09 21.18 1.56 5.70 3.12 3.12
ftv38 38 1,530 14.84 10.20 1.50 1.05 25.69 3.59 3.79 3.73 3.01

pr43 43 5,620 3.59 0.30 0.11 0.32 0.66 0.68 0.46 0.29 0.05

ftv44 44 1,613 18.78 14.07 7.69 5.33 22.26 10.66 2.60 2.60 2.60
ftv47 47 1,776 11.88 12.16 3.04 1.69 28.72 8.73 8.05 3.83 3.83
ry48p 48 14,422 32.55 11.66 7.23 4.52 29.50 7.97 6.39 5.59 1.24
ft53 53 6,905 80.84 24.82 12.99 12.31 18.64 15.68 3.23 2.65 2.65

ftv55 55 1,608 25.93 15.30 3.05 3.05 33.27 4.79 12.19 11.19 6.03
ftv64 64 1,839 25.77 18.49 3.81 2.61 29.09 1.96 2.50 2.50 2.50
ft70 70 38,673 14.84 9.32 1.88 2.84 5.89 1.90 2.43 1.74 1.74

ftv70 70 1,950 31.85 16.15 3.33 2.87 22.77 1.85 8.87 8.77 8.56
kro124p 100 36,230 21.01 12.17 16.95 8.69 23.06 8.79 10.52 7.66 7.66
ftv170 170 2,755 32.05 28.97 2.40 1.38 25.66 3.59 14.66 12.16 12.16
rbg323 323 1,326 8.52 29.34 0 0 0.53 0 16.44 16.14 16.14
rbg358 358 1,163 7.74 42.48 0 0 2.32 0.26 22.01 12.73 8.17
rbg403 403 2,465 0.85 9.17 0 0 0.69 0.20 4.71 4.71 4.71
rbg443 443 2,720 0.92 10.48 0 0 0 0 8.05 8.05 2.17

Table 5. Results of the experiments for the asymmetrical problems of TSP with techniques
presented on TSPLIB: GR, RI, KSP, GKS, RPC, COP and a technique presented on this
paper: WRNN with WTA. The solutions presented in bold characters show the best results
for each problem, disregarding the results with the 2-opt technique.
Table 5 shows the average errors of the techniques described, as well as those of the "pure"
technique presented in this work and of the proposed technique with the 2-opt technique.

 Travelling Salesman Problem

152

rat195 are better than the results of the other neural networks that do not use improvement
techniques in its solutions.
In Table 4 are shown the average errors of the techniques mentioned above. The "pure"
technique proposed in this work to Traveling Salesman Problem, the proposed technique
with the 2-opt improvement algorithm, as well as the best (max) and worst (min) results of
each problem considered are also shown.

average error (%)

for 8 algorithms presented on TSPLIB WRNN with WTA
TSP’s
name n optimal

solution

KniesG KniesL SA Budinich ESom EiSom Setsp CAN Max Min 2-opt

eil51 51 430 2.86 2.86 2.33 3.10 2.10 2.56 2.22 0.94 1.16 1.16 0

st70 70 678.6 2.33 1.51 2.14 1.70 2.09 NC 1.60 1.33 4.04 2.71 0

eil76 76 545.4 5.48 4.98 5.54 5.32 3.89 NC 4.23 2.04 2.49 1.03 0

gr96 96 514 NC NC 4.12 2.09 1.03 NC NC NC 6.61 4.28 0

rd100 100 7,910 2.62 2.09 3.26 3.16 1.96 NC 2.60 1.23 7.17 6.83 0.08

eil101 101 629 5.63 4.66 5.74 5.24 3.43 3.59 NC 1.11 7.95 3.02 0.48

lin105 105 14,383 1.29 1.98 1.87 1.71 0.25 NC 1.30 0 5.94 4.33 0.20

pr107 107 44,303 0.42 0.73 1.54 1.32 1.48 NC 0.41 0.17 3.14 3.14 0

pr124 124 59,030 0.49 0.08 1.26 1.62 0.67 NC NC 2.36 2.63 0.33 0

bier127 127 118,282 3.08 2.76 3.52 3.61 1.70 NC 1.85 0.69 5.08 4.22 0.37

pr136 136 96,772 5.15 4.53 4.90 5.20 4.31 NC 4.40 3.94 6.86 5.99 1.21

pr152 152 73,682 1.29 0.97 2.64 2.04 0.89 NC 1.17 0.74 3.27 3.23 0

rat195 195 2,323 11.92 12.24 13.29 11.48 7.13 NC 11.19 5.27 8.82 5.55 3.31

kroa200 200 29,368 6.57 5.72 5.61 6.13 2.91 1.64 3.12 0.92 12.25 8.95 0.62

lin318 318 42,029 NC NC 7.56 8.19 4.11 2.05 NC 2.65 8.65 8.35 1.90

pcb442 442 50,784 10.45 11.07 9.15 8.43 7.43 6.11 10.16 5.89 13.18 9.16 2.87

att532 532 27,686 6.8 6.74 5.38 5.67 4.95 3.35 NC 3.32 15.43 14.58 1.28

Table 4. Results of the experiments for the symmetrical problems of TSP, with techniques
presented on TSPLIB: KniesG, KniesL, SA, Budinich’s SOM, ESOM, EISOM, SETSP, CAN
and a technique presented on this paper: WRNN with WTA. The solutions presented in
bold characters show the best results for each problem, disregarding the results with the 2-
opt technique. (NC = not compared)
For the asymmetrical problems, the techniques used to compare with the technique
proposed in this work were (Glover et al., 2001):
• the Karp-Steele path methods (KSP) and general Karp-Steele (GKS), which begin with

one cycle and by removing arcs and placing new arcs, transform the initial cycle into a

A Recurrent Neural Network to Traveling Salesman Problem

153

Hamiltonian one. The difference between these two techniques is that the GKS uses all
of the cycle’s vertices for the changes in the cycle’s arcs;

• the path recursive contraction (PRC) that consists in forming an initial cycle and
transforming it into a Hamiltonian cycle by removing arcs from every sub-cycle;

• the contraction or path heuristic (COP), which is a combination of the GKS and RPC
techniques;

• the “greedy” heuristic (GR) that chooses the smallest arc in the graph, contracts this arc
creating a new graph, and keeps this procedure up to the last arc, thus creating a route;

• and the random insertion heuristic (RI) that initially chooses 2 vertices, inserts one
vertex that had not been chosen, thus creating a cycle, and repeats this procedure until
it creates a route including all vertices.

average error (%)

for 6 algorithms WRNN with WTA
TSP’s
name n optimal

solution
GR RI KSP GKS PRC COP max Min 2-opt

br17 17 39 102.56 0 0 0 0 0 0 0 0
ftv33 33 1,286 31.34 11.82 13.14 8.09 21.62 9.49 7.00 0 0
ftv35 35 1,473 24.37 9.37 1.56 1.09 21.18 1.56 5.70 3.12 3.12
ftv38 38 1,530 14.84 10.20 1.50 1.05 25.69 3.59 3.79 3.73 3.01

pr43 43 5,620 3.59 0.30 0.11 0.32 0.66 0.68 0.46 0.29 0.05

ftv44 44 1,613 18.78 14.07 7.69 5.33 22.26 10.66 2.60 2.60 2.60
ftv47 47 1,776 11.88 12.16 3.04 1.69 28.72 8.73 8.05 3.83 3.83
ry48p 48 14,422 32.55 11.66 7.23 4.52 29.50 7.97 6.39 5.59 1.24
ft53 53 6,905 80.84 24.82 12.99 12.31 18.64 15.68 3.23 2.65 2.65

ftv55 55 1,608 25.93 15.30 3.05 3.05 33.27 4.79 12.19 11.19 6.03
ftv64 64 1,839 25.77 18.49 3.81 2.61 29.09 1.96 2.50 2.50 2.50
ft70 70 38,673 14.84 9.32 1.88 2.84 5.89 1.90 2.43 1.74 1.74

ftv70 70 1,950 31.85 16.15 3.33 2.87 22.77 1.85 8.87 8.77 8.56
kro124p 100 36,230 21.01 12.17 16.95 8.69 23.06 8.79 10.52 7.66 7.66
ftv170 170 2,755 32.05 28.97 2.40 1.38 25.66 3.59 14.66 12.16 12.16
rbg323 323 1,326 8.52 29.34 0 0 0.53 0 16.44 16.14 16.14
rbg358 358 1,163 7.74 42.48 0 0 2.32 0.26 22.01 12.73 8.17
rbg403 403 2,465 0.85 9.17 0 0 0.69 0.20 4.71 4.71 4.71
rbg443 443 2,720 0.92 10.48 0 0 0 0 8.05 8.05 2.17

Table 5. Results of the experiments for the asymmetrical problems of TSP with techniques
presented on TSPLIB: GR, RI, KSP, GKS, RPC, COP and a technique presented on this
paper: WRNN with WTA. The solutions presented in bold characters show the best results
for each problem, disregarding the results with the 2-opt technique.
Table 5 shows the average errors of the techniques described, as well as those of the "pure"
technique presented in this work and of the proposed technique with the 2-opt technique.

 Travelling Salesman Problem

154

The results of the "pure" technique proposed in this work are better or equivalent to those of
the other heuristics mentioned above, for problems br17, ftv33, ftv44, ft53, ft70 and kro124p,
as shown in Table 5. By using the 2-opt technique on the proposed technique, the best
results were found for problems br17, ftv33, pr43, ry48p, ftv44, ft53, ft70 and kro124p, with
average errors ranging from 0 to 16.14%.

10. Conclusions
This work presented the Wang’s recurrent neural network with the “Winner Takes All”
principle to solve the Assignment Problem and Traveling Salesman Problem. The
application of parameters with measures of matrices dispersion showed better results to
both problems.
The results of matrices to Assignment Problem had shown that the principle “Winner Takes
all” solves problems in matrices with multiple optimal solutions, besides speed the
convergence of the Wang’s neural network using only 1% of necessary iterations of neural
network pure.
Using the best combination of parameters, the average errors are only 0.71% to 100 tested
matrices to Assignment Problem. Using these parameters solutions of Traveling Salesman
Problem can be found.
By means of the Wang’s neural network, a solution for the Assignment Problem is found
and the “Winner Takes All” principle is applied to this solution, transforming it into a
feasible route for the Traveling Salesman Problem. These technique’s solutions were
considerably improved when the 2-opt technique was applied on the solutions presented by
the proposed technique in this work.
The data used for testing were obtained at the TSPLIB and the comparisons that were made
with other heuristics showed that the technique proposed in this work achieves better
results in several of the problems tested, with average errors below 16.14% to these
problems.
A great advantage of implementing the technique presented in this work is the possibility of
using the same technique to solve both symmetrical and asymmetrical Traveling Salesman
Problem as well.

11. References
Affenzeller, M. & Wanger, S. (2003). A Self-Adaptive Model for Selective Pressure Handling

within the Theory of Genetic Algorithms, Proceedings of Computer Aided Systems
Theory - EUROCAST 2003, pp. 384-393, ISBN 978-3-540-20221-9, Las Palmas de Gran
Canaria, Spain, February, 2003, Springer, Berlin

Ahuja, R.K.; Mangnanti, T.L. & Orlin, J.B. (1993). Network Flows theory, algorithms, and
applications, Prentice Hall, ISBN ISBN 0-13-617549-X, New Jersey.

Aras, N.; Oommen, B.J. & Altinel, I.K. (1999). The Kohonen network incorporating explicit
statistics and its application to the traveling salesman problem. Neural Networks,
Vol. 12, No. 9, November 1999, pp. 1273-1284, ISSN 0893-6080

Bianchi, L.; Knowles, J. & Bowler, J. (2005). Local search for the probabilistic traveling
salesman problem: Correction to the 2-p-opt and 1-shift algorithms. European
Journal of Operational Research, Vol. 162, No. 1, April 2005, pp. 206-219, ISSN 0377-
2217

A Recurrent Neural Network to Traveling Salesman Problem

155

Budinich, M. (1996). A self-organizing neural network for the traveling salesman problem
that is competitive with simulated annealing. Neural Computation, Vol. 8, No. 2,
February 1996, pp. 416-424, ISSN 0899-7667

Chu, S.C.; Roddick, J.F. & Pan, J.S. (2004). Ant colony system with communication strategies.
Information Sciences, Vol. 167, No. 1-4, December 2004, pp. 63-76, ISSN 0020-0255

Cochrane, E.M. & Beasley, J.E. (2001). The Co-Adaptive Neural Network Approach to the
Euclidean Travelling Salesman Problem. Neural Networks, Vol. 16, No. 10,
December 2003, pp. 1499-1525, ISSN 0893-6080

Glover, F.; Gutin, G.; Yeo, A. & Zverovich, A. (2001). Construction heuristics for the
asymmetric TSP. European Journal of Operational Research, Vol. 129, No. 3, March
2001, pp. 555-568, ISSN 0377-2217

Hung, D.L. & Wang, J. (2003). Digital Hardware realization of a Recurrent Neural Network
for solving the Assignment Problem. Neurocomputing, Vol. 51, April, 2003, pp. 447-
461, ISSN 0925-2312

Jin, H.D.; Leung, K.S.; Wong, M.L. & Xu, Z.B. (2003). An Efficient Self-Organizing Map
Designed by Genetic Algorithms for the Traveling Salesman Problem, IEEE
Transactions On Systems, Man, And Cybernetics - Part B: Cybernetics, Vol. 33, No. 6,
December 2003, pp. 877-887, ISSN 1083-4419

Laporte, G. (1992). The vehicle routing problem: An overview of exact and approximate
algorithms, European Journal of Operational Research, Vol. 59, No. 2, June 1992, pp.
345-358, ISSN ISSN 0377-2217

Leung, K.S.; Jin, H.D. & Xu, Z.B. (2004). An expanding self-organizing neural network for
the traveling salesman problem. Neurocomputing, Vol. 62, December 2004, pp. 267-
292, ISSN 0925-2312

Liu, G.; He, Y.; Fang, Y.; & Oiu, Y. (2003). A novel adaptive search strategy of intensification
and diversification in tabu search, Proceedings of Neural Networks and Signal
Processing, pp 428- 431, ISBN 0-7803-7702-8, Nanjing, China, December 2003, IEEE,
China

Onwubolu, G.C. & Clerc, M. (2004). Optimal path for automated drilling operations by a
new heuristic approach using particle swarm optimization. International Journal of
Production Research, Vol. 42, No. 3, February 2004, pp. 473-491, ISSN 0020-7543

Reinelt, G. (1991). TSPLIB – A traveling salesman problem library. ORSA Journal on
Computing, Vol. 3, No. 4, 1991, pp. 376-384, ISSN 0899-1499

Siqueira, P.H.; Scheer, S. & Steiner, M.T.A. (2005). Application of the "Winner Takes All"
Principle in Wang's Recurrent Neural Network for the Assignment Problem.
Proceedings of Second International Symposium on Neural Networks – ISNN 2005, pp.
731-738, ISBN 3-540-25912-0, Chongqing, China, May 2005, Springer, Berlin.

Siqueira, P.H.; Steiner, M.T.A. & Scheer, S. (2007). A new approach to solve the traveling
salesman problem. Neurocomputing, Vol. 70, No. 4-6, January 2007, pp. 1013-102,
ISSN 0925-2312

Siqueira, P.H.; Carnieri, C.; Steiner, M.T.A. & Barboza, A.O. (2004). Uma proposta de
solução para o problema da construção de escalas de motoristas e cobradores de
ônibus por meio do algoritmo do matching de peso máximo. Gestão & Produção,
Vol.11, No. 2, May 2004, pp. 187-196, ISSN 0104-530X

 Travelling Salesman Problem

154

The results of the "pure" technique proposed in this work are better or equivalent to those of
the other heuristics mentioned above, for problems br17, ftv33, ftv44, ft53, ft70 and kro124p,
as shown in Table 5. By using the 2-opt technique on the proposed technique, the best
results were found for problems br17, ftv33, pr43, ry48p, ftv44, ft53, ft70 and kro124p, with
average errors ranging from 0 to 16.14%.

10. Conclusions
This work presented the Wang’s recurrent neural network with the “Winner Takes All”
principle to solve the Assignment Problem and Traveling Salesman Problem. The
application of parameters with measures of matrices dispersion showed better results to
both problems.
The results of matrices to Assignment Problem had shown that the principle “Winner Takes
all” solves problems in matrices with multiple optimal solutions, besides speed the
convergence of the Wang’s neural network using only 1% of necessary iterations of neural
network pure.
Using the best combination of parameters, the average errors are only 0.71% to 100 tested
matrices to Assignment Problem. Using these parameters solutions of Traveling Salesman
Problem can be found.
By means of the Wang’s neural network, a solution for the Assignment Problem is found
and the “Winner Takes All” principle is applied to this solution, transforming it into a
feasible route for the Traveling Salesman Problem. These technique’s solutions were
considerably improved when the 2-opt technique was applied on the solutions presented by
the proposed technique in this work.
The data used for testing were obtained at the TSPLIB and the comparisons that were made
with other heuristics showed that the technique proposed in this work achieves better
results in several of the problems tested, with average errors below 16.14% to these
problems.
A great advantage of implementing the technique presented in this work is the possibility of
using the same technique to solve both symmetrical and asymmetrical Traveling Salesman
Problem as well.

11. References
Affenzeller, M. & Wanger, S. (2003). A Self-Adaptive Model for Selective Pressure Handling

within the Theory of Genetic Algorithms, Proceedings of Computer Aided Systems
Theory - EUROCAST 2003, pp. 384-393, ISBN 978-3-540-20221-9, Las Palmas de Gran
Canaria, Spain, February, 2003, Springer, Berlin

Ahuja, R.K.; Mangnanti, T.L. & Orlin, J.B. (1993). Network Flows theory, algorithms, and
applications, Prentice Hall, ISBN ISBN 0-13-617549-X, New Jersey.

Aras, N.; Oommen, B.J. & Altinel, I.K. (1999). The Kohonen network incorporating explicit
statistics and its application to the traveling salesman problem. Neural Networks,
Vol. 12, No. 9, November 1999, pp. 1273-1284, ISSN 0893-6080

Bianchi, L.; Knowles, J. & Bowler, J. (2005). Local search for the probabilistic traveling
salesman problem: Correction to the 2-p-opt and 1-shift algorithms. European
Journal of Operational Research, Vol. 162, No. 1, April 2005, pp. 206-219, ISSN 0377-
2217

A Recurrent Neural Network to Traveling Salesman Problem

155

Budinich, M. (1996). A self-organizing neural network for the traveling salesman problem
that is competitive with simulated annealing. Neural Computation, Vol. 8, No. 2,
February 1996, pp. 416-424, ISSN 0899-7667

Chu, S.C.; Roddick, J.F. & Pan, J.S. (2004). Ant colony system with communication strategies.
Information Sciences, Vol. 167, No. 1-4, December 2004, pp. 63-76, ISSN 0020-0255

Cochrane, E.M. & Beasley, J.E. (2001). The Co-Adaptive Neural Network Approach to the
Euclidean Travelling Salesman Problem. Neural Networks, Vol. 16, No. 10,
December 2003, pp. 1499-1525, ISSN 0893-6080

Glover, F.; Gutin, G.; Yeo, A. & Zverovich, A. (2001). Construction heuristics for the
asymmetric TSP. European Journal of Operational Research, Vol. 129, No. 3, March
2001, pp. 555-568, ISSN 0377-2217

Hung, D.L. & Wang, J. (2003). Digital Hardware realization of a Recurrent Neural Network
for solving the Assignment Problem. Neurocomputing, Vol. 51, April, 2003, pp. 447-
461, ISSN 0925-2312

Jin, H.D.; Leung, K.S.; Wong, M.L. & Xu, Z.B. (2003). An Efficient Self-Organizing Map
Designed by Genetic Algorithms for the Traveling Salesman Problem, IEEE
Transactions On Systems, Man, And Cybernetics - Part B: Cybernetics, Vol. 33, No. 6,
December 2003, pp. 877-887, ISSN 1083-4419

Laporte, G. (1992). The vehicle routing problem: An overview of exact and approximate
algorithms, European Journal of Operational Research, Vol. 59, No. 2, June 1992, pp.
345-358, ISSN ISSN 0377-2217

Leung, K.S.; Jin, H.D. & Xu, Z.B. (2004). An expanding self-organizing neural network for
the traveling salesman problem. Neurocomputing, Vol. 62, December 2004, pp. 267-
292, ISSN 0925-2312

Liu, G.; He, Y.; Fang, Y.; & Oiu, Y. (2003). A novel adaptive search strategy of intensification
and diversification in tabu search, Proceedings of Neural Networks and Signal
Processing, pp 428- 431, ISBN 0-7803-7702-8, Nanjing, China, December 2003, IEEE,
China

Onwubolu, G.C. & Clerc, M. (2004). Optimal path for automated drilling operations by a
new heuristic approach using particle swarm optimization. International Journal of
Production Research, Vol. 42, No. 3, February 2004, pp. 473-491, ISSN 0020-7543

Reinelt, G. (1991). TSPLIB – A traveling salesman problem library. ORSA Journal on
Computing, Vol. 3, No. 4, 1991, pp. 376-384, ISSN 0899-1499

Siqueira, P.H.; Scheer, S. & Steiner, M.T.A. (2005). Application of the "Winner Takes All"
Principle in Wang's Recurrent Neural Network for the Assignment Problem.
Proceedings of Second International Symposium on Neural Networks – ISNN 2005, pp.
731-738, ISBN 3-540-25912-0, Chongqing, China, May 2005, Springer, Berlin.

Siqueira, P.H.; Steiner, M.T.A. & Scheer, S. (2007). A new approach to solve the traveling
salesman problem. Neurocomputing, Vol. 70, No. 4-6, January 2007, pp. 1013-102,
ISSN 0925-2312

Siqueira, P.H.; Carnieri, C.; Steiner, M.T.A. & Barboza, A.O. (2004). Uma proposta de
solução para o problema da construção de escalas de motoristas e cobradores de
ônibus por meio do algoritmo do matching de peso máximo. Gestão & Produção,
Vol.11, No. 2, May 2004, pp. 187-196, ISSN 0104-530X

 Travelling Salesman Problem

156

Vieira, F.C.; Doria Neto, A.D. & Costa, J.A. (2003). An Efficient Approach to the Travelling
Salesman Problem Using Self-Organizing Maps, International Journal Of Neural
Systems, Vol. 13, No. 2, April 2003, pp. 59-66, ISSN 0129-0657

Wang, J. (1992). Analog Neural Network for Solving the Assignment Problem. Electronic
Letters, Vol. 28, No. 11, May 1992, pp. 1047-1050, ISSN 0013-5194

Wang, J. (1997). Primal and Dual Assignment Networks. IEEE Transactions on Neural
Networks, Vol. 8, No. 3, May 1997, pp. 784-790, ISSN 1045-9227

Wang, R.L.; Tang, Z. & Cao, Q.P. (2002). A learning method in Hopfield neural network for
combinatorial optimization problem. Neurocomputing, Vol. 48, No. 4, October 2002,
pp. 1021-1024, ISSN 0925-2312

8

Solving the Probabilistic Travelling Salesman
Problem Based on Genetic Algorithm with

Queen Selection Scheme
Yu-Hsin Liu

Department of Civil Engineering, National Chi Nan University
Taiwan

1. Introduction
The probabilistic travelling salesman problem (PTSP) is an extension of the well-known
travelling salesman problem (TSP), which has been extensively studied in the field of
combinatorial optimization. The goal of the TSP is to find the minimum length of a tour to
all customers, given the distances between all pairs of customers whereas the objective of
the PTSP is to minimize the expected length of the a priori tour where each customer
requires a visit only with a given probability (Bertsimas, 1988; Bertsimas et al., 1990; Jaillet,
1985). The main difference between the PTSP and the TSP is that in the PTSP the probability
of each node being visited is between 0.0 and 1.0 while in TSP the probability of each node
being visited is 1.0. Due to the fact that the element of uncertainty not only exists, but also
significantly affects the system performance in many real-world transportation and logistics
applications, the results from the PTSP can provide insights into research in other
probabilistic combinatorial optimization problems. Moreover, the PTSP can also be used to
model many real-world applications in logistical and transportation planning, such as daily
pickup-delivery services with stochastic demand, job sequencing involving changeover cost,
design of retrieval sequences in a warehouse or in a cargo terminal operations, meals on
wheels in senior citizen services, trip-chaining activities, vehicle routing problem with
stochastic demand, and home delivery service under e-commerce (Bartholdi et al., 1983;
Bertsimas et al., 1995; Campbell, 2006; Jaillet, 1988; Tang & Miller-Hooks, 2004).
Early PTSP computational studies, dating from 1985, adopted heuristic approaches that
were modified from the TSP (e.g., nearest neighbor, savings approach, spacefilling curve,
radial sorting, 1-shift, and 2-opt exchanges) (Bartholdi & Platzman, 1988; Bertsimas, 1988;
Bertsimas & Howell, 1993; Jaillet, 1985, 1987; Rossi & Gavioli, 1987). With its less than
satisfactory performance in yielding solution quality, researchers in the recent years switch
to metaheuristic methods, such as ant colony optimization (Bianchi, 2006; Branke &
Guntsch, 2004), evolutionary algorithm (Liu et al., 2007), simulated annealing (Bowler et al.,
2003), threshold accepting (Tang & Miller-Hooks, 2004) and scatter search (Liu, 2006, 2007,
2008). Because the genetic algorithm (GA), a conceptual framework of the population-based
metaheuristic method, has been shown to yield promising outcomes for solving various
complicated optimization problems in the past three decades (Bäck et al., 1997; Davis, 1991;

 Travelling Salesman Problem

156

Vieira, F.C.; Doria Neto, A.D. & Costa, J.A. (2003). An Efficient Approach to the Travelling
Salesman Problem Using Self-Organizing Maps, International Journal Of Neural
Systems, Vol. 13, No. 2, April 2003, pp. 59-66, ISSN 0129-0657

Wang, J. (1992). Analog Neural Network for Solving the Assignment Problem. Electronic
Letters, Vol. 28, No. 11, May 1992, pp. 1047-1050, ISSN 0013-5194

Wang, J. (1997). Primal and Dual Assignment Networks. IEEE Transactions on Neural
Networks, Vol. 8, No. 3, May 1997, pp. 784-790, ISSN 1045-9227

Wang, R.L.; Tang, Z. & Cao, Q.P. (2002). A learning method in Hopfield neural network for
combinatorial optimization problem. Neurocomputing, Vol. 48, No. 4, October 2002,
pp. 1021-1024, ISSN 0925-2312

8

Solving the Probabilistic Travelling Salesman
Problem Based on Genetic Algorithm with

Queen Selection Scheme
Yu-Hsin Liu

Department of Civil Engineering, National Chi Nan University
Taiwan

1. Introduction
The probabilistic travelling salesman problem (PTSP) is an extension of the well-known
travelling salesman problem (TSP), which has been extensively studied in the field of
combinatorial optimization. The goal of the TSP is to find the minimum length of a tour to
all customers, given the distances between all pairs of customers whereas the objective of
the PTSP is to minimize the expected length of the a priori tour where each customer
requires a visit only with a given probability (Bertsimas, 1988; Bertsimas et al., 1990; Jaillet,
1985). The main difference between the PTSP and the TSP is that in the PTSP the probability
of each node being visited is between 0.0 and 1.0 while in TSP the probability of each node
being visited is 1.0. Due to the fact that the element of uncertainty not only exists, but also
significantly affects the system performance in many real-world transportation and logistics
applications, the results from the PTSP can provide insights into research in other
probabilistic combinatorial optimization problems. Moreover, the PTSP can also be used to
model many real-world applications in logistical and transportation planning, such as daily
pickup-delivery services with stochastic demand, job sequencing involving changeover cost,
design of retrieval sequences in a warehouse or in a cargo terminal operations, meals on
wheels in senior citizen services, trip-chaining activities, vehicle routing problem with
stochastic demand, and home delivery service under e-commerce (Bartholdi et al., 1983;
Bertsimas et al., 1995; Campbell, 2006; Jaillet, 1988; Tang & Miller-Hooks, 2004).
Early PTSP computational studies, dating from 1985, adopted heuristic approaches that
were modified from the TSP (e.g., nearest neighbor, savings approach, spacefilling curve,
radial sorting, 1-shift, and 2-opt exchanges) (Bartholdi & Platzman, 1988; Bertsimas, 1988;
Bertsimas & Howell, 1993; Jaillet, 1985, 1987; Rossi & Gavioli, 1987). With its less than
satisfactory performance in yielding solution quality, researchers in the recent years switch
to metaheuristic methods, such as ant colony optimization (Bianchi, 2006; Branke &
Guntsch, 2004), evolutionary algorithm (Liu et al., 2007), simulated annealing (Bowler et al.,
2003), threshold accepting (Tang & Miller-Hooks, 2004) and scatter search (Liu, 2006, 2007,
2008). Because the genetic algorithm (GA), a conceptual framework of the population-based
metaheuristic method, has been shown to yield promising outcomes for solving various
complicated optimization problems in the past three decades (Bäck et al., 1997; Davis, 1991;

 Travelling Salesman Problem

158

Goldberg, 1989; Holland, 1992; Liu & Mahmassani, 2000), this study will propose an
optimization procedure based on GA framework for solving the PTSP.
Mainly, the author of this chapter proposes and tests a new search procedure for solving the
PTSP by incorporating the nearest neighbor algorithm, 1-shift and/or 2-opt exchanges for
local search, selection scheme, and edge recombination crossover (ERX) operator into
genetic algorithm (GA) framework. Specifically, the queen GA, a selection approach which
was proposed recently and yielded promising results (Balakrishnan et al., 2006; Stern et al.,
2006), will be tested against the traditional selection mechanisms (i.e., fitness-proportional,
tournament, rank-based and elitist selections) for its comparative effectiveness and
efficiency in solving the PTSP. Unlike traditional selection mechanisms used in GA which
selects both parents from the entire population based on their fitness values, the queen GA
creates a subgroup of better solutions (the queen cohort), and uses at least one of its
members in each performed crossover. To validate the effectiveness and efficiency of the
proposed algorithmic procedure, a set of heterogeneous (90 instances) and homogeneous
(270 instances) PTSP test instances as used in the previous studies (Liu, 2006, 2007, 2008;
Tang & Miller-Hooks, 2004) will be used as the base for comparison purpose.
The remainder of this chapter is organized as follows. In the next section, expressions for
exactly and approximately evaluating the a priori tour for the PTSP are introduced. The
details of the proposed algorithmic procedure for the PTSP are then described. The results
of the numerical experiments are presented and discussed in the next section, followed by
concluding comments.

2. Definition and evaluation of the PTSP
The PTSP is defined on a directed graph G := (V, E), where V := {0, v1, v2, ..., vn} is the set of
nodes or vertices, E ⊆ V × V is the set of directed edges. Node 0 represents the depot with
the presence probability of 1.0. Each non-depot node vi is associated with a presence
probability pi that represents the possibility that node vi will be present in a given
realization. Given a directed graph G, the PTSP is to find an a priori Hamiltonian tour with
minimal expected length in G.

2.1 Exact evaluation for the a priori tour
Solving the PTSP mainly relies on computing the expected length of an a priori tour. The
computation of the expected length of a specific a priori PTSP tour τ, denoted as E[τ],
depends on the relative location of nodes on that tour and the presence probability of each
node in a given instance. By explicitly considering all realizations based on the presence of
each individual node, the expected length of tour τ can be calculated. For an n-node PTSP
instance, a tour τ has 2n possible realizations. The probability of realization rj, p(rj), can be
calculated based on the presence probability of each individual node. Let L[rj(τ)] describe
the tour length of τ for realization rj under the assumption that nodes not in rj are simply
skipped in the tour. The expected tour length can then be formally described as

2

1
[] () [()]

n

j j
j

E p r L rτ τ
=

= ∑ (1)

The computation of expected length based on Equation (1) is inefficient, because the
computational complexity increases exponentially with an increasing number of nodes.

Solving the Probabilistic Travelling Salesman Problem Based on Genetic Algorithm
with Queen Selection Scheme

159

Therefore, Jaillet & Odoni (1988) proposed an approach to exactly calculate E[τ] in the
complexity of O(n3) for the PTSP.

11

() () () () ()
0 1 1

[] { (1)}
jn n

i j i j k
i j i k i

E d p p pτ τ τ τ ττ
−+

= = + = +

= −∑ ∑ ∏ (2)

dij represents the distance between nodes i and j; τ (i) denotes the node that has been
assigned the ith stop in tour τ and pτ (i) is the probability of node τ (i). τ (0) and τ (n+1)
represent node 0, which is the depot.

2.2 Approximate evaluation for the a priori tour
Even though (2) yields a polynomial evaluation time for the PTSP, the resulting O(n3) time
for calculating E[τ] is still very long, especially for metaheuristic methods which need to
repeatedly evaluate the objective function value E[τ]. In this study, the proposed GA needs
to repeatedly compare two solutions (i.e., the new solution before and after local search
procedure, which is described in the next section) based on their values of E[τ]. Therefore,
the depth approximation originally proposed by Branke & Guntsch (2004) was adopted.
The depth approximate evaluation of E[τ] shown in (3) have been used to significantly
increase the computation efficiency under the scatter search framework (Liu, 2006).

∑ ∑ ∏
=

++

+=

−

+=

−=
n

i

in

ij

j

ik
kjiji

AP pppdE
1

},1min{

1

1

1
)()()()()(})1({][

λ

τττττλ τ

(3)

The only difference between (2) and (3) is the choice of truncation position λ in (3). Equation
(3) will have the computational complexity of O(nλ2), instead of O(n3) in (2). It is easy to see
that (3) becomes more accurate when λ increases. A larger value of λ, however, requires
more computation efforts for the computation of (3). Equation (3) can perform a very good
approximation of E[τ] with a smaller value of λ when the value of pτ(k) gets larger, because

∏
−

+=

−
1

1
)()1(

j

ik
kpτ

 will yield a very small value and can be omitted. Nevertheless, Equation (3)

will need a larger value of λ to perform a good approximation when the value of pτ(k) is
small. The approximation usually yields some errors in comparison to the exact evaluation.
To overcome that, the two-stage comparison proposed by Liu (2008) intends to exactly
evaluate the E[τ] value by using the depth approximation evaluation (Equation 3) in the first
stage and the exact evaluation (Equation 2) in the second stage. The detailed use of the
depth approximation evaluation shown in Equation (3) to accelerate the proposed algorithm
is referred to Liu (2008).

3. Solution algorithm
The proposed GA consists of four components as shown in Fig. 1. They are the initialization,
local search, selection scheme, and crossover. When starting to solve the PTSP (Generation 0,
g = 0), initial solutions are generated based on the nearest neighbor algorithm, which are
then improved by the local search. Then, a specific selection mechanism is called into place

 Travelling Salesman Problem

158

Goldberg, 1989; Holland, 1992; Liu & Mahmassani, 2000), this study will propose an
optimization procedure based on GA framework for solving the PTSP.
Mainly, the author of this chapter proposes and tests a new search procedure for solving the
PTSP by incorporating the nearest neighbor algorithm, 1-shift and/or 2-opt exchanges for
local search, selection scheme, and edge recombination crossover (ERX) operator into
genetic algorithm (GA) framework. Specifically, the queen GA, a selection approach which
was proposed recently and yielded promising results (Balakrishnan et al., 2006; Stern et al.,
2006), will be tested against the traditional selection mechanisms (i.e., fitness-proportional,
tournament, rank-based and elitist selections) for its comparative effectiveness and
efficiency in solving the PTSP. Unlike traditional selection mechanisms used in GA which
selects both parents from the entire population based on their fitness values, the queen GA
creates a subgroup of better solutions (the queen cohort), and uses at least one of its
members in each performed crossover. To validate the effectiveness and efficiency of the
proposed algorithmic procedure, a set of heterogeneous (90 instances) and homogeneous
(270 instances) PTSP test instances as used in the previous studies (Liu, 2006, 2007, 2008;
Tang & Miller-Hooks, 2004) will be used as the base for comparison purpose.
The remainder of this chapter is organized as follows. In the next section, expressions for
exactly and approximately evaluating the a priori tour for the PTSP are introduced. The
details of the proposed algorithmic procedure for the PTSP are then described. The results
of the numerical experiments are presented and discussed in the next section, followed by
concluding comments.

2. Definition and evaluation of the PTSP
The PTSP is defined on a directed graph G := (V, E), where V := {0, v1, v2, ..., vn} is the set of
nodes or vertices, E ⊆ V × V is the set of directed edges. Node 0 represents the depot with
the presence probability of 1.0. Each non-depot node vi is associated with a presence
probability pi that represents the possibility that node vi will be present in a given
realization. Given a directed graph G, the PTSP is to find an a priori Hamiltonian tour with
minimal expected length in G.

2.1 Exact evaluation for the a priori tour
Solving the PTSP mainly relies on computing the expected length of an a priori tour. The
computation of the expected length of a specific a priori PTSP tour τ, denoted as E[τ],
depends on the relative location of nodes on that tour and the presence probability of each
node in a given instance. By explicitly considering all realizations based on the presence of
each individual node, the expected length of tour τ can be calculated. For an n-node PTSP
instance, a tour τ has 2n possible realizations. The probability of realization rj, p(rj), can be
calculated based on the presence probability of each individual node. Let L[rj(τ)] describe
the tour length of τ for realization rj under the assumption that nodes not in rj are simply
skipped in the tour. The expected tour length can then be formally described as

2

1
[] () [()]

n

j j
j

E p r L rτ τ
=

= ∑ (1)

The computation of expected length based on Equation (1) is inefficient, because the
computational complexity increases exponentially with an increasing number of nodes.

Solving the Probabilistic Travelling Salesman Problem Based on Genetic Algorithm
with Queen Selection Scheme

159

Therefore, Jaillet & Odoni (1988) proposed an approach to exactly calculate E[τ] in the
complexity of O(n3) for the PTSP.

11

() () () () ()
0 1 1

[] { (1)}
jn n

i j i j k
i j i k i

E d p p pτ τ τ τ ττ
−+

= = + = +

= −∑ ∑ ∏ (2)

dij represents the distance between nodes i and j; τ (i) denotes the node that has been
assigned the ith stop in tour τ and pτ (i) is the probability of node τ (i). τ (0) and τ (n+1)
represent node 0, which is the depot.

2.2 Approximate evaluation for the a priori tour
Even though (2) yields a polynomial evaluation time for the PTSP, the resulting O(n3) time
for calculating E[τ] is still very long, especially for metaheuristic methods which need to
repeatedly evaluate the objective function value E[τ]. In this study, the proposed GA needs
to repeatedly compare two solutions (i.e., the new solution before and after local search
procedure, which is described in the next section) based on their values of E[τ]. Therefore,
the depth approximation originally proposed by Branke & Guntsch (2004) was adopted.
The depth approximate evaluation of E[τ] shown in (3) have been used to significantly
increase the computation efficiency under the scatter search framework (Liu, 2006).

∑ ∑ ∏
=

++

+=

−

+=

−=
n

i

in

ij

j

ik
kjiji

AP pppdE
1

},1min{

1

1

1
)()()()()(})1({][

λ

τττττλ τ

(3)

The only difference between (2) and (3) is the choice of truncation position λ in (3). Equation
(3) will have the computational complexity of O(nλ2), instead of O(n3) in (2). It is easy to see
that (3) becomes more accurate when λ increases. A larger value of λ, however, requires
more computation efforts for the computation of (3). Equation (3) can perform a very good
approximation of E[τ] with a smaller value of λ when the value of pτ(k) gets larger, because

∏
−

+=

−
1

1
)()1(

j

ik
kpτ

 will yield a very small value and can be omitted. Nevertheless, Equation (3)

will need a larger value of λ to perform a good approximation when the value of pτ(k) is
small. The approximation usually yields some errors in comparison to the exact evaluation.
To overcome that, the two-stage comparison proposed by Liu (2008) intends to exactly
evaluate the E[τ] value by using the depth approximation evaluation (Equation 3) in the first
stage and the exact evaluation (Equation 2) in the second stage. The detailed use of the
depth approximation evaluation shown in Equation (3) to accelerate the proposed algorithm
is referred to Liu (2008).

3. Solution algorithm
The proposed GA consists of four components as shown in Fig. 1. They are the initialization,
local search, selection scheme, and crossover. When starting to solve the PTSP (Generation 0,
g = 0), initial solutions are generated based on the nearest neighbor algorithm, which are
then improved by the local search. Then, a specific selection mechanism is called into place

 Travelling Salesman Problem

160

to further select solutions to be mated based on their solution quality (objective function
value). Pairs of solutions are used to generate the new solutions via edge recombination
crossover (ERX). The newly generated solutions are then improved using the local search.
The solutions are allowed to evolve through successive generations until a termination
criterion is met. The detailed description of the embedded components is illustrated in the
following sections.

Fig. 1. The general procedure of the genetic algorithm for the PTSP.

3.1 Initialization
This procedure is designed to generate m initial solutions (m = 15 in this study).
Considering a PTSP with n nodes (excluding the depot, node 0), the farthest node, a0, from
node 0 is selected first and randomly inserted into a location between (⎣ ⎦ 42/)1(−+n) and

(⎣ ⎦ 42/)1(++n). The nearest neighbor algorithm is then used to build up the sequence of the

tour. After selecting node a0, the nearest node (a1) from a0 is selected and inserted in front of
a0. The second nearest node (a2) from a0 is selected and inserted behind a0. Then, among the
remaining nodes, the nearest node (a3) from a1 is selected and inserted in front of a1, while
the nearest node (a4) from a2 is selected and inserted behind a2. The 1st initial solution (tour)
is thus built by following the above rule and expressed as follows.

To create diverse solutions, the remaining initial solutions are generated using the above
rule with slight modifications. The only difference lies in whenever l = 6, 12, 18, ..., instead
of using the nearest node from al-2, al is randomly chosen from the first or second nearest
node from al-2.

...... 0 a5 a2 a4 a6 0...... a1 a3 a0

Initialization
(g = 0)

Stopping
criteria met?

The best solution
for the PTSP

Yes

No

Local Search
Selection Scheme

Crossover

g = g + 1

Local Search

F only
F + T
F + E
F + T + E
R only
R + T
R + E
R + T + E
Queen

Solving the Probabilistic Travelling Salesman Problem Based on Genetic Algorithm
with Queen Selection Scheme

161

3.2 Local search
This component is used in an attempt to further enhance the solution generated via a local
search procedure. As the previous study has investigated the performance of diversified
local search strategy by stochastically selecting two different local search methods (i.e., 1-
shift and 2-opt exchanges) and found that combining 1-shift and 2-opt (1-shift/2opt) is the
most effective local search for the PTSP (Liu, 2008). Therefore, the 1-shift/2-opt is then
adopted to improve the solution generated in the proposed GA algorithm.
The procedures of 1-shift and 2-opt exchanges are briefly summarized as follows. Given an
a priori tour τ, its 1-shift neighborhood is the set of tours obtained by moving a node at
position i to position j with the intervening nodes being accordingly shifted backwards one
space. The 2-opt exchange is the set of tours obtained by reversing a section of τ.
The depth approximate evaluation of expected length of the a priori tour shown in (3) is then
used to increase the computational efficiency. For a specific tour τ,][τλ

APE is always less

than the value of E[τ] because of the truncation in calculating][τλ
APE . Let τb and τa denote

the a priori tour before and after a specific local search method, respectively. It means that
no improvement has been found after the local search if][a

APE τλ ≧ E[τb]. Equation (2) is

used to exactly evaluate the solution after the local search if][a
APE τλ < E[τb]. If the local

search yields a better E[τ] value than the one from the original solution (i.e., E[τa] < E[τb]),
the new solution (τa) will replace the original solution (τb). If no improvement has been
found after the local search, no replacement will be made. The above procedure is repeated
NLS times for each solution (NLS ＝ 25 in this study).

3.3 Selection scheme
Selection scheme is the process of choosing the mating pairs from the current population
and to create the new solutions based on crossover operator. To investigate the performance
of the queen GA, four popularly used selection mechanisms are used as a benchmark in this
study: fitness-proportional, rank-based, tournament, and elitism selections.

3.3.1 Fitness-proportional selection (F)
Under the fitness-proportional selection method, the probability of selecting a particular
solution for reproduction is proportional to its own fitness (i.e., E[τ]) relative to the average
fitness of the entire current generation. With this selection method, the best solution tends to
produce the largest amount of offspring and hence survive to future generations. This
procedure can be regarded as a “biased” roulette wheel where each string in the current
population occupies a roulette wheel slot sized in proportion to its fitness (Goldberg, 1989).
Selection can be done by simply spinning the weighted roulette wheel, and fitter strings will
have higher chances of being selected. This process can be simulated by the following
expression:

1

1

1
k

k m

t
t

f
q

f=

=
∑

 (4)

where qk is the probability of selecting solution k to produce offspring, and m is the
population size. The fk is the fitness value of the kth solution in the current generation.

 Travelling Salesman Problem

160

to further select solutions to be mated based on their solution quality (objective function
value). Pairs of solutions are used to generate the new solutions via edge recombination
crossover (ERX). The newly generated solutions are then improved using the local search.
The solutions are allowed to evolve through successive generations until a termination
criterion is met. The detailed description of the embedded components is illustrated in the
following sections.

Fig. 1. The general procedure of the genetic algorithm for the PTSP.

3.1 Initialization
This procedure is designed to generate m initial solutions (m = 15 in this study).
Considering a PTSP with n nodes (excluding the depot, node 0), the farthest node, a0, from
node 0 is selected first and randomly inserted into a location between (⎣ ⎦ 42/)1(−+n) and

(⎣ ⎦ 42/)1(++n). The nearest neighbor algorithm is then used to build up the sequence of the

tour. After selecting node a0, the nearest node (a1) from a0 is selected and inserted in front of
a0. The second nearest node (a2) from a0 is selected and inserted behind a0. Then, among the
remaining nodes, the nearest node (a3) from a1 is selected and inserted in front of a1, while
the nearest node (a4) from a2 is selected and inserted behind a2. The 1st initial solution (tour)
is thus built by following the above rule and expressed as follows.

To create diverse solutions, the remaining initial solutions are generated using the above
rule with slight modifications. The only difference lies in whenever l = 6, 12, 18, ..., instead
of using the nearest node from al-2, al is randomly chosen from the first or second nearest
node from al-2.

...... 0 a5 a2 a4 a6 0...... a1 a3 a0

Initialization
(g = 0)

Stopping
criteria met?

The best solution
for the PTSP

Yes

No

Local Search
Selection Scheme

Crossover

g = g + 1

Local Search

F only
F + T
F + E
F + T + E
R only
R + T
R + E
R + T + E
Queen

Solving the Probabilistic Travelling Salesman Problem Based on Genetic Algorithm
with Queen Selection Scheme

161

3.2 Local search
This component is used in an attempt to further enhance the solution generated via a local
search procedure. As the previous study has investigated the performance of diversified
local search strategy by stochastically selecting two different local search methods (i.e., 1-
shift and 2-opt exchanges) and found that combining 1-shift and 2-opt (1-shift/2opt) is the
most effective local search for the PTSP (Liu, 2008). Therefore, the 1-shift/2-opt is then
adopted to improve the solution generated in the proposed GA algorithm.
The procedures of 1-shift and 2-opt exchanges are briefly summarized as follows. Given an
a priori tour τ, its 1-shift neighborhood is the set of tours obtained by moving a node at
position i to position j with the intervening nodes being accordingly shifted backwards one
space. The 2-opt exchange is the set of tours obtained by reversing a section of τ.
The depth approximate evaluation of expected length of the a priori tour shown in (3) is then
used to increase the computational efficiency. For a specific tour τ,][τλ

APE is always less

than the value of E[τ] because of the truncation in calculating][τλ
APE . Let τb and τa denote

the a priori tour before and after a specific local search method, respectively. It means that
no improvement has been found after the local search if][a

APE τλ ≧ E[τb]. Equation (2) is

used to exactly evaluate the solution after the local search if][a
APE τλ < E[τb]. If the local

search yields a better E[τ] value than the one from the original solution (i.e., E[τa] < E[τb]),
the new solution (τa) will replace the original solution (τb). If no improvement has been
found after the local search, no replacement will be made. The above procedure is repeated
NLS times for each solution (NLS ＝ 25 in this study).

3.3 Selection scheme
Selection scheme is the process of choosing the mating pairs from the current population
and to create the new solutions based on crossover operator. To investigate the performance
of the queen GA, four popularly used selection mechanisms are used as a benchmark in this
study: fitness-proportional, rank-based, tournament, and elitism selections.

3.3.1 Fitness-proportional selection (F)
Under the fitness-proportional selection method, the probability of selecting a particular
solution for reproduction is proportional to its own fitness (i.e., E[τ]) relative to the average
fitness of the entire current generation. With this selection method, the best solution tends to
produce the largest amount of offspring and hence survive to future generations. This
procedure can be regarded as a “biased” roulette wheel where each string in the current
population occupies a roulette wheel slot sized in proportion to its fitness (Goldberg, 1989).
Selection can be done by simply spinning the weighted roulette wheel, and fitter strings will
have higher chances of being selected. This process can be simulated by the following
expression:

1

1

1
k

k m

t
t

f
q

f=

=
∑

 (4)

where qk is the probability of selecting solution k to produce offspring, and m is the
population size. The fk is the fitness value of the kth solution in the current generation.

 Travelling Salesman Problem

162

Because the PTSP is a minimization problem, 1/fk is used as the appropriate weight for the
kth solution.

3.3.2 Rank-based selection (R)
Under the rank-based selection, the probability of selecting a particular solution for
reproduction is determined by the rank of its fitness. This process can be simulated by the
following expression:

∑ =

= m

t t

k
k

r

rq
1

1

1
 (5)

where rk is the rank of the fitness value for the kth solution.

3.3.3 Tournament selection (T)
Tournament selection, inspired by the competition in nature among individuals for the right
to mate, picks two solutions using the proportional or rank-based selection from the
population and the fittest one is selected for reproduction (Goldberg, 1989; Davis, 1991).
Each solution can participate in an unlimited number of tournaments. The two winning
solutions in the tournament are then subjected to the crossover operators.

3.3.4 Elitism (E)
Under the elitism selection strategy, the top Ne strings (Ne is determined by the analyst) of
the current generation in terms of fitness value are kept and propagated to the next
generation (Davis, 1991). The remaining solutions in the next generation are then generated
based on the tournament selection method and the crossover operators. This procedure
guarantees that the best solution in the next generation is not worse than the one in the
current generation.

3.3.5 Queen GA
According to the concept of queen GA, the top Ntop solutions in terms of its fitness value of
the population are selected to be the members of queen. Then, one of the parents is chosen
from the queen members and the other parent is randomly selected from the whole
population excluding the already chosen member. These two selected parents are then
mated based on the crossover operator. The queen members are dynamically updated
based on the quality of the new solutions generated. A newly solution generated will
become a queen member if the new solution has a better objective function value than the
one with the worst objective value in the queen subset.

3.3.6 Experiment design of selection schemes
In addition to queen GA, eight schemes are designed by combining one or several selection
methods from four popularly used selection mechanisms mentioned previously (i.e., fitness-
proportional, rank-based, tournament, and elitism selection). Explicitly, since the
tournament and elitism selections need to work with fitness-proportional (F) or rank-based
(R) selection, eight selection schemes are designed and used in the numerical experiment in
this study. They are fitness-proportional selection only (F), fitness-proportional and

Solving the Probabilistic Travelling Salesman Problem Based on Genetic Algorithm
with Queen Selection Scheme

163

tournament selection (F+T), fitness-proportional and elitism selection (F+E), fitness-
proportional, tournament and elitism selection (F+T+E), rank-based selection only (R), rank-
based and tournament selection (R+T), rank-based and elitism selection (R+E), rank-based,
tournament and elitism selection (R+T+E).

3.4 Edge recombination crossover (ERX)
The main purpose of this component is to create new solutions using a given pair of
solutions generated by “selection”. Based on the results from previous studies (Liu et al.,
2007; Potvin, 1996), the edge recombination crossover (ERX) from genetic algorithms
performed best when compared to other crossover strategies for both in TSP and PTSP.
Therefore, ERX was adopted in this study.
ERX was proposed by Whitley et al. (1989) to solve the traditional TSP. A 5-node PTSP is
used as an example to describe the procedure of ERX. Assuming that two solutions (tours)
are chosen from the “selection”--(0, 4, 3, 1, 2, 0) and (0, 1, 2, 3, 4, 0), the edges connected to
each node are as follows. For node 0, the first solution indicates that node 0 connects to
nodes 2 and 4 and the second solution shows that node 0 connects to nodes 1 and 4.
Therefore, node 0 connects to nodes 1, 2, and 4 by considering these two solutions.
Similarly, node 1 connects to nodes 0, 2, 3; node 2 connects to nodes 0, 1, 3; node 3 connects
to nodes 1, 2, 4; node 4 connects to nodes 0, 3. These are the initial edge lists for each node.
The operation of the ERX is described as follows. Assuming that node 0 is selected as the
starting node for the new solution, all edges incident to node 0 must be deleted from the
initial edge list. As described, from node 0 we can go to nodes 1, 2, or 4, while nodes 1 and 2
have two active edges and node 4 has only one active edge by deleting node 0 from the
initial edge list. The node with the fewest active edge, node 4, is picked as the node next to
node 0 in the new solution. Then, the edge list for the remaining nodes (nodes 1, 2, and 3) is
further updated by deleting node 4. The updated edge list is node 1 (2, 3), node 2 (1, 3), and
node 3 (1, 2). From node 4, we can only go to node 3 (as node 0 is already deleted from the
list). Therefore, node 3 is chosen to be the node next to node 4 in the new solution. The new
solution generated is further improved by the local search.

3.5 The procedure after the first generation
The newly generated solutions from the ERX and local search are used to update the
population in terms of the objective function value. The above procedure is repeated until a
termination criterion is met. However, if there are no solutions to be updated for the
population in the current generation, the initialization is used to generate (m - m1) new
solutions in the next generation, but keeping m1 high quality solutions (m1 = 2, in this study).
In addition, if the previous three generations converge to the same best solution, the local
search is used to improve that “converged” solution by repeating NLS2 times to exhaustively
search the neighborhood of that “converged” solution (NLS2 = 300, in this study).

4. Numerical experiments and results
There are two types of data sets, heterogeneous and homogeneous PTSP, used as numerical
experiments in this study to examine the performance of different selection schemes under
GA framework for the PTSP. First, 90 heterogeneous PTSP instances were generated by
Tang & Miller-Hooks (2004) with size n = 50, 75, and 100. Three groups of problem sets

 Travelling Salesman Problem

162

Because the PTSP is a minimization problem, 1/fk is used as the appropriate weight for the
kth solution.

3.3.2 Rank-based selection (R)
Under the rank-based selection, the probability of selecting a particular solution for
reproduction is determined by the rank of its fitness. This process can be simulated by the
following expression:

∑ =

= m

t t

k
k

r

rq
1

1

1
 (5)

where rk is the rank of the fitness value for the kth solution.

3.3.3 Tournament selection (T)
Tournament selection, inspired by the competition in nature among individuals for the right
to mate, picks two solutions using the proportional or rank-based selection from the
population and the fittest one is selected for reproduction (Goldberg, 1989; Davis, 1991).
Each solution can participate in an unlimited number of tournaments. The two winning
solutions in the tournament are then subjected to the crossover operators.

3.3.4 Elitism (E)
Under the elitism selection strategy, the top Ne strings (Ne is determined by the analyst) of
the current generation in terms of fitness value are kept and propagated to the next
generation (Davis, 1991). The remaining solutions in the next generation are then generated
based on the tournament selection method and the crossover operators. This procedure
guarantees that the best solution in the next generation is not worse than the one in the
current generation.

3.3.5 Queen GA
According to the concept of queen GA, the top Ntop solutions in terms of its fitness value of
the population are selected to be the members of queen. Then, one of the parents is chosen
from the queen members and the other parent is randomly selected from the whole
population excluding the already chosen member. These two selected parents are then
mated based on the crossover operator. The queen members are dynamically updated
based on the quality of the new solutions generated. A newly solution generated will
become a queen member if the new solution has a better objective function value than the
one with the worst objective value in the queen subset.

3.3.6 Experiment design of selection schemes
In addition to queen GA, eight schemes are designed by combining one or several selection
methods from four popularly used selection mechanisms mentioned previously (i.e., fitness-
proportional, rank-based, tournament, and elitism selection). Explicitly, since the
tournament and elitism selections need to work with fitness-proportional (F) or rank-based
(R) selection, eight selection schemes are designed and used in the numerical experiment in
this study. They are fitness-proportional selection only (F), fitness-proportional and

Solving the Probabilistic Travelling Salesman Problem Based on Genetic Algorithm
with Queen Selection Scheme

163

tournament selection (F+T), fitness-proportional and elitism selection (F+E), fitness-
proportional, tournament and elitism selection (F+T+E), rank-based selection only (R), rank-
based and tournament selection (R+T), rank-based and elitism selection (R+E), rank-based,
tournament and elitism selection (R+T+E).

3.4 Edge recombination crossover (ERX)
The main purpose of this component is to create new solutions using a given pair of
solutions generated by “selection”. Based on the results from previous studies (Liu et al.,
2007; Potvin, 1996), the edge recombination crossover (ERX) from genetic algorithms
performed best when compared to other crossover strategies for both in TSP and PTSP.
Therefore, ERX was adopted in this study.
ERX was proposed by Whitley et al. (1989) to solve the traditional TSP. A 5-node PTSP is
used as an example to describe the procedure of ERX. Assuming that two solutions (tours)
are chosen from the “selection”--(0, 4, 3, 1, 2, 0) and (0, 1, 2, 3, 4, 0), the edges connected to
each node are as follows. For node 0, the first solution indicates that node 0 connects to
nodes 2 and 4 and the second solution shows that node 0 connects to nodes 1 and 4.
Therefore, node 0 connects to nodes 1, 2, and 4 by considering these two solutions.
Similarly, node 1 connects to nodes 0, 2, 3; node 2 connects to nodes 0, 1, 3; node 3 connects
to nodes 1, 2, 4; node 4 connects to nodes 0, 3. These are the initial edge lists for each node.
The operation of the ERX is described as follows. Assuming that node 0 is selected as the
starting node for the new solution, all edges incident to node 0 must be deleted from the
initial edge list. As described, from node 0 we can go to nodes 1, 2, or 4, while nodes 1 and 2
have two active edges and node 4 has only one active edge by deleting node 0 from the
initial edge list. The node with the fewest active edge, node 4, is picked as the node next to
node 0 in the new solution. Then, the edge list for the remaining nodes (nodes 1, 2, and 3) is
further updated by deleting node 4. The updated edge list is node 1 (2, 3), node 2 (1, 3), and
node 3 (1, 2). From node 4, we can only go to node 3 (as node 0 is already deleted from the
list). Therefore, node 3 is chosen to be the node next to node 4 in the new solution. The new
solution generated is further improved by the local search.

3.5 The procedure after the first generation
The newly generated solutions from the ERX and local search are used to update the
population in terms of the objective function value. The above procedure is repeated until a
termination criterion is met. However, if there are no solutions to be updated for the
population in the current generation, the initialization is used to generate (m - m1) new
solutions in the next generation, but keeping m1 high quality solutions (m1 = 2, in this study).
In addition, if the previous three generations converge to the same best solution, the local
search is used to improve that “converged” solution by repeating NLS2 times to exhaustively
search the neighborhood of that “converged” solution (NLS2 = 300, in this study).

4. Numerical experiments and results
There are two types of data sets, heterogeneous and homogeneous PTSP, used as numerical
experiments in this study to examine the performance of different selection schemes under
GA framework for the PTSP. First, 90 heterogeneous PTSP instances were generated by
Tang & Miller-Hooks (2004) with size n = 50, 75, and 100. Three groups of problem sets

 Travelling Salesman Problem

164

categorized by different intervals of customer presence probabilities were created for each
problem size (n = 50, 75, and 100). Presence probabilities of customer nodes were randomly
generated from a uniform distribution on intervals (0.0, 0.2], (0.0, 0.5], (0.0, 1.0], one for each
problem size. Second, there were 270 homogeneous PTSP instances generated by the author
and used in the previous study of Liu (2008) with size n = 50, 75, and 100 associated with
nine probability values (p = 0.1, 0.2, …, 0.9). For both homogeneous and heterogeneous
PTSP, the presence probability of the depot (node 0) was assigned as 1.0. Ten different
problem instances were randomly generated for each presence probability of customer
nodes. For each instance, the coordinates of one depot and n customer nodes (xi, yi) were
generated based on a uniform distribution from [0, 100]2. The Euclidean distance for each
pair of nodes was calculated by using dij = 22)()(jiji yyxx −+− .

To compare the effectiveness among nine different selection schemes under GA framework,
the preset maximum number of generations (Gmax) was used as the termination criterion
(Gmax is set to be two times the number of nodes, i.e., Gmax = 2n, in this study) for both
heterogeneous and homogeneous PTSP. The average solution quality is examined and
compared among nine different selection schemes. In this study, the proposed methods
were used to solve each problem instance 30 times to enhance the robustness of the results.
That is, the average statistics for the methods proposed in this study are based on a 300-run
average. The numerical results of heterogeneous and homogeneous PTSP are discussed in
Section 4.1 and 4.2, respectively.

4.1 Results of heterogeneous PTSP
4.1.1 Descriptive statistics of average E [τ] values obtained by the heterogeneous
PTSP
Average E[τ] values found from nine different selection schemes for the heterogeneous
PTSP are reported in Table 1. Definitions of terms used in the column headings are given as
follows. n denotes problem size, which is the number of customer nodes. p represents the
customer presence probability interval (0.0, p].
The best average value of E[τ] among the nine selection schemes (i.e., F, F+T, F+E, F+T+E, R,
R+T, R+E, R+T+E, Queen) for each problem size with different presence probability interval
is shown in shaded. As shown in Table 1, the average E[τ] values obtained by only using
fitness-proportional (F) or rank-based (R) selection strategy are consistently worse than the
ones obtained by the other seven selection strategies. The solution quality becomes much
better when adding tournament (T) and/or elitism strategies to fitness-proportional (F) or
rank-based (R) selection. It indicates that fitness-proportional (F) or rank-based (R) selection
should combine tournament (T) and/or elitism strategies to obtain acceptable outcomes.
Moreover, except for p = 0.5 when n = 50, the average E[τ] values obtained by adding elitism
to fitness-proportional (F) selection strategy (F+E) performs better than the ones obtained by
adding tournament to fitness-proportional (F) selection strategy (F+T). Furthermore, except
for p = 0.5, 1.0 when n = 50, the average E[τ] values obtained by adding elitism to rank-based
(R) selection strategy (R+E) performs better than the ones obtained by adding tournament to
rank-based (R) selection strategy (R+T). It reveals that the average E[τ] values obtained by
keeping the best solution(s) to the successive generations can generally perform better than

Solving the Probabilistic Travelling Salesman Problem Based on Genetic Algorithm
with Queen Selection Scheme

165

the ones obtained by only applying tournament selection to fitness-proportional (F) or rank-
based (R) selection.
Finally, as shown in Table 1, the average E[τ] values obtained by adding elitism to fitness-
proportional (F) or rank-based (R) selection strategy are similar to the ones obtained by
combining both elitism and tournament to fitness-proportional (F) or rank-based (R)
selection strategy. Overall, the queen, F+E, F+T+E, R+E, and R+T+E are better selection
strategies and yielded similar average E[τ] value for the heterogeneous PTSP than the other
four selection strategies.

n p F F+T F+E F+T+E R R+T R+E R+T+E Queen
50 0.2 225.110 224.854 224.839 224.832 224.868 224.838 224.835 224.834 224.831
 0.5 343.901 341.585 341.675 341.426 341.935 341.347 341.504 341.331 341.499
 1.0 459.504 450.583 450.235 450.964 452.853 449.539 450.916 451.383 451.272

75 0.2 267.731 266.071 265.943 265.958 266.239 265.970 265.929 265.959 265.958
 0.5 415.129 404.257 403.526 403.879 406.728 403.782 403.485 403.748 403.705
 1.0 555.256 534.013 527.832 527.421 540.306 529.276 527.300 527.295 526.765

100 0.2 304.779 301.318 300.859 300.873 301.791 301.084 300.830 300.825 300.837
 0.5 480.752 466.813 463.747 462.578 469.663 464.671 462.661 463.381 461.556
 1.0 684.758 649.544 626.749 625.105 660.210 641.668 625.056 624.490 624.144

Table 1. Computational Results for the Heterogeneous PTSP

4.1.2 Inferential statistics analysis of nine selection schemes for heterogeneous PTSP
Since the assumption of normal distribution is hardly met in minimization problems, the
permutation test (Basso et al., 2007), instead of parametric tests, is adopted for statistical
testing in the study. A Monte Carlo method with 10,000 permutations is used to obtain the
approximate p-value of the permutation test. A set of two-sample permutation tests is
conducted to investigate if any statistically significant differences exist between the best
average E[τ] value obtained and the ones obtained by the other eight selection schemes.
Table 2 shows the p-values of the permutation tests, where α = 0.05 is considered statistically
significant in this study.
Several important findings are obtained. First, according to the results of the permutation
tests, the average E[τ] values obtained by fitness-proportional (F) or rank-based (R)
selection strategy are significantly higher than the best ones obtained by the other seven
selection schemes for all of the tested cases. Second, the average E[τ] values obtained by
Queen GA performs best in four out of the nine tested cases, and where they are not the best
performing scheme, the average E[τ] values are not statistically significant different to the
best ones obtained by the other eight selection schemes, except for n = 50 and p = 1.0. Third,
for most of the test cases (21 out of 27 cases), the average E[τ] values obtained by F+T+E,
R+E and R+T+E are not statistically significant different to the best ones obtained by these
nine selection schemes. Finally, generally speaking, the average E[τ] values obtained by
F+T, F+E and R+T performs statistically worse than the best ones obtained by the nine
selection schemes for most of the test cases (20 out of 27 cases), except for n = 50 and p = 1.0,
where the average E[τ] value obtained by R+T performs statistically better than the other
eight selection schemes.

 Travelling Salesman Problem

164

categorized by different intervals of customer presence probabilities were created for each
problem size (n = 50, 75, and 100). Presence probabilities of customer nodes were randomly
generated from a uniform distribution on intervals (0.0, 0.2], (0.0, 0.5], (0.0, 1.0], one for each
problem size. Second, there were 270 homogeneous PTSP instances generated by the author
and used in the previous study of Liu (2008) with size n = 50, 75, and 100 associated with
nine probability values (p = 0.1, 0.2, …, 0.9). For both homogeneous and heterogeneous
PTSP, the presence probability of the depot (node 0) was assigned as 1.0. Ten different
problem instances were randomly generated for each presence probability of customer
nodes. For each instance, the coordinates of one depot and n customer nodes (xi, yi) were
generated based on a uniform distribution from [0, 100]2. The Euclidean distance for each
pair of nodes was calculated by using dij = 22)()(jiji yyxx −+− .

To compare the effectiveness among nine different selection schemes under GA framework,
the preset maximum number of generations (Gmax) was used as the termination criterion
(Gmax is set to be two times the number of nodes, i.e., Gmax = 2n, in this study) for both
heterogeneous and homogeneous PTSP. The average solution quality is examined and
compared among nine different selection schemes. In this study, the proposed methods
were used to solve each problem instance 30 times to enhance the robustness of the results.
That is, the average statistics for the methods proposed in this study are based on a 300-run
average. The numerical results of heterogeneous and homogeneous PTSP are discussed in
Section 4.1 and 4.2, respectively.

4.1 Results of heterogeneous PTSP
4.1.1 Descriptive statistics of average E [τ] values obtained by the heterogeneous
PTSP
Average E[τ] values found from nine different selection schemes for the heterogeneous
PTSP are reported in Table 1. Definitions of terms used in the column headings are given as
follows. n denotes problem size, which is the number of customer nodes. p represents the
customer presence probability interval (0.0, p].
The best average value of E[τ] among the nine selection schemes (i.e., F, F+T, F+E, F+T+E, R,
R+T, R+E, R+T+E, Queen) for each problem size with different presence probability interval
is shown in shaded. As shown in Table 1, the average E[τ] values obtained by only using
fitness-proportional (F) or rank-based (R) selection strategy are consistently worse than the
ones obtained by the other seven selection strategies. The solution quality becomes much
better when adding tournament (T) and/or elitism strategies to fitness-proportional (F) or
rank-based (R) selection. It indicates that fitness-proportional (F) or rank-based (R) selection
should combine tournament (T) and/or elitism strategies to obtain acceptable outcomes.
Moreover, except for p = 0.5 when n = 50, the average E[τ] values obtained by adding elitism
to fitness-proportional (F) selection strategy (F+E) performs better than the ones obtained by
adding tournament to fitness-proportional (F) selection strategy (F+T). Furthermore, except
for p = 0.5, 1.0 when n = 50, the average E[τ] values obtained by adding elitism to rank-based
(R) selection strategy (R+E) performs better than the ones obtained by adding tournament to
rank-based (R) selection strategy (R+T). It reveals that the average E[τ] values obtained by
keeping the best solution(s) to the successive generations can generally perform better than

Solving the Probabilistic Travelling Salesman Problem Based on Genetic Algorithm
with Queen Selection Scheme

165

the ones obtained by only applying tournament selection to fitness-proportional (F) or rank-
based (R) selection.
Finally, as shown in Table 1, the average E[τ] values obtained by adding elitism to fitness-
proportional (F) or rank-based (R) selection strategy are similar to the ones obtained by
combining both elitism and tournament to fitness-proportional (F) or rank-based (R)
selection strategy. Overall, the queen, F+E, F+T+E, R+E, and R+T+E are better selection
strategies and yielded similar average E[τ] value for the heterogeneous PTSP than the other
four selection strategies.

n p F F+T F+E F+T+E R R+T R+E R+T+E Queen
50 0.2 225.110 224.854 224.839 224.832 224.868 224.838 224.835 224.834 224.831
 0.5 343.901 341.585 341.675 341.426 341.935 341.347 341.504 341.331 341.499
 1.0 459.504 450.583 450.235 450.964 452.853 449.539 450.916 451.383 451.272

75 0.2 267.731 266.071 265.943 265.958 266.239 265.970 265.929 265.959 265.958
 0.5 415.129 404.257 403.526 403.879 406.728 403.782 403.485 403.748 403.705
 1.0 555.256 534.013 527.832 527.421 540.306 529.276 527.300 527.295 526.765

100 0.2 304.779 301.318 300.859 300.873 301.791 301.084 300.830 300.825 300.837
 0.5 480.752 466.813 463.747 462.578 469.663 464.671 462.661 463.381 461.556
 1.0 684.758 649.544 626.749 625.105 660.210 641.668 625.056 624.490 624.144

Table 1. Computational Results for the Heterogeneous PTSP

4.1.2 Inferential statistics analysis of nine selection schemes for heterogeneous PTSP
Since the assumption of normal distribution is hardly met in minimization problems, the
permutation test (Basso et al., 2007), instead of parametric tests, is adopted for statistical
testing in the study. A Monte Carlo method with 10,000 permutations is used to obtain the
approximate p-value of the permutation test. A set of two-sample permutation tests is
conducted to investigate if any statistically significant differences exist between the best
average E[τ] value obtained and the ones obtained by the other eight selection schemes.
Table 2 shows the p-values of the permutation tests, where α = 0.05 is considered statistically
significant in this study.
Several important findings are obtained. First, according to the results of the permutation
tests, the average E[τ] values obtained by fitness-proportional (F) or rank-based (R)
selection strategy are significantly higher than the best ones obtained by the other seven
selection schemes for all of the tested cases. Second, the average E[τ] values obtained by
Queen GA performs best in four out of the nine tested cases, and where they are not the best
performing scheme, the average E[τ] values are not statistically significant different to the
best ones obtained by the other eight selection schemes, except for n = 50 and p = 1.0. Third,
for most of the test cases (21 out of 27 cases), the average E[τ] values obtained by F+T+E,
R+E and R+T+E are not statistically significant different to the best ones obtained by these
nine selection schemes. Finally, generally speaking, the average E[τ] values obtained by
F+T, F+E and R+T performs statistically worse than the best ones obtained by the nine
selection schemes for most of the test cases (20 out of 27 cases), except for n = 50 and p = 1.0,
where the average E[τ] value obtained by R+T performs statistically better than the other
eight selection schemes.

 Travelling Salesman Problem

166

n p F F+T F+E F+T+E R R+T R+E R+T+E Queen
50 0.2 0.0000 0.0000 0.0040 1.0000 0.0000 0.0000 0.1044 0.7157 ―
 0.5 0.0000 0.0056 0.0016 0.2814 0.0000 0.8413 0.0742 ― 0.0574
 1.0 0.0000 0.0001 0.0301 0.0003 0.0000 ― 0.0037 0.0000 0.0009

75 0.2 0.0000 0.0000 0.2865 0.1025 0.0000 0.0000 ― 0.1026 0.1526
 0.5 0.0000 0.0762 0.9371 0.4485 0.0000 0.4828 ― 0.6295 0.6664
 1.0 0.0000 0.0000 0.2261 0.3782 0.0000 0.0003 0.4642 0.4745 ―

100 0.2 0.0000 0.0000 0.0046 0.0896 0.0000 0.0000 0.6137 ― 0.3041
 0.5 0.0000 0.0000 0.0000 0.0376 0.0000 0.0000 0.0259 0.0052 ―
 1.0 0.0000 0.0000 0.0036 0.1991 0.0000 0.0000 0.2004 0.6788 ―

Table 2. p-value of Permutation test for the Heterogeneous PTSP

4.1.3 Comparison among the best performing scheme obtained in the study, the
Queen GA and previous studies
As indicated in the previous section, in eight out of the nine tested cases (except for n = 50
and p = 1.0), the Queen GA either performs best or its performance not statistically
significant different from the best ones obtained by the other eight selection schemes. The
Queen as well as the the best performing scheme obtained in the study are compared
against the previous studies in this section. The heterogeneous PTSP data generated by
Tang & Miller-Hooks (2004) has been investigated in several studies (Tang & Miller-Hooks,
2004; Liu, 2006, 2007, 2008). The best average E[τ] values as well as the corresponding
average CPU time in these studies (Previous Best) are listed in Table 3. In Table 3, the
definitions of n and p are the same as in Table 1. E[τ] denotes the average value of the
expected length of the a priori PTSP tour. CPU is the average CPU running time in seconds.
The “Previous Best” results for the heterogeneous PTSP data were obtained by Liu (2006,
2007, 2008), except for n = 50 and p = 0.5, which were obtained by Tang & Miller-Hooks
(2004). In Liu’s studies (as well as the results of this study), all implementations were
performed on an Intel Pentium IV 2.8 GHz CPU personal computer with 512 MB memory
(3479 MFlops), while TMH’s study was based on a 10-run average and was conducted on a
DEC AlphaServer 1200/533 computer with 1 GB memory (1277 MFlops). The best average
value of E[τ] among the three compared sets for each problem size with different presence
probability interval is shown in shaded.

n p Best in this study Queen Previous Best
 E[τ] CPU (s) E[τ] CPU (s) E[τ] CPU (s)

50 0.2 224.8313 28.7 224.8313 28.7 224.8314 45.4
 0.5 341.3313 16.8 341.4989 16.2 341.3000* 72.4*
 1.0 449.5391 6.5 451.2717 8.4 450.2215 12.4

75 0.2 265.9293 108.9 265.9581 118.5 265.9315 240.6
 0.5 403.4846 46.3 403.7050 50.1 403.2347 51.8
 1.0 526.7646 28.6 526.7646 28.6 527.1907 41.5

100 0.2 300.8245 288.1 300.8370 269.5 300.8495 689.9
 0.5 461.5559 115.6 461.5559 115.6 462.2678 121.2
 1.0 624.1439 68.8 624.1439 68.8 624.6369 96.7

*Running on DEC AlphaServer 1200/533 computer with 1 GB memory (1277 MFlops)
Table 3. Computational Results for the Heterogeneous PTSP

Solving the Probabilistic Travelling Salesman Problem Based on Genetic Algorithm
with Queen Selection Scheme

167

The results in Table 3 show that the best of the average E[τ] values obtained in this study are
better than the ones obtained by the “Previous Best.” The only exception is when p = 0.5 and
n = 75. The best average E[τ] value yielded performs 0.06% worse than the one obtained by
the previous study (Liu, 2008), when p = 0.5 and n = 75. Moreover, the computation efforts
used to yield the best results in this study are all less than the one used in “Previous Best.”
It suggests that the GA solution framework proposed in this study is a promising method
for solving the heterogeneous PTSP. As for the Queen GA, the results show that it performs
better than the “Previous Best” in terms of average E[τ] value and computational effort
when n = 100. It suggests that the Queen GA is capable of effectively and efficiently solving
relatively large-sized heterogeneous PTSP.

4.2 Results of homogeneous PTSP
4.2.1 Descriptive statistics of average E [τ] values obtained by the homogeneous
PTSP
Average E[τ] values found from nine different selection schemes for the homogeneous
PTSP are reported in Table 4. In Table 4, the definitions of n and p are the same as in Table1.
The best average value of E[τ] among the nine selection schemes (i.e., F, F+T, F+E, F+T+E, R,
R+T, R+E, R+T+E, Queen) for each problem size with different presence probability is
shown in shaded. As the similar results obtained in the heterogeneous PTSP, the average
E[τ] values obtained by only using fitness-proportional (F) or rank-based (R) selection
strategy are consistently worse than the ones obtained by the other seven selection
strategies. The solution quality becomes much better when adding tournament (T) and/or
elitism (E) strategies to fitness-proportional (F) or rank-based (R) selection. Moreover,
except for p = 0.3 when n = 50, the average E[τ] values obtained by adding elitism to fitness-
proportional (F) selection strategy (i.e., F+E) performs better than the ones obtained by
adding tournament to fitness-proportional (F) selection strategy (i.e., F+T). Furthermore,
except for p = 0.3, 0.4 when n = 50, the average E[τ] values obtained by adding elitism to
rank-based (R) selection strategy (i.e., R+E) performs better than the ones obtained by
adding tournament to rank-based (R) selection strategy (i.e., R+T). Finally, the average E[τ]
values obtained by adding elitism to rank-based (R) selection strategy are similar to the ones
obtained by combining both elitism and tournament to rank-based (R) selection strategy.
Overall the queen, F+T+E, R+E, and R+T+E are better selection strategies and yielded
similar average E[τ] value for the homogeneous PTSP than the other five selection strategies.

4.2.2 Inferential statistics analysis of nine selection schemes for homogeneous PTSP
A set of two-sample permutation tests is conducted to investigate if any statistically
significant differences exist between the best average E[τ] value obtained and the ones
obtained by the other eight selection schemes. Table 5 shows the p-values of the
permutation tests, where α = 0.05 is considered statistically significant in this study.
Several important findings are obtained. First, according to the results of the permutation
tests, the average E[τ] values obtained by F only, R only and F+T are significantly higher
than the best ones obtained by the other six selection schemes for all of the tested cases.
Second, the average E[τ] values obtained by Queen GA performs best in 8 out of 27 tested
cases, and where they are not the best performing scheme, the average E[τ] values are not

 Travelling Salesman Problem

166

n p F F+T F+E F+T+E R R+T R+E R+T+E Queen
50 0.2 0.0000 0.0000 0.0040 1.0000 0.0000 0.0000 0.1044 0.7157 ―
 0.5 0.0000 0.0056 0.0016 0.2814 0.0000 0.8413 0.0742 ― 0.0574
 1.0 0.0000 0.0001 0.0301 0.0003 0.0000 ― 0.0037 0.0000 0.0009

75 0.2 0.0000 0.0000 0.2865 0.1025 0.0000 0.0000 ― 0.1026 0.1526
 0.5 0.0000 0.0762 0.9371 0.4485 0.0000 0.4828 ― 0.6295 0.6664
 1.0 0.0000 0.0000 0.2261 0.3782 0.0000 0.0003 0.4642 0.4745 ―

100 0.2 0.0000 0.0000 0.0046 0.0896 0.0000 0.0000 0.6137 ― 0.3041
 0.5 0.0000 0.0000 0.0000 0.0376 0.0000 0.0000 0.0259 0.0052 ―
 1.0 0.0000 0.0000 0.0036 0.1991 0.0000 0.0000 0.2004 0.6788 ―

Table 2. p-value of Permutation test for the Heterogeneous PTSP

4.1.3 Comparison among the best performing scheme obtained in the study, the
Queen GA and previous studies
As indicated in the previous section, in eight out of the nine tested cases (except for n = 50
and p = 1.0), the Queen GA either performs best or its performance not statistically
significant different from the best ones obtained by the other eight selection schemes. The
Queen as well as the the best performing scheme obtained in the study are compared
against the previous studies in this section. The heterogeneous PTSP data generated by
Tang & Miller-Hooks (2004) has been investigated in several studies (Tang & Miller-Hooks,
2004; Liu, 2006, 2007, 2008). The best average E[τ] values as well as the corresponding
average CPU time in these studies (Previous Best) are listed in Table 3. In Table 3, the
definitions of n and p are the same as in Table 1. E[τ] denotes the average value of the
expected length of the a priori PTSP tour. CPU is the average CPU running time in seconds.
The “Previous Best” results for the heterogeneous PTSP data were obtained by Liu (2006,
2007, 2008), except for n = 50 and p = 0.5, which were obtained by Tang & Miller-Hooks
(2004). In Liu’s studies (as well as the results of this study), all implementations were
performed on an Intel Pentium IV 2.8 GHz CPU personal computer with 512 MB memory
(3479 MFlops), while TMH’s study was based on a 10-run average and was conducted on a
DEC AlphaServer 1200/533 computer with 1 GB memory (1277 MFlops). The best average
value of E[τ] among the three compared sets for each problem size with different presence
probability interval is shown in shaded.

n p Best in this study Queen Previous Best
 E[τ] CPU (s) E[τ] CPU (s) E[τ] CPU (s)

50 0.2 224.8313 28.7 224.8313 28.7 224.8314 45.4
 0.5 341.3313 16.8 341.4989 16.2 341.3000* 72.4*
 1.0 449.5391 6.5 451.2717 8.4 450.2215 12.4

75 0.2 265.9293 108.9 265.9581 118.5 265.9315 240.6
 0.5 403.4846 46.3 403.7050 50.1 403.2347 51.8
 1.0 526.7646 28.6 526.7646 28.6 527.1907 41.5

100 0.2 300.8245 288.1 300.8370 269.5 300.8495 689.9
 0.5 461.5559 115.6 461.5559 115.6 462.2678 121.2
 1.0 624.1439 68.8 624.1439 68.8 624.6369 96.7

*Running on DEC AlphaServer 1200/533 computer with 1 GB memory (1277 MFlops)
Table 3. Computational Results for the Heterogeneous PTSP

Solving the Probabilistic Travelling Salesman Problem Based on Genetic Algorithm
with Queen Selection Scheme

167

The results in Table 3 show that the best of the average E[τ] values obtained in this study are
better than the ones obtained by the “Previous Best.” The only exception is when p = 0.5 and
n = 75. The best average E[τ] value yielded performs 0.06% worse than the one obtained by
the previous study (Liu, 2008), when p = 0.5 and n = 75. Moreover, the computation efforts
used to yield the best results in this study are all less than the one used in “Previous Best.”
It suggests that the GA solution framework proposed in this study is a promising method
for solving the heterogeneous PTSP. As for the Queen GA, the results show that it performs
better than the “Previous Best” in terms of average E[τ] value and computational effort
when n = 100. It suggests that the Queen GA is capable of effectively and efficiently solving
relatively large-sized heterogeneous PTSP.

4.2 Results of homogeneous PTSP
4.2.1 Descriptive statistics of average E [τ] values obtained by the homogeneous
PTSP
Average E[τ] values found from nine different selection schemes for the homogeneous
PTSP are reported in Table 4. In Table 4, the definitions of n and p are the same as in Table1.
The best average value of E[τ] among the nine selection schemes (i.e., F, F+T, F+E, F+T+E, R,
R+T, R+E, R+T+E, Queen) for each problem size with different presence probability is
shown in shaded. As the similar results obtained in the heterogeneous PTSP, the average
E[τ] values obtained by only using fitness-proportional (F) or rank-based (R) selection
strategy are consistently worse than the ones obtained by the other seven selection
strategies. The solution quality becomes much better when adding tournament (T) and/or
elitism (E) strategies to fitness-proportional (F) or rank-based (R) selection. Moreover,
except for p = 0.3 when n = 50, the average E[τ] values obtained by adding elitism to fitness-
proportional (F) selection strategy (i.e., F+E) performs better than the ones obtained by
adding tournament to fitness-proportional (F) selection strategy (i.e., F+T). Furthermore,
except for p = 0.3, 0.4 when n = 50, the average E[τ] values obtained by adding elitism to
rank-based (R) selection strategy (i.e., R+E) performs better than the ones obtained by
adding tournament to rank-based (R) selection strategy (i.e., R+T). Finally, the average E[τ]
values obtained by adding elitism to rank-based (R) selection strategy are similar to the ones
obtained by combining both elitism and tournament to rank-based (R) selection strategy.
Overall the queen, F+T+E, R+E, and R+T+E are better selection strategies and yielded
similar average E[τ] value for the homogeneous PTSP than the other five selection strategies.

4.2.2 Inferential statistics analysis of nine selection schemes for homogeneous PTSP
A set of two-sample permutation tests is conducted to investigate if any statistically
significant differences exist between the best average E[τ] value obtained and the ones
obtained by the other eight selection schemes. Table 5 shows the p-values of the
permutation tests, where α = 0.05 is considered statistically significant in this study.
Several important findings are obtained. First, according to the results of the permutation
tests, the average E[τ] values obtained by F only, R only and F+T are significantly higher
than the best ones obtained by the other six selection schemes for all of the tested cases.
Second, the average E[τ] values obtained by Queen GA performs best in 8 out of 27 tested
cases, and where they are not the best performing scheme, the average E[τ] values are not

 Travelling Salesman Problem

168

statistically significant different to the best ones obtained by the other eight selection
schemes, except for n = 75 and p = 0.6. Third, for most of the test cases (70 out of 81 cases),
the average E[τ] values obtained by F+T+E, R+E and R+T+E are not statistically significant
different to the best ones obtained by these nine selection schemes. Finally, the average E[τ]
values obtained by F+E and R+T performs statistically worse than the best ones obtained by
the nine selection schemes for most of the test cases (40 out of 54 cases).

n p F F+T F+E F+T+E R R+T R+E R+T+E Queen
50 0.1 233.907 233.550 233.497 233.493 233.584 233.513 233.492 233.492 233.492
 0.2 312.887 311.251 311.079 311.033 311.488 311.034 310.998 311.006 310.995
 0.3 371.020 366.525 366.788 366.170 367.575 366.097 366.424 366.632 366.492
 0.4 413.906 406.654 405.985 405.792 408.614 405.010 405.656 405.699 405.466
 0.5 467.415 456.167 453.551 453.791 459.147 454.205 453.581 453.486 453.204
 0.6 515.228 498.553 494.441 493.196 503.028 496.461 492.888 492.565 492.738
 0.7 537.288 519.762 510.409 509.883 525.096 516.295 509.516 509.762 509.492
 0.8 580.616 562.011 551.838 552.437 568.825 557.246 550.880 551.649 551.506
 0.9 586.400 565.562 562.089 561.712 572.469 561.706 560.520 561.090 561.496

75 0.1 277.591 276.112 275.827 275.822 276.302 275.976 275.824 275.819 275.820
 0.2 369.227 363.290 362.206 361.628 364.299 362.419 361.878 361.895 361.623
 0.3 460.647 448.300 444.228 444.268 451.166 446.191 444.101 444.083 444.365
 0.4 514.566 500.111 493.371 493.100 503.418 497.185 493.801 493.083 492.856
 0.5 563.640 537.817 526.367 525.293 546.373 532.653 525.790 525.704 525.308
 0.6 623.310 597.093 578.021 577.570 602.857 589.736 577.194 574.769 576.791
 0.7 666.105 638.798 621.849 620.450 648.911 632.238 619.659 618.957 619.248
 0.8 712.283 688.327 659.604 658.339 693.720 677.008 658.942 656.115 656.658
 0.9 757.030 722.544 690.629 690.952 733.558 711.425 690.537 690.196 690.150

100 0.1 310.330 306.549 305.727 305.682 307.103 306.172 305.685 305.676 305.682
 0.2 435.561 422.562 418.959 418.552 424.865 420.063 418.046 418.428 418.515
 0.3 526.932 507.731 497.024 496.876 512.953 502.780 496.402 497.076 497.298
 0.4 619.191 593.193 575.482 574.381 600.909 586.779 574.386 574.636 574.569
 0.5 679.219 648.563 618.385 616.023 657.506 637.732 617.572 616.625 616.519
 0.6 733.975 703.389 662.915 660.517 711.493 689.266 660.917 659.644 659.688
 0.7 809.507 775.264 730.042 726.416 786.035 761.061 726.758 727.200 726.707
 0.8 857.957 811.857 751.417 749.322 827.972 795.440 750.532 748.208 749.040
 0.9 880.283 844.058 791.853 790.753 856.049 830.113 791.278 789.900 788.850

Table 4. Computational Results for the Homogeneous PTSP

Solving the Probabilistic Travelling Salesman Problem Based on Genetic Algorithm
with Queen Selection Scheme

169

n p F F+T F+E F+T+E R R+T R+E R+T+E Queen
50 0.1 0.0000 0.0000 0.0075 0.7634 0.0000 0.0000 1.0000 1.0000 ―
 0.2 0.0000 0.0000 0.0021 0.2200 0.0000 0.0945 0.9051 0.7110 ―
 0.3 0.0000 0.0099 0.0048 0.6845 0.0000 ― 0.1424 0.0095 0.0581
 0.4 0.0000 0.0000 0.0070 0.0409 0.0000 ― 0.0904 0.0404 0.1295
 0.5 0.0000 0.0000 0.4667 0.1794 0.0000 0.0211 0.3636 0.5619 ―
 0.6 0.0000 0.0000 0.0108 0.4328 0.0000 0.0000 0.6682 ― 0.7860
 0.7 0.0000 0.0000 0.2819 0.5964 0.0000 0.0000 0.9782 0.7682 ―
 0.8 0.0000 0.0000 0.1894 0.0571 0.0000 0.0000 ― 0.3047 0.4021
 0.9 0.0000 0.0000 0.1670 0.1866 0.0000 0.2785 ― 0.4873 0.1266

75 0.1 0.0000 0.0000 0.0000 0.0045 0.0000 0.0000 0.0027 ― 0.3458
 0.2 0.0000 0.0000 0.0030 0.9778 0.0000 0.0000 0.2195 0.1902 ―
 0.3 0.0000 0.0000 0.7352 0.6279 0.0000 0.0000 0.9672 ― 0.5809
 0.4 0.0000 0.0000 0.4570 0.7199 0.0000 0.0000 0.1626 0.7544 ―
 0.5 0.0000 0.0000 0.1553 ― 0.0000 0.0000 0.5710 0.5843 0.9881
 0.6 0.0000 0.0000 0.0000 0.0020 0.0000 0.0000 0.0009 ― 0.0112
 0.7 0.0000 0.0000 0.0068 0.1305 0.0000 0.0000 0.4880 ― 0.7738
 0.8 0.0000 0.0000 0.0037 0.0406 0.0000 0.0000 0.0171 ― 0.5933
 0.9 0.0000 0.0000 0.6335 0.4054 0.0000 0.0000 0.7243 0.9652 ―

100 0.1 0.0000 0.0000 0.0000 0.3462 0.0000 0.0000 0.1212 ― 0.2154
 0.2 0.0000 0.0000 0.0194 0.1442 0.0000 0.0000 ― 0.2872 0.2267
 0.3 0.0000 0.0000 0.3428 0.4848 0.0000 0.0000 ― 0.2666 0.2004
 0.4 0.0000 0.0000 0.1009 ― 0.0000 0.0000 0.9924 0.7035 0.7599
 0.5 0.0000 0.0000 0.0045 ― 0.0000 0.0000 0.0663 0.4873 0.4821
 0.6 0.0000 0.0000 0.0100 0.4620 0.0000 0.0000 0.2514 ― 0.9728
 0.7 0.0000 0.0000 0.0012 ― 0.0000 0.0000 0.7460 0.4101 0.7955
 0.8 0.0000 0.0000 0.0038 0.3420 0.0000 0.0000 0.0453 ― 0.4636
 0.9 0.0000 0.0000 0.0149 0.1190 0.0000 0.0000 0.0362 0.3671 ―

Table 5. p-value of Permutation test for the Homogeneous PTSP

5. Concluding comments
In this chapter, a genetic algorithm is developed to solve the PTSP. The effectiveness and
efficiency of nine different selection schemes were investigated for both the heterogeneous
and homogeneous PTSP. Extensive computational tests were performed and the
permutation test was adopted to test the statistical significance of the nine selection
schemes. Several important findings are obtained. First, fitness-proportional (F) or rank-

 Travelling Salesman Problem

168

statistically significant different to the best ones obtained by the other eight selection
schemes, except for n = 75 and p = 0.6. Third, for most of the test cases (70 out of 81 cases),
the average E[τ] values obtained by F+T+E, R+E and R+T+E are not statistically significant
different to the best ones obtained by these nine selection schemes. Finally, the average E[τ]
values obtained by F+E and R+T performs statistically worse than the best ones obtained by
the nine selection schemes for most of the test cases (40 out of 54 cases).

n p F F+T F+E F+T+E R R+T R+E R+T+E Queen
50 0.1 233.907 233.550 233.497 233.493 233.584 233.513 233.492 233.492 233.492
 0.2 312.887 311.251 311.079 311.033 311.488 311.034 310.998 311.006 310.995
 0.3 371.020 366.525 366.788 366.170 367.575 366.097 366.424 366.632 366.492
 0.4 413.906 406.654 405.985 405.792 408.614 405.010 405.656 405.699 405.466
 0.5 467.415 456.167 453.551 453.791 459.147 454.205 453.581 453.486 453.204
 0.6 515.228 498.553 494.441 493.196 503.028 496.461 492.888 492.565 492.738
 0.7 537.288 519.762 510.409 509.883 525.096 516.295 509.516 509.762 509.492
 0.8 580.616 562.011 551.838 552.437 568.825 557.246 550.880 551.649 551.506
 0.9 586.400 565.562 562.089 561.712 572.469 561.706 560.520 561.090 561.496

75 0.1 277.591 276.112 275.827 275.822 276.302 275.976 275.824 275.819 275.820
 0.2 369.227 363.290 362.206 361.628 364.299 362.419 361.878 361.895 361.623
 0.3 460.647 448.300 444.228 444.268 451.166 446.191 444.101 444.083 444.365
 0.4 514.566 500.111 493.371 493.100 503.418 497.185 493.801 493.083 492.856
 0.5 563.640 537.817 526.367 525.293 546.373 532.653 525.790 525.704 525.308
 0.6 623.310 597.093 578.021 577.570 602.857 589.736 577.194 574.769 576.791
 0.7 666.105 638.798 621.849 620.450 648.911 632.238 619.659 618.957 619.248
 0.8 712.283 688.327 659.604 658.339 693.720 677.008 658.942 656.115 656.658
 0.9 757.030 722.544 690.629 690.952 733.558 711.425 690.537 690.196 690.150

100 0.1 310.330 306.549 305.727 305.682 307.103 306.172 305.685 305.676 305.682
 0.2 435.561 422.562 418.959 418.552 424.865 420.063 418.046 418.428 418.515
 0.3 526.932 507.731 497.024 496.876 512.953 502.780 496.402 497.076 497.298
 0.4 619.191 593.193 575.482 574.381 600.909 586.779 574.386 574.636 574.569
 0.5 679.219 648.563 618.385 616.023 657.506 637.732 617.572 616.625 616.519
 0.6 733.975 703.389 662.915 660.517 711.493 689.266 660.917 659.644 659.688
 0.7 809.507 775.264 730.042 726.416 786.035 761.061 726.758 727.200 726.707
 0.8 857.957 811.857 751.417 749.322 827.972 795.440 750.532 748.208 749.040
 0.9 880.283 844.058 791.853 790.753 856.049 830.113 791.278 789.900 788.850

Table 4. Computational Results for the Homogeneous PTSP

Solving the Probabilistic Travelling Salesman Problem Based on Genetic Algorithm
with Queen Selection Scheme

169

n p F F+T F+E F+T+E R R+T R+E R+T+E Queen
50 0.1 0.0000 0.0000 0.0075 0.7634 0.0000 0.0000 1.0000 1.0000 ―
 0.2 0.0000 0.0000 0.0021 0.2200 0.0000 0.0945 0.9051 0.7110 ―
 0.3 0.0000 0.0099 0.0048 0.6845 0.0000 ― 0.1424 0.0095 0.0581
 0.4 0.0000 0.0000 0.0070 0.0409 0.0000 ― 0.0904 0.0404 0.1295
 0.5 0.0000 0.0000 0.4667 0.1794 0.0000 0.0211 0.3636 0.5619 ―
 0.6 0.0000 0.0000 0.0108 0.4328 0.0000 0.0000 0.6682 ― 0.7860
 0.7 0.0000 0.0000 0.2819 0.5964 0.0000 0.0000 0.9782 0.7682 ―
 0.8 0.0000 0.0000 0.1894 0.0571 0.0000 0.0000 ― 0.3047 0.4021
 0.9 0.0000 0.0000 0.1670 0.1866 0.0000 0.2785 ― 0.4873 0.1266

75 0.1 0.0000 0.0000 0.0000 0.0045 0.0000 0.0000 0.0027 ― 0.3458
 0.2 0.0000 0.0000 0.0030 0.9778 0.0000 0.0000 0.2195 0.1902 ―
 0.3 0.0000 0.0000 0.7352 0.6279 0.0000 0.0000 0.9672 ― 0.5809
 0.4 0.0000 0.0000 0.4570 0.7199 0.0000 0.0000 0.1626 0.7544 ―
 0.5 0.0000 0.0000 0.1553 ― 0.0000 0.0000 0.5710 0.5843 0.9881
 0.6 0.0000 0.0000 0.0000 0.0020 0.0000 0.0000 0.0009 ― 0.0112
 0.7 0.0000 0.0000 0.0068 0.1305 0.0000 0.0000 0.4880 ― 0.7738
 0.8 0.0000 0.0000 0.0037 0.0406 0.0000 0.0000 0.0171 ― 0.5933
 0.9 0.0000 0.0000 0.6335 0.4054 0.0000 0.0000 0.7243 0.9652 ―

100 0.1 0.0000 0.0000 0.0000 0.3462 0.0000 0.0000 0.1212 ― 0.2154
 0.2 0.0000 0.0000 0.0194 0.1442 0.0000 0.0000 ― 0.2872 0.2267
 0.3 0.0000 0.0000 0.3428 0.4848 0.0000 0.0000 ― 0.2666 0.2004
 0.4 0.0000 0.0000 0.1009 ― 0.0000 0.0000 0.9924 0.7035 0.7599
 0.5 0.0000 0.0000 0.0045 ― 0.0000 0.0000 0.0663 0.4873 0.4821
 0.6 0.0000 0.0000 0.0100 0.4620 0.0000 0.0000 0.2514 ― 0.9728
 0.7 0.0000 0.0000 0.0012 ― 0.0000 0.0000 0.7460 0.4101 0.7955
 0.8 0.0000 0.0000 0.0038 0.3420 0.0000 0.0000 0.0453 ― 0.4636
 0.9 0.0000 0.0000 0.0149 0.1190 0.0000 0.0000 0.0362 0.3671 ―

Table 5. p-value of Permutation test for the Homogeneous PTSP

5. Concluding comments
In this chapter, a genetic algorithm is developed to solve the PTSP. The effectiveness and
efficiency of nine different selection schemes were investigated for both the heterogeneous
and homogeneous PTSP. Extensive computational tests were performed and the
permutation test was adopted to test the statistical significance of the nine selection
schemes. Several important findings are obtained. First, fitness-proportional (F) or rank-

 Travelling Salesman Problem

170

based (R) selection should combine tournament (T) and/or elitism strategies to obtain
acceptable outcomes for both the heterogeneous and homogeneous PTSP. Second, the
average E[τ] values obtained by keeping the best solution(s) to the successive generations
can generally perform better than the ones obtained by only applying tournament selection
to fitness-proportional (F) or rank-based (R) selection for both the heterogeneous and
homogeneous PTSP. Third, the queen, F+T+E, R+E, and R+T+E are better selection
strategies and yielded similar average E[τ] value for the heterogeneous and homogeneous
PTSP than the other five selection strategies. Finally, the numerical results showed that the
proposed solution procedure can further enhance the performance of the method proposed
by previous studies in most of the tested cases for the heterogeneous PTSP in terms of
objective function value and computation time. These findings showed the potential of the
proposed GA in effectively and efficiently solving the large-scale PTSP.

6. Acknowledgement
This work was supported primarily by the National Science Council of Taiwan under Grant
NSC 96-2416-H-260-008. The author is indebted to Dr. Elise Miller-Hooks for providing me
with the test instances to be used in this paper.

7. References
Bäck , T.; Fogel, D. B. & Michalewicz, Z. (1997). Handbook of Evolutionary Computation, Oxford

University Press, 0-75030392-1, Bristol, UK.
Balakrishnan, P. V.; Gupta, R. & Jacob, V. S. (2006). An investigation of mating and

population maintenance strategies in hybrid genetic heuristics for product line
designs. Computers & Operations Research, Vol. 33, No. 3, 639-659, ISSN: 0305-0548.

Bartholdi, J. J. & Platzman, L. K. (1988). Heuristics based on spacefilling curves for
combinatorial problems in Euclidean space. Management Science, Vol. 34, No. 3, 291-
305, ISSN: 0025-1909.

Bartholdi, J. J.; Platzman, L. K.; Collins, R. L. & Warden, W. H. (1983). A minimal technology
routing system for meals on wheels. Interfaces, Vol. 13, No. 3, 1-8, ISSN: 0092-2102.

Basso, D.; Chiarandini, M. & Salmaso L. (2007). Synchronized permutation tests in replicated
I × J designs. Journal of Statistical Planning and Inference, Vol. 137, No. 8, 2564-2578,
ISSN: 0378-3758.

Bertsimas, D. (1988). Probabilistic combinatorial optimization problems, Ph.D. dissertation,
Massachusetts Institute of Technology, MA, USA.

Bertsimas, D.; Chervi, P. & Peterson, M. (1995). Computational approaches to stochastic
vehicle routing problems. Transportation Science, Vol. 29, No. 4, 342-352, ISSN: 0041-
1655.

Bertsimas, D. & Howell, L. (1993). Further results on the probabilistic traveling salesman
problem. European Journal of Operational Research, Vol. 65, No. 1, 68-95, ISSN: 0377-
2217.

Bertsimas, D.; Jaillet, P. & Odoni, A. R. (1990). A priori optimization. Operations Research,
Vol. 38, No. 6, 1019-1033, ISSN: 0030-364X.

Bianchi, L. (2006). Ant colony optimization and local search for the probabilistic traveling salesman
problem: a case study in stochastic combinatorial optimization. Ph.D. dissertation,
Université Libre de Bruxelles, Brussles, Belgium.

Solving the Probabilistic Travelling Salesman Problem Based on Genetic Algorithm
with Queen Selection Scheme

171

Bowler, N. E.; Fink, T. M. A. & Ball, R. C. (2003). Characterization of the probabilistic
traveling salesman problem. Physical Review E, Vol. 68, 036703, ISSN: 1539-3755.

Branke, J. & Guntsch, M. (2004). Solving the probabilistic TSP with ant colony optimization.
Journal of Mathematical Modelling and Algorithms, Vol. 3, No. 4, 403-425, ISSN: 1570-
1166.

Campbell, A. M. (2006). Aggregation for the probabilistic traveling salesman problem.
Computers & Operations Research, Vol. 33, No. 9, 2703-2724, ISSN: 0305-0548.

Davis, L. (1991). Handbook of Genetic Algorithms. Van Nostrand Reinhold, ISBN: 0442001738,
New York.

Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization, and Machine Learning,
Addison-Wesley, ISBN: 0201157675, Reading, PA.

Holland, J. H. (1992). Adaptation in Natural and Artificial Systems: An Introductory Analysis
with Applications to Biology, Control, and Artificial Intelligence, MIT Press, ISBN:
0262581116, Boston, MA.

Jaillet, P. (1985). Probabilistic traveling salesman problems, Ph.D. dissertation, Massachusetts
Institute of Technology, MA, USA.

Jaillet, P. (1987). Stochastic routing problems, In: Advanced school on stochastics in
combinatorial optimization, Andreatta, G., Mason, F. & Serafini, P. (Ed.), 192-213,
World Scientific Publisher, ISBN: 9971504561, Singapore.

Jaillet, P. (1988). A priori solution of a traveling salesman problem in which a random subset
of the customers are visited. Operations Research, Vol. 36, No. 6, 929-936, ISSN: 0030-
364X.

Jaillet, P. & Odoni, A. R. (1988). The probabilistic vehicle routing problem, In: Vehicle routing:
methods and studies, Golden, B. L. & Assad, A. A. (Ed.), 293-318, North-Holland,
ISBN: 0444704078, Amsterdam.

Liu, Y-H. (2006). A scatter search based approach with approximation evaluation for the
heterogeneous probabilistic traveling salesman problem, Proceedings of 2006 IEEE
Congress on Evolutionary Computation (CEC 2006), pp. 1603-1609, Vancouver,
Canada.

Liu, Y.-H. (2007). A hybrid scatter search for the probabilistic traveling salesman problem.
Computers & Operations Research, Vol. 34, No. 10, 2949-2963, ISSN: 0305-0548.

Liu, Y.-H. (2008). Diversified local search strategy under scatter search framework for the
probabilistic traveling salesman problem. European Journal of Operational Research,
Vol. 191, No. 2, 332-346, ISSN: 0377-2217.

Liu, Y.-H.; Jou, R.-C., Wang, C.-C. & Chiu, C.-S. (2007). An evolutionary algorithm with
diversified crossover operator for the heterogeneous probabilistic TSP. Lecture Notes
in Artificial Intelligence, 4617, 351-360, Springer, ISBN: 3540737286, Berlin.

Liu, Y.-H. & Mahmassani, H. S. (2000). Global maximum likelihood estimation procedure
for multinomial probit model parameters. Transportation Research, Part B, Vol. 34B,
No. 5, 419-449, ISSN: 0191-2615.

Potvin, J. Y. (1996). Genetic algorithms for the traveling salesman problem. Annals of
Operations Research, Vol. 63, 339-370, ISSN: 0254-5330.

Rossi, F. & Gavioli, I. (1987). Aspects of heuristic method in the probabilistic traveling
salesman problem, In: Advanced school on stochastics in combinatorial optimization,
Andreatta, G., Mason, F. & Serafini, P. (Ed.), 214-227, World Scientific Publisher,
ISBN: 9971504561, Singapore.

 Travelling Salesman Problem

170

based (R) selection should combine tournament (T) and/or elitism strategies to obtain
acceptable outcomes for both the heterogeneous and homogeneous PTSP. Second, the
average E[τ] values obtained by keeping the best solution(s) to the successive generations
can generally perform better than the ones obtained by only applying tournament selection
to fitness-proportional (F) or rank-based (R) selection for both the heterogeneous and
homogeneous PTSP. Third, the queen, F+T+E, R+E, and R+T+E are better selection
strategies and yielded similar average E[τ] value for the heterogeneous and homogeneous
PTSP than the other five selection strategies. Finally, the numerical results showed that the
proposed solution procedure can further enhance the performance of the method proposed
by previous studies in most of the tested cases for the heterogeneous PTSP in terms of
objective function value and computation time. These findings showed the potential of the
proposed GA in effectively and efficiently solving the large-scale PTSP.

6. Acknowledgement
This work was supported primarily by the National Science Council of Taiwan under Grant
NSC 96-2416-H-260-008. The author is indebted to Dr. Elise Miller-Hooks for providing me
with the test instances to be used in this paper.

7. References
Bäck , T.; Fogel, D. B. & Michalewicz, Z. (1997). Handbook of Evolutionary Computation, Oxford

University Press, 0-75030392-1, Bristol, UK.
Balakrishnan, P. V.; Gupta, R. & Jacob, V. S. (2006). An investigation of mating and

population maintenance strategies in hybrid genetic heuristics for product line
designs. Computers & Operations Research, Vol. 33, No. 3, 639-659, ISSN: 0305-0548.

Bartholdi, J. J. & Platzman, L. K. (1988). Heuristics based on spacefilling curves for
combinatorial problems in Euclidean space. Management Science, Vol. 34, No. 3, 291-
305, ISSN: 0025-1909.

Bartholdi, J. J.; Platzman, L. K.; Collins, R. L. & Warden, W. H. (1983). A minimal technology
routing system for meals on wheels. Interfaces, Vol. 13, No. 3, 1-8, ISSN: 0092-2102.

Basso, D.; Chiarandini, M. & Salmaso L. (2007). Synchronized permutation tests in replicated
I × J designs. Journal of Statistical Planning and Inference, Vol. 137, No. 8, 2564-2578,
ISSN: 0378-3758.

Bertsimas, D. (1988). Probabilistic combinatorial optimization problems, Ph.D. dissertation,
Massachusetts Institute of Technology, MA, USA.

Bertsimas, D.; Chervi, P. & Peterson, M. (1995). Computational approaches to stochastic
vehicle routing problems. Transportation Science, Vol. 29, No. 4, 342-352, ISSN: 0041-
1655.

Bertsimas, D. & Howell, L. (1993). Further results on the probabilistic traveling salesman
problem. European Journal of Operational Research, Vol. 65, No. 1, 68-95, ISSN: 0377-
2217.

Bertsimas, D.; Jaillet, P. & Odoni, A. R. (1990). A priori optimization. Operations Research,
Vol. 38, No. 6, 1019-1033, ISSN: 0030-364X.

Bianchi, L. (2006). Ant colony optimization and local search for the probabilistic traveling salesman
problem: a case study in stochastic combinatorial optimization. Ph.D. dissertation,
Université Libre de Bruxelles, Brussles, Belgium.

Solving the Probabilistic Travelling Salesman Problem Based on Genetic Algorithm
with Queen Selection Scheme

171

Bowler, N. E.; Fink, T. M. A. & Ball, R. C. (2003). Characterization of the probabilistic
traveling salesman problem. Physical Review E, Vol. 68, 036703, ISSN: 1539-3755.

Branke, J. & Guntsch, M. (2004). Solving the probabilistic TSP with ant colony optimization.
Journal of Mathematical Modelling and Algorithms, Vol. 3, No. 4, 403-425, ISSN: 1570-
1166.

Campbell, A. M. (2006). Aggregation for the probabilistic traveling salesman problem.
Computers & Operations Research, Vol. 33, No. 9, 2703-2724, ISSN: 0305-0548.

Davis, L. (1991). Handbook of Genetic Algorithms. Van Nostrand Reinhold, ISBN: 0442001738,
New York.

Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization, and Machine Learning,
Addison-Wesley, ISBN: 0201157675, Reading, PA.

Holland, J. H. (1992). Adaptation in Natural and Artificial Systems: An Introductory Analysis
with Applications to Biology, Control, and Artificial Intelligence, MIT Press, ISBN:
0262581116, Boston, MA.

Jaillet, P. (1985). Probabilistic traveling salesman problems, Ph.D. dissertation, Massachusetts
Institute of Technology, MA, USA.

Jaillet, P. (1987). Stochastic routing problems, In: Advanced school on stochastics in
combinatorial optimization, Andreatta, G., Mason, F. & Serafini, P. (Ed.), 192-213,
World Scientific Publisher, ISBN: 9971504561, Singapore.

Jaillet, P. (1988). A priori solution of a traveling salesman problem in which a random subset
of the customers are visited. Operations Research, Vol. 36, No. 6, 929-936, ISSN: 0030-
364X.

Jaillet, P. & Odoni, A. R. (1988). The probabilistic vehicle routing problem, In: Vehicle routing:
methods and studies, Golden, B. L. & Assad, A. A. (Ed.), 293-318, North-Holland,
ISBN: 0444704078, Amsterdam.

Liu, Y-H. (2006). A scatter search based approach with approximation evaluation for the
heterogeneous probabilistic traveling salesman problem, Proceedings of 2006 IEEE
Congress on Evolutionary Computation (CEC 2006), pp. 1603-1609, Vancouver,
Canada.

Liu, Y.-H. (2007). A hybrid scatter search for the probabilistic traveling salesman problem.
Computers & Operations Research, Vol. 34, No. 10, 2949-2963, ISSN: 0305-0548.

Liu, Y.-H. (2008). Diversified local search strategy under scatter search framework for the
probabilistic traveling salesman problem. European Journal of Operational Research,
Vol. 191, No. 2, 332-346, ISSN: 0377-2217.

Liu, Y.-H.; Jou, R.-C., Wang, C.-C. & Chiu, C.-S. (2007). An evolutionary algorithm with
diversified crossover operator for the heterogeneous probabilistic TSP. Lecture Notes
in Artificial Intelligence, 4617, 351-360, Springer, ISBN: 3540737286, Berlin.

Liu, Y.-H. & Mahmassani, H. S. (2000). Global maximum likelihood estimation procedure
for multinomial probit model parameters. Transportation Research, Part B, Vol. 34B,
No. 5, 419-449, ISSN: 0191-2615.

Potvin, J. Y. (1996). Genetic algorithms for the traveling salesman problem. Annals of
Operations Research, Vol. 63, 339-370, ISSN: 0254-5330.

Rossi, F. & Gavioli, I. (1987). Aspects of heuristic method in the probabilistic traveling
salesman problem, In: Advanced school on stochastics in combinatorial optimization,
Andreatta, G., Mason, F. & Serafini, P. (Ed.), 214-227, World Scientific Publisher,
ISBN: 9971504561, Singapore.

 Travelling Salesman Problem

172

Stern, H.; Chassidim, Y. & Zofi, M. (2006). Multiagent visual area coverage using a new
genetic algorithm selection scheme. European Journal of Operational Research, Vol.
175, No. 3, 1890-1907, ISSN: 0377-2217.

Tang, H. & Miller-Hooks, E. (2004). Approximate procedures for the probabilistic traveling
salesperson problem. Transportation Resesearch Record, Vol. 1882, 27-36, ISSN: 0361-
1981.

Whitley, D.; Starkweather, T. & Fuquay, D. (1989). Scheduling problems and traveling
salesmen: the genetic edge recombination operator. Proceedings of the Third
International Conference on Genetic Algorithms (ICGA ’89), pp. 133-140, ISBN:
1558600663, Fairfax, Virginia, June, 1989, Morgan Kaufmann, Palo Alto, CA.

9

Niche Pseudo-Parallel Genetic Algorithms for
Path Optimization of Autonomous Mobile Robot

- A Specific Application of TSP
Zhihua Shen and Yingkai Zhao

Faculty of Engineering, The University of Melbourne
Faculty of Automation, The Nanjing University of Technology

1. Introduction
Path planning of autonomous mobile robot is pivotal technique for machine intelligence,
which aims to find a non-collision path from initial position to objective position according
to evaluation functions in an obstacle space[1]. It can be described as traveler salesman
problem (TSP), a typical combination optimization problem, which belongs to the well-
known NP-hard optimization[2]. The mathematical definition can be regarded as a map G =
(V, E), where each line e∈E has a nonnegative power ω(e). The aim is to find out a Hamilton
circle noted with C of map G in order to obtain a minimum power W(C)=∑e∈E (C)ω(e).
Some traditional methods such as greed arithmetic, vicinage arithmetic and dynamic
programming algorithm[3] do not behave a good performance on combination explosion
aroused by rapid increment in exponent within a solution set of mathematic model, also
known as the very quick accretion in both aspects of space and time complication along with
the increase of degrees. A very promising direction is the genetic algorithm (GA) except for
the traditional methods. Genetic algorithm is numerical optimization method[4] based on the
theory of genetics and natural selection. It is a generally probabilistic and adaptable concept
for problem solving, especially suitable for solving difficulty optimization and evolution
problems, where traditional methods are less efficient.
An advanced genetic algorithm, niche pseudo-parallel genetic algorithm (NPPGA) is
presented based on simple genetic algorithm (SGA), niche genetic algorithm (NGA) and
parallel genetic algorithm (PGA) to further improve the GA for robot path optimization.
Research on NPPGA is available for lots of practical problems such as path routing
optimization, nets organization, job distribution, scheduling optimization etc.

2. Mechanism of niche pseudo-parallel genetic algorithms
The foundation of NPPGA is genetic algorithm, which is a class of global, adaptable, and
probabilistic search optimization and revolution algorithm gleaned from the model of
organic evolution and also simulates the genetics and evolution of biologic population in
nature. GA adopts naturally evolutionary model such as selection, crossover, mutation,
deletion and transference. Mathematically, this evolutionary process is a typical algorithm
to find out the optimal solution via iteration search among multi-element in a NP set. As an
optimal method applied with biologic genetics and evolutionary mechanism [5], GA totally

 Travelling Salesman Problem

172

Stern, H.; Chassidim, Y. & Zofi, M. (2006). Multiagent visual area coverage using a new
genetic algorithm selection scheme. European Journal of Operational Research, Vol.
175, No. 3, 1890-1907, ISSN: 0377-2217.

Tang, H. & Miller-Hooks, E. (2004). Approximate procedures for the probabilistic traveling
salesperson problem. Transportation Resesearch Record, Vol. 1882, 27-36, ISSN: 0361-
1981.

Whitley, D.; Starkweather, T. & Fuquay, D. (1989). Scheduling problems and traveling
salesmen: the genetic edge recombination operator. Proceedings of the Third
International Conference on Genetic Algorithms (ICGA ’89), pp. 133-140, ISBN:
1558600663, Fairfax, Virginia, June, 1989, Morgan Kaufmann, Palo Alto, CA.

9

Niche Pseudo-Parallel Genetic Algorithms for
Path Optimization of Autonomous Mobile Robot

- A Specific Application of TSP
Zhihua Shen and Yingkai Zhao

Faculty of Engineering, The University of Melbourne
Faculty of Automation, The Nanjing University of Technology

1. Introduction
Path planning of autonomous mobile robot is pivotal technique for machine intelligence,
which aims to find a non-collision path from initial position to objective position according
to evaluation functions in an obstacle space[1]. It can be described as traveler salesman
problem (TSP), a typical combination optimization problem, which belongs to the well-
known NP-hard optimization[2]. The mathematical definition can be regarded as a map G =
(V, E), where each line e∈E has a nonnegative power ω(e). The aim is to find out a Hamilton
circle noted with C of map G in order to obtain a minimum power W(C)=∑e∈E (C)ω(e).
Some traditional methods such as greed arithmetic, vicinage arithmetic and dynamic
programming algorithm[3] do not behave a good performance on combination explosion
aroused by rapid increment in exponent within a solution set of mathematic model, also
known as the very quick accretion in both aspects of space and time complication along with
the increase of degrees. A very promising direction is the genetic algorithm (GA) except for
the traditional methods. Genetic algorithm is numerical optimization method[4] based on the
theory of genetics and natural selection. It is a generally probabilistic and adaptable concept
for problem solving, especially suitable for solving difficulty optimization and evolution
problems, where traditional methods are less efficient.
An advanced genetic algorithm, niche pseudo-parallel genetic algorithm (NPPGA) is
presented based on simple genetic algorithm (SGA), niche genetic algorithm (NGA) and
parallel genetic algorithm (PGA) to further improve the GA for robot path optimization.
Research on NPPGA is available for lots of practical problems such as path routing
optimization, nets organization, job distribution, scheduling optimization etc.

2. Mechanism of niche pseudo-parallel genetic algorithms
The foundation of NPPGA is genetic algorithm, which is a class of global, adaptable, and
probabilistic search optimization and revolution algorithm gleaned from the model of
organic evolution and also simulates the genetics and evolution of biologic population in
nature. GA adopts naturally evolutionary model such as selection, crossover, mutation,
deletion and transference. Mathematically, this evolutionary process is a typical algorithm
to find out the optimal solution via iteration search among multi-element in a NP set. As an
optimal method applied with biologic genetics and evolutionary mechanism [5], GA totally

 Travelling Salesman Problem

174

embodies a classical biologically evolutionary theory depicted as natural selection. Simple
genetic algorithm can be defined as SGA= (M, C, F, Mo, Ps, Pc, Pm, T) [3], where C is a fixed bit-
string code, F is a fitness evaluation function, Mo is an initial population of biologic colony
and Ps, Pc, Pm are probabilities of selection, crossover and mutation respectively.

2.1 Proposal of NPPGA
Theoretically, genetic algorithm is able to trace on the optimal solution by a stochastic
method on the sense of probability. On the contrary, GA has some prominent problems in
practical application such as premature convergence, feebleness in local search, low rate of
convergence etc. A simplex renewal from one population to another is hard to keep
population diverse and avoid premature convergence.
Simple genetic algorithm is totally a stochastic method, which aims to settle with the problem
where several different individuals are required to optimize in a cryptic and parallel process
[6]. However, the rate of evolutionary process is still lower because of its essentially serial
mechanism. In addition, before tracing on the globally optimal solution, the SGA may
converge to a local one, which causes population trend to un-animousness and results in
premature. To further improve the GA and avoid these disadvantages, we firstly divided
original population into several groups known as pseudo- parallel operation to accelerate the
rate of genetic algorithm computation and maintain the population diversity in order to
reduce the rate of premature simultaneously. Based on the former step, niche genetic
mechanism is introduced into pseudo-parallel genetic algorithm to further restrain the
premature phenomenon. A method based on sharing functions is proposed to transfer genetic
information to keep population diversity and avert from rapid increment of some special
individuals, in other words, we created several niches among the population by pseudo-
parallel technique to complete the process both of local and global solution optimization.

2.2 Pseudo code and layered flow chart of NPPGA
The Pseudo code of NPPGA is showed as following.
Begin s:=0;
initialize 1(0) : { (0),..., (0)} m

mP x x= ∈ℜ where l}1,0{=ℜ ;
evaluate 1(0) : { ((0)),..., ((0))}mP x x= Φ Φ where ((0)) ((((0))), (0))k kx f x Pδ γΦ = ;
while (())P t trueℑ ≠ do t:=0;)}(),...,(),...,(),({:)(21 tPtPtPtPtP ni= ;
 while (())P i trueℑ ≠ do
 recombine:

' '
{ , }() : (()) {1,..., / }

ck p z ix t r P t k m n= ∀ ∈ ;

 mutate: " ' '
{ }() : () {1,..., / }

mk p kx t m x k m n= ∀ ∈

 niche operator: "' ' "
{ }() : () {1,..., / }k kx t x k m nγ=℘ ∀ ∈ with formula(1) and (2);

 delete: "" ' ""
{ }() : () {1,..., / }k kx t d x k m nα= ∀ ∈ ;

 evaluate: '''' "" "" /
/() : { (),..., ()} m n

i i m nP t x t x t= ∈ℜ ; "" ""
1 /{ (()),..., (())}i i m nx t x tΦ Φ

 where "" ""(()) (((())), ())i k k ix t f x t P tδ γ ϖΦ = − ;
 select:))((:)1('''' tPstP ii =+

 where /" "" ""
1(()) (()) / (())m n

s k i k i kjP x t x t x t
=

= Φ Φ∑ ;

 t:=t+1; end
information exchange:)}(),({)1('''' tPsPcsP i=+ ; s=s+1; end

Niche Pseudo-Parallel Genetic Algorithms for Path Optimization of Autonomous Mobile Robot
 - A Specific Application of TSP

175

Fig. 1 describes the layered structure of NPPGA by a flow chart.

Fig. 1 Pseudo code of NPPGA

Fig. 1. Flow chart of NPPGA

2.3 Arithmetic description of NPPGA
Each step in niche pseudo-parallel genetic algorithms is demonstrated as following based on
niche genetic algorithm and parallel genetic algorithm [3] [6]:
1. Initialize the genetic counter t←0;
2. Generate original population P(t) made up of initial individuals which are divided into

several subgroups in the form of P(t)={P1(t), P2(t),…,Pi(t),…, Pn(t)}, where n is a integral
number of subgroup.

3. Calculate each individual fitness function Fj(j=1,2,…,m/n) in every subgroup
Pi(t)(i=1,2,…,n) of the population;

4. Execute independent evolution among each group P(t)={P1(t), P2(t),…,Pi(t),…, Pn(t)};
i. Independently initialize evolutionary counter s←1 and select a subgroup fitness

function to give an evaluation of each individual;
ii. Make a lower taxis upon the individual fitness and storage q individuals in the

former sequence where q<m/n;
iii. Reproduce among)(tPi by the operator Ps in form of)]([)(' tPselectiontP ii ← ;
iv. Crossover among)(' tPi

 by the operator Pc in form of)]([)(''' tPcrossovertP ii ← ;

v. Mutate among)('' tPi by the operator Pm in form of)]([)(''''' tPmutationtP ii ← ;
vi. Delete among)(''' tPi

 by the operator γ in form of)]([)(''''''' tPdeletiontP ii ← ;

Initialize population M

Fitness evaluation

Subgroup divisions

Subgroup 1

New subgroup 2

Subgroup 3

Crossover, mutation, deletion and niche operators

New subgroup 1

Subgroup 2

New subgroup 3

New generation

 Travelling Salesman Problem

174

embodies a classical biologically evolutionary theory depicted as natural selection. Simple
genetic algorithm can be defined as SGA= (M, C, F, Mo, Ps, Pc, Pm, T) [3], where C is a fixed bit-
string code, F is a fitness evaluation function, Mo is an initial population of biologic colony
and Ps, Pc, Pm are probabilities of selection, crossover and mutation respectively.

2.1 Proposal of NPPGA
Theoretically, genetic algorithm is able to trace on the optimal solution by a stochastic
method on the sense of probability. On the contrary, GA has some prominent problems in
practical application such as premature convergence, feebleness in local search, low rate of
convergence etc. A simplex renewal from one population to another is hard to keep
population diverse and avoid premature convergence.
Simple genetic algorithm is totally a stochastic method, which aims to settle with the problem
where several different individuals are required to optimize in a cryptic and parallel process
[6]. However, the rate of evolutionary process is still lower because of its essentially serial
mechanism. In addition, before tracing on the globally optimal solution, the SGA may
converge to a local one, which causes population trend to un-animousness and results in
premature. To further improve the GA and avoid these disadvantages, we firstly divided
original population into several groups known as pseudo- parallel operation to accelerate the
rate of genetic algorithm computation and maintain the population diversity in order to
reduce the rate of premature simultaneously. Based on the former step, niche genetic
mechanism is introduced into pseudo-parallel genetic algorithm to further restrain the
premature phenomenon. A method based on sharing functions is proposed to transfer genetic
information to keep population diversity and avert from rapid increment of some special
individuals, in other words, we created several niches among the population by pseudo-
parallel technique to complete the process both of local and global solution optimization.

2.2 Pseudo code and layered flow chart of NPPGA
The Pseudo code of NPPGA is showed as following.
Begin s:=0;
initialize 1(0) : { (0),..., (0)} m

mP x x= ∈ℜ where l}1,0{=ℜ ;
evaluate 1(0) : { ((0)),..., ((0))}mP x x= Φ Φ where ((0)) ((((0))), (0))k kx f x Pδ γΦ = ;
while (())P t trueℑ ≠ do t:=0;)}(),...,(),...,(),({:)(21 tPtPtPtPtP ni= ;
 while (())P i trueℑ ≠ do
 recombine:

' '
{ , }() : (()) {1,..., / }

ck p z ix t r P t k m n= ∀ ∈ ;

 mutate: " ' '
{ }() : () {1,..., / }

mk p kx t m x k m n= ∀ ∈

 niche operator: "' ' "
{ }() : () {1,..., / }k kx t x k m nγ=℘ ∀ ∈ with formula(1) and (2);

 delete: "" ' ""
{ }() : () {1,..., / }k kx t d x k m nα= ∀ ∈ ;

 evaluate: '''' "" "" /
/() : { (),..., ()} m n

i i m nP t x t x t= ∈ℜ ; "" ""
1 /{ (()),..., (())}i i m nx t x tΦ Φ

 where "" ""(()) (((())), ())i k k ix t f x t P tδ γ ϖΦ = − ;
 select:))((:)1('''' tPstP ii =+

 where /" "" ""
1(()) (()) / (())m n

s k i k i kjP x t x t x t
=

= Φ Φ∑ ;

 t:=t+1; end
information exchange:)}(),({)1('''' tPsPcsP i=+ ; s=s+1; end

Niche Pseudo-Parallel Genetic Algorithms for Path Optimization of Autonomous Mobile Robot
 - A Specific Application of TSP

175

Fig. 1 describes the layered structure of NPPGA by a flow chart.

Fig. 1 Pseudo code of NPPGA

Fig. 1. Flow chart of NPPGA

2.3 Arithmetic description of NPPGA
Each step in niche pseudo-parallel genetic algorithms is demonstrated as following based on
niche genetic algorithm and parallel genetic algorithm [3] [6]:
1. Initialize the genetic counter t←0;
2. Generate original population P(t) made up of initial individuals which are divided into

several subgroups in the form of P(t)={P1(t), P2(t),…,Pi(t),…, Pn(t)}, where n is a integral
number of subgroup.

3. Calculate each individual fitness function Fj(j=1,2,…,m/n) in every subgroup
Pi(t)(i=1,2,…,n) of the population;

4. Execute independent evolution among each group P(t)={P1(t), P2(t),…,Pi(t),…, Pn(t)};
i. Independently initialize evolutionary counter s←1 and select a subgroup fitness

function to give an evaluation of each individual;
ii. Make a lower taxis upon the individual fitness and storage q individuals in the

former sequence where q<m/n;
iii. Reproduce among)(tPi by the operator Ps in form of)]([)(' tPselectiontP ii ← ;
iv. Crossover among)(' tPi

 by the operator Pc in form of)]([)(''' tPcrossovertP ii ← ;

v. Mutate among)('' tPi by the operator Pm in form of)]([)(''''' tPmutationtP ii ← ;
vi. Delete among)(''' tPi

 by the operator γ in form of)]([)(''''''' tPdeletiontP ii ← ;

Initialize population M

Fitness evaluation

Subgroup divisions

Subgroup 1

New subgroup 2

Subgroup 3

Crossover, mutation, deletion and niche operators

New subgroup 1

Subgroup 2

New subgroup 3

New generation

 Travelling Salesman Problem

176

vii. Use a niche operator, which needs to combine)]([)/(''' tPFnm iγ− individuals in
the subgroup)('''' tPi

 with the former q excellent individuals that are saved early
into a new population Mi including)]([)/(''' tPFqnm iγ−+ individuals, to wash out
some inferior ones. When LXX ji <− |||| , a Hamming distance is computed by

 qnmijqnmixxXX
nm

k
jkikji ++=−+=−=− ∑

=

/,...1,1/,...2,1,)(||||
/

1

2 (1)

L is the distance between contiguous generations. A penalty function
PenaltyF

ji xx =),min(
 is used after comparing fitness between iX and

jX . The penalty

criterion is

⎪⎩

⎪
⎨
⎧

<−<−

<−≥
=

))||(||))&()((()()(

))||(||))&()((()(
)('

LXXXFXFifXPXF

LXXXFXFifXF
XF

jijii

jijii
i

 (2)

viii. Realign in a lower sequence according to each fitness of (m/n)+q individuals and
store former q individuals again;

ix. End niche heredity if evolutionary results fit with ending conditions, or renew
independently evolutionary counter s←s+1 and turn to step iii while generating
m/n individuals into next generation in step vii;

5. Transfer information usually with stepping-stone model, island model and
neighborhood model among Pi(t)(i=1,2,…,n) to obtain the next generation

)](),([)1(''' tPtPexchangeiP i←+ ;
6. End parallel heredity when evolutionary results fit with ending conditions, otherwise,

renew independently evolutionary counter t←t+1 and turn to step (4).

3. Robot path optimization by NPPGA
It is well known that the problem of “Robot touring around Pekin” is typically practical
application of TSP. Based on discussion in section 2, mechanism of niche pseudo-parallel
genetic algorithm is investigated. In this section, NPPGA is used to solve the traveling
salesman problem especially in the model of path optimization of robots. Each individual
code is described in bit-strings of fixed length 18, which stands for paths between each two
cities. Then an entire serial named chromosome

,1 ,2 ,(, ,...,)i i i i mX X X X= can be obtained in each

individual space m
miii XXXS },...,,{ ,2,1,= that belongs to subgroup space nmS / . The selection

operator that is known as survival probabilities in solving path optimization is in the
canonical form [6]

/

1

()
{ () }

()
i

s s i m n

k
k

f X
p P T X X

f X

α
α

α

=

= = =
∑

 (3)

To optimize the robotic paths, crossover operator, emphasized as the most important search
operator of genetic algorithm, is introduce by[3]

Niche Pseudo-Parallel Genetic Algorithms for Path Optimization of Autonomous Mobile Robot
 - A Specific Application of TSP

177

' '
,1 ,1 ,2

' '
,1 ,2 ,1

, (1) (1) ()

{ (,) (1)} (1) , (1)

0,

k k kc
k i k i i

k k kc
c i i k c k i

kp X n Y andX n AY I A Ym
kpP T Y Y X n p X n Ym

other

⎧ + ≠ + = + −⎪
⎪⎪= + = − + + =⎨
⎪
⎪
⎪⎩

 (4)

Small mutation and deletion rates are also used in solving this problem to guarantee that
each individual do not differ genetically very much from its ancestor. In other words, it
keeps the diversity of path space even though local convergence exists. Niche operator is
demonstrated in Eqs. (1) and (2). Furthermore, we exchange different information of
excellent path serials among subgroups based on islands model. All these parameters used
in NPPGA are showed in table 1.

Parameters Used in NPPGA
Selection rate α=1

Mutation operator Pm=0.0015
Recombination operator Pr={0.72,4}

Deletion operator γ=0.0027
Niche operator Hamming Distance

Length per object
variable L=18

Population size 50

Table 1. Parameters of NPPGA

In the experiment, a single step NPPGA is used to solving the problem of path optimization
and evolution of “Robot Tour”. 8 optimal solutions can be obtained shown in table 2. The
length of optimal path has been changed into standard units where (Remnant of optimal
paths)= (length of paths)-(shortest distance) and (Ratio of relative paths)
=(remnant)/(shortest distance).

Path Path 1 Path 2 Path 3 Path 4 Path 5 Path 6 Path 7 Path 8

Length of optimal paths 96.17 (NPPGA) 96.79 97.20 97.59 98.48 98.75 102.17 102.77

Remnant of optimal paths 0 (NPPGA) 0.62 1.03 1.42 2.31 2.58 6.00 6.60

0.26% (SGA) 0.86% 1.54% 2.2% 2.58% 3.73% 5.80% 6.92%

0.18% (DPGA) 0.70% 1.32% 1.80% 1.93% 3.12% 5.95% 6.90%

Ratio of relative path
 0% (NPPGA) 0.640%1.071%1.477%2.042%2.683%6.239% 6.863%

SGA 346 generations and 20760 count steps

DPGA 294 generations and 19500 count steps

Computation complexity
 NPPGA 276 generations and 16560 count steps

Table 2. Experimental results in path optimization by single step NPPGA

 Travelling Salesman Problem

176

vii. Use a niche operator, which needs to combine)]([)/(''' tPFnm iγ− individuals in
the subgroup)('''' tPi

 with the former q excellent individuals that are saved early
into a new population Mi including)]([)/(''' tPFqnm iγ−+ individuals, to wash out
some inferior ones. When LXX ji <− |||| , a Hamming distance is computed by

 qnmijqnmixxXX
nm

k
jkikji ++=−+=−=− ∑

=

/,...1,1/,...2,1,)(||||
/

1

2 (1)

L is the distance between contiguous generations. A penalty function
PenaltyF

ji xx =),min(
 is used after comparing fitness between iX and

jX . The penalty

criterion is

⎪⎩

⎪
⎨
⎧

<−<−

<−≥
=

))||(||))&()((()()(

))||(||))&()((()(
)('

LXXXFXFifXPXF

LXXXFXFifXF
XF

jijii

jijii
i

 (2)

viii. Realign in a lower sequence according to each fitness of (m/n)+q individuals and
store former q individuals again;

ix. End niche heredity if evolutionary results fit with ending conditions, or renew
independently evolutionary counter s←s+1 and turn to step iii while generating
m/n individuals into next generation in step vii;

5. Transfer information usually with stepping-stone model, island model and
neighborhood model among Pi(t)(i=1,2,…,n) to obtain the next generation

)](),([)1(''' tPtPexchangeiP i←+ ;
6. End parallel heredity when evolutionary results fit with ending conditions, otherwise,

renew independently evolutionary counter t←t+1 and turn to step (4).

3. Robot path optimization by NPPGA
It is well known that the problem of “Robot touring around Pekin” is typically practical
application of TSP. Based on discussion in section 2, mechanism of niche pseudo-parallel
genetic algorithm is investigated. In this section, NPPGA is used to solve the traveling
salesman problem especially in the model of path optimization of robots. Each individual
code is described in bit-strings of fixed length 18, which stands for paths between each two
cities. Then an entire serial named chromosome

,1 ,2 ,(, ,...,)i i i i mX X X X= can be obtained in each

individual space m
miii XXXS },...,,{ ,2,1,= that belongs to subgroup space nmS / . The selection

operator that is known as survival probabilities in solving path optimization is in the
canonical form [6]

/

1

()
{ () }

()
i

s s i m n

k
k

f X
p P T X X

f X

α
α

α

=

= = =
∑

 (3)

To optimize the robotic paths, crossover operator, emphasized as the most important search
operator of genetic algorithm, is introduce by[3]

Niche Pseudo-Parallel Genetic Algorithms for Path Optimization of Autonomous Mobile Robot
 - A Specific Application of TSP

177

' '
,1 ,1 ,2

' '
,1 ,2 ,1

, (1) (1) ()

{ (,) (1)} (1) , (1)

0,

k k kc
k i k i i

k k kc
c i i k c k i

kp X n Y andX n AY I A Ym
kpP T Y Y X n p X n Ym

other

⎧ + ≠ + = + −⎪
⎪⎪= + = − + + =⎨
⎪
⎪
⎪⎩

 (4)

Small mutation and deletion rates are also used in solving this problem to guarantee that
each individual do not differ genetically very much from its ancestor. In other words, it
keeps the diversity of path space even though local convergence exists. Niche operator is
demonstrated in Eqs. (1) and (2). Furthermore, we exchange different information of
excellent path serials among subgroups based on islands model. All these parameters used
in NPPGA are showed in table 1.

Parameters Used in NPPGA
Selection rate α=1

Mutation operator Pm=0.0015
Recombination operator Pr={0.72,4}

Deletion operator γ=0.0027
Niche operator Hamming Distance

Length per object
variable L=18

Population size 50

Table 1. Parameters of NPPGA

In the experiment, a single step NPPGA is used to solving the problem of path optimization
and evolution of “Robot Tour”. 8 optimal solutions can be obtained shown in table 2. The
length of optimal path has been changed into standard units where (Remnant of optimal
paths)= (length of paths)-(shortest distance) and (Ratio of relative paths)
=(remnant)/(shortest distance).

Path Path 1 Path 2 Path 3 Path 4 Path 5 Path 6 Path 7 Path 8

Length of optimal paths 96.17 (NPPGA) 96.79 97.20 97.59 98.48 98.75 102.17 102.77

Remnant of optimal paths 0 (NPPGA) 0.62 1.03 1.42 2.31 2.58 6.00 6.60

0.26% (SGA) 0.86% 1.54% 2.2% 2.58% 3.73% 5.80% 6.92%

0.18% (DPGA) 0.70% 1.32% 1.80% 1.93% 3.12% 5.95% 6.90%

Ratio of relative path
 0% (NPPGA) 0.640%1.071%1.477%2.042%2.683%6.239% 6.863%

SGA 346 generations and 20760 count steps

DPGA 294 generations and 19500 count steps

Computation complexity
 NPPGA 276 generations and 16560 count steps

Table 2. Experimental results in path optimization by single step NPPGA

 Travelling Salesman Problem

178

According to experimental data, we illustrated an evolutionary process by niche pseudo-
parallel genetic algorithm in figure 2. Compared with SGA and DPGA, the performance
conducted by NPPGA is better. The computation complexity of NPPGA is 16560 count steps
within 276 generations while SGA and DPGA are 20760 and 19500 respectively. Global
optimization path other than local solution can be achieved by NPPGA when generations
approach less than 300. Simultaneously, a remnant comparison is shown in Fig. 3. Although
NPPGA has the peak error for some individual evolutionary processes caused by stochastic
researching, it perform a lowest remnant error to the optimal path while the remnant of
DPGA is a little bit large than NPPGA. The shortest route can be described in the following
serial.

”start→dong_wu_yuan→zhong_guan_cun→yuan_ming_yuan→yi_he_yuan→xiang_shan→shi_sa
n_ling→ba_da_ling→yong_he_gong→bei_hai_gong_yuan→gu_gong→tian_an_men→wang_fu_ji
ng→beijing_zhan→tian_tan→shi_jie_gong_yuan→xi_dan→shi_ji_dan”

The total distance is 96.17 in standard units and actually shorter in practical robot tour.

Evol ut i onar y pr ocess

0

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8
Opt i mal pat h i n l ower ser i es

Ra
ti

o
of

 r
el

at
iv

e
re

mn
an

t

P- 1
P- 2

P- 3

P- 1: SGA

P- 2: DPGA

P- 3: NPPGA

Fig. 2. Evolutionary process of NPPGA

Niche Pseudo-Parallel Genetic Algorithms for Path Optimization of Autonomous Mobile Robot
 - A Specific Application of TSP

179

Remnant compar i son

0
1
2
3
4
5
6
7
8

1 2 3 4 5 6 7 8
Opt i mal pat h i n l ower ser i es

Re
mn

an
t

of
 o

pt
im

al
 p

at
h

P- 1: SGA
P- 2: DPGA

P- 3: NPPGA
P- 1

P- 2
P- 3

Fig. 3. Remnant comparison of NPPGA

4. Conclusion
The research, based on combination of niche genetic algorithm and pseudo parallel genetic
algorithm, comes into being NPPGA technique which both considers the rate of genetic
evolution and diversity of population. The strategy seems to be able to restrain the
premature among population and closely cooperate with each other to improve the overall
search performance. We presented NPPGA and used a single step NPPGA to figure out the
optimal paths in “Robot tour around Pekin”, which is a practical application of traveling
salesman problem. Experiments show that the optimal route can be obtained. We believe
that NPPGA and other advanced GAs will become a robust tool for path optimization and
other potential applications.

5. References
Hu Y R, Yang S X. Knowledge based genetic algorithm for path planning of a mobile robot [A].

Proc. Of 2004 Robotics and Automation, IEEE international conference ICRA '04
[C]. New Orleans, USA, 2004, V(5):4350-4355.

Daoxiong Gong, Xiaogang Ruan. A hybrid approach of GA and ACO for TSP [A]. Intelligent
Control and Automation, WCICA 2004. Fifth World Congress [C]. Hangzhou,
China, 2004 V(3):2068– 2072.

Zhe Lei-lei, Chen Huan-yang. Mathematical Foundation of Computer Intelligence [M].
Science Publishing Company, Beijing, 2002, P:112-142.

Pullan, W. Adapting the genetic algorithms to the traveling salesman problem [A]. Evolutionary
Computation CEC '03 Congress [C]. Canberra, Australia, 2003, 2(8):1029 – 1035.

Huai-Kuang Tsai, Jinn-Moon Yang, Yuan-Fang Tsai et. al. An evolutionary algorithm for large
traveling salesman problems [J]. Systems, Man and Cybernetics, IEEE Transactions,
2004, 34(4):1718 – 1729.

 Travelling Salesman Problem

178

According to experimental data, we illustrated an evolutionary process by niche pseudo-
parallel genetic algorithm in figure 2. Compared with SGA and DPGA, the performance
conducted by NPPGA is better. The computation complexity of NPPGA is 16560 count steps
within 276 generations while SGA and DPGA are 20760 and 19500 respectively. Global
optimization path other than local solution can be achieved by NPPGA when generations
approach less than 300. Simultaneously, a remnant comparison is shown in Fig. 3. Although
NPPGA has the peak error for some individual evolutionary processes caused by stochastic
researching, it perform a lowest remnant error to the optimal path while the remnant of
DPGA is a little bit large than NPPGA. The shortest route can be described in the following
serial.

”start→dong_wu_yuan→zhong_guan_cun→yuan_ming_yuan→yi_he_yuan→xiang_shan→shi_sa
n_ling→ba_da_ling→yong_he_gong→bei_hai_gong_yuan→gu_gong→tian_an_men→wang_fu_ji
ng→beijing_zhan→tian_tan→shi_jie_gong_yuan→xi_dan→shi_ji_dan”

The total distance is 96.17 in standard units and actually shorter in practical robot tour.

Evol ut i onar y pr ocess

0

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8
Opt i mal pat h i n l ower ser i es

Ra
ti

o
of

 r
el

at
iv

e
re

mn
an

t

P- 1
P- 2

P- 3

P- 1: SGA

P- 2: DPGA

P- 3: NPPGA

Fig. 2. Evolutionary process of NPPGA

Niche Pseudo-Parallel Genetic Algorithms for Path Optimization of Autonomous Mobile Robot
 - A Specific Application of TSP

179

Remnant compar i son

0
1
2
3
4
5
6
7
8

1 2 3 4 5 6 7 8
Opt i mal pat h i n l ower ser i es

Re
mn

an
t

of
 o

pt
im

al
 p

at
h

P- 1: SGA
P- 2: DPGA

P- 3: NPPGA
P- 1

P- 2
P- 3

Fig. 3. Remnant comparison of NPPGA

4. Conclusion
The research, based on combination of niche genetic algorithm and pseudo parallel genetic
algorithm, comes into being NPPGA technique which both considers the rate of genetic
evolution and diversity of population. The strategy seems to be able to restrain the
premature among population and closely cooperate with each other to improve the overall
search performance. We presented NPPGA and used a single step NPPGA to figure out the
optimal paths in “Robot tour around Pekin”, which is a practical application of traveling
salesman problem. Experiments show that the optimal route can be obtained. We believe
that NPPGA and other advanced GAs will become a robust tool for path optimization and
other potential applications.

5. References
Hu Y R, Yang S X. Knowledge based genetic algorithm for path planning of a mobile robot [A].

Proc. Of 2004 Robotics and Automation, IEEE international conference ICRA '04
[C]. New Orleans, USA, 2004, V(5):4350-4355.

Daoxiong Gong, Xiaogang Ruan. A hybrid approach of GA and ACO for TSP [A]. Intelligent
Control and Automation, WCICA 2004. Fifth World Congress [C]. Hangzhou,
China, 2004 V(3):2068– 2072.

Zhe Lei-lei, Chen Huan-yang. Mathematical Foundation of Computer Intelligence [M].
Science Publishing Company, Beijing, 2002, P:112-142.

Pullan, W. Adapting the genetic algorithms to the traveling salesman problem [A]. Evolutionary
Computation CEC '03 Congress [C]. Canberra, Australia, 2003, 2(8):1029 – 1035.

Huai-Kuang Tsai, Jinn-Moon Yang, Yuan-Fang Tsai et. al. An evolutionary algorithm for large
traveling salesman problems [J]. Systems, Man and Cybernetics, IEEE Transactions,
2004, 34(4):1718 – 1729.

 Travelling Salesman Problem

180

Xiong Shengwu, Li Chengjun. A distributed genetic algorithm to TSP [A]. Intelligent Control
and Automation Proceedings of the 4th World Congress [C]. Shanghai, China, 2002,
3(10): 1827-1830, 2002

10

The Symmetric Circulant
Traveling Salesman Problem

Federico Greco and Ivan Gerace
Dipartimento di Matematica e Informatica, Università di Perugia,

 Italy

1. Introduction
An n × n matrix D = d[i, j] is said to be circulant, if the entries d[i, j] verifying (j − i) = k mod
n, for some k, have the same value (for a survey on circulant matrix properties, see Davis
(1979)). A directed (respectively, undirected) graph is circulant, if its adjacency matrix is
circulant (respectively, symmetric, and circulant). Similarly, a weighted graph is circulant, if
its weighted adjacency matrix is circulant.
In the last years, it had been often investigated if a graph problem becomes easier when it is
restricted to the circulant graphs. For example, the Maximum Clique problem, and the
Minimum Graph Coloring problem remain NP-hard, and not approximable within a
constant factor, when the general instance is forced to be a circulant undirected graphs, as
shown by Codenotti, et al. (1998). On the other hand, Muzychuk (2004) has proved that the
Graph Isomorphism problem restricted to circulant undirected graphs is in P, while the
general case is, probably, harder.
It is still an open question whether the Directed Hamiltonian Circuit problem, restricted to
circulant (directed) graphs, remains NP-hard, or not. A solution in some special cases has
been found by Garfinkel (1977), Fan Yang, et al. (1997), and Bogdanowicz (2005). The
Hamiltonian Circuit problem admits, instead, a polynomial time algorithm on the circulant
undirected graphs, as shown by Burkard, and Sandholzer (1991). It leads to a polynomial
time algorithm for the Bottleneck Traveling Salesman Problem on the symmetric circulant
matrices.
Finally, in Gilmore, et al. (1985) it is shown that the Shortest Hamiltonian Path problem is
polynomial time solvable on the circulant matrices, while the general case is NP-hard. The
positive results contained in Burkard, and Sandholzer (1991), and in Gilmore, et al. (1985)
have encouraged the research on the Symmetric Circulant Traveling Salesman problem, that
is, the Sum Traveling Salesman Problem restricted to the symmetric, and circulant matrices.
In this chapter we deal with such problem, called for short SCTSP. In §1–§3 the problem is
introduced, and the notation is fixed. In §4–§6 an overview is given on the last 16 year
results. Firstly, an upper bound (§4.1), a lower bound (§4.2), and a polynomial time 2-
approximation algorithm for the general case of SCTSP (§4.3) are discussed. No better result
concerning the computational complexity of SCTSP is known. Secondly, some sufficient
theorems solving particular cases of SCTSP are presented (§5). Finally, §6 is devoted to a
recently introduced subcase of SCTSP. §7 completes the chapter by presenting open
problems, remarks, and future developments.

 Travelling Salesman Problem

180

Xiong Shengwu, Li Chengjun. A distributed genetic algorithm to TSP [A]. Intelligent Control
and Automation Proceedings of the 4th World Congress [C]. Shanghai, China, 2002,
3(10): 1827-1830, 2002

10

The Symmetric Circulant
Traveling Salesman Problem

Federico Greco and Ivan Gerace
Dipartimento di Matematica e Informatica, Università di Perugia,

 Italy

1. Introduction
An n × n matrix D = d[i, j] is said to be circulant, if the entries d[i, j] verifying (j − i) = k mod
n, for some k, have the same value (for a survey on circulant matrix properties, see Davis
(1979)). A directed (respectively, undirected) graph is circulant, if its adjacency matrix is
circulant (respectively, symmetric, and circulant). Similarly, a weighted graph is circulant, if
its weighted adjacency matrix is circulant.
In the last years, it had been often investigated if a graph problem becomes easier when it is
restricted to the circulant graphs. For example, the Maximum Clique problem, and the
Minimum Graph Coloring problem remain NP-hard, and not approximable within a
constant factor, when the general instance is forced to be a circulant undirected graphs, as
shown by Codenotti, et al. (1998). On the other hand, Muzychuk (2004) has proved that the
Graph Isomorphism problem restricted to circulant undirected graphs is in P, while the
general case is, probably, harder.
It is still an open question whether the Directed Hamiltonian Circuit problem, restricted to
circulant (directed) graphs, remains NP-hard, or not. A solution in some special cases has
been found by Garfinkel (1977), Fan Yang, et al. (1997), and Bogdanowicz (2005). The
Hamiltonian Circuit problem admits, instead, a polynomial time algorithm on the circulant
undirected graphs, as shown by Burkard, and Sandholzer (1991). It leads to a polynomial
time algorithm for the Bottleneck Traveling Salesman Problem on the symmetric circulant
matrices.
Finally, in Gilmore, et al. (1985) it is shown that the Shortest Hamiltonian Path problem is
polynomial time solvable on the circulant matrices, while the general case is NP-hard. The
positive results contained in Burkard, and Sandholzer (1991), and in Gilmore, et al. (1985)
have encouraged the research on the Symmetric Circulant Traveling Salesman problem, that
is, the Sum Traveling Salesman Problem restricted to the symmetric, and circulant matrices.
In this chapter we deal with such problem, called for short SCTSP. In §1–§3 the problem is
introduced, and the notation is fixed. In §4–§6 an overview is given on the last 16 year
results. Firstly, an upper bound (§4.1), a lower bound (§4.2), and a polynomial time 2-
approximation algorithm for the general case of SCTSP (§4.3) are discussed. No better result
concerning the computational complexity of SCTSP is known. Secondly, some sufficient
theorems solving particular cases of SCTSP are presented (§5). Finally, §6 is devoted to a
recently introduced subcase of SCTSP. §7 completes the chapter by presenting open
problems, remarks, and future developments.

 Travelling Salesman Problem

182

We list here some abbreviations used throughout the chapter:
• n denotes a positive integer greater than 1;
• [m] denotes the set {1, 2, . . . ,m}, for any positive integer m;
• a ≡m b denotes the relation a ≡ b mod m, and 〈a〉m denotes the integer (a mod m), for any

positive integer m, and for any two integers a, b;
• denotes the tuple (), for any two integers s, s′ such that s ≥

s′ , and for any (s − s′ + 1) integers .

2. The symmetric circulant traveling salesman problem
Let D = (d[i, j]) be an n × n matrix. Assume that d[i, j] = 0, if i = j , and that d[i, j] is a positive
integer, if i ≠ j. Let Zn denote both its row index set, and its column index set. A Hamiltonian

tour T for D is a cyclic permutation T : Zn → Zn . The (sum) cost of T is the integer

(1)

The optimal sum cost of D is the integer

 (2)

The Sum Traveling Salesman Problem asks for finding opt(D). It is a well known NP-hard
problem. Moreover, no performance guarantee polynomial time approximation algorithm
for it is known.
An n × n matrix D = (d[i, j]) with entries in N ∪ {∞} is said to be circulant, if d[i, j] =

d[0, 〈j − i〉n], for any i, j ∈ Zn . A symmetric circulant matrix is a circulant matrix which is also

symmetric. As Example 1 below suggests, a symmetric circulant matrix has a strong algebraic
structure: It is fully determined by the entries in the first half of its first row.

Example 1 The following two matrices are symmetric circulant.

Let SC(Nn×n) denote the set of all n×n symmetric circulant matrices with null principal diagonal

entries, and positive integer entries otherwise. Note that D0 ∈ SC(N6×6), while D1 ∉ SC(N6×6).

The Symmetric Circulant Traveling Salesman Problem

183

The Symmetric Circulant Traveling Salesman problem (for short, SCTSP) asks for finding
opt(D), when D is a matrix in SC(Nn×n).

3. Definitions, and preliminaries

Let D = (d[i, j]) be a matrix in SC(Nn×n). For any a ∈[⌊n/2⌋], the a-stripe of D is the set

 (3)

The integer d[0, a] is denoted by d(a). It is called the a-stripe cost of D. Note that two
different stripes have empty intersection.
If T : Zn → Zn is a Hamiltonian tour for D, then sumD(T) depends just on the stripe costs of D:

For any i∈Zn, {i, T(i)} belongs to D(ai), and costs d(ai), where ai = min{〈i − T(i)〉n, 〈T(i) − i〉n}.

Indeed, ai ≤ ⌊n/2⌋ holds by definition, and ai > 0 holds, as T is a cyclic permutation. Thus,
T(i) ≠ i . Finally, the following statement holds:

 (4)

Indeed, if {i, j} ∈ D(a), then either 〈j − i〉n = a, or 〈i − j〉n = a. In the first case, (4) holds, as D is
circulant, and, thus, d[i, j] = d[0, 〈j − i〉n] = d[0, a]. In the second case, (4) holds, as D is
symmetric, and circulant, and, thus, d[i, j] = d[j, i] = d[0, 〈i − j〉n] = d[0, a].

Definition 2 Let D = (d[i, j]) be a matrix in SC(Nn×n). The ⌊n/2⌋-tuple is a

presentation for D, if d(at) ≤ d(at+1), for any integer 1 ≤ t < ⌊n/2⌋, and {a1, . . . , a⌊n/2⌋} = [⌊n/2⌋].

A presentation sorts the stripes of a matrix D∈SC(Nn×n) in non decreasing order with respect

to their cost. Clearly, there exists just a presentation for D if and only if any two stripes have
different stripe cost, and, thus, also the converse of (4) holds. In this case, we say that D has
distinct stripe costs.
Example 3 Let be a presentation for D∈SC(Nn×n). As observed by Garfinkel in

(1977), the permutation T1 : Zn → Zn , defined as T1(i) = 〈i + a1〉n , for any i∈Zn , is a Hamiltonian

tour for D if and only if gcd(n, a1) = 1. In this case T1 is, clearly, optimal.

Example 4 Let be a presentation for D ∈ SC(Nn×n) such that gcd(n, a1, a2) > 1. A

Hamiltonian tour T : Zn → Zn for D such that {i, T(i)} ∈ D(a1) ∪ D(a2), for any i ∈ Zn , cannot exist

since the set {a1, a2} does not generate Zn .

The previous examples suggest the following definition, that will play a crucial role in the
next sections.

Definition 5 Let be a presentation for D ∈SC(Nn×n). The g -sequence of αD is the

tuple defined as follows:

 Travelling Salesman Problem

182

We list here some abbreviations used throughout the chapter:
• n denotes a positive integer greater than 1;
• [m] denotes the set {1, 2, . . . ,m}, for any positive integer m;
• a ≡m b denotes the relation a ≡ b mod m, and 〈a〉m denotes the integer (a mod m), for any

positive integer m, and for any two integers a, b;
• denotes the tuple (), for any two integers s, s′ such that s ≥

s′ , and for any (s − s′ + 1) integers .

2. The symmetric circulant traveling salesman problem
Let D = (d[i, j]) be an n × n matrix. Assume that d[i, j] = 0, if i = j , and that d[i, j] is a positive
integer, if i ≠ j. Let Zn denote both its row index set, and its column index set. A Hamiltonian

tour T for D is a cyclic permutation T : Zn → Zn . The (sum) cost of T is the integer

(1)

The optimal sum cost of D is the integer

 (2)

The Sum Traveling Salesman Problem asks for finding opt(D). It is a well known NP-hard
problem. Moreover, no performance guarantee polynomial time approximation algorithm
for it is known.
An n × n matrix D = (d[i, j]) with entries in N ∪ {∞} is said to be circulant, if d[i, j] =

d[0, 〈j − i〉n], for any i, j ∈ Zn . A symmetric circulant matrix is a circulant matrix which is also

symmetric. As Example 1 below suggests, a symmetric circulant matrix has a strong algebraic
structure: It is fully determined by the entries in the first half of its first row.

Example 1 The following two matrices are symmetric circulant.

Let SC(Nn×n) denote the set of all n×n symmetric circulant matrices with null principal diagonal

entries, and positive integer entries otherwise. Note that D0 ∈ SC(N6×6), while D1 ∉ SC(N6×6).

The Symmetric Circulant Traveling Salesman Problem

183

The Symmetric Circulant Traveling Salesman problem (for short, SCTSP) asks for finding
opt(D), when D is a matrix in SC(Nn×n).

3. Definitions, and preliminaries

Let D = (d[i, j]) be a matrix in SC(Nn×n). For any a ∈[⌊n/2⌋], the a-stripe of D is the set

 (3)

The integer d[0, a] is denoted by d(a). It is called the a-stripe cost of D. Note that two
different stripes have empty intersection.
If T : Zn → Zn is a Hamiltonian tour for D, then sumD(T) depends just on the stripe costs of D:

For any i∈Zn, {i, T(i)} belongs to D(ai), and costs d(ai), where ai = min{〈i − T(i)〉n, 〈T(i) − i〉n}.

Indeed, ai ≤ ⌊n/2⌋ holds by definition, and ai > 0 holds, as T is a cyclic permutation. Thus,
T(i) ≠ i . Finally, the following statement holds:

 (4)

Indeed, if {i, j} ∈ D(a), then either 〈j − i〉n = a, or 〈i − j〉n = a. In the first case, (4) holds, as D is
circulant, and, thus, d[i, j] = d[0, 〈j − i〉n] = d[0, a]. In the second case, (4) holds, as D is
symmetric, and circulant, and, thus, d[i, j] = d[j, i] = d[0, 〈i − j〉n] = d[0, a].

Definition 2 Let D = (d[i, j]) be a matrix in SC(Nn×n). The ⌊n/2⌋-tuple is a

presentation for D, if d(at) ≤ d(at+1), for any integer 1 ≤ t < ⌊n/2⌋, and {a1, . . . , a⌊n/2⌋} = [⌊n/2⌋].

A presentation sorts the stripes of a matrix D∈SC(Nn×n) in non decreasing order with respect

to their cost. Clearly, there exists just a presentation for D if and only if any two stripes have
different stripe cost, and, thus, also the converse of (4) holds. In this case, we say that D has
distinct stripe costs.
Example 3 Let be a presentation for D∈SC(Nn×n). As observed by Garfinkel in

(1977), the permutation T1 : Zn → Zn , defined as T1(i) = 〈i + a1〉n , for any i∈Zn , is a Hamiltonian

tour for D if and only if gcd(n, a1) = 1. In this case T1 is, clearly, optimal.

Example 4 Let be a presentation for D ∈ SC(Nn×n) such that gcd(n, a1, a2) > 1. A

Hamiltonian tour T : Zn → Zn for D such that {i, T(i)} ∈ D(a1) ∪ D(a2), for any i ∈ Zn , cannot exist

since the set {a1, a2} does not generate Zn .

The previous examples suggest the following definition, that will play a crucial role in the
next sections.

Definition 5 Let be a presentation for D ∈SC(Nn×n). The g -sequence of αD is the

tuple defined as follows:

 Travelling Salesman Problem

184

(5)

Note that the g -sequence verifies the following properties:

 (6)

 (7)

 (8)

In particular (8) holds as = 1, for some t ∈⌊n/2⌋. In the following, we write gt instead of
gt(αD) if the context is clear.

4. The circulant weighted undirected graph G (αD)

An usual way of representing a weighted undirected graph G with node set {0, 1, . . . ,m − 1}
is its weighted adjacency matrix: An m × m symmetric matrix DG whose general entry dG[i, j]
corresponds either to 0, if i = j , or to the cost of {i, j}, if {i, j} is an edge in G, or to ∞, in the
other cases. If DG is symmetric circulant, then G is said to be circulant.

On the converse, a matrix D = (d[i, j]) in SC(Nn×n) can be thought as the weighted adjacency

matrix of a complete circulant weighted undirected graph. More precisely, any A ⊂[⌊n/2⌋]
determines a unique circulant weighted undirected graph having the following weighted
adjacency matrix DA = (dA[i, j]):

DA is symmetric circulant, since D∈SC(Nn×n). Suppose, now, that a presentation

 for D is known. Since we are interested on a Hamiltonian tour for D with
least possible cost, and αD sorts the stripes in non decreasing order with respect to their cost,
it is advisable to study the weighted undirected graph associated to the set {a1, a2, . . . , a}, for
any ∈ [⌊n/2⌋].
Definition 6 Let D be a matrix in SC(Nn×n), and let be a presentation for it.

Let us fix is the weighted undirected graph having Zn as node set,

 as edge set, and, finally, d(at) as edge {i, j} cost, if {i, j} ∈D(at), for
some t ∈ [].

The Symmetric Circulant Traveling Salesman Problem

185

Fig. 1. The circulant weighted undirected graphs

Example 7 Let us consider the matrix D0 ∈SC(N6×6) defined in Example 1. The stripes of D0 have the

following costs: d0(1) = 4, d0(2) = 1, d0(3) = 6. Hence, there exists a unique presentation
0Dα = (2, 1,

3). In Figure 1 the circulant weighted undirected graphs are
depicted.

The path in G (αD) of length l passing through the nodes v0, v1, . . . , vl is denoted by
[v0, v1, . . . , vl]. Say P such a path. v0 , and vl are called, respectively, the starting point, and
the ending point of P . The (sum) cost of P is

(9)

The path [u, u’] is an arc of P if u = vλ−1 , and u′ = vλ , for some λ ∈ [l]. Let P− denote the path
[vl, vl−1, . . . , v0], and, for any v ∈ Zn , let (P + v) denote the path [v0 + v, v1 + v, . . . , vl + v],

where each sum is performed modulo n. Note that both P−, and (P + v) are well defined.
Moreover, for any λ ∈ [l], d[vλ−1, vλ] = d[vλ, vλ−1] holds as G (αD) is undirected, and
d[vλ−1, v_] = d[vλ−1 + v, vλ + v] holds as G (αD) is circulant. Hence, both cD(P) = cD(P−), and
cD(P) = cD(P + v) hold.
Finally, the path [v0, v1] is an arc in D(at), if {v0, v1} ∈ D(at), for some t ∈ [].
A well known theorem due to Boesch, and Tindell (1984), and concerning the connectivity of
a circulant weighted undirected graph can be restated for G (αD) as follows.
Theorem 8 Let be a presentation for D∈SC(Nn×n). Let us fix

 has g pairwise isomorphic connected components. In particular, the set
{v∈Zn : v ≡g i} induces a different connected component, for any i = 0, 1, . . . , g − 1. Finally, any
connected component forms itself a circulant weighted undirected graph.

PROOF. (Sketch) Let us fix a node v0 ∈ Zn. A node v ∈ Zn belongs to the same connected
component of v0 if and only if there exists a path in G (αD) starting at v0 , and ending at v .
Let P be a path starting at v0 . As the edge set of G (αD) is , any
arc [u, u′] of P is an arc in D(at), and, thus, verifies u ≡n u′ ± at , for some t ∈ [] (see (3)). It
follows that v is the ending point of a path starting at v0 if and only if there exists integers
y1, . . . , y such that

 Travelling Salesman Problem

184

(5)

Note that the g -sequence verifies the following properties:

 (6)

 (7)

 (8)

In particular (8) holds as = 1, for some t ∈⌊n/2⌋. In the following, we write gt instead of
gt(αD) if the context is clear.

4. The circulant weighted undirected graph G (αD)

An usual way of representing a weighted undirected graph G with node set {0, 1, . . . ,m − 1}
is its weighted adjacency matrix: An m × m symmetric matrix DG whose general entry dG[i, j]
corresponds either to 0, if i = j , or to the cost of {i, j}, if {i, j} is an edge in G, or to ∞, in the
other cases. If DG is symmetric circulant, then G is said to be circulant.

On the converse, a matrix D = (d[i, j]) in SC(Nn×n) can be thought as the weighted adjacency

matrix of a complete circulant weighted undirected graph. More precisely, any A ⊂[⌊n/2⌋]
determines a unique circulant weighted undirected graph having the following weighted
adjacency matrix DA = (dA[i, j]):

DA is symmetric circulant, since D∈SC(Nn×n). Suppose, now, that a presentation

 for D is known. Since we are interested on a Hamiltonian tour for D with
least possible cost, and αD sorts the stripes in non decreasing order with respect to their cost,
it is advisable to study the weighted undirected graph associated to the set {a1, a2, . . . , a}, for
any ∈ [⌊n/2⌋].
Definition 6 Let D be a matrix in SC(Nn×n), and let be a presentation for it.

Let us fix is the weighted undirected graph having Zn as node set,

 as edge set, and, finally, d(at) as edge {i, j} cost, if {i, j} ∈D(at), for
some t ∈ [].

The Symmetric Circulant Traveling Salesman Problem

185

Fig. 1. The circulant weighted undirected graphs

Example 7 Let us consider the matrix D0 ∈SC(N6×6) defined in Example 1. The stripes of D0 have the

following costs: d0(1) = 4, d0(2) = 1, d0(3) = 6. Hence, there exists a unique presentation
0Dα = (2, 1,

3). In Figure 1 the circulant weighted undirected graphs are
depicted.

The path in G (αD) of length l passing through the nodes v0, v1, . . . , vl is denoted by
[v0, v1, . . . , vl]. Say P such a path. v0 , and vl are called, respectively, the starting point, and
the ending point of P . The (sum) cost of P is

(9)

The path [u, u’] is an arc of P if u = vλ−1 , and u′ = vλ , for some λ ∈ [l]. Let P− denote the path
[vl, vl−1, . . . , v0], and, for any v ∈ Zn , let (P + v) denote the path [v0 + v, v1 + v, . . . , vl + v],

where each sum is performed modulo n. Note that both P−, and (P + v) are well defined.
Moreover, for any λ ∈ [l], d[vλ−1, vλ] = d[vλ, vλ−1] holds as G (αD) is undirected, and
d[vλ−1, v_] = d[vλ−1 + v, vλ + v] holds as G (αD) is circulant. Hence, both cD(P) = cD(P−), and
cD(P) = cD(P + v) hold.
Finally, the path [v0, v1] is an arc in D(at), if {v0, v1} ∈ D(at), for some t ∈ [].
A well known theorem due to Boesch, and Tindell (1984), and concerning the connectivity of
a circulant weighted undirected graph can be restated for G (αD) as follows.
Theorem 8 Let be a presentation for D∈SC(Nn×n). Let us fix

 has g pairwise isomorphic connected components. In particular, the set
{v∈Zn : v ≡g i} induces a different connected component, for any i = 0, 1, . . . , g − 1. Finally, any
connected component forms itself a circulant weighted undirected graph.

PROOF. (Sketch) Let us fix a node v0 ∈ Zn. A node v ∈ Zn belongs to the same connected
component of v0 if and only if there exists a path in G (αD) starting at v0 , and ending at v .
Let P be a path starting at v0 . As the edge set of G (αD) is , any
arc [u, u′] of P is an arc in D(at), and, thus, verifies u ≡n u′ ± at , for some t ∈ [] (see (3)). It
follows that v is the ending point of a path starting at v0 if and only if there exists integers
y1, . . . , y such that

 Travelling Salesman Problem

186

(*)

As g divides n by Definition 5, (*) implies that v ≡g v0 holds.
On the other hand, if v ≡g v0 , then (v − v0) ≡n g b, for some b ∈ Z. It follows by definition of

g that gcd(n/ g , a1/ g , . . . , a / g) = 1. Thus, by Euclid’s lemma, there exists integers

y1, . . . , y such that By substituting it in

follows. Hence, two nodes are in the same connected component if and only if they are
equivalent modulo g. Finally, any connected component is isomorphic to the circulant
weighted undirected graph having Zn/ g as node set, D(a1/ g)∪. . .∪D(a / g) as edge set, and

d[g ·i, g·j] as edge {i, j} cost.

A Hamiltonian path for a graph is a path passing exactly once through an node in the graph.
A shortest Hamiltonian path starting at a node v is a least possible cost one among those
having v as starting point. The next theorem is a direct consequence of a result of Bach, et al.
(see Chapter 4 in Gilmore, et al. (1985)).
Theorem 9 Let be a presentation for D ∈SC(Nn×n). An algorithm setting v0 = 0,
and

finds a shortest Hamiltonian path for G⌊n/2⌋(αD) starting at the node 0. Such path costs

The algorithm described in Theorem 9 is a non deterministic one. For example, both choices
v1 = a1 , and v1 = n − a1 are possible, as both arcs {0, a1}, and {0, n−a1} are in D(a1). Moreover, it
is a nearest neighbor ruled one: For any 1 ≤ λ < n, and for any

 holds, as αD is a presentation. Example 10
below shows that the contribution given by αD is fundamental, as it forces to insert in the
solution arcs belonging to the same stripe as far as possible.
Example 10 Let D = (d[i, j]) be a matrix in SC(N6×6) having as strip costs d(1) = d(2) = 1, and d(3)

= 2. Clearly, [0, 1, 2, 3, 4, 5] is a shortest Hamiltonian path of cost 5. An algorithm setting v0 = 0,
and following the nearest neighbor rule

may return the Hamiltonian path [0, 2, 3, 5, 4, 1] of cost 6, since it indifferently inserts in the
solution arcs in D(1) (i.e., [0, 2], and [3, 5]), and arcs in D(2) (i.e., [2, 3], and [4, 5]), since d(1) =
d(2) = 1 holds.
Let us compute SHP(αD) by the formula given in Theorem 9. It follows from Definition 5 that
g0 = n, and that g1 = gcd(n, a1) < n, as a1 is a stripe, and, then, a1 ≤ ⌊n/2⌋. Hence, the first
summand is always greater than 0. And what about the other summands? As (6) holds,

The Symmetric Circulant Traveling Salesman Problem

187

there exist at most r indexes t, for some r ≤ log2 n, such that g t < g t−1 holds. Hence, at most r
summands in SHP(αD) are greater than 0. Finally, as (7), and (8) hold, there exists an index
t such that gt = 1 holds if and only if t ≥ t . Therefore, the t-th summand for any t > t is
equal to 0. Hence, just a few number of stripes could be involved in the construction of a
shortest Hamiltonian path for G⌊n/2⌋(αD) starting at 0. It suggests the following definition.

Definition 11 Let be a presentation for D∈SC(Nn×n).

The r -tuple is the stripe sequence (for short, s.s.) of αD, if ζ j+1 < ζ j , for any 1 ≤ j < r ,
and ζj is called the j -th s.s. index of
αD, for any j ∈[r].

Note that the higher is j , the lower is ζ j , and the higher is
jζg (αD). In particular,

(10)

For any 1 ≤ j < r , the integer is denoted by hj(αD). In the following, we
write hj instead of hj(αD) if the context is clear.

5. Bounds for the general case of SCTSP
In this section the most remarkable results regarding the general case of SCTSP are reported.
Unfortunately, such results do not allow to prove neither that SCTSP is in P, nor that it is an
NP-hard problem.

5.1 An upper bound for SCTSP
The first author explicitly dealing with SCTSP is Van der Veen (1992). Its heuristic HT1 is a
polynomial time algorithm for SCTSP in the case in which the matrix in input has distinct
stripe costs. Van der Veen computes the cost of the Hamiltonian tour returned by HT1 just
in some cases. Gerace, and Greco (2008b) propose the procedure H, a restyling of Van der
Veen’s procedure. The main difference is the input instance: While HT1 accepts just matrices
in SC(Nn×n) with distinct stripe costs, H works on any matrix in SC(Nn×n), once a presentation
for it is given. In the following, we explain how H works.
Let D be a matrix in SC(Nn×n), and let be a presentation for it. For any ∈

[⌊n/2⌋], let Δ (αD) be the connected component of G (αD) containing the node 0. It follows by
Theorem 8 that its node set, say it V (αD), is {v∈Zn : v ≡

τg 0}
First of all, we describe a procedure HP returning on input (αD,) a Hamiltonian path for
Δ (αD) starting at the node 0. HP corresponds to Steps 2–3 of HT1.
Suppose that = 1. For any 0 ≤ λ < n/g1 , let vλ = 〈λ· a1〉n . Note that vλ ≡

1g 0. Let HP(αD, 1) =

[v0, v1, . . . , vn/
1g −1]. Since g 1 = gcd(n, a1) by Definition 5, it follows that HP(αD, 1) passes

through any node in V1(αD). Thus, it is a Hamiltonian path for Δ1 (αD).

 Travelling Salesman Problem

186

(*)

As g divides n by Definition 5, (*) implies that v ≡g v0 holds.
On the other hand, if v ≡g v0 , then (v − v0) ≡n g b, for some b ∈ Z. It follows by definition of

g that gcd(n/ g , a1/ g , . . . , a / g) = 1. Thus, by Euclid’s lemma, there exists integers

y1, . . . , y such that By substituting it in

follows. Hence, two nodes are in the same connected component if and only if they are
equivalent modulo g. Finally, any connected component is isomorphic to the circulant
weighted undirected graph having Zn/ g as node set, D(a1/ g)∪. . .∪D(a / g) as edge set, and

d[g ·i, g·j] as edge {i, j} cost.

A Hamiltonian path for a graph is a path passing exactly once through an node in the graph.
A shortest Hamiltonian path starting at a node v is a least possible cost one among those
having v as starting point. The next theorem is a direct consequence of a result of Bach, et al.
(see Chapter 4 in Gilmore, et al. (1985)).
Theorem 9 Let be a presentation for D ∈SC(Nn×n). An algorithm setting v0 = 0,
and

finds a shortest Hamiltonian path for G⌊n/2⌋(αD) starting at the node 0. Such path costs

The algorithm described in Theorem 9 is a non deterministic one. For example, both choices
v1 = a1 , and v1 = n − a1 are possible, as both arcs {0, a1}, and {0, n−a1} are in D(a1). Moreover, it
is a nearest neighbor ruled one: For any 1 ≤ λ < n, and for any

 holds, as αD is a presentation. Example 10
below shows that the contribution given by αD is fundamental, as it forces to insert in the
solution arcs belonging to the same stripe as far as possible.
Example 10 Let D = (d[i, j]) be a matrix in SC(N6×6) having as strip costs d(1) = d(2) = 1, and d(3)

= 2. Clearly, [0, 1, 2, 3, 4, 5] is a shortest Hamiltonian path of cost 5. An algorithm setting v0 = 0,
and following the nearest neighbor rule

may return the Hamiltonian path [0, 2, 3, 5, 4, 1] of cost 6, since it indifferently inserts in the
solution arcs in D(1) (i.e., [0, 2], and [3, 5]), and arcs in D(2) (i.e., [2, 3], and [4, 5]), since d(1) =
d(2) = 1 holds.
Let us compute SHP(αD) by the formula given in Theorem 9. It follows from Definition 5 that
g0 = n, and that g1 = gcd(n, a1) < n, as a1 is a stripe, and, then, a1 ≤ ⌊n/2⌋. Hence, the first
summand is always greater than 0. And what about the other summands? As (6) holds,

The Symmetric Circulant Traveling Salesman Problem

187

there exist at most r indexes t, for some r ≤ log2 n, such that g t < g t−1 holds. Hence, at most r
summands in SHP(αD) are greater than 0. Finally, as (7), and (8) hold, there exists an index
t such that gt = 1 holds if and only if t ≥ t . Therefore, the t-th summand for any t > t is
equal to 0. Hence, just a few number of stripes could be involved in the construction of a
shortest Hamiltonian path for G⌊n/2⌋(αD) starting at 0. It suggests the following definition.

Definition 11 Let be a presentation for D∈SC(Nn×n).

The r -tuple is the stripe sequence (for short, s.s.) of αD, if ζ j+1 < ζ j , for any 1 ≤ j < r ,
and ζj is called the j -th s.s. index of
αD, for any j ∈[r].

Note that the higher is j , the lower is ζ j , and the higher is
jζg (αD). In particular,

(10)

For any 1 ≤ j < r , the integer is denoted by hj(αD). In the following, we
write hj instead of hj(αD) if the context is clear.

5. Bounds for the general case of SCTSP
In this section the most remarkable results regarding the general case of SCTSP are reported.
Unfortunately, such results do not allow to prove neither that SCTSP is in P, nor that it is an
NP-hard problem.

5.1 An upper bound for SCTSP
The first author explicitly dealing with SCTSP is Van der Veen (1992). Its heuristic HT1 is a
polynomial time algorithm for SCTSP in the case in which the matrix in input has distinct
stripe costs. Van der Veen computes the cost of the Hamiltonian tour returned by HT1 just
in some cases. Gerace, and Greco (2008b) propose the procedure H, a restyling of Van der
Veen’s procedure. The main difference is the input instance: While HT1 accepts just matrices
in SC(Nn×n) with distinct stripe costs, H works on any matrix in SC(Nn×n), once a presentation
for it is given. In the following, we explain how H works.
Let D be a matrix in SC(Nn×n), and let be a presentation for it. For any ∈

[⌊n/2⌋], let Δ (αD) be the connected component of G (αD) containing the node 0. It follows by
Theorem 8 that its node set, say it V (αD), is {v∈Zn : v ≡

τg 0}
First of all, we describe a procedure HP returning on input (αD,) a Hamiltonian path for
Δ (αD) starting at the node 0. HP corresponds to Steps 2–3 of HT1.
Suppose that = 1. For any 0 ≤ λ < n/g1 , let vλ = 〈λ· a1〉n . Note that vλ ≡

1g 0. Let HP(αD, 1) =

[v0, v1, . . . , vn/
1g −1]. Since g 1 = gcd(n, a1) by Definition 5, it follows that HP(αD, 1) passes

through any node in V1(αD). Thus, it is a Hamiltonian path for Δ1 (αD).

 Travelling Salesman Problem

188

Suppose, now, that > 1. Let P0 = HP(αD, −1). We distinguish two cases. If g−1 = g , then P0

is a Hamiltonian path also for Δ (αD) by Theorem 8. In this case HP(αD,) returns P0.
Otherwise, g−1 > g holds. As g = gcd(g−1, a), and v∈V−1(αD) if and only if v ≡ g−1 0, it
follows that

 (**)

Let z denote the ending point of P0 , and h the integer g−1 / g. For any μ∈ [h−1], let uμ denote
the integer 〈μ(z+a)〉n , and Pμ the path (P0+uμ). Finally, let P be the path obtained by linking
P0, P1, . . . , Ph−1 by the arcs [〈uμ−a 〉n, uμ], for any μ ∈ [h−1]. HP(αD,) returns P . Note that P
passes through any node in V (αD), as P0 passes through any node in V−1(αD), and (**)
holds. Hence, it is a Hamiltonian path for Δ (αD).

Fig. 2. Shortest Hamiltonian paths for Δ1 (
0Dα), and for Δ2 (

0Dα) starting at 0

Example 12 Let us consider the matrix D0 ∈SC(N6×6) defined in Example 1. Its unique presentation

is
0Dα = (2, 1, 3), and G1(

0Dα), and G2(
0Dα) are depicted in Figure 1. The path shown in Figure 2

are returned, respectively, by executing HP(
0Dα , 1), and HP(

0Dα , 2).

Remark. Let / 2 .nτ ∈ ⎡ ⎤⎢ ⎥⎣ ⎦⎣ ⎦ The path HP(
0Dα ,)=[v0, v1,… 1gn −τ

v] verifies v0=0, and

 for any 1 ≤ λ < n/ g . Thus, HP is a

deterministic nearest neighbor ruled algorithm. By applying Kruskal’s algorithm to Δ (αD), a
minimum spanning tree T , whose weight is equal to the cost of HP(αD,), is obtained. Thus, HP
(αD,) is a shortest Hamiltonian path forΔ (αD) starting at the node 0 (see also Corollary 6 in
Gilmore, et al. (1985)).

Let us define, now, the procedure H.

Procedure H.

Instance. A matrix D ∈SC(Nn×n), and a presentation αD
 for D.

Step a. Execute Pr(αD, 1).
Step b. Let H = [v0, v1, . . . , vn−1, v0] be the Hamiltonian cycle obtained in Step a. Return the
Hamiltonian tour TH : Zn → Zn for D, defined as follows: for any λ ∈Zn .

The Symmetric Circulant Traveling Salesman Problem

189

Procedure Pr.
Instance. A presentation , and an integer j ≥ 1.
Step 1. Let ζ1, . . . , ζr denote the s.s. indexes of αD. If j = 1, compute ζ1.
Step 2. If ζj = 1, compute hj = g0/ g 1 . Set v0 = 0, and vλ = 〈vλ−1 + a

jζ
〉n , for any 1 ≤ λ < hj . Return

the cycle [v0, v1, . . . , v 1jh − , v0].

Step 3. Compute ζj+1 , and hj = g 1j+ζ / g
jζ . Execute HP(αD, ζj+1). Let P0 be the obtained path.

Find an arc [u, u′] of P0 verifying (u′ − u) ≡n a 1j+ζ . By deleting it, the paths Q0 , and R0 are

obtained. Let uλ = 〈λ ·a
jζ 〉n , for any λ = 1, . . . , hj − 1. Set Qλ= (Q0 + uλ), Rλ = (R0 + uλ), for any λ

= 1, . . . , hj − 2, and, finally, P 1jh − = (P0 + u 1jh −).

Step 4. If hj is even, link up P0, Q1, R1, Q2, R2, . . . ,Q 2jh − ,R 2jh − , P 1jh − by 2(hj − 1) arcs in D(a
jζ
) ,

as shown in Figure 3. Return the obtained cycle.
 Step 5. Execute Pr(αD, j+1). Let Cj+1 be the obtained cycle. Find in Cj+1 an arc [v, v′] such that
(v′−v) ≡n a 1j+ζ . By deleting it a path *

0K is obtained. Set K0 = (*
0K + w), where w = 〈u′ − v′〉n .

Step 6. Link up K0, Q1, R1, Q2, R2, . . . ,Q 2jh − ,R 2jh − , P 1jh − by 2(hj −1) arcs in D(a
jζ), as shown

in Figure 3. Return the obtained cycle. ■

Fig. 3. Pr(αD, j) in the case hj even (above), and hj odd (below). Note that hj is the number of
connected components of G 1j+ζ (αD) contained in Δ

jζ
 (αD).

 Travelling Salesman Problem

188

Suppose, now, that > 1. Let P0 = HP(αD, −1). We distinguish two cases. If g−1 = g , then P0

is a Hamiltonian path also for Δ (αD) by Theorem 8. In this case HP(αD,) returns P0.
Otherwise, g−1 > g holds. As g = gcd(g−1, a), and v∈V−1(αD) if and only if v ≡ g−1 0, it
follows that

 (**)

Let z denote the ending point of P0 , and h the integer g−1 / g. For any μ∈ [h−1], let uμ denote
the integer 〈μ(z+a)〉n , and Pμ the path (P0+uμ). Finally, let P be the path obtained by linking
P0, P1, . . . , Ph−1 by the arcs [〈uμ−a 〉n, uμ], for any μ ∈ [h−1]. HP(αD,) returns P . Note that P
passes through any node in V (αD), as P0 passes through any node in V−1(αD), and (**)
holds. Hence, it is a Hamiltonian path for Δ (αD).

Fig. 2. Shortest Hamiltonian paths for Δ1 (
0Dα), and for Δ2 (

0Dα) starting at 0

Example 12 Let us consider the matrix D0 ∈SC(N6×6) defined in Example 1. Its unique presentation

is
0Dα = (2, 1, 3), and G1(

0Dα), and G2(
0Dα) are depicted in Figure 1. The path shown in Figure 2

are returned, respectively, by executing HP(
0Dα , 1), and HP(

0Dα , 2).

Remark. Let / 2 .nτ ∈ ⎡ ⎤⎢ ⎥⎣ ⎦⎣ ⎦ The path HP(
0Dα ,)=[v0, v1,… 1gn −τ

v] verifies v0=0, and

 for any 1 ≤ λ < n/ g . Thus, HP is a

deterministic nearest neighbor ruled algorithm. By applying Kruskal’s algorithm to Δ (αD), a
minimum spanning tree T , whose weight is equal to the cost of HP(αD,), is obtained. Thus, HP
(αD,) is a shortest Hamiltonian path forΔ (αD) starting at the node 0 (see also Corollary 6 in
Gilmore, et al. (1985)).

Let us define, now, the procedure H.

Procedure H.

Instance. A matrix D ∈SC(Nn×n), and a presentation αD
 for D.

Step a. Execute Pr(αD, 1).
Step b. Let H = [v0, v1, . . . , vn−1, v0] be the Hamiltonian cycle obtained in Step a. Return the
Hamiltonian tour TH : Zn → Zn for D, defined as follows: for any λ ∈Zn .

The Symmetric Circulant Traveling Salesman Problem

189

Procedure Pr.
Instance. A presentation , and an integer j ≥ 1.
Step 1. Let ζ1, . . . , ζr denote the s.s. indexes of αD. If j = 1, compute ζ1.
Step 2. If ζj = 1, compute hj = g0/ g 1 . Set v0 = 0, and vλ = 〈vλ−1 + a

jζ
〉n , for any 1 ≤ λ < hj . Return

the cycle [v0, v1, . . . , v 1jh − , v0].

Step 3. Compute ζj+1 , and hj = g 1j+ζ / g
jζ . Execute HP(αD, ζj+1). Let P0 be the obtained path.

Find an arc [u, u′] of P0 verifying (u′ − u) ≡n a 1j+ζ . By deleting it, the paths Q0 , and R0 are

obtained. Let uλ = 〈λ ·a
jζ 〉n , for any λ = 1, . . . , hj − 1. Set Qλ= (Q0 + uλ), Rλ = (R0 + uλ), for any λ

= 1, . . . , hj − 2, and, finally, P 1jh − = (P0 + u 1jh −).

Step 4. If hj is even, link up P0, Q1, R1, Q2, R2, . . . ,Q 2jh − ,R 2jh − , P 1jh − by 2(hj − 1) arcs in D(a
jζ
) ,

as shown in Figure 3. Return the obtained cycle.
 Step 5. Execute Pr(αD, j+1). Let Cj+1 be the obtained cycle. Find in Cj+1 an arc [v, v′] such that
(v′−v) ≡n a 1j+ζ . By deleting it a path *

0K is obtained. Set K0 = (*
0K + w), where w = 〈u′ − v′〉n .

Step 6. Link up K0, Q1, R1, Q2, R2, . . . ,Q 2jh − ,R 2jh − , P 1jh − by 2(hj −1) arcs in D(a
jζ), as shown

in Figure 3. Return the obtained cycle. ■

Fig. 3. Pr(αD, j) in the case hj even (above), and hj odd (below). Note that hj is the number of
connected components of G 1j+ζ (αD) contained in Δ

jζ
 (αD).

 Travelling Salesman Problem

190

HP(αD,) contains an arc [u, u′] such that (u′ − u) ≡n a if and only if g−1 > g holds, that is, if
and only if is a s.s. index of αD. Hence, Step 3 of Pr is well defined. Gerace, and Greco
(2008b) prove that H is a correct polynomial time procedure, and that the cost of H(D, αD) is
time O(n) computable (without running H) by the next theorem.

Theorem 13 Let αD be a presentation for a matrix D ∈ SC(Nn×n), let 1()r
jj

a =ζ be its s.s., and let

ρ = max{j ∈ [r] : g
jζ
is odd}. If ρ̂ denotes the integer min{r − 1, ρ}, then the Hamiltonian tour

H(D, αD) costs

As a consequence of Theorem 13, the integer

 (11)

is an upper bound for opt(D). If there exists just a presentation αD for D, and Pr(αD, 1) ends
immediately with no more recursive calling, UB(D) is equal to the upper bound given in
Van der Veen (1992), Theorem 7.2.5.

In the general case D admits more than a presentation. As Example 14, and Example 15 below
show, the cost of the Hamiltonian tour returned by H depends on the presentation. Since the
number of the presentations for D could be exponential in n, UB(D) is not efficiently
computable by determining sumD(H(D, αD)), for any presentation αD.
Example 14 Let n = 108, and let D be the matrix in SC(Nn×n) having as stripe costs d(36) = 1, d(8) =

d(16) = d(27) = 2, and d(k) = 3 + k, for any other k ∈[54]. We consider just two of the six possible
presentations for D: the one verifying a1 = 36, a2 = 27, a3 = 16, a4 = 8 is denoted by
αD = (at) 54

1t= ; the one verifying b1 = 36, b2 = 8, b3 = 16, b4 = 27 is denoted by βD = (bt) 54
1t= . Let us denote

by 1()r
jj

a =ζ , (respectively, by 1()s
kk

b =ξ the s.s. of αD (respectively, of βD). Let us compute

sumD(H(D, αD)), and sumD(H(D, βD)) by following the arrows in the two schemes reported in Figure
4 (the differences between them are pointed out in bold). Such schemes are obtained by making use of (5),
of (10), of Theorem 9, and of Theorem 13. Note that sumD(H(D, αD)) > sumD(H(D, βD)).

Example 15 Let n = 135, and let D be the matrix in SC(Nn×n) verifying d(45) = 1, d(5) = d(9) = 2,

and d(k) = 3 + k, for any other k ∈[52]. There exist exactly two presentations for D. Let αD = (at) 67
1t=

be the one verifying a1 = 45, a2 = 5, a3 = 9, and let βD = (bt) 67
1t= be the one verifying b1 = 45, b2 = 9,

b3 = 5. As above, let 1()r
jj

a =ζ , (respectively, 1()s
kk

b =ξ denotes the s.s. of αD (respectively, of βD), and

let us compute sumD(H(D, αD)), and sumD(H(D, βD)) by following the arrows in the two schemes
reported in Figure 5 (the differences are pointed out in bold). Note that sumD(H(D, αD)) >
sumD(H(D, βD)) also in this case.

In both examples H(D, βD) costs less than H(D, αD)). In the former, the presentation βD sorts
the stripes having the same cost in a way that gt(βD) remains even as long as possible. In fact,
g2(αD) is odd, while g2(βD) is even. In the latter, n is an odd number. Thus, gt(βD), and gt(αD)

The Symmetric Circulant Traveling Salesman Problem

191

Fig. 4. How to compute sumD(H(D, αD)), and sumD(H(D, βD)) in Example 14.

are necessarily odd, for any t ∈[⌊n/2⌋]. Anyway, βD sorts the stripes having the same cost in
a way that g2(βD) is as great as possible.
Such considerations suggest the following definition.

Definition 16 Let D be a matrix in SC(Nn×n), and let βD = (bt)
1

/2

t

n

=

⎢ ⎥⎣ ⎦ be a presentation for D. βD is

sharp if gt(βD) odd implies that gt(αD) is an odd integer less than, or equal to gt(βD), for any t
∈[⌊n/2⌋], and for any other presentation αD for D.
A sharp presentation for a matrix in SC(Nn×n) is time O (n log n) computable by the
procedure SP reported below.

Procedure SP.

Instance. A matrix D in SC(Nn×n).

Step 1. Set S = [⌊n/2⌋], g = n, and t = 1. Sort in non decreasing order the stripe costs of D. Let

(dt) /2
1

n
t
⎢ ⎥⎣ ⎦
= the tuple so obtained.

Step 2. While there exists a∈ S such that d(a) = dt , and gcd(g, a) is even set bt = a, S = S \ a,
g = gcd(g, a), and t = t + 1.
Step 3. While S ≠ 0, extract from S ∩ {a′ : d(a′) = dt} the element a maximizing gcd(g, a′). Set
bt = a, S = S \ a, g = gcd(g, a), and t = t + 1.
Step 4. Return the presentation (bt) /2

1
n

t
⎢ ⎥⎣ ⎦
= . ■

 Travelling Salesman Problem

190

HP(αD,) contains an arc [u, u′] such that (u′ − u) ≡n a if and only if g−1 > g holds, that is, if
and only if is a s.s. index of αD. Hence, Step 3 of Pr is well defined. Gerace, and Greco
(2008b) prove that H is a correct polynomial time procedure, and that the cost of H(D, αD) is
time O(n) computable (without running H) by the next theorem.

Theorem 13 Let αD be a presentation for a matrix D ∈ SC(Nn×n), let 1()r
jj

a =ζ be its s.s., and let

ρ = max{j ∈ [r] : g
jζ
is odd}. If ρ̂ denotes the integer min{r − 1, ρ}, then the Hamiltonian tour

H(D, αD) costs

As a consequence of Theorem 13, the integer

 (11)

is an upper bound for opt(D). If there exists just a presentation αD for D, and Pr(αD, 1) ends
immediately with no more recursive calling, UB(D) is equal to the upper bound given in
Van der Veen (1992), Theorem 7.2.5.

In the general case D admits more than a presentation. As Example 14, and Example 15 below
show, the cost of the Hamiltonian tour returned by H depends on the presentation. Since the
number of the presentations for D could be exponential in n, UB(D) is not efficiently
computable by determining sumD(H(D, αD)), for any presentation αD.
Example 14 Let n = 108, and let D be the matrix in SC(Nn×n) having as stripe costs d(36) = 1, d(8) =

d(16) = d(27) = 2, and d(k) = 3 + k, for any other k ∈[54]. We consider just two of the six possible
presentations for D: the one verifying a1 = 36, a2 = 27, a3 = 16, a4 = 8 is denoted by
αD = (at) 54

1t= ; the one verifying b1 = 36, b2 = 8, b3 = 16, b4 = 27 is denoted by βD = (bt) 54
1t= . Let us denote

by 1()r
jj

a =ζ , (respectively, by 1()s
kk

b =ξ the s.s. of αD (respectively, of βD). Let us compute

sumD(H(D, αD)), and sumD(H(D, βD)) by following the arrows in the two schemes reported in Figure
4 (the differences between them are pointed out in bold). Such schemes are obtained by making use of (5),
of (10), of Theorem 9, and of Theorem 13. Note that sumD(H(D, αD)) > sumD(H(D, βD)).

Example 15 Let n = 135, and let D be the matrix in SC(Nn×n) verifying d(45) = 1, d(5) = d(9) = 2,

and d(k) = 3 + k, for any other k ∈[52]. There exist exactly two presentations for D. Let αD = (at) 67
1t=

be the one verifying a1 = 45, a2 = 5, a3 = 9, and let βD = (bt) 67
1t= be the one verifying b1 = 45, b2 = 9,

b3 = 5. As above, let 1()r
jj

a =ζ , (respectively, 1()s
kk

b =ξ denotes the s.s. of αD (respectively, of βD), and

let us compute sumD(H(D, αD)), and sumD(H(D, βD)) by following the arrows in the two schemes
reported in Figure 5 (the differences are pointed out in bold). Note that sumD(H(D, αD)) >
sumD(H(D, βD)) also in this case.

In both examples H(D, βD) costs less than H(D, αD)). In the former, the presentation βD sorts
the stripes having the same cost in a way that gt(βD) remains even as long as possible. In fact,
g2(αD) is odd, while g2(βD) is even. In the latter, n is an odd number. Thus, gt(βD), and gt(αD)

The Symmetric Circulant Traveling Salesman Problem

191

Fig. 4. How to compute sumD(H(D, αD)), and sumD(H(D, βD)) in Example 14.

are necessarily odd, for any t ∈[⌊n/2⌋]. Anyway, βD sorts the stripes having the same cost in
a way that g2(βD) is as great as possible.
Such considerations suggest the following definition.

Definition 16 Let D be a matrix in SC(Nn×n), and let βD = (bt)
1

/2

t

n

=

⎢ ⎥⎣ ⎦ be a presentation for D. βD is

sharp if gt(βD) odd implies that gt(αD) is an odd integer less than, or equal to gt(βD), for any t
∈[⌊n/2⌋], and for any other presentation αD for D.
A sharp presentation for a matrix in SC(Nn×n) is time O (n log n) computable by the
procedure SP reported below.

Procedure SP.

Instance. A matrix D in SC(Nn×n).

Step 1. Set S = [⌊n/2⌋], g = n, and t = 1. Sort in non decreasing order the stripe costs of D. Let

(dt) /2
1

n
t
⎢ ⎥⎣ ⎦
= the tuple so obtained.

Step 2. While there exists a∈ S such that d(a) = dt , and gcd(g, a) is even set bt = a, S = S \ a,
g = gcd(g, a), and t = t + 1.
Step 3. While S ≠ 0, extract from S ∩ {a′ : d(a′) = dt} the element a maximizing gcd(g, a′). Set
bt = a, S = S \ a, g = gcd(g, a), and t = t + 1.
Step 4. Return the presentation (bt) /2

1
n

t
⎢ ⎥⎣ ⎦
= . ■

 Travelling Salesman Problem

192

Fig. 5. How to compute sumD(H(D, αD)), and sumD(H(D, βD)) in Example 15.

Let βD = SP(D). Gerace, and Greco (2008b) prove that UB(D) = sumD(H(D, βD)) holds, as βD is
sharp. Since sumD(H(D, βD)) is time O(n) computable (see Theorem 13), it follows that UB(D)
is a time O(n log n) computable upper bound for opt(D).

5.2 A lower bound for SCTSP
Let D be a matrix in SC(Nn×n). If D has distinct stripe costs, Theorem 7.4.2 in Van der Veen

(1992) gives a lower bound for opt(D). By the same argument, Theorem 17 below shows that
any presentation for D leads to a lower bound.

Theorem 17 Let αD be a presentation for a matrix D ∈SC(Nn×n), and let 1()r
jj

a =ζ be its s.s..

Then, SHP(αD) + d(a
1ζ
) ≤ opt(D) holds.

PROOF. Let us fix an optimal Hamiltonian tour T : Zn → Zn for D. Setting v0 = T(0), and vλ =
T(vλ−1), for any integer 1 ≤ λ < n, naturally induces a Hamiltonian cycle HT = [v0, v1, . . . , vn−1,
v0] for G⌊n/2⌋(αD). It follows from (1), and from (9) that cD(HT) = sumD(T). If no arc [u, v] of HT

would verify
/2

1

{ , } ()
n

t
t

u D a
⎢ ⎥⎣ ⎦

=ζ
∈ ∪v , then HT would be a Hamiltonian cycle also for G 11−ζ (αD), a

The Symmetric Circulant Traveling Salesman Problem

193

weighted undirected graph having g 11−ζ > 1 connected components, as a consequence of
Theorem 8, and of Definition 11. Hence, there exists an arc [u, v] in HT such that cD([u, v]) =
d[u, v] ≥ d(a

1ζ
). By deleting [u, v] from HT a Hamiltonian path P for G⌊n/2⌋(αD) is obtained.

Clearly, cD(P) ≥ SHP(αD) holds. Thus,

sumD(T) = cD(HT) = cD(P) + cD([u, v]) ≥ SHP(αD) + d(a
1ζ
).

As sumD(T) = opt(D), the claim follows.

Let βD = (bt)
/2
1

n
t
⎢ ⎥⎣ ⎦
= be a presentations for D, possibly different from αD. Since {a1, . . . , a⌊n/2⌋} =

[⌊n/2⌋] = {b1, . . . , b⌊n/2⌋}, the weighted undirected graphs G⌊n/2⌋(αD), and G⌊n/2⌋(βD) coincide by
Definition 6. It follows from Theorem 9 that SHP(αD) = SHP(βD) holds. As shown by Gerace,
and Greco (2008b), d(a

1ζ
) = d(b ξ1

) also holds, where b ξ1
 denote the 1-st s.s. index of βD.

It follows from Theorem 17 that the integer

LB(D) = SHP(αD) + d(a
1ζ
) (12)

is a well defined lower bound for opt(D) holds not depending on the chosen presentation

5.3 A 2-approximation algorithm for SCTSP
A first 2-approximation algorithm for the general case of SCTSP is reported Gerace, and

Irwing (1998). For any matrix D ∈SC(Nn×n), such algorithm makes use of the construction
proposed by Burkard, and Sandholzer (1991) for solving the Hamiltonian circuit problem in
a circulant undirected graph. The returned Hamiltonian tour has a costs greater than, or
equal to UB(D).
By the procedure SP, a sharp presentation βD for D can be found in polynomial time. If we
apply H on input (D, βD), a Hamiltonian tour for D of cost UB(D) is obtained in polynomial
time. Let H* denote the algorithm that, given D, returns H(D, βD). Clearly, H* is a 2-
approximation algorithm for SCTSP. Gerace, and Greco (2008b) proves that the analysis of
H* is tight.

6. When the optimal cost is equal to the lower bound

Let D be a matrix in SC(Nn×n). Let αD be a presentation for it, and let 1()r
jj

a =ζ be its s.s..

Theorem 18 below extends some results appearing in Van der Veen (1992), and in Gerace,
and Irwing (1998). It is inspired by the following remark: According to (12), there exists a
Hamiltonian tour for D of cost LB(D) if and only if there exists a shortest Hamiltonian path
for G⌊n/2⌋(αD) starting at the node 0, and ending at a node v such that the arc [v, 0] costs
d(a

1ζ
). Note that [v, 0] is not necessary an arc in D(a

1ζ
), if more than a stripe costs d(a

1ζ
).

Theorem 18 Let D = (d[i, j]) be a matrix in SC(Nn×n). Suppose that there exists a presentation αD for

D having 1()r
jj

a =ζ as s.s., and that there exists v ∈Zn verifying d[v, 0] = d(a
1ζ
), and

 Travelling Salesman Problem

192

Fig. 5. How to compute sumD(H(D, αD)), and sumD(H(D, βD)) in Example 15.

Let βD = SP(D). Gerace, and Greco (2008b) prove that UB(D) = sumD(H(D, βD)) holds, as βD is
sharp. Since sumD(H(D, βD)) is time O(n) computable (see Theorem 13), it follows that UB(D)
is a time O(n log n) computable upper bound for opt(D).

5.2 A lower bound for SCTSP
Let D be a matrix in SC(Nn×n). If D has distinct stripe costs, Theorem 7.4.2 in Van der Veen

(1992) gives a lower bound for opt(D). By the same argument, Theorem 17 below shows that
any presentation for D leads to a lower bound.

Theorem 17 Let αD be a presentation for a matrix D ∈SC(Nn×n), and let 1()r
jj

a =ζ be its s.s..

Then, SHP(αD) + d(a
1ζ
) ≤ opt(D) holds.

PROOF. Let us fix an optimal Hamiltonian tour T : Zn → Zn for D. Setting v0 = T(0), and vλ =
T(vλ−1), for any integer 1 ≤ λ < n, naturally induces a Hamiltonian cycle HT = [v0, v1, . . . , vn−1,
v0] for G⌊n/2⌋(αD). It follows from (1), and from (9) that cD(HT) = sumD(T). If no arc [u, v] of HT

would verify
/2

1

{ , } ()
n

t
t

u D a
⎢ ⎥⎣ ⎦

=ζ
∈ ∪v , then HT would be a Hamiltonian cycle also for G 11−ζ (αD), a

The Symmetric Circulant Traveling Salesman Problem

193

weighted undirected graph having g 11−ζ > 1 connected components, as a consequence of
Theorem 8, and of Definition 11. Hence, there exists an arc [u, v] in HT such that cD([u, v]) =
d[u, v] ≥ d(a

1ζ
). By deleting [u, v] from HT a Hamiltonian path P for G⌊n/2⌋(αD) is obtained.

Clearly, cD(P) ≥ SHP(αD) holds. Thus,

sumD(T) = cD(HT) = cD(P) + cD([u, v]) ≥ SHP(αD) + d(a
1ζ
).

As sumD(T) = opt(D), the claim follows.

Let βD = (bt)
/2
1

n
t
⎢ ⎥⎣ ⎦
= be a presentations for D, possibly different from αD. Since {a1, . . . , a⌊n/2⌋} =

[⌊n/2⌋] = {b1, . . . , b⌊n/2⌋}, the weighted undirected graphs G⌊n/2⌋(αD), and G⌊n/2⌋(βD) coincide by
Definition 6. It follows from Theorem 9 that SHP(αD) = SHP(βD) holds. As shown by Gerace,
and Greco (2008b), d(a

1ζ
) = d(b ξ1

) also holds, where b ξ1
 denote the 1-st s.s. index of βD.

It follows from Theorem 17 that the integer

LB(D) = SHP(αD) + d(a
1ζ
) (12)

is a well defined lower bound for opt(D) holds not depending on the chosen presentation

5.3 A 2-approximation algorithm for SCTSP
A first 2-approximation algorithm for the general case of SCTSP is reported Gerace, and

Irwing (1998). For any matrix D ∈SC(Nn×n), such algorithm makes use of the construction
proposed by Burkard, and Sandholzer (1991) for solving the Hamiltonian circuit problem in
a circulant undirected graph. The returned Hamiltonian tour has a costs greater than, or
equal to UB(D).
By the procedure SP, a sharp presentation βD for D can be found in polynomial time. If we
apply H on input (D, βD), a Hamiltonian tour for D of cost UB(D) is obtained in polynomial
time. Let H* denote the algorithm that, given D, returns H(D, βD). Clearly, H* is a 2-
approximation algorithm for SCTSP. Gerace, and Greco (2008b) proves that the analysis of
H* is tight.

6. When the optimal cost is equal to the lower bound

Let D be a matrix in SC(Nn×n). Let αD be a presentation for it, and let 1()r
jj

a =ζ be its s.s..

Theorem 18 below extends some results appearing in Van der Veen (1992), and in Gerace,
and Irwing (1998). It is inspired by the following remark: According to (12), there exists a
Hamiltonian tour for D of cost LB(D) if and only if there exists a shortest Hamiltonian path
for G⌊n/2⌋(αD) starting at the node 0, and ending at a node v such that the arc [v, 0] costs
d(a

1ζ
). Note that [v, 0] is not necessary an arc in D(a

1ζ
), if more than a stripe costs d(a

1ζ
).

Theorem 18 Let D = (d[i, j]) be a matrix in SC(Nn×n). Suppose that there exists a presentation αD for

D having 1()r
jj

a =ζ as s.s., and that there exists v ∈Zn verifying d[v, 0] = d(a
1ζ
), and

 Travelling Salesman Problem

194

for some integers γr, . . . , γ2, γ1 such that 0 ≤ j ≤ g

1ζ
 holds, for any j ∈ [r]. Then, opt(D) = LB(D)

holds.
If D has distinct stripe costs, then the converse also holds.

PROOF. (Sketch) Let αD be a presentation satisfying the hypotheses for some suitable
integers v , γr, . . . , γ2, γ1 . Since αD is fixed, Theorem 7.3.1 in Van der Veen (1992) implies

that there exists a shortest Hamiltonian path P for G⌊n/2⌋(αD) starting at 0, and ending at v .

Let H be the Hamiltonian cycle for G⌊n/2⌋(αD) obtained by composing P with the arc [v, 0].
Since d[v, 0] = d(a

1ζ
), and Theorem 9 holds, H costs SHP(αD) + d(a

1ζ
) = LB(D). H naturally

induces a Hamiltonian tour TH verifying cD(H) = sumD(TH). It follows from Theorem 17 that
opt(D) = LB(D).
Suppose that D has distinct stripe costs, and that opt(D) = LB(D). Let αD be the unique
presentation for D, and let 1()r

jj
a =ζ be its s.s.. Let T : Zn → Zn be a Hamiltonian tour for D of

cost LB(D), and let i ∈ Zn be an integer maximizing d[i, T(i)]. Clearly, d[i, T(i)] ≥ d(a
1ζ
) holds

(see also the proof of Theorem 17). Let P be the Hamiltonian path obtained by deleting the arc

[i, T(i)] from the Hamiltonian cycle for G⌊n/2⌋(αD) induced by T . Since P starts at the node
T(i), and ends at the node i , (P − T(i)) is a Hamiltonian path starting at 0, and ending at
v = 〈i − T(i)〉n. It follows from Theorem 9 that (P − T(i)) is a shortest one, since cD(P) = cD(P −
T(i)), and

cD(P) = LB(D) − d[i, T(i)] = SHP(αD) + d(a
1ζ
) − d[i, T(i)] ≤ SHP(αD).

Moreover, d[i, T(i)] = LB(D) − SHP(αD) = d(a
1ζ
) is verified. As D is circulant, d[v, 0] = d[i, T(i)]

= d(a
1ζ
) also holds. As D has distinct stripe costs, Theorem 7.3.1 in Van der Veen (1992)

implies that

, for some integers γr, . . . , γ2, γ1 such

that 0≤ γj ≤ gj holds, for any j ∈ [r]. The second claim of the theorem is thus proved.

As already observed, the number of presentation for a matrix D∈SC(Nn×n) could be

exponential in n. Hence, an algorithm based on the sufficient condition given in Theorem 18
cannot efficiently determine if opt(D) = LB(D) holds. Proposition 19 below gives some
conditions implying opt(D) = LB(D), once a presentation for D is fixed. In Garfinkel (1977)
(respectively, in Van der Veen (1992)) appears a condition similar to condition (b)
(respectively, to condition (c)). Finally, condition (d) is a consequence of Theorem 18.

Proposition 19 Let D = (d[i, j]) be a matrix in SC(Nn×n). Let _D be a presentation for it, and let

1()r
jj

a =ζ be its s.s.. If one of the following condition occurs, then opt(D) = LB(D) holds:

a) d(a
rζ

) = d(a
1ζ
);

The Symmetric Circulant Traveling Salesman Problem

195

b) r = 1;
c) r ≥ 2, and g

2ζ
= 2;

d) r ≥ 2, and there exist r−1 integers yr, . . . , y2 verifying 0 ≤ yj ≤ g
jζ
, for any 2 ≤ j ≤ r , and

PROOF. (a) If d(a

rζ
) = d(a

1ζ
), then d(at) = d(a

rζ
), for any ζr ≤ t ≤ 1. In particular, d(a

jζ
) =

d(a 1j+ζ) holds, for any j∈[r − 1]. It follows from Theorem 13 that sumD(H(D, αD)) = SHP(αD) +

d(a
1ζ
). The claim thus follows by making use of (12), and of Theorem 17.

(b) It is a subcase of condition (a): If r = 1, then d(a
rζ

) = d(a
1ζ
).

(c) It follows from Theorem 13 that, if r ≥ 2, and g
2ζ

= 2, then ρ = 1, and ρ̂ = 1. Since g
1ζ
= 1

holds by (10), we have that h1 = g
2ζ

/ g
1ζ
= 2. Hence, sumD(H(D, αD)) = SHP(αD) + d(a

1ζ
) is

verified. The claim thus follows by making use of (12), and of Theorem 17.
(d) Let us set γ1 = 1, and γj = g

jζ
− yj , for any 2 ≤ j ≤ r . Trivially, g

jζ
− 2yj = 2j − g

jζ
holds, for

any 2 ≤ j ≤ r . Since g
1ζ
= 1, also g

1ζ
= 2γ1 − g

1ζ
= 1 is verified. It follows from the hypothesis

that

g 11−ζ a

1ζ
 can be written as (g 11−ζ /g

1ζ
− 1)a

1ζ
+ a

1ζ
. Hence,

Let v = n − a

1ζ
. As d[v, 0] = d(a

1ζ
) holds, αD, and v verifies the hypotheses of Theorem 18. The

claim thus follows.

7. 2-striped symmetric circulant matrices

Let D be a matrix in SC(Nn×n), let αD = (at) /2
1

n
t
⎢ ⎥⎣ ⎦
= be a presentation for it, and let be a fixed

integer in [⌊n/2⌋]. Any Hamiltonian tour T: Zn → Zn such that {i, T(i)} ∈ D(at), for some i ∈Zn,

and some t ≥ , verifies sumD(T) ≥ SHP(αD)+d(a). Indeed, if P denotes the Hamiltonian path
obtained by deleting the arc [i, T(i)] from the Hamiltonian cycle for G⌊n/2⌋(αD) induced by T,
then cD(P) ≥ SHP(αD), and sumD(T) ≥ cD(P) + d(a). Any such tour is not optimal if SHP(αD) +
d(a) > UB(D) holds, since a Hamiltonian tour for D of cost UB(D) always exists (see §4).
Thus, we may ignore the at -stripe, for any t ≥ , if d(a) > UB(D) − SHP(αD) holds.

 Travelling Salesman Problem

194

for some integers γr, . . . , γ2, γ1 such that 0 ≤ j ≤ g

1ζ
 holds, for any j ∈ [r]. Then, opt(D) = LB(D)

holds.
If D has distinct stripe costs, then the converse also holds.

PROOF. (Sketch) Let αD be a presentation satisfying the hypotheses for some suitable
integers v , γr, . . . , γ2, γ1 . Since αD is fixed, Theorem 7.3.1 in Van der Veen (1992) implies

that there exists a shortest Hamiltonian path P for G⌊n/2⌋(αD) starting at 0, and ending at v .

Let H be the Hamiltonian cycle for G⌊n/2⌋(αD) obtained by composing P with the arc [v, 0].
Since d[v, 0] = d(a

1ζ
), and Theorem 9 holds, H costs SHP(αD) + d(a

1ζ
) = LB(D). H naturally

induces a Hamiltonian tour TH verifying cD(H) = sumD(TH). It follows from Theorem 17 that
opt(D) = LB(D).
Suppose that D has distinct stripe costs, and that opt(D) = LB(D). Let αD be the unique
presentation for D, and let 1()r

jj
a =ζ be its s.s.. Let T : Zn → Zn be a Hamiltonian tour for D of

cost LB(D), and let i ∈ Zn be an integer maximizing d[i, T(i)]. Clearly, d[i, T(i)] ≥ d(a
1ζ
) holds

(see also the proof of Theorem 17). Let P be the Hamiltonian path obtained by deleting the arc

[i, T(i)] from the Hamiltonian cycle for G⌊n/2⌋(αD) induced by T . Since P starts at the node
T(i), and ends at the node i , (P − T(i)) is a Hamiltonian path starting at 0, and ending at
v = 〈i − T(i)〉n. It follows from Theorem 9 that (P − T(i)) is a shortest one, since cD(P) = cD(P −
T(i)), and

cD(P) = LB(D) − d[i, T(i)] = SHP(αD) + d(a
1ζ
) − d[i, T(i)] ≤ SHP(αD).

Moreover, d[i, T(i)] = LB(D) − SHP(αD) = d(a
1ζ
) is verified. As D is circulant, d[v, 0] = d[i, T(i)]

= d(a
1ζ
) also holds. As D has distinct stripe costs, Theorem 7.3.1 in Van der Veen (1992)

implies that

, for some integers γr, . . . , γ2, γ1 such

that 0≤ γj ≤ gj holds, for any j ∈ [r]. The second claim of the theorem is thus proved.

As already observed, the number of presentation for a matrix D∈SC(Nn×n) could be

exponential in n. Hence, an algorithm based on the sufficient condition given in Theorem 18
cannot efficiently determine if opt(D) = LB(D) holds. Proposition 19 below gives some
conditions implying opt(D) = LB(D), once a presentation for D is fixed. In Garfinkel (1977)
(respectively, in Van der Veen (1992)) appears a condition similar to condition (b)
(respectively, to condition (c)). Finally, condition (d) is a consequence of Theorem 18.

Proposition 19 Let D = (d[i, j]) be a matrix in SC(Nn×n). Let _D be a presentation for it, and let

1()r
jj

a =ζ be its s.s.. If one of the following condition occurs, then opt(D) = LB(D) holds:

a) d(a
rζ

) = d(a
1ζ
);

The Symmetric Circulant Traveling Salesman Problem

195

b) r = 1;
c) r ≥ 2, and g

2ζ
= 2;

d) r ≥ 2, and there exist r−1 integers yr, . . . , y2 verifying 0 ≤ yj ≤ g
jζ
, for any 2 ≤ j ≤ r , and

PROOF. (a) If d(a

rζ
) = d(a

1ζ
), then d(at) = d(a

rζ
), for any ζr ≤ t ≤ 1. In particular, d(a

jζ
) =

d(a 1j+ζ) holds, for any j∈[r − 1]. It follows from Theorem 13 that sumD(H(D, αD)) = SHP(αD) +

d(a
1ζ
). The claim thus follows by making use of (12), and of Theorem 17.

(b) It is a subcase of condition (a): If r = 1, then d(a
rζ

) = d(a
1ζ
).

(c) It follows from Theorem 13 that, if r ≥ 2, and g
2ζ

= 2, then ρ = 1, and ρ̂ = 1. Since g
1ζ
= 1

holds by (10), we have that h1 = g
2ζ

/ g
1ζ
= 2. Hence, sumD(H(D, αD)) = SHP(αD) + d(a

1ζ
) is

verified. The claim thus follows by making use of (12), and of Theorem 17.
(d) Let us set γ1 = 1, and γj = g

jζ
− yj , for any 2 ≤ j ≤ r . Trivially, g

jζ
− 2yj = 2j − g

jζ
holds, for

any 2 ≤ j ≤ r . Since g
1ζ
= 1, also g

1ζ
= 2γ1 − g

1ζ
= 1 is verified. It follows from the hypothesis

that

g 11−ζ a

1ζ
 can be written as (g 11−ζ /g

1ζ
− 1)a

1ζ
+ a

1ζ
. Hence,

Let v = n − a

1ζ
. As d[v, 0] = d(a

1ζ
) holds, αD, and v verifies the hypotheses of Theorem 18. The

claim thus follows.

7. 2-striped symmetric circulant matrices

Let D be a matrix in SC(Nn×n), let αD = (at) /2
1

n
t
⎢ ⎥⎣ ⎦
= be a presentation for it, and let be a fixed

integer in [⌊n/2⌋]. Any Hamiltonian tour T: Zn → Zn such that {i, T(i)} ∈ D(at), for some i ∈Zn,

and some t ≥ , verifies sumD(T) ≥ SHP(αD)+d(a). Indeed, if P denotes the Hamiltonian path
obtained by deleting the arc [i, T(i)] from the Hamiltonian cycle for G⌊n/2⌋(αD) induced by T,
then cD(P) ≥ SHP(αD), and sumD(T) ≥ cD(P) + d(a). Any such tour is not optimal if SHP(αD) +
d(a) > UB(D) holds, since a Hamiltonian tour for D of cost UB(D) always exists (see §4).
Thus, we may ignore the at -stripe, for any t ≥ , if d(a) > UB(D) − SHP(αD) holds.

 Travelling Salesman Problem

196

Note that any other a-stripe cannot be a priori ignored, even if no presentation for D
contains a in its s.s.. Thus, a first step for solving SCTSP is analyzing the case in which each
presentation for D has the same s.s., and any stripe not belonging to the s.s. can be ignored.

Definition 20 A matrix D∈SC(Nn×n) is an s-striped matrix, for some s ≥ 1, if a presentation

αD = (at) /2
1

n
t
⎢ ⎥⎣ ⎦
= for it verifies the following properties:

(i) (as, as−1, . . . , a1) is the s.s. of αD, and d(at) < d(at+1), for any t ∈[s];
(ii) d(as+1) > UB(D) − SHP(αD).

Definition 20 does not depend on the presentation. Indeed, let βD = (bt) /2
1

n
t
⎢ ⎥⎣ ⎦
= be a presentation

for D, possibly different from αD. As both αD, and βD sort in non decreasing order the multi-
set containing the stripe costs of D, then d(at) = d(bt) holds, for any t∈ [⌊n/2⌋]. In particular,
d(bs+1) = d(as+1), and, thus, d(bs+1) verifies property (ii). As a consequence of property (i), no
other stripe different from at costs d(at), for any t∈ [s]. Hence, at = bt , and gt(αD) = gt(βD) hold,
for any t∈ [s], and, thus, (as, as−1, . . . , a1) is also the s.s. of βD.
The case s = 1 is trivial: condition (b) in Proposition 19 holds, and thus opt(D) = LB(D). In this
section we deal with the case s = 2.

By D(n; d1, d2; a1, a2) we denote the 2-striped matrix in SC(Nn×n) verifying d(a1) = d1 , and

d(a2) = d2 , for some presentation αD = (at) /2
1

n
t
⎢ ⎥⎣ ⎦
= . As any two presentations have (a2, a1) as s.s.,

we denote by g1 the integer g1(αD) = gcd(n, a1), and by G1 , and G2 the weighted undirected
graphs G1(αD), and G2(αD). Note that g1 > 1, and that gcd(g1, a2) = 1, as a consequence of
Definition 20, applied for s = 2.
The weighted adjacency matrix of G2 is a symmetric circulant matrix with two stripes,
according to the definition given in Gerace, and Greco (2008a). Aim of this section is

restating for the 2-striped matrices in SC(Nn×n) the results obtained in Gerace, and Greco

(2008a). Let D be the matrix D(n; d1, d2; a1, a2). As a consequence of Theorem 9, of Theorem 17,
and of (11) (respectively, of Theorem 9, and of (12)), the integer UB(D) (respectively, LB(D))
verifies:

(13)

If g1 = 2, condition (c) of Proposition 19 implies that opt(D) = LB(D).
Definition 21 Let D be the matrix D(n; d1, d2; a1, a2), and let T : Zn → Zn be an Hamiltonian tour

for D. T is feasible if {i, T(i)} ∈ D(a1) ∪ D(a2), for any i∈ Zn .
Any stripe of D different from a1 , and a2 can be ignored. Thus, an optimal Hamiltonian tour
for D is also a feasible one. As a consequence of Definition 6, Hamiltonian cycles for G2 , and
feasible Hamiltonian tours for D are in correspondence.
Let T : Zn → Zn be a feasible Hamiltonian tour for D, and let HT = [v0, v1 , . . . , vn−1, v0] be the

Hamiltonian cycle for G2 associated to T . [vλ, v 1 nλ+] is a (+a1)-arc, for some λ ∈ Zn , if

The Symmetric Circulant Traveling Salesman Problem

197

(v 1 nλ+ − vλ) ≡n +a1 holds. In a similar way, (−a1)-arcs, (+a2)-arcs, and (−a2)-arcs are defined.

π 2,T
+

 (respectively, π 2,T
−) denotes the number of (+a2)-arcs (respectively, of (−a2)-arcs). If g1 ≥ 3,

(π 2,T
+

 + π 2,T
−

) corresponds the number of arcs of HT belonging to D(a2), as the next remark
shows.

Remark. An arc is at the same time a (+a2)-arc, and a (−a2)-arc if and only if a2 ≡n −a2 , that is, if and
only if n is even, and a2 = n/2. As already observed, g1 = gcd(n, a1) > 1, and 1 = gcd(n, a1, a2) =
gcd(g1, n/2) hold. Thus, g1 = 2 holds if n is even, and a2 = n/2.

Theorem 22 Let D be the matrix D(n; d1, d2; a1, a2). If g1 ≥ 3, there exists an optimal
Hamiltonian tour T for D such that (π 2,T

+ − π 2,T
−) ∈{0, g1}. In particular, if (π 2,T

+ −π 2,T
−) = 0, then,

opt(D) = UB(D) holds.
PROOF. (Sketch) Let S : Zn → Zn be an optimal Hamiltonian tour for D. As g1 ≥ 3 holds, the

number of arcs in D(a2) is (π 2,S
+

 + π 2,S
−). Since either {i, S(i)} ∈D(a1), or {i, S(i)} ∈ D(a2) holds,

for any i ∈ Zn , then

opt(D) = sumD(S) = (n − (π 2,S
+

 + π 2,S
−)) ⋅ d1 + (π 2,S

+
 + π 2,S

−) ⋅ d2.

Clearly, LB(D) ≤ sumD(S) ≤ UB(D) holds. Hence, it follows from (13), and from d1 < d2 that g1 ≤
(π 2,S

+ + π 2,S
−) ≤ 2(g1 − 1). On the other hand, (π 2,S

+ −π 2,S
−) ≡g1 0, since any arc in D(a2) links two

different connected components of G1 , and the starting one coincides with the ending one.
Hence, (π 2,S

+ − π 2,S
−) ∈{− g1, 0, g1}. If (π 2,S

+ − π 2,S
−) ∈ {0, g1}, it suffices to take T = S. If (π 2,S

+ − π 2,S
−)

= − g1 , it suffices to take T = S−.
Suppose that (π 2,T

+ − π 2,T
−) = 0. Since (π 2,T

+ + π 2,T
−) ≤ 2(g1 − 1) also holds, it follows that

0 ≤π 2,T
+ = π 2,T

− ≤ (g1 − 1).

For any i∈ Zn , the nodes i , and T(i) belong to different connected components of G1 if and

only if {i, T(i)} ∈ D(a2). G1 has g1 connected components, and the Hamiltonian cycle HT

induced by T starts, and ends at the same connected components, after having passed
through each other connected component. It follows that π 2,T

+
 = π 2,T

−
 ≥ (g1−1) also holds. The

claim, thus, follows.
Theorem 23 Let D be the matrix D(n; d1, d2; a1, a2). Assume that g1 ≥ 3 holds. Let AD = {y ∈ Z : 0 ≤

y < n/ g1, (n/ g1 − 1)(g1 − 2y)a1 + g1a2 ≡n 0}. If AD is not empty, let y1 , and y2 be, respectively, the
minimum, and the maximum of AD, and let m = min{y1 − g1, n/ g1 − y2}.
The following statements hold.
(i) If AD is empty, then opt(D) = UB(D).
(ii) AD is not empty, and m ≤ 0 if and only if opt(D) = LB(D).
(iii) If AD is not empty, and m > 0, there exists a Hamiltonian tour for D of cost
LB(D) + 2m ⋅(d2 − d1).

 Travelling Salesman Problem

196

Note that any other a-stripe cannot be a priori ignored, even if no presentation for D
contains a in its s.s.. Thus, a first step for solving SCTSP is analyzing the case in which each
presentation for D has the same s.s., and any stripe not belonging to the s.s. can be ignored.

Definition 20 A matrix D∈SC(Nn×n) is an s-striped matrix, for some s ≥ 1, if a presentation

αD = (at) /2
1

n
t
⎢ ⎥⎣ ⎦
= for it verifies the following properties:

(i) (as, as−1, . . . , a1) is the s.s. of αD, and d(at) < d(at+1), for any t ∈[s];
(ii) d(as+1) > UB(D) − SHP(αD).

Definition 20 does not depend on the presentation. Indeed, let βD = (bt) /2
1

n
t
⎢ ⎥⎣ ⎦
= be a presentation

for D, possibly different from αD. As both αD, and βD sort in non decreasing order the multi-
set containing the stripe costs of D, then d(at) = d(bt) holds, for any t∈ [⌊n/2⌋]. In particular,
d(bs+1) = d(as+1), and, thus, d(bs+1) verifies property (ii). As a consequence of property (i), no
other stripe different from at costs d(at), for any t∈ [s]. Hence, at = bt , and gt(αD) = gt(βD) hold,
for any t∈ [s], and, thus, (as, as−1, . . . , a1) is also the s.s. of βD.
The case s = 1 is trivial: condition (b) in Proposition 19 holds, and thus opt(D) = LB(D). In this
section we deal with the case s = 2.

By D(n; d1, d2; a1, a2) we denote the 2-striped matrix in SC(Nn×n) verifying d(a1) = d1 , and

d(a2) = d2 , for some presentation αD = (at) /2
1

n
t
⎢ ⎥⎣ ⎦
= . As any two presentations have (a2, a1) as s.s.,

we denote by g1 the integer g1(αD) = gcd(n, a1), and by G1 , and G2 the weighted undirected
graphs G1(αD), and G2(αD). Note that g1 > 1, and that gcd(g1, a2) = 1, as a consequence of
Definition 20, applied for s = 2.
The weighted adjacency matrix of G2 is a symmetric circulant matrix with two stripes,
according to the definition given in Gerace, and Greco (2008a). Aim of this section is

restating for the 2-striped matrices in SC(Nn×n) the results obtained in Gerace, and Greco

(2008a). Let D be the matrix D(n; d1, d2; a1, a2). As a consequence of Theorem 9, of Theorem 17,
and of (11) (respectively, of Theorem 9, and of (12)), the integer UB(D) (respectively, LB(D))
verifies:

(13)

If g1 = 2, condition (c) of Proposition 19 implies that opt(D) = LB(D).
Definition 21 Let D be the matrix D(n; d1, d2; a1, a2), and let T : Zn → Zn be an Hamiltonian tour

for D. T is feasible if {i, T(i)} ∈ D(a1) ∪ D(a2), for any i∈ Zn .
Any stripe of D different from a1 , and a2 can be ignored. Thus, an optimal Hamiltonian tour
for D is also a feasible one. As a consequence of Definition 6, Hamiltonian cycles for G2 , and
feasible Hamiltonian tours for D are in correspondence.
Let T : Zn → Zn be a feasible Hamiltonian tour for D, and let HT = [v0, v1 , . . . , vn−1, v0] be the

Hamiltonian cycle for G2 associated to T . [vλ, v 1 nλ+] is a (+a1)-arc, for some λ ∈ Zn , if

The Symmetric Circulant Traveling Salesman Problem

197

(v 1 nλ+ − vλ) ≡n +a1 holds. In a similar way, (−a1)-arcs, (+a2)-arcs, and (−a2)-arcs are defined.

π 2,T
+

 (respectively, π 2,T
−) denotes the number of (+a2)-arcs (respectively, of (−a2)-arcs). If g1 ≥ 3,

(π 2,T
+

 + π 2,T
−

) corresponds the number of arcs of HT belonging to D(a2), as the next remark
shows.

Remark. An arc is at the same time a (+a2)-arc, and a (−a2)-arc if and only if a2 ≡n −a2 , that is, if and
only if n is even, and a2 = n/2. As already observed, g1 = gcd(n, a1) > 1, and 1 = gcd(n, a1, a2) =
gcd(g1, n/2) hold. Thus, g1 = 2 holds if n is even, and a2 = n/2.

Theorem 22 Let D be the matrix D(n; d1, d2; a1, a2). If g1 ≥ 3, there exists an optimal
Hamiltonian tour T for D such that (π 2,T

+ − π 2,T
−) ∈{0, g1}. In particular, if (π 2,T

+ −π 2,T
−) = 0, then,

opt(D) = UB(D) holds.
PROOF. (Sketch) Let S : Zn → Zn be an optimal Hamiltonian tour for D. As g1 ≥ 3 holds, the

number of arcs in D(a2) is (π 2,S
+

 + π 2,S
−). Since either {i, S(i)} ∈D(a1), or {i, S(i)} ∈ D(a2) holds,

for any i ∈ Zn , then

opt(D) = sumD(S) = (n − (π 2,S
+

 + π 2,S
−)) ⋅ d1 + (π 2,S

+
 + π 2,S

−) ⋅ d2.

Clearly, LB(D) ≤ sumD(S) ≤ UB(D) holds. Hence, it follows from (13), and from d1 < d2 that g1 ≤
(π 2,S

+ + π 2,S
−) ≤ 2(g1 − 1). On the other hand, (π 2,S

+ −π 2,S
−) ≡g1 0, since any arc in D(a2) links two

different connected components of G1 , and the starting one coincides with the ending one.
Hence, (π 2,S

+ − π 2,S
−) ∈{− g1, 0, g1}. If (π 2,S

+ − π 2,S
−) ∈ {0, g1}, it suffices to take T = S. If (π 2,S

+ − π 2,S
−)

= − g1 , it suffices to take T = S−.
Suppose that (π 2,T

+ − π 2,T
−) = 0. Since (π 2,T

+ + π 2,T
−) ≤ 2(g1 − 1) also holds, it follows that

0 ≤π 2,T
+ = π 2,T

− ≤ (g1 − 1).

For any i∈ Zn , the nodes i , and T(i) belong to different connected components of G1 if and

only if {i, T(i)} ∈ D(a2). G1 has g1 connected components, and the Hamiltonian cycle HT

induced by T starts, and ends at the same connected components, after having passed
through each other connected component. It follows that π 2,T

+
 = π 2,T

−
 ≥ (g1−1) also holds. The

claim, thus, follows.
Theorem 23 Let D be the matrix D(n; d1, d2; a1, a2). Assume that g1 ≥ 3 holds. Let AD = {y ∈ Z : 0 ≤

y < n/ g1, (n/ g1 − 1)(g1 − 2y)a1 + g1a2 ≡n 0}. If AD is not empty, let y1 , and y2 be, respectively, the
minimum, and the maximum of AD, and let m = min{y1 − g1, n/ g1 − y2}.
The following statements hold.
(i) If AD is empty, then opt(D) = UB(D).
(ii) AD is not empty, and m ≤ 0 if and only if opt(D) = LB(D).
(iii) If AD is not empty, and m > 0, there exists a Hamiltonian tour for D of cost
LB(D) + 2m ⋅(d2 − d1).

 Travelling Salesman Problem

198

Fig. 6. 1

mP+ , and 1
mP− , for a fixed m > 0

PROOF. (Sketch) If AD is empty, it can be shown that no Hamiltonian tour T for D verifies
(π 2,T

+ − π 2,T
−) = g1 . Claim (i), thus, follows by Theorem 22.

Suppose that AD is not empty, and that m ≤ 0 holds. As (n/ g1−y) > 0 holds, for any y ∈ AD,
we have that m = (y1 − g1). It follows from m ≤ 0 that y1 verifies 0 ≤ y1 ≤ g1 , and from y1 ∈ AD

that (n/ g1−1)(g1−2y1)a1+ g1a2 ≡n 0. As (a2, a1) is the s.s. of any presentation for D, condition (d)
of Proposition 19 is verified. Thus, opt(D) = LB(D) follows.
By arguing as in the proof of the second claim of Theorem 18, it can be shown that opt(D) =
LB(D) implies that there exists y∈AD such that 0 ≤ y ≤ g1 . Clearly, m ≤ 0, in this case. Claim
(ii) is thus proved.

Suppose that AD is not empty, and that m > 0 holds. Then m is a positive integer less than n/2
g1 . Let us denote by Δλ , for any λ ∈Z

1g , the connected component of G1 having as node set

{v ∈ Zn : v ≡
1g λ a2}.Let 1

mP+ , and 1
mP−

 be the path in G2 described in Figure 61. They pass

through any node in Δ0 , and in Δ1 , and cost (2n/ g1−2m) ⋅d1+(2+2m) ⋅d2 . For any λ ∈Z
1g , let

1 In the figures of this section, thin vertical lines represent (+a1)-arcs, bold vertical lines
represent (−a1)-arcs, any other thin line represents a (+a2)-arc, and, finally, any other bold
line represents a (−a2)-arcs.

The Symmetric Circulant Traveling Salesman Problem

199

Fig. 7. 1Qλ
+ , and 1Qλ

− , for a fixed λ ∈Z
1g

1Qλ
+ , and 1Qλ

−
 be the path in G2 described in Figure 7. They pass through any node in Δλ , and

cost cD(Qε
λ) = (n/ g1 − 1) ⋅d1 + d2 . For = +1,−1, let mH ε

 be the path obtained by composing

mPε , 2Qε , . . .
1 1Qε
−g . mH ε starts at the node 0, and passes through any node in G2 . Its cost

verifies

If m = y1 − g1 , 1
mH + is a Hamiltonian cycle for G2 , as its ending point is

If m = n/ g1 − y2 , 1
mH − is a Hamiltonian cycle for G2 as its ending point is

The second part of claim (ii) thus follows, since either 1
mH + , or 1

mH − induced a Hamiltonian
tour for D of the required cost.

Example 24 Let D1 be the matrix D(32; 1, 2; 8, 1). It is easy to verify that g1 = gcd(32, 8) = 8, and
that n/ g1 = 4. The equation 3(8 − 2y)8 + 8 ≡32 0 has no integer solutions. Thus, AD1 is empty. It
follows from Theorem 23, and from (13) that opt(D1) = UB(D1) = 46.

 Travelling Salesman Problem

198

Fig. 6. 1

mP+ , and 1
mP− , for a fixed m > 0

PROOF. (Sketch) If AD is empty, it can be shown that no Hamiltonian tour T for D verifies
(π 2,T

+ − π 2,T
−) = g1 . Claim (i), thus, follows by Theorem 22.

Suppose that AD is not empty, and that m ≤ 0 holds. As (n/ g1−y) > 0 holds, for any y ∈ AD,
we have that m = (y1 − g1). It follows from m ≤ 0 that y1 verifies 0 ≤ y1 ≤ g1 , and from y1 ∈ AD

that (n/ g1−1)(g1−2y1)a1+ g1a2 ≡n 0. As (a2, a1) is the s.s. of any presentation for D, condition (d)
of Proposition 19 is verified. Thus, opt(D) = LB(D) follows.
By arguing as in the proof of the second claim of Theorem 18, it can be shown that opt(D) =
LB(D) implies that there exists y∈AD such that 0 ≤ y ≤ g1 . Clearly, m ≤ 0, in this case. Claim
(ii) is thus proved.

Suppose that AD is not empty, and that m > 0 holds. Then m is a positive integer less than n/2
g1 . Let us denote by Δλ , for any λ ∈Z

1g , the connected component of G1 having as node set

{v ∈ Zn : v ≡
1g λ a2}.Let 1

mP+ , and 1
mP−

 be the path in G2 described in Figure 61. They pass

through any node in Δ0 , and in Δ1 , and cost (2n/ g1−2m) ⋅d1+(2+2m) ⋅d2 . For any λ ∈Z
1g , let

1 In the figures of this section, thin vertical lines represent (+a1)-arcs, bold vertical lines
represent (−a1)-arcs, any other thin line represents a (+a2)-arc, and, finally, any other bold
line represents a (−a2)-arcs.

The Symmetric Circulant Traveling Salesman Problem

199

Fig. 7. 1Qλ
+ , and 1Qλ

− , for a fixed λ ∈Z
1g

1Qλ
+ , and 1Qλ

−
 be the path in G2 described in Figure 7. They pass through any node in Δλ , and

cost cD(Qε
λ) = (n/ g1 − 1) ⋅d1 + d2 . For = +1,−1, let mH ε

 be the path obtained by composing

mPε , 2Qε , . . .
1 1Qε
−g . mH ε starts at the node 0, and passes through any node in G2 . Its cost

verifies

If m = y1 − g1 , 1
mH + is a Hamiltonian cycle for G2 , as its ending point is

If m = n/ g1 − y2 , 1
mH − is a Hamiltonian cycle for G2 as its ending point is

The second part of claim (ii) thus follows, since either 1
mH + , or 1

mH − induced a Hamiltonian
tour for D of the required cost.

Example 24 Let D1 be the matrix D(32; 1, 2; 8, 1). It is easy to verify that g1 = gcd(32, 8) = 8, and
that n/ g1 = 4. The equation 3(8 − 2y)8 + 8 ≡32 0 has no integer solutions. Thus, AD1 is empty. It
follows from Theorem 23, and from (13) that opt(D1) = UB(D1) = 46.

 Travelling Salesman Problem

200

Fig. 8. The Hamiltonian cycle 1
2H − for D(243; 18, 1; 1, 2)

Let D2 be the matrix D(28; 1, 2; 7, 3). Note that g 1 = gcd(28, 7) = 7, and that n/ g1 = 4. The equation
3(7 − 2y)7 + 21 ≡28 0 is solved by any even integer. Thus, A

2D = {0, 2}, and m = min{0 − 4, 4 − 2} =

−4 ≤ 0. It follows from Theorem 23, and from (13) that opt(D2) = LB(D2) = 32.
Let D3 be the matrix D(243; 18, 1; 1, 2). Note that g1 = gcd(243, 18) = 9, and that n/ g1 = 27. 25 is
the unique integer solutions in [0, 26] of the equation (2y−9)18+9 ≡243 0. Thus, A

3D = {25}, and m =

min{25−9, 27−25} = 2. It follows from Theorem 23, and from (13) that 1
2H − induces a Hamiltonian

tour for D3 of cost 256, while LB(D3) = 252, and UB(D3) = 259. The Hamiltonian cycle 1
2H −

 is
depicted in Figure 8.

Example 25 Let D4 the matrix D(45; 1, 2; 20, 9). It is easy to verify that g1 = 5, A
4D = {7}, and,

thus, m = 2. Theorem 23 assures that a Hamiltonian tour for D4 of cost 54 exists, while
UB(D4) = 53, as a consequence of (13).

Let us give an overview on the results presented in this section.
Let D be the matrix D(n; d1, d2; a1, a2). If g1 = 2, then opt(D) = LB(D). If g1 ≥ 3, let AD, and m be
as in the hypothesis of Theorem 23. If AD is empty, Theorem 23 assures that opt(D) = UB(D). If
AD is not empty, and m ≤ 0 holds, then Theorem 23 assures that opt(D) = LB(D). The converse
also holds. Finally, if AD is not empty, and m > 0 holds, then there exists a Hamiltonian tour
of cost LB(D) + 2m ⋅(d2 − d1). Example 25 shows that such Hamiltonian tour is not necessarily
an optimal one. Anyway, Gerace, and Greco Greco (2008a) conjecture that

opt(D) = min{UB(D), LB(D) + 2m ⋅(d2 − d1)}.

The Symmetric Circulant Traveling Salesman Problem

201

8. Conclusions
In this chapter the attention has been focused on the Symmetric Circulant Traveling
Salesman Problem (SCTSP), a subcase of the Traveling Salesman Problem explicitly
introduced for the first time in 1992. The most remarkable results obtained in the last 16
years are reported: In the general case, there are given an upper bound, a lower bound, and
a polynomial time 2-approximation algorithm; In the so-called 2-striped case, there are
given an algebraic characterization for those matrices having the optimal cost equal either to
the upper bound, or to the lower bound, and a new Hamiltonian tour construction for the
remaining matrices.
At the moment the main research direction is that of generalizing to the s-striped case the
results obtained in the 2-striped case. It seems the first necessary step in the direction of
solving SCTSP.
To sum up, the problem of finding a polynomial time solution for SCTSP seems harder, and
more interesting than it was expected. In general, it is less easy than it was expected dealing
with circulant graphs, and with their algebraic structure. As a matter of fact, also showing
that Graph Isomorphism is polynomial time solvable in the circulant graph case has required a
forty year research.

9. References
F. Boesch and R. Tindell (1984). Circulant and their connectivities. J. Graph Theory, 8:487–499,

1984.
Z. Bogdanowicz (2005). Hamiltonian circuits in sparse circulant digraphs. Ars Combinatoria,

76:213–223, 2005.
R.E. Burkard and W. Sandholzer (1991). Efficiently solvable special cases of bottelneck

traveling salesman problem. Discrete Applied Mathematics, 32:61–76, 1991.
B. Codenotti, I. Gerace, and S. Vigna (1998). Hardness results and spectral techniques for

combinatorial problems on circulant graphs. Linear Algebra and its Application,
285:123–142, 1998.

P.J. Davis (1979), editor. Circulant Matrices. John Wiley & Sons, 1979.
R.S. Garfinkel (1977). Minimizing wallpaper waste, part 1: a class of traveling salesman

problems. Oper. Res., 25:741–751, 1977.
I. Gerace and F. Greco (2008a). The travelling salesman problem in symmetric circulant

matrices with two stripes. Math. Structures in Comp. Science, 18:1–11, 2008.
I. Gerace and F. Greco (2008b). Bounds for the symmetric circulant traveling salesman

problem. 2008. submitted for publication.
I. Gerace and R.W. Irving (1998). The traveling salesman problem in circulant graphs.

Technical Report TR-1998-15, University of Glasgow, Department of Computing
Science, June 1998.

R.C. Gilmore, E.L. Lawler, and D.B. Shmoys (1985). Well-solvable solvable special cases (of the
TSP), in: E.L. Lawler and J.K. Lenstra and A.H.G. Rinooy Ka D.B. Shmoys, eds, The
traveling salesman problem, chapter 4, pages 87–143. Wiley, Chichester, 1985.

M. Muzychuk (2004). A solution of the isomorphism problem for circulant graphs. Proc. of
the London Math. Society, 88(3):1–41, 2004.

 Travelling Salesman Problem

200

Fig. 8. The Hamiltonian cycle 1
2H − for D(243; 18, 1; 1, 2)

Let D2 be the matrix D(28; 1, 2; 7, 3). Note that g 1 = gcd(28, 7) = 7, and that n/ g1 = 4. The equation
3(7 − 2y)7 + 21 ≡28 0 is solved by any even integer. Thus, A

2D = {0, 2}, and m = min{0 − 4, 4 − 2} =

−4 ≤ 0. It follows from Theorem 23, and from (13) that opt(D2) = LB(D2) = 32.
Let D3 be the matrix D(243; 18, 1; 1, 2). Note that g1 = gcd(243, 18) = 9, and that n/ g1 = 27. 25 is
the unique integer solutions in [0, 26] of the equation (2y−9)18+9 ≡243 0. Thus, A

3D = {25}, and m =

min{25−9, 27−25} = 2. It follows from Theorem 23, and from (13) that 1
2H − induces a Hamiltonian

tour for D3 of cost 256, while LB(D3) = 252, and UB(D3) = 259. The Hamiltonian cycle 1
2H −

 is
depicted in Figure 8.

Example 25 Let D4 the matrix D(45; 1, 2; 20, 9). It is easy to verify that g1 = 5, A
4D = {7}, and,

thus, m = 2. Theorem 23 assures that a Hamiltonian tour for D4 of cost 54 exists, while
UB(D4) = 53, as a consequence of (13).

Let us give an overview on the results presented in this section.
Let D be the matrix D(n; d1, d2; a1, a2). If g1 = 2, then opt(D) = LB(D). If g1 ≥ 3, let AD, and m be
as in the hypothesis of Theorem 23. If AD is empty, Theorem 23 assures that opt(D) = UB(D). If
AD is not empty, and m ≤ 0 holds, then Theorem 23 assures that opt(D) = LB(D). The converse
also holds. Finally, if AD is not empty, and m > 0 holds, then there exists a Hamiltonian tour
of cost LB(D) + 2m ⋅(d2 − d1). Example 25 shows that such Hamiltonian tour is not necessarily
an optimal one. Anyway, Gerace, and Greco Greco (2008a) conjecture that

opt(D) = min{UB(D), LB(D) + 2m ⋅(d2 − d1)}.

The Symmetric Circulant Traveling Salesman Problem

201

8. Conclusions
In this chapter the attention has been focused on the Symmetric Circulant Traveling
Salesman Problem (SCTSP), a subcase of the Traveling Salesman Problem explicitly
introduced for the first time in 1992. The most remarkable results obtained in the last 16
years are reported: In the general case, there are given an upper bound, a lower bound, and
a polynomial time 2-approximation algorithm; In the so-called 2-striped case, there are
given an algebraic characterization for those matrices having the optimal cost equal either to
the upper bound, or to the lower bound, and a new Hamiltonian tour construction for the
remaining matrices.
At the moment the main research direction is that of generalizing to the s-striped case the
results obtained in the 2-striped case. It seems the first necessary step in the direction of
solving SCTSP.
To sum up, the problem of finding a polynomial time solution for SCTSP seems harder, and
more interesting than it was expected. In general, it is less easy than it was expected dealing
with circulant graphs, and with their algebraic structure. As a matter of fact, also showing
that Graph Isomorphism is polynomial time solvable in the circulant graph case has required a
forty year research.

9. References
F. Boesch and R. Tindell (1984). Circulant and their connectivities. J. Graph Theory, 8:487–499,

1984.
Z. Bogdanowicz (2005). Hamiltonian circuits in sparse circulant digraphs. Ars Combinatoria,

76:213–223, 2005.
R.E. Burkard and W. Sandholzer (1991). Efficiently solvable special cases of bottelneck

traveling salesman problem. Discrete Applied Mathematics, 32:61–76, 1991.
B. Codenotti, I. Gerace, and S. Vigna (1998). Hardness results and spectral techniques for

combinatorial problems on circulant graphs. Linear Algebra and its Application,
285:123–142, 1998.

P.J. Davis (1979), editor. Circulant Matrices. John Wiley & Sons, 1979.
R.S. Garfinkel (1977). Minimizing wallpaper waste, part 1: a class of traveling salesman

problems. Oper. Res., 25:741–751, 1977.
I. Gerace and F. Greco (2008a). The travelling salesman problem in symmetric circulant

matrices with two stripes. Math. Structures in Comp. Science, 18:1–11, 2008.
I. Gerace and F. Greco (2008b). Bounds for the symmetric circulant traveling salesman

problem. 2008. submitted for publication.
I. Gerace and R.W. Irving (1998). The traveling salesman problem in circulant graphs.

Technical Report TR-1998-15, University of Glasgow, Department of Computing
Science, June 1998.

R.C. Gilmore, E.L. Lawler, and D.B. Shmoys (1985). Well-solvable solvable special cases (of the
TSP), in: E.L. Lawler and J.K. Lenstra and A.H.G. Rinooy Ka D.B. Shmoys, eds, The
traveling salesman problem, chapter 4, pages 87–143. Wiley, Chichester, 1985.

M. Muzychuk (2004). A solution of the isomorphism problem for circulant graphs. Proc. of
the London Math. Society, 88(3):1–41, 2004.

 Travelling Salesman Problem

202

J.A.A. Van der Veen (1992). Solvable Cases of the Traveling Salesman Problem with Various
Objective Function. PhD thesis, University of Groningen, Groningen, 1992.

Qi Fan Yang, R.E. Burkard, E. Çela, and G.J. Wöginger (1997). Hamiltonian cycles in
circulant digraphs with two stripes. Discrete Mathematics, 176:233–254, 1997.

 Travelling Salesman Problem

202

J.A.A. Van der Veen (1992). Solvable Cases of the Traveling Salesman Problem with Various
Objective Function. PhD thesis, University of Groningen, Groningen, 1992.

Qi Fan Yang, R.E. Burkard, E. Çela, and G.J. Wöginger (1997). Hamiltonian cycles in
circulant digraphs with two stripes. Discrete Mathematics, 176:233–254, 1997.

Traveling Salesman Problem
Edited by Federico Greco

Edited by Federico Greco

The idea behind TSP was conceived by Austrian mathematician Karl Menger in mid
1930s who invited the research community to consider a problem from the everyday
life from a mathematical point of view. A traveling salesman has to visit exactly once

each one of a list of m cities and then return to the home city. He knows the cost of
traveling from any city i to any other city j. Thus, which is the tour of least possible

cost the salesman can take? In this book the problem of finding algorithmic technique
leading to good/optimal solutions for TSP (or for some other strictly related problems)

is considered. TSP is a very attractive problem for the research community because
it arises as a natural subproblem in many applications concerning the every day life.

Indeed, each application, in which an optimal ordering of a number of items has to be
chosen in a way that the total cost of a solution is determined by adding up the costs

arising from two successively items, can be modelled as a TSP instance. Thus, studying
TSP can never be considered as an abstract research with no real importance.

Photo by SergeKa / iStock

ISBN 978-953-7619-10-7

Traveling Salesm
an Problem

ISBN 978-953-51-5750-2

	Traveling Salesman Problem
	Contents
	 Preface
	1. Population-Based Optimization Algorithms for Solving the Travelling Salesman Problem
	2. Bio-inspired Algorithms for TSP and Generalized TSP
	3. Approaches to the Travelling Salesman Problem Using Evolutionary Computing Algorithms
	4. Particle Swarm Optimization Algorithm for the Traveling Salesman Problem
	5. A Modified Discrete Particle Swarm Optimization Algorithm for the Generalized Traveling Salesman Problem
	6. Solving TSP by Transiently Chaotic Neural Networks
	7. A Recurrent Neural Network to Traveling Salesman Problem
	8. Solving the Probabilistic Travelling Salesman Problem Based on Genetic Algorithm with Queen Selection Scheme
	9. Niche Pseudo-Parallel Genetic Algorithms for Path Optimization of Autonomous Mobile Robot - A Specific Application of TSP
	10. The Symmetric Circulant Traveling Salesman Problem

