

McCreesh, Ciaran (2017) Solving hard subgraph problems in
parallel. PhD thesis.

http://theses.gla.ac.uk/8322/

Copyright and moral rights for this work are retained by the author

A copy can be downloaded for personal non-commercial research or study, without prior

permission or charge

This work cannot be reproduced or quoted extensively from without first obtaining

permission in writing from the author

The content must not be changed in any way or sold commercially in any format or

medium without the formal permission of the author

When referring to this work, full bibliographic details including the author, title,

awarding institution and date of the thesis must be given

Enlighten:Theses

http://theses.gla.ac.uk/

theses@gla.ac.uk

http://theses.gla.ac.uk/8322/
http://theses.gla.ac.uk/
http://theses.gla.ac.uk/
mailto:theses@gla.ac.uk

SOLVING HARD SUBGRAPH PROBLEMS

IN PARALLEL

CIARAN MCCREESH

SUBMITTED IN FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF

Doctor of Philosophy

SCHOOL OF COMPUTING SCIENCE

COLLEGE OF SCIENCE AND ENGINEERING

UNIVERSITY OF GLASGOW

16TH JULY 2017

Abstract

This thesis improves the state of the art in exact, practical algorithms for finding subgraphs. We
study maximum clique, subgraph isomorphism, and maximum common subgraph problems.
These are widely applicable: within computing science, subgraph problems arise in document
clustering, computer vision, the design of communication protocols, model checking, compiler
code generation, malware detection, cryptography, and robotics; beyond, applications occur
in biochemistry, electrical engineering, mathematics, law enforcement, fraud detection, fault
diagnosis, manufacturing, and sociology. We therefore consider both the “pure” forms of
these problems, and variants with labels and other domain-specific constraints.

Although subgraph-finding should theoretically be hard, the constraint-based search
algorithms we discuss can easily solve real-world instances involving graphs with thousands
of vertices, and millions of edges. We therefore ask: is it possible to generate “really hard”
instances for these problems, and if so, what can we learn? By extending research into
combinatorial phase transition phenomena, we develop a better understanding of branching
heuristics, as well as highlighting a serious flaw in the design of graph database systems.

This thesis also demonstrates how to exploit two of the kinds of parallelism offered by
current computer hardware. Bit parallelism allows us to carry out operations on whole sets
of vertices in a single instruction—this is largely routine. Thread parallelism, to make use
of the multiple cores offered by all modern processors, is more complex. We suggest three
desirable performance characteristics that we would like when introducing thread parallelism:
lack of risk (parallel cannot be exponentially slower than sequential), scalability (adding more
processing cores cannot make runtimes worse), and reproducibility (the same instance on
the same hardware will take roughly the same time every time it is run). We then detail the
difficulties in guaranteeing these characteristics when using modern algorithmic techniques.

Besides ensuring that parallelism cannot make things worse, we also increase the like-
lihood of it making things better. We compare randomised work stealing to new tailored
strategies, and perform experiments to identify the factors contributing to good speedups. We
show that whilst load balancing is difficult, the primary factor influencing the results is the
interaction between branching heuristics and parallelism. By using parallelism to explicitly
offset the commitment made to weak early branching choices, we obtain parallel subgraph
solvers which are substantially and consistently better than the best sequential algorithms.

Acknowledgements

I would like to thank Patrick Prosser for letting me do this: I hope you have enjoyed it as
much as I have. Thanks also to my second supervisor, David Manlove, whose advice and
perspectives have made this a better thesis. This work has relied heavily upon access to large
amounts of carefully configured hardware: thanks to Douglas MacFarlane and Pete Bailey
who went far beyond the call of duty to make this possible, and to Phil Trinder for looking the
other way every time I borrowed his toys.

Thanks to Andre Cire, for arranging a visit to the University of Toronto for me, and to
Chris Beck for our conversations whilst I was there. Thanks also to Peter Stuckey for hosting
me on my trip to the University of Melbourne, and for helping me to decide what to work
on next. Whilst at Melbourne I had many enjoyable lunches with Jimmy Lee. Like so many
others in the constraint programming community, he was always happy to give helpful advice
and encouragement. Closer to home, I am similarly grateful to Özgür Akgün, Jess Enright,
Ian Gent, Chris Jefferson, Ian Miguel, Pete Nightingale, and Karen Petrie.

Thanks also to Blair Archibald, Ruth Hoffmann, Lars Kotthoff, Patrick Maier, Samba
Ndojh Ndiaye, Craig Reilly, Christine Solnon, Rob Stewart, and James Trimble. I hope I’ll
be able to work with some of you again. And thanks to Stephen Strowes for wrestling with
LATEX to make everything look shiny and compliant.

To Felix Fischer and Christian Schulte, thank you for making the viva a fun experience. I
enjoyed arguing with you.

Finally, in lieu of the customary thanks to God for making this work possible, I would
like to thank Satan and all his little minions for making it necessary.

This work was supported by the Engineering and Physical Sciences Research Council
[grant number EP/K503058/1], a Jim Gatheral Travel Scholarship, and conference and summer
school travel grants from AIJ, CP, SICSA and SoCS.

Contents

1 Introduction 1
1.1 Hard Subgraph Problems . 2

1.1.1 Maximum Clique . 2
1.1.2 Subgraph Isomorphism . 3
1.1.3 Maximum Common Subgraphs 3
1.1.4 Why are These Problems Hard? 4
1.1.5 Definitions and Notation . 5

1.2 Modelling with Constraints . 6
1.3 Solving with Constraints . 7

1.3.1 Inference . 7
1.3.2 Search . 8
1.3.3 Heuristics . 10
1.3.4 Bounds . 10
1.3.5 Smart Versus Fast . 11
1.3.6 General Purpose Solvers . 12
1.3.7 Microstructure . 12

1.4 Empirical Algorithmics . 13
1.4.1 Implementation Notes . 13
1.4.2 Runtimes and Other Performance Metrics 14
1.4.3 Cumulative Plots, Scatter Plots, and Heatmaps 14
1.4.4 Instance Selection . 16
1.4.5 Are Hard Problems Hard? . 17

1.5 Other Approaches to Hardness . 17
1.5.1 Fixed-Parameter Tractability . 18
1.5.2 Approximation Algorithms and Heuristics 18

1.6 Exploiting Parallel Hardware . 19
1.6.1 Bit Parallelism . 20
1.6.2 Thread-Parallel Propagation and Preprocessing 21
1.6.3 Thread-Parallel Search . 22
1.6.4 Mutexes, Atomics, and Queues . 22

CONTENTS

1.6.5 Measuring Parallel Improvements 22

1.6.6 Anomalies and Risk-Free, Reproducible Parallel Search 24

1.7 Overview of the Thesis . 25

2 The Maximum Clique Problem 29
2.1 Algorithms for the Maximum Clique Problem 29

2.1.1 A Basic Colour-Based Branch and Bound Algorithm 30

2.1.2 Bit Parallelism . 33

2.2 Maximum Cliques in Random Graphs . 33

2.3 Benchmark Instances . 40

2.3.1 The Second DIMACS Implementation Challenge 40

2.3.2 Benchmarks with Hidden Optimal Solutions 44

2.3.3 Protein Product Graphs . 44

2.3.4 Solving Other Problems via Maximum Clique 45

2.3.5 Other Applications . 45

2.4 Explaining the Iteration Order . 45

2.4.1 Are Colour Classes Roughly Sorted by Size? 48

2.4.2 Reordering Colour Classes . 49

2.4.3 Tie-breaking . 50

2.4.4 Does Reordering Help? . 50

2.5 Other Enhancements . 55

2.5.1 Other Related Work . 60

2.6 Conclusion . 61

3 Parallel Maximum Clique 63
3.1 Branch and Bound as a Tree . 65

3.1.1 Parallel Branch and Bound . 66

3.1.2 The Potential for Speedup . 66

3.2 Do Details of Parallel Algorithm Design Matter? 68

3.2.1 Experimental Setup and Data . 68

3.2.2 The Importance of Good Work Splitting 69

3.2.3 Does Parallel Search Order Matter? 73

3.2.4 The Quality of Heuristics, and What This Implies 73

3.2.5 Selected Results in Depth . 76

3.3 Getting the Best of Both Worlds . 81

3.3.1 A Low-Overhead, High-Diversity Parallelism Mechanism 84

3.3.2 Comparison to Off-the-Shelf Work Stealing 85

3.3.3 Other Approaches . 90

3.4 Conclusion . 92

CONTENTS

4 Other Clique-Like Problems 95
4.1 Maximum k-Cliques . 95

4.1.1 Adapting a Maximum Clique Algorithm 97

4.1.2 Experimental Results . 99

4.1.3 Parallel Search . 105

4.1.4 Random Graphs . 106

4.2 Maximum Labelled Cliques . 108

4.2.1 Definitions . 109

4.2.2 A Branch and Bound Algorithm 109

4.2.3 Experimental Results . 111

4.3 Maximum Balanced Induced Bicliques . 114

4.3.1 A Simple Branch and Bound Algorithm 115

4.3.2 Improving the Algorithm . 116

4.3.3 Computational Experiments . 119

4.4 Conclusion . 122

4.4.1 Maximum k-Cliques . 122

4.4.2 Maximum Labelled Cliques . 123

4.4.3 Maximum Balanced Induced Bicliques 124

5 Subgraph Isomorphism Problems 125
5.1 Definitions, Notation, and a Proposition . 127

5.2 A New Algorithm . 128

5.2.1 Preprocessing and Initialisation 128

5.2.2 Search and Inference . 130

5.2.3 Bit-Parallelism . 132

5.2.4 Thread-Parallel Search . 132

5.2.5 Thread-Parallel Preprocessing . 132

5.3 Experimental Evaluation . 133

5.3.1 Comparison with Other Solvers 134

5.3.2 Algorithm Design Choices . 137

5.3.3 Thread Parallelism . 137

5.4 Other Problem Variants . 140

5.5 Conclusion . 143

6 When is Subgraph Isomorphism Really Hard? 145
6.1 Experimental Setup . 147

6.2 Non-Induced Subgraph Isomorphisms . 148

6.2.1 Locating the Phase Transition . 150

6.2.2 Variable and Value Ordering Heuristics 151

CONTENTS

6.3 Induced Subgraph Isomorphisms . 151

6.3.1 Predictions and Heuristics . 153

6.3.2 Is the Central Region Genuinely Hard? 154

6.3.3 Constrainedness . 156

6.4 Labelled Graphs . 156

6.4.1 Predictions and Empirical Hardness 156

6.4.2 Richer Label Models, and VF2’s Deficiencies 159

6.5 Querying Graph Databases . 161

6.5.1 The Filter / Verify Paradigm . 161

6.5.2 Is Filtering Necessary? . 165

6.5.3 Rethinking Graph Matching for Database Systems 167

6.6 Conclusion . 170

7 Maximum Common Subgraph Problems 171
7.1 Background . 173

7.1.1 Constraint Programming Models 174

7.1.2 Reformulation to a Maximum Clique Problem 175

7.1.3 Extension to Labelled or Directed Graphs 176

7.2 Re-Evaluating the Clique Model . 177

7.3 Maximum Common Connected Subgraphs 179

7.3.1 Ensuring Connectedness with Constraint Programming 180

7.3.2 Comparison of Connectedness Techniques 181

7.3.3 Ensuring Connectedness in a Clique-Based Approach 183

7.3.4 Comparison of the Two Approaches 186

7.4 k-Less Subgraph Isomorpism . 186

7.4.1 Additional Definitions and Notation 188

7.4.2 Constraint Models and Algorithms 189

7.4.3 Experimental Setup and Instances 189

7.4.4 Domain Filtering Using Degrees 189

7.4.5 Filtering During Search Using Paths 191

7.4.6 A New Algorithm . 193

7.4.7 Empirical Evaluation . 196

7.4.8 Solving From the Top Down . 198

7.5 A Splitting Algorithm . 198

7.6 Parallel Search . 200

7.6.1 Experimental Results . 202

7.7 Conclusion . 207

CONTENTS

8 Conclusion 211
8.1 Are Hard Subgraph Problems Hard? . 211
8.2 Lessons from Constraint Programming . 212
8.3 Perspectives on Parallel Search . 213
8.4 Implementing Parallelism . 214
8.5 Future Directions . 215

References 217

1

Chapter 1

Introduction

A graph is a collection of vertices, together with edges which go between pairs of adjacent

vertices (we defer formal definitions in the interests of accessibility). Graphs are often drawn
using dots or circles for vertices, and lines for edges, as in Figure 1.1; we might associate
labels, weights, or other data with vertices or edges, and sometimes edges are directed,
in which case they are drawn as arrows rather than lines. Graphs may be used to model
relationships, molecules, transportation and financial networks, images, 3D objects, and other
structured data.

This thesis looks at problems which involve finding subgraphs with certain properties
inside given graphs. A subgraph is a smaller part of a larger graph. Subgraphs come in two
forms: for an induced subgraph, we look at some of the vertices, but all of the edges between
those vertices from the original graph, whereas for a non-induced subgraph (sometimes called
partial), we are allowed to discard both vertices and edges. Sometimes we also require
connected subgraphs, where between any two distinct vertices, we must be able to find a path
of adjacent vertices connecting them. We give examples of each in Figure 1.1.

Finding subgraphs with particular properties is, in general, NP-hard. Very informally, this
means we believe that adding just one extra vertex to a graph makes the problem twice as
hard in the worst case, so the problems become exponentially more complicated as the graphs
get larger. However, we will see that with carefully designed practical algorithms, worst-case

Figure 1.1: On the left, a graph with ten vertices and fifteen edges. The second graph is an
induced subgraph of the first, obtained by deleting two vertices, and the four edges involving
those two vertices. The third graph is also a subgraph of the first, but is not induced, since we
have deleted a further two edges which are not incident upon any deleted vertex. The fourth
graph is still a subgraph of the first, but it is neither induced nor connected.

2 CHAPTER 1. INTRODUCTION

complexity bounds are too pessimistic. The title of this thesis starts with the word “solving”,
since we are able to produce exact solutions for some instances of these problems involving
graphs with tens of thousands of vertices and up to a million edges.

1.1 Hard Subgraph Problems

We begin with an overview of the hard subgraph problems that we will solve in this thesis.
These problems fall into three families: clique problems, subgraph isomorphism problems,
and maximum common subgraph problems.

1.1.1 Maximum Clique

Figure 1.2: A graph, with its
unique maximum clique of four
vertices highlighted.

The maximum clique problem is to find a largest possible
complete subgraph—that is, if the vertices in our graph
represent people, and the edges represent friendships,
then we want to find the largest set of people where
everyone in this set is friends with everyone else in the
set. We give an example in Figure 1.2. Finding cliques
can be useful in its own right, but the maximum clique
problem can also show up as an intermediate step in
solving another problem. For example, suppose we have
a set of resources, only some of which are compatible with others. We can represent this as a
graph, with a vertex for each resource and edges between compatible resources. A maximum
clique in this graph tells us the largest set of mutually compatible resources we can select.
Because of this, maximum clique algorithms have been used for applications in bioinformatics
and biochemistry, for community detection, for document clustering, in computer vision, in
electrical engineering and communications, for fault diagnosis, in mathematics, for image
comparison, and in robotics. We review these applications and take a detailed look at
maximum clique algorithms in Chapters 2 and 3; an alternative recent review is provided by
Wu and Hao (2015).

The main algorithm we investigate for the maximum clique problem is reasonably flexible,
and is capable of working with dense graphs (those where a high proportion of possible edges
are present). This allows us to use the same algorithm to solve other problems. Most simply, a
maximum independent set is a largest-possible subset of vertices, no two of which are adjacent.
To find independent sets using a clique algorithm, we simply work with the complement of the
input graph, replacing edges with non-edges and vice-versa. A different change to the input
graph lets us solve a distance-based relaxation of the clique problem, called k-clique, which
just requires members of the “clique” to be within a certain distance k of each other, rather

1.1. HARD SUBGRAPH PROBLEMS 3

than adjacent—this can be useful in social network analysis, where a conventional clique is
too strict a requirement (Luce, 1950). We discuss this problem in Chapter 4. More complex
encodings allow us to reuse clique algorithms for subgraph isomorphism and maximum
common subgraph problems, which we discuss below.

By adapting the algorithm, we can handle certain kinds of side constraints. For example,
in the maximum labelled clique variant due to Carrabs, Cerulli, and Dell’Olmo (2014), edges
have labels, and we may only use a certain different number of labels in the solution—this is
useful in telecommunications and in social network analysis. Further adaptations allow us to
search for certain other kinds of highly regular pattern—we will illustrate this using a kind
of graph called a balanced induced biclique. We study both of these problems in Chapter 4.
Searching for an arbitrary pattern leads us to the subgraph isomorphism family of problems,
which we discuss next.

1.1.2 Subgraph Isomorphism

Figure 1.3: The two kinds of
subgraph isomorphism. Above,
the small pattern graph can be
found inside the larger target
graph, as shown. This is an
induced subgraph isomorphism,
whereas the second example is
not, due to the extra dashed edge
which is present in the target but
not the pattern.

What if we are interested in a different shape of sub-
graph? In the subgraph isomorphism problem, we must
find a given pattern graph inside a larger target graph (or
detect that the pattern does not occur). We discuss this
problem in Chapters 5 and 6, where we see that subgraph
isomorphism is used in computer vision applications, for
law enforcement and fraud detection, for pattern recog-
nition, for model checking, for malware detection, for
code comparison, in compiler code generation systems,
and particularly in biological and chemical applications,
where the target graphs typically represent molecules
or proteins and the pattern graphs describe desired or
undesired properties.

The problem comes in both induced and non-induced
variants, as we show in Figure 1.3. Additionally, some-
times we must preserve labels on vertices, edges, or both,
and sometimes edges are directed. Finally, in the case that the pattern does not occur, we may
wish to know how much of the pattern can be found—this leads us to the maximum common
subgraph problem.

1.1.3 Maximum Common Subgraphs

The final problems we discuss in this thesis are maximum common subgraph problems, which
are the subject of Chapter 7. In these problems we must find a largest-possible graph which

4 CHAPTER 1. INTRODUCTION

Figure 1.4: The maximum common subgraph problem. On the left, a maximum common
subgraph has eight vertices. However, if we require the common subgraph to be connected as
on the right, then only seven vertices may be selected.

is a subgraph of two given graphs simultaneously. Maximum common subgraph problems
are the key step in comparing graphs: to determine the difference between two graphs, we
first find what they have in common (Kriege, 2015). We will list applications in biology and
chemistry, in computer vision, in the analysis of source code and binary programs, in circuit
designs, in computer-aided manufacturing, in crisis management, in deanonymising datasets,
and in character recognition problems; the biochemical applications alone are extensive and
important enough to justify extensive research into the problem (Ehrlich and Rarey, 2011).
Some of these applications, including several from biochemistry, require that the selected
graph be connected—we show how this can make a difference in Figure 1.4.

1.1.4 Why are These Problems Hard?

So far we have illustrated problems with carefully selected small examples that make the
solutions obvious, and then selected a layout for the graphs which emphasises the solution
visually. This may give the incorrect impression that such problems are easy (at least for a
human). However, graphs do not usually come equipped with a helpful visual layout, and
these problems can quickly become very difficult as the graphs grow. The reader is encouraged
to try to solve the problem in Figure 1.5 manually, to get a feel for why even small instances
of these problems can be so difficult. In the absence of obvious visual clues, one must resort
to considering every possible combination of vertex mappings.

Although finding a subgraph isomorphism is difficult, if we are given a solution showing
that a subgraph isomorphism exists, verifying it is straightforward. The same property holds
for the decision versions (“does a solution of size x exist?”) of the maximum clique and
maximum common subgraph problems: if I want to convince you that a graph contains a
clique with 10 vertices, I may simply tell you what those vertices are, and you can easily verify

Figure 1.5: There is a non-induced subgraph isomorphism from the pattern on the left, to
one of the two target graphs on the right, but not to the other. Attempting to solve these two
instances by hand gives a good intuition for why this problem is hard.

1.1. HARD SUBGRAPH PROBLEMS 5

that I am telling the truth. Problems where, if the answer is yes, then there is always a proof
which may be verified in polynomial time, are common, and are called NP (nondeterministic

polynomial).
On the other hand, there is no simple way to convince you that a graph does not contain a

clique of size x. Although for certain graphs there may be tricks leading to a short proof, in
general, it is widely believed that it is impossible to do substantially better than showing you
all sets of x vertices, and asserting that none of them form a clique. Problems where, if the
answer is no, then there is always a short proof, are called coNP. For example, to show that a
given clique is not the largest in a graph, one may always prove this by listing the vertices of
a larger clique.

A final property of all of the problems we study is that they are in some sense equally dif-
ficult: if an algorithm exists which can solve either clique decision, or subgraph isomorphism,
or common subgraph decision, in polynomial time, then an algorithm exists to solve any NP

problem in polynomial time. Problems with this property are called NP-complete. In general
NP-completeness is established by showing that an existing known NP-complete problem
may be reduced to another.1 Such proofs are trivial for every problem considered in this
thesis, and so we do not give them. However, in Chapter 7 we will look at using reductions to
clique as a practical technique for solving maximum common subgraph problems.

Problems where a solution may be found in polynomial time are said to be in P. We believe
that having easily verified yes-instances does not make a problem easier to solve, or even help
with verifying no-instances: that is, there are problems in NP (including all NP-complete
problems) which are not in P or coNP. The standard introduction for topics involving NP

is Garey and Johnson (1979), and Hromkovič (2004) provides a reference for subsequent
developments. Determining the exact relationship between NP, coNP, NP-complete, and P

problems is outwith the scope of this thesis; given the lack of evidence to the contrary, we
assume that the P, NP and coNP complexity classes are all different, and that the apparent
hardness of NP-complete problems is in fact genuine.

1.1.5 Definitions and Notation

We now introduce common notation for graph concepts which occur throughout this thesis;
further notation will be introduced as it is needed.

Let G = (V,E) be a graph with vertex set V(G) = V and edge set E(G) = E. We
always use the term vertex when referring to elements of V , and reserve the term node to refer
to a vertex in a search tree.

The order of G is the cardinality of V , and the size the cardinality of E. We write v ∼G w

to indicate that vertex v is adjacent to vertex w. Except where otherwise noted, graphs in this

1The egg came first, in the form of the circuit satisfiability problem.

6 CHAPTER 1. INTRODUCTION

thesis are undirected, so v ∼G w if and only if w ∼G v. A loop is a vertex which is adjacent
to itself. When working with the maximum clique problem, graphs do not have loops, but for
subgraph isomorphism and maximum common subgraph problems, loops are permitted.

The subgraph induced by a set of vertices S ⊆ V(G), written G[S], is the graph with
vertex set S, and every edge from G with both endpoints in S. A subgraph is induced if it
is induced by some subset. The complement of a graph G is the graph G: adjacent distinct
vertices in G are non-adjacent in G, whilst non-adjacent vertices in G are adjacent in G. If
G may have loops, we instead talk about the loop complement, G

(
: the construction of G

(
is

similar to that of G, but whenever a vertex has a loop in G it does not in G
(

and vice versa.

The neighbourhood of a vertex v, written N(G, v), is the set of vertices adjacent to v, and
the cardinality of this set is the degree of v. A path is a sequence of distinct vertices, where
every consecutive pair is adjacent. We also allow the start and end vertices of a path to be
the same, in which case we have a cycle. The distance between two vertices is the length of
a shortest path between them. A graph is connected if there is a path between every pair of
vertices. A connected graph with no cycles is called a tree.

If S and T are sets, we write S \ T to mean the elements in S which are not also in T . If
v is an element of a set, we write S + v and S − v to mean S ∪ {v} and S \ {v} respectively.
Finally, we write ∨ for logical “or”, and ∧ for logical “and”.

1.2 Modelling with Constraints

Each of the problems from the previous section can be seen as a kind of constraint satisfaction

problem, or CSP. In a CSP we have a set of variables, each of which has a domain of possible
values. We also have a set of constraints, each of which specifies an allowed combination of
values for some subset of the variables. We then seek to find a way of giving each variable
a value from its domain, such that every constraint is satisfied. In a constraint optimisation

problem, we extend the problem to look for a best solution, with respect to some scoring
function.

The most widely known CSP is probably Sudoku. In this popular puzzle, we are given
a 9 by 9 grid. Some of the boxes contain a number between 1 and 9, and the objective is
to place a number between 1 and 9 in each remaining box, such that each number appears
exactly once in each row, once in column, and once in each of the nine 3 by 3 subgrids. To
view this as a CSP, we create a variable for each of the 9 × 9 = 81 boxes, and give each
variable a domain containing the numbers 1 through 9. We then have a constraint for each
row, column, and subgrid, saying that all nine variables must be different. (Since there are
nine values and nine variables, “use each value once” and “each value must be different” say
the same thing.) Finally, for each of the pre-filled boxes, we have a constraint saying that the
appropriate box must by equal to its specified value. Note that “proper” Sudoku puzzles are

1.3. SOLVING WITH CONSTRAINTS 7

supposed to contain exactly one solution; in contrast, a CSP may contain many solutions, or
none at all.

To encode non-induced subgraph isomorphism as a CSP, we have a variable for each
vertex in the pattern graph. The domain of each variable has a value for each vertex in the
target graph. We then have a constraint for each pair of vertices which are adjacent in the
pattern (that is, for each edge), saying that together these two vertices may only be mapped to
a pair of target vertices which are also adjacent. Finally, we have a constraint saying that each
variable must be given a different value.

Another view of this model is that we are creating a function, which provides a mapping

from pattern vertices to target vertices. The all-different constraint ensures that the function is
injective, whilst the adjacency constraints ensure a property known as homomorphism. For an
accessible introduction to modelling with constraints, including more detail on function-type
problems, we refer to Stuckey and Coffrin (2016).

1.3 Solving with Constraints

One way to solve a CSP is simply to generate every possible assignment of values to variables
in turn, and then test to see if all the constraints are satisfied. However, the number of
combinations involved usually makes such an approach impractical, and we must move to
more intelligent2 algorithms to be able to handle non-trivial problems. Most of the algorithms
we will look at in this thesis are based around inference, bounds, and heuristic-driven search.
A full discussion of these topics is given in F. Rossi, van Beek, and Walsh (2006); we now
give a brief overview of the most important aspects.

1.3.1 Inference

It is sometimes possible to deduce that certain variables can never be given a particular
value—for example, in subgraph isomorphism, a pattern vertex which has n neighbours can
never be matched to a target vertex which has fewer than n neighbours. We show this in
Figure 1.6. Since there is no point in generating any combination which includes a forbidden
assignment, this kind of reasoning can be used to reduce the amount of work we may have
to perform. To represent this knowledge algorithmically, for each variable, we can keep
track of the values remaining in its domain. We then remove any value which our deductions
rule out—like when the remaining possible numbers are written in Sudoku boxes, and then
crossed out as facts are deduced. We call an algorithm which eliminates infeasible values a
propagator.

2Or sophisticated, if the reader believes that an algorithm can only be intelligent if we do not understand
why it works.

8 CHAPTER 1. INTRODUCTION

d

a

c

e

b 1 2 3

4 5

6 7 8 d

a

c

e

b 1 2 3

4 5

6 7 8

Figure 1.6: When trying to find the smaller pattern graph inside the larger target graph, we
notice that the central vertex c in the pattern is adjacent to four other vertices. Thus it may
only be matched with one of the two shaded vertices in the target which also have at least
four neighbours, so the domain of c can be reduced to {4, 5}. Similarly, on the right, the two
pattern vertices a and d which have two neighbours cannot be mapped to any of the four target
vertices which have only one neighbour, and so their domains can be reduced to {4, 5, 6, 7}.
This kind of reasoning allows us to eliminate some assignments of values to variables.

Sometimes we will end up with a variable with only one value left in its domain. We can
often use this to eliminate further values—for example, in subgraph isomorphism, if we know
that a particular pattern vertex v can only be mapped to one target vertex w, then for each
variable corresponding to a vertex adjacent to v, we can eliminate any value representing target
vertices which are not adjacent to w. This can potentially have a cascade effect, allowing
further deletions. It is also sometimes possible to do reasoning involving combinations
of domains which each have more than one value remaining. For example, in subgraph
isomorphism (and other problems like Sudoku where a set of variables must all take different
values), if we can find a set of n variables that only have n different values between them,
then we can eliminate those n values from other domains. An example using these kinds of
inference in a somewhat ad-hoc manner is given in Figure 1.7; systematic approaches such as
that of Régin (1994) are discussed in Chapter 5.

Stronger levels of consistency can sometimes be calculated (Mackworth, 1977; Sabin and
Freuder, 1994). For example, in some problems we may be able to infer further information
if we check support for each value v in a domain—that is, if we look at each constraint in
turn which involves v’s variable, and verify that at least one way exists of giving values to the
other variables involved in that constraint that is consistent with v. If every value in a set of
domains is supported in this way, the domains are said to be arc consistent (or generalised arc

consistent if constraints involve more than two variables). Formal notions of consistency do
not play a large part of this thesis; instead, we are interested in performing inference quickly,
even if this means not achieving a particular theoretical level of consistency.

1.3.2 Search

Despite the range of inference techniques available to us, often no reasonable amount of
filtering will be sufficient to find a solution, or to prove that none exists. In such a case we
must guess: we pick some variable, and force it to take one of the values remaining in its
domain. This assignment will hopefully allow further propagation. In the event that this is
still not enough to find a solution, we repeat the process, giving a recursive search. Eventually,

1.3. SOLVING WITH CONSTRAINTS 9

d

a b

e

c

1 2
3 4

5
6

7 8

c = 5
b ∈ {1, 2, 3, 4, 5, 6, 7, 8}

d ∈ {1, 2, 3, 4, 5, 6, 7, 8}

a ∈ {3, 5}

e ∈ {1, 2, 3, 4, 5, 6, 7, 8}

d

a b

e

c

1 2
3 4

5
6

7 8

c = 5
b ∈ {1, 2, 3, 4, 6, 7, 8}

d ∈ {1, 2, 3, 4, 6, 7, 8}

a = 3

e ∈ {1, 2, 3, 4, 6, 7, 8}

d

a b

e

c

1 2
3 4

5
6

7 8

c = 5
b ∈ {1, 6}

d ∈ {1, 6}

a = 3

e ∈ {2, 4, 7, 8}

Figure 1.7: Initially, by counting neighbours, we see that the top left vertex a in the pattern
can only be mapped to pattern vertices 3 or 5, and the central vertex c in the pattern can
only be mapped to the central vertex 5 in the target. Secondly, since c = 5 is forced, no
other pattern vertex can take the value 5; this leaves only 3 in the domain for a. Thirdly, we
remove 3 from every other domain. Then, because we must map adjacent vertices to adjacent
vertices, the bottom left and top right pattern vertices b and d are left with only two possible
destinations, 1 and 6. We no longer have any forced assignments, but we can conclude that
because the two variables b and d only have the two values 1 and 6 between them, the variable
e could not take either of these values.

this may lead to a variable’s domain becoming empty—in this case, we have made a mistake
(or no solution exists), so we must backtrack and try another value for our most recently
guessed variable instead. We could also run out of values for a variable when branching this
way—then we must backtrack to an earlier guessed variable, or if we are on the first variable,
then we have proved that no solution exists.

Interleaving search and basic constraint propagation over domains in this way is known as
forward checking. If arc consistency is maintained at each level of search, the algorithm is
known as maintaining arc consistency. Simpler algorithms which do not store domains at all,
and which do not detect the lack of an available value for a variable until an assignment is
attempted, are known as conventional backtracking.

When interleaving search and inference, the efficiency of the inference stage is extremely
important. Determining a correct and principled order in which to perform inference for
sets of constraints has been the subject of extensive research. For best performance, a fully
general constraint propagation algorithm must determine not just when it is necessary to

10 CHAPTER 1. INTRODUCTION

propagate a constraint, but also when not to look at a constraint, to avoid wasted effort.
This requires knowledge of whether individual propagators guarantee properties such as
idempotence (does running the propagator twice consecutively always give the same results
as running it just once?) and monotonicity (does the propagator guarantee that it will never
eliminate fewer values when applied to reduced domains?), as well as having estimates of the
relative execution costs of different propagators (Schulte and Stuckey, 2008; Schulte and Tack,
2009). Cohen, Jefferson, and Petrie (2016) and Tack (2009) give two different perspectives on
the design of such systems. The algorithms we discuss do not require this level of generality:
all of our constraints are known up-front, which allows us to avoid these complications and
always use a particular predetermined processing order.

1.3.3 Heuristics

When branching during search, the choice of variable and value to guess first has a huge
impact on the amount of searching required. Good general principles exist for variable
selection: for example, picking the domain with the smallest number of values left first
often works well (Haralick and Elliott, 1980), as does picking whichever domain is most
constrained. This kind of rule is called a heuristic, since it is not guaranteed to give the best
choice, but empirically tends to give good choices most of the time. Value selection can be
more difficult—in graph problems, we usually end up talking about the number of neighbours
a vertex has. Unfortunately, value selection heuristics for subgraph problems tend not to
be particularly reliable, particularly when (as often happens) many vertices have the same
number of neighbours.

1.3.4 Bounds

For optimisation problems such as maximum clique, an additional form of inference can
come from a bound function. Suppose we want to find a largest possible clique in a graph.
We can use inference and search to find a feasible solution (that is, any clique), which we call
the incumbent. We then continue searching, but are only interested in finding cliques which
are strictly larger than the one we have already found. To do this, we use the incumbent in a
special kind of filtering which eliminates portions of the search space which we can prove
cannot contain a better solution. Conceptually, each time we find a solution, we add a new
constraint saying “the solution must be better than this new incumbent”, and we then continue
with search until no (better) solution exists.

We give an example of a bound in Figure 1.8. A colouring of a graph assigns a colour to
each vertex, with the rule that adjacent vertices must be given different colours. If we can
colour a graph using k colours, we know that it cannot contain a clique of more than k vertices
(because each vertex in a clique must be given a different colour). However, as the second

1.3. SOLVING WITH CONSTRAINTS 11

Figure 1.8: The relationship between cliques and colourings. The graph on the left can be
coloured using four colours, and contains a clique of size four. The graph on the right also
requires four colours, but contains no clique with more than three vertices.

graph of Figure 1.8 shows, this bound may not be tight, even if we produce a best-possible
colouring. In fact, there are graphs where the gap between the clique and colour numbers is
arbitrarily large (Mycielski, 1955).

Colouring, then, gives us a bound of how large a clique can be in the initial graph. But in
Chapter 2 we go further. Suppose, during search, that we have already accepted three vertices,
and rejected two others. We can then colour the subgraph given just by vertices which have
neither been accepted or no rejected so far, and add the number of colours used to the three
vertices accepted, to give us a dynamic bound.

1.3.5 Smart Versus Fast

Complex methods to reduce the size of the search tree often do not lead to

corresponding reductions in actual execution time, because of the additional work

needed at each node.

S. A. Cook and Mitchell (1996)

There is a trade-off to be made between the amount of propagation done, and the amount
of search that must be performed. Even when strong filtering is theoretically capable of
eliminating more values, it is not always worth trying as hard as possible to eliminate values
through propagation: expensive propagation algorithms may not lead to additional deletions
in practice, or if they do, those deletions may not substantially reduce the amount of search
required. The right balance must also be found when selecting variable and value ordering
heuristics—for example, rather than trying to find a vertex with most neighbours remaining in
other variables (which must be calculated dynamically), it may be more profitable to simply
select a vertex which had most neighbours at the start of search. Similarly, we could choose
to put a lot of effort into obtaining very good bounds at the expense of making each step more
expensive, and we can decide how much effort is spent pruning symmetries.

The effects of such trade-offs form a recurring theme throughout this thesis: efficiency
in regularly-performed operations becomes particularly important when we are dealing with
graphs with tens of thousands of vertices or hundreds of thousands of edges. For example, in
Chapter 2, we introduce a new search heuristic which is stronger but too costly to be practical,

12 CHAPTER 1. INTRODUCTION

and then propose a cheaper surrogate with nearly all of the benefits and none of the overheads.
Similarly, in Chapter 4, we introduce an inference rule, and show how to use laziness to
avoid a costly initialisation step. In Chapter 5, we propose and evaluate a new all-different
propagator which drops some consistency guarantees in return for much faster execution, and
replace expensive but effective dynamic path calculations with a cheaper static alternative.
And in Chapter 7, we compare two similar algorithms, one of which is slower but uses strong
inference, and another which can carry out many more recursive calls per second but which
explores a larger search space.

1.3.6 General Purpose Solvers

Constraint programming toolkits provide implementations of many common inference, heuris-
tic, and search algorithms. We do not make heavy use of toolkits in this thesis, other than
in preliminary experiments to reassure ourselves that more complex algorithms produce the
same answers. These general-purpose solvers use data structures and algorithms which have
not been tailored specifically for graph problems, and for every problem in this thesis we are
able to select better alternatives that make our most common operations much cheaper to
perform. Prior research has evaluated constraint programming approaches for the three main
problems in this thesis, and in each case dedicated algorithms have already comprehensively
beaten general-purpose solvers.

Nonetheless, we find constraint programming extremely valuable as a philosophy, to help
with understanding why these algorithms work. For example, in Chapter 2, we use constraint
programming concepts to explain why a branching rule in a special-purpose maximum clique
algorithm is so effective in practice.

1.3.7 Microstructure

This kind of backtracking search is not the only way to solve a CSP. Another way, which
we will use twice during this thesis (once explicitly, in Chapter 7, and once in disguise, in
Chapter 4), is to encode the problem using its microstructure (Jégou, 1993). The microstruc-
ture encoding of a CSP is a way of representing a problem instance as a graph, such that
a clique of a particular size corresponds to a solution. Microstructure is mostly studied in
constraint programming for its theoretical properties (Cohen, Cooper, et al., 2012; Cohen,
Jeavons, et al., 2006; Cooper, Jeavons, and Salamon, 2010; Jégou, 1993), but we will show
that it is sometimes also useful as a practical solving technique.

1.4. EMPIRICAL ALGORITHMICS 13

1.4 Empirical Algorithmics

Within theoretical computer science algorithms are usually studied within highly

simplified models of computation and evaluated by metrics such as their asymp-

totic worst-case running time or their competitive ratio. These metrics can be

indicative of how algorithms are likely to perform in practice, but they are not

sufficiently accurate to predict actual performance. The situation can be improved

by using models that take into account more details of system architecture and

factors such as data movement and interprocessor communication, but even then

considerable experimentation and fine-tuning is typically required to get the most

out of a theoretical idea. Efforts must be made to ensure that promising algorithms

discovered by the theory community are implemented, tested and refined to the

point where they can be usefully applied in practice. This can only happen if the

theory of computing community comes to recognize algorithm engineering—the

experimental testing and tuning of algorithms—as integral to its mission.

Aho, Johnson, Karp, Kosaraju, and McGeoch (1996)

It is important to observe that, with the exception of planar graphs, none of the

polynomial algorithms mentioned above has been implemented in software.

Piperno (2008)

Since we are not looking to improve worst-case complexity, we need a different way of
evaluating our algorithms. The ultimate aim of designing and implementing these algorithms
is to solve actual problem instances. Thus we evaluate our algorithms and implementations by
measuring how many of these instances we may solve, and how long it takes to solve them.

1.4.1 Implementation Notes

The algorithms introduced in this thesis are implemented in C++. Four factors motivated
this decision: the need to write performance-competitive code, the availability of both low-
level and medium-level implementation options for parallelism, having access to detailed
performance measurements, and the author’s familiarity with the language. All experiments
are carried out on Linux systems—hardware availability forced this decision.

In this thesis, backtracking is always implemented by recursion, using the implicit
compiler-generated stack. This has the advantages of simplicity and readability, as well
as avoiding the need for dynamic memory allocation for some data structures (we discuss
this further below). However, current C++ compilers generate code which requires the size
of the stack to be decided before the program is launched. The default stack sizes on Linux
systems is sometimes too small for larger problem instances, and it is sometimes necessary to

14 CHAPTER 1. INTRODUCTION

raise the size limit (using ulimit -s in the Bash shell, for example). A separate, explicitly-
maintained stack would avoid this complication, at the expense of much harder to read code.
Another potential advantage of explicit stacks is in reduced function call overheads, although
the recursive functions in each of our algorithms involve sufficient work that this is not a
measurable problem, and automatic inlining takes care of small helper functions.

1.4.2 Runtimes and Other Performance Metrics

Accurately measuring runtimes is not entirely straightforward: McGeoch (2012, Chapter 3)
discusses this topic in depth. Fortunately, modern C++ provides us with access to a steady

clock, which avoids most of the pitfalls associated with timing, even when dealing with
threaded code on multi-core hardware.

Every measurement we give when using our own code in this thesis uses a raw steady
clock, which is (supposed to be) guaranteed to be monotonically increasing, is unaffected by
clock changes or adjustments, and which does not exhibit complications when threads migrate
between processor cores. This clock limits us to millisecond resolutions (and two executions
which take exactly the same amount of time can have reported runtimes differing by up to one
millisecond as a result). As far as possible, we exclude file input times from measurements,
since these can be extremely inconsistent, particularly on networked filesystems. In cases
where naturally we would read in a file and perform non-trivial computations along the way
to convert it to an internal in-memory format, we split this code into two parts and time only
the latter.

When using other people’s code, we do not always have the option of taking steady-clock
measurements, either because we cannot modify the source code, or because the implementa-
tion is in a programming language which does not support accurate timing measurements. In
particular, several of the solvers we use measure CPU time rather than real time. As McGeoch
notes, some experimenters prefer this measurement, since it (approximately) excludes time
spent when a process is not running. This is sometimes felt to be “more accurate”, because
it masks some of the complications of running on real hardware. However, measuring CPU
time is completely inappropriate in a multi-threaded environment, since it excludes some (but
not all) time spent by threads in a blocked state, and will hide lock contention.

Sometimes we will adopt alternative measures, such as search tree sizes (Bessiere, Zanut-
tini, and Fernàndez, 2004); however, such measurements will only be used to provide insight,
and are not taken as directly indicative of performance.

1.4.3 Cumulative Plots, Scatter Plots, and Heatmaps

Having measured runtimes, how do we interpret and report them? Sometimes we will present
a large table of results, showing runtimes and other measurements for every problem instance

1.4. EMPIRICAL ALGORITHMICS 15

individually. For example, we do this in Chapters 2 and 3, where the set of benchmark
instances is small enough to make this feasible, and where algorithm behaviour on individual
instances illuminates interesting behaviour. A further benefit of such a table is that if search
tree size measurements are included, then independent implementations can verify that they
produce the same-sized search tree as an indication of correctness (Korf, 2014).

However, producing a table for every instance is not environmentally friendly if we have
many thousands of instances, as we do in Chapters 5 and 7. We therefore need ways of
summarising data. Taking a mean or median runtime hides many interesting details, and
when a timeout is used, there is a further complication of how to handle instances which do
not complete with one algorithm. Instead, we make widespread use of empirical cumulative

distribution function plots, which we simply call cumulative plots. Such a plot has time (or
some other measure of size) along the x-axis, and one plotted line for each algorithm being
measured. The y value at point x is the number of instances whose runtime is less than or
equal to x. Usually we use a log scale on the x axis, and scale the y axis linearly from zero
to the total number of instances in the dataset. An example of such a plot can be seen in
Figure 5.2 on page 135.

Note that some publications use the alternative choice of x and y axes, treating “number
of instances solved” as the dependent variable. Such plots are sometimes called cactus plots.

Because cumulative plots are the main way of comparing algorithm performance in
this thesis, we emphasise the following extremely important point which must not be
misunderstood: the cumulative plot value is not the total number of instances which can
be solved in time x. Each instance is considered individually, and we do not in any way
add together runtimes from more than one instance. Thus, these plots give the number of
successes we would encounter if every single instance in the dataset is run independently,
each with its own timeout of x.

Usually when reading a cumulative plot, we look at which line is highest up on the plot to
see which algorithm is best: the vertical difference between two lines shows how many more
instances one algorithm can solve than the other, for a given choice of timeout. Comparing
the horizontal difference between two lines can give an indication of how many times faster
one algorithm is than another, bearing in mind that the sets of instances solved by the two
algorithms may be complete different. Cumulative plots only show aggregate performance,
and tell us nothing about performance on individual instances. In an extreme case, algorithm
A could be extremely good at instances from problem family A and poor at instances from
problem family B, whilst algorithm B could show the opposite behaviour. In this case, a
cumulative plot will show that algorithm A is the clear winner if there are more instances
from family A than family B in the test set, or that algorithm B is best if the opposite holds.

To avoid such a misleading conclusion, we also make use of scatter plots, to compare two
algorithms on an instance by instance basis. As far as possible, we follow the convention

16 CHAPTER 1. INTRODUCTION

in this thesis that “points below the diagonal line are better” for whichever algorithm or
technique is being proposed. Figure 5.3 on page 135 gives an example, which presents same
the results as Figure 5.2 but with a different perspective on the data. By convention, points
drawn along the top or right of a plot represent instances which timed out with one algorithm
but not the other (so, for example, in the left-hand plot of Figure 5.3 on page 135, we see
many instances which timed out with VF2 but not our algorithm, and one which timed out
with our algorithm but not with VF2).

Finally, we sometimes use heatmaps, which we find to be more readable than three
dimensional plots. A heatmap uses the colour at the point (x, y) to show the value of a
function at that point. This function can either be a direct measurement, such as in Figure 6.2
on page 149, or to show the density of points around a location when a scatter plot would
be hard to read due to there being many close-together data points, as in Figure 7.3 on
page 178. As far as possible, we have selected colours which emphasise the behaviour we
wish to illustrate. For example, the top row of Figure 6.2 uses the lightest colour for the point
where the function takes the value 0.5, and diverging darker colours for 0 and 1, because
the half-way point is where an interesting phenomenon occurs. The subsequent rows of this
figure instead use darker colours to represent longer runtimes, and lighter colours to represent
shorter runtimes. We refer to Borland and Taylor II (2007) and Janert (2009) for more details
on the effects of colour palettes; the schemes in this thesis were created using the Chroma.js
Colour Scale Helper (Aisch, 2013).

1.4.4 Instance Selection

Evaluating an implementation using problem instances, rather than by considering its worst-
case complexity, runs the risk of drawing overly broad conclusions based upon a limited
number of inputs. To reduce bias (at least, of the kind we could introduce ourselves), where
possible, we will be using other people’s choices of instances for evaluations. Fortunately,
because the problems we consider have real-world applications, we often have access to
collections of real-world problem instances for evaluation. The flexibility of these problems
mean we are usually able to use datasets with different characteristics from multiple sources,
which further reduces the chances of overfitting.

We will also be using randomly generated instances. The main advantage of this approach
is that we can generate large numbers of instances—this again reduces the chances of misin-
terpreting the significance of results. Another advantage is that certain interesting but rare
phenomena are most easily visible when we can spot outliers after having looked at hundreds
or thousands of instances which should give very similar performance: an early observation
of rare exceptionally hard problem instances by Gent and Walsh (1994) has had a large impact
on the design of subsequent algorithms, leading to improved performance on all kinds of
instances.

1.5. OTHER APPROACHES TO HARDNESS 17

A potential weakness of randomly generated instances is that real-world graphs rarely
look random—Gent and Walsh (1995) give an example of an exam timetabling graph which
contains an unexpected ten-vertex clique, which would be extremely unlikely in a randomly
generated graph with a similar order and density. The complete lack of structure in random
graphs means that some inference techniques which appear to be completely useless on
random graphs are extremely helpful on the kinds of problem instances which people actually
want to solve. McGeoch (2012, Chapter 2) contains further discussion on instance selection.

1.4.5 Are Hard Problems Hard?

A further interesting property of randomly generated instances is that, depending upon the
parameters used, they can give either overly optimistic or overly pessimistic views of difficulty
and scalability. Both of these extremes are explored in Chapter 6. This chapter begins with
a close look at a suite of random instances which are often used to support the claim that
subgraph isomorphism algorithms can easily scale to patterns of many hundreds and targets of
many thousands of vertices. By using a slightly different random model, we create instances
with thirty and one hundred and fifty vertices respectively which cannot be solved with a
reasonable timeout by any solver.

The existence of really hard instances is perhaps reassuring. It is widely believed that
algorithms for NP-complete problems necessarily have exponential worst-case complexity
(or at least, the best algorithms we know about have exponential worst-case behaviour), yet
it is rare to encounter anything approaching these worst-case bounds in practice. The phase

transition phenomena discussed in Chapters 2 and 6 give us a predictable way of generating
families of problem instances which force the worst case to occur.

This is not purely of theoretical interest. Although real-world instances are usually
very different from the hardest random instances, understanding algorithm behaviour on
hard random instances helps us to improve algorithms, and also systems built upon these
algorithms. This is the topic of the second half of Chapter 6, which re-evaluates a line of
research in graph database systems using an improved understanding of when subgraph
isomorphism is hard. This understanding highlights a serious design problem with a popular
technique known as “filter / verify”.

1.5 Other Approaches to Hardness

The focus in this thesis is upon tackling hard problems through practical algorithms—that
is, algorithms which work well in practice on relevant problem instances, as determined by
scientific experiments on an implementation, as opposed to through mathematical analysis of
worst-case or average-case complexity. We now briefly discuss some common alternatives.

18 CHAPTER 1. INTRODUCTION

1.5.1 Fixed-Parameter Tractability

The algorithms resulting from this theory are most unlikely to be useful in practice.

McKay and Piperno (2014)

A different perspective on per-instance hardness comes from fixed-parameter tractability

theory. Fixed-parameter tractability gives a way of limiting the exponential behaviour of an
algorithm by restricting properties of the inputs. For example, in Chapter 7 we will see that
there are special cases where a connected common subgraph problem is hard in general, but
if the maximum degree of each vertex in a graph is restricted to some constant k, then the
problem is of polynomial complexity (but exponentially difficult in k).

Although fixed-parameter tractability receives a lot of theoretical attention, its practical
significance for subgraph problems has not been established. Piperno (2008) notes that almost
none of the special polynomial cases for graph isomorphism have ever been implemented,
and McKay and Piperno (2014) argue that there is little point in doing so. Sharmin (2014,
Chapter 10) did implement and evaluate a fixed-parameter tractable algorithm for maximum
clique: her results are generally exceedingly poor, except for one family of crafted benchmark
instances, where they are orders of magnitude better than standard solvers. Another success
is claimed by Akiba and Iwata (2016) for certain kinds of vertex cover problems; a closer
look by Strash (2016) shows the need for caution, by demonstrating that the actual benefits
came from input preprocessing rather than from exploiting fixed-parameter tractability during
search. In any case, such theories do not appear ready to explain the behaviour we witness in
Chapters 2 and 6.

1.5.2 Approximation Algorithms and Heuristics

What if, instead of requiring a maximum clique or maximum common subgraph, we instead
only want to find a large clique or common subgraph? Two very different approaches to this
problem are approximation algorithms and heuristics. An approximation algorithm provides
an answer which is guaranteed not to be more than a certain ratio below optimal; unless
P = NP, no such algorithm exists for the maximum clique problem (Zuckerman, 2006),
which rules out this kind of approach for general subgraph problems.

Heuristic approaches, in contrast, provide no guarantees beyond empirical evidence that
they tend to give good solutions in practice. To avoid confusing with variable- and value-
ordering heuristics, we refer to such approaches as inexact. Although the main focus of this
thesis is in guaranteeing optimal solutions, in Chapter 2 we discuss the benefits of augmenting
an exact solver with solutions from inexact approaches.

1.6. EXPLOITING PARALLEL HARDWARE 19

1.6 Exploiting Parallel Hardware

In my future work, I will focus more attention on applying parallelism to NP-

complete problems. Somebody with a very severe theoretical point of view could

say, “That’s hopeless, you can never reduce the run time from exponential to

polynomial by throwing processors at a problem, unless you have an exponential

number of processors.” On the other hand, even though you may never be able

to go from exponential to polynomial, it’s also clear that there is tremendous

scope for parallelism on those problems, and parallelism may really help us curb

combinatorial explosions.

Richard M. Karp, interviewed by Frenkel (1986)

To me, it looks more or less like the hardware designers have run out of ideas,

and that they’re trying to pass the blame for the future demise of Moore’s Law

to the software writers by giving us machines that work faster only on a few key

benchmarks! I won’t be surprised at all if the whole multithreading idea turns out

to be a flop [. . .]. Let me put it this way: During the past 50 years, I’ve written

well over a thousand programs, many of which have substantial size. I can’t

think of even five of those programs that would have been enhanced noticeably by

parallelism or multithreading.

Donald E. Knuth, interviewed by Binstock (2008)

Processor clock speeds are no longer increasing substantially. To exploit modern hardware to
its full potential, programs must be able to make good use of vector parallelism, multiple cores,
and cache, which requires major changes to how algorithms are designed and implemented
(Sutter, 2005; Sutter and Larus, 2005).

For the “in parallel” part of the title of this thesis, we will be taking good subgraph
algorithms and improving them to exploit two kinds of parallelism. The first is vector
or “single instruction multiple data” parallelism, where bitsets are used to carry out the
same operation on multiple vertices simultaneously. The second is shared-memory thread
parallelism to exploit multiple cores, which we use both for parallel preprocessing, and for
parallel search.

There are two other potential sources of parallelism from modern hardware, which do
not play a significant role in this thesis—we could use more than one computer at once,
and communicate using message passing over a network, or we could use special parallel
hardware such as graphics processing units. The former is left as future work, due to the
additional complexity of programming for these systems; the latter can give large benefits to
throughput-oriented floating point computations, but are not designed with constraint-based
search algorithms in mind.

20 CHAPTER 1. INTRODUCTION

1.6.1 Bit Parallelism

We believe, however, that bit parallel optimization is not just an implementation

trick but has a full right to exist as an independent discipline.

San Segundo, Rodríguez-Losada, Galán, Matía, and Jiménez (2007)

The use of bit-parallelism to accelerate graph algorithms has a long history. For example,
Levi (1973) used it in a maximum common subgraph algorithm, and San Segundo, Rodríguez-
Losada, Galán, et al. (2007) started a long chain of research into bit-parallel maximum clique
algorithms which we review in Chapter 2. With modern hardware, exploiting bit-parallelism
is becoming increasingly beneficial.

Bitset representations allow us to operate on 64 (or even more) vertices in a single
instruction. For example, taking the intersection of two sets of vertices represented using
bitsets is a simple bitwise-and operation upon two integers. When working with bitsets in
algorithms, we use set notation, so A ∩B means “perform a bitwise-and operation on bitsets
A and B, corresponding to the set intersection operation”.

To work with larger sets, we use a flat array of integers and a simple loop. The maximum
size of every bitset we use in this thesis is known in advance (usually it is equal to the
order of the input graph, sometimes with a small number of “extra” bits for wildcard values).
Because bitsets are performance-critical in some places (such as the two nested loops in the
colourOrder function in Algorithm 2.1), it can be beneficial to compile multiple copies of
performance-critical functions to work with bitsets of different array lengths, before switching
to dynamic allocation for larger arrays. This can be done automatically using C++ templates,
without affecting the readability of the body of the function: the bitset data type can be
parameterised by the number of words it contains, and can transparently either use a static
array or a dynamic array as appropriate.

At best, bit-parallelism gives a constant factor improvement, which is completely ignored
by abstract measures of complexity. Sometimes the theoretical behaviour is even worse—for
example, finding the first true bit in a bitset is an O(m) operation, where m is the potential
number of bits which could be in the set, whilst finding the leftmost element of a tree is
a O(log n) operation, where n is the number of elements actually present.3 However, on
modern processors there is a dedicated hardware instruction for finding the first set bit in an
integer, and in practice bitsets can remain faster than tree or hash sets even when m is many
thousands (corresponding to the number of vertices in the largest graphs we consider).

There is also a dedicated hardware instruction for finding the population count of an integer
(that is, the number of bits in its binary representation which are one). This corresponds to the
cardinality of a bitset, and in algorithms we write |B| to mean “calculate the cardinality of the

3Complicating matters, the C++ standard requires both this operation and iteration to be O(1) on all
containers, so C++ ordered sets are typically implemented with a combined linked list and balanced tree.

1.6. EXPLOITING PARALLEL HARDWARE 21

bitset B, using population count instructions”. Again, this operation has worse worst-case
complexity than for a tree when the set is sparse, but in practice is much faster. Tarhio,
Holub, and Giaquinta (2016) provide an interesting perspective on the merits of algorithmic
improvements versus hardware instructions.

An additional advantage of bitset parallelism is that the associated data structures are
very memory- and cache-friendly. Memory latency is not improving significantly on modern
hardware: “first word” latency has not changed between the first DDR memory (c. 2000) and
current DDR4 memory. In contrast, memory bandwidth has risen by more than an order of
magnitude in the same period, even before taking the increasing numbers of memory channels
available into account. These trends should influence algorithm design and implementation:
Stroustrup (2012) gives an example of deleting elements from a linked list versus a flat vector,
where the improved theoretical complexity of using a list gives worse practical performance
on modern hardware when using fewer than half a million elements due to differing memory
access patterns. Stroustrup’s three initial recommendations for designing software are to
avoid storing data unnecessarily, to keep data compact, and to access memory in a predicable
manner: in cases where they can be used, bitsets follow the second and third recommendations
perfectly.

We make use of bitsets throughout this thesis: other than one exception in Chapter 7,
every best-performing algorithm in our experiments exploits bit-parallelism in some way.
Our “default” data structure for representing a graph is an adjacency matrix using bit vectors
(although in some cases we convert between representations for particular operations), and
we will also discuss using bitsets when we must deal with additional data such as labels or
connectivity information.

1.6.2 Thread-Parallel Propagation and Preprocessing

Some of the algorithms we introduce and study spend a substantial amount of time in a
preprocessing stage. This preprocessing usually involves iterating over every vertex in an
input graph at least once. Parallelising such a loop is usually routine, and so we do not spend
much time discussing it, beyond verifying that it is beneficial. We refer to McCool, Reinders,
and Robison (2012) for an overview of structured parallel programming in general (which is
sufficient to cover the techniques we use for parallel preprocessing, but not parallel search)
and to Williams (2012) for C++-specific issues.

There could also be a limited amount of potential for carrying out inference in parallel by
propagating different constraints simultaneously (Nguyen and Deville, 1998). We make use
of bit-parallelism for inference, which could be seen as a way of propagating many binary
constraints simultaneously. Other than this, we do not make use of parallel propagation—
none of our algorithms use a constraint queue, since we are always able to determine a static
propagation order at design time, and the granularity of our propagation is typically much

22 CHAPTER 1. INTRODUCTION

too fine for thread parallelism. Even if we could solve the granularity problem, there are also
theoretical limitations to such an approach (Kasif, 1990).

1.6.3 Thread-Parallel Search

Although parallel preprocessing can help, on difficult problem instances, most of the time is
spent doing search. Since we are not making use of multi-core parallelism for propagation,
we must identify a different source of parallelism to be able to make good use of modern
processors. We do this by parallelising the search process—this is typically the largest source
of improvement that we are able to get from parallelism. This topic is introduced in Chapter 3.

1.6.4 Mutexes, Atomics, and Queues

In a multi-threaded environment, care must be taken when multiple threads access the same
variable if at least one of these threads may be writing to it (C++ mostly guarantees that
simultaneous reads are safe, both for primitives and for standard library data structures). The
simplest way of allowing concurrent reads and writes is to protect the variable with a mutex.
Any thread may lock the mutex, perform some work, and then unlock the mutex. Only one
lock per mutex can be held at a time, and any other thread attempting to lock that mutex will
block until it is unlocked. When concurrent reads are extremely common and writes rare, we
instead make use of an atomic. Atomics are special variables which support only a small
number of operations, but which can be read from and written to simultaneously. Williams
(2012) explains these concepts in more detail.

We also make use of queues. The term queue in this thesis always refers to an unbounded
thread-safe queue, where items can be enqueued and dequeued concurrently, and where
dequeue operations may block.

1.6.5 Measuring Parallel Improvements

Naïvely, one might think that given ten processing cores, we should be able to solve a
problem ten times faster than if we only had one processing core. We might anticipate some
overheads: perhaps we should only reasonably expect things to be nine times faster with ten
processing cores? Unfortunately matters are not this simple even for ideal algorithms, and
with the state-of-the-art subgraph algorithms in this thesis the situation becomes much more
complicated.

By a speedup, we mean “how many times faster is a parallel algorithm?” (recalling
our earlier discussion on measuring times). An absolute speedup is a speedup over a tuned
sequential algorithm; a relative speedup is over a parallel algorithm run with a single thread
(or with a smaller number of threads). In this thesis, whenever we refer to a speedup over a

1.6. EXPLOITING PARALLEL HARDWARE 23

sequential algorithm, we mean an absolute speedup over a sequential algorithm which we
have tuned with the same care given to parallel code—that is, we are measuring genuine
improvements over the best we could do sequentially. When we give a speedup from, say,
increasing from 8 to 16 threads, this is obviously a relative speedup. A linear speedup is a
speedup of (approximately) n from n threads. As Hamadi and Wintersteiger (2012) note,
there are myriad reasons why linear speedups are an unrealistic goal. Amongst the most
relevant for this thesis are:

• The increased number of cores in modern Intel and AMD processors do not come with
a corresponding increase in memory bandwidth. If our algorithms are constrained by
accesses to either main memory or shared caches, then multi-core hardware does not give a
linear increase in the critical resource.

• Memory bandwidth is not the only hardware complication. Hyper-threading is a feature on
Intel processors where each “real” core is presented as two cores, with control switching
between cores at very high granularity (such as when there is a stall for a memory access).
For some applications hyper-threading gives an additional benefit of twenty to thirty percent,
whilst for others it does nothing. Additionally, sequential execution usually proceeds more
slowly if two threads are running on the same “real” core. We leave hyper-threading
enabled when measuring absolute parallel performance, since our goal is to see the benefits
of making use of whatever features our hardware offers. We disable hyper-threading when
we are trying to get a careful picture of scalability effects.

• Another hardware feature, referred to by Intel as “Turbo Boost” and by AMD as “Turbo
Core”, causes the processor clock speed to increase when operating below power, current
and temperature limits. This feature is unlikely to trigger when parallel code is running,
but sometimes gives a benefit for sequential code. We leave this feature disabled, to avoid
having to account for the effects of the Scottish summer when performing experiments.

• Often we must change the sequential algorithm to allow for the introduction of parallelism,
taking a penalty to the starting point in the hopes of more than recovering the lost per-
formance through parallelism. For example, in most of our algorithms we have to make
copies of certain data structures to allow for the possibility of parallelism (even if that
possibility does not occur), whereas sequentially these data structures could be updated
in-place using reversible operations. In no cases do we “cheat” and deliberately design our
sequential algorithms with unnecessary copying—this plays a particularly large role for the
final algorithm discussed in Chapter 7.

• Sometimes we are only parallelising part of the execution. Suppose an algorithm proceeds
in two parts, which sequentially take one and three seconds respectively. If we only

24 CHAPTER 1. INTRODUCTION

parallelise the second part, the highest speedup we could possibly get with any number of
processors is four.

With the final point in mind, ordinarily a work on parallelism would next talk about
various laws named after distinguished researchers. However, these laws are not applicable in
a speculative parallelism setting, and so we pointedly ignore them; Chapter 3 discusses more
suitable alternatives.

Indeed, we believe that parallelism laws, together with an overly zealous focus upon linear
speedups, have stood in the way of progress. Multi-core hardware is now the standard even on
low-power laptops, and new server hardware typically has many tens of cores. Complaining
that we cannot make perfect use of this parallelism should not stop us from making some

use of it. Our first measure of success, therefore, is simply whether parallelism is beneficial.
That is, can we see that our best parallel algorithm is clearly better than the best sequential
algorithm, preferably without needing to resort to any statistical tests more complex than a
cumulative plot?

1.6.6 Anomalies and Risk-Free, Reproducible Parallel Search

Our experimental results indicate that such anomalous behaviour will be rarely

witnessed in practice

Lai and Sahni (1984)

In practice the above described anomalies, especially detrimental anomalies, are

so common that we can regard them as facts of life. The word ‘anomaly’ is

thus not very appropriate, and we would rather think of them as limited speedup,

super speedup, and slowdown respectively. Even though we do not agree with the

terminology in the literature, we will adhere to it in the remainder of this thesis in

order to prevent confusion.

Trienekens (1990)

A further complication is that parallel search is speculative: it works by using parallelism to
pre-compute results which might be used in the future. There is therefore no expectation of
a linear speedup at all even under ideal circumstances. Instead, we could see no speedup, a
superlinear speedup (that is, a speedup of more than n from n cores), or even an absolute
slowdown. Such behaviours are called anomalies in the literature, which is unfortunate, since
they are not in any way anomalous. We explain this topic fully in Chapter 3. For now, we
simply introduce three further properties which we desire from parallel search:

• Parallelism should be risk-free. We would like to guarantee that parallel runtimes will not
be (substantially) worse than sequential runtimes. A precise definition of this property is

1.7. OVERVIEW OF THE THESIS 25

difficult to formulate: practically, we do not mind small amounts of overhead, or an increase
in runtimes from one millisecond to ten millisecond on trivial instances. However, we
would prefer that the amount of “work done” does not increase by a larger factor than the
number of cores used, and would like to guarantee that we will never introduce exponential
slowdowns.

• We would also like our parallel algorithms to be scalable, in the following sense. If we
increase the number of cores available to us, we would like runtimes to decrease, or at least
not increase (again, ignoring small amounts of overhead).

• Finally, parallel runtimes should be reproducible: if we run the same implementation on
the same instance with the same hardware more than once, we should get similar runtimes.

Although each of these properties may seem obvious and reasonable, in Chapter 3 we
observe that no existing constraint programming mechanism for parallel search provides all
of these guarantees simultaneously. A central contribution of this thesis is the design and
implementation of a work splitting technique which is risk-free, scalable, and reproducible,
both in theory and in practice. This technique is also clearly beneficial, thanks to a key
observation: whilst work balance can be a problem, for each kind of subgraph problem we
discuss, there is an interaction between parallelism and value-ordering heuristics which must
be understood and controlled to obtain consistently good results.

1.7 Overview of the Thesis

The remainder of this thesis is structured as follows.

In Chapter 2 we study a bit-parallel algorithm for the maximum clique problem. We look
at and explain its behaviour on random graphs and real-world problem instances. Next, we
analyse the algorithm in more detail, using analogies with constraint programming to explain
why a widely used but poorly understood choice of branching order is so successful. Parts of
this chapter have previously been published by McCreesh and Prosser (2014b) as “Reducing
the Branching in a Branch and Bound Algorithm for the Maximum Clique Problem”.

Then, in Chapter 3 we compare and contrast several ways of parallelising this algorithm.
This chapter introduces parallel search, and highlights the connection between performance
and interactions between work splitting and variable-ordering heuristics which inform the
remainder of the thesis. This chapter is extended from McCreesh and Prosser (2015c), “The
Shape of the Search Tree for the Maximum Clique Problem and the Implications for Parallel
Branch and Bound”.

In Chapter 4 we discuss three variants of the maximum clique problem. Firstly, we
look at the maximum k-clique problem, and investigate whether a well-known but previously

26 CHAPTER 1. INTRODUCTION

unimplemented reduction to the maximum clique problem (which is, in effect, a microstructure
encoding) leads to a workable algorithm in practice. Secondly, we give a new approach to the
maximum labelled clique problem, which is many orders of magnitude better than previously
published results. Finally, we present the first algorithm for the maximum balanced induced
biclique problem, which includes a static kind of symmetry breaking. Much of this chapter is
derived from three publications: McCreesh and Prosser (2016), “Finding Maximum k-Cliques
Faster Using Lazy Global Domination”, McCreesh and Prosser (2015b), “A parallel branch
and bound algorithm for the maximum labelled clique problem”, and McCreesh and Prosser
(2014a), “An Exact Branch and Bound Algorithm with Symmetry Breaking for the Maximum
Balanced Induced Biclique Problem”.

Having covered the maximum clique problem, we then move on to subgraph isomorphism
problems. Chapter 5 introduces a novel approach to the problem, exploiting bit-parallelism to
achieve both strong inference and fast propagation; this algorithm is derived from an earlier
publication, McCreesh and Prosser (2015a), “A Parallel, Backjumping Subgraph Isomorphism
Algorithm Using Supplemental Graphs”. Experiments over a large set of problem instances
introduced in Kotthoff, McCreesh, and Solnon (2016), “Portfolios of Subgraph Isomorphism
Algorithms”, show that this new algorithm is the single strongest solver. The algorithm is
then extended to make use of thread parallelism for preprocessing and search, drawing from
the lessons of Chapter 3. Further experiments confirm that thread parallelism is beneficial,
risk-free, scalable, and reproducible.

Despite subgraph isomorphism being NP-complete, the algorithms compared in Chapter 5
can work comfortably with instances with many hundreds of vertices in the pattern graph,
and up to six thousand vertices in the target graph. Chapter 6 begins by taking a critical
look at the problem instances used to reach this conclusion, and introduces a new method for
creating “really hard” subgraph isomorphism instances. This method also helps to justify the
variable- and value-ordering heuristics we selected. This first half of the chapter is derived
from McCreesh, Prosser, and Trimble (2016), “Heuristics and Really Hard Instances for
Subgraph Isomorphism Problems”.

Chapter 6 continues by extending this method to labelled graphs, where we witness un-
usually poor behaviour from Cordella et al.’s (2004) widely used VF2 subgraph isomorphism
algorithm. Analysing this behaviour in more detail uncovers a fundamental flaw in the design
of graph database systems, and casts doubt on fifteen years of research into indexing and a
technique known as filter / verify.

The final part of the thesis looks at maximum common subgraph problems. In Chapter 7
we attempt to determine what “the best” maximum common subgraph algorithm is, comparing
a constraint programming approach to a reduction to maximum clique. We also consider the
connected version of the problem, introducing a clique-inspired algorithm which is extremely
strong on edge-labelled instances. These experiments were published as McCreesh, Ndiaye,

1.7. OVERVIEW OF THE THESIS 27

et al. (2016), “Clique and Constraint Models for Maximum Common (Connected) Subgraph
Problems”. This chapter then describes two new approaches to the problem: the first was
introduced in Hoffmann, McCreesh, and Reilly (2017), “Between Subgraph Isomorphism and
Maximum Common Subgraph”, and the second is forthcoming work due to James Trimble.
Depending upon the instances being considered, either of these two new approaches or
the clique approach could be the best choice of solver. We therefore finish the chapter by
parallelising all three.

Finally, in Chapter 8 we conclude, recapping our work, and giving broader perspectives
on empirical complexity, on constraint programming, and on programming language features
for parallelism.

28

29

Chapter 2

The Maximum Clique Problem

Figure 2.1: A graph,
with its unique maximum
clique of four vertices
highlighted.

We begin with the simplest kind of subgraph problem: finding
a clique in a graph. Recall that a clique is a subset of vertices,
each of which is adjacent to every other vertex in the subset.
We are usually interested in finding a largest possible clique in
a given graph (as in Figure 2.1), which is called the maximum
clique problem. The size of a maximum clique is denoted ω.

In this chapter we look at a bit-parallel algorithm for the
maximum clique problem which is designed for use on dense
graphs. We begin by discussing the origins of this algorithm,
and reviewing related work. We then conduct experiments on random graphs: although
solving the maximum clique problem on random graphs is not generally useful in practice,
it does provide us with insights into the behaviour of the algorithm. We then consider
applications and real problem instances.

Next, we analyse the algorithm in more detail. In particular, we explain why a widely
used but poorly understood choice of branching order is so successful, and use our new
understanding to further improve the algorithm. Finally, we discuss some open questions.

Parts of this chapter have previously been published by McCreesh and Prosser (2014b)
as “Reducing the Branching in a Branch and Bound Algorithm for the Maximum Clique
Problem”. The description of Algorithm 2.1 is based upon McCreesh and Prosser (2016),
“Finding Maximum k-Cliques Faster Using Lazy Global Domination”.

2.1 Algorithms for the Maximum Clique Problem

Exact algorithms for clique-finding date back at least as far as Harary and Ross (1957). Early
approaches with computational experiments include a simple backtracking (but non-recursive,
due to the use of Fortran 77) search algorithm by Carraghan and Pardalos (1990) which
uses the number of remaining vertices as a bound, and a quadratic approach by Pardalos and

30 CHAPTER 2. THE MAXIMUM CLIQUE PROBLEM

Rodgers (1992); both papers use experiments on randomly generated graphs. We refer to
Pardalos and Xue (1994) for more ancient history.

The maximum clique problem was one of three selected for the Second DIMACS Imple-
mentation Challenge (Johnson and Trick, 1993), along with graph colouring and Boolean
satisfiability. The challenge lead to new exact algorithms (Goldberg and Rivenburgh, 1993;
Mannino and Sassano, 1993) and quasi-exact algorithms (Balas and Niehaus, 1993), exact
integer programming approaches (Mercure et al., 1993; Pataki et al., 1993), and a number of
heuristic techniques which we do not cover in this thesis. The challenge introduced a suite of
benchmark instances, which we discuss below. Unfortunately, the challenge also introduced a
rescaling mechanism, where results are taken from one paper and then rescaled according to
relative runtimes obtained by running a standard program on the experimenter’s computer;
this unreliable and unscientific technique is still in common use, which makes it particularly
hard to compare reported results.

Subsequently, better results were obtained by Wood (1997) using colouring as a bound and
a degree-based branching strategy, and Östergård (2002) using Russian dolls search. Fahle
(2002) and Régin (2003) both investigated explicit constraint programming approaches, the
latter with a matching-based bound. All use a subset of the DIMACS instances to evaluate
their approaches.

However, the most promising line of research is based upon a series of exact branch and
bound algorithms using a greedy graph colouring both as a bound and a branching strategy
(Tomita, 2017; Tomita and Kameda, 2007; Tomita and Seki, 2003; Tomita, Sutani, et al.,
2010; Tomita, Yoshida, et al., 2016). A study by Prosser (2012) reviewed, reimplemented,
and compared these algorithms, and confirmed the benefits of bit-parallel versions of these
algorithms proposed by San Segundo, Matía, et al. (2013) and San Segundo, Rodríguez-
Losada, and Jiménez (2011) by a direct comparison rather than by rescaling results. We
will now describe the core concepts underlying these algorithms; further enhancements are
discussed in Sections 2.4 and 2.5.

2.1.1 A Basic Colour-Based Branch and Bound Algorithm

In Algorithm 2.1 we describe a basic maximum clique algorithm which uses a colour-based
branch and bound strategy. The algorithm we describe is the variant Prosser (2012) calls
“MCSa1”: this is Tomita, Sutani, et al.’s (2010) “MCS” algorithm, without the colour repair
step, and using a degree-based ordering at the top of search.

Colouring The algorithm we discuss uses branch and bound, with a greedy graph colouring
as both the bound and an ordering strategy. Recall that a colouring of a graph is an assignment
of colours to vertices, such that adjacent vertices are given different colours; if we can colour

2.1. ALGORITHMS FOR THE MAXIMUM CLIQUE PROBLEM 31

Algorithm 2.1: Solving the maximum clique problem.
1 maxClique :: (Graph G)→ Vertex Set
2 begin
3 permute G into non-increasing degree order
4 global incumbent ← ∅
5 expand(∅, V(G))
6 return incumbent (unpermuted)

7 expand :: (Vertex Set solution , Vertex Set remaining)
8 begin
9 (order , bounds)← colourOrder(remaining)

10 for i← |remaining | downto 1 do
11 if |solution| + bounds[i] ≤ |incumbent | then return
12 v← order [i]
13 solution ′← solution + v
14 remaining ′← remaining ∩ N(G, v)
15 if remaining ′ 6= ∅ then expand(solution ′, remaining ′)
16 else if |solution ′| > |incumbent | then incumbent ← solution ′

17 remaining ← remaining − v

18 colourOrder :: (Vertex Set remaining)→ (Vertex Array, Int Array)
19 begin
20 (order , bounds)← ([], [])
21 uncoloured ← remaining
22 currentColour ← 1
23 while uncoloured 6= ∅ do
24 colourable ← uncoloured
25 while colourable 6= ∅ do
26 v← the first vertex of colourable
27 append v to order
28 append currentColour to bounds
29 uncoloured ← uncoloured − v
30 colourable ← colourable \N(G, v)

31 currentColour ← currentColour + 1

32 return (order , bounds)

1 2
3

4
56

7

8 1 3 4 6 2 7 5 8

Vertices in colour order

1 1 1 1 2 2 3 4

Number of colours used

Figure 2.2: The graph on the left has been coloured greedily, using four colours: vertices 1,
3, 4 then 6 were given the first colour, then vertices 2 then 7 were given the second colour,
then vertex 5 was given the third colour, and vertex 8 the fourth colour. The order array, on
top, contains the vertices in the order they were coloured; the ith entry of the bounds array,
below, contains the number of colours used to colour the first i vertices of order .

32 CHAPTER 2. THE MAXIMUM CLIQUE PROBLEM

a graph using c colours, then the graph cannot contain a clique of size greater than c (each
vertex in a clique must be given a different colour).

Obtaining a minimal colouring is NP-hard, but we may create a greedy colouring in
polynomial time. This is done by the colourOrder routine: we start the first colour
(line 22), and while there are uncoloured vertices remaining (line 23), we try to give each
vertex in turn the current colour (lines 24 to 30). When we cannot colour any further vertices,
we start a new colour (line 31).

The distinguishing feature of these algorithms is that they use a constructive colouring
as more than just a bound—the colourOrder routine does not just return the number of
colours used. Instead, it returns a pair of arrays, order and bounds . The order array contains
vertices, in the order in which they were coloured. The ith entry of the bounds array contains
the colour number used for the ith vertex in order . We illustrate this in Figure 2.2. Crucially,
bounds is non-decreasing (i.e. bounds [i+ 1] ≥ bounds [i]), and for any i we may colour the
subgraph induced by the first i vertices of order using bounds [i] colours.

An alternative perspective is that colourOrder returns a list of colour classes in the
order they were created, where each colour class is a list of vertices in the order they were
given that colour. Although the use of arrays is critical for performance reasons, for descriptive
purposes we will sometimes treat the return type as a list of lists.

The order in which vertices are selected for colouring can have a large effect upon
performance. Various initial vertex orderings have been considered for the maximum clique
problem. As a starting point, we colour vertices in a static non-increasing degree order, by
permuting the graph at the top of search (line 3); we discuss this more below.

Branching and recursing We may now describe the main recursive part of the algorithm.
If v is a vertex, then a clique in G either contains only v and vertices adjacent to v, or does not
contain v. This allows us to grow cliques by repeatedly picking a vertex, and branching upon
whether or not to include it. Our growing clique is stored in the variable solution, which is
initially empty (line 5). We also track which vertices may still be added to solution in the
variable remaining , which initially contains every vertex (line 5). The expand procedure
picks a vertex v (line 12), then considers adding v to solution (lines 13 to 15): we create
a new remaining ′ from remaining (line 14) by rejecting vertices which are not adjacent to
v (and thus every vertex in remaining ′ is adjacent to every vertex in solution). If vertices
remain in remaining ′, we recurse (line 15). We then take the opposite branch choice, and
consider rejecting from remaining and solution (line 17). Finally, we loop, and pick a new v.

Integrating the colour bound We keep track of the best solution we have found so far:
this is stored in incumbent , which is initially empty (line 4). Whenever we find a new
clique, we compare its size to that of incumbent , and if it is better, the incumbent is unseated

2.2. MAXIMUM CLIQUES IN RANDOM GRAPHS 33

(line 16). Now we may make use of the colour bound. At the start of the recursive procedure
(line 9), we use colourOrder to produce a constructive greedy colouring of the subgraph
induced by remaining into the array order , with the colour numbers placed in bounds . When
selecting v, we iterate over bounds from right to left (line 10). Thus, on line 11 we know
that the largest possible clique we could find at the current location has size no greater than
|solution| + bounds [i], and so if this cannot unseat the incumbent then we may abandon
search and backtrack.

2.1.2 Bit Parallelism

As San Segundo, Rodríguez-Losada, and Jiménez (2011) and San Segundo, Matía, et al.
(2013) observe, this algorithm is suitable for bit-parallelism. When permuting G on line 3, the
graph should be re-encoded as an array of adjacency bitsets. (It is not helpful to do this before
constructing G.) Now as discussed in Section 1.6.1, the intersection on line 14 becomes a
simple bitwise “and” operation, and the intersection with complement on line 30 is a bitwise
“and not” operation. Recall also that finding the first set bit in a bitset (needed on line 26) is a
dedicated hardware instruction in modern processors.

The benefits to colourOrder are particularly important: except on the sparsest of
graphs, nearly all of the runtime is spent producing colourings. Indeed, the particular colouring
algorithm we have described is due to San Segundo, Rodríguez-Losada, and Jiménez (2011);
the original MCS algorithm colours vertex by vertex, rather than colour class by colour class.
It can easily be seen that the two strategies produce the same output, but the algorithm we
describe is much more amenable to bit-parallelism.

2.2 Maximum Cliques in Random Graphs

In this section we evaluate our C++ implementation of Algorithm 2.1 on random graphs. We
do this with a view to better understanding its behaviour, rather than as a “horse race” to try
to demonstrate that this algorithm is best. We use the Erdős-Rényi probability model: by
G(n, p) we mean a random graph with n vertices, having an edge between each distinct pair
of vertices with probability p. Our experiments are performed on systems with dual Intel
Xeon E5-2697A v4 processors and 512GBytes RAM, running Ubuntu Linux 16.04. Our
compiler is GCC 5.4.0.

In Figure 2.3 we reproduce some of the experiments performed by Prosser (2012): we
look at random graphs with 100 and 150 vertices, and vary the edge probability from 0.40 to
1.00 in steps of 0.01 for 100 vertex graphs, and steps of 0.05 for 150 vertex graphs. For each
point we use 100 samples. The shaded curves plot the mean runtime in microseconds.1

1Our steady-clock timer only has a granularity of one millisecond; however, using microseconds allows us

34 CHAPTER 2. THE MAXIMUM CLIQUE PROBLEM

0

1000

2000

3000

4000

5000

6000

7000

8000

0.4 0.5 0.6 0.7 0.8 0.9 1

N
um

be
ro

fc
ol

ou
ri

ng
s

/R
un

tim
e

(µ
s)

Edge probability

runtime G(100, x)
colours G(100, x)

0

100000

200000

300000

400000

500000

600000

0.4 0.5 0.6 0.7 0.8 0.9 1

N
um

be
ro

fc
ol

ou
ri

ng
s

/R
un

tim
e

(µ
s)

Edge probability

runtime G(150, x)
colours G(150, x)

Figure 2.3: The maximum clique problem in random graphs of 100 (left) and 150 (right)
vertices, with a low resolution and small sample size. On the x-axis we vary the edge
probability from 0.40 to 1.00 in steps of 0.01 (100 vertices) or 0.05 (150 vertices). On the y-
axis, we plot the mean number of colourings (equivalently, number of recursive calls) required,
and the mean runtime in microseconds, using one hundred samples with Algorithm 2.1. These
plots reproduce some of the experiments in Figure 6 of Prosser (2012); we argue that this data
is insufficiently detailed to provide a complete understanding of the situation, and refer to
Figure 2.4 for a better picture.

We also plot the number of recursive calls to expand made on the same axis. This gives
us a machine-independent measurement of how much work the algorithm is performing, and
such a measurement will help us to understand the algorithm’s behaviour. Bessiere, Zanuttini,
and Fernàndez (2004) argue that number of recursive calls is not an ideal measurement;
however, in this case we are not using an algorithm based around a propagation queue, and
the number of recursive calls corresponds directly to the number of colourings performed.
Since nearly all of the algorithm’s runtime is spent in the colourOrder routine, number of
recursive calls is a meaningful measurement for this algorithm.

Our results mirror those of Prosser: the problem is very easy in extremely sparse or
extremely dense graphs, but for graphs with density over 0.7 the problem becomes difficult.
The difficulty results appear pleasing and look like the kind of curve that a scientific paper
should contain: if we do not inspect the data too closely, it plausibly resembles a skewed
(asymmetric) bell curve, with a slightly jagged peak that can be put down to small sample
size.

We also see that the runtimes and number of recursive calls made correspond closely: the
more recursive calls needed, the longer the algorithm takes to run. Our runtimes are much
lower than Prosser’s (2012) (non-bitset) runtimes, however: our peak mean runtimes are
320 µs for 100 vertices and 437 ms for 150 vertices, compared to around 250 ms and 7500 ms

respectively. If we were following the DIMACS conventions, at this point we would resort to

to plot recursive calls and search nodes on the same axis.

2.2. MAXIMUM CLIQUES IN RANDOM GRAPHS 35

rescaling results to try to account for hardware differences; Prosser also says that his bitset
implementation is typically around twice as fast, so we could also take that into account.
Fortunately however, Prosser’s (2012) source code is available (although sadly the same
cannot be said for the papers that introduced these algorithms, nor for most of the other papers
discussed in the following sections). Thus we can reliably measure that on our machine and
on random instances with 150 vertices and density 0.9, our code runs thirty to forty times
faster, and uses exactly the same number of recursive calls, due to consistent tiebreaking rules.

However, there is much more to maximum clique algorithms on random graphs than
Figure 2.3 suggests: the low resolution and small sample size is making the behaviour appear
much simpler than it actually is. With a view to increasing our ignorance, the first use of
parallelism in this thesis is simply to run an awful lot of experiments and produce Figure 2.4
as an extremely detailed replacement for Figure 2.3. Now we are using steps of 0.0001, and a
thousand (200 vertices) or ten thousand (100 and 150 vertices) samples. This lets us determine
that the jagged peak is indeed an artifact of sample size. However, the difficulty curves are
not simple: there are wobbles all the way along the curves, or at least up to density 0.6 (after
which it becomes hard to tell even at this sample size, but we will go on and justify why there
are wobbles along the entire length).

We show the wobbles in more detail in the zoom boxes: the straight light grey lines
plot the best fit of the form y = ea+bx over the subset of data selected. We can clearly see
that the difficulty curves alternate going above and below the fit lines, with the period of
alternation increasing as the density increases. This conclusively demonstrates that Figure 2.3
is misleading, and that previous sets of experiments have not produced the full story.

To explain these curves, we will first look at the clique decision problem (“does a given
graph contain a clique with k vertices?”). The behaviour of decision problems on randomly
generated problem instances is a well-studied topic, beginning with investigations into graph
colouring, Hamiltonian circuits, travelling salesman, and Boolean satisfiability by Cheeseman,
Kanefsky, and Taylor (1991) and Mitchell, Selman, and Levesque (1992). For example,
for the graph colouring decision problem, Cheeseman, Kanefsky, and Taylor showed that
sparse and dense instances are trivially satisfiable and unsatisfiable respectively, and are both
computationally easy, whilst the instances in the narrow density region where there is a mix
of satisfiable and unsatisfiable instances were hard for their algorithm. Subsequent research
suggests that this behaviour is common to many (but not all) NP-complete problems, is
algorithm-independent (or at least, that no known algorithm finds the “really hard” instances
easy, although bad algorithms can find “easy” instances hard), and cannot be avoided by
reductions.

We therefore ask: does the clique decision problem behave like the decision problems for
colouring? We can modify Algorithm 2.1 to solve the decision problem, by priming the size
of the incumbent to be k − 1 rather than zero, and allowing the algorithm to exit as soon as a

36 CHAPTER 2. THE MAXIMUM CLIQUE PROBLEM

0

50

100

150

200

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
liq

ue
si

ze

Edge probability

1

10

100

1000

10000

100000

1× 106

1× 107

1× 108

N
um

be
ro

fc
ol

ou
ri

ng
s

/R
un

tim
e

(µ
s)

runtime, G(200, x)
runtime, G(150, x)
runtime, G(100, x)

colourings and size, G(200, x)
colourings and size, G(150, x)
colourings and size, G(100, x)

Figure 2.4: The maximum clique problem in random graphs of 100, 150, and 200 vertices.
On the x-axis we vary the edge probability from 0.0000 to 1.0000 in steps of 0.0001. On the
y-axis of the top plot, we plot the mean number of colourings required, and the mean runtime
in microseconds, using one thousand (200 vertices) or ten thousand (100 and 150 vertices)
samples with Algorithm 2.1. The inserts give a zoomed in look at some parts of the curves;
the grey straight lines show the best fit of the form y = ea+bx over the subset of data selected.
On the bottom plot y-axis, we plot the mean size of the maximum clique.

2.2. MAXIMUM CLIQUES IN RANDOM GRAPHS 37

clique of size k is found. This allows us to produce Figure 2.5, which plots the k = 20 and
k = 25 decision problem in graphs of 150 vertices and varying edge probabilities.

What we see are typical phase transitions: below a certain edge probability, all instances
are unsatisfiable, above a certain edge probability all instances are satisfiable, and in the
middle there is a narrow mushy region (Smith, 1994). We also see familiar easy-hard-easy
difficulty peaks, with instances near the mushy region being by far the most difficult to solve.
This matches our intuition: obviously a graph with only a few edges will not contain a large
clique, but a graph with only a few edges missing will, and it is only in the middle that it is
hard to tell. Our plots do have one oddity: there is an upwards kick at the end of the difficulty
curve. This is simply because our algorithm only checks whether it can exit when it has found
a clique which cannot be extended, and so at the far right where we have a complete graph,
the algorithm requires 150 recursive calls before it terminates—if we were using one of the
other measurement methods discussed by Bessiere, Zanuttini, and Fernàndez (2004), this
artifact would disappear (but we would lose the close correspondence between number of
recursive calls and runtimes).

But does this help us to understand the optimisation problem? In Figure 2.6 we plot
the difficulty curves for every decision problem on a single chart, using dotted lines. Using
solid lines, we also show the mean total difficulty of the optimisation problem, as well as the
mean difficulty if the algorithm is primed with the size of an optimal solution, and the mean
difficulty if the algorithm only has to find an optimal solution but is allowed to exit without
proving there is nothing larger.

All three lines are clearly wobbly, but the peaks of the wobbles do not line up. The cost
of proving optimality largely follows the difficulty of the most difficult decision problem at
any given density, and as the gaps between the complexity peaks for subsequent decision
problems start off far apart and get closer as density increases, this explains both the shape
and why it is hard to tell whether wobbles exist for higher densities. The cost of finding an
optimal solution but not proving its optimality also wobbles, but is out of phase: instances
to the right of a complexity peak are likely to be satisfiable, and the further to the right of
the peak we go, the higher the density of solutions is likely to be, making them easier to find
(and as Smith and Dyer (1996) note, if we consider the enumeration problem rather than the
decision problem, there is no peak and the cost instead continues to rise). However, if we go
too far to the right, then the size of the optimal solution increases and we enter the “rare and
hard” region of the subsequent decision problem. Finally, as expected, the total cost is close
to the sum of the two other costs.

Viewing our data in another way supports this understanding. In Figure 2.7 we redraw
the difficulty curve for graphs with 150 vertices. This time, we also draw, for each ω, a
curve which considers the difficulty only of instances for which the solution is that ω; for
these curves we use colours to show the sample size, with darker indicating a larger sample.

38 CHAPTER 2. THE MAXIMUM CLIQUE PROBLEM

1

10

100

1000

10000

100000

1× 106

0 0.2 0.4 0.6 0.8 1

N
um

be
ro

fc
ol

ou
ri

ng
s

Edge probability

Unsatisfiable
Satisfiable

Mean colourings

1

10

100

1000

10000

100000

1× 106

0 0.2 0.4 0.6 0.8 1

N
um

be
ro

fc
ol

ou
ri

ng
s

Edge probability

Figure 2.5: A phase transition in the clique decision problem. We plot the mean difficulty of
the decision problem for cliques of order 20 (left) and 25 (right) in random graphs with 150
vertices and varying edge probabilities. We also plot a subset of the instances as individual
points, showing whether that instance is satisfiable or unsatisfiable.

1

10

100

1000

10000

100000

1× 106

0 0.2 0.4 0.6 0.8 1

N
um

be
ro

fc
ol

ou
ri

ng
s

Edge probability

Total
Primed
Find
Decision

Figure 2.6: The difficulty of the maximum clique problem in random graphs with 150
vertices, and varying edge probabilities. The solid lines show the mean number of recursive
calls for the optimisation problem, in total, if the incumbent is primed to the actual solution,
and if the algorithm may exit as soon as the actual solution is found; each dotted line shows
the mean number of recursive calls for one particular value of k for the decision problem.

2.2. MAXIMUM CLIQUES IN RANDOM GRAPHS 39

1

10

100

1000

10000

100000

1× 106

1× 107

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

N
um

be
ro

fc
ol

ou
ri

ng
s

Edge probability

1

10

100

1000

10000

Figure 2.7: The difficulty of finding a maximum clique in random graphs of 150 vertices
with varying edge probabilities. The black line shows mean search effort. Each coloured line
shows mean search effort only for instances for a particular value of ω, with colour indicating
sample size.

We can now see the following: for any particular ω, we occasionally encounter atypically
sparse graphs with that ω as a solution, and these instances tend to be many times easier than
average. We also sometimes encounter atypically dense graphs, and these graphs tend to be
many times harder than average. In other words, if a graph contains a larger maximum clique
than it “should” considering its density, then it is unusually easy (because having a stronger
incumbent makes an optimality proof easier), and if it contains a smaller maximum clique
than it “should”, it is unusually difficult (conversely, having a weak incumbent makes the
optimality proof harder).

There is one further piece of information which would allow us to explain the entire shape
of the curve for the optimisation problem: why does the most difficult decision problem
(when we are allowed to pick any ω and any density) occur with a density slightly higher
than 0.9? Sadly we do not have the answer to this final part of the puzzle. It is not even clear
whether the most difficult density is genuinely algorithm-independent—it is certainly possible
to write algorithms which find densities higher than 0.9 even harder, but are there algorithms
which are substantially better than Algorithm 2.1 on the hardest densities (or good reasons to
believe that such algorithms cannot exist)? We return to these kinds of question in Chapter 6.

40 CHAPTER 2. THE MAXIMUM CLIQUE PROBLEM

2.3 Benchmark Instances

Although random graphs allow us to gain insights into the behaviour of the algorithm, we are
not primarily interested in finding cliques in random graphs. We now describe the standard
benchmark instances used to evaluate maximum clique algorithms, together with some less
well-known datasets.

In Table 2.1 we provide both the number of search nodes and runtimes using Algorithm 2.1
to give a rough feel for the difficulty of these instances; where substantially better runtimes
may be obtained by using one of the techniques discussed in Section 2.5, we also discuss this.
As previously, runtimes are from systems with dual Intel Xeon E5-2697A v4 processors. We
also give primed runtimes (that is, runtimes where we initialise the incumbent to be the size
of a maximum clique, rather than zero): this is to provide insight into the structure of these
instances, and is not a claim that such a runtime is realistic.

2.3.1 The Second DIMACS Implementation Challenge

The Second DIMACS Implementation Challenge (Johnson and Trick, 1993) introduced a
suite of problem instances which have been very widely used for benchmarking maximum
clique algorithms—indeed, many papers look only at these instances (or a subset thereof). It
is conventional to just provide a table of results looking at these instances, without consid-
ering what the graphs are; we will take the unusual step of discussing each family in more
detail, since we believe that some of the conclusions reached based upon these datasets are
questionable due to the nature of certain instances.

Random graphs from the “C”, “DSJC” and “p_hat” families: The “C” and “DSJC”
families contain randomly generated instances. For the “C” family, the “.5” instances (which
have density 0.5 and order up to 4,000) have all been solved. The “.9” graphs with 500
vertices and upwards are believed to be open. Both “DSJC” graphs, which have density 0.5
and 500 or 1,000 vertices, have been solved.

The “p_hat” family are also random graphs, but with an unusually large degree spread,
created using the p̂ generator (Gendreau, Soriano, and Salvail, 1993; Soriano and Gendreau,
1993). The largest and densest of these, “p_hat1500-3”, was first solved by McCreesh and
Prosser (2013) in 128 days using 32 hardware threads.

Random graphs from the “brock”, “gen”, and “san(r)” families: The “brock” family of
instances is due to Brockington and Culberson (1993). They are an attempt at camouflaging a
known clique in a quasi-random graph for cryptographic purposes, in a way that was resistant
to certain early heuristic attacks. There are three subfamilies, “brock200”, “brock400” and
“brock800”; the number denotes the number of vertices in the graphs. Roughly speaking, for

2.3. BENCHMARK INSTANCES 41

Table 2.1: Properties of the DIMACS benchmark instances. We give non-rounded figures
for recursive calls to aid verification of other implementations. The “primed” columns show
the ratio compared to the base algorithm, if the incumbent is initialised with the size of a
maximum clique.

Instance |V| D ω Colourings Runtime (ms)

Base Primed Base Primed

Randomly generated

C125.9 125 0.90 34 50 240 0.536 57 0.579
C250.9 250 0.90 44 1 082 441 593 0.895 1 126 147 0.899
C500.9 500 0.90 ≥ 57 Open
C1000.9 1 000 0.90 ≥ 68 Open
C2000.5 2 000 0.50 16 18 189 648 267 1.000 38 832 285 1.011
C2000.9 2 000 0.90 ≥ 80 Open
C4000.5 4 000 0.50 18 See McCreesh and Prosser (2013)

DSJC500_5 500 0.50 13 1 153 043 0.948 733 0.958
DSJC1000_5 1 000 0.50 15 76 981 458 0.997 87 921 0.993

Randomly generated with large degree spread

p_hat300-1 300 0.24 8 1 480 0.871 1 1.000
p_hat300-2 300 0.49 25 4 256 0.665 7 0.571
p_hat300-3 300 0.74 36 624 947 0.394 666 0.432
p_hat500-1 500 0.25 9 9 777 0.992 9 0.667
p_hat500-2 500 0.50 36 114 009 0.347 174 0.420
p_hat500-3 500 0.75 50 39 260 458 0.397 70 925 0.441
p_hat700-1 700 0.25 11 26 649 0.607 27 0.667
p_hat700-2 700 0.50 44 750 903 0.504 1 830 0.576
p_hat700-3 700 0.75 62 282 412 276 0.567 935 998 0.599
p_hat1000-1 1 000 0.24 10 176 576 0.992 147 1.007
p_hat1000-2 1 000 0.49 46 34 473 978 0.632 94 978 0.657
p_hat1000-3 1 000 0.74 68 130 317 818 368 0.295 470 938 212 0.322
p_hat1500-1 1 500 0.25 12 1 184 526 0.809 1 799 0.871
p_hat1500-2 1 500 0.51 65 2 006 796 270 0.545 13 209 931 0.575
p_hat1500-3 1 500 0.75 94 See McCreesh and Prosser (2013)

Randomly generated with large hidden solutions

brock200_1 200 0.75 21 524 723 0.583 316 0.630
brock200_2 200 0.50 12 3 826 0.674 4 0.500
brock200_3 200 0.61 15 14 565 0.997 14 0.571
brock200_4 200 0.66 17 58 730 0.538 47 0.617
brock400_1 400 0.75 27 198 359 829 0.590 184 360 0.644
brock400_2 400 0.75 29 145 597 994 0.332 133 714 0.415
brock400_3 400 0.75 31 120 230 513 0.138 106 134 0.202
brock400_4 400 0.75 33 54 440 888 0.141 51 592 0.214
brock800_1 800 0.65 23 2 227 634 634 0.790 3 080 308 0.837
brock800_2 800 0.65 24 2 235 803 416 0.586 3 083 366 0.671
brock800_3 800 0.65 25 2 146 717 172 0.327 2 890 338 0.415
brock800_4 800 0.65 26 640 444 536 0.795 1 075 174 0.858

gen200_p0.9_44 200 0.90 44 1 774 374 0.084 1 818 0.106
gen200_p0.9_55 200 0.90 55 170 254 0.014 178 0.022
gen400_p0.9_55 400 0.90 55 2 353 914 262 613 0.204 3 585 700 777 0.231
gen400_p0.9_65 400 0.90 65 175 757 037 249 0.041 280 143 536 0.058
gen400_p0.9_75 400 0.90 75 104 883 350 585 0.001 157 187 491 0.002

continued on next page. . .

42 CHAPTER 2. THE MAXIMUM CLIQUE PROBLEM

Instance |V| D ω Colourings Runtime (ms)

Base Primed Base Primed

san200_0.7_1 200 0.70 30 13 399 0.017 15 0.000
san200_0.7_2 200 0.70 18 464 0.002 1 0.000
san200_0.9_1 200 0.90 70 87 329 <10−3 81 0.000
san200_0.9_2 200 0.90 60 229 567 0.005 260 0.008
san200_0.9_3 200 0.90 44 6 815 145 0.062 6 189 0.094
san400_0.5_1 400 0.50 13 2 453 <10−3 8 0.125
san400_0.7_1 400 0.70 40 119 356 0.083 147 0.190
san400_0.7_2 400 0.70 30 889 125 0.094 1 313 0.166
san400_0.7_3 400 0.70 22 521 410 0.129 859 0.193
san400_0.9_1 400 0.90 100 4 536 723 0.073 15 285 0.101
san1000 1 000 0.50 15 150 725 <10−5 1 178 0.009
sanr200_0.7 200 0.70 18 152 882 0.824 110 0.818
sanr200_0.9 200 0.90 42 14 921 850 0.683 14 323 0.760
sanr400_0.5 400 0.50 13 320 110 0.612 185 0.659
sanr400_0.7 400 0.70 21 64 412 015 0.993 48 319 1.008

Randomly generated with known solution sizes

frb30-15-1 450 0.82 30 292 095 125 0.745 456 067 0.784
frb30-15-2 450 0.82 30 557 252 809 0.596 811 184 0.639
frb30-15-3 450 0.82 30 167 116 178 0.600 249 959 0.643
frb30-15-4 450 0.82 30 991 460 271 0.423 1 363 978 0.467
frb30-15-5 450 0.82 30 282 763 799 0.627 402 948 0.688
frb35-17-1 595 0.84 35 13 273 030 824 0.517 30 541 366 0.568
frb35-17-2 595 0.84 35 23 358 937 783 0.674 55 226 300 0.699
frb35-17-3 595 0.84 35 8 248 153 344 0.752 20 187 054 0.771
frb35-17-4 595 0.84 35 8 850 406 216 0.746 22 558 406 0.784
frb35-17-5 595 0.84 35 58 010 454 258 0.575 123 320 497 0.604

Fault diagnosis

c-fat200-1 200 0.08 12 24 0.125 0 1.000
c-fat200-2 200 0.16 24 24 0.042 0 1.000
c-fat200-5 200 0.43 58 139 0.194 1 0.000
c-fat500-1 500 0.04 14 14 0.071 0 1.000
c-fat500-2 500 0.07 26 26 0.038 1 0.000
c-fat500-5 500 0.19 64 64 0.016 2 0.500
c-fat500-10 500 0.37 126 126 0.008 3 0.333

Coding theory

hamming6-2 64 0.90 32 32 0.031 0 1.000
hamming6-4 64 0.35 4 82 0.988 0 1.000
hamming8-2 256 0.97 128 128 0.008 2 0.500
hamming8-4 256 0.64 16 36 452 1.000 39 0.769
hamming10-2 1 024 0.99 512 512 0.002 64 0.750
hamming10-4 1 024 0.83 40 Known by construction, open as a clique instance

johnson8-2-4 28 0.56 4 24 0.958 0 1.000
johnson8-4-4 70 0.77 14 126 0.913 0 1.000
johnson16-2-4 120 0.76 8 256 100 1.000 55 0.618
johnson32-2-4 496 0.88 16 Known by construction, open as a clique instance

Keller conjecture

keller4 171 0.65 11 13 725 0.997 10 0.500
keller5 776 0.75 27 50 707 104 364 1.000 90 244 319 1.001
keller6 3 361 0.82 See Debroni et al. (2011), open as a clique instance

continued on next page. . .

2.3. BENCHMARK INSTANCES 43

Instance |V| D ω Colourings Runtime (ms)

Base Primed Base Primed

Steiner triple problem

MANN_a9 45 0.93 16 71 0.845 0 1.000
MANN_a27 378 0.99 126 38 019 0.994 172 0.994
MANN_a45 1 035 1.00 345 2 851 572 0.998 123 226 1.063
MANN_a81 3 321 1.00 1 100 See McCreesh and Prosser (2013)

Proteins

1KZKA_3KT2A_78 271 0.99 247 247 0.004 3 0.333
1allA_3dbjC_41 451 0.97 346 675 0.551 19 0.263
1f82A_1zb7A_5 655 0.97 500 716 0.411 27 0.481
2FDVC_1PO5A_83 750 0.96 556 1 348 0.108 35 0.486
2UV8I_2J6IA_13107 200 0.86 69 4 263 0.108 8 0.125
2W00B_3H1TA_10858 346 0.91 143 777 428 0.158 1 939 0.199
2W4JA_2A2AD_0 563 0.98 447 890 0.011 16 0.375
3HRZA_2HR0A_476 905 0.94 563 934 965 0.346 17 899 0.386
3P0KA_3GWLB_0 138 0.94 89 90 0.033 0 1.000
3ZY0D_3ZY1A_110 61 0.98 52 52 0.019 0 1.000

a good exact maximum clique algorithm on modern hardware, members of the “brock200”
family can be solved in well under a second, the “brock400” family take a few minutes, and
the “brock800” family take around an hour. In each case, there is a unique maximum clique
in these graphs (except for “brock200_1”, which has two equally sized hidden cliques), and
the clique is larger than one would expect from a random graph with the same density.

The “gen” and “san(r)” instances use a different technique for hiding a large clique of
known size in a graph (Sanchis, 1992; Sanchis, 1995). Again, they are an attempt to create
challenging instances with a known optimal solution. This has implications for the behaviour
of algorithms: as we can see from Table 2.1, once an optimal solution has been found, these
instances become easy. This is a more extreme version of the effect discussed in Section 2.2.
Corrêa et al. (2014), Maslov, Batsyn, and Pardalos (2014), Batsyn et al. (2014) and Tomita,
Yoshida, et al. (2016) all claim huge speedups on some of these instances and use it as
justification for their new algorithms, but none discuss the peculiar nature of the large hidden
cliques in these graphs.

Fault diagnosis via the “c-fat” family: These graphs are related to fault diagnosis for
distributed systems (Berman and Pelc, 1990). All are computationally trivial.

Coding theory with the “hamming” and “johnson” families: The “hamming” and “john-
son” graphs model problems from coding theory (Bomze et al., 1999). The solutions to these
instances are all known through non-clique means, but proofs of optimality for “hamming10-4”
and “johnson32-2-4” are beyond current maximum clique algorithms.

44 CHAPTER 2. THE MAXIMUM CLIQUE PROBLEM

Mathematical problems with the “keller” and “MANN” families: These families en-
code mathematical conjectures. The “keller” instances encode a geometric conjecture. All
of these instances have been solved, using special knowledge of the structure of the graphs
(Debroni et al., 2011). Using general purpose maximum clique algorithms, the “keller6”
graph remains unsolved.

The MANN family is made from clique formulations of the Steiner triple problem, due to
Mannino and Sassano (1995). All have been solved: “MANN_a9” and “MANN_a27” are not
challenging, and “MANN_a45” takes minutes; “MANN_a81” was first solved as a general
maximum clique problem by McCreesh and Prosser (2013) in 31 days using 24 hardware
threads (although the solution was already known by other means). These graphs are very
dense, which sometimes gives atypical behaviour from algorithms.

2.3.2 Benchmarks with Hidden Optimal Solutions

The “frb” family of instances (K. Xu, 2014) are another attempt at generating hard instances
with known solution sizes. They are produced using a generator described by K. Xu, Bousse-
mart, et al. (2005) and K. Xu and W. Li (2006). Algorithm 2.1 finds these difficult: the
instances with solution size 30 take around ten minutes, and the 35 family instances are within
reach in a day, but larger instances are intractable.

Interestingly, the modifications by San Segundo, Nikolaev, Batsyn, and Pardalos (2016)
make the instances with solution size 30 trivial (but larger instances are not reported); C.
Li, Z. Fang, and K. Xu (2013) do well on larger instances too. Using a fixed parameter
tractable algorithm, Sharmin (2014) does extremely well on BHOSLIB instances, which is
especially interesting since her algorithm cannot solve any of the DIMACS instances within
sixty minutes.

2.3.3 Protein Product Graphs

Depolli et al. (2013) use the maximum clique problem to compare proteins, using a product
graph encoding which we discuss in much more detail in Chapter 7. The instances can all
be solved very quickly, with only two taking over one second. Interestingly, Depolli et al.
show that these instances are beyond the reach of naïve algorithms. It is also worth noting
that these graphs are real-world instances (that is, they are not randomly generated, and the
result has a real-world meaning), but the graphs are not sparse. As we will see in Chapter 7,
the product graph of two sparse graphs is not itself sparse.

2.4. EXPLAINING THE ITERATION ORDER 45

2.3.4 Solving Other Problems via Maximum Clique

Other maximum clique instances will arise in Chapter 4, where they are used to solve the
maximum k-clique problem, and in Chapter 7, where they are used to solve the maximum
common subgraph problem.

2.3.5 Other Applications

Beyond the application areas covered by the problem instances we have seen so far, maximum
clique problems arise in bioinformatics (Eblen et al., 2012), in biochemistry and genomics
(Butenko and Wilhelm, 2006; Fukagawa et al., 2011; Konc and Janežič, 2007a), in community
detection (B. Yan and Gregory, 2009), in document clustering (Okubo and Haraguchi, 2006),
in telecommunications (Balasundaram and Butenko, 2006), in computer vision and electrical
engineering (Bomze et al., 1999), in image comparison (San Segundo et al., 2010), and in
controlling hordes of flying robots for the upcoming apocalypse (Regula and Lantos, 2013;
Walsh, 2015). Bomze et al. (1999) and Wu and Hao (2015) discuss further applications and
give broader perspectives on clique problems.

2.4 Explaining the Iteration Order

We now return to Algorithm 2.1, to explain an aspect of its behaviour which is not properly
addressed in the literature: on line 10, why do we select vertices in colour class order, and
why select from right to left? This has an efficient implementation using a pair of arrays, and
allows colourings to be reused when iterating. However, recursing from left to right (and
thus selecting from the first colour class first, rather than the last colour class first) may be
implemented equally efficiently, so why use a reverse order? Tomita and Kameda (2007)
claim that vertices in the rightmost colour class are “generally expected [to have a] high
probability of belonging to a maximum clique”. This claim was not tested experimentally,
beyond verifying that the reverse ordering gives much worse performance.

In Figure 2.8 we test this claim experimentally. Returning to 150 vertex random graphs,
the top solid line plots the difficulty of Algorithm 2.1, and the top dotted line plots the
difficulty if instead of iterating in reverse order, we iterate selecting the first-created colour
class first. Due to the extremely long execution times, we use increments of 0.001 and 100
samples for the “forwards” lines, which is why they appear wavier (and the jumps at high
densities are caused by three outliers). We see that iterating in reverse order is substantially
better—so far so good. However, the second-top solid and dotted lines repeat the experiments,
priming search with the incumbent set to the size of a maximum clique. The reverse order
remains better than the forward order, by a very similar factor. Tomita and Kameda’s (2007)
claimed explanation, then, cannot tell the entire story: with a primed incumbent, we are only

46 CHAPTER 2. THE MAXIMUM CLIQUE PROBLEM

1

10

100

1000

10000

100000

1× 106

1× 107

1× 108

1× 109

1× 1010

0 0.2 0.4 0.6 0.8 1

N
um

be
ro

fc
ol

ou
ri

ng
s

Edge probability

Total, Reverse Order
Primed, Reverse Order
Find, Reverse Order
Total, Forwards Order
Primed, Forwards Order
Find, Forwards Order

Figure 2.8: The difficulty of the maximum clique problem in random graphs of 150 vertices,
iterating in either reverse colour class order (the default), or in forwards colour class order
(the opposite). Forwards measurements use a smaller sample size and lower resolution.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Fi
rs

ts
ol

ut
io

n
qu

al
ity

Edge probability

Reverse Order
Forwards Order

Figure 2.9: The size of the first solution found, as a proportion of the optimal solution, for
the maximum clique problem in random graphs of 150 vertices, iterating in either reverse
colour class order (the default), or in forwards colour class order (the opposite). Forwards
measurements use a smaller sample size and lower resolution.

2.4. EXPLAINING THE ITERATION ORDER 47

Ti
m

e
(m

s)

Solution Size

Reverse Order (Default)

100

102

104

106

108

1010

0 5 10 15 20 25 30 35
100

102

104

106

108

1010

0 5 10 15 20 25 30 35

Ti
m

e
(m

s)

Solution Size

Forwards Order

100

102

104

106

108

1010

0 5 10 15 20 25 30 35
100

102

104

106

108

1010

0 5 10 15 20 25 30 35
0
1

10

100

≥ 500

Figure 2.10: The solution quality over time, for instances of G(150, p) where ω = 35. On the
left, the default reverse ordering, which finds weaker solutions initially but finishes faster; on
the right, the forwards ordering, which finds better solutions initially but takes longer overall.

proving optimality, not finding a maximum clique, and so the “probability of belonging to a
maximum clique” is irrelevant when selecting vertices.

Finally in Figure 2.8, the lowest solid and dotted lines plot time to find, but not prove,
an optimal solution. If rightmost vertices were most likely to be in a maximum clique, we
would expect the solid line to be below the dotted line. In fact, the two lines cross. Roughly
speaking, for densities up to 0.5, the forwards order line is a slightly amplified version of the
reverse order line, having taller peaks (being worse for densities where finding an optimal
solution is relatively hard), but also shallower troughs (being better for densities where finding
an optimal solution is relatively easy).

We can also directly measure the size of the first solution found by the two orderings.
Figure 2.9 displays this information, using the initial solution size as a proportion of the
optimal solution on the y-axis. The results show that (except for a very narrow region with
extremely dense graphs) iterating forwards finds better initial solutions, even though it takes
much longer to solve problems overall. Inspecting individual instances in more detail suggests
that in general, iterating forwards finds better solutions quickly, but then takes much longer
to improve those solutions and then prove optimality, leading to longer runtimes overall.
Figure 2.10 confirms this: from the 5,142 instances of G(150, p) which had ω = 35, we
record a point for each time the incumbent was unseated, using the new solution size on the
x-axis and the time it was found on the y-axis. We also record a point with x = 36 for the
time to complete (that is, to prove that no solution with ω ≥ 36 exists). This data is shown as
a heatmap, with darker colours indicating a higher density of individual points at a location.

Tomita and Kameda’s (2007) claimed explanation, then, is not supported by experimental
evidence. However, reverse iteration clearly is the better strategy. We must therefore seek a
different explanation to understand the success of the reverse selection order. Our inspiration

48 CHAPTER 2. THE MAXIMUM CLIQUE PROBLEM

will come from variable ordering heuristics in constraint programming.

Let us reflect upon the greedy colouring process. Intuitively, one might suspect that
early colour classes are likely to be larger: colour classes are filled greedily, with vertices
being placed in the first available colour class. Selecting from small colour classes first is
beneficial: consider Figure 2.2 on page 31, and suppose incumbent = 3. If we select v
from the rightmost colour class (which contains only one vertex) first, we make only a single
recursive call which cannot be eliminated by the bound. But if we were to select from the
leftmost colour class, we would have to make four recursive calls before our bound would
decrease. (This also shows why we commit entirely to a selected colour class: we want to
eliminate colour classes as quickly as possible.)

In constraint programming terms, if we view colour classes (rather than vertices) as
variables, with each domain having an additional wildcard value meaning “nothing from
this colour class”, then selecting from small colour classes first is a “smallest domain first”
variable selection heuristic (albeit a slightly unusual one, since we produce a new set of
variables with each new colouring at each level of search). Haralick and Elliott (1980) show
that such a heuristic tends to give a low branching factor locally (that is, it reduces the number
of recursive calls made). This does not necessarily produce the best possible search tree
globally, but we will demonstrate that it is generally beneficial in this context.

2.4.1 Are Colour Classes Roughly Sorted by Size?

We will now test our intuition, by augmenting Algorithm 2.1 to take measurements inside the
search. The hypothesis we are testing is as follows: is there a correlation between the position
a colour classes is in, and the position it would be in if colour classes were sorted by size
(largest first)? To measure this, we use the Kendall tau test—this will give us a value of 1 if
there is a perfect monotonically increasing relationship, −1 if it is perfectly monotonically
decreasing, and a value in-between otherwise.

We performed this test for each colouring produced, over 100 samples of random graphs
G(150, 0.9). The results are plotted in the top left graph of Figure 2.11. For the x-axis, we use
the number of colour classes used. For the y-axis, rather than show the average, we show the
distribution of the results of the statistical test (so the colours in each column sum to 1). For
comparison purposes, the bottom left graph shows what we would see if the colour classes
were in no particular order (we shuffle the colour classes before running the test), and the
bottom right graph shows the color classes fully sorted (i.e. SDF). These results confirm our
suspicions that colour classes are “roughly” sorted by size, as a side effect of the greedy
colouring process: the top left graph is much more heavily weighted towards 1 (sorted) than
the shuffled graph. In other words, the greedy colouring process and backwards iteration is
approximating an SDF heuristic.

The top right graph shows the effects of our “domains of size two first” heuristic, which

2.4. EXPLAINING THE ITERATION ORDER 49

So
rt

ed
ne

ss

Number of colour classes

Default ordering

−1

−0.5

0

0.5

1

0 10 20 30 40 50 60
10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

So
rt

ed
ne

ss

Number of colour classes

Domains of size two first

−1

−0.5

0

0.5

1

0 10 20 30 40 50 60
10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

So
rt

ed
ne

ss

Number of colour classes

Shuffled

−1

−0.5

0

0.5

1

0 10 20 30 40 50 60
10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

So
rt

ed
ne

ss

Number of colour classes

Sorted

−1

−0.5

0

0.5

1

0 10 20 30 40 50 60
10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

Figure 2.11: Are colour classes sorted? The top graphs shows the distribution of the Kendall
measure on the colour classes generated during search, with the x-axis being the number of
colour classes generated. The bottom graphs provide points of comparison.

we describe below. As its name suggests, we use a partial sort to increase the degree to which
colour classes are sorted by size, but does not sort them fully—it is a cheap surrogate for SDF.

2.4.2 Reordering Colour Classes

We have established empirically that smaller colour classes tend to be picked earlier by greedy
colourings algorithms, and explained theoretically why this is beneficial. Now ask what would
happen if we increased this effect. We consider two approaches.

The “sorted”, or “smallest domains first” variation. We could explicitly select from the
smallest colour class (domain) first, by adding a (stable) sort step to the colouring routine.

The “partially sorted”, or “domains of size two first” (2DF) variation. We also consider
a potentially cheaper alternative: instead of fully sorting colour classes by size, we propose
a partial sort that moves colour classes containing only one vertex (which we call singleton

50 CHAPTER 2. THE MAXIMUM CLIQUE PROBLEM

colour classes) to the end of the list of colour classes, so that they are selected first. In other
words, we are picking from domains with two values (a single vertex, plus the “nothing”
option) first.

2.4.3 Tie-breaking

But why are we preserving the relative order of the partially sorted colour classes—that
is, why do we specify a stable sort, or why is it important to put the last singleton colour
class at the end of the list of colour classes? Suppose Algorithm 2.1 produced the colour
classes shown in Figure 2.12. Due to the greediness of the colouring, vertices 5, 6, 7, 8
and 9 must all be adjacent to vertex 4 (the only member of the purple colour class). Thus if
Algorithm 2.1 selects colour class {4} in preference to the other singleton colour class {7}, the
new candidate set remaining ′ will contain some of the vertices from the set {1, 2, 3}, and all

of the vertices from the sets {5, 6}, {7} and {8, 9}. However, by the same kind of reasoning,
if the colour class {7} is selected before {4}, remaining ′ will contain some of the vertices
from the sets {1, 2, 3} and {5, 6} and all of the vertices in the sets {4} and {8, 9}, so the new
candidate set will potentially be smaller. This is why we preserve the order: selecting from
the latest-coloured singleton colour class first can increase the amount of filtering done on
remaining , giving a smaller remaining ′ in the recursive call, further reducing the branching
in the search process.

2.4.4 Does Reordering Help?

Next we verify that reordering colour classes actually leads to a reduction in search space size.
In Figure 2.13 we compare the three ordering strategies in random graphs of 150 vertices
and varying densities. The results show that both reordering heuristics reduce the size of the
search space by around twenty percent on the most difficult instances, and that “domains of
size two first” is nearly as effective as “smallest domain first”. The “domains of size two first”
heuristic also leads to a reduction in runtimes by a similar factor. However, the “smallest

1 2 3 4 5 6 7 8 9

4 is adjacent to some of these, and all of these.

7 is adjacent to some of these, and all of these

Figure 2.12: Due to the greedy colouring, singleton colour classes are not equally powerful
from a filtering perspective. For any singleton colour class, its vertex is adjacent to every
vertex with a later colour, but only some vertices with an earlier colour. Here, branching on
vertex 7 rather than vertex 4 is likely to lead to more filtering, giving a smaller subproblem at
the next recursive call.

2.4. EXPLAINING THE ITERATION ORDER 51

0

100000

200000

300000

400000

500000

600000

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

N
um

be
ro

fc
ol

ou
ri

ng
s

Edge probability

Default
2DF
SDF

0

500000

1× 106

1.5× 106

2× 106

2.5× 106

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

R
un

tim
e

(m
s)

Edge probability

Default
2DF
SDF

Figure 2.13: The maximum clique problem in random graphs of 150 vertices, with colour
class reordering. On the left, search space size, and on the right, runtimes.

domains first” heuristic takes much longer, introducing a slowdown of three to four, despite
the reduction in the search space.

What about on non-random instances? In the top row of Figure 2.14 we show the
cumulative number of instances solved over time (right) or as a function of search space size
(left). The differences are hard to see, as we would expect: because of the huge range of
difficulties involved, we are using a log scale, but if random graphs are any indication, we
expect to see a small constant factor difference. However, the “2DF” line is usually above the
“default” line in both plots. In the second row, we give instance by instance comparisons of
the search space sizes. Again, because of the log scale, the differences are hard to see, but
most of the points are slightly below the diagonal line, indicating a small improvement in
search space size. We see a similar result for runtimes with “2DF” on the final row.

Because of the relatively small number of instances available, we are able to present
Table 2.2, which lists a full set of results. Overall, the trend is similar to that in random graphs:
“2DF” usually gives a small improvement to both search space size and runtimes, whilst “SDF”
usually gives a slightly larger improvement to search space size, but substantially increases
runtimes.

As a way of improving the algorithm, then, reordering colour classes is at best a very
limited success. However, as a way of improving our understanding the behaviour of Algo-
rithm 2.1, it is much more significant: future attempts at improvements to this algorithm need
no longer be complicated by the incorrect claims made by Tomita and Kameda (2007) as
to why the reverse colour ordering should be used. For example, if Algorithm 2.1 is to be
used for the clique decision problem, then it is worth considering Walsh’s (1998) suggestion

52 CHAPTER 2. THE MAXIMUM CLIQUE PROBLEM

0

20

40

60

80

100

100 102 104 106 108 1010 1012 1014

In
st

an
ce

s
so

lv
ed

Number of colourings

Default
2DF
SDF

0

20

40

60

80

100

100 102 104 106 108 1010

In
st

an
ce

s
so

lv
ed

Runtime (ms)

Default
2DF
SDF

100

102

104

106

108

1010

1012

1014

100 102 104 106 108 1010 1012 1014

SD
F

N
od

es

Default Nodes

100

102

104

106

108

1010

1012

1014

100 102 104 106 108 1010 1012 1014

2D
F

N
od

es

Default Nodes

100

102

104

106

108

1010

100 102 104 106 108 1010

2D
F

R
un

tim
e

(m
s)

Default Runtime (ms)

C
DSJC

p̂
brock

gen
san
frb

c-fat
hamming

johnson
keller

MANN
protein

Figure 2.14: On the top row, cumulative number of instances solved as a function of search
nodes (left) and runtimes (right), using different domain ordering strategies. Below, instance-
by-instance comparisons. As discussed in the text, the improvements are hard to see, particu-
larly on a log scale; Table 2.2 presents these results in tabular form.

2.4. EXPLAINING THE ITERATION ORDER 53

Table 2.2: The effects of reordering colour classes, on the easier clique problem instances. We
show the number of colourings (equivalently, recursive calls) required using Algorithm 2.1,
then, as a ratio, the number when using domains of size two first or smallest domain first
heuristics. We then show runtimes, again using ratios for the second and third columns.

Instance Colourings Runtime (ms)

Default 2DF SDF Default 2DF SDF

Randomly generated

C125.9 50 240 0.715 0.717 57 0.772 4.561
C250.9 1 082 441 593 0.831 0.828 1 126 147 0.859 6.422
C2000.5 18 189 648 267 0.989 0.956 38 832 285 1.028 2.303

DSJC500_5 1 153 043 0.986 0.936 733 1.020 4.139
DSJC1000_5 76 981 458 0.988 0.961 87 921 0.975 3.700

Randomly generated with large degree spread

p_hat300-1 1 480 0.997 1.001 1 2.000 5.000
p_hat300-2 4 256 0.962 0.935 7 1.000 5.286
p_hat300-3 624 947 0.929 1.096 666 0.959 7.455
p_hat500-1 9 777 0.993 0.994 9 1.000 3.556
p_hat500-2 114 009 0.950 0.979 174 0.989 5.454
p_hat500-3 39 260 458 0.936 2.116 70 925 0.999 14.404
p_hat700-1 26 649 0.994 1.063 27 1.000 3.407
p_hat700-2 750 903 0.957 2.058 1 830 0.973 9.810
p_hat700-3 282 412 276 0.953 3.241 935 998 0.985 14.291
p_hat1000-1 176 576 0.996 1.007 147 0.986 3.646
p_hat1000-2 34 473 978 0.948 1.311 94 978 0.956 6.181
p_hat1000-3 130 317 818 368 0.938 3.117 470 938 212 0.936 13.766
p_hat1500-1 1 184 526 0.997 0.874 1 799 0.991 2.285
p_hat1500-2 2 006 796 270 0.940 1.457 13 209 931 0.908 4.253

Randomly generated with large hidden solutions

brock200_1 524 723 0.938 0.875 316 0.968 6.079
brock200_2 3 826 0.984 1.119 4 0.750 4.750
brock200_3 14 565 0.979 0.966 14 1.000 5.071
brock200_4 58 730 0.964 0.832 47 0.979 4.000
brock400_1 198 359 829 0.970 0.853 184 360 1.000 4.875
brock400_2 145 597 994 0.936 1.230 133 714 0.974 6.796
brock400_3 120 230 513 0.943 0.928 106 134 0.976 5.291
brock400_4 54 440 888 0.922 1.931 51 592 0.958 10.948
brock800_1 2 227 634 634 0.973 1.046 3 080 308 0.971 3.479
brock800_2 2 235 803 416 0.973 0.970 3 083 366 0.989 3.284
brock800_3 2 146 717 172 0.973 0.802 2 890 338 0.972 3.289
brock800_4 640 444 536 0.979 0.938 1 075 174 0.974 3.880

gen200_p0.9_44 1 774 374 0.802 0.873 1 818 0.846 7.107
gen200_p0.9_55 170 254 0.862 0.859 178 0.933 6.180
gen400_p0.9_55 2 353 914 262 613 0.767 0.635 3 585 700 777 0.803 4.048
gen400_p0.9_65 175 757 037 249 0.595 0.581 280 143 536 0.632 3.598
gen400_p0.9_75 104 883 350 585 0.357 0.341 157 187 491 0.376 2.165

san200_0.7_1 13 399 1.001 0.524 15 1.267 3.267
san200_0.7_2 464 0.976 0.679 1 1.000 3.000
san200_0.9_1 87 329 0.761 0.754 81 1.074 6.062
san200_0.9_2 229 567 3.409 3.168 260 3.031 20.762
san200_0.9_3 6 815 145 0.728 0.741 6 189 0.766 6.252

continued on next page. . .

54 CHAPTER 2. THE MAXIMUM CLIQUE PROBLEM

Instance Colourings Runtime (ms)

Default 2DF SDF Default 2DF SDF

san400_0.5_1 2 453 0.932 0.693 8 0.875 1.500
san400_0.7_1 119 356 0.942 0.794 147 0.966 5.150
san400_0.7_2 889 125 0.899 0.528 1 313 0.947 2.135
san400_0.7_3 521 410 0.907 0.386 859 0.932 1.077
san400_0.9_1 4 536 723 0.788 0.739 15 285 0.813 4.710
san1000 150 725 0.983 0.109 1 178 0.982 0.075
sanr200_0.7 152 882 0.956 0.938 110 0.982 4.900
sanr200_0.9 14 921 850 0.915 0.872 14 323 0.943 7.325
sanr400_0.5 320 110 0.985 0.933 185 1.032 4.341
sanr400_0.7 64 412 015 0.954 0.942 48 319 1.003 5.297

Randomly generated with known solution sizes

frb30-15-1 292 095 125 0.886 0.868 456 067 0.939 3.953
frb30-15-2 557 252 809 0.818 0.422 811 184 0.866 2.058
frb30-15-3 167 116 178 0.807 0.785 249 959 0.855 3.659
frb30-15-4 991 460 271 0.852 0.540 1 363 978 0.910 2.700
frb30-15-5 282 763 799 0.798 0.808 402 948 0.853 3.974
frb35-17-1 13 273 030 824 0.827 0.449 30 541 366 0.880 1.835
frb35-17-2 23 358 937 783 0.823 0.488 55 226 300 0.860 2.009
frb35-17-3 8 248 153 344 0.808 1.014 20 187 054 0.855 3.961
frb35-17-4 8 850 406 216 0.866 0.957 22 558 406 0.902 3.636
frb35-17-5 58 010 454 258 0.765 0.710 123 320 497 0.819 2.975

Fault diagnosis

c-fat200-1 24 1.000 0.958 0 1.000 1.000
c-fat200-2 24 1.000 1.000 0 1.000 1.000
c-fat200-5 139 1.000 1.000 1 0.000 2.000
c-fat500-1 14 1.000 1.000 0 1.000 1.000
c-fat500-2 26 1.000 1.000 1 0.000 0.000
c-fat500-5 64 1.000 1.000 2 0.500 1.000
c-fat500-10 126 1.000 1.000 3 0.667 1.667

Coding theory

hamming6-2 32 1.000 1.000 0 1.000 1.000
hamming6-4 82 1.000 1.000 0 1.000 1.000
hamming8-2 128 1.000 1.000 2 1.000 2.000
hamming8-4 36 452 1.009 0.600 39 0.974 2.769
hamming10-2 512 1.000 1.000 64 0.797 1.109

johnson8-2-4 24 1.000 0.958 0 1.000 1.000
johnson8-4-4 126 1.000 0.762 0 1.000 1.000
johnson16-2-4 256 100 1.000 0.888 55 1.036 4.764

Keller conjecture

keller4 13 725 0.987 0.841 10 1.100 2.700
keller5 50 707 104 364 1.088 0.697 90 244 319 1.081 2.608

Steiner triple problem

MANN_a9 71 1.000 1.000 0 1.000 1.000
MANN_a27 38 019 1.000 1.000 172 1.000 7.122
MANN_a45 2 851 572 1.000 1.000 123 226 1.056 2.876

Proteins

1KZKA_3KT2A_78 247 1.000 1.000 3 0.667 2.333

continued on next page. . .

2.5. OTHER ENHANCEMENTS 55

Instance Colourings Runtime (ms)

Default 2DF SDF Default 2DF SDF

1allA_3dbjC_41 675 0.513 0.513 19 0.368 0.737
1f82A_1zb7A_5 716 0.994 0.994 27 0.889 2.074
2FDVC_1PO5A_83 1 348 0.978 0.978 35 1.200 2.629
2UV8I_2J6IA_13107 4 263 1.048 1.053 8 1.000 7.500
2W00B_3H1TA_10858 777 428 46.179 45.645 1 939 61.076 494.224
2W4JA_2A2AD_0 890 0.999 0.999 16 1.000 2.625
3HRZA_2HR0A_476 934 965 0.879 0.879 17 899 1.031 4.283
3P0KA_3GWLB_0 90 1.000 1.000 0 1.000 ∞
3ZY0D_3ZY1A_110 52 1.000 1.000 0 1.000 1.000

of reversing heuristics away from trying to fail quickly when an instance is expected to be
satisfiable. Another implication of these results is discussed in the following section.

2.5 Other Enhancements

Algorithm 2.1 shows the key features of most recent maximum clique algorithms: candidate
solutions are constructed by accepting then rejecting vertices, and a colouring is used both as
a bound and as an ordering function. We discussed how to reorder colour classes to improve
the performance slightly. This algorithm has been adapted and enhanced in various other
ways—we now give a brief overview of some recent research. None of these variations is a
clear winner universally, but each gives improvements on certain instances.

Initial vertex ordering Algorithm 2.1 begins by permuting vertices by degree order. This
in turn alters the colouring produced, by determining the order in which vertices are coloured
on line 26. The justification for using a non-increasing degree order is that such an approach
tends to produce reasonably tight greedy colourings. Using a static degree order which is
computed at the top of search is much cheaper computationally than recalculating degrees
dynamically.

Other vertex orderings have been proposed. Prosser (2012) considers three: the simple
non-increasing degree order we describe, a minimum-width or degeneracy ordering (Eppstein
and Strash, 2011; Freuder, 1982; Matula and Beck, 1983), and non-increasing degree with
tiebreaking on the accumulated degree of neighbours. There is no clear winner: the best
algorithm varies between both problem families and problem instances, and is also dependent
upon the exact choice of colouring algorithm used.

After Prosser’s (2012) study, San Segundo, Lopez, and Batsyn (2014) proposed a vertex
ordering which is between degree and minimum width. Their approach has a magic parameter
k controlling which ordering dominates, which must be selected to be “neither too small, nor
too big”. With an appropriate Goldilocks value for k, the results appear promising, offering a
modest improvement for most of the instances considered. Building upon this, San Segundo,

56 CHAPTER 2. THE MAXIMUM CLIQUE PROBLEM

Lopez, Batsyn, et al. (2016) propose selecting between different colouring procedures based
upon a combination of the density of the graph, and the quality of colourings produced at the
top of search.

It is not entirely clear what the purpose of these orderings is: there have been several
attempts at determining good strategies for producing greedy colourings (Brélaz, 1979; Kubale
and Jackowski, 1985; San Segundo, 2012; Sewell, 1993), and we might think that producing
a tight colouring at the top of search should give best results. However, this is not the case:
producing a better initial colouring will often increase the overall size of the search space,
rather than reduce it. This could be because of the close coupling between branching and
the order of vertices in colour classes, or because producing a good colouring initially does
not imply we will continue to produce good colourings after branching and rejecting some
vertices. To avoid the latter, we could also consider a dynamic vertex ordering: we could
recalculate degrees in the subgraph induced by remaining before each colouring, rather than
reusing a single ordering throughout search. However, maintaining degree information during
search is prohibitively expensive. To offset this cost, Tomita, Yoshida, et al. (2016) suggest
recalculating a vertex ordering at each level near the root of the search tree; an empirically
derived formula is given to determine when this should be done.

We must also be wary of interactions between parts of the algorithm: we cannot consider
vertex orderings independently of the mechanism used to produce the colouring. Prosser
(2012) shows that, all other things being unchanged, a minimum width ordering produces
better results than either degree-based ordering on random graphs when using the greedy
colouring routine which we described in Algorithm 2.1, but worse results when using a
slightly different procedure due to Tomita and Kameda (2007).

A further complication in comparing results comes from how exactly the ordering is
calculated. The degree spread in many graphs is fairly low, and even with tiebreaking
mechanisms, the final order is usually not uniquely determined by the sorting criteria. Prosser
(2012) explicitly uses vertex number as a final tiebreaking rule, to ensure that results are
not dependent upon quirks of whichever unstable sorting algorithm is used. We adopt this
convention; other authors have not done so, and have used random tiebreaking. This can
make a large difference in practice: for example, on the brock400 family of instances (whose
vertices are not “naturally” ordered in any way), tiebreaking in reverse vertex order is around
twice as bad on two instances, 20% worse on a third, and only 12% better on the fourth.
Because of the relatively small number of instances in each of the DIMACS families, if we
only looked uncritically at values in a table of results, we could mistakenly conclude that this
tiebreaking strategy is a genuine improvement for certain kinds of graph.

Tighter colourings We could also try to produce tighter colourings by going beyond a
simple greedy colouring. Tomita, Sutani, et al. (2010) propose a repair mechanism, which

2.5. OTHER ENHANCEMENTS 57

works as follows. When performing a vertex-by-vertex greedy colouring, if we must open a
new colour class for the active vertex, we first check why. If there is only a single conflict
between the active vertex and some colour class, and if this conflicting vertex may be placed
in a later colour class without causing a new conflict, then we perform this exchange instead
and do not open a new colour class. San Segundo, Matía, et al. (2013) explain how to adapt
this approach to a bit-parallel setting.

Prosser’s (2012) study suggests that, when compared independently of other changes, the
colour repair mechanism is often able to reduce the size of the search space somewhat, but
often at the expense of runtimes (particularly on larger or denser graphs).

Alternatives to colourings Going further in this direction, we could consider alternatives
to using colouring as a bound. One possibility is to use MaxSAT, which is able to detect
inconsistencies between colour classes and identify (for example) cases where three vertices
are differently coloured but do not form a triangle. This can produce bounds which are tighter
than a greedy colouring, and which are potentially tighter than even an optimal colouring.

When using a MaxSAT solver, the results are not generally competitive due to overheads
and the size of the SAT representation. Also, using a solver restricts us to producing a single
colouring for the encoding at the top of search, and we cannot modify the encoding using
new colourings as vertices are rejected during search. However, using MaxSAT-inspired
bounding inside a colour class algorithm can produce better results for certain classes of
graph (C. Li, Z. Fang, and K. Xu, 2013; C. Li, Hua Jiang, and Manyà, 2017; C. Li, Hua Jiang,
and R. Xu, 2015; C. Li and Quan, 2010a; C. Li and Quan, 2010b). Recent work by San
Segundo, Artieda, León, et al. (2016), San Segundo, Nikolaev, and Batsyn (2015), and San
Segundo, Nikolaev, Batsyn, and Pardalos (2016) suggests that a very limited detection of
inconsistent (non-clique-forming) subsets of coloured vertices using a weakened form of
MaxSAT reasoning may be a better approach. The gains from doing so are typically modest,
reducing both the search space and runtimes by less than a factor of two; however, when
combined with a heuristic lower bound, this technique can close the smallest set of BHOSLIB
instances without search.

There are other possibilities: Balas and Xue (1996) and Wood (1997) used fractional
colourings as a bound, which can be tighter than a conventional colouring. Another interesting
bound is from the Lovász theta function (Knuth, 1994), which always lies in between the
clique and colouring numbers, and is computable in polynomial time; however, the polynomial
and associated constant factors appear not to be practical.

Faster colourings Another possible avenue for improvement is in performing colourings
faster. San Segundo, Tapia, and Lopez (2013) describe a scheme inspired by watched literals
to avoid recalculating information during the colouring process. Batsyn et al. (2014) observe

58 CHAPTER 2. THE MAXIMUM CLIQUE PROBLEM

that statically preallocating space can avoid the cost of memory allocations (the various
iterations of our parallel implementation have always done this as a consequence of the data
structures and compilation methods used for bitsets which we described in Section 1.6.1, but
the technique was not explicitly reported).

Because nearly all of the execution time is spent performing colourings on non-trivial
instances, we could try to put less effort into the colouring process, even if this also increases
the size of the search space. Konc and Janežič (2007b) reuse colourings at certain levels of the
search, rather than producing a new colouring on every iteration. Similarly, Nikolaev, Batsyn,
and San Segundo (2015) show that, with a newer algorithm, reusing a colouring under certain
circumstances can reduce computational time by an average of around 30%, without severely
increasing the search tree size.

We could also select different strengths of colouring dynamically. San Segundo and
Tapia (2014) avoid computing a full colouring for colour classes which are over a branching
threshold, and Tomita, Yoshida, et al. (2016) use a lighter colouring process near the leaves of
the search tree, giving an empirically derived formula to decide when to do this.

Priming In Algorithm 2.1 we initialise the incumbent to be empty. Maslov, Batsyn, and
Pardalos (2014) instead apply an iterated local search (ILS) heuristic to generate an initial
solution. They run the heuristic 100,000 times, except for two instances (which are known
to be difficult, but which had been solved exactly previously, and where 100,000 runs of
the heuristic did not find the known solution) where they run the heuristic 60 million times
instead (which was sufficient to find the known maximum clique). This strategy was reused
by Batsyn et al. (2014). It is extremely effective on certain harder instances, for reasons which
we will investigate further in the following chapter, but adds considerable overhead to trivial
instances. When using such an approach we must also know in advance how many times we
should run the heuristic—in general we do not have the benefit of knowing a priori what the
solution is, then being able to select an appropriate number of times to run the heuristic such
that that solution is found. Thus, although the effectiveness of this technique is interesting,
we consider its use to be somewhat unprincipled.

This technique was also adopted by Tomita, Yoshida, et al. (2016), who use a different
form of local search to prime the incumbent. They give a formula for how many iterations to
run which is based upon the number of vertices and the density of the graph; the formula was
derived empirically by considering a small set of instances, and it does not generalise to other
families such as those in Chapter 4.

This chapter’s results on reordering colour classes shed more light on this technique:
previously experimenters assumed that Algorithm 2.1 tried to find strong solutions quickly
and that heuristic solutions were a way of helping out. In fact, we saw that the algorithm tries
hard to fail as soon as possible, because doing so leads to less time spent proving optimality

2.5. OTHER ENHANCEMENTS 59

(which is often the most expensive part of the search). Priming, then, could provide a way of
offsetting potential penalties of having a weaker incumbent when trying harder to fail sooner.

Fast clique detection Batsyn et al. (2014) observe that if we colour the first k vertices using
k colours, then those vertices must form a clique. This can be used to avoid making recursive
calls and performing new colourings during parts of the search.

Alternatives to backtracking search Östergård (2002) used a technique now commonly
known as Russian dolls search (Verfaillie, Lemaître, and Schiex, 1996) to obtain a bound.
In clique terms, the idea is as follows: we write the vertices out in some order v1, v2, . . . , vn.
Now we find the maximum clique in the subgraph induced by v1 (which necessarily is of size
1), then the subgraph induced by {v1, v2} (which is either the same, or one higher and using
only vertex v2 and its neighbours), then {v1 . . . v3}, and so on, until we arrive at the overall
solution. The benefit of doing so is that at each stage, we may use the previously-solved
subproblems to give a bound on the solution size: if vk is the highest numbered undecided
vertex which has not yet been rejected, then we cannot grow our current candidate solution by
more than the solution we found for the subgraph induced by the first k vertices.

Corrêa et al. (2014) resurrect this idea and combine it with a colour bound. The reported
results are somewhat faster on some DIMACS instances, although the results are compared
to rescaled results from another paper. The reported runtimes for two of the “gen” instances
are vastly superior, since their technique finds the hidden solutions quickly. Araujo Tavares
(2016) shows that Russian dolls search is particularly effective for the maximum weight clique
problem.

Bergman et al. (2014) propose the use of decision diagram search. This technique allows
for the merging of equivalent or weaker states during search, pruning the search space.
However, their results are extremely poor: with 256 processor cores, every single runtime
reported is worse than the single core runtimes of Algorithm 2.1, usually by many orders of
magnitude.

Lazy global domination In Chapter 4 we propose a different technique based upon elimi-
nating redundant or subsumed states, which we call lazy global domination. As this technique
gives no improvement to the problem instances discussed here, and appears only to be useful
for exploiting unusual properties problem instances created by a reduction from a different
problem, we defer discussion until then.

Parallel search As well as bit-parallelism, these algorithms can be parallelised to make use
of multiple threads or processors. We discuss this in detail in the following chapter.

60 CHAPTER 2. THE MAXIMUM CLIQUE PROBLEM

Other problems In Chapters 4 and 7 we will look at using clique algorithms to solve
distance relaxations of clique, and maximum common subgraph problems. Chapter 4 also
discusses modifying these algorithms to solve a clique problem with side constraints, and a
bipartite version of the clique problem.

2.5.1 Other Related Work

We now briefly discuss other related work which is relevant for the remainder of this thesis.
Wu and Hao (2015) give a broader review, including work on non-exact methods which we
do not study.

Sparse graphs Because of the use of an adjacency matrix and a quadratic (or higher cost)
bounding operation, Algorithm 2.1 and its variants are only suitable for relatively small,
dense graphs (although we will see in Chapter 4 that “relatively small” can still be many
tens of thousands of vertices). There is considerable interest in an algorithm which is more
suitable for large, sparse graphs—see, for example, recent work by Hua Jiang, C. Li, and
Manyà (2016), Pattabiraman et al. (2013), Pattabiraman et al. (2015), San Segundo, Artieda,
Batsyn, et al. (2017), San Segundo, Lopez, Artieda, et al. (2017), and San Segundo, Lopez,
and Pardalos (2016).

The justification for these algorithms is that real-world graphs are sparse. It is worth
noting, however, that most uses of clique algorithms appear to be on encoded graphs, rather
than on graphs that directly represent real-world phenomena, and encoded graphs often do
not have similar properties to their inputs. For example, the encodings we use in Chapter 4
and Chapter 7 both turn sparse input graphs into dense graphs. In practice, even the simplest
of polynomial reductions can severely impact solver behaviour. For example, the reductions
from vertex cover and independent set to clique change sparse graphs into dense graphs—this
goes some way towards explaining why Akiba and Iwata (2016) saw such poor performance
from a clique algorithm on vertex cover instances in large sparse graphs.

Preprocessing In a more detailed look at the results of Akiba and Iwata (2016), Strash
(2016) observes that preprocessing input graphs can sometimes be hugely beneficial, even
when simplification rules are only applied at the top of search. In Chapter 4 we explore this
further, and look at using laziness to avoid paying upfront costs of simplification.

Enumeration The maximal clique enumeration problem is to list every maximal clique in
a graph (that is, every clique which cannot be made larger by adding a vertex). Bron and
Kerbosch (1973) provided the first algorithm for this problem, and variants of this algorithm
remain the state of the art. An interesting related problem is maximum clique enumeration,
which is discussed by Eblen et al. (2012). Although we do not consider enumeration problems

2.6. CONCLUSION 61

directly, one of the algorithms in Chapter 4 performs two passes to find a multi-objective
solution, and the second pass in many ways resembles maximum clique enumeration.

2.6 Conclusion

We have looked at sequential algorithms for the maximum clique problem. We introduced
Algorithm 2.1, which plays an important part in the remainder of this thesis. In Chapter 3
we will look at how to parallelise it to make use of multiple cores, and in Chapter 4 we will
adapt the algorithm to solve three other problems. We also return to cliques when solving the
maximum common subgraph problem in Chapter 7.

Our experiments have helped us uncover more about how modern maximum clique
algorithms work. Building upon research on phase transitions and complexity peaks for
decision problems, we now understand some of the shape of the complexity curve for the
optimisation problem. It is known how to locate the clique phase transition analytically
(Frieze, 1990). Following on from this, an interesting open question is whether we can explain
the relative difficulty of different decision problems, thus obtaining a complete explanation
for the shape of the complexity curve.

We now understand why the right-to-left branching order is used. We demonstrated that
the explanation in the literature for this rule is incorrect, and used constraint programming
concepts to propose an alternative justification which stands up to experimental scrutiny. This
justification allowed us to design a slightly better branching rule. Another open question
is whether further enhancements are possible, in particular with respect to picking vertices
within colour classes (corresponding to value-ordering heuristics).

We looked in detail at the DIMACS benchmark instances usually used to compare max-
imum clique algorithms. On the one hand, having a diverse set of instances that are used
across papers makes it easier to judge progress. On the other hand, upon closer inspection
we saw that many of these instances are effectively random instances in disguise, sometimes
with large hidden solutions. This suggests that we should treat massive speedups in the
“brock”, “gen” and “san(r)” families with a little skepticism—in particular, the best algorithm
for the “gen” instances is simply whichever algorithm happens to find an optimal solution
most quickly. This leads to real concerns with the design of arbitrary tie-breaking rules
which just happen to favour these instances, and suggests that overfitting may be a problem in
algorithm design. We could address this by creating larger numbers of instances using the
original generators (some of which are publicly available), but this puts even more emphasis
on random instances in benchmarking: will we end up simply measuring which algorithms
happen to find hidden solutions quickly?

The “frb” family from the BHOSLIB suite does little to improve the situation: these
are also crafted instances which are designed to be difficult. It is interesting that with the

62 CHAPTER 2. THE MAXIMUM CLIQUE PROBLEM

right level of inference these instances suddenly become easy, in that being able to generate
hard instance with known properties has potential applications in cryptography (Brockington
and Culberson, 1993). However, it is unclear as to when stronger inference is more useful
in general: more complicated bounding functions can raise the computational cost of each
recursive call substantially. In Chapter 4 we will be looking at much larger problem instances
where more complex inference is prohibitively expensive, to the point that we do not want to
use even a single O(n3) step in the algorithm.

Despite this somewhat pessimistic view, it is worth emphasising that considerable progress
has been made. Many of the instances that we find easy, such as the diagnostic and protein
graphs (as well as the maximum common subgraph instances in Chapter 7), are only easy
because of advances made in algorithm design, and many of those advances have come from
studying hard synthetic instances. We will also be introducing new instances from other
applications in subsequent chapters, and will see that with a few modifications, modern clique
algorithms perform better than old clique algorithms on these new families. With this in
mind, the emphasis on this chapter has primarily been about learning more about the basic
algorithm, rather than simply introducing an improvement and demonstrating that it runs
faster on some instances. Indeed, the main interest for our 2DF branching rule is not that it is
a bit faster, but rather that it helps us understand why the algorithm works so well in practice.

63

Chapter 3

Parallel Maximum Clique

When parallelising an algorithm, we seek to divide work into a suitable number of equally
sized, independent subproblems which may be evaluated simultaneously. Sequential branch
and bound algorithms do not lend themselves to this approach, and parallel branch and bound
algorithms must cope with extremely irregular subproblem sizes, speculative evaluation, and
communication patterns which cannot be predicted in advance. Nonetheless, parallel branch
and bound can be beneficial in practice: this chapter takes the sequential maximum clique
algorithm from the previous chapter, and evaluates several multi-core parallel implementations.
We will see that on modern multi-core hardware, any one of these parallel implementations is
clearly better than the original sequential algorithm.

Our aim is not just to produce a faster maximum clique implementation, however; we look
in detail at the choices available when parallelising a branch and bound algorithm, in the hopes
of learning more general lessons. We show that different work splitting strategies can have
a substantial effect upon performance, and that a careful study of the underlying sequential
algorithm can help direct our design. We make use of the extra programming flexibility
offered by multi-core systems to take measurements “inside the search” to demonstrate why

some implementation choices give better or worse performance on some problems. We make
three claims, and justify them experimentally. Firstly, we show that static work splitting can
lead to balance problems. Secondly, we show that different search orders and work splitting
mechanisms often have a large effect upon speedups, and that this is due to changes in “the
amount of work done”, rather than just imbalances and overheads. Thirdly, we show that an
understanding of how ordering heuristics behave can explain why a simple fixed-depth work
splitting mechanism usually does so well, despite occasional balance problems.

Using these results, we discuss how we may improve work balance whilst retaining the
search-order benefits of a simpler work splitting mechanism. We present a novel work splitting
mechanism which explicitly diversifies at the top of search, to offset poor early heuristic
advice, and that resplits work later to improve balance. We show that, as our explanations
predict, this gives better and more consistent speedups than other mechanisms.

64 CHAPTER 3. PARALLEL MAXIMUM CLIQUE

This chapter is based upon McCreesh and Prosser (2015c), “The Shape of the Search Tree
for the Maximum Clique Problem and the Implications for Parallel Branch and Bound”. Prior
to that work, we implemented a threaded version of a maximum clique algorithm similar to
Algorithm 2.1 (McCreesh and Prosser, 2013). This closed three previously open DIMACS
instances: the best-known cliques in “MANN_a81”, “C4000.5” and “p_hat1500-3” were
all shown to be optimal. Independently, Depolli et al. (2013) produced another threaded
maximum clique implementation. Both approaches started with a similar sequential algorithm,
both were implemented using C++11 native threads to explore subtrees in parallel, and both
performed experiments on similar multi-core hardware. At a glance, both sets of results are
similar: good speedups are achievable in practice (but the speedups achieved vary substantially
between problem instances), and superlinear speedups (greater than n from n processors)
sometimes happen—in other words, both papers show that adding parallel tree-search to a
strong maximum clique algorithm is worth doing.

A close inspection of both sets of results shows that for some particular problem instances,
there are substantial differences: for example, we obtained roughly linear speedups for
the DIMACS graph “MANN_a45”, whereas Depolli et al. achieved a speedup of below 4
regardless of the number of processor cores available. We will explain why this happened, and
how this may be addressed without compromising other results (in particular by preserving
the superlinear speedups seen on some instances).

We start by explaining how branch and bound algorithms may be viewed as a tree search
process, and how we can treat behaviour “inside search” as different kinds of subtrees. We use
this to explain the fundamental concepts underlying parallel branch and bound, and discuss
the potential for speedups.

In Section 3.2 we look in more detail at the effects of design choices in practice. We show
that the reason for Depolli et al.’s speedup limit of 4 for “MANN_a45” is due to poor load
balancing. We then look in more detail at further problems. We will see that that balance
does not severely restrict speedups in most cases, and that steps taken to improve the balance
will often give much worse performance (and not just due to overheads). Our view of branch
and bound as a tree, together with some knowledge of how heuristics behave, lets us explain
this. We show that diversity (that is, using parallelism to hedge against weak early heuristic
choices), not balance, is usually the primary contributing factor to performance.

Finally, in Section 3.3 we discuss how to get “the best of both worlds”. Driven by a
deeper understanding of the search process, we present a new work splitting technique which
explicitly adds diversity early in search, to offset the weakest heuristic advice, followed by a
low-overhead resplitting mechanism to even out balance problems later on in search. This
approach is more than just beneficial: recalling the properties introduced in Section 1.6.6, it is
also risk-free, scalable, and reproducible. It also generalises to other problems: in Chapters 4,
5 and 7, we show that this strategy remains beneficial for other subgraph problems.

3.1. BRANCH AND BOUND AS A TREE 65

()

1

1, 1 1, 2 1, 3

2

2, 1 2, 2 2, 3

3

3, 1 3, 2 3, 3

4

4, 1 4, 2 4, 3

?

Figure 3.1: A possible search space of a branch and bound algorithm, viewed as a tree—we
assume a depth-first search, iterating over children from left to right. Each node represents a
recursive call; triangles represent large subtrees. The optimal solution is marked ?, at location
(2, 1 . . .). Nodes which need not be explored if this optimal solution has already been found,
which are said to be eliminable, are shaded lightly; nodes which must always be explored to
prove optimality are shaded darkly. Here, the light subtree (1, 3) is avoidable—it would be
explored in the sequential run despite being eliminable.

3.1 Branch and Bound as a Tree

We may view the recursive calls made by a branch and bound algorithm as forming a tree,
as in Figure 3.1. Here, each node in the tree represents a recursive call; triangles represent
large subtrees (recall that we use node for search trees, and vertex for graphs). We mark
by ? the location of an optimal solution. Nodes shaded darkly are those which cannot be
eliminated by the bound, regardless of the strength of the incumbent—we say such nodes
are ineliminable. Nodes shaded lightly are those which could be eliminated by the bound,
if ? has been found—such nodes are eliminable. The tree is traversed in a manner similar to
a depth-first search, exploring subtrees from left to right. Note that in a sequential run, the
leftmost light-shaded subtree will not be eliminated by the bound, since the search will not
yet have found ?. In other words, not all eliminable nodes are necessarily eliminated. We call
eliminable nodes that are not eliminated in the sequential run avoidable.

In maximum clique terms, ? is the location of a maximum clique, whose size is denoted
ω. The dark shaded nodes are then the nodes which must be explored to prove that there is no
clique of size ω + 1 in the graph. Light shaded nodes are those that would be eliminated by
the bound, if the algorithm were to be initialised with an incumbent size of ω rather than 0.
For now we assume there is a unique optimum, and that the optimum must be known before
any subtree may be eliminated by the bound. We will see later that this assumption is slightly
too simple in some cases.

We may label nodes with lists of numbers as follows: the root node is labelled with the
empty list, (). We label children of the root node from left to right as (1), (2), (3), etc. The
children of (1) are labelled (1, 1), (1, 2), (1, 3), and so on. Thus, in our figure, the optimal
solution ? is found at the location (2, 1 . . .), which corresponds to taking the second branch at
the top of search followed by the first branch thereafter.

66 CHAPTER 3. PARALLEL MAXIMUM CLIQUE

3.1.1 Parallel Branch and Bound

Usually when we wish to parallelise an algorithm, we look for independent units of work
which may be evaluated independently. With branch and bound we cannot take this simple
approach, and we must resort to speculatively executing non-independent subproblems to be
able to exploit parallel hardware. We view branch and bound as a tree search, ignore left-to-
right dependencies, and explore different subtrees in parallel. There is a single incumbent
which is shared between every worker. This technique in general is well known—see, for
example, discussions by Bader, Hart, and Phillips (2005) and Crainic, Le Cun, and Roucairol
(2006). For the maximum clique problem, it was first attempted by Pardalos, Rappe, and
Resende (1998), where message passing was used on a cluster of four machines, and later,
by McCreesh and Prosser (2013) and Depolli et al. (2013) using threads. Another recent
parallel maximum clique algorithm by R. A. Rossi et al. (2013) does the same, starting with
an algorithm designed for large sparse graphs; again, superlinear speedups were observed.
Parallel tree-search was also used by Debroni et al. (2011) to close the Keller maximum clique
problem, using an algorithm which exploited special properties of these graphs.

Other approaches have been considered for maximum clique. Xiang, Guo, and Aboulnaga
(2013) used MapReduce rather than conventional parallel branch and bound. Their emphasis
is upon the scalability of their solution: they demonstrate linear speedups (over a parallel
implementation, not a sequential one) on three graphs from one DIMACS family, and on one
further graph. We will see that other families of graphs have properties which can interfere
with this approach. Bergman et al. (2014) used parallel decision diagrams, and showed
excellent scalability—however, their sequential runtimes were much worse than state-of-the-
art algorithms, and with 256 cores their results never beat the sequential Algorithm 2.1 on a
single core.

3.1.2 The Potential for Speedup

With the parallel tree-search approach, we are not dividing a fixed amount of work between
processor cores. Thus we should not always expect to gain a speedup approaching n from n

cores (such a speedup is said to be linear). Instead, the speedup obtained will depend not just
upon the algorithm used, but also the nature of the input. There are various possible outcomes,
which we illustrate in Figure 3.2:

• The search space consists entirely of nodes that cannot be eliminated—discovering the
optimal solution does not provide any benefit to proving optimality. In this case, we are

dividing a fixed amount of work up between workers, and may hope for a linear speedup.

• The search space contains many eliminable nodes that are eliminated on the sequential
run, but are not eliminated in the parallel run. Our additional workers end up contributing

3.1. BRANCH AND BOUND AS A TREE 67

?

Linear speedup

?

No speedup

?

Superlinear Speedup

?

Slowdown?

Figure 3.2: Possibilities for speedup in parallel branch and bound. Here we show the search
space being divided between three workers. If there are no eliminable nodes, we are dividing
up a fixed amount of work, and may hope for a linear speedup. If our workers spend their
time exploring avoidable nodes, as in the top right example, we would get no speedup at all.
Conversely, a worker may find an optimal solution much more quickly than in the sequential
run. This may lead to avoidable nodes being eliminated in the parallel run, giving a superlinear
speedup. Finally, the bottom right example shows the perils of exploring the tree “in a different
order” to the sequential run: if only two workers are available, and exploring the leftmost
subtree is deferred, we would explore many more nodes in total than in a sequential run.

nothing to the solution, so we get no speedup at all.

• The search space contains many avoidable nodes (eliminable nodes that are not eliminated
on the sequential run) that are eliminated in parallel due to one of the additional workers
finding an optimal solution quickly. Here we may get a superlinear speedup (Lai and Sahni,
1984; Trienekens, 1990).

• We could start by allocating all our workers to explore portions of the search space that
would be eliminated in the sequential run. This could lead to a slowdown. Intuitively, one
might think this is due to the tree being explored “in a different order” in parallel. This
possibility is indeed avoidable—we must ensure that incumbents are discovered at least as
quickly in parallel as they are in the sequential run, and that newly discovered incumbents
are shared between threads. We refer to works by de Bruin, Kindervater, and Trienekens
(1995), G. Li and Wah (1984), G. Li and Wah (1986), and Trienekens (1990); the injectivity
requirements are not relevant for the maximum clique problem, since all cliques of a given
size are equivalent for inference purposes.

Both our approach and that by Depolli et al. meet the conditions for avoiding a slowdown
(with one technicality: it is possible for colourings of a subproblem to be worse than colourings

68 CHAPTER 3. PARALLEL MAXIMUM CLIQUE

of a parent problem—we have been unable to observe this having an effect in practice,
although it can easily be worked around). The approach by Xiang, Guo, and Aboulnaga
(2013) does not meet these conditions: they do not preserve sequential search order, and they
do not share newly discovered incumbents until a subproblem has finished. We will see in
the following section why this was not a problem for the three DIMACS graphs that they
considered.

Note that these properties may only be categorised after the fact—when the algorithm
finds the optimal solution, it does not yet know that there is nothing better. Furthermore, in
practice, we would not expect problems to fall neatly into one of these categories—we could
both explore some additional eliminable nodes before a solution is found, and avoid some
avoidable nodes. The matter is further complicated by the possibility of multiple solutions,
and of “quite good” solutions that allow some but not all of the eliminable nodes to be
eliminated. Our outcomes only represent the extremes in behaviour that we might observe.

3.2 Do Details of Parallel Algorithm Design Matter?

Having discussed what could happen in theory, we now show that these concerns are often
relevant in practice. But first we briefly discuss our experimental setup and test data.

3.2.1 Experimental Setup and Data

Both McCreesh and Prosser (2013) and Depolli et al. (2013) considered problem instances
from the Second DIMACS Implementation Challenge. We also considered random graphs
and graphs from BHOSLIB, whilst Depolli et al. introduced a series of protein product graphs.
We discussed these instances in the previous chapter, and will use all three families in this
chapter too.

For scalability experiments, we work with a machine with four AMD Opteron 6366 HE
processors and 512GBytes RAM, running Fedora Linux 18. Each processor has eight modules,
each containing two cores, for a total of 64 cores. (Note that resources are shared between
pairs of cores in a module, so it is not the case that we have 64 times as much processing power
as is found in a single core used on its own.) The AMD Turbo Core feature was disabled, to
allow us to investigate scalability effects. We emphasise that each core individually is not
especially fast, compared to the systems previously used by either McCreesh and Prosser
(2013) or Depolli et al. in their experiments—our goal with these experiments is not to solve
new instances or to solve existing instances faster, but rather to look at the consequences of
algorithm design choices. Speedups are given over a sequential implementation, not a parallel
implementation with one thread. Our compiler is GCC 4.9.0, and we use C++11 with native
threads.

3.2. DO DETAILS OF PARALLEL ALGORITHM DESIGN MATTER? 69

1 2 3 4

Figure 3.3: Splitting work at the top: we divide the work into four jobs by splitting the tree
at distance 1 from the root. Workers tackle the subproblems in the order shown.

3.2.2 The Importance of Good Work Splitting

We have assumed so far that we are able to divide work between processors; we now discuss
how to do this. A number of approaches are possible. Both McCreesh and Prosser and Depolli
et al. started by splitting work “at the top” of search, as in Figure 3.3. Since the number of
vertices in a graph is expected to be much larger than the number of cores available, this
produces more jobs than there are workers. We explicitly placed each subtree of distance 1
from the root onto a queue (using an additional thread, and blocking when the queue contained
too many items), and had workers process subtrees from this queue in order. Depolli et al.
instead started by processing the root node, and when branching, would process the “take v”
case in one worker, and pass the “do not take v” case on to a one-item queue to be processed
by the next available worker. (We also had a work donation mechanism for further splitting
later on in search; we ignore this for now.)

Such an approach assumes that subtrees will be sufficiently numerous and of similar
size to allow an even work distribution. We could imagine a situation like the one shown
in Figure 3.4 occurring, where the cost of evaluating one subtree dominates the runtime.
Informally, we say that a workload is balanced if each thread has roughly the same runtime.
We suggest that balance is generally a good thing.1

Depolli et al. claim their solution offers “low idle time and good load-balancing”, and for
most problem instances this is indeed the case. However, we will now show that a balance
problem is the reason they were unable to achieve a speedup of 4 for the DIMACS graph
“MANN_a45” regardless of the number of processors used. This contradicts their speculation
that the density and large maximum clique size of the graph was to blame for the atypically
poor speedup.

Figure 3.5 plots speedups obtained by our implementation as the number of worker
threads increases (speedups are measured over a good sequential implementation, not a
parallel implementation run with one thread). The bottom line shows what happens when
splitting work at distance 1, without the work donation mechanism—we see that our speedups

1Of course, one could cheat and achieve a supposedly perfect balance by having threads that would otherwise
be idle perform useless work instead. Thus, like counting recursive calls, measures of balance should be used
for enlightenment, not for comparisons.

70 CHAPTER 3. PARALLEL MAXIMUM CLIQUE

?

Figure 3.4: Subtrees can be highly irregularly sized. Here the search space contains no
eliminable nodes, so if we divided the work between three processor cores as shown we might
expect a speedup approaching three. But if work is not split dynamically, the runtime may be
dominated by the cost of exploring the large subtree in the middle.

appear to be capped at around four.2

The first graph in Figure 3.6 shows the gap between the runtime of the shortest running
and the longest running threads, as the number of threads increases. We would expect the
gap between the two lines to be small if a good balance has been achieved; here we see that
splitting at distance 1 gives a reasonable balance only for up to four threads.

The bottom right graph shows runtimes of individual threads, when 32 threads are used.
A perfectly balanced work distribution would give a horizontal line. Here we see the longest
running thread working for 107 s, with the second longest finishing after 79 s, and there are
only six further threads with runtimes over 10 s. The sequential runtime is 438 s, and our
speedup is capped at 438/107 ≈ 4.1.

One possible workaround is to split the tree further from the root, in the hopes that this
will give a better balance. For example, it is trivial to modify our implementation to split at
distance 2 from the root, as in Figure 3.7. Figures 3.5 and 3.6 shows that doing so solves the
balance problem for “MANN_a45” for up to fifteen threads, beyond which again the runtime
is determined by the size of the largest subproblem. Going one step further, and splitting
at distance 3 from the root (also shown) gives a sufficiently balanced distribution to allow
effective use of 64 cores. This approach is also taken by Xiang, Guo, and Aboulnaga (2013),
with a splitting distance chosen at the start of search based upon estimates of the sizes of
subtrees.

The principle underlying this approach is that we may solve the irregularity problem
by statically breaking the problem up into many more pieces than we have cores at the
top of search, and then distributing work dynamically, so that an even balance is obtained
automatically. A similar approach known as “embarrassingly parallel search” has been used
in a constraint programming setting by Malapert, Régin, and Rezgui (2016), Menouer et
al. (2016), Régin, Rezgui, and Malapert (2013), and Régin, Rezgui, and Malapert (2014),
with very favourable results on a range of standard constraint programming problems (but

2Strictly speaking, it is a coincidence that our limit of “around 4” and Depolli et al.’s figure of “between 3
and 4” both involve the number 4. The two sequential algorithms used different initial vertex orderings, and
the implementations give different rates of nodes per second at different depths in the graph, so we should not
expect to see exactly the same limit in both cases.

3.2. DO DETAILS OF PARALLEL ALGORITHM DESIGN MATTER? 71

0

5

10

15

20

25

30

35

40

45

8 16 24 32 40 48 56 642

Sp
ee

du
p

Number of threads

Distance 1

Distance 2

Distance 3

Donation

Resplitting

Figure 3.5: Speedup obtained as the number of threads increases for the DIMACS instance
“MANN_a45”. We see that with no work donation, splitting at distance 1 limits the speedup
to around 4 regardless of the number of threads used, and splitting at distance 2 limits the
speedup to 16. Splitting at distance 3 gives a typical speedup curve. Also shown are results
for the work donation approach proposed by McCreesh and Prosser (2013), which evidently
has scalability limits at this range with this hardware, and a more scalable approach described
at the end of this chapter. The sequential runtime is 438 s.

0

40

80

120

160

200

8 16 24 32 40 48 56 642

R
un

tim
es

(s
)

Number of threads

First to last runtime gap, distance 1

Shortest runtime
Longest runtime

0

40

80

120

160

200

8 16 24 32 40 48 56 642

R
un

tim
es

(s
)

Number of threads

First to last runtime gap, distance 2

Shortest runtime
Longest runtime

0

40

80

120

160

200

8 16 24 32 40 48 56 642

R
un

tim
es

(s
)

Number of threads

First to last runtime gap, distance 3

Shortest runtime
Longest runtime

0

20

40

60

80

100

120

8 16 24 322

R
un

tim
es

(s
)

Individual threads

Balance of thread runtimes, 32 threads

Distance 1
Distance 2
Distance 3

Figure 3.6: The first three graphs show runtimes of individual worker threads as the number
of threads increases for the DIMACS instance “MANN_a45”, with different splitting distances.
The top line shows the runtime of the longest thread, and the bottom line the shortest. The
fourth graph shows the runtimes of each thread when using 32 threads. We see that as the
splitting distance increases, the balance improves.

72 CHAPTER 3. PARALLEL MAXIMUM CLIQUE

1 2 3 4 5 6 7 8 9 10 11 12

Figure 3.7: Splitting work at level 2. We might hope that this would lead to a more even work
distribution than in Figure 3.3. But we will see that doing so does not avoid the problems with
irregularly sized subtrees, and removes one of the benefits of splitting work at the top.

maximum clique was not considered).

We could also consider splitting work entirely dynamically (Sanders, 1995). If the
algorithm is refactored to perform a binary search, this is conceptually simple: before
recursing down any “left” branch, the implementation can check whether any thread is out
of work, and if one is, then it is given the “right” branch to evaluate. More generally, the
splitting could be left to a high level library or language feature—we will investigate this
in Section 3.3.2, using Intel’s Cilk Plus. It is important to note that the splitting here is
non-deterministic: we will see that this can lead to large variations in runtimes when solving
the same problem instance several times.

Finally, we could try to estimate in advance how long each subproblem will take, as Xiang,
Guo, and Aboulnaga (2013) do, and use these estimates to partition work statically. However,
accurately estimating the runtime of a subproblem is extremely difficult. Otten and Dechter
(2017) demonstrates the state of the art in this area: they solve large and/or branch and bound
problems on a computational grid which has severe limits on communications, and must put
much more effort into obtaining a good balance up-front than approaches where dynamic
balancing is possible.

Unfortunately, for branch and bound algorithms all of these alternatives have extremely
undesirable effects. Looking ahead to Figure 3.8, we see the opposite of what is shown in
Figure 3.5: for other instances, splitting at distance 3 is much worse than splitting at distance
1. This is because deeper splitting does not just affect balance; as a side effect, the search
order is also changed. When splitting at distance 1, we explore the subtrees at (1), (2), (3)

and so on, in that (parallel) order. But when splitting at distance 2, we would instead start
by exploring the subtrees (1, 1), (1, 2), (1, 3) and so on. In a hypothetical situation such as
Figure 3.1 where a solution is located at (2, 1, 1 . . .), splitting at distance 1 will lead to a
solution being found immediately, but splitting at distance 2 will not. In practice, changing the
parallel search order can often have much more significant effects than a potentially improved
balance. The remainder of this chapter explains this in more detail, and shows how to get
close to “the best of both worlds” (these are the remaining lines in the speedup plots).

3.2. DO DETAILS OF PARALLEL ALGORITHM DESIGN MATTER? 73

3.2.3 Does Parallel Search Order Matter?

Different parallel search orders only matter if we are not dividing up a fixed amount of
work—that is, if we are not in the situation shown in the top left of Figure 3.2. If there are
not many eliminable nodes, exploring the search tree in any order which does not violate
Trienekens’s (1990) conditions for avoiding a slowdown is acceptable. However, we saw in
Chapter 2 there are in fact many avoidable search nodes in most instances. Thus, even after
ensuring that a slowdown cannot happen, parallel search order is an important consideration.

In Table 3.1 we redisplay some of the information from Table 2.1 on page 41, listing the
easier DIMACS and BHOSLIB instances, and Depolli et al.’s protein product graph instances.
As before, we show the size of a maximum clique, ω, and the number of search nodes (that
is, the number of recursive calls made). Next is the number of search nodes that it takes to
prove that the graph does not contain a clique of size ω+ 1; we find this total by rerunning the
algorithm with the size of incumbent initialised to ω rather than 0. In other words, this is the
number of nodes in ineliminable subtrees. We then present two new pieces of information: we
show the proportion of the search space which consists of avoidable nodes, and the location
of the solution, which we discuss below.

For some DIMACS instances (e.g. “hamming8-4”, “johnson16-2-4”, the “keller” and
“MANN” graphs and “sanr400_0.7”), we see that there are very few avoidable nodes, so
parallel search order does not matter. The three DIMACS graphs considered by Xiang, Guo,
and Aboulnaga are also in this category.

But for more than half of the DIMACS instances, at least a third of the search space is
avoidable. For “san400_0.5_1” and “san1000”, the entire search space is avoidable—that
is, the bound at the top of search is sufficient to prove optimality, if a clique of size ω has
already been found. For the remainder of the “san” family (but not “sanr”), at least 87 % of
the search space is avoidable. The “brock”, “gen” and “p_hat” graph families also contain
many members with substantial avoidable proportions. The BHOSLIB instances are similar:
the avoidable proportion is between 25 % and 58 %. Finally, the protein product graphs all
have very high avoidable proportions, although in some cases these are coupled with a low
total node count. Thus we should expect that parallel search order will often, but not always,
be an important factor in determining speedups.

3.2.4 The Quality of Heuristics, and What This Implies

W. D. Harvey and Ginsberg’s (1995) limited discrepancy search is a general tree-search
technique which is based upon two principles. Firstly, that when a search fails to find a
solution immediately, it is likely that it only made a small number of “wrong turns” (a
discrepancy is when search does not follow a heuristic, in an attempt to correct one of these
wrong turns). Secondly, they claim that “for many problems the heuristics are least reliable

74 CHAPTER 3. PARALLEL MAXIMUM CLIQUE

Table 3.1: Properties of the sequential search space for selected problem instances. Shown is
the size of a maximum clique ω, then the total number of search nodes. Next is the number
of search nodes required to prove there is no clique of size ω + 1, and the percentage of the
search space which is avoidable. Finally, we give the location of the first maximum clique.

Instance ω Total Prove Avoid Location

Randomly generated

C125.9 34 5.02×104 2.69×104 46.4 7, 5, 5, 3, 1, 1, 2, 2, 1×26
C250.9 44 1.08×109 9.68×108 10.5 4, 32, 4, 9, 3, 5, 2×3, 5, . . .
C2000.5 16 1.82×1010 1.82×1010 0.0 1, 21, 19, 26, 5, 1×11

DSJC500_5 13 1.15×106 1.09×106 5.2 8, 38, 3, 1×10
DSJC1000_5 15 7.70×107 7.67×107 0.3 1, 96, 1×13

Randomly generated with large degree spread

p_hat300-1 8 1.48×103 1.29×103 12.9 18, 12, 1×6
p_hat300-2 25 4.26×103 2.83×103 33.5 7, 18, 4, 4, 1×21
p_hat300-3 36 6.25×105 2.46×105 60.6 69, 21, 2, 3, 2×3, 1×5, 2, 1×23
p_hat500-1 9 9.78×103 9.70×103 0.8 3, 18, 1×7
p_hat500-2 36 1.14×105 3.96×104 65.3 114, 10, 10, 5, 2, 4, 1×10, 2, 1×19
p_hat500-3 50 3.93×107 1.56×107 60.3 96, 64, 12, 8, 2×3, 1×4, 2, 1×38
p_hat700-1 11 2.66×104 1.62×104 39.3 259, 4, 2, 1×8
p_hat700-2 44 7.51×105 3.79×105 49.6 62, 35, 18, 6, 2, 3, 1×38
p_hat700-3 62 2.82×108 1.60×108 43.3 147, 62, 42, 11, 6, 8, 2, 2, . . .
p_hat1000-1 10 1.77×105 1.75×105 0.8 6, 29, 5, 1×7
p_hat1000-2 46 3.45×107 2.18×107 36.8 171, 36, 25, 5, 2, 2, 1, 2, . . .
p_hat1000-3 68 1.30×1011 3.85×1010 70.5 368, 30, 99, 6, 10, 3, 2, 1, . . .
p_hat1500-1 12 1.18×106 9.59×105 19.1 226, 75, 4, 1×9
p_hat1500-2 65 2.01×109 1.09×109 45.5 280, 136, 25, 29, 8, 1, 3, 3, . . .

Randomly generated with large hidden solutions

brock200_1 21 5.25×105 3.06×105 41.7 22, 4, 10, 6, 1×17
brock200_2 12 3.83×103 2.58×103 32.6 10, 7, 1×10
brock200_3 15 1.46×104 1.45×104 0.3 1, 1, 3, 1×12
brock200_4 17 5.87×104 3.16×104 46.2 36, 20, 5, 1×14
brock400_1 27 1.98×108 1.17×108 41.0 20, 2, 10, 11, 4, 2, 1×21
brock400_2 29 1.46×108 4.84×107 66.8 13, 8, 10, 2, 1, 2, 1×23
brock400_3 31 1.20×108 1.66×107 86.2 14, 10, 1, 4, 2, 1×26
brock400_4 33 5.44×107 7.67×106 85.9 9, 3, 4, 3, 1×29
brock800_1 23 2.23×109 1.76×109 21.0 16, 9, 9, 16, 3, 1×18
brock800_2 24 2.24×109 1.31×109 41.4 23, 65, 1×22
brock800_3 25 2.15×109 7.03×108 67.3 46, 2, 24, 6, 2, 1×20
brock800_4 26 6.40×108 5.09×108 20.5 4, 32, 7, 2, 1×22

gen200_p0.9_44 44 1.77×106 1.49×105 91.6 8, 4, 2, 2, 1×40
gen200_p0.9_55 55 1.70×105 2.32×103 98.6 4, 3, 1×53
gen400_p0.9_65 65 1.76×1011 7.29×109 95.9 11, 7, 3, 2, 1×61
gen400_p0.9_75 75 1.05×1011 1.24×108 99.9 17, 8, 3, 4, 1×71

san200_0.7_1 30 1.34×104 227 98.3 2×3, 1×27
san200_0.7_2 18 464 1 99.8 7, 3, 3, 1×15
san200_0.9_1 70 8.73×104 18 100.0 2, 1×69
san200_0.9_2 60 2.30×105 1.06×103 99.5 5, 1, 3, 1×57
san200_0.9_3 44 6.82×106 4.19×105 93.8 3, 4, 2, 1×41
san400_0.5_1 13 2.45×103 1 100.0 20, 5, 3, 1×10
san400_0.7_1 40 1.19×105 9.94×103 91.7 13, 2, 3, 1×37

continued on next page. . .

3.2. DO DETAILS OF PARALLEL ALGORITHM DESIGN MATTER? 75

Instance ω Total Prove Avoid Location

san400_0.7_2 30 8.89×105 8.32×104 90.6 27, 1, 2, 1, 2, 1×25
san400_0.7_3 22 5.21×105 6.70×104 87.1 3, 4, 2, 1, 1, 2, 2, 1×15
san400_0.9_1 100 4.54×106 3.33×105 92.7 8, 1×99
san1000 15 1.51×105 1 100.0 42, 39, 1×13
sanr200_0.7 18 1.53×105 1.26×105 17.6 5, 4, 8, 6, 2, 1×13
sanr200_0.9 42 1.49×107 1.02×107 31.7 8, 15, 2, 4, 2×6, 1×32
sanr400_0.5 13 3.20×105 1.96×105 38.8 95, 12, 2, 2, 1×9
sanr400_0.7 21 6.44×107 6.40×107 0.7 1, 22, 4, 11, 6, 1, 3, 2, 1×13

Randomly generated with known solution sizes

frb30-15-1 30 2.92×108 2.18×108 25.5 12, 5, 13, 7, 4, 2, 1×3, 3, . . .
frb30-15-2 30 5.57×108 3.32×108 40.4 20, 13, 7, 4, 11, 1, 3, 2, . . .
frb30-15-3 30 1.67×108 1.00×108 40.0 13, 3, 8, 4, 4, 1, 1, 4, . . .
frb30-15-4 30 9.91×108 4.20×108 57.7 55, 10, 12, 4, 2, 1, 2, 1, . . .
frb30-15-5 30 2.83×108 1.77×108 37.3 9, 17, 7, 4, 3, 2, 2, 1×3, . . .

Fault diagnosis

c-fat200-1 12 24 3 87.5 5, 1×11
c-fat200-2 24 24 1 95.8 1×24
c-fat200-5 58 139 27 80.6 28, 1×57
c-fat500-1 14 14 1 92.9 1×14
c-fat500-2 26 26 1 96.2 1×26
c-fat500-5 64 64 1 98.4 1×64
c-fat500-10 126 126 1 99.2 1×126

Coding theory

hamming6-2 32 32 1 96.9 1×32
hamming6-4 4 82 81 1.2 1×4
hamming8-2 128 128 1 99.2 1×128
hamming8-4 16 3.65×104 3.64×104 0.0 1×16
hamming10-2 512 512 1 99.8 1×512

johnson8-2-4 4 24 23 4.2 1×4
johnson8-4-4 14 126 115 8.7 1×14
johnson16-2-4 8 2.56×105 2.56×105 0.0 1×8

Keller conjecture

keller4 11 1.37×104 1.37×104 0.3 1, 4, 1, 5, 1×7
keller5 27 5.07×1010 5.07×1010 0.0 1, 2, 1, 13, 1, 1, 3, 1×20

Steiner triple problem

MANN_a9 16 71 60 15.5 1×16
MANN_a27 126 3.80×104 3.78×104 0.6 1×6, 3, 1×119
MANN_a45 345 2.85×106 2.85×106 0.2 1×5, 6, 1×4, 6, 1×334

Proteins

1KZKA_3KT2A_78 247 247 1 99.6 1×247
1allA_3dbjC_41 346 675 372 44.9 1×346
1f82A_1zb7A_5 500 716 294 58.9 1×500
2FDVC_1PO5A_83 556 1.35×103 146 89.2 2, 1×555
2UV8I_2J6IA_13107 69 4.26×103 461 89.2 5, 3, 1, 1, 3, 2, 1×63
2W00B_3H1TA_10858 143 7.77×105 1.23×105 84.2 6, 6, 1×141
2W4JA_2A2AD_0 447 890 10 98.9 1×5, 2, 1×441
3HRZA_2HR0A_476 563 9.35×105 3.23×105 65.4 1, 2, 2, 1, 2, 1×4, 2, 1×14, . . .
3P0KA_3GWLB_0 89 90 3 96.7 1×89
3ZY0D_3ZY1A_110 52 52 1 98.1 1×52

76 CHAPTER 3. PARALLEL MAXIMUM CLIQUE

early in the search, before making decisions that reduce the problem to a size for which the
heuristics become reliable”. There is a long-standing tradition of focusing upon the first of
these two claims, and ignoring the second (Korf, 1996; Moisan, Gaudreault, and Quimper,
2013; Prosser and Unsworth, 2011; Walsh, 1997). Here we will buck the trend and emphasise
the second claim.

One observation that suggests that the second claim might hold for the maximum clique
problem is that the heuristics use degree information at the top of search. For many of the
DIMACS graphs the degrees of most vertices are fairly similar (which motivates many of
the tie-breaking strategies which we discussed in Chapter 2), and in some cases they are
intentionally designed to be misleading. We consider the possibility that using parallelism
to avoid a strong commitment to the first choice made by a weak early heuristic may be a
more fruitful alternative than trying to wring even more information out of the graph at the
top of search. Explicitly splitting at distance 1 maximises this effect—by assigning additional
workers to go against initial heuristic advice, we minimise early commitments.

We return to Table 3.1 to justify this. The final column shows the location in the search
space of the maximum clique found by the sequential algorithm. If heuristics were strong
at the top of search, we would expect the first number to be 1 in most cases, and low in the
remainder. Sometimes this is indeed the case—for example, for the graphs “hamming8-4”,
taking the first heuristic choice sixteen times in a row leads immediately to an optimal solution.
Similarly, the heuristic is perfect for “johnson16-2-4” (taking the first heuristic choice at
each level again finds a solution immediately), and for “MANN_a27” and “MANN_a45” it
is accurate for the first few levels. For these graphs, the cost is almost entirely in proving
optimality. This suggests that having at least one thread preserve search order to avoid a
slowdown is worthwhile (although in fact for all of these graphs, there are multiple maximum
cliques).

On the other hand, for most graphs the first number in the last column of Table 3.1 is
not a 1, or even a small number. The table shows that W. D. Harvey and Ginsberg’s second
claim holds for the DIMACS, BHOSLIB and non-trivial protein instances for the maximum
clique problem: heuristic information is weak at the top of search, and strong commitment to
that information can result in reduced performance. Combined with the high proportion of
avoidable nodes in many of these cases, we should expect parallel search order to matter, and
for explicit diversity early in search to be beneficial compared to strong early commitment.
(Additionally, early diversity remains as good as any other solution in cases where heuristics
are strong at all levels, or where there are few avoidable nodes.)

3.2.5 Selected Results in Depth

We will now look in more detail at the behaviour of different work splitting mechanisms for
selected instances, to justify our claims about parallel algorithm design.

3.2. DO DETAILS OF PARALLEL ALGORITHM DESIGN MATTER? 77

0

10

20

30

40

50

60

70

80

2 16 32 48 6420

Sp
ee

du
p

Number of threads

brock400_1
370.8 s, 41.0%, (20, 2, 10, 11, 4, 2, 1×21)

1
2

3
d

r

0

10

20

30

40

50

60

70

80

2 16 32 48 6420
0

10

20

30

40

50

60

70

80

2 16 32 48 6413

Sp
ee

du
p

Number of threads

brock400_2
268.2 s, 66.8%, (13, 8, 10, 2, 1, 2, 1×23)

1
2

3
d

r

0

10

20

30

40

50

60

70

80

2 16 32 48 6413

0

10

20

30

40

50

60

70

80

2 16 32 48 6414 34

Sp
ee

du
p

Number of threads

brock400_3
213.1 s, 86.2%, (14, 10, 1, 4, 2, 1×26)

1

2

3

d

r

0

10

20

30

40

50

60

70

80

2 16 32 48 6414 34
0

10

20

30

40

50

60

70

80

2 16 32 48 649

Sp
ee

du
p

Number of threads

brock400_4
103.2 s, 85.9%, (9, 3, 4, 3, 1×29)

1

2

3

d

r

0

10

20

30

40

50

60

70

80

2 16 32 48 649

0
2
4
6
8

10
12
14
16
18
20

8 16 24 32 40 48 56 642

R
un

tim
es

(s
)

Number of threads

brock400_1
Balance at distance 1

0
2
4
6
8

10
12
14
16
18
20

8 16 24 32 40 48 56 642
0

1

2

3

4

5

8 16 24 32 40 48 56 642

R
un

tim
es

(s
)

Number of threads

brock400_4
Balance at distance 1

Distance 1
Distance 2
Distance 3

Donation
Resplitting

Shortest runtime
Longest runtime

0

1

2

3

4

5

8 16 24 32 40 48 56 642

Figure 3.8: The first four graphs show speedup obtained as the number of threads increases
for the “brock400” family of DIMACS instances. Measurements are from a 32 module / 64
core system. The title shows the instance, the sequential runtime, the proportion of avoidable
nodes, and the location of the solution found by the sequential algorithm. The dotted vertical
lines show where we might expect speedup jumps to occur when splitting at distance 1; the
second dotted vertical line in the third graph at position 34 is explained in the text. The bottom
two graphs show the balance when splitting at distance 1 with varying number of threads
for “brock400_1” (where balance becomes a problem) and “brock400_4” (where balance is
better).

78 CHAPTER 3. PARALLEL MAXIMUM CLIQUE

In Figure 3.8 we show the speedups obtained as the number of threads increases from 2
to 64 for the four members of the DIMACS “brock400” family. We see straight away that
we are getting very different behaviour to that shown for “MANN_a45” in Figure 3.5. For
“MANN_a45”, splitting at distance 3 was clearly the best option, but here in each case splitting
at distance 1 is best, and distance 3 is very poor. This shows that balance is not the deciding
factor for these instances.

For each of these graphs we see a sudden jump in speedups from being approximately
linear to being visibly superlinear when splitting at distance 1. For “brock400_1”, the jump oc-
curs when going from 19 threads to 20, and the solution is located at (20, 2, 10, 11, 4, 2, 1×21).
Thus with distance 1 splitting, the 20th thread very quickly finds an optimal solution and
allows much of the search tree to be eliminated. The same behaviour occurs for the other three
members of the “brock400” family—in each case, the jump occurs with k threads, where k
is the first number in the location of an optimal solution. There is no jump when splitting at
distance 2 or distance 3.

For “brock400_3” (ω = 31) we get a second jump as we move to 34 threads. We might
think perhaps there is a second optimal solution located at, say, (34, 1×30). In fact it is not this
clear-cut: the solutions for all four of the “brock400” graphs are unique, but for “brock400_3”
there is a strong (but not optimal) incumbent of size 29 located at (34, 5, 8, 1, 3, 3, 1×23).
With 33 threads, the best incumbent found by the equivalent time in the search only has size
24.

Balance does have some effect for “brock400_1”, with over 40 threads—we show this in
the fifth graph. The sixth graph shows “brock400_4”, where the balance is even better (the
other two graphs are in-between). But in each case, splitting at distance 1 gives a reasonable
work distribution and best overall performance. We should not find this surprising: Depolli
et al. did not encounter hard speedup limits with most instances, so we would not expect
balance problems to be common, particularly with smaller numbers of threads.

One further observation is that in each case, for up to around eight threads it does not
matter much which mechanism is used—each gives a roughly linear speedup.

But are these result typical? Figure 3.9 shows the same information for four further
DIMACS graphs. Each shows different interesting behaviour.

For “san400_0.9_1”, where the solution is located at (8, 1×99), there is a very sharp jump
as we go from seven to eight threads when splitting at distance 1. Here the eighth thread
finds the solution immediately, and this allows over 90 % of the search space to be avoided.
We see speedups from nearly 100 to over 300 as we go from 8 to 64 threads. Note that our
parallel runtimes go considerably below one second—within this region, our implementation
is sensitive to scheduling effects, startup costs and the time spent in the initial sequential part
of the problem, and so our speedup lines become rather unstable.

An even stronger superlinear speedup is obtained for “gen400_p0.9_75”, where the

3.2. DO DETAILS OF PARALLEL ALGORITHM DESIGN MATTER? 79

0

50

100

150

200

250

300

2 16 32 48 648

Sp
ee

du
p

Number of threads

san400_0.9_1
30.7 s, 92.7%, (8, 1×99)

1

2
3
d

r

0

50

100

150

200

250

300

2 16 32 48 648
0

100

200

300

400

500

600

700

800

16 32 48 6417

Sp
ee

du
p

Number of threads

gen400_p0.9_75
318 082 s, 99.9%, (17, 8, 3, 4, 1×71)

1

2

3

d

r

0

100

200

300

400

500

600

700

800

16 32 48 6417

0

10

20

30

40

50

60

2 16 32 48 644

Sp
ee

du
p

Number of threads

C250.9
2184.6 s, 10.5%, (4, 32, 4, 9, 3, 5, 2×3, . . .)

1

2
3

d

r

0

10

20

30

40

50

60

2 16 32 48 644
0

10

20

30

40

50

60

2 16 32 48 64

Sp
ee

du
p

Number of threads

p_hat700-3
2299.2 s, 43.3%, (147, 62, 42, 11, 6, 8, . . .)

1

2

3
d

r

0

10

20

30

40

50

60

2 16 32 48 64

0

50

100

150

200

250

300

8 16 24 32 40 48 56 642

R
un

tim
es

(s
)

Number of threads

C250.9
Balance at distance 1

0

50

100

150

200

250

300

8 16 24 32 40 48 56 642
0

100

200

300

400

500

8 16 24 32 40 48 56 642

R
un

tim
es

(s
)

Number of threads

p_hat700-3
Balance at distance 1

Distance 1
Distance 2
Distance 3

Donation
Resplitting

Shortest runtime
Longest runtime

0

100

200

300

400

500

8 16 24 32 40 48 56 642

Figure 3.9: The first four graphs show speedup obtained as the number of threads increases
for four further DIMACS instances. Measurements are from a 32 module / 64 core system.
The title shows the instance, the sequential runtime, the proportion of avoidable nodes, and
the location of the solution found by the sequential algorithm. The dotted vertical lines
show where we might expect speedup jumps to occur when splitting at distance 1. For
“gen400_p0.9_75”, results using fewer than 16 threads are omitted due to the long sequential
runtime. The bottom two graphs show the balance when splitting at distance 1 with varying
number of threads for “C250.9” and “p_hat700-3”.

80 CHAPTER 3. PARALLEL MAXIMUM CLIQUE

speedup from distance 1 splitting is between 800 and 1000 from 32 or more threads. We
should expect that this could happen: 99.9 % of the search space is avoidable. But although
there is a small jump when going to 17 threads, as we might predict, there are two much
larger jumps at 26 and 31 threads. The jump at 17 threads is small because the heuristic is
badly wrong at both the top of search, and the second level, so the 17th thread still takes a
long time to find a maximum clique. However, the 26th thread quickly finds an incumbent of
size 55 at (26, 1×3, 2×3, 1, 2, 1×46), and a little later the 31st thread finds an incumbent of
size 59 at (31, 1, 3, 4, 1×3, 2, 1×51). These are followed by larger incumbents being found
by the 17th and 26th threads, and then the 31st thread finds an incumbent of size 72 at
(31, 4, 3, 1×4, 2, 1×64). This eliminates enough of the search tree that the maximum clique of
size 75 is then found by the 17th thread as we would expect, and search finishes two seconds
later. This is an unusually complicated picture, whose behaviour is not captured by simple
measurements which assume a single maximum clique and nothing else—we must look more
carefully inside the search process to explain what is going on.

This is not the only peculiar behaviour visible in the graph. We can also explain why the
speedup decreases slightly as the number of threads goes from 32 to 64. Firstly, we note that
there is almost no improvement to the number of nodes required to find an optimal solution
when going over 31 threads, so each additional thread could contribute at most a linear extra
improvement to the runtime. Secondly, we remind the reader that although our hardware is
marketed as having 64 cores, some resources are shared between cores—thus, it does not have
64 times as much processing power when used perfectly in parallel. Nor does the bandwidth
available for memory and cache increase by a factor of 64 when using all 64 cores. The result
is that although we have more total processing power when using all 64 cores, each individual
core is penalised somewhat: with 32 threads, stronger incumbents are found slightly sooner
than with 64 threads. Since time to find a maximum clique is the most important factor for
this instance, the overall speedup is reduced. This is a slightly odd case of what de Bruin,
Kindervater, and Trienekens (1995) describe as the “[danger of increasing] the processing
power of a system by adding a less powerful processing element”; this should also serve as a
warning against attempting to gain the benefits of increased diversity by using more threads
than there are cores.

For “C250.9” there is no jump. The reasons for this are twofold. Firstly, although the
solution is found by taking the fourth heuristic choice at the top of search, the second heuristic
decision (where we are not explicitly diversifying) is also poor. Thus, even with distance 1
splitting, we do not find a better incumbent quickly. Secondly, the proportion of avoidable
nodes for this instance is relatively low, so finding a stronger incumbent quickly does not
provide much benefit. This graph also has a speedup limit from imbalances when splitting at
distance 1, which we show in the fifth graph.

Nor is there a jump for “p_hat700-3” (ω = 62). Here splitting at distance 2 beats splitting

3.3. GETTING THE BEST OF BOTH WORLDS 81

at distance 1 by a small amount at 16 threads, and a much larger amount by 64 threads.
Balance is one factor here, but only from 24 threads onwards. Splitting at distance 1 finds
incumbents of sizes up to 53 most quickly, but splitting at distance 2 finds incumbents of
sizes 54 and higher in slightly less time. Although 43.3 % of the search space is avoidable,
the heuristics in this case are sufficiently poor at the first six levels that we are unable to find
an optimal solution quickly regardless of how the work is split.

Overall, we see that balance is sometimes a problem with larger numbers of cores, but that
increasing the likelihood of finding an optimal solution quickly is usually far more important.
As we predicted, the early diversity offered by splitting at distance 1 is often helpful with this.

3.3 Getting the Best of Both Worlds

In view of the previous section, we should look for a work splitting mechanism which gives a
good balance, particularly if we are targeting larger numbers of cores. But the results clearly
reinforce that splitting at distance 2 or 3 rather than distance 1 has practical consequences
beyond the balance of subproblems, and that in most cases parallel search order rather than
balance is the dominating factor. We need an approach which gives the best of both worlds.

It is generally known that parallel search order is important if a strong incumbent is not
available at the start of search, but selecting a parallel search order explicitly designed to
improve our chances of finding a solution quickly has not been given the attention it deserves.
For example, Clausen (1997) notes that “most implementations . . . focus on workload distri-
bution methods to increase efficiency of the parallel algorithm”. Clausen discusses balance,
and how to assess the efficiency of a parallel algorithm, and observes that “different selection
strategies may lead to different search trees”, but does not consider where the solutions are
actually likely to be in the search space, and how this can be used to determine a work splitting
mechanism. Similarly, in the design of an algorithmic skeleton for parallel branch and bound,
Poldner and Kuchen (2008) state that

“the number of problems considered by the parallel skeleton differs enormously
over several runs with the same inputs. This number largely depends on the fact
whether a subproblem leading to the optimal solution is picked up early or late.
Note that the parallel algorithm behaves non-deterministically in the way the
search-space tree is explored. In order to get reliable results, we have repeated
each run 100 times and computed the average runtimes.”

The search-order issue also occurs in constraint programming. Schulte, Tack, and
Lagerkvist (2016) list seven pitfalls with the randomised work-stealing system implemented
in the Gecode constraint programming toolkit. The most relevant to our discussion are as
follows.

82 CHAPTER 3. PARALLEL MAXIMUM CLIQUE

“As work-stealing is indeterministic (depending on how threads are scheduled,
machine load, and other factors), the work that is stolen varies over different
runs for the very same problem: an idle worker could potentially steal different
subtrees from different busy workers. As different subtrees contain different
solutions, it is indeterministic which solution is found first.

When using parallel search one needs to take the following facts into account:

• The order in which solutions are found might be different compared to the
order in which sequential search finds solutions. Likewise, the order in which
solutions are found might differ from one parallel search to the next. This
is just a direct consequence of the indeterministic nature of parallel search.
Naturally, the amount of search needed to find a first solution might differ
both from sequential search and among different parallel searches. Note that
this might actually lead to superlinear speedup (for n workers, the time to find
a first solution is less than 1/n the time of sequential search) or also to real
slowdown.

• For best solution search, the number of solutions until a best solution is found
as well as the solutions found are indeterministic. First, any better solution
is legal (it does not matter which one) and different runs will sometimes be
lucky (or not so lucky) to find a good solution rather quickly. Second, as a
better solution prunes the remaining search space the size of the search space
depends crucially on how quickly good solutions are found.

• As a corollary to the above items, the deviation in runtime and number of
nodes explored for parallel search can be quite high for different runs of the
same problem.”

These pitfalls are not confined to Gecode’s work stealing implementation. Caniou et al.
(2011) note that “solutions may be not uniformly distributed in the search space”, and that this
has an affect on parallelism, but they do not consider adapting the search process to improve
the chances of finding a solution quickly. The “embarrassingly parallel” approach introduced
by Régin, Rezgui, and Malapert (2013) “relies on the assumption that the resolution time of
disjoint subproblems is equivalent to the resolution time of the union of these subproblems”—
we have seen that this assumption does not hold here. Indeed, Malapert, Régin, and Rezgui
(2016) state that

“We will ignore the problem of finding a first feasible solution because the parallel
speedup can be completely uncorrelated to the number of workers, making the
results hard to analyze. We will consider optimization problems for which the
same variability can be observed, but at a lesser extent because the optimality

3.3. GETTING THE BEST OF BOTH WORLDS 83

proof is required. The variability for unsatisfiable and enumeration instances is
lowered, and therefore, they are often used as a test bed for parallel computing.”

We argue that being hard to analyse is not a reason to avoid doing the analysis, particularly
given the rich history of search strategies and ordering heuristics in constraint programming.
Here we do analyse the results, explain the source of the variability, and use it to improve the
decomposition method. This is not a common attitude—more frequently the issue is ignored
entirely, or artificially eliminated from the results. For example, when proposing a new work
splitting mechanism, Fischetti, Monaci, and Salvagnin (2014) state that

“Since we are interested in measuring the scalability of our method, we considered
only instances which are either infeasible or in which we are required to find all
feasible solutions (the parallel speedup for finding a first feasible solution can
be completely uncorrelated to the number of workers, making the results hard to
analyze).”

Leroy et al. (2014) do the same in a branch and bound setting:

“Therefore, we chose to always initialize our B&B by the optimal solution of
the instance to be solved. With this initialization, we are sure that the number of
explored subproblems is the same in both approaches.”

We believe that both of these approaches to measurement and comparison are flawed—
parallelism and search order are linked, and should be considered together. In particular, we
disagree with Rayward-Smith, Rush, and McKeown’s (1993) assertion that speedup is “only
a very crude measure of the success of parallelism” and their notion of “pseudo efficiency”.
Changes in the amount of work done are inherent to parallelism, and should not be disregarded
when evaluating a parallelism strategy.

Changes to the amount of work done and the expected locations of solutions are considered
by Chu, Schulte, and Stuckey’s (2009) confidence-based work stealing. However, their
experimental work does not evaluate the strengths of confidence heuristics based upon domain
knowledge, and their only experiment using non-fixed confidence intervals relies upon already
knowing where solutions are found. In Chu, Schulte, and Stuckey’s terms, we will show
that we can specify a good, non-constant confidence heuristic for our underlying sequential
algorithm, and that we may exploit it using a simple queueing mechanism. We believe that the
simplicity aspect is important: to the best of our knowledge, despite promising experimental
results, confidence-based work stealing has no public implementation and has never been
available in a production-ready constraint programming toolkit. A further difference is that our
approach is both reproducible and scalable (we introduced these properties in Section 1.6.6),
which we believe are very useful properties when scientifically verifiable results are required—
we will see in the next section the effects of not guaranteeing these properties.

84 CHAPTER 3. PARALLEL MAXIMUM CLIQUE

We also desire a stronger notion of reliability than Poldner and Kuchen (2008). For
non-trivial problem instances, when splitting at a fixed depth, runtimes are very consistent
between executions; we consider it desirable to preserve this property. Langer et al. (2013)
look at parallel branch and bound for integer programming, and explain that “reducing idle
time by eagerly exploring as much of the tree as possible might be counter-productive by
using compute resources for exploring sub-trees that might have been easily pruned later”.
They evaluate two designs for work allocation, and observe that “even though Design A has
better repeatability, the worst performance using Design B is better than the best performance
using Design A”, and conclude that “Design B is the design of choice”. We do not wish to
have to make this kind of trade-off.

3.3.1 A Low-Overhead, High-Diversity Parallelism Mechanism

We must ensure early diversity (that is, weak heuristic commitment at the top of search), but
retain a way of rebalancing subproblems. McCreesh and Prosser (2013) described (without
detailed justification) a work donation mechanism, whereby subproblems are requeued when
threads become idle. This mechanism worked very well on the 12 core Intel machine used
in previous experiments, but it is clear that the approach is unsuitable for a 64 core AMD
machine. We now introduce an alternative work splitting mechanism which is more suitable
for larger numbers of cores.

Initially we split work at distance 1, as before, and place items in order onto a queue.
When the queue is empty, and a thread first becomes idle, this thread then steals and requeues
unstarted work from every other thread, splitting at a distance of 2. Finally, when the queue
again becomes empty and a thread becomes idle, work is stolen and requeued with splitting
at a distance of 3. This gives us all the search order benefits of distance 1 splitting, and the
balance benefits of splitting at distance 3. In addition, if w is the number of workers and |V |
the number of vertices in the graph, it limits the queue size to be at worst w × |V | rather than
|V |3, and avoids enqueueing lots of eliminable nodes early on.

This scheme may be implemented with very little overhead, as follows. Each thread
publishes three integers, describing its current position in search at the first three levels, and
three corresponding flags. When work stealing takes place, the appropriate flag is set; when
returning from a recursive call at the first three levels, the flag is checked to see whether the
remainder of the work has already been stolen and requeued. In particular, this approach
introduces no overhead below depth 3 (where most of the search time is spent), and is very
unlikely to have any contended critical sections.

To share the incumbent, we follow the approach of McCreesh and Prosser (2013) and use
an atomic integer variable to store its size. Using a mutex instead introduces severe scalability
limits: the incumbent’s size is accessed during every recursive call, but is updated very rarely.
The actual vertices making up the incumbent do not need to be shared, and can be stored on a

3.3. GETTING THE BEST OF BOTH WORLDS 85

thread-by-thread basis, with a simple reduction operation at the end of search to select the
largest.

Results for this approach are shown in our speedup plots—we see that in each case
it is at least nearly as good as whichever other mechanism is best, and in many cases it
is slightly better than the best alternative. (Since speedups are being given over a good
sequential implementation, not over a parallel implementation run with one thread, it is
legitimate to compare lines directly.) For all of the “brock400” graphs, “san400_0.9_1” and
“gen400_p0.9_75”, we get the same superlinear speedup jumps as when splitting at distance 1.
But “brock400_1”, “MANN_a45” and “C250.9” show that this approach is successful in
addressing imbalances. With “p_hat700-3”, we initially behave similarly to splitting at
distance 1, but as the number of threads increases and resplitting starts to have an effect
earlier in search, our behaviour approaches that of distance 2 splitting. The graphs also clearly
show that this technique scales well to 64 cores, and does not introduce noticeable overheads
compared to static splitting mechanisms.

These experiments also suggest that with 64 cores, splitting at distance 3 is sufficient, and
there is no benefit of continuing this to an arbitrary distance. However, this is not an intrinsic
limitation, and a larger maximum depth can be used if necessary for larger numbers of cores
or if unusually-shaped problem instances are found (indeed, this turns out to be necessary
in the following chapter). Régin, Rezgui, and Malapert (2013) suggest that the number of
subproblems created only needs to grow linearly with the number of cores. By increasing the
effective splitting depth dynamically by resplitting we instead gain a polynomial increase for
only linear cost.

3.3.2 Comparison to Off-the-Shelf Work Stealing

We now compare our new approach with an off-the-shelf randomised work stealing system,
using the GCC implementation of Intel’s Cilk Plus extensions to C++. We are now interested
in performance rather than insight, so we return to the dual Xeon E5-2697A v4 machines
used in the previous chapter. In Table 3.2 we present sequential and parallel runtimes for the
larger solvable DIMACS instances, and the smallest group of BHOSLIB instances (these are
selected so that parallel runtimes are at least half a second—below this point, measurements
have considerable noise). Each parallel measurement is the average of ten runs: we show both
runtimes, and the number of recursive calls made. For parallel measurements, we also give
the standard deviation and the range of values observed, both expressed as a proportion.

In all but five cases, resplitting takes less time on average, sometimes by more than a
factor of ten. In some of these cases resplitting does more work: sometimes this is a genuine
difference, and sometimes it is simply because resplitting recomputes parts of the search
space, and we include this in node count measurements. The overheads between the two
approaches differ: Cilk Plus does not recompute work, but requires extra copying. The better

86 CHAPTER 3. PARALLEL MAXIMUM CLIQUE

Table 3.2: A comparison of sequential and parallel runtimes for larger problem instances,
using either resplitting or Cilk Plus for work stealing, with 32 or 64 threads on a 32 core
hyper-threaded dual Intel Xeon E5-2697A v4 system. Parallel figures are an average of ten
samples. The error is the standard deviation, and the figures in parentheses are the range, both
expressed as a proportion. A ? indicates the better average.

T Resplitting Cilk Plus

Runtime ± RSD (Range) Speedup Work Runtime ± RSD (Range) Speedup Work

2W00B_3H1TA_10858: sequential 1.9 s
32 ?136.8ms ± 0.29 (0.42-1.45) 14.17 ? 0.26 416.2ms ± 0.20 (0.69-1.39) 4.66 0.69
64 ?160.5ms ± 0.27 (0.70-1.52) 12.08 ? 0.23 350.1ms ± 0.29 (0.56-1.45) 5.54 1.04

3HRZA_2HR0A_476: sequential 17.9 s
32 2.3 s ± 0.04 (0.92-1.05) 7.83 0.51 ?1.0 s ± 0.13 (0.77-1.23) 17.89 ? 0.50
64 2.4 s ± 0.05 (0.93-1.13) 7.56 ? 0.47 ?1.8 s ± 0.21 (0.61-1.45) 10.16 0.77

C250.9: sequential 1126.1 s
32 ?39.3 s ± 0.02 (0.99-1.05) 28.64 ? 1.09 63.5 s ± 0.03 (0.95-1.05) 17.72 1.14
64 ?24.1 s ± 0.03 (0.96-1.05) 46.70 ? 1.06 37.1 s ± 0.05 (0.93-1.09) 30.39 1.12

C2000.5: sequential 10.8 h
32 ?1171.7 s ± 0.00 (1.00-1.01) 33.14 1.00 2149.6 s ± 0.01 (0.98-1.02) 18.06 ? 1.00
64 ?806.2 s ± 0.00 (1.00-1.00) 48.17 ? 1.00 1433.6 s ± 0.02 (0.98-1.03) 27.09 1.00

DSJC500_5: sequential 733ms

32 ?60.3ms ± 0.16 (0.71-1.19) 12.16 ? 0.98 169.2ms ± 0.33 (0.44-1.45) 4.33 0.99
64 ?143.0ms ± 0.79 (0.30-2.94) 5.13 1.03 307.4ms ± 0.26 (0.59-1.55) 2.38 ? 1.00

DSJC1000_5: sequential 87.9 s
32 ?2.9 s ± 0.02 (0.98-1.04) 30.02 1.02 4.5 s ± 0.07 (0.87-1.09) 19.52 ? 1.02
64 ?2.2 s ± 0.02 (0.97-1.04) 39.80 ? 1.01 3.0 s ± 0.03 (0.94-1.04) 28.91 1.02

MANN_a45: sequential 123.2 s
32 ?4.5 s ± 0.02 (0.97-1.03) 27.20 1.04 5.2 s ± 0.03 (0.94-1.05) 23.93 ? 1.03
64 ?3.2 s ± 0.05 (0.91-1.07) 38.81 1.07 3.8 s ± 0.05 (0.92-1.10) 32.37 ? 1.05

brock400_1: sequential 184.4 s
32 ?4.2 s ± 0.01 (0.98-1.01) 44.09 ? 0.64 8.0 s ± 0.08 (0.89-1.18) 23.16 0.85
64 ?3.0 s ± 0.02 (0.98-1.06) 62.17 ? 0.66 5.3 s ± 0.08 (0.86-1.10) 35.07 0.83

brock400_2: sequential 133.7 s
32 ?3.6 s ± 0.03 (0.96-1.07) 36.80 0.79 4.6 s ± 0.06 (0.91-1.10) 29.34 ? 0.63
64 ?2.6 s ± 0.04 (0.96-1.09) 51.06 0.83 3.1 s ± 0.11 (0.83-1.19) 43.84 ? 0.62

brock400_3: sequential 106.1 s
32 ?2.5 s ± 0.01 (0.97-1.02) 43.24 0.64 3.4 s ± 0.11 (0.79-1.15) 31.49 ? 0.54
64 ?1.5 s ± 0.04 (0.94-1.09) 69.31 0.56 2.2 s ± 0.08 (0.87-1.14) 48.36 ? 0.53

brock400_4: sequential 51.6 s
32 ?773.2ms ± 0.07 (0.92-1.14) 66.73 ? 0.32 1.0 s ± 0.16 (0.79-1.31) 51.51 0.32
64 ?715.6ms ± 0.09 (0.81-1.17) 72.10 0.45 838.1ms ± 0.17 (0.79-1.35) 61.56 ? 0.30

brock800_1: sequential 3080.3 s
32 ?83.1 s ± 0.00 (1.00-1.01) 37.05 ? 0.83 136.4 s ± 0.21 (0.81-1.29) 22.59 0.87
64 ?64.7 s ± 0.00 (1.00-1.00) 47.64 0.87 82.9 s ± 0.02 (0.97-1.04) 37.17 ? 0.87

continued on next page. . .

3.3. GETTING THE BEST OF BOTH WORLDS 87

T Resplitting Cilk Plus

Runtime ± RSD (Range) Speedup Work Runtime ± RSD (Range) Speedup Work

brock800_2: sequential 3083.4 s
32 ?87.5 s ± 0.00 (1.00-1.01) 35.22 ? 0.89 177.6 s ± 0.03 (0.96-1.04) 17.37 0.92
64 ?57.1 s ± 0.00 (1.00-1.00) 54.02 ? 0.73 78.6 s ± 0.02 (0.97-1.03) 39.23 0.81

brock800_3: sequential 2890.3 s
32 ?73.2 s ± 0.00 (1.00-1.01) 39.51 ? 0.79 153.9 s ± 0.03 (0.94-1.04) 18.78 0.81
64 ?29.3 s ± 0.00 (0.99-1.01) 98.63 ? 0.35 56.4 s ± 0.06 (0.90-1.09) 51.23 0.60

brock800_4: sequential 1075.2 s
32 ?44.4 s ± 0.00 (0.99-1.01) 24.23 1.46 70.9 s ± 0.03 (0.94-1.03) 15.17 ? 1.17
64 ?27.2 s ± 0.00 (0.99-1.00) 39.54 ? 1.12 36.8 s ± 0.06 (0.90-1.09) 29.25 1.24

frb30-15-1: sequential 456.1 s
32 ?12.6 s ± 0.01 (0.99-1.01) 36.11 ? 0.81 16.7 s ± 0.03 (0.97-1.06) 27.39 0.83
64 ?8.8 s ± 0.01 (0.99-1.02) 51.95 0.86 10.8 s ± 0.02 (0.97-1.03) 42.35 ? 0.84

frb30-15-2: sequential 811.2 s
32 ?22.9 s ± 0.01 (0.99-1.02) 35.38 ? 0.84 31.3 s ± 0.05 (0.92-1.06) 25.91 0.89
64 ?17.7 s ± 0.00 (0.99-1.01) 45.93 0.98 20.5 s ± 0.07 (0.88-1.10) 39.57 ? 0.90

frb30-15-3: sequential 250.0 s
32 ?6.6 s ± 0.02 (0.97-1.04) 37.80 0.76 8.3 s ± 0.04 (0.91-1.06) 29.96 ? 0.73
64 ?4.4 s ± 0.01 (0.98-1.02) 56.39 0.77 5.4 s ± 0.03 (0.93-1.06) 46.34 ? 0.73

frb30-15-4: sequential 1364.0 s
32 ?45.1 s ± 0.00 (1.00-1.01) 30.28 1.00 58.9 s ± 0.02 (0.97-1.03) 23.15 ? 0.99
64 ?20.9 s ± 0.00 (1.00-1.00) 65.31 ? 0.68 38.3 s ± 0.03 (0.95-1.04) 35.60 0.99

frb30-15-5: sequential 402.9 s
32 ?15.3 s ± 0.01 (0.99-1.04) 26.35 1.15 16.4 s ± 0.04 (0.91-1.06) 24.57 ? 0.91
64 11.9 s ± 0.01 (0.96-1.01) 33.96 1.37 ?11.3 s ± 0.07 (0.90-1.12) 35.52 ? 0.99

frb35-17-1: sequential 8.5 h
32 ?693.6 s ± 0.00 (1.00-1.00) 44.03 ? 0.70 1359.0 s ± 0.04 (0.95-1.11) 22.47 0.86
64 ?665.6 s ± 0.00 (1.00-1.00) 45.88 0.89 916.8 s ± 0.06 (0.95-1.16) 33.31 ? 0.82

frb35-17-2: sequential 15.3 h
32 ?1711.2 s ± 0.00 (1.00-1.01) 32.27 1.02 2552.5 s ± 0.04 (0.94-1.06) 21.64 ? 0.91
64 ?1718.8 s ± 0.00 (1.00-1.00) 32.13 1.35 1741.5 s ± 0.05 (0.89-1.09) 31.71 ? 0.90

frb35-17-3: sequential 5.6 h
32 ?706.3 s ± 0.00 (1.00-1.01) 28.58 1.16 957.3 s ± 0.04 (0.94-1.09) 21.09 ? 0.95
64 723.0 s ± 0.00 (1.00-1.00) 27.92 1.57 ?638.9 s ± 0.06 (0.92-1.12) 31.60 ? 0.91

frb35-17-4: sequential 6.3 h
32 ?656.4 s ± 0.00 (1.00-1.00) 34.37 0.95 967.5 s ± 0.02 (0.96-1.05) 23.32 ? 0.87
64 ?510.1 s ± 0.00 (1.00-1.00) 44.23 0.95 661.4 s ± 0.03 (0.96-1.06) 34.11 ? 0.86

frb35-17-5: sequential 34.3 h
32 ?3038.6 s ± 0.00 (1.00-1.01) 40.58 ? 0.79 1.5 h ± 0.05 (0.93-1.12) 22.58 0.84
64 ?2863.7 s ± 0.00 (1.00-1.00) 43.06 0.98 1.1 h ± 0.05 (0.90-1.08) 31.77 ? 0.86

gen200_p0.9_44: sequential 1.8 s
32 ?115.2ms ± 0.46 (0.36-1.81) 15.78 ? 0.38 369.6ms ± 0.47 (0.26-1.60) 4.92 0.40
64 ?202.3ms ± 0.64 (0.32-2.14) 8.99 ? 0.45 355.5ms ± 0.31 (0.37-1.50) 5.11 0.49

continued on next page. . .

88 CHAPTER 3. PARALLEL MAXIMUM CLIQUE

T Resplitting Cilk Plus

Runtime ± RSD (Range) Speedup Work Runtime ± RSD (Range) Speedup Work

gen400_p0.9_55: sequential 996.0 h
32 ?13.0 h ± 0.00 (1.00-1.00) 76.84 ? 0.40 27.1 h ± 0.15 (0.78-1.26) 36.70 0.65
64 ?10.1 h ± 0.00 (0.99-1.01) 98.42 ? 0.46 17.9 h ± 0.11 (0.86-1.17) 55.80 0.64

gen400_p0.9_65: sequential 77.8 h
32 ?1.7 h ± 0.00 (1.00-1.00) 45.78 ? 0.70 2.5 h ± 0.21 (0.53-1.30) 31.71 0.78
64 ?2612.5 s ± 0.00 (1.00-1.00) 107.23 ? 0.41 1.1 h ± 0.29 (0.44-1.64) 72.57 0.50

gen400_p0.9_75: sequential 43.7 h
32 ?194.2 s ± 0.00 (1.00-1.00) 809.44 ? 0.03 1.4 h ± 0.11 (0.74-1.17) 31.57 0.73
64 ?203.6 s ± 0.00 (0.99-1.01) 772.05 ? 0.05 3204.1 s ± 0.25 (0.62-1.37) 49.06 0.72

keller5: sequential 25.1 h
32 ?2780.9 s ± 0.00 (1.00-1.00) 32.45 ? 1.00 1.4 h ± 0.02 (0.97-1.04) 18.13 1.00
64 ?2186.7 s ± 0.00 (1.00-1.00) 41.27 ? 1.00 3567.8 s ± 0.02 (0.98-1.03) 25.29 1.00

p_hat300-3: sequential 666ms

32 ?132.9ms ± 0.21 (0.66-1.29) 5.01 1.17 362.8ms ± 0.24 (0.55-1.30) 1.84 ? 1.15
64 ?169.3ms ± 0.52 (0.36-1.84) 3.93 ? 1.19 332.8ms ± 0.32 (0.33-1.31) 2.00 1.26

p_hat500-3: sequential 70.9 s
32 ?2.8 s ± 0.04 (0.95-1.06) 25.22 1.10 4.0 s ± 0.06 (0.89-1.08) 17.93 ? 1.08
64 ?1.7 s ± 0.07 (0.89-1.12) 41.75 ? 0.90 2.4 s ± 0.03 (0.96-1.07) 29.91 1.06

p_hat700-2: sequential 1.8 s
32 ?227.6ms ± 0.19 (0.80-1.32) 8.04 1.23 471.6ms ± 0.22 (0.52-1.51) 3.88 ? 1.11
64 ?280.6ms ± 0.22 (0.56-1.31) 6.52 1.54 384.8ms ± 0.14 (0.79-1.20) 4.76 ? 1.19

p_hat700-3: sequential 936.0 s
32 ?32.9 s ± 0.01 (0.99-1.01) 28.48 ? 1.12 50.8 s ± 0.01 (0.98-1.03) 18.43 1.21
64 ?26.7 s ± 0.01 (0.98-1.02) 35.09 ? 1.18 29.8 s ± 0.02 (0.96-1.04) 31.42 1.18

p_hat1000-2: sequential 95.0 s
32 ?3.5 s ± 0.01 (0.98-1.03) 27.25 1.13 5.8 s ± 0.04 (0.93-1.09) 16.25 ? 1.04
64 ?2.9 s ± 0.03 (0.96-1.04) 33.18 1.19 2.9 s ± 0.04 (0.96-1.08) 32.36 ? 1.07

p_hat1000-3: sequential 130.8 h
32 ?4.1 h ± 0.00 (1.00-1.01) 31.97 ? 1.03 5.8 h ± 0.01 (0.99-1.01) 22.64 1.04
64 ?3.0 h ± 0.00 (1.00-1.00) 43.12 ? 0.98 4.2 h ± 0.01 (0.98-1.01) 31.43 1.05

p_hat1500-1: sequential 1.8 s
32 ?173.5ms ± 0.20 (0.70-1.26) 10.37 1.03 419.9ms ± 0.18 (0.62-1.23) 4.28 ? 1.01
64 ?197.8ms ± 0.30 (0.71-1.78) 9.10 1.06 318.1ms ± 0.23 (0.52-1.26) 5.66 ? 1.01

p_hat1500-2: sequential 3.7 h
32 ?451.4 s ± 0.00 (0.99-1.01) 29.26 1.11 532.8 s ± 0.01 (0.99-1.01) 24.79 ? 1.08
64 ?315.0 s ± 0.01 (1.00-1.01) 41.94 1.26 356.2 s ± 0.01 (0.98-1.02) 37.09 ? 1.14

san200_0.9_3: sequential 6.2 s
32 ?196.0ms ± 0.15 (0.78-1.26) 31.58 0.21 471.8ms ± 0.33 (0.24-1.55) 13.12 ? 0.17
64 ?204.6ms ± 0.28 (0.58-1.61) 30.25 ? 0.25 400.9ms ± 0.33 (0.40-1.61) 15.44 0.26

san400_0.7_2: sequential 1.3 s
32 ?116.6ms ± 0.32 (0.34-1.34) 11.26 ? 0.48 435.1ms ± 0.21 (0.65-1.28) 3.02 0.57
64 ?173.5ms ± 0.38 (0.33-1.59) 7.57 ? 0.56 306.9ms ± 0.28 (0.61-1.37) 4.28 0.92

continued on next page. . .

3.3. GETTING THE BEST OF BOTH WORLDS 89

T Resplitting Cilk Plus

Runtime ± RSD (Range) Speedup Work Runtime ± RSD (Range) Speedup Work

san400_0.7_3: sequential 859ms

32 ?108.4ms ± 0.44 (0.46-1.93) 7.92 0.53 336.4ms ± 0.29 (0.64-1.70) 2.55 ? 0.26
64 ?178.1ms ± 0.33 (0.39-1.40) 4.82 0.90 304.4ms ± 0.29 (0.61-1.35) 2.82 ? 0.89

san400_0.9_1: sequential 15.3 s
32 ?163.1ms ± 0.19 (0.58-1.24) 93.72 ? 0.08 425.0ms ± 0.18 (0.72-1.28) 35.96 0.13
64 ?186.8ms ± 0.24 (0.71-1.53) 81.83 ? 0.08 306.3ms ± 0.38 (0.37-1.76) 49.90 0.16

sanr200_0.9: sequential 14.3 s
32 ?1.2 s ± 0.06 (0.89-1.11) 11.99 1.50 1.6 s ± 0.11 (0.80-1.16) 9.13 ? 1.33
64 1.1 s ± 0.04 (0.95-1.05) 12.84 ? 1.13 ?1.1 s ± 0.06 (0.91-1.10) 13.55 1.34

sanr400_0.7: sequential 48.3 s
32 ?1.8 s ± 0.02 (0.96-1.03) 27.35 1.01 3.3 s ± 0.07 (0.88-1.10) 14.81 ? 1.00
64 ?1.2 s ± 0.05 (0.93-1.07) 38.79 1.01 2.0 s ± 0.08 (0.87-1.13) 24.29 ? 1.00

san1000: sequential 1.2 s
32 ?159.0ms ± 0.23 (0.79-1.42) 7.41 0.86 257.0ms ± 0.49 (0.35-1.83) 4.58 ? 0.79
64 ?233.1ms ± 0.47 (0.22-1.75) 5.05 1.11 299.3ms ± 0.54 (0.34-1.96) 3.94 ? 0.80

approach depends upon relative costs. For large, dense graphs, copying may be the better
option—this is highlighted in the protein graph “3HRZA_2HR0A_476”, where the amounts
of work are similar, but where Cilk Plus is approximately twice as fast due to colourings
being expensive on these graphs. However, the opposite is true for, for example, “C2000.5”,
where resplitting achieves a higher rate of nodes per second.

It may be possible to reduce the overheads incurred with either approach, through careful
tuning. However, the difference between the average runtimes is not the most striking part of
the results. When looking at the standard deviations and ranges, we see a more interesting
picture: for many instances, the runtimes for Cilk Plus vary substantially between repeat runs,
whereas the resplitting runtimes are much more consistent. (This is why we have not included
Cilk Plus runtimes on our speedup graphs: the speedups are too chaotic to give meaningful
data.) This is particularly visible with the “brock” and “gen” instances, which we have seen
are very sensitive to the time taken to find the solution: for “gen400_p0.9_65”, our shortest
observed runtime with Cilk Plus was 1681 s, and our longest was 6317 s. By contrast, with
resplitting, the shortest runtime was 2602 s and the longest was 2621 s. We do not consider
the variability seen with Cilk Plus to be ideal behaviour.

Despite the lack of explicit diversity, we do often see superlinear speedups with Cilk Plus.
We can explain this. The GCC Cilk Plus implementation tends to steal “earliest created” jobs
first: behind the scenes, each worker has a deque, and jobs are enqueued and processed by
the worker at one end (LIFO), but are stolen from the other (FIFO); victims for stealing are
selected randomly. The rationale is that this is less likely to introduce contention, and that
earlier-created jobs are likely to be larger (McCool, Reinders, and Robison, 2012). However,
this has another benefit here: it introduces at least some diversity early in the search. Assuming

90 CHAPTER 3. PARALLEL MAXIMUM CLIQUE

the (1) subtree is non-trivial, the (2) subtree will always be stolen immediately, and a third
thread will then either steal (1, 2) or (3), nondeterministically. This is an implementation
detail, and not a specified behaviour, so it could change with a new release of the compiler—
this could have disastrous effects for parallel branch and bound.

This accidental diversity also usually requires a higher number of threads before the
incumbent can be found quickly. With 16 threads as opposed to 64, Cilk Plus is slower for
every instance except “p_hat1500-2” (where it wins by less than 1 %), due to it requiring
more work to find the solution.

One point in favour of Cilk Plus is the relative ease of implementation. It remains to be
seen whether tailored work splitting strategies could be made as easy to program as Cilk Plus
already is—recent work by Archibald et al. (2017) is an interesting first step in this direction.

3.3.3 Other Approaches

We have seen how this approach compares to that of Depolli et al. (2013): we improve
the balance, whilst retaining the diversity. Compared to an off-the-shelf work stealing
implementation, we often get better runtimes, and our performance is much more consistent
between runs.

Compared to Xiang, Guo, and Aboulnaga (2013), we do not need to estimate up-front
how large subtrees might be to obtain balance, and we do not need to do any calibration.
Unfortunately Xiang, Guo, and Aboulnaga only considered three of the DIMACS graphs, all
from the same family; by strange coincidence, none of these graphs have many avoidable
nodes, and so the effects we discuss here are not seen in their results. This explains their
consistently linear speedups (which are presented over a parallel algorithm, not a sequential
one). Their approach also does not preserve any sequential order, and only shares updated
incumbents when starting a new subproblem—when there are many avoidable nodes, this can
cause a slowdown, both in theory and in practice. It is thus unclear what would happen with
their approach on other DIMACS graph families, where scalability is not the only concern.

Compared to Moisan, Gaudreault, and Quimper’s (2013) parallel discrepancy search,
we are emphasising early diversity, not total number of discrepancies—that is, we believe
W. D. Harvey and Ginsberg’s second claim (that heuristics are weak early on) is important for
this problem, not their first (that the total number of wrong turns made is low). Another form
of parallel limited discrepancy search, in a constraint programming setting, is discussed by
Michel, See, and Van Hentenryck (2009). They report that superlinear speedups are common
for some problems when comparing parallel limited discrepancy search to sequential depth
first search. However, such an approach risks introducing a slowdown (which they discuss),
and again they consider the number of discrepancies rather than where those discrepancies
occur.

Compared to the works by Batsyn et al. (2014), Maslov, Batsyn, and Pardalos (2014), and

3.3. GETTING THE BEST OF BOTH WORLDS 91

Tomita, Yoshida, et al. (2016) on priming search by using a heuristic (which we discussed
in the previous chapter), we are trying to obtain a strong incumbent earlier in the search by
using multiple paths through a single search tree, rather than a two stage process. This means
that all of our work done is potentially contributing to a proof of optimality. We also do not
need to select a pre-determined arbitrary time to run the first stage, so our approach does not
require special tuning before it can be used on “unseen” graphs. Note however that these
approaches are not mutually exclusive—for problems which are expected to be particularly
difficult, it would be possible to sacrifice one thread during early stages of our search process
to perform a search using a non-exact algorithm.

Another approach using multiple search trees is cooperating local search (Clearwater,
Huberman, and Hogg, 1991), which has been demonstrated in a maximum clique context
by Pullan, Mascia, and Brunato (2011). Here the aim is to combine multiple non-exact
algorithms in parallel in the hopes of gaining the strengths of each; no attempt is made to
prove optimality. This technique has also been used in graph colouring, where Lewandowski
and Condon (1993) observe that “in general, having the processors work in parallel yields
better colorings faster than simply using multiple independent runs”.

This theme also shows up in the ManySAT parallel SAT solver (Hamadi, Jabbour, and
Sais, 2009), where parallelism is used to counter the sensitivity of SAT solvers to initial tuning
parameters. Hamadi, Jabbour, and Sais remark that “the performance of parallel solvers is
usually better on SAT problems than on UNSAT ones”. This is because multiple search trees
may make it easier to find a solution, but they are less helpful in proving that there is no
solution (although things are not this simple for SAT, where learned clauses are shared). In
contrast, in cases where a good solution can be found quickly, our approach allows all of the
work done by every thread to contribute to a proof of optimality—this is why we typically get
at least near-linear speedups. Most modern SAT solvers also make use of randomised restarts
(Gomes, Selman, and Kautz, 1998), again with the aim of avoiding heavy commitment to
any particular portion of the search space; the emphasis here is upon finding a solution to a
satisfiable instance more quickly (although again, learning complicates this analysis).

Finally, one could use these experiments to support the view that sequential maximum
clique algorithms should use some form of early discrepancy search. The author does
not dispute this, although firstly more complicated sequential search algorithms introduce
overheads which cannot be offset during the proof of optimality stage of search, and secondly,
either way, every modern processor has multiple cores and we should be making use of this. In
any case, doing so would not invalidate this approach—we would simply see some superlinear
speedups become linear speedups over a faster sequential baseline.

92 CHAPTER 3. PARALLEL MAXIMUM CLIQUE

3.4 Conclusion

We have considered some of the design choices available when parallelising a state-of-the-
art branch and bound algorithm for the maximum clique problem. We have shown that
the irregularity of subproblem sizes can cause workload balance problems—this should
not be surprising. But we also saw that different parallel search orders will often produce
substantially different speedups, to the extent that balance is usually not the deciding factor
for performance.

This sheds new light on Lai and Sahni’s (1984) claim that “anomalous behaviour will be
rarely witnessed in practice”. Both McCreesh and Prosser (2013) and Depolli et al. (2013)
did commonly encounter superlinear speedups, but only because our parallel search orders
encouraged this. We also saw superlinear speedups when using Cilk Plus, but only because of
an unintended effect of an unspecified implementation detail. We used our understanding of
the behaviour of heuristics to provide an explanation: parallelism was introducing diversity
into the search, avoiding a strong commitment to weak early heuristic advice. We then showed
how to preserve this diversity whilst improving load balancing.

More generally, these experiments demonstrate that obtaining a parallel algorithm which
seems to behave well most of the time should only be the first step in the algorithm design
process. For heuristics, Hooker (1995) advocates a scientific approach to algorithm evaluation,
rather than simple performance comparisons:

“Based on one’s insight into an algorithm, for instance, one might expect good
performance to depend on a certain characteristic. How to find out? Design a
controlled experiment that checks how the presence or absence of this character-
istic affects performance. Even better, build an explanatory mathematical model
that captures the insight, as is done routinely in other empirical sciences, and
deduce from it precise consequences that can be put to the test.”

Such an approach has been helpful here too. By taking measurements inside search,
and looking in depth at individual results, we gained insight into how to improve a parallel
algorithm. We explained why McCreesh and Prosser (2013) and Depolli et al. (2013) both
saw so many superlinear speedups, and how to preserve these speedups when modifying the
parallel algorithm. We also showed why in certain cases Depolli et al. had parallelism limits,
and why priming search is ineffective for some instances.

Later on in this thesis, this technique is re-applied to other problems. In some ways,
maximum clique is an “ideal” problem for this approach, and other problems may not have the
same properties which could complicate matters. It is not obvious whether W. D. Harvey and
Ginsberg’s (1995) second claim (that heuristics are worst early in search) will always hold—in
cases where it does not, it may be necessary to switch to a more complex mechanism, along

3.4. CONCLUSION 93

the lines of confidence-based work stealing (Chu, Schulte, and Stuckey, 2009), to continue
obtaining high quality results.

94

95

Chapter 4

Other Clique-Like Problems

In this chapter we discuss three problems which are closely related to finding a maximum
clique. In each case we adapt Algorithm 2.1 from Chapter 2, showing its flexibility, and then
verify that the parallelism techniques discussed in Chapter 3 remain useful in the new setting.

Firstly, we look at the maximum k-clique problem. This is a distance relaxation, origi-
nating in social network analysis. We show that solving the maximum k-clique problem by
reduction to maximum clique is a practical approach. We then augment the algorithm with a
new inference rule can give much better results on these instances in some cases. This part
of the chapter has been published by McCreesh and Prosser (2016) as “Finding Maximum
k-Cliques Faster Using Lazy Global Domination”.

Secondly, we provide a new algorithm for the maximum labelled clique problem. This
problem involves graphs which have labels on edges, with restrictions on how many labels may
be used. Previous computational results have used integer programming models; we show that
adapting our dedicated maximum clique algorithm to handle side constraints provides results
which are several orders of magnitude faster. This work has been published by McCreesh and
Prosser (2015b) as “A parallel branch and bound algorithm for the maximum labelled clique
problem”.

Finally, we look at the maximum balanced induced biclique problem, which involves
looking for a different shape of subgraph. An earlier version of this work was published by
McCreesh and Prosser (2014a) as “An Exact Branch and Bound Algorithm with Symmetry
Breaking for the Maximum Balanced Induced Biclique Problem”.

4.1 Maximum k-Cliques

When analysing real-world data, a clique may be too strong a requirement. A k-clique (or
sometimes n-clique or s-clique—in an unfortunate clash of notation, “k-clique problem” is
sometimes used elsewhere for the decision version of the clique problem, to distinguish it
from the maximum clique problem) is a relaxed form of clique, where instead of requiring

96 CHAPTER 4. OTHER CLIQUE-LIKE PROBLEMS

each pair of vertices to be directly adjacent, we only require that they be connected by a path
of length at most k (Luce, 1950). Thus a 1-clique is a clique, a 2-clique may be thought of
as “a group of people, all of whom either know each other or have a mutual acquaintance”,
and so on. We illustrate this in Figure 4.1. Determining the size of a maximum k-clique is
NP-hard for any fixed k (Bourjolly, Laporte, and Pesant, 2002).

A related relaxation is a k-club, which tightens the requirement of a k-clique as follows
(Mokken, 1979). In a k-clique, each pair of vertices is connected by a path of length at most
k, but that path may use any vertices in the original graph. In a k-club, each pair of vertices
must be connected by a path of length at most k using only vertices that are also in the club
(or equivalently, a k-club is an induced subgraph of diameter at most k). Thus the 2-clique in
Figure 4.1 is not a 2-club (obviously, every k-club is a k-clique).

A recent survey by Shahinpour and Butenko (2013) discusses algorithms and results for
k-clique and k-club problems. We adopt their notation of ω̃k for the size of a maximum
k-clique; the use of ω for the size of a maximum clique is standard. They note that “unlike
the maximum clique problem, the maximum s-clique problem has not been the subject of
extensive research and we are not aware of any computational results for this problem to date”.
This is in contrast to the k-club problem, for which a wide range of computational results
are available (Bourjolly, Laporte, and Pesant, 2000; Bourjolly, Laporte, and Pesant, 2002;
Carvalho and Almeida, 2016; Chang et al., 2013; Hartung, Komusiewicz, and Nichterlein,
2015; Mahdavi Pajouh and Balasundaram, 2012; Picker, 2015; Shahinpour and Butenko,
2013; Wotzlaw, 2014).

A maximum clique algorithm can easily be adapted to find a maximum k-clique in a
graph G by considering the graph Gk: this graph has the same vertex set as G, and edges
between any two distinct vertices v1 and v2 iff there is a path of length at most k between v1
and v2 inG. It is easy to see that maximum cliques inGk correspond with maximum k-cliques
in G (Balasundaram, Butenko, and Trukhanov, 2005). However, it is not obvious that this is a
viable approach: even if G is sparse, Gk may not be, and the maximum clique problem on
dense graphs can be very challenging computationally. Using Algorithm 2.1, we investigate
whether this approach is feasible in practice. We modify the algorithm to include a new lazy
“global domination” inference step—this technique provides no benefit for typical maximum

1 2
3

4
56

7

8
1 2

3

4
56

7

8

Figure 4.1: On the left, a graph, with its unique maximum clique {1, 2, 5, 8} of size 4
highlighted. On the right, the same graph, with a maximum 2-clique {1, 2, 3, 4, 5, 6, 8} of
size 7 highlighted. This is not a 2-club, since the only path of length 2 between vertices 3 and
6 goes through vertex 7. A 3-clique covers the entire graph.

4.1. MAXIMUM K-CLIQUES 97

clique problems, but for maximum k-clique graphs it sometimes gives improvements of
several orders of magnitude. We present computational results for the maximum k-clique
problem on a range of benchmark and real-world graphs. We finish with a detailed look at
random graphs.

4.1.1 Adapting a Maximum Clique Algorithm

Algorithm 4.1 is an adaptation of Algorithm 2.1 for solving the maximum k-clique problem.
As in Chapter 2, we continue to use colouring as both a bound and an ordering heuristic.
Vertices are coloured in a static non-increasing degree order, which is done by permuting the
graph at the top of search (line 4). This algorithm does not use any of the more expensive
dynamic tie-breaking mechanisms which were introduced in Chapter 2: although doing so can
sometimes be beneficial for small dense graphs in a maximum clique context, for the larger
graphs considered in this chapter, the cubic cost is prohibitively expensive. For the same
reason, and additionally because our colour classes typically contain many vertices, we use a
simple greedy colouring and do not use any of the colour repair steps, stronger MaxSAT-based
inference, or colour class reordering techniques discussed in Chapter 2. Algorithm 4.1 differs
from Algorithm 2.1 in just two ways: the input modification step, and the introduction of a
new inference rule.

Reduction The first step (line 3) is to replace our input graph G with Gk. This graph may
be constructed using a bounded breadth-first search: Chang et al. (2013) describe how to
implement this quickly in practice.

Lazy global domination Aside from the Gk step, and making design choices which avoid
cubic complexity operations (because we expect to be working with very large graphs), we
make one further change to the maximum clique algorithm: we introduce a new “lazy global
domination” rule which performs additional inference during search. This rule is not specific
to the maximum k-clique problem, and is also valid for the maximum clique problem, but
does not appear to be helpful for the usual clique instances.

Let v and w be distinct vertices in a graph G. We say that v dominates w if the neigh-
bourhood of w, excluding v, is a (possibly non-strict) subset of the neighbourhood of v,
excluding w. This is the tree-search / decision diagram state-oriented definition of domination
in a clique context, rather than the usual graph definition: from a maximum clique perspective,
this means that v is “better than” w. If v and w are adjacent, any clique containing w may
always be extended by the inclusion of v; if v and w are non-adjacent, replacing w with v in
any clique containing w cannot reduce the amount by which the clique may be grown.

Suppose a graph does contain one or more pairs of dominating vertices. We could make
use of this fact during search in at least two ways. Firstly, when accepting a vertex w, we

98 CHAPTER 4. OTHER CLIQUE-LIKE PROBLEMS

Algorithm 4.1: Solving the maximum k-clique problem. The colourOrder function
is the same as in Algorithm 2.1.

1 maxKClique :: (Graph G, Integer k)→ Vertex Set
2 begin
3 G← Gk

4 permute G into non-increasing degree order
5 global incumbent ← ∅
6 expand(∅, V(G))
7 return incumbent (unpermuted)

8 expand :: (Vertex Set solution , Vertex Set remaining)
9 begin

10 (order , bounds)← colourOrder(remaining)
11 vrej ← unset
12 for i← |remaining | downto 1 do
13 if |solution| + bounds[i] ≤ |incumbent | then return
14 if vrej 6= unset then
15 remaining ← remaining \ dominated(vrej)
16 v← order [i]
17 if v ∈ remaining then
18 solution ′← solution + v
19 remaining ′← remaining ∩ N(G, v)
20 if remaining ′ 6= ∅ then expand(solution ′, remaining ′)
21 else if |solution ′| > |incumbent | then incumbent ← solution ′

22 remaining ← remaining − v

23 vrej ← v

24 dominated :: (Vertex v)→ Vertex Set
25 begin
26 return {w ∈ V(G) : N(G,w)− v ⊆ N(G, v)− w}

may also unconditionally accept any vertex v which both dominates and is adjacent to w.
Secondly, when rejecting a vertex v, we may also unconditionally reject any vertex w which
is dominated by v. We could also choose to calculate domination globally (i.e. with respect
to Gk, or even the original G), or locally (i.e. with respect to the subgraph of Gk induced by
solution ∪ remaining).

Detecting whether one vertex dominates another may be done in linear time (we discuss
this further below), but finding all vertices dominated by a particular vertex is quadratic, and
finding all dominations is cubic. This is a heavy price to pay, if there are no dominating
vertices. This is why such a rule has not previously been used in the maximum clique context:
the DIMACS graphs do not contain dominating vertices, and other graphs that do are too easy
computationally for the step to be worthwhile.

However, some of the graphs we consider in the following section do contain dominating
vertices, and although the maximum clique problem is trivial on these graphs, the maximum

4.1. MAXIMUM K-CLIQUES 99

k-clique problem is not for some values of k. Preliminary experiments suggested that the
use of a domination rule could be extremely beneficial in certain circumstances, but that in
cases where it had little effect, doing such a calculation introduced a substantial penalty to
runtimes. Moreover, even in graphs where dominating vertices are present, knowing this fact
is sometimes not useful: it is common for an optimal solution to be found straight away, and
for the bound to be strong enough to prove optimality immediately, so no branching occurs.

This motivates the design of a lazy global domination rule. We perform our domination
checks globally, with respect to Gk (which may contain more dominating vertices than G),
and we remember and reuse the results of any domination checks we perform. We also only
perform inference on the “reject” case, to avoid introducing any cost when a solution is found
and proven optimal without branching.

The lines highlighted in Algorithm 4.1 show how this is done. When a vertex vrej is
rejected, we remove from remaining any vertex that is dominated (with respect to Gk) by
vrej . This is line 15; the set of dominated vertices calculated here should be cached. One
might expect that this calculation would appear after line 22. However, this introduces a cost
if the bound allows the next choice of v to be eliminated. Thus we simply remember that we
have rejected v by storing it in vrej (line 23), and lazily postpone the filtering until after the
bound has been checked.

Finally, note that we do not perform a new colouring when we reject dominated vertices—
doing so typically does not lead to a smaller bound, since most colour classes contain many
vertices. Thus when we select a v from order , it is now possible that v has already been
rejected. We check for this on line line 17.

4.1.2 Experimental Results

We now give experimental results on a range of standard benchmarks, and on real-world
and random graphs. Experiments were run on machines with dual Intel Xeon E5-2697A v4
processors and 512GBytes RAM running Ubuntu Linux 16.04; single-threaded runtimes are
given, except in Table 4.2, where 64 threads were used (these machines have 32 real cores, and
hyper-threading). Our software was implemented in C++, using C++11 native threads, and
was compiled using GCC 5.4.0. The time taken to read in the graph from a file is excluded,
but preprocessing time (including the construction of Gk and the bitset encoding) is included.
We use the term nodes to refer to the number of recursive calls made by the branch-and-bound
part of the algorithm (or equivalently, the number of times colourOrder is called).

We begin with a selection of real-world and standard benchmark graphs. We look at k
equal to 2, 3 and 4 in every case—this is a standard practice for the k-club problem.

Erdős collaboration graphs In the first part of Table 4.1 we present experimental results
from Erdős collaboration graphs from the Pajek dataset (Batagelj and Mrvar, 2006) which

100 CHAPTER 4. OTHER CLIQUE-LIKE PROBLEMS

Table 4.1: Experimental results for Erdős collaboration graphs, DIMACS clique graphs with
diameter greater than two, and the smaller DIMACS clustering and partitioning graphs. For
each graph, we consider k equal to 2, 3 and 4. In each case we show the density of Gk, the
size of a maximum k-clique, and then for both the unmodified algorithm and the algorithm
with our lazy global domination step, the number of nodes required, and the runtime.

Instance k D ω̃k Unmodified With Domination

Nodes Runtime Nodes Runtime

Erdős collaboration graphs

Erdos971 2 0.09 42 42 5ms 42 4ms
|V | = 472 3 0.31 117 121 7ms 119 9ms
|E| = 1314 4 0.56 235 468 17ms 468 12ms

Erdos972 2 0.01 258 258 1.1 s 258 1.2 s
|V | = 5488 3 0.09 517 537 1.5 s 521 1.4 s
|E| = 8972 4 0.35 1509 10976953 >1.0 h 8197 3.8 s

Erdos981 2 0.09 43 43 7ms 43 5ms
|V | = 485 3 0.31 123 358 9ms 354 9ms
|E| = 1381 4 0.57 245 246 14ms 246 13ms

Erdos982 2 0.01 274 274 1.2 s 274 1.4 s
|V | = 5822 3 0.09 547 555 1.5 s 547 1.7 s
|E| = 9505 4 0.35 1594 11563239 >1.0 h 618826 196.2 s

Erdos991 2 0.09 43 44 6ms 44 5ms
|V | = 492 3 0.31 126 375 9ms 374 9ms
|E| = 1417 4 0.57 246 491 15ms 491 15ms

Erdos992 2 0.01 277 277 1.1 s 277 953ms
|V | = 6100 3 0.09 562 573 1.1 s 562 1.2 s
|E| = 9939 4 0.35 1643 10762095 >1.0 h 202543 68.7 s

Erdos02 2 0.02 508 508 915ms 508 1.8 s
|V | = 6927 3 0.20 1014 1022 2.6 s 1015 2.7 s
|E| = 11850 4 1.00 6927 6927 12.1 s 6927 12.5 s

DIMACS clique graphs

c-fat200-1 2 0.13 18 41 1ms 35 1ms
|V | = 200 3 0.19 24 74 2ms 48 1ms
|E| = 1534 4 0.24 30 134 2ms 65 2ms

c-fat200-2 2 0.27 35 35 2ms 35 2ms
|V | = 200 3 0.39 46 488 3ms 102 3ms
|E| = 3235 4 0.50 57 1496 6ms 128 4ms

c-fat200-5 2 0.71 87 11513 25ms 257 6ms
|V | = 200 3 1.00 200 200 11ms 200 9ms
|E| = 8473 4 1.00 200 200 13ms 200 13ms

c-fat500-1 2 0.06 21 52 5ms 43 5ms
|V | = 500 3 0.09 28 28 5ms 28 5ms
|E| = 4459 4 0.11 35 35 6ms 35 7ms

c-fat500-2 2 0.12 39 134 7ms 79 7ms
|V | = 500 3 0.17 52 52 10ms 52 10ms
|E| = 9139 4 0.22 65 65 13ms 65 12ms

c-fat500-5 2 0.31 96 10133 49ms 196 26ms
|V | = 500 3 0.44 128 128 41ms 128 41ms
|E| = 23191 4 0.56 159 1357762269 >1.0 h 326 79ms

continued on next page. . .

4.1. MAXIMUM K-CLIQUES 101

Instance k D ω̃k Unmodified With Domination

Nodes Runtime Nodes Runtime

c-fat500-10 2 0.62 189 1021506910 >1.0 h 560 59ms
|V | = 500 3 0.87 252 252 105ms 252 94ms
|E| = 46627 4 1.00 500 500 139ms 500 135ms

p-hat300-1 2 1.00 299 299 11ms 299 11ms
|V | = 300 3 1.00 300 300 34ms 300 38ms
|E| = 10933 4 1.00 300 300 34ms 300 36ms

DIMACS partitioning graphs

3elt 2 0.00 10 340 735ms 340 801ms
|V | = 4720 3 0.01 16 1582 935ms 1582 1.0 s
|E| = 13722 4 0.01 27 911 978ms 911 1.1 s

4elt 2 0.00 11 486 9.3 s 486 10.6 s
|V | = 15606 3 0.00 20 717 9.3 s 717 11.5 s
|E| = 45878 4 0.00 36 345 9.5 s 345 10.1 s

add20 2 0.04 124 124 213ms 124 163ms
|V | = 2395 3 0.25 671 671 309ms 671 276ms
|E| = 7462 4 0.67 1454 1454 595ms 1454 649ms

add32 2 0.00 32 32 1.0 s 32 1.1 s
|V | = 4960 3 0.01 99 286 782ms 194 774ms
|E| = 9462 4 0.03 268 268 804ms 268 1.1 s

bcsstk29 2 0.01 72 9752 6.8 s 963 10.9 s
|V | = 13992 3 0.02 132 27188730 1725.7 s 7781 17.0 s
|E| = 302748 4 0.04 210 27977976 >1.0 h 21689 23.1 s

bcsstk30 2 0.01 219 224 41.5 s 219 41.8 s
|V | = 28924 3 0.03 496 509 45.1 s 496 45.4 s
|E| = 1007284 4 0.05 843 854 54.6 s 845 52.1 s

bcsstk31 2 0.00 189 189 68.8 s 189 67.4 s
|V | = 35588 3 0.01 278 605 71.4 s 369 70.7 s
|E| = 572914 4 0.02 428 119640 136.8 s 6588 81.1 s

bcsstk33 2 0.03 141 141 3.8 s 141 3.8 s
|V | = 8738 3 0.08 228 26033 9.7 s 1744 6.4 s
|E| = 291583 4 0.15 435 1974622 434.6 s 52779 21.1 s

crack 2 0.00 10 2894 4.8 s 2894 11.0 s
|V | = 10240 3 0.00 17 4996 5.0 s 4987 13.5 s
|E| = 30380 4 0.01 31 2173 5.1 s 2173 10.2 s

cs4 2 0.00 6 5780 25.1 s 5780 96.5 s
|V | = 22499 3 0.00 12 7812 25.7 s 7812 104.3 s
|E| = 43858 4 0.00 18 29032 26.9 s 29032 179.7 s

cti 2 0.00 7 8918 11.6 s 8918 79.1 s
|V | = 16840 3 0.00 15 6406 13.7 s 6406 59.0 s
|E| = 48232 4 0.01 26 62316 15.9 s 62316 148.1 s

data 2 0.01 18 638 300ms 617 342ms
|V | = 2851 3 0.02 32 4982 292ms 4913 388ms
|E| = 15093 4 0.04 52 40095 566ms 36089 626ms

fe-4elt2 2 0.00 13 61 6.9 s 61 5.7 s
|V | = 11143 3 0.00 20 389 5.7 s 389 7.8 s
|E| = 32818 4 0.01 32 448 5.7 s 446 6.8 s

fe-pwt 2 0.00 16 95 64.9 s 95 74.4 s
|V | = 36519 3 0.00 29 167 70.5 s 167 70.5 s
|E| = 144794 4 0.00 52 224 72.8 s 224 75.4 s

continued on next page. . .

102 CHAPTER 4. OTHER CLIQUE-LIKE PROBLEMS

Instance k D ω̃k Unmodified With Domination

Nodes Runtime Nodes Runtime

fe-sphere 2 0.00 7 14173 14.4 s 14173 72.4 s
|V | = 16386 3 0.00 12 34328 14.9 s 34328 140.8 s
|E| = 49152 4 0.00 19 73632 16.4 s 73632 189.0 s

memplus 2 0.02 574 574 16.7 s 574 19.1 s
|V | = 17758 3 0.26 8057 8061 54.0 s 8058 59.4 s
|E| = 54196 4 0.74 8963 8963 101.7 s 8963 98.2 s

uk 2 0.00 5 433 767ms 433 1.1 s
|V | = 4824 3 0.00 8 1891 875ms 1891 1.2 s
|E| = 6837 4 0.01 14 2168 942ms 2168 1.1 s

vibrobox 2 0.02 121 302 7.4 s 302 9.4 s
|V | = 12328 3 0.08 408 1984 10.5 s 1984 11.8 s
|E| = 165250 4 0.26 ≥1094 6574637 >1.0 h 6521169 >1.0 h

whitaker3 2 0.00 9 1222 2.0 s 1222 6.2 s
|V | = 9800 3 0.00 15 3724 3.3 s 3724 8.9 s
|E| = 28989 4 0.01 23 6530 2.9 s 6530 11.9 s

wing-nodal 2 0.01 29 648 4.0 s 648 6.4 s
|V | = 10937 3 0.02 54 13091 5.5 s 13039 17.7 s
|E| = 75488 4 0.04 114 60230499 2302.3 s 60230217 2325.3 s

DIMACS clustering graphs

adjnoun 2 0.50 50 50 0ms 50 0ms
|V | = 112 3 0.91 83 164 0ms 164 1ms
|E| = 425 4 0.99 107 107 1ms 107 1ms

as-22july06 2 0.04 2391 2391 14.5 s 2391 14.8 s
|V | = 22963 3 0.36 8455 345770 >1.0 h 94497 977.9 s
|E| = 48436 4 0.79 14911 14911 212.0 s 14911 216.3 s

astro-ph 2 0.01 361 365 6.8 s 362 15.4 s
|V | = 16706 3 0.10 1553 1567 16.3 s 1560 25.7 s
|E| = 121251 4 0.35 ≥4040 987476 >1.0 h 954213 >1.0 h

celegans-meta 2 0.44 238 238 8ms 238 7ms
|V | = 453 3 0.89 371 371 24ms 371 21ms
|E| = 2025 4 0.98 432 432 20ms 432 20ms

celegansneural 2 0.55 135 135 3ms 135 5ms
|V | = 297 3 0.95 245 245 11ms 245 9ms
|E| = 2148 4 1.00 295 295 12ms 295 18ms

cond-mat 2 0.00 108 108 5.6 s 108 5.7 s
|V | = 16726 3 0.01 250 1403 7.2 s 844 6.7 s
|E| = 47594 4 0.05 720 8464437 >1.0 h 674453 307.0 s

cond-mat-2003 2 0.00 203 204 27.2 s 204 26.0 s
|V | = 31163 3 0.02 ≥629 7459261 >1.0 h 7477245 >1.0 h
|E| = 120029 4 0.12 ≥2605 1810714 >1.0 h 1604058 >1.0 h

cond-mat-2005 2 0.00 279 279 56.0 s 279 79.4 s
|V | = 40421 3 0.03 ≥1060 1882237 >1.0 h 1993460 >1.0 h
|E| = 175691 4 0.16 ≥4185 518583 >1.0 h 517273 >1.0 h

dolphins 2 0.32 14 14 0ms 14 0ms
|V | = 62 3 0.59 30 30 0ms 30 0ms
|E| = 159 4 0.77 40 40 0ms 40 0ms

email 2 0.09 72 72 34ms 72 30ms
|V | = 1133 3 0.45 233 19031 299ms 19031 298ms
|E| = 5451 4 0.86 654 6854 277ms 6676 270ms

continued on next page. . .

4.1. MAXIMUM K-CLIQUES 103

Instance k D ω̃k Unmodified With Domination

Nodes Runtime Nodes Runtime

football 2 0.45 17 147 0ms 145 0ms
|V | = 115 3 0.95 69 70 1ms 70 0ms
|E| = 613 4 1.00 115 115 1ms 115 1ms

hep-th 2 0.00 51 51 3.1 s 51 2.3 s
|V | = 8361 3 0.01 125 239 2.3 s 176 2.5 s
|E| = 15751 4 0.04 347 158164 24.3 s 23714 6.0 s

jazz 2 0.69 103 107 2ms 107 3ms
|V | = 198 3 0.95 174 174 8ms 174 7ms
|E| = 2742 4 0.99 192 192 7ms 192 7ms

karate 2 0.61 18 18 0ms 18 0ms
|V | = 34 3 0.86 25 25 0ms 25 0ms
|E| = 78 4 0.99 33 33 0ms 33 0ms

lesmis 2 0.43 37 37 0ms 37 0ms
|V | = 77 3 0.85 58 58 0ms 58 0ms
|E| = 254 4 0.99 75 75 0ms 75 0ms

netscience 2 0.01 35 35 45ms 35 45ms
|V | = 1589 3 0.01 54 54 47ms 54 47ms
|E| = 2742 4 0.02 85 85 48ms 85 48ms

PGPgiantcompo 2 0.00 206 206 3.7 s 206 3.9 s
|V | = 10680 3 0.02 423 843 5.9 s 841 6.0 s
|E| = 24316 4 0.07 1161 1161 8.5 s 1161 7.3 s

polblogs 2 0.27 352 352 86ms 352 97ms
|V | = 1490 3 0.58 776 2210 492ms 2177 457ms
|E| = 16715 4 0.66 1127 1537 683ms 1166 747ms

polbooks 2 0.37 28 28 0ms 28 1ms
|V | = 105 3 0.64 54 54 0ms 54 0ms
|E| = 441 4 0.86 68 68 1ms 68 1ms

power 2 0.00 20 20 1.1 s 20 697ms
|V | = 4941 3 0.00 30 30 999ms 30 984ms
|E| = 6594 4 0.01 61 61 1.1 s 61 922ms

we introduced at the beginning of this chapter. We were able to solve all of these problems
in under four minutes (and all but three in under four seconds) when using the domination
rule. However, using the unmodified maximum clique algorithm, three of these results did
not finish running within one hour. Note that for k = 4, a k-clique covers all of “Erdos02”.

In several cases, the algorithm found and proved an optimal solution immediately (ω̃k is
equal to the number of search nodes). This illustrates the necessity of laziness: if we simply
computed dominating pairs upfront, we would be paying a cubic preprocessing cost for an
algorithm which is effectively quadratic in practice.

By comparing these results with the k-club results of Chang et al. (2013), we see that in all
but four cases the k-clique and k-club numbers are equal; all of these differences occur when
k = 4. (Chang et al. did not investigate the “Erdos02” graph, but Wotzlaw confirmed privately
that the k-clique and k-club numbers are the same here too.) On the other hand, the k-clique
numbers are sometimes much easier to find, both algorithmically and computationally.

104 CHAPTER 4. OTHER CLIQUE-LIKE PROBLEMS

Clique graphs In the second part of Table 4.1 we present results from the “clique” graphs
from the Second DIMACS implementation challenge, which we discussed in Chapter 2.
Nearly all of these graphs have diameter 2, so a 2-clique covers the entire graph—these
instances are therefore excluded. The only exceptions are the “c-fat” family (all of which are
trivial for a maximum clique solver), and one of the “p_hat” graphs.

With the domination rule, we solve all of these problems within a tenth of a second.
Without, two of the results take over an hour, and the rest remain trivial. Note that in several
cases, for some values of k a k-clique covers the entire graph. Again using Chang et al.’s
results, we see that for the first six graphs in this table the k-clique and k-club numbers are
the same for each value of k (Chang et al. did not investigate “c-fat500-10” or “p-hat300-1”).

Partitioning graphs The third part of Table 4.1 presents results from the smallest 20
partitioning graphs from the 10th DIMACS Implementation Challenge (Walshaw, 2016).
Many of these graphs are considerably larger than those typically considered for the maximum
clique problem, and we might expect our O(|V |2) memory requirements to cause problems.
Nonetheless, with the domination rule there is only one instance which we were unable to
solve within an hour (and without the domination rule, there are two).

On the other hand, we sometimes see a significant cost where the domination rule does not
help, and where the proof of optimality is not immediate: in “3elt” and “4elt”, our runtimes
increase by 10%, and for “cs4” and “cti” the slowdown sometimes approaches a factor of
ten. Thus laziness can be costly when the rule is used, but useless. However, the instance
where both variants timed out shows that for long-running instances, the rate of nodes per
second does not change substantially (although it is much lower than it is for the instances in
Chapter 2).

Five of these graphs were considered for the k-club problem by Wotzlaw (2014). In every
case, the k-clique and k-club numbers are the same. However, the k-clique number was again
consistently much easier to find.

Clustering graphs The final part of Table 4.1 presents results from the smallest 20 cluster-
ing graphs from the 10th DIMACS Implementation Challenge (Meyerhenke, 2011). Again,
from a maximum clique perspective these would be considered unusually large graphs. How-
ever, only five were unsolvable within an hour (plus a further two when the domination rule
was not used), and over half of the problems took under two seconds.

Seven of these graphs were considered for the k-club problem by Wotzlaw (2014). In
these cases, the 2-clique and 2-club numbers are the same, except for “football” where the
2-club number is 16 but the 2-clique number is 17; for k = 3 and k = 4 there are some
differences. There is a large difference in computational difficulty between the k-clique
and k-club problems: for “polblogs” with k = 3 and k = 4, Wotzlaw was unable to prove

4.1. MAXIMUM K-CLIQUES 105

Sequential Parallel

Instance k D ω̃k Nodes Runtime Nodes Runtime

astro-ph 2 0.01 361 365 15.4 s 101642 16.8 s
|V | = 16706 3 0.10 1553 1567 25.7 s 52576 26.8 s
|E| = 121251 4 0.35 ≥4125 987476 >1.0 h 1160769758 >24.0 h

cond-mat 2 0.00 108 108 5.7 s 16981 5.9 s
|V | = 16726 3 0.01 250 1403 6.7 s 51222 16.1 s
|E| = 47594 4 0.05 720 8464437 307.0 s 89288 12.1 s

cond-mat-2003 2 0.00 203 204 26.0 s 40145 47.5 s
|V | = 31163 3 0.02 634 7459261 >1.0 h 467793281 1.8 h
|E| = 120029 4 0.12 ≥2609 1810714 >1.0 h 1896826741 >24.0 h

cond-mat-2005 2 0.00 279 279 79.4 s 84011 90.8 s
|V | = 40421 3 0.03 1060 1882237 >1.0 h 1117533785 12.1 h
|E| = 175691 4 0.16 ≥4271 518583 >1.0 h 544501020 >24.0 h

vibrobox 2 0.02 121 302 9.4 s 13249 4.7 s
|V | = 12328 3 0.08 408 1984 11.8 s 27061 19.6 s
|E| = 165250 4 0.26 ≥1107 6574637 >1.0 h 7374855043 >24.0 h

wing-nodal 2 0.01 29 648 6.4 s 11601 7.2 s
|V | = 10937 3 0.02 54 13091 17.7 s 23917 16.4 s
|E| = 75488 4 0.04 114 60230499 2325.3 s 67418 18.1 s

Table 4.2: Experimental results for multi-threaded search on harder instances, using 64
threads. For each graph, we consider k equal to 2, 3 and 4. In each case we show the density
of Gk, the size of a maximum k-clique, and then for both the sequential algorithm and the
parallel algorithm (with lazy global domination in both cases), the number of nodes required,
and the runtime.

optimality within an hour, but we required less than two seconds to do so. In both of these
cases the k-clique and k-club numbers are the same.

4.1.3 Parallel Search

What about our parallel search? We selected the four graphs which we were unable to solve
(for some values of k), along with two of the challenging graphs which required substantial
amounts of search (at least half a million nodes) to solve, and repeated the experiments using
parallel search with 64 threads and the domination rule enabled, using the resplitting strategy
described in Chapter 3. To make laziness thread-safe, a simple mutex lock can be used to
protect each entry of the dominated table.

The results are shown in Table 4.2. Parallel search allowed us to close two more instances,
and gave improved bounds on the four remaining instances within 24 hours. However, to get
sufficient work balance, we had to allow for work splitting to depth 10 rather than depth 3. A
close inspection of the search patterns showed that simpler static decomposition approaches
such as those proposed by Depolli et al. (2013), Malapert, Régin, and Rezgui (2016), and
San Segundo, Lopez, and Pardalos (2016) would give little to no speedup on many harder
k-clique instances, unless it were somehow possible to generate O(|V |10) subproblems.

106 CHAPTER 4. OTHER CLIQUE-LIKE PROBLEMS

For the easier instances where the sequential runtime is known, the parallel search did
more work—this is to be expected, since the work distribution approach from Section 3.3.1
recomputes parts of the search space (to allow for more efficient mutable data structures to be
used during search), and speculative parallelism is unlikely to contribute to the solution when
the sequential search tree is small. However, despite the extra work, and despite having to
introduce overhead into early stages of the algorithm to allow for work stealing, and despite
having more processing power but not more memory bandwidth, in no cases were the parallel
runtimes vastly longer than the sequential runtimes (although in many cases they were not
better either). We also did not parallelise the construction of Gk or the preprocessing stage of
the algorithm, which in many cases dominated the runtime: the efficient sequential algorithm
by Chang et al. (2013) is not obviously parallelisable, and it would be interesting future work
to tackle this problem.

As well as improving the results on the instances we could not solve sequentially, parallel
search sometimes gave large improvements for the easier instances. For “wing-nodal” with
k = 4, the parallel run did much less work than the sequential run: a speedup of over 100 was
obtained from 64 threads (in fact three threads suffices to see this). A similar effect occurred
with “cond-mat” and k = 4. This is because the work splitting mechanism we used explicitly
diversifies at the top of search first, where branching heuristics are least likely to be correct,
which leads to an initial incumbent being found faster—this is in line with our observations in
Chapter 3 that tailored work stealing should be favoured over randomised work stealing for
combinatorial search problems.

4.1.4 Random Graphs

Recall that an Erdős-Rényi random graph G(n, p) has n vertices, and an edge between each
distinct pair of vertices with probability p, chosen independently. We now investigate the size
of a maximum k-clique in such graphs, and the complexity of finding it. In each case, we use
an average over 10,000 samples for every point.

In the left-hand plot of Figure 4.2 we illustrate the average value of ω̃k in G(200, p) for
different values of k, and a range of values of p for the x-axis. We see that even for very low
edge probabilities, a maximum k-clique quickly covers the entire graph. (This is in contrast
to the maximum clique problem, where a maximum clique does not even cover a quarter of
the graph for edge probabilities below 0.75.) On the right we show the average size of the
search space (number of nodes, or recursive calls made) for the same problem. We see that
there is a complexity peak for each k, although the peak is much smaller for k = 4 than it is
for k = 3, which is in turn much smaller than it is for k = 2. The peak also occurs for lower
edge probabilities as k increases. For contrast, for the maximum clique problem, the peak
occurs at around edge probability 0.9, and is two orders of magnitude larger.

In Figure 4.3 we show the effect of changing n and fixing k = 2. As n increases from

4.1. MAXIMUM K-CLIQUES 107

0

50

100

150

200

0 0.05 0.1 0.15 0.2 0.25 0.3

Si
ze

of
M

ax
im

um
k

-c
liq

ue

Edge Probability

ω
ω̃2

ω̃3

ω̃4

100

101

102

103

104

105

0 0.05 0.1 0.15 0.2 0.25 0.3

A
ve

ra
ge

Se
ar

ch
N

od
es

Edge Probability

k = 1
k = 2
k = 3
k = 4

Figure 4.2: On the left, values of ω̃k for random graphs G(200, p), with varying edge
probabilities. We see that even for very low edge probabilities, a maximum k-clique quickly
covers the entire graph when k > 1. On the right, search space size. We see that 4-clique is
easier than 3-clique in practice, which in turn is easier than 2-clique. (The complexity peak
for maximum clique occurs at around edge probability 0.9, and requires approximately 15
million search nodes.)

0

50

100

150

200

0 0.05 0.1 0.15 0.2 0.25 0.3

Si
ze

of
M

ax
im

um
2-

cl
iq

ue

Edge Probability

G(50, x)2

G(100, x)2

G(150, x)2

G(200, x)2

100

101

102

103

104

105

0 0.05 0.1 0.15 0.2 0.25 0.3

A
ve

ra
ge

Se
ar

ch
N

od
es

Edge Probability

G(50, x)2

G(100, x)2

G(150, x)2

G(200, x)2

Figure 4.3: On the left, the size of a maximum 2-clique in random graphs G(n, p) with
varying edge probabilities, and different values of n. For G(50, p), a 2-clique has size average
50 from p = 0.42 onwards. On the right, the search space size. As n increases, the complexity
peak grows and moves slowly to the left.

108 CHAPTER 4. OTHER CLIQUE-LIKE PROBLEMS

50 to 200, the complexity peak becomes much more pronounced, and shifts slightly towards
the left (lower edge probabilities). As expected, a constant increase in the number of vertices
gives a roughly exponential increase in the difficulty of the hardest instances.

Interestingly, we do not see evidence of the “wobbly line” behaviour that was present for
the maximum clique problem in Chapter 2. The shape of the maximum k-clique curves is also
different to the maximum k-clique curves, with a flattening growth rate at higher densities. It
would be interesting to have an analytic explanation of these behaviours.

4.2 Maximum Labelled Cliques

Having seen that Algorithm 2.1 is flexible enough to solve a related problem by reduction, we
now turn to a clique problem with side constraints. Carrabs, Cerulli, and Dell’Olmo (2014)
introduced a variant of the maximum clique problem called the maximum labelled clique

problem, and gave example applications involving telecommunications and social network
analysis. In this variant, each edge in the graph has a label, and we are given a budget b: we
seek to find as large a clique as possible, but the edges in our selected clique may not use
more than b different labels in total (representing, for example, a set of interconnected data
centres relying upon only a small number of telecommunications providers, or a close-knit
group of friends who additionally share a small number of common interests). In the case that
there is more than one such maximum, we must find the one using fewest different labels. We
illustrate these concepts in Figure 4.4, using an example graph due to Carrabs, Cerulli, and
Dell’Olmo; our four labels are shown using different styled edges.

Carrabs, Cerulli, and Dell’Olmo proposed a mathematical programming approach to
solving the problem, and used CPLEX to provide experimental results on a range of graph
instances. Here we introduce the first dedicated algorithm for the maximum labelled clique
problem, and then describe how it may be parallelised. We evaluate our implementation
experimentally, and show that it is consistently faster than that of Carrabs, Cerulli, and
Dell’Olmo, sometimes by four or five orders of magnitude.

1
2

3

4 5

6

7 l1
l2
l3
l4

Figure 4.4: A graph with maximum clique {1, 2, 3, 4, 5}, using all four edge labels. If our
budget is only three, a maximum feasible clique has size four. There are several such cliques,
but {4, 5, 6, 7} is optimal since it uses only two labels, whilst every other uses at least three.

4.2. MAXIMUM LABELLED CLIQUES 109

4.2.1 Definitions

In this section we are working with graphs which have a label on each edge. The cost of a
clique is the cardinality of the union of the labels associated with all of its edges. A clique is
feasible if it has cost not greater than the budget. We say that a feasible clique C is better

than a feasible clique C ′ if either it has larger cardinality, or if it has the same cardinality but
lower cost. The maximum labelled clique problem is to find a feasible clique which is either
better than or equal to any other feasible clique in a given graph—that is, of all the maximum
feasible cliques, we seek the cheapest.

The hardness of the maximum clique problem immediately implies that the maximum
labelled clique problem is also NP-hard. Carrabs, Cerulli, and Dell’Olmo showed that the
problem remains hard even for complete graphs, where the maximum clique problem is trivial.

4.2.2 A Branch and Bound Algorithm

In Algorithm 4.2 we present the first dedicated algorithm for the maximum labelled clique
problem. Like Algorithm 2.1, this is a branch and bound algorithm, using a greedy colouring
for the bound, but it has been extended to recognise labels, and uses two passes to handle the
objective.

Labels and the budget: On the first pass (first = true, from line 5), we concentrate on
finding the largest feasible clique, but do not worry about finding the cheapest such clique. To
do so, we store the labels currently used in solution in the variable labels . When we add a
vertex v to solution , we create from labels a new label set labels ′ and add to it any additional
labels used (line 15). Now we check whether we have exceeded the budget (line 16), and only
proceed with this value of solution if we have not. As well as storing incumbent , we also
keep track of the labels it uses in incumbentLabels .

On the second pass (first = false, from line 6), we already have the size of a maximum
feasible clique in |incumbent |, and we seek to either reduce the cost |incumbentLabels|, or
prove that we cannot do so. Thus we repeat the search, starting with our existing values of
incumbent and incumbentLabels , but instead of using the budget to filter labels on line 16,
we use |incumbentLabels| − 1 (which can become smaller as cheaper solutions are found).
We must also change the bound condition slightly: rather than looking only for solutions
strictly larger than incumbent , we are now looking for solutions with size equal to incumbent

(line 12). Finally, when potentially unseating the incumbent (line 18), we must check to see if
either solution is larger than incumbent , or it is the same size but cheaper.

This two-pass approach is used to avoid spending a long time trying to find a cheaper clique
of size |incumbent |, only for this effort to be wasted when a larger clique is found. The addi-
tional filtering power from having found a clique containing only one additional vertex is often

110 CHAPTER 4. OTHER CLIQUE-LIKE PROBLEMS

Algorithm 4.2: An algorithm for the maximum labelled clique problem. The
colourOrder function is the same as in Algorithm 2.1.
1 maxLabelledClique :: (Graph G, Int budget)→ Vertex Set
2 begin
3 permute G so that vertices are in non-increasing degree order
4 global (incumbent , incumbentLabels)← (∅, ∅)
5 expand(true, ∅, V(G), ∅)
6 expand(false, ∅, V(G), ∅)
7 return incumbent (unpermuted)

8 expand :: (Boolean first , Vertex Set solution , Vertex Set remaining , Label Set labels)
9 begin

10 (order , bounds)← colourOrder(remaining)
11 for i← |remaining | downto 1 do
12 if |solution| + bounds[i] < |incumbent | ∨

(first ∧ |solution| + bounds[i] = |incumbent |) then return
13 v← order [i]
14 solution ← solution + v
15 labels ′← labels ∪ the labels of edges between v and any vertex in solution
16 if |labels ′| ≤ (budget if first , otherwise |incumbentLabels| − 1) then
17 if (solution , labels ′) is better than (incumbent , incumbentLabels) then
18 (incumbent , incumbentLabels)← (solution , labels ′)

19 remaining ′← the vertices in remaining that are adjacent to v
20 if remaining ′ 6= ∅ then expand(first , solution , remaining ′, labels ′)

21 solution ← solution − v
22 remaining ← remaining − v

extremely beneficial. On the other hand, label-based filtering using |incumbentLabels| − 1

rather than the budget is not possible until we are sure that incumbent cannot grow further,
since it could be that larger feasible maximum cliques have a higher cost.

Bit parallelism: As in Algorithm 2.1, remaining should be a bitset. Additionally, the oper-
ations performed on labels are all bitset-friendly—recall from Section 1.6.1 that determining
the cardinality of a bitset is also a dedicated hardware instruction in modern processors.

Note that solution should not be stored as a bitset, to speed up line 15. Instead, it should
be an array. Adding a vertex to solution on line 14 may be done by appending to the array, and
when removing a vertex from solution on line 21 we simply remove the last element—this
works because solution is used like a stack.

Thread parallelism: We must be slightly careful when introducing thread parallelism to
this algorithm. The incumbent is accessed regularly and updated rarely. To avoid requiring
mutex locking, which showed severe scalability limits in preliminary experiments, we use a
single atomic variable as follows: we map both incumbent and incumbentLabels into a large

4.2. MAXIMUM LABELLED CLIQUES 111

unsigned integer, allocating the higher order bits to |incumbent | and the lower order bits to
the bitwise complement of |incumbentLabels|. This respects the natural comparison order
for unsigned integers, allowing both variables to be compared and updated simultaneously.

A further complication is that in the first pass, we could find an equally sized but more
costly incumbent than we would find sequentially. Thus we cannot even guarantee that parallel
search not cause a slowdown in certain cases, and so our guarantees from Section 1.6.6 do not
necessarily hold.

4.2.3 Experimental Results

We now evaluate an implementation of our sequential and parallel algorithms experimentally.
Our implementation was coded in C++, and for parallelism, C++11 native threads were
used. The bitset encoding was used in both cases. Because we find this problem very easy,
experimental results are produced on a desktop machine with an Intel i5-3570 CPU and
12GBytes of RAM. This is a dual core machine, with hyper-threading, so for parallel results
we use four threads (but should not expect an ideal-case speedup of 4). Sequential results are
from a dedicated sequential implementation, not from a parallel implementation run with a
single thread. Timing results include preprocessing time and thread startup costs, but not the
time taken to read in the graph file and generate random labels.

Standard benchmark problems In Table 4.3 we present results from the same set of
benchmark instances as Carrabs, Cerulli, and Dell’Olmo (2014). These are some of the smaller
graphs from the Second DIMACS Implementation Challenge, with randomly allocated labels.
Carrabs, Cerulli, and Dell’Olmo used three samples for each measurement, and presented the
average; we use one hundred. Note that our CPU is newer than that of Carrabs, Cerulli, and
Dell’Olmo, and we have not attempted to scale their results for a “fair” comparison.

The most significant result is that none of our parallel runtime averages are above seven
seconds, and none of our sequential runtime averages are above twenty four seconds (our
worst sequential runtime from any instance is 32.3 seconds, and our worst parallel runtime is
8.4 seconds). This is in stark contrast to Carrabs, Cerulli, and Dell’Olmo, who aborted some
of their runs on these instances after three hours. Most strikingly, the keller4 instances, which
all took Carrabs, Cerulli, and Dell’Olmo at least an hour, took under 0.1 seconds for our
parallel algorithm. We are using a different model CPU, so results are not directly comparable,
but we strongly doubt that hardware differences could contribute to more than one order of
magnitude improvement in the runtimes.

We also see that parallelism is in general useful, and is never a penalty, even with very low
runtimes. We see a speedup of between 3 and 4 on the non-trivial instances. This is despite
the initial sequential portion of the algorithm, the cost of launching the threads, the general

112 CHAPTER 4. OTHER CLIQUE-LIKE PROBLEMS

|L| 25% budget 50% budget 75% budget

Size Cost Seq Par Enh Size Cost Seq Par Enh Size Cost Seq Par Enh

johnson8-2-4
4 3.13 1.00 0.00 0.00 0.03 4.00 1.87 0.00 0.00 0.02 4.00 1.87 0.00 0.00 0.01
8 3.51 1.50 0.00 0.00 0.03 4.00 2.48 0.00 0.00 0.01 4.00 2.48 0.00 0.00 0.02
12 4.00 2.85 0.00 0.00 0.01 4.00 2.85 0.00 0.00 0.02 4.00 2.85 0.00 0.00 0.02

MANN_a9
11 5.64 2.76 0.01 0.00 3.18 8.89 5.93 0.02 0.01 13.98 13.34 8.99 0.01 0.00 6.47
21 6.61 5.60 0.02 0.01 12.43 9.74 10.68 0.08 0.02 46.52 13.32 15.73 0.03 0.01 15.55
32 7.00 7.79 0.04 0.01 17.61 10.26 14.99 0.19 0.05 108.13 14.12 23.28 0.03 0.01 13.18

hamming6-4
6 3.99 1.97 0.00 0.00 0.32 4.00 1.99 0.00 0.00 0.33 4.00 1.99 0.00 0.00 0.35
11 4.00 2.64 0.00 0.00 0.43 4.00 2.64 0.00 0.00 0.42 4.00 2.64 0.00 0.00 0.37
17 4.00 2.98 0.00 0.00 0.41 4.00 2.98 0.00 0.00 0.43 4.00 2.98 0.00 0.00 0.44

hamming6-2
15 6.07 3.82 0.04 0.01 41.32 9.87 7.86 0.76 0.21 382.73 15.42 12.00 2.44 0.66 711.20
29 7.17 7.12 0.41 0.11 221.77 11.01 14.73 6.25 1.70 2368.78 15.86 21.84 11.73 3.14 2079.50
44 8.00 10.81 1.35 0.37 429.21 12.00 21.49 20.19 5.47 4955.96 17.13 32.65 23.15 6.28 2170.84

johnson8-4-4
14 5.99 3.93 0.01 0.00 49.82 7.98 6.94 0.02 0.01 85.73 11.09 10.89 0.01 0.00 16.36
27 6.30 5.95 0.03 0.01 102.60 9.07 12.81 0.02 0.01 110.53 12.18 20.29 0.00 0.00 11.80
40 7.01 8.97 0.05 0.01 177.13 10.00 19.01 0.02 0.01 60.79 12.97 28.93 0.00 0.00 2.39

johnson16-2-4
23 6.50 5.28 0.15 0.04 4248.29 8.00 8.91 0.14 0.04 1943.33 8.00 8.91 0.14 0.04 2066.26
46 7.75 11.17 0.29 0.08 5660.29 8.00 12.21 0.22 0.06 3044.75 8.00 12.21 0.22 0.06 3290.52
69 8.00 14.23 0.28 0.08 3699.71 8.00 14.23 0.28 0.08 4227.76 8.00 14.23 0.28 0.08 3909.15

keller4
28 6.98 6.89 0.28 0.07 > 3h 9.04 12.68 0.10 0.03 > 3h 11.00 18.75 0.02 0.01 3304.30
55 8.00 12.85 0.32 0.09 > 3h 11.00 26.98 0.02 0.01 4081.97 11.00 26.98 0.02 0.01 4173.34
83 9.00 19.82 0.14 0.04 > 3h 11.00 31.88 0.02 0.01 4827.99 11.00 31.88 0.02 0.01 5028.16

Table 4.3: Experimental results. For each graph, we use three different label set sizes and
three different budgets, with randomly allocated labels, and show averages over 100 runs. In
each case, we show the average size and cost of the result, the sequential runtime in seconds,
the parallel runtime in seconds (2 cores, 4 threads) and then the “Enhanced” times reported
by Carrabs, Cerulli, and Dell’Olmo (2014).

4.2. MAXIMUM LABELLED CLIQUES 113

|L| budget = 2 budget = 3 budget = 4

Size Cost Seq Size Cost Seq Size Cost Seq

Erdos971
3 5.20 1.98 0.00 7.00 3.00 0.00
4 4.61 1.86 0.00 5.71 2.78 0.00 7.00 3.98 0.00
5 4.24 1.94 0.00 5.10 2.81 0.00 6.05 3.91 0.00

Erdos972
3 5.30 1.98 0.12 7.00 3.00 0.12
4 4.84 1.90 0.12 5.84 2.88 0.12 7.00 3.97 0.12
5 4.35 1.80 0.12 5.18 2.76 0.12 6.04 3.82 0.12

Erdos981
3 5.18 1.99 0.00 7.00 3.00 0.00
4 4.68 1.91 0.00 5.78 2.88 0.00 7.00 3.99 0.00
5 4.18 1.82 0.00 5.21 2.89 0.00 6.10 3.82 0.00

Erdos982
3 5.29 1.99 0.14 7.00 3.00 0.14
4 4.80 1.85 0.14 5.95 2.95 0.14 7.00 3.96 0.14
5 4.26 1.69 0.14 5.19 2.82 0.14 6.19 3.88 0.14

Erdos991
3 5.18 1.97 0.00 7.00 3.00 0.00
4 4.64 1.89 0.00 5.84 2.91 0.00 7.00 3.98 0.00
5 4.23 1.93 0.00 5.19 2.82 0.00 6.16 3.86 0.00

Erdos992
3 5.36 2.00 0.15 8.00 3.00 0.15
4 4.92 1.92 0.15 6.06 2.98 0.15 8.00 3.99 0.15
5 4.27 1.84 0.15 5.32 2.86 0.15 6.38 3.88 0.15

Erdos02
3 5.86 2.00 0.19 8.00 3.00 0.19
4 5.04 1.99 0.19 6.43 2.98 0.19 8.00 3.99 0.19
5 4.66 1.82 0.19 5.69 2.83 0.19 6.82 3.91 0.19

Table 4.4: Experimental results on Erdős collaboration graphs. For each instance, we use
three different label set sizes and three different budgets, with randomly allocated labels, and
show averages over 100 runs. In each case, we show the average size and cost of the result,
and the sequential runtime in seconds.

114 CHAPTER 4. OTHER CLIQUE-LIKE PROBLEMS

complications involved in parallel branch and bound, and the hardware providing only two
“real” cores.

Large sparse graphs In Table 4.4 we present results using the Erdős collaboration graphs
from the Pajek dataset by Vladimir Batagelj and Andrej Mrvar (Batagelj and Mrvar, 2006).
We have chosen these datasets because of the potential “social network analysis” application
suggested by Carrabs, Cerulli, and Dell’Olmo, where edge labels represent a particular kind
of common interest, and we are looking for a clique using only a small number of interests.

For each instance we use 3, 4 and 5 labels, with a budget of 2, 3 and 4. The “3 labels,
budget 4” cases are omitted, but we include the “3 labels, budget 3” and “4 labels, budget
4” cases—although the clique sizes are the same (and are equal to the size of a maximum
unlabelled clique), we see in a few instances the costs do differ where the budget is 4. Again,
we use randomly allocated labels and a sample size of 100.

Despite their size, none of these graphs are at all challenging for our algorithm, with
average sequential runtimes all being under 0.2 seconds. However, no benefit at all is gained
from parallelism—the runtimes are dominated by the cost of preprocessing and encoding the
graph, not the search.

4.3 Maximum Balanced Induced Bicliques

1
2

3

4

56

7

8

9

Figure 4.5: A graph, with its
unique maximum balanced
induced biclique of size six,
{{1, 2, 3}, {6, 7, 8}}, shown
shaded in light and dark.

Having looked at using Algorithm 2.1 to solve the k-clique
problem by reduction, and to solve the maximum labelled
clique problem by adding in side constraints, we now adapt
it to find a subgraph of a different shape. We look at the
maximum balanced induced biclique problem, which is
in some ways a bipartite version of the maximum clique
problem. We introduce a simple and effective symmetry
elimination technique. We also discuss one particular class
of graphs where the algorithm’s bound is ineffective, and
show how to detect this situation and fall back to a sim-
pler but faster algorithm. We are not aware of any direct
applications of the maximum balanced induced biclique
problem; our interest is rather in seeing whether Algorithm 2.1 can reasonably be adapted to
other problems.

Let G = (V,E) be a graph with vertex set V and edge set E. We say G is bipartite if
its vertices may be partitioned into two disjoint independent sets. A biclique, or complete
bipartite subgraph, is a pair of (possibly empty) disjoint subsets of vertices {A,B} such that
{a, b} ∈ E for every a ∈ A and b ∈ B. A biclique is balanced if |A| = |B|, and induced

4.3. MAXIMUM BALANCED INDUCED BICLIQUES 115

if no two vertices in A are adjacent and no two vertices in B are adjacent. The maximum
balanced induced biclique problem is to find a balanced induced biclique of maximum size in
an arbitrary graph. We illustrate an example in Figure 4.5.

Finding such a maximum is NP-hard (Garey and Johnson, 1979, Problem GT24), both in
bipartite and arbitrary graphs. A naïve exponential algorithm could simply enumerate every
possible solution to find a maximum. Here we develop a branch and bound algorithm with
symmetry elimination that substantially reduces the search space.

Recall that an independent set is the complement of a clique—that is, a set of vertices, no
two of which are adjacent. A clique cover is a partition of the vertices in a graph into sets,
each of which is a clique—this is the complement of a colouring. We introduce the symbol ω̈
for the size (i.e. |A|+ |B|) of a maximum balanced induced biclique, which is always even.

4.3.1 A Simple Branch and Bound Algorithm

A very simple branch and bound algorithm for the maximum induced biclique problem is
given in Algorithm 4.3. The algorithm works by recursively building up two sets A and B
such that {A,B} is a biclique. At each stage, remaininga contains those vertices which may
be added to A whilst keeping a feasible solution (i.e. each v ∈ remaininga is individually
adjacent to every b ∈ remainingb and nonadjacent to every a ∈ A), and similarly remainingb

contains vertices which may be added toB. Initially,A andB are both empty, and remaininga

and remainingb both contain every vertex in the graph (line 4).

At each recursive call to expand, a vertex v is chosen from remaininga (line 8) and
moved to be in A instead (lines 10 and 11). The algorithm then considers the implications
of v ∈ A (lines 12 to 16). A new remaining ′a is constructed on line 12 by filtering from
remaininga those vertices adjacent to v (since A must be an independent set), and a new
remaining ′b is constructed on line 13 by filtering from remainingb those vertices not adjacent
to v (everything in B must be adjacent to everything in A).

Now if remaining ′b is not empty, we may grow B further. Thus we repeat the process
with a recursive call on line 16, swapping the roles of A and B—we are adding vertices to the
two sides of the growing biclique in alternating order.

Having considered the possibility of v ∈ A, we then consider v /∈ A (line 17). The
algorithm loops back to line 8, selecting a new v from remaininga, until remaininga is empty.
Finally, we backtrack by returning from the recursive call.

We keep track of the largest feasible solution {A?, B?} that we have found so far. Initially
the incumbent is empty (line 3). Whenever we find a potential solution, we compare it to
the incumbent (line 14), and if our new solution is larger then the incumbent is unseated
(line 14). Note that at this point, the balance condition must be checked explicitly, since either
|A| = |B|, or |A| = |B|+ 1 could be true.

Knowing the size of the incumbent allows us to avoid exploring some of the search

116 CHAPTER 4. OTHER CLIQUE-LIKE PROBLEMS

Algorithm 4.3: A simple, alternating branch and bound algorithm for the maximum
balanced induced biclique problem.
1 simpleMaxBiclique :: (Graph G)→ (Vertex Set, Vertex Set)
2 begin
3 (A?, B?)← (∅, ∅)
4 expand(G, ∅, ∅,V(G),V(G), A?, B?)
5 return (A?, B?)

6 expand :: (Graph G, Set A, Set B, Set remaininga, Set remainingb, Set A?, Set B?)
7 begin
8 for v ∈ remaininga do
9 if |remaininga|+ |A| > |A?| and |remainingb|+ |B| > |B?| then

10 A← A+ v
11 remaininga ← remaininga − v

12 remaining ′a ← remaininga ∩N(G, v)
13 remaining ′b ← remainingb ∩N(G, v)
14 if |A| = |B| and |A| > |A?| then (A?, B?)← (A,B)
15 if remaining ′b 6= ∅ then
16 expand(G,B,A, remaining ′b, remaining ′a, B

?, A?)

17 A← A− v

space—this is the bound part of branch and bound. The condition on line 9 checks how much
further we can grow A and B: if there are not enough vertices available to potentially unseat
the incumbent, search at the current position can be abandoned. (This is not a very good
bound, and is only for illustrative purposes. We discuss a more sophisticated bound below.)

4.3.2 Improving the Algorithm

We now adapt Algorithm 4.3 to incorporate symmetry elimination, an improved bound
based upon clique covers, and an initial sort order. The end result is Algorithm 4.4. Like
Algorithm 2.1, this algorithm is intended to be bit-parallel.

Symmetry elimination The search space for Algorithm 4.3 is larger than it should be: it
explores legal ordered pairs (A,B) of vertex sets rather than unordered pairs {A,B}. Having
explored every possible solution with v ∈ A, the search then considers v /∈ A. But there
is nothing to stop it from then considering a new v′ ∈ A, and later placing v ∈ B. This is
wasted effort, since if such a solution existed we would already have considered an equivalent
with A and B reversed.

We may eliminate this symmetry as follows: if, at the top of search, we have considered
every possibility with v ∈ A then we may eliminate v from remainingb to avoid considering
v ∈ B. The modified expand function in Algorithm 4.4 includes this rule: lines 22 to 23

4.3. MAXIMUM BALANCED INDUCED BICLIQUES 117

Algorithm 4.4: An improved alternating branch and bound algorithm for the maximum
balanced induced biclique problem.
1 improvedMaxBiclique :: (Graph G)→ (Vertex Set, Vertex Set)
2 begin
3 (A?, B?)← (∅, ∅)
4 permute G so that the vertices are in non-increasing degree order
5 expand(G, ∅, ∅,V(G),V(G), A?, B?)
6 return (A?, B?) (unpermuted)

7 expand :: (Graph G, Set A, Set B, Set remaininga, Set remainingb, Set A?, Set B?)
8 begin
9 (bounds, order)← cliqueOrder(G, remaininga)

10 for i← |remaininga| downto 1 do
11 if bounds[i] + |A| > |A?| and |remainingb|+ |B| > |B?| then
12 v ← order [i]
13 A← A+ v
14 remaininga ← remaininga − v

15 remaining ′a ← remaininga ∩N(G, v)
16 remaining ′b ← remainingb ∩N(G, v)
17 if |A| = |B| and |A| > |A?| then
18 (A?, B?)← (A,B)

19 if remaining ′b 6= ∅ then
20 expand(G,B,A, remaining ′b, remaining ′a, B

?, A?)

21 A← A− v
22 if B = ∅ then
23 remainingb ← remainingb − v

24 cliqueOrder :: (Vertex Set remaining)→ (Vertex Array, Int Array)
25 begin
26 (order , bounds)← ([], [])
27 uncliqued ← remaining
28 clique ← 1
29 while uncliqued 6= ∅ do
30 cliqueable ← uncliqued
31 while cliqueable 6= ∅ do
32 v← the first vertex of cliqueable
33 append v to order
34 append clique to bounds
35 uncliqued ← uncliqued − v
36 cliqueable ← cliqueable ∩N(G, v)

37 clique ← clique + 1

38 return (order , bounds)

118 CHAPTER 4. OTHER CLIQUE-LIKE PROBLEMS

remove symmetric solutions.

This technique may be seen as a special case of the standard lex symmetry elimination
technique used in constraint programming (Crawford et al., 1996; Gent, Petrie, and Jean-
François Puget, 2006). A constraint programmer would view A and B as binary strings, and
impose the constraint B ≤ A (or the other way around—after all, the order of A and B is
arbitrary). We are doing the same thing, by saying that if the first n bits of A are 0 then
the first n bits of B must also be 0. Unlike adding a lex constraint, this approach does not
interfere with the search order and does not introduce the risk of disrupting ordering heuristics
(Gent, W. Harvey, and Kelsey, 2002). Additionally, this constraint always removes symmetric
solutions from the search tree as early as possible (Backofen and Will, 2002).

Bounding We know that A and B must be independent sets, which are complements of
cliques. We may therefore adapt the colourOrder bound from Algorithm 2.1 by replacing
every concept with its complement, as follows. If we can cover a graph G using n cliques, we
know that G cannot contain an independent set of size greater than n (since each element in
an independent set must be in a different clique). This gives us a bound on remaininga which
can be much better than simply considering |remaininga|: we construct a greedy clique cover
of the subgraph induced by remaininga, and consider its size instead.

The cliqueOrder function in Algorithm 4.4, then, is simply the complement of Al-
gorithm 2.1’s colourOrder. The bounds array it produces contains bounds on the size
of a maximum independent set: the subgraph induced by vertices 1 to n of order cannot
have a maximum independent set of size greater than bounds [n]. The order array contains
the vertices of remaining in some order, and is to be traversed from right to left, repeatedly
removing the rightmost value for the choice branching vertex v.

To integrate this bound, we make the following changes: we begin by using cliqueSort
to obtain the bounds and order variables (line 9). As previously, we explicitly iterate over
order from right to left (lines 10 and 12), rather than drawing v from remaininga arbitrarily.
Finally, we make use of the bound on remaininga, rather than using |remaininga| (line 11).

Vertex ordering We use a static ordering for constructing clique covers, so the initial order
of vertices must also be considered—experiments show that, as for the maximum clique
problem, a static non-increasing degree order fixed at the top of search is a good choice. We
achieve this ordering by permuting the graph.

Detecting when the bound is useless Our bound considers how far A can grow, based
upon what is in remaininga, and how far B can grow based upon what is in remainingb. If
both remaininga and remainingb are independent sets, this does not help, and constructing
the clique cover ordering is a substantial overhead. This situation occurs in particular if the

4.3. MAXIMUM BALANCED INDUCED BICLIQUES 119

input is a bipartite graph, or close to one. We can at least detect when remaininga is an
independent set: this happens precisely if bounds [i] = i (assuming bounds is 1-indexed),
since if the graph contains at least two non-adjacent vertices then at least one such pair will
be placed in the same clique (Batsyn et al., 2014, Proposition 2).

Ideally we would be able to switch to a better bound in the case that both remaininga

and remainingb are (potentially overlapping) independent sets. However, we have been
unable to find a better bound which is sufficiently cheap to compute to provide a benefit—
approaches which reduce the search space but increase runtime include the use of degrees,
indirect colouring, or the fact that finding an (unbalanced) induced biclique in a bipartite
graph can be done in polynomial time via a matching algorithm. We may still decay to a
version of the algorithm which includes symmetry elimination and uses cardinality bounds as
in Algorithm 4.3—we do not demonstrate this technique in Algorithm 4.4, but it is simple to
incorporate.

Parallel search Finally, we may adopt the parallel search strategy introduced in Chapter 3.
We continue to prioritise stealing work created highest in the search tree. For the purposes
of determining depth, we treat each recursive call equally, and do not do anything special to
handle the alternating nature of A and B.

4.3.3 Computational Experiments

Since we are not aware of any useful applications of this problem, we return to the graphs
from the Second DIMACS implementation challenge, which we introduced in Chapter 2.
These experiments are performed on machines with dual Intel Xeon E5-2697A v4 processors
and 512GBytes RAM, running Ubuntu Linux 16.04, and software was implemented in C++
and compiled using GCC 5.4.0. Results are presented in Table 4.5: only four instances could
not be closed within four hours. Recall that these machines have 32 cores and hyper-threading,
so parallel results use 64 threads.

For very easy instances, the parallel results are often worse than the sequential results, due
to overheads. However, for harder instances, speedups between twenty and fifty are common.
The amount of work done sequentially and in parallel is usually rather similar, which suggests
either a high solution density, or very strong value-ordering heuristics, or a relatively weak
bound function.

The final columns of the table show that the symmetry elimination technique is successful
in reducing both runtimes and the size of the search space. In many instances the gain
approaches 50% (this is expected: halving the number of solutions should not necessarily
halve the size of the search space). In other cases the interaction of the bound and symmetry
elimination reduces the benefit (sometimes to zero, when the bound can already eliminate
symmetric solutions), but it is never a penalty.

120 CHAPTER 4. OTHER CLIQUE-LIKE PROBLEMS

Table 4.5: Experimental results for the maximum balanced induced biclique problem on
the DIMACS clique graphs, sequentially and using 64 threads on a 32 core hyper-threaded
system. The “no symmetry” results are expressed as a ratio of the sequential nodes and times.

Instance ω̈ Sequential Parallel No Symmetry

Nodes Runtime Nodes Runtime Nodes Runtime

Randomly generated

C125.9 8 920 0ms 997 55ms 1.495× 1.000×
C250.9 8 12448 7ms 12697 73ms 1.642× 1.429×
C500.9 10 107553 66ms 190652 195ms 1.456× 1.379×
C1000.9 10 7358668 5.5 s 7359667 341ms 1.797× 1.588×
C2000.5 ≥16 14513728903 >4.0 h 583381867522 >4.0 h 1.022× >4.0 h

C2000.9 12 318154620 494.4 s 311435268 10.3 s 1.956× 1.781×
C4000.5 ≥18 7965967412 >4.0 h 353042345893 >4.0 h 1.005× >4.0 h

DSJC500_5 14 67503338 23.5 s 67662915 722ms 1.780× 1.785×
DSJC1000_5 16 8883052113 1.4 h 8911483409 120.0 s 1.895× 1.856×

Randomly generated with large degree spread

p_hat300-1 12 283383 73ms 302062 219ms 1.616× 1.027×
p_hat300-2 12 283126 75ms 264981 117ms 1.596× 1.560×
p_hat300-3 12 228584 87ms 213655 57ms 1.678× 1.655×
p_hat500-1 12 3924453 917ms 3898725 219ms 1.916× 1.797×
p_hat500-2 14 5881265 2.0 s 5792747 221ms 1.444× 1.553×
p_hat500-3 12 6438257 3.0 s 6438756 244ms 1.744× 1.742×
p_hat700-1 12 42615280 11.4 s 42624623 505ms 1.747× 1.807×
p_hat700-2 14 35235961 17.0 s 36490628 708ms 1.613× 1.606×
p_hat700-3 14 31214587 21.9 s 31190088 672ms 1.715× 1.647×
p_hat1000-1 14 254937521 82.5 s 258899834 2.3 s 1.649× 1.706×
p_hat1000-2 16 364675172 208.0 s 354565372 5.1 s 1.415× 1.502×
p_hat1000-3 14 558151141 445.9 s 558145499 10.2 s 1.634× 1.555×
p_hat1500-1 16 5176905110 2941.1 s 5198892111 66.5 s 1.463× 1.532×
p_hat1500-2 16 6761389937 2.0 h 6790987829 142.8 s 1.532× 1.522×
p_hat1500-3 16 5460156144 2.3 h 5169287144 155.7 s 1.559× 1.561×

Randomly generated with large hidden solutions

brock200_1 10 57931 16ms 58130 23ms 1.722× 1.625×
brock200_2 12 171207 39ms 171406 210ms 1.908× 1.795×
brock200_3 12 118038 31ms 125090 92ms 1.764× 1.677×
brock200_4 12 102484 27ms 73252 78ms 1.515× 1.481×
brock400_1 12 1774969 757ms 1775368 201ms 1.916× 1.694×
brock400_2 12 1760558 748ms 1760957 160ms 1.914× 1.878×
brock400_3 12 1812188 790ms 1812587 168ms 1.906× 1.657×
brock400_4 12 1772650 749ms 1773049 165ms 1.917× 1.844×
brock800_1 14 951765108 548.6 s 951756573 13.5 s 1.749× 1.731×
brock800_2 14 913607053 541.1 s 913622400 13.0 s 1.742× 1.685×
brock800_3 14 962767080 554.9 s 962785885 13.7 s 1.746× 1.723×

continued on next page. . .

4.3. MAXIMUM BALANCED INDUCED BICLIQUES 121

Instance ω̈ Sequential Parallel No Symmetry

Nodes Runtime Nodes Runtime Nodes Runtime

brock800_4 14 936273493 541.7 s 936275823 13.3 s 1.743× 1.720×

gen200_p0.9_44 10 2628 1ms 2964 176ms 1.758× 1.000×
gen200_p0.9_55 8 4201 1ms 4400 109ms 1.746× 2.000×
gen400_p0.9_55 16 8562 8ms 8796 113ms 1.825× 1.375×
gen400_p0.9_65 14 11709 9ms 12018 105ms 1.761× 1.444×
gen400_p0.9_75 12 16388 12ms 18778 78ms 1.708× 1.417×

san200_0.7_1 14 4330 2ms 4529 67ms 1.748× 1.500×
san200_0.7_2 24 1939 1ms 2103 76ms 2.180× 2.000×
san200_0.9_1 8 1850 1ms 2049 80ms 1.813× 1.000×
san200_0.9_2 8 3540 1ms 3739 95ms 1.847× 2.000×
san200_0.9_3 10 2085 1ms 2284 57ms 1.754× 1.000×
san400_0.5_1 62 1315 2ms 1895 74ms 4.953× 3.000×
san400_0.7_1 20 16229 18ms 16628 119ms 1.850× 1.611×
san400_0.7_2 28 7973 11ms 8373 47ms 2.210× 1.909×
san400_0.7_3 38 10361 11ms 11015 116ms 2.194× 2.091×
san400_0.9_1 10 19054 12ms 20195 159ms 1.788× 1.500×
san1000 134 10778 47ms 13582 129ms 4.019× 3.106×
sanr200_0.7 10 127080 32ms 127279 82ms 1.805× 1.688×
sanr200_0.9 8 4095 1ms 4294 127ms 1.739× 2.000×
sanr400_0.5 14 13683397 4.3 s 11980734 311ms 1.691× 1.677×
sanr400_0.7 14 3370144 1.5 s 4389363 245ms 1.572× 1.445×

Fault diagnosis

c-fat200-1 2 214 0ms 413 50ms 1.117× 1.000×
c-fat200-2 2 353 0ms 552 23ms 1.187× 1.000×
c-fat200-5 2 927 1ms 1126 56ms 1.846× 2.000×
c-fat500-1 2 523 1ms 1022 86ms 1.069× 1.000×
c-fat500-2 2 619 1ms 1118 172ms 1.233× 1.000×
c-fat500-5 2 1398 3ms 1897 65ms 1.687× 1.667×
c-fat500-10 2 4219 12ms 4718 180ms 1.911× 2.000×

Coding theory

hamming6-2 4 4 0ms 67 32ms 1.000× 1.000×
hamming6-4 14 1896 0ms 1959 49ms 2.006× 1.000×
hamming8-2 4 4 0ms 259 73ms 1.000× 1.000×
hamming8-4 32 303 0ms 558 36ms 1.000× 1.000×
hamming10-2 4 4 6ms 4 22ms 1.000× 1.000×
hamming10-4 40 45013477 118.5 s 45073409 2.6 s 1.832× 1.800×

johnson8-2-4 6 460 0ms 487 47ms 2.128× 1.000×
johnson8-4-4 10 211 0ms 280 13ms 1.621× 1.000×
johnson16-2-4 14 2216795 162ms 2216914 91ms 1.977× 1.957×
johnson32-2-4 ≥30 93089451466 >4.0 h 3206339586495 >4.0 h 1.019× >4.0 h

continued on next page. . .

122 CHAPTER 4. OTHER CLIQUE-LIKE PROBLEMS

Instance ω̈ Sequential Parallel No Symmetry

Nodes Runtime Nodes Runtime Nodes Runtime

Keller conjecture

keller4 18 82646 30ms 82816 144ms 1.731× 1.400×
keller5 32 3623257109 2374.9 s 3650000093 58.0 s 1.939× 1.928×
keller6 ≥62 3102133022 >4.0 h 141963515329 >4.0 h 1.002× >4.0 h

Steiner triple problem

MANN_a9 6 32 0ms 63 101ms 1.125× 1.000×
MANN_a27 6 1407 1ms 888 59ms 1.064× 1.000×
MANN_a45 6 9852 15ms 9294 166ms 1.050× 1.000×
MANN_a81 6 53902 318ms 49928 244ms 1.025× 1.063×

Detecting when the bound is useless and decaying to a simpler algorithm provides a
measurable benefit for several of the “p_hat” family of graphs and for “san1000”, but does not
generally make a substantial difference. On the other hand, for random bipartite graphs, this
technique avoids a factor of five slowdown from the overhead of calculating a useless bound.

4.4 Conclusion

This chapter illustrated that Algorithm 2.1 is reasonably flexible: it can be adapted to handle a
distance relaxation by reduction, a problem with side constraints and a multi-criteria objective,
and a different kind of search pattern which includes an additional symmetry. In each case,
the parallelism strategy introduced in Chapter 3 remained beneficial.

4.4.1 Maximum k-Cliques

The first part of this chapter shows for the first time that using a maximum clique algorithm to
solve the maximum k-clique algorithm is feasible in practice. This is despite Gk being dense
even if G is sparse—this ruled out the use of maximum clique algorithms which are designed
for sparse graphs, and we were working with graphs with many more vertices than is typical
for dense maximum clique algorithms.

For better performance on these graphs, we introduced a new lazy global domination rule.
This was sometimes extremely beneficial, leading to exponential reductions in the search
space—without this rule, we would have been unable to solve nine of the problem instances
we considered, and many others would have taken much longer. However, even with laziness
there is still sometimes a cost to pay when this rule does nothing. This rule is thus harmful
(although only by a polynomial factor) for the graphs typically considered for the maximum
clique problem, and we see the benefit of tailoring algorithms to the problem being solved.
We suggest that a similar rule may also be useful for the maximum k-club problem.

4.4. CONCLUSION 123

We were able to use parallelism to close two further instances, although this required a
much finer level of task granularity than usual. We suspect further progress could be made
by tailoring the initial vertex ordering based upon what we know about the graphs, or by
increasing the number of recursive calls per second by making the colouring stage cheaper,
for example by reusing colour classes (Nikolaev, Batsyn, and San Segundo, 2015).

Quite often, we saw k-clique numbers and k-club numbers being the same. However,
solving the maximum k-clique problem is much easier, both in terms of the algorithm and
computationally. Thus it is worth checking whether the simpler model would be sufficient for
practical applications before trying to solve the k-club problem.

In random graphs, we saw that G(n, p)k is easier than G(n, p′) with some higher probabil-
ity p′. We also saw that as k increases, the problem gets easier—this was not typically the
case for some of the real world graphs. It would be interesting to know why this is the case,
and to gain a broader understanding of this behaviour in general.

Our results suggest that k is a very coarse grained parameter. We saw that often a 2-clique
or 3-clique would cover the entire graph. In these circumstances the increased restrictions for
k-club are of no benefit. It is not obvious if somehow allowing a “fractional” value of k could
give more fine-grained control. Thus it may be worth considering other clique relaxations not
based upon distance. However other models also have problems: a density-based relaxation
known as quasi-clique, for example, can allow vertices with only a single edge to be added to
a “clique” (Abello, Resende, and Sudarsky, 2002).

4.4.2 Maximum Labelled Cliques

Next, we saw that adapting Algorithm 2.1 to handle side constraints was both viable and much
faster than a mathematical programming solution. This is not surprising. However, the extent
of the performance difference was unexpected: we were able to solve multiple problems in
under a tenth of one second that previously took over an hour, and we never took more than
ten seconds to solve any of Carrabs, Cerulli, and Dell’Olmo’s (2014) instances. We were also
able to work with large sparse graphs without difficulty.

Of course, a more complicated mathematical programming model could close the perfor-
mance gap. One possible route would be to treat colour classes as variables. But this would
require a pre-processing step, and would lose the “ease of use” benefits of a mathematical
programming approach. It is also not obvious how the label constraints would map to this
kind of model, since equivalently coloured vertices are no longer equal.

On the other hand, adapting a dedicated maximum clique algorithm for this problem did
not require major changes.

There is likely scope for improving the algorithm. For example, rather than doing two
full passes, it is possible to start the second pass at the point where the last unseating of
the incumbent occurred in the first pass. In the sequential case, this is conceptually simple

124 CHAPTER 4. OTHER CLIQUE-LIKE PROBLEMS

but messy to implement: viewing the recursive calls to expand as a tree, we could store
the location whenever the incumbent is unseated. For the second pass, we could then skip
portions of the search space “to the left” of this point. In parallel, this is much trickier: it is
no longer the case that when a new incumbent is found, we have necessarily explored every
subtree to the left of its position.

There are also variations on the problem which we could consider. In the formulation
by Carrabs, Cerulli, and Dell’Olmo, each edge has exactly one label. What if instead edges
may have multiple labels? If taking an edge requires paying for all of its labels, this is just
a trivial modification to our algorithm. But if taking an edge requires selecting and paying
for only one of its labels, it is not obvious what the best way to handle this would be. One
possibility would be to branch on edges as well as on vertices (but only where none of the
available edges matches a label which has already been selected).

This modification could be useful for real-world problems: for Carrabs, Cerulli, and
Dell’Olmo’s example where labels represent different relationship types in a social network
graph, it is plausible that two people could both be members of the same club and be
colleagues. Similarly, for the Erdős datasets, we could use labels either for different journals
and conferences, or for different topic areas (combinatorics, graph theory, etc.). When looking
for a clique of people using only a small number of different relationship types, it would make
sense to allow only one of the relationships to count towards the cost. However, we suspect
that this change could make the problem substantially more challenging.

4.4.3 Maximum Balanced Induced Bicliques

The third problem we considered involved a different shape of pattern. Although unlikely to
be practically applicable, these results suggest that Algorithm 2.1’s techniques can generalise
to other graph-related problems involving heavily regular shapes of graph. For example,
we have heard rumours that finding a maximum pair of cliques could be used to solve the
problem of finding minimal generating sets for the monoid of all n × n Boolean matrices.
We also showed a simple symmetry elimination technique, which could be useful for other
problems.

However, attempting to adapt Algorithm 2.1 for fully general patterns is likely going too
far; the next two chapters instead investigate fully general patterns using a different kind of
algorithm.

125

Chapter 5

Subgraph Isomorphism Problems

The subgraph isomorphism family of problems involve “finding a copy of” a pattern graph in-
side a larger target graph; applications arise in bioinformatics (Bonnici et al., 2013), chemistry
(Régin, 1995), computer vision (Damiand et al., 2011; Solnon et al., 2015), law enforcement
(Coffman, Greenblatt, and Marcus, 2004), model checking (Sevegnani and Calder, 2015),
malware detection (Bruschi, Martignoni, and Monga, 2006), compilers (Blindell et al., 2015;
Murray, 2012; Murray and Franke, 2012), pattern recognition (Conte, Foggia, Sansone, et al.,
2004; Foggia, Percannella, and Vento, 2014), program similarity comparison (Dalla Preda
and Vidali, 2017), and graph databases (discussed in the following chapter). These problems
have natural constraint programming models: we have a variable for each vertex in the
pattern graph, with the vertices of the target graph being the domains. The exact constraints
vary depending upon which variation of the problem we are studying (which we discuss
in the following section), but generally there are rules about preserving adjacency, and an
all-different constraint across all the variables to express injectivity. We illustrate the problem
in Figure 5.1.

This constraint-based search approach dates back to works by McGregor (1979), McGre-
gor (1982), and Ullmann (1976). Further improvements were introduced by Régin (1995),
and in the LV (Larrosa and Valiente, 2002), ILF (Zampelli, Deville, and Solnon, 2010),
LAD (Solnon, 2010), SND (Audemard, Lecoutre, et al., 2014), and PathLAD (Kotthoff,
McCreesh, and Solnon, 2016) algorithms. The trend is towards “deep thinking”: Régin
introduced all-different propagation on vertices, LV additionally reasons about the size of
neighbourhoods, ILF also reasons using the degrees of vertices in a neighbourhood, LAD

Figure 5.1: On the left, an induced subgraph isomorphism. On the right, a non-induced
subgraph isomorphism: the extra dashed edge is not present in the pattern graph.

126 CHAPTER 5. SUBGRAPH ISOMORPHISM PROBLEMS

further adds all-different propagation on neighbourhoods, and SND and PathLAD additionally
use paths to reason about non-adjacent vertices.

An alternative approach is used in the VF2 algorithm (Cordella et al., 2004) and variants
(Carletti, 2016; Carletti, Foggia, and Vento, 2015). Although they still work by recursively
building up an assignment of pattern to target vertices, these algorithms do not store or track
domains. Instead, the basic VF2 algorithm works by computing and iterating over a set of
candidate assignments, performing a number of feasibility checks, and then recursing with
each assignment applied in turn until a solution is found. The candidate assignments at the top
level of search consist of the lowest-numbered vertex in the pattern graph being assigned to
each vertex in the target graph in numerical order. At subsequent levels, the set of candidate
assignments is extended to include vertices adjacent to an already-made assignment (again,
in input order). In other words, VF2 attempts to grow a connected solution by branching
only on vertices adjacent to a choice already made. The feasibility checks consist of simple
adjacency checks, together with a limited form of lookahead which checks the cardinalities of
neighbourhoods.

VF2 often exhibits extremely poor behaviour on instances that other solvers find easy—we
discuss this in more detail in the following chapter. However, VF2 and related approaches do

have the advantage of being able to explore the state space very quickly, and have lower RAM
requirements when working with large target graphs. Although much stronger in aggregate,
LAD and SND sometimes make less than one recursive call per second with larger target
graphs, and cannot always explore enough of the search space to find a solution in time. This
motivates an alternative constraint programming approach, which is the main contribution of
this chapter: on the same hardware, we will be making 104 to 106 recursive calls per core per
second, whilst maintaining most of the strong reasoning properties of LAD and SND. The
main features of this new algorithm are:

1. We represent graphs and domains as bitsets, and only use inference algorithms which
can run very quickly with this representation.

2. We introduce a counting all-different propagator. This propagator is stronger than
simple value elimination, but does not guarantee full generalised arc consistency.

3. Rather than calculating paths dynamically during search, as SND does, we introduce
a concept we call supplemental graphs. Roughly, the idea is to create additional
pattern / target graph pairs, in such a way that any subgraph isomorphism we find must
additionally be a subgraph isomorphism between each supplemental pair. This approach
is potentially weaker than SND’s inference, in that supplemental graphs are calculated
statically at the top of search, but they are also potentially more powerful, since we can
perform degree-based reasoning on supplemental graphs too. For additional filtering
power, we use path counts, rather than distances.

5.1. DEFINITIONS, NOTATION, AND A PROPOSITION 127

4. We refine existing variable-ordering heuristics with tie-breaking, and introduce value-
ordering heuristics.

5. We use thread-parallel preprocessing and search, to make better use of modern multi-
core hardware. As in Chapter 3, we use explicit, non-randomised work stealing to offset
the difficulty of early value-ordering heuristic choices.

Although weaker propagation goes against the trend established by LV, ILF, LAD, and
SND, and is contrary to the established wisdom for constraint programming in general
(Bessière and Régin, 1996), here this approach usually pays off. In Section 5.3 we show
that over a large collection of instances commonly used to compare subgraph isomorphism
algorithms, our solver is the single best. Additionally, we verify that the parallelism we
introduce is reproducible, risk-free, scalable, and beneficial.

Parts of this chapter have been published by McCreesh and Prosser (2015a) as “A Parallel,
Backjumping Subgraph Isomorphism Algorithm Using Supplemental Graphs”, which used
slightly different inference and search rules, and had a different parallel search implementation.
The experiments reported in this chapter use a larger set of benchmark instances which were
introduced in Kotthoff, McCreesh, and Solnon (2016), “Portfolios of Subgraph Isomorphism
Algorithms”.

5.1 Definitions, Notation, and a Proposition

In this chapter, our graphs are finite, undirected, and do not have multiple edges between pairs
of vertices, but may have loops (an edge from a vertex to itself). A non-induced subgraph

isomorphism is an injective mapping i : P � T from a graph P to a graph T which preserves
adjacency—that is, if v ∼P w then we require i(v) ∼T i(w) (and thus if v has a loop, then
i(v) must have a loop). The non-induced subgraph isomorphism problem is to find such a
mapping from a given pattern graph P to a given target graph T .

The induced subgraph isomorphism problem additionally requires that if v 6∼P w then
i(v) 6∼T i(w); we use the notation P ↪→ T to refer to the induced variant. We focus primarily
on the non-induced problem, since it more commonly appears in application-oriented papers.
Variants of the problem also exist for labelled and directed graphs, where the mapping must
preserve labels and the direction of edges respectively. We return to these three variations in
Chapters 6 and 7.

The neighbourhood degree sequence of a vertex v in a graph G, denoted S(G, v), is the
sequence consisting of the degrees of every neighbour of v, from largest to smallest. If R and
S are sequences of integers, we write R � S if there exists a subsequence of S with length
equal to that of R, such that each element in R is less than or equal to the corresponding

128 CHAPTER 5. SUBGRAPH ISOMORPHISM PROBLEMS

element in S. Observe that if a subgraph isomorphism i : P � T maps i(v) = t then
S(P, v) � S(T, i(v)) must necessarily hold (Zampelli, Deville, and Solnon, 2010).

As in Chapter 4, we write Gd for the graph with vertex set V(G), and edges between v
and w if the distance between v and w in G is at most d. We introduce the notation Gn,` for
the graph with vertex set V(G), and edges between vertices v and w (not necessarily distinct)
precisely if there are at least n paths of length exactly ` between v and w in G. The following
proposition may easily be verified by observing that subgraph isomorphisms preserve paths:

Proposition 5.1. Let i : P � T be a subgraph isomorphism. Then i is also

1. a subgraph isomorphism id : P d� T d for any d ≥ 1, and

2. a subgraph isomorphism in,` : P n,`� T n,` for any n, ` ≥ 1.

The (contrapositive of the) first of these facts is used by SND, which dynamically performs
distance-based filtering during search. We will instead use the second fact, at the top of search,
to generate implied constraints; a similar approach has been adopted for PathLAD.

5.2 A New Algorithm

Algorithm 5.1 describes our approach. We begin (line 3) with a simple check that there
are enough vertices in the pattern graph for an injective mapping to exist. We then (line 4)
discard isolated vertices in the pattern graph—such vertices may be greedily assigned to any
remaining target vertices after a solution is found. This reduces the number of variables which
must be copied when branching. Next we construct the supplemental graphs (line 5) and
initialise domains (line 6). We then (line 7) use a counting-based all-different propagator to
reduce these domains further. Finally, we perform a backtracking search (line 7). Each of
these steps is elaborated upon below.

5.2.1 Preprocessing and Initialisation

Following Proposition 5.1, in line 5 we construct a sequence of supplemental graph pairs from
our given pattern and target graph. We will then search for a mapping which is simultaneously
a mapping from each pattern graph in the sequence to its paired target graph—this gives us
implied constraints, leading to additional filtering during search.

Our choice of supplemental graphs is derived experimentally, rather than in a principled
manner. Filtering at a distance of 2 is clearly beneficial, and distances of greater than 3 rarely
give additional filtering power. Choosing between distance 2 or distance 3 is more difficult: as
we show below, there are instances where distance 3 supplemental graphs make the problem
much easier, but enumerating paths of length 3 can be prohibitively expensive for large target

5.2. A NEW ALGORITHM 129

Algorithm 5.1: A non-induced subgraph isomorphism algorithm
1 nonInducedSubgraphIsomorphism (Graph P , Graph T)→ Bool
2 begin
3 if |V(P)| > |V(T)| then return false
4 Discard isolated vertices in P
5 L←

[
(P, T), (P1,2, T 1,2), (P2,2, T 2,2), (P3,2, T 3,2)

]
6 D ← init(V(P),V(T), L)
7 return countingAllDifferent(D) ∧ search(L,D)

8 init (Vertices V , Vertices R, GraphPairs L)→ Domains
9 begin

10 repeat
11 foreach v ∈ V do

12 Dv ←
⋂

(P, T)∈L

{
w ∈ R : v ∼

P
v ⇒ w ∼

T
w ∧ S(P, v) � S(T [R], w)

}
13 R←

⋃
v∈V Dv

until14 R is unchanged
15 return D

16 search (GraphPairs L, Domains D)→ Boolean
17 begin
18 if D = ∅ then return true
19 Dv ← a domain in D with minimum size, tiebreaking on descending static degree in P
20 foreach v′ ∈ Dv ordered by ascending static degree in T do
21 D′ ← clone(D)
22 if assign(L,D′, v, v′) ∧ search(L,D′ −Dv) then return true

23 return false

24 assign (GraphPairs L, Domains D, Vertex v, Vertex v′)→ Boolean
25 begin
26 Dv ← {v′}
27 foreach Dw ∈ D −Dv do
28 Dw ← Dw − v′

29 foreach (P, T) ∈ L do
30 if v ∼P w then Dw ← Dw ∩N(T, v′)

31 if Dw = ∅ then return false

32 return countingAllDifferent(D)

33 countingAllDifferent (Domains D)→ Boolean
34 begin
35 (H, A, n)← (∅, ∅, 0)
36 foreach Dv ∈ D from smallest cardinality to largest do
37 Dv ← Dv \H
38 (A, n)← (A ∪Dv, n+ 1)
39 if Dv = ∅ ∨ |A| < n then return false
40 if |A| = n then (H, A, n)← (H ∪A, ∅, 0)
41 return true

130 CHAPTER 5. SUBGRAPH ISOMORPHISM PROBLEMS

graphs. As for the count, checking for path counts of at least one, two, and three appears to be
a good tradeoff. Looking at up to three paths of length exactly two work reasonably well in
general on the wide range of benchmark instances we consider, but there is room to improve
the algorithm by better selection on an instance by instance basis (Kotthoff, McCreesh, and
Solnon, 2016; Malitsky, 2014).

The init function is responsible for initialising domains. We have a variable for each
vertex in the (original) pattern graph, with each domain being the vertices in the (original)
target graph. It is easy to see that a vertex of degree d in the pattern graph P may only be
mapped to a vertex in the target graph T of degree d or higher: this allows us to perform some
initial filtering. As noted in the previous section, we may use compatibility of neighbourhood
degree sequences for further filtering: v may only be mapped to w if S(P, v) � S(T,w)

(Zampelli, Deville, and Solnon, 2010). Because any subgraph isomorphism P � T is also a
subgraph isomorphism F (P)� F (T) for any of our supplemental graph constructions F ,
we may further restrict initial domains by considering only the intersection of filtered domains
using each supplemental graph pair individually (line 12). At this stage, we also enforce the
“loops must be mapped to loops” constraint.

Following this filtering, some target vertices may no longer appear in any domain, in
which case R will be reduced on line 13. If this happens, we iteratively repeat the domain
construction, but do not consider any target vertex no longer in R when calculating degree
sequences. (Note that for performance reasons, we do not recompute supplemental graphs
when this occurs.)

5.2.2 Search and Inference

The search function is our main recursive procedure. If every variable has already been
assigned, we succeed (line 18). Otherwise, we pick a variable (line 19) to branch on by
selecting the variable with smallest domain, tiebreaking on descending static degree only
in the original pattern graph (we justify this in the following chapter). For each value in its
domain in turn, ordered by ascending static degree in the target graph (also justified in the
following chapter), we try assigning that value to the variable (line 22). If we do not detect a
failure, we recurse (line 22).

For assignment and inference, the assign function gives the value v′ to the domain Dv

(line 26), and then infers which values may be eliminated from the remaining domains. Firstly,
no other domain may now be given the value v′ (line 28). Secondly, for each supplemental
graph pair, any domain for a vertex adjacent to v may only be mapped to a vertex adjacent to
v′ (line 30). If any domain gives a wipeout, then we fail (line 31).

To enforce the all-different constraint, it suffices to remove the assigned value from every
other domain, as we did in line 28. However, it is often possible to do better. If we can find a
set of n variables whose domains include only n values between them, then those values may

5.2. A NEW ALGORITHM 131

be removed from the domains of any other variable. Such a set of variables is called a Hall set

(Gent, Miguel, and Nightingale, 2008; Quimper and Walsh, 2005). We can also sometimes
detect that an assignment is impossible even if values remain in each variable’s domain: if
we can find a set of n variables whose domains include strictly less than n values between
them, then no solution exists. The canonical solution is to use Régin’s (1994) matching-based
propagator, which detects and filters every Hall set in polynomial time.

However, matching-based filtering is expensive and may do relatively little, particularly
when domains are large, and the payoff may not always be economical. Various approaches to
offsetting this cost while maintaining the filtering power have been considered (Gent, Miguel,
and Nightingale, 2008). Since we are not maintaining arc consistency in general, we instead
use an intermediate level of inference which is not guaranteed to identify every Hall set: this
can be thought of as a heuristic towards the matching approach. This is described in the
countingAllDifferent function.

The algorithm works by performing a linear pass over each domain in turn, from smallest
cardinality to largest (line 36). The H variable contains the union of the values of every
Hall set detected so far; initially it is empty. The A set accumulates the union of domains
seen so far, and n contains the number of domains contributing to A. For each new domain
we encounter, we eliminate any values present in previous Hall sets (line 37). We then add
that domain’s values to A and increment n (line 38). If we have too few values between the
domains seen so far, we fail (line 39). If we detect a Hall set, we add its values to H , reset A
and n, and keep going (line 40).

It is important to note that this approach may fail to identify some Hall sets, if the initial
ordering of domains is imperfect. This propagator is not idempotent (Schulte and Stuckey,
2008): running the algorithm twice in succession could result in additional deletions. Nor
is it monotonic (Schulte and Tack, 2009): removing additional values from domains before
running the propagator can weaken its effects. The correctness of Algorithm 5.1 as a whole
relies upon the single value propagation in line 28, and countingAllDifferent is used
only as an additional step which might remove some infeasible values.

Although it lacks the theoretical benefits of stronger propagators, this approach runs
very quickly in practice: the sorting step is O(v log v) (where v is the number of remaining
variables), and the loop has complexity O(vd) (where d is the cost of a bitset operation over
a target domain, which we discuss below). We validate this trade-off experimentally in the
following section.

We have been unable to find this countingAllDifferent propagator described
elsewhere in the literature, although a sort- and counting-based approach has been used
to achieve bounds consistency (Jean-Francois Puget, 1998)—but subgraph isomorphism
domains are not naturally ordered—and as a preprocessing step (Quimper and Walsh, 2005).
Bitsets, which we discuss below, have also been used to implement the matching part of the

132 CHAPTER 5. SUBGRAPH ISOMORPHISM PROBLEMS

generalised arc-consistency algorithm (Kessel and Quimper, 2012).

5.2.3 Bit-Parallelism

We saw in Chapter 2 that bitsets are used in many maximum clique algorithms. They are
equally beneficial in a subgraph isomorphism context, where their use dates back to at least
Ullmann (1976), and remains an active area of research (San Segundo, Rodríguez-Losada,
Galán, et al., 2007; Ullmann, 2010). We use bitsets here too: graphs are stored as arrays
of bit vectors, domains are stored as bit vectors, the neighbourhood intersection in line 30
is a bitwise-and operation, the unions on lines 38 and 40 are bitwise-or operations, and the
cardinality check in line 40 is a population count (recall from Section 1.6.1 that this is a
dedicated hardware instruction in modern CPUs).

5.2.4 Thread-Parallel Search

As in Chapter 3, we often spend a lot of time searching for solutions. We therefore parallelise
the search function, exploring different assignments using multiple threads. The mechanism
we use is similar to the resplitting mechanism introduced and evaluated in Chapter 3. However,
for the maximum clique problem, the extremely high number of recursive calls per second and
the need to avoid copying meant that publishing positions and recomputing parts of the search
space was necessary. A slightly different implementation is simpler for this algorithm: we run
one thread following the sequential search path, and allow other threads to pre-compute future
iterations of any of the in-progress foreach loops from line 20. We continue to prioritise
parallelising the top level of the search tree, and then the second level of the search tree
(tiebreaking on left-to-right ordering), and so on, limiting ourselves to splitting to depth five.
Our experiments will confirm that the highest-first splitting strategy is beneficial for subgraph
isomorphism for the same reasons that it was for the maximum clique problem.

In this chapter we are dealing with a decision problem, not an optimisation problem, so
there is no bound function or incumbent—however, we can use an atomic shared Boolean
variable as the “incumbent”, taking the value false until a solution is found, and if this variable
is set to true, every thread may terminate immediately. Thus we continue to provide both the
theoretical and empirical performance guarantees proposed in Section 1.6.6: this approach
will not introduce exponential slowdowns either when going from sequential to parallel or
when increasing the number of threads used, and will be reproducible.

5.2.5 Thread-Parallel Preprocessing

Although search sometimes takes a long time (and is therefore worth parallelising), for some
instances nearly all of the time is spent in initialisation. To speed this step up, there are two

5.3. EXPERIMENTAL EVALUATION 133

further opportunities for parallelism. Firstly, we may parallelise the outer for loops involved
in calculating neighbourhood degree sequences and in initialising the domains of variables.
This step is entirely routine. Secondly, constructing each supplemental graph involves an outer
for loop, iterating over each vertex in the input graph. These loops may also be parallelised,
with one caveat: we must be able to add edges to (but not remove edges from) the output
graph safely, in parallel. This may be done using an atomic “or” operation, since we are only
ever enabling additional bits, never disabling them.

5.3 Experimental Evaluation

We now evaluate a C++ implementation of Algorithm 5.1 on machines with dual Intel Xeon
E5-2640 v2 processors (for a total of 16 cores, and 32 hardware threads via hyper-threading)
and 64GBytes RAM, running Ubuntu Linux 14.04. We compiled using GCC 5.3.0, and for
parallelism we use C++11 native threads.

We consider a large benchmark set of 5,725 instances used in a recent evaluation of
algorithm portfolios for subgraph isomorphism (Kotthoff, McCreesh, and Solnon, 2016).
This is a superset of the instances used to evaluate LAD (Solnon, 2010), SND (Audemard,
Lecoutre, et al., 2014), and the published variant of this algorithm (McCreesh and Prosser,
2015b). All these instances are available in a simple text format (Solnon, 2016). The instances
come from a range of sources:

• A database containing various kinds of graph gathered by Larrosa and Valiente (2002)
from the Stanford Graph Database. The instances are divided into two sets. The first
contains small instances generated from the first 50 graphs of the database; the second,
larger instances with pattern graphs from the first 50 graphs of the database and target
graphs from the next 50 graphs. Readers of the deluxe colour edition of this thesis will see
instances from the first set plotted in purple in the scatter plots below, and those from the
second set are in blue; satisfiable instances are shown as circles, and unsatisfiable instances
as crosses.

• Randomly generated instances. One family, introduced by Zampelli, Deville, and Solnon
(2010), comes from scale-free graphs. The remainder use bounded degree, regular mesh,
and uniform random models (Cordella et al., 2004). All of the latter instances are satisfiable,
and we spend the first half of Chapter 6 discussing this dataset’s flaws. Thse instances are
plotted in green.

• Randomly generated instances close to the phase transition, which we introduce in the
following chapter. These instances are plotted in black.

134 CHAPTER 5. SUBGRAPH ISOMORPHISM PROBLEMS

• Instances representing segmented images (Damiand et al., 2011; Solnon et al., 2015), and
models of 3D objects (Damiand et al., 2011). These instances are plotted in red and orange
respectively.

These instances come in a wide range of orders, sizes, and densities, although sparse
graphs are most common. The pattern graphs with the largest order and size have 900 vertices
and 24,820 edges respectively, and target graphs go up to 6,671 vertices and 418,000 edges.

5.3.1 Comparison with Other Solvers

We begin by comparing our implementation of Algorithm 5.1 to Solnon’s C implementations
of LAD (Solnon, 2010) and PathLAD (Kotthoff, McCreesh, and Solnon, 2016), and the VFLib
C implementation of VF2 (Cordella et al., 2004). (The versions of each of these solvers we
used could support loops in graphs correctly—for VF2 this is handled by labelling.)

In Figure 5.2 we show the cumulative performance of each algorithm. The value of the
line at a given time for an algorithm shows the total number of instances which, individually,
were solved in at most that amount of time. Algorithm 5.1 is the single strongest solver for
timeouts of over 0.2 seconds, but is weakest with timeouts below the twenty millisecond
range. This is largely due to the cost of producing supplemental graphs at the top of search,
which incurs overhead even on trivial instances.

We also give an instance-by-instance scatter plot in Figure 5.3, comparing with VF2 (left)
and PathLAD (right). VF2 often performs better on instances which both algorithms find
easy, but there are many instances which Algorithm 5.1 finds easy which VF2 either finds
difficult or cannot solve at all. There is only one instance which VF2 can solve within the
timeout which we cannot, and two more where VF2’s performance is much better than ours.
All three instances are satisfiable, and so from Chapter 3, we might guess that these instances
are due to an early value-ordering mistake made by Algorithm 5.1—indeed, we see below
that when using parallel search to offset early heuristic choices, our solver achieves strong
superlinear speedups on all three of these instances. In contrast, Algorithm 5.1’s performance
when compared to PathLAD is more mixed: although it is stronger overall, there are many
instances that PathLAD finds easy which it does not, and vice-versa.

For a comparison against SND, we refer to McCreesh and Prosser (2015b), which shows
that SND has extremely high startup costs but beats LAD (but not our algorithm) for runtimes
of over one hour. The implementation by Audemard, Lecoutre, et al. (2014) requires graphs
to be preprocessed and converted to a solver-specific format, and so we were unable to run it
on the full set of 5,725 instances.

5.3. EXPERIMENTAL EVALUATION 135

5725

0

1000

2000

3000

4000

5000

100 101 102 103 104 105 106

N
um

be
rS

ol
ve

d

Runtime (ms)

VF2

LAD

PathLAD

Our Sequential

Figure 5.2: Cumulative number of benchmark instances solved within a given time, for a
sequential Algorithm 5.1, versus other solvers.

100

101

102

103

104

105

106

100 101 102 103 104 105 106

O
ur

R
un

tim
e

(m
s)

VF2 Runtime (ms)

100

101

102

103

104

105

106

100 101 102 103 104 105 106

O
ur

R
un

tim
e

(m
s)

PathLAD Runtime (ms)

Figure 5.3: An instance by instance comparison of sequential Algorithm 5.1 to VF2 (left)
and PathLAD (right).

136 CHAPTER 5. SUBGRAPH ISOMORPHISM PROBLEMS

5725

0

1000

2000

3000

4000

5000

100 101 102 103 104 105 106

N
um

be
rS

ol
ve

d

Runtime (ms)

Distance 2
Distance 3

Distance 1

100

101

102

103

104

105

106

100 101 102 103 104 105 106

D
is

ta
nc

e
2

R
un

tim
e

(m
s)

Distance 1 Runtime (ms)

100

101

102

103

104

105

106

100 101 102 103 104 105 106

D
is

ta
nc

e
3

R
un

tim
e

(m
s)

Distance 2 Runtime (ms)

Figure 5.4: The effects of using different distances for filtering in Algorithm 5.1. On top,
cumulative number of instances solved, and below, the difference between simple adjacency
and distance 2 filtering (left), and distance 2 and distance 3 filtering (right).

100

101

102

103

104

105

106

107

108

100 101 102 103 104 105 106 107 108

Fu
ll

A
ll-

D
iff

er
en

tN
od

es

Counting All-Different Nodes

100

101

102

103

104

105

106

100 101 102 103 104 105 106

C
ou

nt
in

g
A

ll-
D

iff
er

en
tR

un
tim

e
(m

s)

Simple All-Different Runtime (ms)

Figure 5.5: On the left, how much smaller is the search space when using a global arc
consistent all-different propagator? On the right, the benefits of using a counting all-different
propagator over simple value elimination.

5.3. EXPERIMENTAL EVALUATION 137

5.3.2 Algorithm Design Choices

Having seen that Algorithm 5.1 is a strong algorithm overall, we now look in more detail at
some of the choices made during its design. For example, why do we opt for looking at paths
of length 2, but not length 3? Figure 5.4 justifies this decision: the cumulative plot shows
filtering using paths of length 2 is better than using only adjacency (at least if we expect the
runtime to be more than a few seconds). However, using paths of length 3 incurs considerable
overheads for little gain—although with sufficiently long timeouts, using longer paths does
eventually pay off.

The scatter plots present an alternative perspective: there are many instances which
become much easier with distance two filtering, whilst the overheads are rarely more than
an order of magnitude, and are much less when looking at longer runtimes. Meanwhile,
using distance three makes far fewer instances much easier, and can incur extreme costs in
some cases. Note that most of the instances where distance three filtering is much worse are
the large real-world graphs—this motivates further experiments with per-instance algorithm
selection (Kotthoff, McCreesh, and Solnon, 2016).

In Figure 5.5 we justify our use of the counting all-different propagator. In the left-hand
plot we show the benefits to the size of the search space that would be gained if we used
Régin’s algorithm at every step instead of our counting propagator (we use a longer runtime of
10,000 seconds for the stronger propagator, and plot only instances solved by both algorithms).
The results show that even if we were able to maintain generalised arc consistency for no
greater cost than the counting propagator, substantial improvements would be rare. (The
two cases where stronger filtering makes matters worse is due to dynamic variable ordering
heuristics.)

Thus, either our counting propagator is nearly always as good as maintaining arc consis-
tency, or neither propagator does very much at all in this setting. To show that the former
is true, in the right-hand plot of Figure 5.5 we show the benefits to runtime that are gained
from using counting, rather than simply deleting a value from every other domain on assign-
ment. The large number of points below the diagonal line confirm that going beyond simple
value deletion for all-different propagation is worthwhile, whilst (again excluding one case
where dynamic variable ordering heuristics complicate matters) the constant overhead of this
bit-parallel propagator is less than a factor of two.

5.3.3 Thread Parallelism

Now we evaluate the benefits of thread parallelism. In Figure 5.6 we show the cumulative and
per-instance benefits of introducing thread parallelism by comparing results using 32 threads
(recall that we work with 16 core, hyper-threaded machines) to sequential results. We show
results both for distance 2 filtering, and distance 3 filtering. In both cases, the cumulative plots

138 CHAPTER 5. SUBGRAPH ISOMORPHISM PROBLEMS

show that the parallel results are clearly and substantially better than the sequential results.

The left-hand highlight box in the cumulative plot zooms in on a sudden jump in the
distance 3 results, which in parallel occurs both to the left of (i.e. sooner) and above (i.e. with
a higher number of instances solved) where it is in the sequential curve. The jump occurs
because the Cordella et al. (2004) and Larrosa and Valiente (2002) datasets include several
groups of instances all with the same large number of target vertices, many of which are
trivial once the supplemental graphs have been constructed. This indirectly demonstrates the
benefits of parallelising the preprocessing as well as search: without parallel supplemental
graph construction, we would get no speedup at all on these instances, and this jump would
not shift to the left. Similar effects do occur when only using distance 2 reasoning, but they
are less pronounced.

The scatter plots reveal more interesting behaviour. Superlinear speedups are common,
and there are many instances in both cases where the parallel implementation finds a solution
almost immediately whilst the sequential implementation times out. As our theoretical
guarantees predict, we never introduce an exponential slowdown. For some satisfiable
instances parallel search provides little or no benefit, and we see low speedups because of
wasted work and overheads—in a very small number of cases these lead to a small absolute
slowdown. This does not go against our theoretical model: remember that we only have
sixteen “real” cores, that parallelism decreases the amount of memory bandwidth available
to each core, and that we must modify the sequential code slightly to allow for parallel
search. We observe occasional poor speedups on unsatisfiable instances, due to work balance
problems, although usually unsatisfiable instances approach a linear speedup as we would
expect (an unsatisfiable instance for a decision problem behaves like a branch and bound
instance where an optimal solution is found instantly). Interestingly, we observe a similar
roughly-linear speedup for many satisfiable instances. For these instances, we are performing
a lot of work which we also carry out in the sequential run before a solution is eventually
found.

In Figure 5.7 we compare parallel Algorithm 5.1 to sequential VF2 and sequential Path-
LAD. This is not necessarily a fair comparison if we are simply interested in which algorithm
runs fastest (although one could argue that VF2 and PathLAD should be penalised for not
being able to make use of the multiple cores available in all modern hardware). The main
point of these plots is to see a change in behaviour in comparison to Figure 5.3. Recall
that there were three satisfiable instances which VF2 found relatively easy and which our
sequential solver found hard. All three are gone in this plot, confirming our suspicions that
poor value-ordering choices were to blame. In contrast, PathLAD remains competitive for
some instances, suggesting that much stronger reasoning is sometimes a better choice.

What about the scalability and reproducibility properties that we claim to guarantee? In
Figure 5.8 we show what happens going from sequential to four threads, from four threads

5.3. EXPERIMENTAL EVALUATION 139

5725

0

1000

2000

3000

4000

5000

100 101 102 103 104 105 106

N
um

be
rS

ol
ve

d

Runtime (ms)

Sequential, Distance 2
Sequential, Distance 3

Parallel, Distance 2
Parallel, Distance 3

100

101

102

103

104

105

106

100 101 102 103 104 105 106

32
T

hr
ea

ds
R

un
tim

e
(m

s)

Sequential Runtime (ms)

Distance 2 Filtering

16×

100

101

102

103

104

105

106

100 101 102 103 104 105 106

32
T

hr
ea

ds
R

un
tim

e
(m

s)

Sequential Runtime (ms)

Distance 3 Filtering

16×

Figure 5.6: Above, cumulative number of benchmark instances solved within a given time,
comparing sequential and parallel Algorithm 5.1 implementations. Below, per-instance
comparisons. Results use 32 threads on a 16 core hyper-threaded system.

100

101

102

103

104

105

106

100 101 102 103 104 105 106

O
ur

Pa
ra

lle
lR

un
tim

e
(m

s)

VF2 Runtime (ms)

100

101

102

103

104

105

106

100 101 102 103 104 105 106

O
ur

Pa
ra

lle
lR

un
tim

e
(m

s)

PathLAD Runtime (ms)

Figure 5.7: Comparing parallel Algorithm 5.1 with sequential VF2 and sequential PathLAD.

140 CHAPTER 5. SUBGRAPH ISOMORPHISM PROBLEMS

to eight, from eight threads to sixteen, and from sixteen threads to thirty two. In each case
we see new instances exhibiting superlinear speedups; it is worth emphasising that once we
have a superlinear speedup, increasing the number of threads never makes this go away. For
the first three scatter plots we also see a common improvement for unsatisfiable instances,
showing that increasing the number of threads increases the rate at which work is done.

Going from sixteen threads to thirty two is more erratic: we see an increase in superlinear
speedups, but also an increase in overheads. This is not surprising, since when hyper-threading,
each core in effect runs more slowly, in return for a little extra total processing power. The
final scatter plot shows what happens when we oversubscribe even further, and run sixty four
threads. Again we see new superlinear speedups, but we also see constant-factor slowdowns
on many instances. Interestingly, the cumulative plot shows that oversubscribing is slightly
better overall: although there are overheads, if we are prepared to risk a constant factor
slowdown on some instances, then the increase in superlinear speedups from the additional
diversity given by the extra threads is beneficial in aggregate. These plots also suggest that
we are not approaching a scalability limit, and that if we had more cores available, we would
be able to make good use of them.

Reassuringly, in both Figures 5.6 and 5.8, all the superlinear speedups are on satisfiable
instances (which are plotted using a circle, rather than a cross). In Chapter 3 we saw for the
maximum clique problem that superlinear speedups were common due to a combination of
value-ordering heuristics being poor at the top of search, and a work-splitting mechanism
which explicitly prioritised branching at the top level of search first. The same effect causes
the superlinear speedups here. We might anticipate this: we are using degree as a value-
ordering heuristic (and we return to this issue in the following chapter), and many target
graphs do not exhibit a particularly broad degree spread. Thus, even if picking by degree were
a totally reliable rule (which it is not), we often have many vertices of the same degree and no
way to choose between them, and so diversifying remains important.

Finally, in Figure 5.9, we show that our reproducibility guarantee holds in practice, by
plotting repeated runs with sixteen and thirty two threads. The results are not quite as clean as
those for a repeated sequential run (which we show in the first plot), but in no cases do we
see more than a small difference in runtimes, and we never see exponential changes, despite
superlinear speedups being common. By comparison, if we use Intel Cilk Plus for randomised
work-stealing (which we show in the final plot), on satisfiable instances we sometimes see
several orders of magnitude difference in runtimes.

5.4 Other Problem Variants

So far we have only discussed the non-induced variant of the problem on unlabelled, undi-
rected graphs. To handle the induced problem, it suffices to notice that an induced subgraph

5.4. OTHER PROBLEM VARIANTS 141

5725

0

1000

2000

3000

4000

5000

100 101 102 103 104 105 106

N
um

be
rS

ol
ve

d

Runtime (ms)

Seq

4

8

16
32
64

100

101

102

103

104

105

106

100 101 102 103 104 105 106

4
T

hr
ea

ds
R

un
tim

e
(m

s)

Sequential Runtime (ms)

4×

100

101

102

103

104

105

106

100 101 102 103 104 105 106

8
T

hr
ea

ds
R

un
tim

e
(m

s)

4 Threads Runtime (ms)

2×

100

101

102

103

104

105

106

100 101 102 103 104 105 106

16
T

hr
ea

ds
R

un
tim

e
(m

s)

8 Threads Runtime (ms)

2×

100

101

102

103

104

105

106

100 101 102 103 104 105 106

32
T

hr
ea

ds
R

un
tim

e
(m

s)

16 Threads Runtime (ms)

100

101

102

103

104

105

106

100 101 102 103 104 105 106

64
T

hr
ea

ds
R

un
tim

e
(m

s)

32 Threads Runtime (ms)

Figure 5.8: The top left plot shows the cumulative number of instances solved over time,
with varying numbers of threads, on a 16 core hyper-threaded system. The scatter plots show
the effects of going from sequential to parallel, and then increasing the number of threads
used.

142 CHAPTER 5. SUBGRAPH ISOMORPHISM PROBLEMS

100

101

102

103

104

105

106

100 101 102 103 104 105 106

Se
qu

en
tia

lR
un

tim
e

(r
ep

ea
t,

m
s)

Sequential Runtime (ms)

100

101

102

103

104

105

106

100 101 102 103 104 105 106

16
T

hr
ea

ds
R

un
tim

e
(r

ep
ea

t,
m

s)

16 Threads Runtime (ms)

100

101

102

103

104

105

106

100 101 102 103 104 105 106

32
T

hr
ea

ds
R

un
tim

e
(r

ep
ea

t,
m

s)

32 Threads Runtime (ms)

100

101

102

103

104

105

106

100 101 102 103 104 105 106

32
C

ilk
W

or
ke

rs
R

un
tim

e
(r

ep
ea

t,
m

s)

32 Cilk Workers Runtime (ms)

Figure 5.9: Verifying that parallel runtimes are reproducible: Algorithm 5.1 runtimes, plotted
against a repeat run with the same parameters, using 16 and 32 threads respectively. For
comparison, the first plot shows repeated sequential runs, and the last plot uses Intel Cilk Plus
with 32 threads for work allocation.

isomorphism is a non-induced subgraph isomorphism which is also a non-induced subgraph
isomorphism between the loop complements of the pattern and target graphs. Thus, we
may modify Algorithm 5.1 simply by adding an additional supplemental graph pair for the
loop complements, and removing the “strip isolated vertices” rule. We look more at induced
isomorphisms in the remainder of this thesis.

In the following two chapters we will also be looking at labelled graphs, where vertices
and / or edges must be mapped to equally labelled vertices and / or edges. For vertices this is
a simple domain reduction operation at the top of search (although there is room to improve
neighbourhood degree sequence filtering to make more use of labels). Edge labels can be
handled by propagation, but we discuss better models in Chapter 7. Handling directed edges
is also straightforward.

Richer labelling schemes also exist. For example, temporal subgraph isomorphism
(Redmond and Cunningham, 2013; Redmond and Cunningham, 2016) has edges labelled
with times, and the problem can be to find a pattern, all of whose edge times occur within a

5.5. CONCLUSION 143

certain duration or period.

Other variants of the subgraph isomorphism problem alter the difference constraints. For
example, the subgraph epimorphism problem (Gay et al., 2014) is to find a surjective mapping
rather than an injective one, whilst the subgraph homomorphism problem drops the injectivity
requirement. Graph isomorphism (where the pattern and the target must have the same number
of vertices and edges) is typically handled differently to exploit much stronger invariants,
by using a repeated label refinement scheme (McKay and Piperno, 2014). The adjacency
rule also has other flavours: sometimes the rule is that the preimage of an edge must be an
edge, and sometimes adjacent vertices may be mapped to the same target vertex (even if the
target vertex has no loop). Each of these problems allows for a similar algorithm, although
the isolated vertex, neighbourhood degree sequence, and supplemental graph rules must be
modified. Finally, maximum common subgraph problems, which we discuss in Chapter 7,
can be thought of as relaxations of subgraph isomorphism problems.

5.5 Conclusion

Although the trend in subgraph isomorphism algorithms has been towards stronger and
stronger reasoning, we have seen that cheap surrogates for all-different and distance-based
filtering can give an even more effective algorithm. We also saw the importance of not going
too far in the quest for simplicity—disabling distance filtering or all-different propagation
entirely made our algorithm considerably worse. This balance between speed and simplicity
is investigated in more detail in the following chapter.

We introduced parallelism for both preprocessing and search, and showed that it is
risk-free, scalable, reproducible and beneficial—as in Chapter 3, controlling the interaction
between work-splitting and value-ordering heuristics was key to this success. Recall that
Malapert, Régin, and Rezgui (2016) said that they “ignore the problem of finding a first
feasible solution because the parallel speedup can be completely uncorrelated to the number
of workers, making the results hard to analyze”; with the performance guarantees that our
approach to work splitting offer, we do not have any trouble analysing our results, or seeing
that they are favourable.

There is plenty of scope for extensions of and improvements to our algorithm. For
example, per-instance algorithm selection works well in this setting (Kotthoff, McCreesh,
and Solnon, 2016), and it is likely that special domain- or instance-specific supplemental
graphs could improve things further. It is also possible to make supplemental graphs and
neighbourhood degree sequence filtering stronger in labelled, induced, and directed settings.

We also believe that our algorithm could benefit from some form of conflict analysis. In
McCreesh and Prosser (2015a) we showed that conflict-directed backjumping was sometimes
extremely beneficial in a similar algorithm, and that it could be parallelised whilst maintaining

144 CHAPTER 5. SUBGRAPH ISOMORPHISM PROBLEMS

performance guarantees by treating the for loop as a parallel fold with left zero (Lobachev,
2012). Preliminary experiments suggest that clause-learning could be even stronger. However,
the all-different propagator often leads to overly-specific learned clauses compared to what a
human would produce in the same situation, and these clauses tend not to be reusable as a
result. It is also not clear how learned clauses could be integrated into the sequential algorithm
without introducing huge overheads (the standard two watched literals scheme still requires
iterating over every value removed from a domain to trigger any watches, whereas the current
algorithm does nothing on value removals unless a domain wipeout occurs). If clause-learning
can be made to work efficiently in this setting, it also paves the way for subgraph modulo

theories problems and hybrid solver strategies—we consider this to be a very promising
avenue for future research.

In the following chapter we take a deeper look at why both Algorithm 5.1 and LAD
are so successful: although subgraph isomorphism is NP-complete, we have been working
with graphs with thousands of vertices without too much difficulty. As we might suspect
from Chapter 2, there are in fact small, “really hard” subgraph isomorphism instances which
we cannot solve; understanding these instances also justifies our choices of variable- and
value-ordering heuristics. Then, as part of Chapter 7, we investigate whether Algorithm 5.1
can be adapted for maximum common subgraph problems.

145

Chapter 6

When is Subgraph Isomorphism
Really Hard?

Although subgraph isomorphism is NP-complete, the algorithms we introduced and compared
in the previous chapter were working comfortably with instances with many hundreds of
vertices in the pattern graph, and over six thousand vertices in the target graph. However,
subgraph isomorphism algorithms cannot handle arbitrary instances involving this many
vertices. Experimental evaluations of subgraph isomorphism algorithms (including our own
in the previous chapter) are usually performed using a mix of real-world graphs, graphs that
encode biochemistry and computer vision problems, and randomly generated graph pairs.
Using random instances to evaluate algorithm behaviour can be beneficial, because it provides
a way of generating many instances cheaply, and reduces the risk of over-fitting when tuning
design parameters. The random instances used typically come from common datasets (De
Santo et al., 2003; Zampelli, Deville, and Solnon, 2010), which were generated by taking a
random subgraph of a random (Erdős-Rényi, scale-free, bounded degree, or mesh) graphup to
and permuting the vertices. Such instances are guaranteed to be satisfiable—Anton and Olson
(2009) exploited this property to create large sets of random satisfiable Boolean satisfiability
instances. This is the most common approach to generating random subgraph isomorphism
instances, meaning existing benchmark suites contain relatively few non-trivial unsatisfiable
instances (although a few of the patterns in the instances by Zampelli, Deville, and Solnon
have had extra edges added, making them unsatisfiable). Also, the satisfiable instances tend to
be computationally fairly easy, with most of the difficulty being in dealing with the size of the
model. This has lead to bias in algorithm design, to the extent that some proposed techniques,
such as those of Battiti and Mascia (2007), will only work on satisfiable instances.

The first contribution of this chapter is to present and evaluate new methods for creating
random pattern / target pairs. The method we introduce generates both satisfiable and
unsatisfiable instances, and can produce computationally challenging instances with only
a few tens of vertices in the pattern, and 150 vertices in the target. This is not entirely

146 CHAPTER 6. WHEN IS SUBGRAPH ISOMORPHISM REALLY HARD?

straightforward—the lack of unsatisfiable instances for testing purposes cannot be addressed
simply by taking a pattern graph from one of the existing random suites with the “wrong” target
graph, as this tends to give either a trivially unsatisfiable instance, or a satisfiable instance.
(In particular, it is not the case that a relatively small random graph is unlikely to appear in
a larger random graph.) Sections 6.2 and 6.3 have been published by McCreesh, Prosser,
and Trimble (2016) as “Heuristics and Really Hard Instances for Subgraph Isomorphism
Problems”; the pseudo-Boolean, SAT and MIP encodings are due to that paper’s third author.

This work builds upon the phase transition phenomena observed in satisfiability and graph
colouring problems first described by Cheeseman, Kanefsky, and Taylor (1991) and Mitchell,
Selman, and Levesque (1992), which we discussed for clique problems in Chapter 2. For
subgraph isomorphism we identify three relevant control parameters: we can independently
alter the edge probability of the pattern graph, the edge probability of the target graph, and
the relative orders (number of vertices) of the pattern and target graphs. For non-induced
isomorphisms, with the correct choice of parameters we see results very similar to those
observed with Boolean satisfiability problems: there is a phase transition (whose location
we can predict) from satisfiable to unsatisfiable, and we see a solver-independent complexity
peak near this phase transition. Additionally, understanding this behaviour helps us to select
better variable- and value-ordering heuristics—this is the second contribution of this chapter.

For certain choices of parameters for induced isomorphisms, there are two phase transi-
tions, going from satisfiable to unsatisfiable, and then from unsatisfiable back to satisfiable.
Again, when going from satisfiable to unsatisfiable (from either direction), instances go from
being trivial to really hard to solve. However, each of the three solvers we tested also finds the
central unsatisfiable region to be hard, despite it not being near a phase transition. To show
that this is not a simple weakness of current subgraph isomorphism algorithms, we verify
that this region is also hard when using a pseudo-Boolean encoding, and under reduction to
the clique problem. Interestingly, the constrainedness measure proposed by Gent, MacIntyre,
Prosser, and Walsh (1996) does predict this difficult region—the third contribution of this
chapter is to use these instances to provide evidence in favour of constrainedness, rather than
proximity to a phase transition, being an accurate predictor of difficulty, and to show that
constrainedness is not simply a refinement of a phase transition prediction.

When labels on vertices are introduced, as is commonly seen in real-world applications
and in graph database systems, richer behaviour emerges, particularly when moving away
from a uniform labelling scheme, and we see that VF2 behaves much worse than the Glasgow
and LAD algorithms in certain cases. A close look shows that these cases should be easy to
solve.

This is not simply a theoretical curiosity. A labelled version of subgraph isomorphism is
one of the key components in supporting complex queries in graph databases—typically, these
systems store a fixed set of target graphs, and for a sequence of pattern queries, they must

6.1. EXPERIMENTAL SETUP 147

return every target graph which contains that pattern. One common approach to this problem is
to combine a subgraph isomorphism algorithm with an indexing system in a so-called “filter /
verify” model, where invariants are used to attempt to pre-exclude unsatisfiable instances
to avoid the cost of a subgraph isomorphism call. In this context, the terms matching and
verification are often used for the subgraph isomorphism step (or a slightly broader problem,
for example permitting wildcards).

We look at some of the datasets commonly used to test graph database systems, which
the literature suggests are extremely hard to solve. Simple experiments show that the entire
perceived difficulty of each of these datasets comes down to the widespread use of especially
poor subgraph isomorphism algorithms. Our fourth contribution is to show that the use of
forward-checking and the right variable ordering heuristic, even without the more sophisticated
recent advances in subgraph algorithms, makes the entire graph database filter / verify
paradigm unnecessary. Finally, we explain why filter / verify (and other recently proposed
techniques) cannot be beneficial even on more challenging instances except if an extremely
poor choice of subgraph isomorphism algorithm is made.

6.1 Experimental Setup

The experiments in this chapter are performed on systems with Intel Xeon E5-4650 v2
CPUs and 768GBytes RAM, running Scientific Linux release 6.7. We will be working with
three subgraph isomorphism solvers: the version of the algorithm from the previous chapter
described in McCreesh and Prosser (2015a), which we call the Glasgow solver; LAD (Solnon,
2010); and VF2 (Cordella et al., 2004). The first of these algorithms is implemented in C++,
and the other two in C. Each was compiled using GCC 4.9.

Recall that the Glasgow and LAD solvers use backtracking search to build up an as-
signment of target vertices (values) to pattern vertices (variables), but differ in terms of
inference and ordering heuristics. The approach used by VF2 is similar, although the domains
of variables are not stored (in the style of conventional backtracking, rather than forward-
checking), and so domain wipeouts are not detected until an assignment is made. Both the
Glasgow and LAD solvers use domain sizes to guide search, whilst VF2 uses adjacency to
previously-assigned vertices.

In this chapter we measure only the number of recursive calls (guessed assignments) made,
not runtimes. We are not aiming to compare absolute performance between solvers; rather,
we are looking for solver-independent patterns of difficulty. All experiments use a timeout of
1,000 seconds, which is enough for the Glasgow solver to solve nearly all instances (whose
orders were selected with this timeout in mind), although we may slightly overestimate the
proportion of unsatisfiable instances for extremely sparse or dense pattern graphs. The LAD
and VF2 solvers experienced many more failures with this timeout, so our picture of just how

148 CHAPTER 6. WHEN IS SUBGRAPH ISOMORPHISM REALLY HARD?

101

102

103

104

105

106

107

108

109

0 0.2 0.4 0.6 0.8 1

Se
ar

ch
no

de
s

Pattern density

Unsatisfiable
Satisfiable

Mean search

Figure 6.1: With a fixed pattern graph order of 20, a target graph order of 150, a target edge
probability of 0.40, and varying pattern edge probability, we observe a phase transition and
complexity peak with the Glasgow solver in the non-induced variant. Each point represents
one instance. The lines show mean search effort and mean proportion satisfiable.

hard the hardest instances are with these solvers is less detailed.

6.2 Non-Induced Subgraph Isomorphisms

Suppose we arbitrarily decide upon a pattern graph order of 20, a target graph order of 150,
a fixed target edge probability of 0.40, and no vertex labels. As we vary the pattern edge
probability from 0 to 1, we would expect to see a shift from entirely satisfiable instances (with
no edges in the pattern, we can always find a match) to entirely unsatisfiable instances (a
maximum clique in this order and edge probability of target graph will usually have between
9 and 12 vertices). The move from green circles (satisfiable) to blue crosses (unsatisfiable) in
Figure 6.1 shows that this is the case. For densities of 0.67 or greater, no instance is satisfiable;
with densities of 0.44 or less, every instance is satisfiable; and with a density of 0.55, roughly
half the instances are satisfiable.

The line plots mean search effort using the Glasgow solver: for sparse patterns, the
problem is trivial, for dense patterns proving unsatisfiability is not particularly difficult, and
we see a complexity peak around the point where half the instances are satisfiable. We
also plot the search cost of individual instances, as points. The behaviour we observe looks
remarkably similar to the clique decision problem and to random 3SAT problems—compare,
for example, Figure 2.5 on page 38, or Figure 1 of Leyton-Brown et al. (2014). In particular,
satisfiable instances tend to be easier, but show greater variation than unsatisfiable instances,
and there are exceptionally hard satisfiable instances (Smith and Grant, 1997). (Recall from

6.2. NON-INDUCED SUBGRAPH ISOMORPHISMS 149

G(10, x) G(20, x) G(30, x)

Sa
tis

fia
bl

e?

0

0.5

1

G
la

sg
ow

fail

100

102

104

106

L
A

D

fail

100

102

104

106

V
F2

fail

100

102

104

106

Figure 6.2: Behaviour of algorithms on the non-induced variant. For each plot, the x-axis
is the pattern edge probability and the y-axis is the target edge probability, both from 0 to
1. Along the top row, we show the proportion of instances which are satisfiable; the white
bands show the phase transitions, and the black lines are the predictions using equation (6.1)
of where the phase transition will occur. On the subsequent three rows, we show the number
of search nodes used by the Glasgow, LAD and VF2 solvers; the dark regions indicate “really
hard” instances.

Chapter 5 that the Glasgow solver supports parallel search with a work-stealing strategy
explicitly designed to reduce or eliminate these. We are not using parallel search in this
chapter to avoid dealing with the complexity of search tree measurements under parallelism.)

What if we alter the edge probabilities for both the pattern graph and the target graph?
In the top row of Figure 6.2 we show the satisfiability phase transition for the non-induced
variant, for patterns of order 10, 20 and 30, targets of order 150, and varying pattern (x-axis)
and target (y-axis) edge probabilities. Each axis runs over 101 edge probabilities, from 0 to
1 in steps of 0.01. For each of these points, we generate ten random instances. The colour
denotes the proportion of these instances which were found to be satisfiable. Inside the red
region, at the bottom right of each plot, every instance is unsatisfiable—here we are trying
to find a dense pattern in a sparse target. In the green region, at the top left, every instance
is satisfiable—we are looking for a sparse pattern in a dense target (which is easy, since we
only have to preserve adjacency, not non-adjacency). The white band between the regions

150 CHAPTER 6. WHEN IS SUBGRAPH ISOMORPHISM REALLY HARD?

shows the location of the phase transition: here, roughly half the instances are satisfiable. (We
discuss the black line below.)

On subsequent rows, we show the average number of search nodes used by the different
algorithms. In general, satisfiable instances are easy, until very close to the phase transition. As
we hit the phase transition and move into the unsatisfiable region, we see complexity increase.
Finally, as we pass through the phase transition and move deeper into the unsatisfiable region,
instances become easier again. This behaviour is largely solver-independent, although VF2
has a larger hard region than Glasgow or LAD. VF2 also finds some instances extremely hard
when the target is empty but the pattern is not—this turns out to be extremely important, and
we return to it in Sections 6.4 and 6.5. Thus, although we have moved away from a single
control parameter, we still observe the easy-hard-easy pattern seen in many NP-complete
problems.

6.2.1 Locating the Phase Transition

We can approximately predict the location of the phase transition by calculating (with simpli-
fications regarding rounding and independence) the expected number of solutions for given
parameters. Since we are trying to find an injective mapping from a pattern P = G(p, dp) to a
target T = G(t, dt), there are

tp = t · (t− 1) · . . . · (t− p+ 1)

possible assignments of target vertices to pattern vertices. If we assume the pattern has exactly
dp ·

(
p
2

)
edges, we obtain the probability of all of these edges being mapped to edges in the

target by raising dt to this power, giving an expected number of solutions of

〈Sol〉 = tp · dtdp·(
p
2). (6.1)

This formula predicts a very sharp phase transition from 〈Sol〉 � 1 to 〈Sol〉 � 1, which may
easily be located numerically. We plot where this occurs using black lines in the first row of
Figure 6.2.

This prediction is generally reasonably accurate, except that for very low and very high
pattern densities, we overestimate the satisfiable region. This is due to variance: although an
expected number of solutions much below one implies a high likelihood of unsatisfiability,
it is not true that a high expected number of solutions implies that any particular instance
is likely to be satisfiable. (Consider, for example, a sparse graph which has several isolated
vertices. If one solution exists, other symmetric solutions can be obtained by permuting the
isolated vertices. Thus although the expected number of solutions may be one, there cannot
be exactly one solution.) A similar behaviour is seen with random constraint satisfaction

6.3. INDUCED SUBGRAPH ISOMORPHISMS 151

problems (Smith and Dyer, 1996).

6.2.2 Variable and Value Ordering Heuristics

Various general principles have been considered when designing variable and value ordering
heuristics for backtracking search algorithms—one of these is to try to maximise the expected
number of solutions inside any subproblem considered during search (Gent, MacIntyre,
Prosser, Smith, et al., 1996). This is usually done by cheaper surrogates, rather than direct
calculation. When branching, both LAD and Glasgow pick a variable with fewest remaining
values in its domain: doing this will generally reduce the first part of the 〈Sol〉 equation by
as little as possible. When two or more domains are of equal size, LAD simply breaks ties
lexicographically, whereas Glasgow will pick a variable corresponding to a pattern vertex
of highest degree. This strategy was determined empirically, but could have been derived
from the 〈Sol〉 formula: picking a pattern vertex of high degree will make the remaining
pattern subgraph sparser, which will decrease the exponent in the second half of the formula,
maximising the overall value. LAD does not apply a value ordering heuristic, but Glasgow
does: it prefers target vertices of lowest degree. Again, this was determined empirically,
but it has the effect of increasing 〈Sol〉 by increasing the remaining target density. The
VF2 heuristics, in contrast, are based around preserving connectivity, which gives very little
discrimination except on the sparsest of inputs.

6.3 Induced Subgraph Isomorphisms

In the first four rows of Figure 6.3 we repeat our experiments, finding induced isomorphisms.
With a pattern of order 10, we get two independent phase transitions: the bottom right half of
the plots resemble the non-induced results, and the top left half is close to a mirror image.
The central satisfiable region, which is away from either phase transition, is computationally
easy, but instances near the phase transition are hard.

For larger patterns of order 20 and 30, we have a large unsatisfiable region in the middle.
Despite not being near either phase transition, instances in the centre remain computationally
challenging. We also plot patterns of orders 14, 15 and 16, to show the transition between the
two behaviours.

We might expect these complexity plots to be symmetric along the diagonal, since for
the induced problem, if we replace both inputs with their complements, the solutions remain
the same. For the Glasgow solver, this is the case. This should be expected, because
this complement property is precisely how the Glasgow solver handles the induced variant
(although the heuristics may differ between the two, which we discuss below). For LAD,
some of the very dense patterns are slightly harder than their diagonal opposites (LAD reasons

152 CHAPTER 6. WHEN IS SUBGRAPH ISOMORPHISM REALLY HARD?

G(10, x) G(14, x) G(15, x) G(16, x) G(20, x) G(30, x)

Sa
tis

fia
bl

e?

0

0.5

1

G
la

sg
ow

fail

100

102

104

106

L
A

D

fail

100

102

104

106

V
F2

fail

100

102

104

106

C
on

st
ra

in
ed

ne
ss

2
3
≥4

0

1

C
om

pl
em

en
t?

no

yes

Figure 6.3: Behaviour of algorithms on the induced variant, shown in the style of Figure 6.2.
The first row shows the empirical phase transition locations, together with the theoretical
predictions from equation (6.2), and the next three rows show empirical hardness. The fifth
row plots constrainedness using equation (6.3): the darkest region is where κ = 1, and the
lighter regions show where the problem is either over- or under-constrained. The final row
shows when the Glasgow algorithm performs better when given the complements of the
pattern and target graphs as inputs—the solid lines show the location of the phase transition,
and the dotted lines are td = 0.5 and the pd = td diagonal.

6.3. INDUCED SUBGRAPH ISOMORPHISMS 153

about degrees, but not about complement-degrees); it is interesting to note that for larger
target graphs, VF2 finds all dense pattern graphs difficult.

6.3.1 Predictions and Heuristics

To predict the location of the induced phase transition, we repeat the argument for locating the
non-induced phase transition and additionally consider non-edges, to get an expected number
of solutions of

〈Sol〉 = tp · dtdp·(
p
2) · (1− dt)(1−dp)·(

p
2). (6.2)

We plot this using black lines on the top row of Figure 6.3—again, our prediction is accurate
except for very sparse or very dense patterns.

We might guess that degree-based heuristics would just not work for the induced problem:
for any claim about the degree, the opposite will hold for the complement constraints. How-
ever, empirically, this is not the case: on the final row of Figure 6.3, we show whether it is
better to use the original pattern and target as the input to the Glasgow algorithm, or to take
the complements. (The only steps performed by the Glagsow algorithm which differ under
taking the complements are the degree-based heuristics. LAD and VF2 are not symmetric in
this way: LAD performs a filtering step using degree information, but does not consider the
complement degree, and VF2 uses connectivity in the pattern graph.)

For patterns of order 10, it is always better to try to move towards the satisfiable region: if
we are in the bottom right diagonal half, we are best retaining the original heuristics (which
move us towards the top left), and if we are in the top left we should use the complement
instead. This goes against a suggestion by Walsh (1998) that switching heuristics based upon
an estimate of the solubility of the problem may offer good performance.

For larger patterns, more complex behaviour emerges. If we are in the intersection of the
bottom half and the bottom right diagonal of the search space, we should always retain the
original heuristic, and if we are in the intersection of the top half and the top left diagonal, we
should always use the complements. This behaviour can be predicted by taking the partial
derivatives of 〈Sol〉 in the −pd and td directions. However, when inside the remaining two
eighths of the parameter space, the partial derivatives of 〈Sol〉 disagree on which heuristic to
use, and using directional derivatives is not enough to resolve the problem. A close observation
of the data suggests that the actual location of the phase transition may be involved (and
perhaps Walsh’s suggestion applies only in these conditions). In any case, 〈Sol〉 is insufficient
to explain the observed behaviour in these two eighths of the parameter space.

In practice, this is unlikely to be a problem: most real-world instances are extremely sparse
and are usually easy. In this situation, these experiments justify reusing the non-induced
heuristics on induced problems.

154 CHAPTER 6. WHEN IS SUBGRAPH ISOMORPHISM REALLY HARD?

6.3.2 Is the Central Region Genuinely Hard?

The region in the parameter space where both pattern and target have medium density is far
from a phase transition, but nevertheless contains instances that are hard for all three solvers.
We would like to know whether this is due to a weakness in current solvers (perhaps our solvers
cannot reason about adjacency and non-adjacency simultaneously?), or whether instances in
this region are inherently difficult to solve. Thus we repeat the induced experiments on smaller
pattern and target graphs, using different solving techniques. Although these techniques are
not competitive in absolute terms, we wish to see if the same pattern of behaviour occurs. The
results are plotted in Figure 6.4.

Our pseudo-Boolean (PB) encoding is as follows. For each pattern vertex v and each target
vertex w, we have a binary variable which takes the value 1 if and only if v is mapped to w.
Constraints are added to ensure that each pattern vertex maps to exactly one target vertex, that
each target vertex is mapped to by at most one pattern vertex, that adjacent vertices are mapped
to adjacent vertices, and that non-adjacent vertices are mapped to non-adjacent vertices. We
use the Clasp solver (Gebser et al., 2011) version 3.1.3 to solve the pseudo-Boolean instances.
The instances that are hard for the Glasgow solver remain hard for the PB solver, including
instances inside the central region, and the easy satisfiable instances remain easy. Similar
results are seen with the Glucose SAT solver (Audemard and Simon, 2014) using a direct
encoding of the cardinality constraints. We also show an integer program encoding: the
Gurobi solver is only able to solve some of the trivial satisfiable instances, and was almost
never able to prove unsatisfiability within the time limit.

The association graph encoding of a subgraph isomorphism problem is a reduction to
the clique decision problem. We discuss this encoding in much more detail in Chapter 7;
briefly, it constructed by creating a new graph with a vertex for each pair (p, t) of vertices
from the pattern and target graphs respectively. There is an edge between vertex (p1, t1) and
vertex (p2, t2) if mapping p1 to t1 and p2 to t2 simultaneously is permitted, i.e. p1 is adjacent
to p2 if and only if t1 is adjacent to t2. A clique of size equal to the order of the pattern graph
exists in the association graph if and only if the problem is satisfiable (Levi, 1973). We used
this encoding with Algorithm 2.1, modified to solve the decision problem rather than the
optimisation problem. Again, our results show that the instances in the central region remain
hard, and additionally, some of the easy unsatisfiable instances become hard.

Together, these experiments suggest that the central region may be genuinely hard, despite
not being near a phase transition. The clique results in particular rule out the hypothesis that
subgraph isomorphism solvers only find this region hard due to not reasoning simultaneously
about adjacency and non-adjacency, since the constraints in the association graph encoding
consider compatibility rather than adjacency and non-adjacency.

6.3. INDUCED SUBGRAPH ISOMORPHISMS 155

G(10, x) G(12, x) G(14, x) G(16, x) G(18, x) G(25, x)

Sa
tis

fia
bl

e?

0

0.5

1

G
la

sg
ow

fail

100

102

104

106

C
la

sp
(P

B
)

fail

100

102

104

106

G
lu

co
se

(S
A

T
)

fail

100

102

104

106

G
ur

ob
i(

M
IP

)

fail

100

102

104

106

B
B

M
C

(C
liq

ue
) fail

100

102

104

106

Figure 6.4: Behaviour of other solvers on the induced variant on smaller graphs, shown
in the style of Figure 6.2. The second row shows the number of search nodes used by the
Glasgow algorithm, the third and fourth rows show the number of decisions made by the
pseudo-Boolean and SAT solvers, the fifth shows the number of search nodes used on the
MIP encoding, and the final row the clique encoding.

156 CHAPTER 6. WHEN IS SUBGRAPH ISOMORPHISM REALLY HARD?

6.3.3 Constrainedness

Constrainedness, denoted κ, is an alternative measure of difficulty designed to refine the
phase transition concept, and to generalise hardness parameters across different combinatorial
problems (Gent, MacIntyre, Prosser, and Walsh, 1996). A problem with κ < 1 is said to be
underconstrained, and is likely to be satisfiable; a problem with κ > 1 is overconstrained, and
is likely to be unsatisfiable. Empirically, problems with κ close to 1 are hard, and problems
where κ is very small or very large are usually easy. By handling injectivity as a restriction on
the size of the state space rather than as a constraint, we derive

κ = 1−
log
(
tp · dtdp·(

p
2) · (1− dt)(1−dp)·(

p
2)
)

log tp
(6.3)

for induced isomorphisms, which we plot on the fifth row of Figure 6.3. We see that
constrainedness predicts that the central region will still be relatively difficult for larger
pattern graphs: although the problem is overconstrained, it is less overconstrained than in the
regions the Glasgow and LAD solvers found easy. Thus it seems that rather than just being a
unification of existing generalised heuristic techniques, constrainedness also gives a better
predictor of difficulty than proximity to a phase transition—our method generates instances
where constrainedness and “close to a phase transition” give very different predictions, and
constrainedness gives the better prediction.

Unfortunately, constrainedness does not help us with heuristics: minimising constrained-
ness gives the same predictions as maximising the expected number of solutions.

6.4 Labelled Graphs

So far, we have looked at unlabelled graphs. What happens when labels on vertices are
introduced? This is common in real-world applications—for example, when working with
graphs representing chemical molecules, mappings are typically expected only to match
carbon atoms with carbon atoms, hydrogen atoms with hydrogen atoms, and so on. We will
look at the non-induced variant, as this seems to be more common in the literature.

6.4.1 Predictions and Empirical Hardness

Suppose our labels are drawn randomly from a set L = {1, . . . , k}, where k is reasonably
small compared to p. Let `(v) be the label of vertex v. By defining

V(P)|n = {v ∈ V(P) : `(v) = n}

6.4. LABELLED GRAPHS 157

to be the set of vertices with label k, we can partition the pattern vertices by label into disjoint
sets

{V(P)|1, . . . ,V(P)|k} ,

each of which is expected to contain p/k vertices. Similarly, we may partition the target
vertices into disjoint sets {V(T)|1, . . . ,V(T)|k}.

Without labels, there are tp = t · (t− 1) · . . . · (t− p+ 1) possible injective assignments of
target vertices to pattern vertices. With labels, observe that for any label x, vertices in V(P)|x
may only be mapped to vertices in V(T)|x. Thus for each label x, we have an expected p/k

variables, each of whose domains contain t/k values. We would like to say that the size of the
state space is now

|S| =
(

(t/k)
p/k
)k

,

but to do this we must state what ab means when b is fractional. The gamma function Γ(n) is
equal to (n− 1)! for integers n ≥ 1, but is also defined for positive real numbers, obeying
the identify Γ(x + 1) = xΓ(x). By noting that tp = t!/(t−p)!, we may obtain a reasonable
continuous extension by taking

|S| =
(

Γ (t/k + 1)

Γ (t/k − p/k + 1)

)k

,

As before, we expect the pattern to have dp ·
(
p
2

)
edges, and so if we simplify by assuming

the pattern will have exactly this many edges, we obtain the probability of all of these edges
being mapped to edges in the target by raising dt to this power, giving an estimate of

〈Sol〉 =

(
Γ (t/k + 1)

Γ (t/k − p/k + 1)

)k

· dtdp·(
p
2) . (6.4)

So how good are these predictions? The black lines on the first row of heatmaps in
Figure 6.5 plot where we calculate 〈Sol〉 = 1 will occur. For small numbers of labels, our
predictions are slightly better than in the unlabelled case: there seems to be less of a variance
problem for very dense patterns. Even as the numbers of labels becomes relatively large, the
prediction of the phase transition still occurs in the right place, but with ten labels we start
to see sporadic unsatisfiable instances deep inside the satisfiable region. With twenty labels,
we instead get a kind of phase transition from “all unsatisfiable” to “mixed satisfiable and
unsatisfiable”. We can understand this intuitively: with sufficiently many labels, we might
generate, say, a red vertex adjacent to a blue vertex in the pattern, but not in the target. With
twenty labels, we even sometimes generate no vertices with a particular label in the target at
all. This in many ways resembles “flaws” generated by certain random constraint satisfaction
problem instance generators (Achlioptas et al., 2001; Gent, MacIntyre, Prosser, Smith, et al.,
2001).

158 CHAPTER 6. WHEN IS SUBGRAPH ISOMORPHISM REALLY HARD?

No labels 2 labels 3 labels 5 labels 10 labels 20 labels

Sa
tis

fia
bl

e?

0

0.5

1

G
la

sg
ow

fail

100

102

104

106

L
A

D

fail

100

102

104

106

V
F2

fail

100

102

104

106

V
F2

Fa
ilu

re
s

0

0.5

1

Figure 6.5: On the top row, predicted and actual location of the phase transition for labelled
non-induced random subgraph isomorphism, with a pattern order of 20, a target order of
150, varying pattern (x-axis) and target (y-axis) density, and varying numbers of labels. On
subsequent rows, the average number of search nodes needed to solve an instance, for three
different solvers, and on the final row, the proportion of instances aborted due to a timeout
with VF2.

What about empirical hardness? As before, some instances on the phase transition are
hard for all solvers (although as the number of labels increases, the hardest instances become
easier). Instances far from the phase transition are easy, except for VF2, which occasionally
finds some instances with larger numbers of labels very difficult. This behaviour occurs both
on satisfiable instances, and on the flawed unsatisfiable instances deep inside the “satisfiable”
region. It is interesting to observe that all such unsatisfiable instances that VF2 finds difficult
have a very small proof of unsatisfiability, with neither Glasgow nor LAD requiring more
than one hundred recursive calls.

6.4. LABELLED GRAPHS 159

0

200

400

600

800

1000

100 101 102 103 104 105 106

In
st

an
ce

s
so

lv
ed

Runtime (ms)

Glasgow
LAD

VF2↔
VF2

Figure 6.6: Cumulative number of instances solved over time, using the richer model of
randomness described in Section 6.4.2.

6.4.2 Richer Label Models, and VF2’s Deficiencies

Why does VF2 find some of these instances so hard? VF2 does not track domains, like other
algorithms, and does not detect a domain wipeout until it branches on a particular vertex. It
also cannot detect small domains, and only uses “adjacency to an existing assignment” as a
branching heuristic. This can make it very hard for VF2 to detect that it is in an obviously
failed state, or that an instance or subproblem is trivially unsatisfiable.

To illustrate this point further, we will now look at some instances created using a slightly
more structured random model. We create a family of one thousand labelled instance pairs, as
follows. To create a pattern graph, we create ten vertices with label zero, with edges between
these vertices with probability 0.2. We then add another ten vertices, with labels chosen
randomly between one and thirty, and add edges between these vertices and the zero-labelled
vertices with probability 0.1. To generate a target, we follow a similar process: we have fifty
vertices with label zero and edge probability 0.2, fifty vertices with labels randomly between
one and thirty, and edges from the first set of vertices to the second set with probability 0.3.
This model was selected and the parameters tuned to provide a demonstration of particular
behaviours of VF2, not because of any natural property (although inspiration came from
seeking a very crude approximation of chemical graphs, which often contain a lot of carbon in
the centre, and other atoms around the outside). From our set of one thousand such instances,
sixty six are satisfiable.

We plot the cumulative number of instances solved over time for these instances in
Figure 6.6. Both Glasgow and LAD find all of these instances trivial, but VF2 finds many of
them extremely difficult. The “VF2↔” line shows what happens with VF2 if the graphs are
permuted, so that the non-zero labelled vertices are given lower vertex numbers rather than

160 CHAPTER 6. WHEN IS SUBGRAPH ISOMORPHISM REALLY HARD?

Figure 6.7: A trivially unsatisfiable subgraph isomorphism instance which VF2 finds expo-
nentially difficult. The pattern (left) and target (right) both consist of a clique, plus one extra
vertex which has a different label in each graph.

higher vertex numbers. This makes VF2 behave better, but still extremely poorly compared
to the other two solvers; we return to this in reference to work by Katsarou, Ntarmos, and
Triantafillou (2017) in the following section. It is also important to note for later that both
VF2 variations find some satisfiable and some unsatisfiable instances extremely hard.

An even more extreme example of VF2’s misbehaviour can be seen in Figure 6.7. Here we
have a pattern graph and a target graph, both of which are cliques plus one isolated vertex, and
the isolated vertices have different unique labels. This is trivially unsatisfiable (and Glasgow
and LAD detect this without search), but unless the labelled vertex is given the lowest vertex
number (so it is branched on first), VF2 takes nearly a million recursive calls to detect this:
VF2 will try to map every adjacent vertex in the clique before considering the difficult isolated
vertex. This example can also be extended slightly to fool any simple static heuristic, or any
simple label counting mechanism.

These experiments further highlight that VF2 occasionally finds some instances which
should be easy hard. But does this cause problems in practice? The literature suggests that it
does. For example, Grömping (2014) uses VF2 in a package for the R statistics language, and
states

“There are (not so many) instances for which creation of a clear design is pro-
hibitively slow in the current implementation that evaluates subgraph isomor-
phism with the VF2 algorithm . . . Recent experiences with a few of these showed
that the LAD algorithm was very fast in ruling out impossible matches, where
VF2 took a long time.”

Similarly, Murray (2012, Chapter 4) uses VF2 inside a compiler, and observes extremely
variable (and prohibitively high) compile times in some cases due to the expense of subgraph
isomorphism calls—given the heavily labelled nature of these graphs, we conjecture that any
domain-based algorithm would eliminate this cost.

However, by far the biggest problem is in graph databases. The following section shows
how widespread use of VF2 has not just lead to overly pessimistic conclusions regarding
performance, but has misdirected the design of larger systems.

6.5. QUERYING GRAPH DATABASES 161

6.5 Querying Graph Databases

A particularly common use of subgraph isomorphism algorithms is inside graph databases.
The general problem these systems solve is, for a set of target graphs, to process a pattern
query and return every target graph which is subgraph-isomorphic to that pattern. The set
of target graphs is usually seen as fixed, or at least rarely-changing, whilst the patterns
arrive dynamically. This has lead to the development of systems which perform extensive
computations on the target graphs beforehand, in the hopes of reducing the response times for
individual pattern queries. The most popular of these strategies is a form of indexing which is
often named filter / verify.

6.5.1 The Filter / Verify Paradigm

The filter / verify approach has an interesting history, of which we now give a very selective
and incomplete overview. Our description is biased by a general modern understanding of
the empirical hardness of NP-complete problems, which was not widely known at least at
the time of the earlier papers we discuss. The common theme of all of the following papers
is that pre-computed information is used to eliminate certain unsatisfiable instances from
consideration, without performing a subgraph isomorphism test. For example, an index might
contain a bit of information expressing whether a target graph contains two red vertices. When
a pattern graph with two red vertices is used as a query, any target whose feature set does not
have this bit set would not be considered, and so a subgraph isomorphism call would not be
made for that pattern / target pair. (In practice, feature hashing is often used, which can lead
to false positives, but this is not relevant to our discussion.)

An early graph database system by Shasha, J. T. Wang, and Giugno (2002) uses a filtering
heuristic to eliminate unsatisfiable instances based upon simple structural elements. It is not
clear whether the aim is to reduce I/O costs, or to reduce the number of queries which must
be tested, and the experiments do not answer whether the indexing is effective. However,
the work was influenced by a commercial graph database system, whose documentation
(Daylight Chemical Information Systems, Inc., 2011, Section 7.1) states that indexing is used
to minimise disk accesses.

Subsequently, in a widely cited paper, X. Yan, P. S. Yu, and Han (2004) introduce an
indexing system called gIndex. Again, this system handles queries by first producing a set
of candidates by eliminating certain unsatisfiable instances, this time by using substructures.
They argue that the query response time, which is to be minimised, is governed by the equation

T = Tsearch + |Cq| · Tiso_test ,

where Tsearch is the time taken to search for a candidate set of potential solutions of size |Cq|,

162 CHAPTER 6. WHEN IS SUBGRAPH ISOMORPHISM REALLY HARD?

and Tiso_test is the cost of a subgraph isomorphism test. They reason that since isomorphism
testing is NP-complete, by making |Cq| as small as possible, the query response time will
be reduced. (Importantly, it is not time taken to load graphs from disk which contributes to
the per-candidate cost, but rather the time to perform a subgraph isomorphism call.) They
conclude that “graph indexing plays a critical role at efficient query processing in graph
databases”.

This equation is repeated and expanded upon by X. Yan, P. S. Yu, and Han (2005) to
explicitly separate I/O and isomorphism testing costs, obtaining a query response time of

Tsearch + |Cq| · (Tio + Tiso_test).

The authors explicitly state that “the value of Tiso_test does not change much for a given
query”. The argument presented is that

“Sequential scan is very costly because one has to not only access the whole
graph database but also check subgraph isomorphism. It is known that subgraph
isomorphism is an NP-complete problem. Clearly, it is necessary to build graph
indices in order to help processing graph queries.”

With what we now know about the behaviour of modern subgraph isomorphism algorithms,
and the nature of solving NP-complete problems in general, we should immediately be
suspicious of these claims. We do not expect Tiso_test to be anything like a constant, even if the
orders of the input graphs are similar. In particular, any instance which can be excluded based
upon filtering must have a very small proof of unsatisfiability. These instances should be
trivial with any decent subgraph isomorphism algorithm. Thus, all filtering should be doing is
eliminating the startup costs of a trivial subgraph isomorphism call. The fact that filtering was
successful empirically should make us wonder whether the subgraph isomorphism algorithm
being used was excessively primitive. Indeed, the subgraph isomorphism algorithm used
is described only as “the simplest approach” in the paper. Additionally, the experiments
focus on reducing the size of the candidate set, without considering the time taken to verify
different candidate set instances. The claim that Tiso_test does not change much is not justified
experimentally, and no consideration is given as to whether this would hold true for other
subgraph matching algorithms.

Moving forwards, the (simpler form of the) query response time equation is repeated by
Zhao, J. X. Yu, and P. S. Yu (2007). Again, the work has a focus on reducing the candidate
set size through indexing. The authors appear to believe that the cost of the isomorphism
test is not a major factor in influencing the result, and focus on the remaining terms in the
equation. They use the “average cost” of a subgraph isomorphism test as a constant, without
considering that the average cost could be influenced by the character of the candidate set.

The equation is also used by Haoliang Jiang et al. (2007), who claim that “usually the

6.5. QUERYING GRAPH DATABASES 163

verification time dominates the Query Response Time [s]ince the computational complexity
of Tiso_test is NP-Complete”. They note that

“Approximately, the value of Tiso_test does not change too much with the differ-
ence of query. Thus, the key to reducing query response time is to minimize the
size of the candidate answer set”.

This claim becomes understandable when one examines the subgraph matching algorithm
chosen for the verification step (Ullmann, 1976): as the algorithm predates techniques like arc-
consistent all-different propagation (Régin, 1994), it cannot immediately detect unsatisfiability
in simple cases like there being two red vertices in the pattern but only one in the target.1

Without using the equation, Cheng et al. (2007) state that since subgraph isomorphism
is NP-complete, processing by a sequential scan is infeasible. They introduce new filtering
techniques to try to avoid the subgraph isomorphism step. A similar claim is made by Zhang,
Hu, and Yang (2007) in an introduction of another indexing technique: “obviously it is
inefficient to perform a sequential scan on every graph in the database, because the subgraph
isomorphism test is expensive”.

Muddying the waters slightly, a survey by Han et al. (2007) states that “large volumes of
data” (not NP-completeness) is the reason for using indexing in these systems. However, in a
description of a system tailored to biological networks, Zhang, S. Li, and Yang (2009) state
that

“Since the size of the raw database graph is small, it can be easily fit in the
main memory. However, the query (matching) time will be very long due to the
NP-hard complexity.”

They suggest that indexing is a way of avoiding this.
Cao et al. (2011) propose a privacy-preserving cloud graph database system using filter /

verify, stating that “checking subgraph isomorphism is NP-complete, and therefore it is
infeasible to employ such a costly solution” which simply checks every graph for a match.
G. Wang et al. (2012) look at indexing large sparse graphs. They state that “because subgraph
isomorphism is an NP-complete problem, a filter-and-verification method is usually employed
to speed up the search efficiency of graph similarity matching over a graph set”. Similarly,
after reviewing the literature, Yuan and Mitra (2013) argue that subgraph querying is costly
because it is NP-complete, and that indices can improve the performance of graph database
queries. Again, new indexing techniques are introduced. Subsequently, Katsarou, Ntarmos,
and Triantafillou (2015) perform a comprehensive comparison of graph database filtering
techniques. They state that performing a query against each graph in the dataset “obviously
does not scale, as subgraph isomorphism is NP-complete”. In describing a system which

1Although interestingly, this algorithm effectively does forward-checking and has a variable-ordering
heuristic, before these concepts appeared in the constraints literature.

164 CHAPTER 6. WHEN IS SUBGRAPH ISOMORPHISM REALLY HARD?

returns a special subset of graphs which match a query, Zheng et al. (2016) suggest that it is
“NP-hard to check the graph isomorphism” (meaning subgraph isomorphism), and “in order to
improve the time efficiency” they use an indexing system to “avoid as many costly subgraph
isomorphism checkings as possible”. Their index takes tens of thousands of seconds to build,
and they suggest that Ullmann’s algorithm and VF2 are state of the art for verification. And
Peng et al. (2016) state that “obviously, it is impossible to employ some subgraph isomorphism
algorithm, such as Ullmann or VF2”, and argue that “in order to speed up query processing”,
they need to create indices.

The filter / verify paradigm also influences other research. For example, it is used by Tian
and Patel (2008) in an approximate subgraph searching system: they state that Ullmann’s
algorithm “is prohibitively expensive for querying against [a] database with a large number of
graphs”, and that indices are used “to filter out graphs that do not match the query”. More
recently, Yuan, Mitra, and Giles (2013) continue a line of supergraph search work, again using
a filtering step to avoid subgraph isomorphism calls (in the opposite direction, so queries are
now target graphs). Hong et al. (2015) look at graph database subgraph matching with an
additional set-similarity constraint, and state that Ullmann’s algorithm and VF2 are “usually
costly for large graphs” because they “do not utilize any index structure”. They propose an
indexing structure, which takes over 2,000 seconds to construct, and uses nearly 2GBytes of
space. There is also research into maintaining indices when the set of target graph changes:
for example Yuan, Mitra, H. Yu, et al. (2015) look at algorithms for updating graph indices.
And in describing a system for reusing results of queries which are sub- or super-graphs of
previous queries, J. Wang, Ntarmos, and Triantafillou (2016) state that querying is a “very
costly operation as it entails the NP-complete problem of subgraph isomorphism”, and place
“an emphasis on the number of unnecessary subgraph isomorphism tests”.

After some early ambiguity, then, it becomes clear that the intent behind filter / verify
systems is to reduce the number of subgraph isomorphism calls, and that the cost of loading
graphs from disk is not considered to be problematic. It is worth noting that the entire test
datasets from most of these papers will comfortably fit in RAM on a modern desktop machine,
even when an adjacency matrix representation is used.

Thus we can see that there are two critical beliefs underlying all of this work—firstly, that
subgraph isomorphism is necessarily hard because it is NP-complete, and secondly, that there
are ways of identifying unsatisfiable instances using short proofs that a subgraph isomorphism
algorithm will not detect, but that an indexing system can. Throughout, the cost models used
assume that the time for a subgraph isomorphism query does not particularly depend upon the
instance, and nowhere is it considered that a good subgraph isomorphism algorithm should
be able to eliminate obviously-unsatisfiable instances with a similar time requirement to an
indexing system.

These beliefs are not entirely unfounded: none of the subgraph matching algorithms

6.5. QUERYING GRAPH DATABASES 165

considered in these papers will immediately detect if a pattern contains two red vertices,
whilst the target graph contains only one. This kind of flaw should be picked up at the top
of search by an all-different propagator (Régin, 1994). However, as Katsarou, Ntarmos, and
Triantafillou (2015) note, some variation on VF2 (Cordella et al., 2004) is the usual matching
algorithm of choice for graph database systems, although Ullmann’s algorithm is sometimes
chosen. Other approaches have been considered, albeit not with algorithms strong enough
to establish all-difference. For example, Shang et al. (2008) propose an algorithm which
makes use of the frequency of various features to guide search; Lee et al. (2012) determine
experimentally that this technique tends to be very effective, even on families of graphs for
which it was not designed.

We therefore believe it would be unlikely to cause too much astonishment if we suggested
that a better subgraph matching algorithm could be dropped in as a black box replacement in
graph databases systems to improve their performance. This is not our claim. Instead, this
chapter shows that better algorithms invalidate the flawed premise underlying the entire filter /
verify approach. We will now demonstrate that filter / verify is simply a poor workaround for
the kinds of deficiency in VF2 demonstrated towards the end of the previous section.

6.5.2 Is Filtering Necessary?

To demonstrate that a pure subgraph isomorphism approach is feasible, with no indexing
or supporting preprocessing, we look at four datasets commonly used in graph indexing
evaluations (Giugno et al., 2013). We do not claim that these are high-quality datasets or that
the associated queries are sensible, merely that they are widely used.

• The AIDS dataset contains graphs representing 40,000 chemical molecules. These graphs
are labelled, and are fairly small (an average of 45 vertices) and sparse. Following Giugno
et al., the queries are compounds with 8, 16 or 32 edges.

• The PDBS dataset (He et al., 2002) contains 30 labelled graphs representing DNA, RNA,
and proteins, each duplicated twenty times. These can be relatively large, having up to
tens of thousands of vertices, but are extremely sparse. The queries are randomly selected
connected subgraphs and do not have a real-world meaning.

• The PCM dataset (Vehlow et al., 2011) contains 50 protein contact maps, each duplicated
four times. These graphs have under a thousand vertices and below twenty thousand edges;
they are slightly less sparse than the previous two datasets. As for PDBS, the queries are
randomly generated and do not have a particular meaning.

• The PPI dataset contains 20 protein interaction networks, with up to ten thousand vertices.
The queries have either four or eight vertices.

166 CHAPTER 6. WHEN IS SUBGRAPH ISOMORPHISM REALLY HARD?

240

0

50

100

150

200

0 10 20 30 40 50 60

In
st

an
ce

s
so

lv
ed

(1
00

0s
)

Recursive calls

AIDS

1800

0

200

400

600

800

1000

1200

1400

1600

0 1000 2000 3000 4000

In
st

an
ce

s
so

lv
ed

Recursive calls

PCM

3600

0

500

1000

1500

2000

2500

3000

0 500 1000 1500 2000

In
st

an
ce

s
so

lv
ed

Recursive calls

PDBS

0

20

40

60

80

100

0 5 10 15 20 25 30

In
st

an
ce

s
so

lv
ed

Recursive calls

PPI

Figure 6.8: Cumulative number of instances solved as a function of search space size, using
four graph database datasets and a simple domain-based subgraph isomorphism algorithm.
Note that the x-axis shows recursive calls, and does not use a log scale.

Rather than the modern techniques discussed in Chapter 5, we deliberately select a very
simple starting point: a forward-checking algorithm which uses the smallest domain first
heuristic, the simple counting all-different propagator, and degree and neighbourhood degree
sequence filtering at the top of search. Even this simple algorithm finds every instance nearly
trivial, and no exponential behaviour is observed. As we show in Figure 6.8, the hardest

instance for the AIDS dataset requires 59 recursive calls, and 146,175 of the instances can
be solved without search (we measure recursive calls to demonstrate hardness, rather than
algorithm tuning and good constant factors; recall from Chapter 5 that 104 to 106 recursive
calls per second is feasible). For PDBS, the hardest problem requires 1,776 recursive calls
(which occurs 20 times, due to duplicated queries), and none of the rest require more than
182 calls. For PCM the hardest problem requires 3,261 calls, and for PPI, 26. In other words,
none of these instances are in any way computationally hard even for a simple domain-based
algorithm, even before introducing stronger filtering, inference, or heuristics. Furthermore it
is certainly not the case that a sequential scan is infeasible as so many filter / verify papers
claim. The exponential behaviour seen by others in these instances is purely down to a bad
choice of subgraph isomorphism algorithm, and these instances are not inherently “really
hard”.

6.5. QUERYING GRAPH DATABASES 167

There are at least four benefits beyond simplicity towards abolishing filter / verify:

• Domain filtering is useful on both satisfiable and unsatisfiable instances, whilst filtering
can only eliminate trivially unsatisfiable instances, and is entirely wasted on satisfiable
instances. Domain filtering is also useful even on relatively hard instances, since the
information cuts down the search space rather than providing a simple “yes” or “no”.

• Domain-based heuristics are much stronger than VF2’s adjacency branching rules. Picking
from small domains dynamically allows search to focus on the hardest part of the problem.

• This approach automatically combines features. For example, a pattern / target pair may
have matching label features, and matching degree features, but if the only red pattern
vertex has degree three whilst no red target vertex has degree more than two, domain
filtering will detect this immediately. When combined with all-different propagation and
maintained during search, this effect is even stronger.

• Finally, as indexing systems get more and more complex in an attempt to filter out a few
more instances where VF2 performs poorly, the cost of index construction and maintenance
is considerable. Indices proposed in the literature often take many hours to build, and can
consume much more space than the original graphs.

In other words, using domain-based algorithms would not simply be a viable alternative
to filter / verify with VF2, but rather would be a much better solution.

6.5.3 Rethinking Graph Matching for Database Systems

The evidence so far clearly shows a need for graph database systems to be redesigned
making use of knowledge from constraint programming and artificial intelligence, and that
this knowledge must inform the systems as a whole, and not just parts of them. Having
demonstrated that filter / verify is both theoretically and practically a flawed approach to
designing graph databases based upon a repeated misconception that NP-completeness means
long runtimes, we now briefly discuss how future graph database systems should be designed,
and how such systems can help support strong subgraph isomorphism algorithms.

First, though, we briefly consider whether other lessons can be learned from constraint
programming: unfortunately indexing is not the only incorrect design choice being in these
systems. For example, recent work by Katsarou, Ntarmos, and Triantafillou (2017) looks at
what they call “straggler” queries, which are the small subset of queries that they observe
taking much longer than others to solve. The authors present an approach to address this
perceived problem that they describe as novel: “instead of trying to come up with new
algorithms for sub-iso testing, we utilize isomorphic query rewritings and existing alternative
algorithms in parallel”. Their first claim is that permuting graphs before running the subgraph

168 CHAPTER 6. WHEN IS SUBGRAPH ISOMORPHISM REALLY HARD?

isomorphism algorithm can lead to “wildly different” execution times. They note that VF2
does not define “a strict order in which the nodes of the query are matched”, and so permuting
the graphs (for example, by using degree or label frequency information) before search
can sometimes give orders of magnitude improvements. The connection to variable- and
value-ordering heuristics is not noted, and no consideration is given to even the simplest
dynamic ordering heuristics like smallest domain first (Haralick and Elliott, 1980). A little
thought shows that of the orderings proposed, those involving placing rare labels first are
effectively poor approximations to a static “smallest domain at top of search first” ordering,
whilst the remainder use degree as we did earlier in this chapter. However, Katsarou, Ntarmos,
and Triantafillou do not investigate any algorithm which employs domains, let alone strong
variable- or value-ordering heuristics or all-different propagation, and do not consider that
their apparent successes could be due to VF2’s weaknesses rather than an inherent property
of NP-completeness. We saw in the previous section that although permuting input graphs
could improve VF2’s behaviour on some instances, doing so does not make its performance
come close to that of domain-based algorithms. Katsarou, Ntarmos, and Triantafillou say
they “hope that our findings will open up new research directions, striving to find appropriate,
per-query, isomorphic rewritings, in combination with alternate per-query sub-iso algorithms
that can yield large improvements”. We believe it is important instead to emphasis previous
research directions that have already solved most of this problem, before any further research
effort is wasted.

Katsarou, Ntarmos, and Triantafillou’s (2017) second claim is that “different algorithms
find different queries hard”. To address this, they run many subgraph isomorphism algorithms
and input permutations in parallel; the extensive literature on parallel portfolios in general
(Gomes and Selman, 2001), and the approach by Battiti and Mascia (2007) for subgraph
isomorphism in particular, is not noted (and nor are portfolios mentioned when they say that
“using machine learning models to predict which version . . . to employ per query is of high
interest”). The evidence so far in this chapter suggests that we should be wary. It is certainly
true that there are some instances that all algorithms find hard, and there are good theoretical
reasons to believe that these instances genuinely are really hard. Furthermore, algorithm
portfolios are also well-known to be a successful technique, and are beneficial even with
modern subgraph isomorphism algorithms (Kotthoff, McCreesh, and Solnon, 2016). However,
in Section 6.4 we saw that there are many instances that VF2 finds hard that should not be
hard, and that are not hard for other algorithms. If permuting graphs sometimes addresses the
difficulty of some of these instances, then it is likely that they are not genuinely hard instances
at all, and perhaps it would be better simply to start using an algorithm with domain tracking
and domain-based ordering heuristics, rather than assembling a portfolio of bad algorithms in
the hopes that at least one of them will often get lucky.

To test this suggestion, we return briefly to the experiments on the datasets discussed

6.5. QUERYING GRAPH DATABASES 169

earlier in this section. What if we had not used a smallest domain first heuristic, and instead
used only degree-based heuristics explained earlier in this chapter? Although we still find
all four of these datasets easy, and the changes to the runtimes are hard to detect (more time
is spent in initialisation than in search), the worst case in the AIDS dataset now takes 4,051
recursive calls as opposed to 59. How about if, additionally, we do not detect domain wipeouts
until attempting to branch on an empty variable? Suddenly three of the four datasets become
extremely hard, with many instances now timing out after making hundreds of millions of
recursive calls; the PPI dataset now requires up to 168,451 calls for some queries. Furthermore,
slight changes to the input vertex ordering can now make some of these “hard” instances easy
again.

This backs up our suspicions: the apparent success of Katsarou, Ntarmos, and Triantafil-
lou’s (2017) technique is due to the ease of sometimes getting better results out of a poor
algorithm, rather than being an inherent hardness property, and it would not help on really hard
problem instances. We point to Gent’s (1998) admonition on how heuristics are benchmarked
as being similarly relevant here:

“Benchmark problems should be hard. I report on the solution of the five open
benchmark problems introduced . . . for testing bin packing problems. Since the
solutions were found either by hand or by using very simple heuristic methods,
these problems would appear to be easy. In four cases I give improved packings
to refute conjectures that previously reported packings were optimal, and I give
a proof that the fifth conjecture was correct. . . . Future experimenters should be
careful to perform tests on problems that can reasonably be regarded as hard.”

Claiming huge improvements from an algorithm portfolio consisting only of variations of
poor algorithms does not demonstrate a genuine improvement over the state of the art.

We have seen, then, that domain tracking and domain-based ordering heuristics are critical,
and we have seen that these alone are enough to make indexing and other techniques irrelevant.
There is therefore no point in continued research such as that by Carletti (2016) and Carletti,
Foggia, and Vento (2015) into tweaking VF2’s connectivity-based heuristics. However, we
do not claim that the ultimate “big data” subgraph matching algorithm already exists: on the
contrary, there is likely to be plenty of room for future improvement now that we understand
the importance of getting algorithm design right. For example, a major disadvantage of using
domains is the relatively expensive initialisation costs, which quickly add up when dealing
with large numbers of trivial instances. Employing a presolver is an obvious approach—and
VF2 is actually good in this role (Kotthoff, McCreesh, and Solnon, 2016)—but there are other
possibilities. For example, minimal or lazy forward-checking (Bacchus and Grove, 1995;
Dent, 1996; Dent and Mercer, 1994; Larrosa and Meseguer, 1998) avoids constructing every
domain upfront, although adopting this require alternatives to smallest domain first and to

170 CHAPTER 6. WHEN IS SUBGRAPH ISOMORPHISM REALLY HARD?

all-different. Such an approach may also be beneficial for huge target graphs, where having
domains range over the entire target is impractical.

There is also scope for precalculating supporting information about target graphs. For ex-
ample, neighbourhood degree sequences and supplemental graphs could both be pre-computed
and stored. The aim here is to reduce the initialisation costs of a good subgraph isomorphism
algorithm, and not to provide indexing (although additionally using this information as an
index may not hurt, if initialisation is still costly).

Our central message, though, is not just to say that graph database systems must use a
better algorithm. Instead, this chapter shows that such systems need to be designed with
a better understanding of the empirical hardness of NP-complete problems, that subgraph
isomorphism algorithms must not be treated as a black box, and that lessons learned in
constraint programming and artificial intelligence must not go unheeded in other domains.

6.6 Conclusion

We have shown how to generate small but hard instances for the non-induced and induced
subgraph isomorphism problems, which will help offset the bias in existing datasets. For
non-induced isomorphisms, behaviour was as in many other hard problems, but for induced
isomorphisms we uncovered several interesting phenomena: there are hard instances far from
a phase transition, constrainedness predicts this, and existing general techniques for designing
heuristics do not work in certain portions of the parameter space.

When labels were introduced, we saw that VF2 finds some instances hard which other
algorithms find easy. We looked at this kind of instance in more detail, and argued that this
was due to flaws in VF2’s design, rather than an interesting property of NP-completeness.
Although inevitably there will be instances that every algorithm finds hard, we see no excuse
for an algorithm to exhibit exponential behaviour in the case when there are two red vertices
in a pattern and only one in a target.

Unfortunately, we saw that this aspect of VF2’s performance has had practical conse-
quences, most notably being the misdesign of graph database systems. By not trying even
the simplest constraint programming techniques from the literature, and ignoring all that
is known about the empirical hardness of NP-complete problems, members of the graph
databases community have misled themselves into believing that extensive research into
supporting techniques is important, whereas really all they are doing is working around some
but not all of the defects in their choices of subgraph isomorphism algorithms. With this new
understanding of what does and does not make subgraph isomorphism hard, it is time for a
radical rethink of how graph database systems work.

171

Chapter 7

Maximum Common Subgraph
Problems

So far we have looked at finding a clique in a graph, and then finding an arbitrary pattern. The
final set of problems discussed in this thesis involve finding a subgraph which is common to
two graphs simultaneously. We illustrate two variants of this problem in Figure 7.1—in both
cases we are finding an induced subgraph and maximising the number of vertices selected,
but in the second variant the common subgraph must be connected.

Finding a maximum common subgraph is the key step in measuring the similarity or
difference between two graphs (Bunke, 1997; Fernández and Valiente, 2001; Kriege, 2015):
to determine the difference between two graphs, we find what they have in common, and then
take everything left over. Because of this, maximum common subgraph problems frequently
arise in biology and chemistry (Ehrlich and Rarey, 2011; Gay et al., 2014; Raymond and
Willett, 2002) where graphs represent molecules, but also in applications including computer
vision (Combier, Damiand, and Solnon, 2013; D. J. Cook and Holder, 1994), computer-aided
manufacturing (Luo et al., 2017), crisis management (Delavallade et al., 2016), deanonymising
datasets (Sharad and Danezis, 2013), the analysis of source code (Djoko, D. J. Cook, and
Holder, 1997), binary programs (Gao, Reiter, and Song, 2008), and circuit designs (D. J. Cook
and Holder, 1994), in malware detection (Park, Reeves, and Stamp, 2013), social network
analysis (M. Fang et al., 2015), graph database query explanations (Vasilyeva et al., 2016),
and in character recognition problems (Lu, Ren, and Suen, 1991); Shasha, J. T. Wang, and

Figure 7.1: A maximum common induced subgraph of the first two graphs has eight vertices,
shaded. However, if we require that the common subgraph be connected, only seven vertices
may be selected—one way to do this is shown in the third and fourth graphs.

172 CHAPTER 7. MAXIMUM COMMON SUBGRAPH PROBLEMS

Giugno (2002) give a more detailed review.

The ultimate aim of this chapter is to parallelise a state-of-the-art algorithm for maximum
common subgraph problems, and to see whether we agree with Minot, Ndiaye, and Solnon’s
(2015) conclusion that doing so is unusually challenging. To this end, we must establish
what the state of the art is. In Section 7.1, we start by reviewing existing approaches for
solving the maximum common subgraph problem. Conventional wisdom is that algorithms
based upon constraint programming give the best results, whilst reducing the problem to
finding a maximum clique in an association graph is considered weaker. However, previous
experimental evaluations of the clique approach have used simple maximum clique algorithms,
or even enumeration algorithms—for example, Vismara and Valery (2008) compare a modified
form of the Bron and Kerbosch (1973) maximal clique enumeration algorithm with a constraint
optimisation approach. Therefore, in Section 7.2, we re-evaluate the clique-based approach
using Algorithm 2.1, and see that it outperforms constraint programming on labelled graphs,
and that it is competitive with constraint programming on unlabelled graphs, contradicting
conventional wisdom.

In Section 7.3 we move on to the maximum common connected subgraph problem. There
are two ways this could be handled with constraint programming. The traditional approach
would be to add a global connectedness constraint to the model. Alternatively, a special
branching rule introduced by Vismara and Valery (2008) can be used to grow connected
subgraphs only. These two techniques may be combined, and experiments show that the best
results are in fact obtained when combining both. When solving the connected problem with
a clique-based approach, neither of these techniques seems directly viable with an association
graph encoding. However, it is possible to adapt the combined branching and bounding rule
used by Algorithm 2.1 to maintain connectedness during search. A comparison of the clique-
based approach with the best constraint programming variant for the connected problem
shows that it outperforms constraint programming on labelled graphs, but is outperformed by
constraint programming on unlabelled graphs.

The experimental results in these first sections present a sobering reality: maximum
common subgraph problems might actually be hard. In previous chapters we have been
working with graphs with thousands of vertices, and now we find pairs of graphs with only
35 vertices each which are challenging for the state of the art. To make matters worse, both
the constraint programming and clique approaches are extremely memory-intensive: whilst
using O(|V(G)|2 |V(H)|2) memory is not a problem for 35 vertex graphs, it is far from
feasible when dealing with the subgraph isomorphism instances with which we have worked
previously (which may or may not be computationally challenging for the maximum common
subgraph problem, but which are too large to fit in RAM with such encoding and propagation
overheads). We therefore consider two new ways to tackle these problems.

Section 7.4 introduces a new problem called k-less subgraph isomorphism. For k = 0,

7.1. BACKGROUND 173

this problem is the same as subgraph isomorphism, but as k increases we are allowed to throw
away parts of the pattern. This allows us to adapt and weaken the subgraph isomorphism
algorithm from Chapter 5, which can work with larger graphs. This is useful in applications
such as computer vision, where finding “most of” a pattern graph inside a target graph
corresponds closely with an approximate visual match.

Then in Section 7.5 we take a first look at an upcoming algorithm jointly developed
with James Trimble and Patrick Prosser, which reimplements the constraint programming
approach using different domain-store data structures and filtering algorithms. Although
unable to handle certain labelling schemes and side constraints, in cases where it can be
used, it is considerably more than an order of magnitude faster than conventional constraint
programming, and can operate comfortably on graphs with thousands of vertices without
memory problems.

Finally, Section 7.6 introduces and evaluates parallel versions of many of these algorithms.
As in previous chapters, the parallel algorithms we introduce are clearly and substantially
better than their associated sequential versions. Additionally, we demonstrate that parallelism
is risk-free, reproducible, and scalable, and that exploiting the relationship between work
splitting and value-ordering heuristics remains a useful strategy.

Parts of this chapter are collaborative work. The experimental comparisons in Sections 7.1
to 7.3 have been published by McCreesh, Ndiaye, et al. (2016) as “Clique and Constraint Mod-
els for Maximum Common (Connected) Subgraph Problems”; the constraint programming
implementations are due to Ndiaye and Solnon, and the clique implementation and the clique-
inspired algorithm for the connected problem are the author’s own. The algorithm discussed in
Section 7.4 was published by Hoffmann, McCreesh, and Reilly (2017) as “Between Subgraph
Isomorphism and Maximum Common Subgraph”, and the theoretical results are joint work
with those co-authors (the implementation is the author’s own). The ideas, algorithm, and
implementation discussed in Section 7.5 are to appear by McCreesh, Prosser, and Trimble
(2017) as “A Partitioning Algorithm for Maximum Common Subgraph Problems”, and are
collaborative work with the algorithm being designed and implemented by Trimble; the
experimental evaluation was performed by the author. The parallel implementations discussed
in Section 7.6 are all the author’s own; the parallel splitting algorithm is an adaptation of
Trimble’s code with the author’s parallelisation functions, not a from-scratch implementation.

7.1 Background

Given two graphs G and H , a common subgraph is a graph C together with two induced
subgraph isomorphisms C ↪→ G and C ↪→ H . The maximum common subgraph problem is
to find a C with as many vertices as possible. An alternative formulation, which gives a more
convenient constraint programming model, is to find a largest-possible subset C ⊆ V(G),

174 CHAPTER 7. MAXIMUM COMMON SUBGRAPH PROBLEMS

together with an induced subgraph isomorphism G[C] ↪→ H . Notice that we speak only of
induced isomorphisms and subgraphs. In the non-induced case, we could simply pick every
vertex from the smaller graph, and none of the edges. A non-induced variant of the problem
where we must maximise the number of edges selected, rather than the number of vertices, is
usually called the maximum common partial subgraph problem.

There are two competitive approaches for solving the maximum common subgraph
problem. The first approach (described in Section 7.1.1) is based on constraint programming,
whilst the second (described in Section 7.1.2) involves a reduction to the maximum clique
problem. Both approaches are described for undirected, unlabelled graphs; their extension to
richer graphs is discussed in Section 7.1.3. Other approaches have been tried, including mixed
integer programming (Bahiense et al., 2012; Piva and de Souza, 2012) and inexact methods
(Englert and Kovács, 2015); we saw in Chapter 6 that Boolean satisfiability encodings struggle
even for subgraph isomorphism. Some special cases also have practical polynomial time
algorithms (Droschinsky, Kriege, and Mutzel, 2016; Droschinsky, Kriege, and Mutzel, 2017).

7.1.1 Constraint Programming Models

McGregor (1982) proposed a branch and bound algorithm: each branch of the search tree
corresponds to the matching of two vertices, and a bounding function evaluates the number
of vertices that still may be matched so that the current branch is pruned as soon as this
bound becomes lower than the size of the largest known common subgraph. Krissinel and
Henrick (2004) refined McGregor’s (1982) algorithm with a better search strategy. Con-
straint programming approaches may be viewed as enhancements of these branch and bound
algorithms.

Vismara and Valery (2008) introduced the first explicit constraint programming model.
Given two graphs G and H , this model associates a variable Dv with every vertex v of G, and
the domain of this variable contains all vertices of H , plus an additional value ⊥: variable
Dv is assigned to ⊥ if vertex v is not matched to any vertex of H; otherwise Dv is assigned
to the vertex of H to which it is matched. Edge constraints ensure that variable assignments
preserve edges and non-edges between matched vertices:

∀u, v ∈ V(G), (i(u) = ⊥) ∨ (i(v) = ⊥) ∨ ((u, v) ∈ E(G)⇔ (i(u), i(v)) ∈ E(H)),

where i(v) represents the value assigned to variable Dv. Difference constraints ensure that
each vertex of H is assigned to at most one variable, i.e.

∀u, v ∈ V(G) distinct, (i(u) = ⊥) ∨ (i(v) = ⊥) ∨ (i(u) 6= i(v)).

This constraint programming model was improved by Ndiaye and Solnon (2011) by replac-

7.1. BACKGROUND 175

a

b c d

1 2

3 4

1 2 3 4a 7→ { }

1
2
3
4

b 7→

1 2 3 4c 7→ { }

1
2
3
4

7→d

Figure 7.2: A maximum common induced subgraph between the two graphs on the left has
three vertices—one solution is highlighted. On the right, the association graph encoding: the
highlighted clique of size three shows the same solution. The “missing” vertices correspond
to assignments which are impossible due to the presence or absence of loops.

ing binary difference constraints with a soft global all-different constraint which maximizes
the number of Du variables that are assigned to values different from ⊥, while ensuring they
are all different when they are not assigned to ⊥. They found that maintaining arc consistency
(Sabin and Freuder, 1994) on the edge constraints obtains the best results on labelled graphs,
whilst forward checking obtains the best results on unlabelled graphs, and both outperform
prior approaches. The bound used in both cases uses a matching algorithm to check whether
it is possible to assign distinct values to enough Du variables to surpass the best cost found so
far—this is a weaker version of Petit, Régin, and Bessière’s (2001) global arc consistent soft
all-different constraint.

7.1.2 Reformulation to a Maximum Clique Problem

An alternative approach to solving the maximum common subgraph problem is to reduce
the problem to finding a maximum clique in an association graph (Balas and C. S. Yu, 1986;
Durand et al., 1999; Levi, 1973; Raymond and Willett, 2002). An association graph (or
compatibility graph, or weak modular product) of two graphs G and H is an undirected graph
GOH with vertex set

V(GOH) = {(v, v′) ∈ V(G)× V(H) : (v, v) ∈ E(G)⇔ (v′, v′) ∈ E(H)}.

To avoid confusing vertices of GOH with vertices of the two original graphs, we call vertices
of GOH matching nodes, as each vertex (u, u′) of GOH denotes the matching of u with u′.
The edges of GOH connect matching nodes which denote compatible assignments, so two
matching nodes (u, u′) and (v, v′) are adjacent if u 6= v and u′ 6= v′, and if they preserve both
edges and non-edges, so (u, v) ∈ E(G)⇔ (u′, v′) ∈ E(H). We illustrate this in Figure 7.2.

A clique in an association graph corresponds to a set of compatible matchings. Therefore,
such a clique corresponds to a common subgraph, and a maximum clique of GOH is a

176 CHAPTER 7. MAXIMUM COMMON SUBGRAPH PROBLEMS

maximum common subgraph of G and H . It follows that any method able to find a maximum
clique in a graph can be used to solve the maximum common subgraph problem.

Note that the association graph is a subgraph of the microstructure (Jégou, 1993) associated
with the constraint programming model of Vismara and Valery (2008): the microstructure
has more matching nodes than the association graph because it has a matching node (u,⊥)

for each vertex u of G. Each clique of size |V(G)| in the microstructure corresponds to a
common subgraph, the size of which is defined by the number of matching nodes that do not
contain ⊥.

7.1.3 Extension to Labelled or Directed Graphs

In some applications, labels may be associated with vertices or edges. We denote by `(u)

and `((u, v)) the label of a vertex u and an edge (u, v), respectively. Where graphs are
labelled, any isomorphism f must additionally preserve labels, so we require `(f(v)) = `(v)

for any vertex v, and `((f(u), f(v))) = `((u, v)) for any edge (u, v). This kind of label
compatibility constraint is handled in a straightforward way in both constraint programming
and clique-based approaches. For constraint programming, we restrict the domain of every
variable Du to vertices with compatible labels, and ensure that edge labels are preserved in
edge constraints. For clique-based approaches, label compatibility is handled through the
definition of the association graph, by restricting the set of matching nodes to pairs of vertices
with compatible labels, and the set of matching edges to pairs of edges with compatible
labels. The extension to directed graphs, where isomorphisms must preserve directed edges,
is similarly straightforward.

Labels and directed edges usually simplify the solution process, both for constraint
programming and clique-based approaches: vertex labels reduce domain sizes for constraint
programming, and the number of matching nodes in association graphs; edge labels tighten
edge constraints for constraint programming, and make the association graph sparser for
clique-based approaches. It is worth noting that edge constraints do not help constraint
programming approaches to do more filtering so long as⊥ remains in variable domains: every
pair of variables (Di, Dj) having ⊥ ∈ Dj is arc consistent, since ⊥ is a support for any value
u ∈ Di. However, as soon as ⊥ is removed from domains (i.e. when the number of variables
assigned to ⊥ has reached the best known bound on the size of the solution), maintaining
arc consistency may filter values, and then tighter constraints increase the opportunities for
filtering.

7.2. RE-EVALUATING THE CLIQUE MODEL 177

7.2 Re-Evaluating the Clique Model

Previous experimental evaluations of the association graph model have used either maximal
clique enumeration algorithms, even when the maximisation problem was being considered
(Koch, 2001; Vismara and Valery, 2008), or very simple maximum clique algorithms (Bunke
et al., 2002; Conte, Foggia, and Vento, 2007). As a result, their conclusions may now be overly
pessimistic. Thus we re-evaluate the approach using a modern maximum clique algorithm.
Association graphs are dense, even if the input is sparse, so we will be using our C++
implementation of Algorithm 2.1. We compare this to the “FC+Bound” and “MAC+Bound”
(simply referred to as FC and MAC) constraint programming implementations of Ndiaye and
Solnon (2011). Experiments are performed on machines with Intel Xeon E5-2640 v2 CPUs
and 64GBytes RAM running Ubuntu 14.04; software was compiled using GCC 5.3.0, and a
timeout of one thousand seconds was used.

We work with a randomly generated database (Conte, Foggia, and Vento, 2007; De
Santo et al., 2003) commonly used for benchmarking maximum common subgraph problems.
The dataset contains different classes of graphs: randomly connected graphs with different
densities; 2D, 3D, and 4D regular and irregular meshes; regular bounded valence graphs, and
irregular bounded valence graphs. For each pair of graphs, there are 3 different labellings
such that the number of different labels is approximately equal to 33%, 50% or 75% of the
number of vertices. These experiments will look at unlabelled graphs (labels are ignored),
and with 33% labellings either just on vertices, or on both vertices and edges (the problem
becomes very easy with larger numbers of labels). We select the first ten instances from each
class. For unlabelled graphs, we further restrict our tests to the graph pairs where the number
of vertices in each graph is no more than 50, for a total of 4,110 pairs; for labelled graphs,
which we find less computationally challenging, we select all 8,140 graph pairs, to include
graphs with up to 100 vertices.

Many of the criticisms from Chapter 6 also apply to this dataset. However, because we are
dealing with an optimisation problem rather than a decision problem, and because the dataset
includes instances with a wide range of solution sizes, the situation is not so dire—indeed,
solution size stands out as being the best indicator of how hard instances are in practice. Also,
this dataset is challenging, so we are not in danger of jumping to overly-optimistic conclusions
about what maximum common subgraph algorithms are capable of.

The left-hand plots of Figure 7.3 display the cumulative number of instances solved with
respect to time. When graphs are labelled, either just with vertex labels or with both vertex
and edge labels, the clique-based approach clearly outperforms either constraint programming
model, and MAC has a slight advantage over FC. (Recall that edge labels decrease the density
of the association graph, which is typically very beneficial for clique algorithms, but do not
help constraint programming until ⊥ is removed from domains. Vertex labels help both
models.) For unlabelled graphs, the three approaches are broadly comparable, and ultimately

178 CHAPTER 7. MAXIMUM COMMON SUBGRAPH PROBLEMS

8140

0

1000

2000

3000

4000

5000

6000

7000

100 101 102 103 104 105 106

N
um

be
rS

ol
ve

d

Runtime (ms)

33% Labelled

Clique

CP FC
CP MAC

C
liq

ue
R

un
tim

e
(m

s)
CP MAC Runtime (ms)

33% Labelled

100

101

102

103

104

105

106

100 101 102 103 104 105 106
100

101

102

103

104

105

106

100 101 102 103 104 105 106
0

1

10

≥ 102

8140

0

1000

2000

3000

4000

5000

6000

7000

100 101 102 103 104 105 106

N
um

be
rS

ol
ve

d

Runtime (ms)

33% Vertex Labelled

Clique

CP FC
CP MAC

C
liq

ue
R

un
tim

e
(m

s)

CP FC Runtime (ms)

33% Vertex Labelled

100

101

102

103

104

105

106

100 101 102 103 104 105 106
100

101

102

103

104

105

106

100 101 102 103 104 105 106
0

1

10

≥ 102

4110

0

500

1000

1500

2000

2500

3000

3500

100 101 102 103 104 105 106

N
um

be
rS

ol
ve

d

Runtime (ms)

Unlabelled

Clique

CP FC
CP MAC

C
liq

ue
R

un
tim

e
(m

s)

CP FC Runtime (ms)

Unlabelled

100

101

102

103

104

105

106

100 101 102 103 104 105 106
100

101

102

103

104

105

106

100 101 102 103 104 105 106
0

1

10

≥ 102

Figure 7.3: On the left, cumulative number of instances solved in under a certain time. On
the right, comparisons between the clique model and the best constraint programming model.

7.3. MAXIMUM COMMON CONNECTED SUBGRAPHS 179

FC beats MAC, which beats the clique approach. The right-hand column gives a per-instance
comparison of the best constraint programming approach with the clique approach: the
heatmaps are similar to scatter plots, but due to the large number of instances, we colour each
point according to the density of solutions around that point. For labelled graphs, the clique
approach comes close to dominating MAC on non-trivial instances (which suggests that there
is unlikely to be scope for per-instance algorithm selection here). For unlabelled graphs, there
is still a broad correlation between the runtimes; the clique approach rarely wins by more than
one order of magnitude, but is sometimes much worse.

A closer inspection of the data suggests that the different randomness models used to
generate instances have little effect on the runtimes for either approach. However, the relative
size of the solution matters, particularly for the clique algorithm: if the solution is large (i.e.
the two input graphs are very similar), the clique approach finds nearly every labelled instance
trivial.

7.3 Maximum Common Connected Subgraphs

Sometimes we seek a common subgraph which must satisfy additional constraints. This
is usually handled by propagation in a constraint programming setting. For clique-based
approaches, some constraints may be implemented by modifying the definition of the associa-
tion graph—for example, constraints on pairs of vertices that may be matched are handled by
removing inconsistent pairs from V(GOH). However, non-decomposable global constraints
cannot usually be handled by modifying the association graph.

In this section, we focus on the connectedness constraint, which occurs in many applica-
tions (Ehrlich and Rarey, 2011; Koch, 2001; Luo et al., 2017; Raymond and Willett, 2002;
Vismara and Valery, 2008). Adding the connectedness requirement makes certain special
cases solvable in polynomial time, including outerplanar graphs of bounded degree (Akutsu
and Tamura, 2013) and trees (Droschinsky, Kriege, and Mutzel, 2016), but the general case
remains NP-hard. As illustrated in Figure 7.1, the maximum common connected subgraph
cannot be deduced from the maximum common subgraph: we need to ensure connectedness
during search. Section 7.3.1 shows two ways this may be done in constraint programming, and
Section 7.3.2 evaluates both options. Then, in Section 7.3.3, we introduce a new way of ensur-
ing connectedness in a clique-based approach. Finally, we compare constraint programming
and the clique-based approach in Section 7.3.4.

For the connected problem we consider only undirected graphs (and so directed edges in
the inputs are treated as being undirected). For directed graphs, there is more than one notion
of connectivity, and it is not clear which should be selected—the approaches we discuss
extend easily to weakly connected directed graphs, but not to the strongly connected case (for
which no applications are known).

180 CHAPTER 7. MAXIMUM COMMON SUBGRAPH PROBLEMS

a

b c

d e

1 2

3 4

5

i) Initial problem

a

b c

d e

1 2

3 4

5

ii) Trying a 7→ 1

a

b c

d e

1 2

3 4

5

iii) Trying b 7→ 2

a

b c

d e

1 2

3 4

5

iv) Trying d 7→ 4

a

b c

d e

1 2

3 4

5

v) e 7→ ⊥ is forced

Figure 7.4: Suppose we are looking for a connected common subgraph, using the graph on
the left for variables and the graph on the right (which has an isolated vertex) for values. We
initially consider a 7→ 1. Our restricted branching rule requires us to select either variable b or
variable c subsequently, not d or e. We try b 7→ 2, which adds d to the branchable variables,
and forces c 7→ ⊥. We may now only branch on d, and we try d 7→ 4. Now the only remaining
variable is unbranchable, and so e = ⊥ is forced, even though 5 remains in its domain and
does not violate any constraints.

7.3.1 Ensuring Connectedness with Constraint Programming

Vismara and Valery (2008) implemented the connectedness constraint by using a branching
rule which selects the next variable to be assigned. Let A be the set of variables already
assigned to values different from ⊥. The next variable to be assigned is chosen from the set
of unassigned variables which are adjacent to at least one vertex of A. When this set is empty,
all remaining unassigned variables are assigned to ⊥. We illustrate this in Figure 7.4.

A more traditional constraint programming approach would be to express connectedness
as a conventional constraint. For example, Dooms, Deville, and Dupont (2005) introduced
graph domain variables and enforce connectivity via a reachable constraint, ensuring that
there is a path from a specified vertex to a specified set of vertices. One such constraint
could be posted for each of the vertices in the graph, encoding the transitive closure of the
graph. Brown et al. (2005) explored the use of constraint programming in the generation
of connected graphs with specified degree sequences. Two constraints were combined: the
graphical constraint (a backtrackable implementation of the Havel-Hakimi algorithm), and
a connectivity constraint implemented using sets of vertices, where vertex sets A and B are
combined when there exists a pair of vertices v ∈ A and w ∈ B and an edge (v, w) ∈ E.
Residual degree counts are maintained on components and vertices to enforce graphicality and
connectivity. Prosser and Unsworth (2006) proposed a connectivity constraint for connected
graph generation where decision variables are edges (the search process accepts and rejects
edges). The constraint employed depth first search to maintain the set of tree edges and back
edges, associating path counters on these edges. The counters were then used to detect the
existence of cut-edges and protects these by forcing edges.

7.3. MAXIMUM COMMON CONNECTED SUBGRAPHS 181

In all these previous works, the goal was to ensure that a given set of vertices is connected.
Here the problem is slightly different: we have to ensure that the number of connected
vertices that may be matched (in both graphs) is greater than the size of the largest common
subgraph previously found. Therefore, we introduce a new filtering algorithm to ensure
connectedness consistency. Let us consider two graphs G and H , and let D be the current
domains (we suppose that Du is a singleton when u is assigned). Let S and T be the
sets of vertices of G and H respectively which may belong to the common subgraph, i.e.
S = {u ∈ V(G) : Du 6= {⊥}}, and T = ∪u∈V(G)Du − ⊥. Connectedness consistency
ensures that both G[S] and H[T] are connected graphs.

Connectedness consistency is ensured only once a first variable has been assigned, rather
than at the root of search. Let Du be the first assigned variable, and v the value assigned
to Du. To ensure connectedness consistency, we perform a traversal of G (respectively, H),
starting from u (respectively, v), and we initialize S (respectively, T) with all visited vertices.
Then, for each vertex v ∈ V(G) \S, we set Dv to ⊥, and for each w ∈ V(H) \ T , we remove
w from all domains to which it belongs.

During search, each time a variable is assigned to ⊥, we remove the corresponding vertex
from S and perform a new traversal of G[S] starting from the initial vertex u. For each vertex
w ∈ S that is not visited by the traversal, we remove w from S and assign Dw to ⊥. Also,
each time a value is removed from a domain so that this value no longer belongs to any
domain, we remove it from T , and perform a new traversal of H[T] starting from the initial
vertex v. For each vertex w that is not visited by the traversal, we remove w from T , and
remove w from all domains to which it belongs.

Finally, the two approaches for ensuring connectedness (branching and filtering) are
complementary and may be combined: at each step of the search, we select the next variable
to be assigned within the neighbors of A, and each time a vertex of H is removed from a
domain we filter domains to ensure connectedness consistency. In the example in Figure 7.4,
after the first assignment, filtering alone would remove 5 from every domain but would allow
branching on any remaining variable, whilst branching alone would force the next variable to
be either b or c but would not immediately eliminate 5 from the domains of d and e.

7.3.2 Comparison of Connectedness Techniques

Figure 7.5 compares the three approaches for ensuring connectedness in constraint program-
ming: by branching, by filtering, or by combining both branching and filtering. Results are
shown only using the best variant for each class—that is, MAC for labelled graphs, and FC
for unlabelled graphs (the other results are very similar). On labelled graphs, we see many
instances which are solved very quickly by branching but not at all by filtering, and vice versa.
However, combining both is rarely much worse than just doing one or the other, and is often
much better, even if on average it is slightly slower. On unlabelled graphs, the three variants

182 CHAPTER 7. MAXIMUM COMMON SUBGRAPH PROBLEMS

8140

0

1000

2000

3000

4000

5000

6000

7000

100 101 102 103 104 105 106

N
um

be
rS

ol
ve

d

Runtime (ms)

33% Labelled

CP MAC Branching
CP MAC Both

CP MAC Filtering

4110

0

500

1000

1500

2000

2500

3000

3500

100 101 102 103 104 105 106

N
um

be
rS

ol
ve

d

Runtime (ms)

Unlabelled

CP FC Branching
CP FC Both

CP FC Filtering

C
P

M
A

C
Fi

lte
ri

ng
R

un
tim

e
(m

s)

CP MAC Branching Runtime (ms)

33% Labelled

100

101

102

103

104

105

106

100 101 102 103 104 105 106
100

101

102

103

104

105

106

100 101 102 103 104 105 106

C
P

M
A

C
B

ot
h

R
un

tim
e

(m
s)

CP MAC Branching Runtime (ms)

33% Labelled

100

101

102

103

104

105

106

100 101 102 103 104 105 106
100

101

102

103

104

105

106

100 101 102 103 104 105 106

C
P

M
A

C
B

ot
h

R
un

tim
e

(m
s)

CP MAC Filtering Runtime (ms)

33% Labelled

100

101

102

103

104

105

106

100 101 102 103 104 105 106
100

101

102

103

104

105

106

100 101 102 103 104 105 106

C
P

FC
Fi

lte
ri

ng
R

un
tim

e
(m

s)

CP FC Branching Runtime (ms)

Unlabelled

100

101

102

103

104

105

106

100 101 102 103 104 105 106
100

101

102

103

104

105

106

100 101 102 103 104 105 106

C
P

FC
B

ot
h

R
un

tim
e

(m
s)

CP FC Branching Runtime (ms)

Unlabelled

100

101

102

103

104

105

106

100 101 102 103 104 105 106
100

101

102

103

104

105

106

100 101 102 103 104 105 106

C
P

FC
B

ot
h

R
un

tim
e

(m
s)

CP FC Filtering Runtime (ms)

Unlabelled

100

101

102

103

104

105

106

100 101 102 103 104 105 106
100

101

102

103

104

105

106

100 101 102 103 104 105 106

Figure 7.5: On top, the cumulative number of connected instances solved in under a certain
time using different constraint programming techniques, for 33% labelled (left) and unlabelled
undirected (right) graphs. Below, instance-by-instance comparisons.

7.3. MAXIMUM COMMON CONNECTED SUBGRAPHS 183

Algorithm 7.1: An algorithm for a maximum common connected induced subgraph
isomorphism via an association graph.
1 associationMCCIS :: (Graph G1, Graph G2)→Map
2 begin
3 global incumbent ← ∅
4 G← G1OG2

5 search(G, ∅, ∅,V(G))
6 return incumbent

7 search :: (Graph G, Set solution, Set connected , Set remaining)
8 begin
9 colourClasses ← concatenate(

colourOrder(G, remaining \ connected),
colourOrder(G, remaining ∩ connected))

10 while length(colourClasses) > 0 do
11 foreach v ∈ last(colourClasses) in reverse order do
12 if |solution|+ length(colourClasses) ≤ |incumbent | then return
13 if v /∈ connected ∧ solution 6= ∅ then return
14 solution ′ ← solution + v
15 if |solution ′| > |incumbent | then incumbent ← solution ′

16 connected ′ ← connected ∪ {w ∈ G : first(w) ∈ N(G,first(v))}
17 remaining ′ ← remaining ∩ N(G, v)
18 if remaining ′ 6= ∅ then search(G, solution ′, connected ′, remaining ′)

19 removeLast(colourClasses)

have rather similar performance.

7.3.3 Ensuring Connectedness in a Clique-Based Approach

It is not possible to determine connectedness from a raw association graph. Nor is it possible
to encode connectedness by modifying the association graph encoding. However, we can take
a maximum clique algorithm and mimic the constraint programming branching strategy if
we have access to the underlying graphs and can determine the “meaning” of the association
graph vertices.

This is not straightforward. Recall that Algorithm 2.1 uses a greedy graph colouring both
as a bound and as a branching heuristic: vertices are selected in reverse order from their
colour classes in turn, starting with the last colour class created. Because of this coupling of
branching and the bound (which we saw in Chapter 2 was important in practice), if we were
to select only a subset of vertices for branching at each stage inside a clique algorithm, we
would lose completeness. Thus we must adapt the bound in a non-trivial way to take into
account restricted branching.

In Algorithm 7.1 we introduce a novel clique-inspired algorithm which finds a maximum

184 CHAPTER 7. MAXIMUM COMMON SUBGRAPH PROBLEMS

common connected induced subgraph via an association graph. If the additional branching
restrictions are removed, the core of the algorithm is the same as Algorithm 2.1. The way
we extend this algorithm for connectedness differs considerably from that of Koch (2001)
and Vismara and Valery (2008): these earlier approaches worked by classifying labels in
the association graph based upon whether a common vertex is shared, and then constructing
cliques with particular edge properties—this is harder to integrate with a strong bound
function.

The algorithm begins by building the association graph (line 4). The main part of the
algorithm then works by building up candidate cliques in the solution variable, by recursive
calls to the search procedure—starting from the empty set (line 5), each recursive subcall
adds one vertex to solution (line 14) in such a way that solution is always a clique which
corresponds to a connected common subgraph. The remaining set contains the set of vertices
which are adjacent to every vertex in solution, and which have not yet been accepted or
rejected (and so initially it contains every vertex). The main loops in the search procedure
(lines 10 and 11) have the effect of iterating over each vertex in this set in a particular order—
each vertex v is selected in turn, and then a recursive call is made to consider the effects of
including v in solution (line 18), followed by the next iteration where v is instead rejected.
When v is accepted, we add it to the new solution ′ (line 14), and create a new remaining ′

containing only the vertices in remaining which are adjacent to v (line 17).

The connected set contains the set of matching nodes which correspond to vertices
adjacent to an already-accepted vertex in the first input graph—in constraint programming
terms, it is the set of assignments which could be made next which maintain connectedness.
(Using only one of the two input graphs is sufficient for correctness, and has the advantage that
the connectedness set may be determined by a simple lookup into a precomputed array which
maps each vertex in the first input graph to a bitset.) At the top of search, this set is empty, and
is not used (our first vertex selection is special, and does not care about connectedness). At
subsequent depths, we may only accept vertices which are in this set, and if no such vertices
remain then we return immediately (line 13). When recursing, we extend connected with
the new vertices permitted by our acceptance of the branching v (line 16). Note that we are
assuming that inside the main loops, we encounter every vertex in remaining ∩ connected

before any vertex in remaining \ connected .

As we proceed, we keep track of the best solution we have found so far—this is stored in
the incumbent variable (lines 3 and 15). We use the incumbent, together with a colour bound,
to prune portions of the search space which cannot contain a better solution. The colour bound
operates as follows: at each entry to the search procedure, we produce a greedy colouring
of the vertices in remaining (line 9, discussed further below). This greedy colouring gives
us a list of colour classes, each of which is a list of pairwise non-adjacent vertices. The two
loops (lines 10 and 11) then iterate over each colour class, from last to first, and then over

7.3. MAXIMUM COMMON CONNECTED SUBGRAPHS 185

a b

c d

e f

1 2

3 4

5

solution
connected
remaining

{(a, 1)}
{b, c, d} × {1 . . . 5}
({b, c, d} × {2, 3}) ∪ ({e, f} × {4, 5})

i) Initial problem ii) Search variables after guessing a 7→ 1

(e, 4) (e, 5)

(f, 4) (f, 5)

(b, 2) (b, 3)

(c, 2) (c, 3) (d, 2) (d, 3)

iii) remaining \ connected iv) remaining ∩ connected

[[(e, 4), (e, 5)], [(f, 4), (f, 5)], [(b, 2), (b, 3)], [(c, 2), (c, 3), (d, 2), (d, 3)]]

v) The resulting colourClasses variable.

Figure 7.6: Solving a maximum common connected problem using an association graph.
Suppose we have already mapped vertex a to vertex 1, giving the assignments on the right.
Now we have two subgraphs to colour. We need two colours for remaining \ connected ,
and we place these two colour classes first in the colourClasses variable. We can also colour
remaining ∩ connected using two colours, since we cannot simultaneously map c to 2 and d
to 3, or vice-versa. Thus colourClasses becomes a list of four colour classes. This tells us
that if we hope to extend the current common subgraph by another four vertices, we must pick
one assignment from each of the four colour classes (which is not actually possible, so the
bound here gives an overestimate). The algorithm thus guesses d 7→ 3 as its next assignment,
and if that fails, d 7→ 2, and so on; once b 7→ 3 is reached, the bound decreases by one, and if
f 7→ 5 were reached we would stop due to a lack of remaining connected association nodes.

each vertex in that colour class, again from last to first. (This should use a pair of immutable
flat arrays, rather than actually using a list of lists and removing items, as in Algorithm 2.1.)
Finally, if at any point the number of remaining colour classes plus the number of vertices
currently present in solution is not strictly greater than the size of the incumbent, then we
may backtrack immediately (line 12).

Finally, we describe the colouring process—an example is shown in Figure 7.6. We
cannot simply reuse the colourOrder function from Algorithm 2.1: the colourings it
produces will not give us the required property that vertices in remaining ∩ connected come
last (so they are selected first by the reverse branching order). Thus we produce two greedy
sequential colourings (which we view as a list of colour classes, each of which contains a list
of vertices), first considering the non-branching vertices in remaining \ connected , followed
by the branching vertices, and concatenate them (line 9). This produces a valid colouring,
since we do not merge any colour classes between the two stages, although it may use more

186 CHAPTER 7. MAXIMUM COMMON SUBGRAPH PROBLEMS

colours than a single colouring would. As before, we produce greedy sequential colourings,
and we use a simple static degree ordering at the top of search. It is possible that special
properties of the association graph could be exploited to improve this step—for example, it is
always possible to colour the initial association graph using min(|V(G1)| , |V(G2)|) colours,
but with certain vertex orderings, a greedy sequential colouring will sometimes use many
more colours.

(What if we did not guarantee that vertices in remaining ∩ connected came last, and
just used a conventional colouring with the branching rule? Suppose we had four vertices in
remaining , and produced a colouring [[v1, v2], [v3], [v4]], and suppose that extending solution

with {v1, v3, v4} gives an optimal solution. If v4 was not connected yet, we would not branch
on that subtree, and the bound could eliminate branching on v3 and v1, so we would miss the
solution. Thus we cannot simply add the branching rule without also adapting the combined
bound and ordering heuristic.)

7.3.4 Comparison of the Two Approaches

In Figure 7.7 we compare the clique-based approach to the connected problem with the
two CP (with both branching and filtering) approaches. The trend is broadly similar to the
unconnected problem: for labelled graphs, the clique-based approach is the clear winner, but
for unlabelled graphs the clique approach lags somewhat.

The heatmaps show a more detailed picture. As before, in the unlabelled case, the
association approach is almost never more than an order of magnitude better, and is often
much worse. In the labelled case, however, there are now a number of instances (along the
top of the heatmap) where the constraint programming approach does much better than the
association approach, despite the association approach remaining much better overall. (With
Chapter 3 in mind, it might be tempting to suggest that these could be instances where the
clique branching rule behaves particularly poorly at the top of search, and that parallel search
might make them go away. Unfortunately, although this is true for a small number of these
instances, experimental evidence does not support such a simple explanation in general.)

7.4 k-Less Subgraph Isomorpism

Compared to previous chapters, the graphs with which we have worked for maximum common
subgraph problems so far are small: we have been limited to 100 vertex graphs, and there
are instances with only 35 vertices which we cannot solve. Both the clique encoding and the
constraint programming inference algorithms are extremely memory-intensive, and larger
instances cannot fit in memory. This is unfortunate: suppose a subgraph isomorphism between
a pattern graph and a target graph does not exist. We may wish to find “as much as possible”

7.4. K-LESS SUBGRAPH ISOMORPISM 187

8140

0

1000

2000

3000

4000

5000

6000

7000

100 101 102 103 104 105 106

N
um

be
rS

ol
ve

d

Runtime (ms)

33% Labelled

Clique
CP MAC Both

C
liq

ue
R

un
tim

e
(m

s)

CP MAC Runtime (ms)

33% Labelled

100

101

102

103

104

105

106

100 101 102 103 104 105 106
100

101

102

103

104

105

106

100 101 102 103 104 105 106
0

1

10

≥ 102

4110

0

500

1000

1500

2000

2500

3000

3500

100 101 102 103 104 105 106

N
um

be
rS

ol
ve

d

Runtime (ms)

Unlabelled

Clique

CP FC Both

C
liq

ue
R

un
tim

e
(m

s)

CP FC Runtime (ms)

Unlabelled

100

101

102

103

104

105

106

100 101 102 103 104 105 106
100

101

102

103

104

105

106

100 101 102 103 104 105 106
0

1

10

≥ 102

Figure 7.7: The cumulative number of connected instances solved in under a certain time:
on the left, 33% labelled undirected graphs with up to 100 vertices, and then unlabelled and
undirected graphs with up to 35 vertices. On the right, an instance-by-instance comparison
of the association and CP (with both branching and filtering) approaches, with 33% labelled
graphs on top, and unlabelled and undirected graphs below.

of the pattern graph inside the target. In the induced case, this is precisely the maximum
common subgraph problem (we discuss the non-induced case below). With that in mind, this
section discusses a new way of looking at the maximum common subgraph problem which
allows us to work with much larger graphs.

This new perspective is as follows: say we are given a pattern graph and a target graph,
then we must find a way to map all but k vertices of the pattern graph into the target. We show
an example in Figure 7.8. This in some ways resembles the approximate subgraph matching
model of Zampelli, Deville, and Dupont (2005), although we allow any vertex to be removed.
When k is reasonably small (say, between 1 and 5), weakened forms of the degree- and
path-based filterings which we introduced in Chapter 5 are still effective in pruning the initial
search space and in providing additional constraints respectively. Additionally, combining
these techniques leads to a practical algorithm which can scale to work with the families of

188 CHAPTER 7. MAXIMUM COMMON SUBGRAPH PROBLEMS

Figure 7.8: The pattern graph on the left cannot be found in the target graph on the right, but
if the central vertex in the pattern is removed, then a subgraph isomorphism exists.

graphs we used to benchmark subgraph isomorphism algorithms: depending upon the family,
we can close a substantial portion of the instances, and in many more cases, we can at least
obtain an upper bound. This is a significant improvement over previous methods discussed
in this chapter, which cannot even fit many of these instances in 64GBytes of RAM. Finally,
we will see that in the induced case, starting with k = 0 and iteratively increasing k gives a
competitive algorithm for the maximum common subgraph problem.

7.4.1 Additional Definitions and Notation

Recall that a non-induced subgraph isomorphism from a graph P (called the pattern) to a
graph T (the target) is an injective mapping V(P)� V(T) which maps adjacent vertices
to adjacent vertices, and that an induced subgraph isomorphism P ↪→ T additionally maps
non-adjacent vertices to non-adjacent vertices. We define a k-less subgraph isomorphism

from P to T to be a subgraph isomorphism from all but k vertices of P to T ; this may be
non-induced or induced, written P k� T and P k↪→ T respectively. We write p k 7→ t to mean
that the pattern vertex p is mapped to the target vertex t under either kind of mapping.

Further recall that the loop complement of a graph P , written P
(

, is the graph where
adjacent vertices in P are non-adjacent, non-adjacent vertices in P are adjacent, and vertices
in P
(

have loops precisely if they do not in P . The following propositions follow directly from
the definitions.

Proposition 7.1. Let i be an assignment of vertices of T to vertices of P . Then i satisfies the
definition of P ↪→ T if and only if i satisfies P � T and P

(
� T

(
simultaneously. Similarly,

i satisfies the definition of P k↪→ T if and only if i satisfies both P k� T and P
(

k� T
(

.

Proposition 7.2. An induced k-less subgraph isomorphism P k↪→ T is equivalent to a com-
mon induced subgraph of P and T with |V(P)| − k vertices.

The non-induced case is different, however. Recall that to avoid the problem of a maximum
common non-induced subgraph allowing us to select every vertex in the smaller of the two
graphs and none of the edges, it is traditional to change the objective to maximise the number
of edges selected. This is not what we will be discussing in this section: maximum common
subgraph problems are symmetric in their inputs, but when discussing the non-induced case
we are allowing extra edges only in the target graph, not in the pattern.

7.4. K-LESS SUBGRAPH ISOMORPISM 189

7.4.2 Constraint Models and Algorithms

There are three easy ways we might try to extend existing algorithms to handle the k-less
problem. A non-induced k-less subgraph isomorphism from P to T is equivalent to a subgraph
isomorphism between P and T , with k extra universally-adjacent vertices added to T , and so
we could try solving subgraph isomorphism with a modified target graph. However, using
such an approach is not ideal, because it would introduce symmetries; for induced k-less
subgraph isomorphisms, an approach based around adding vertices to T cannot work at all.
Another algorithmic approach could be to try each way of removing k vertices from the
pattern graph, and solving each subgraph isomorphism problem in turn. This approach might
be feasible for k = 1, although it would involve a lot of duplication of search effort, but for
larger values of k the number of searches which would have to be made would grow with(

k
V(P)

)
. Finally, for the induced case we could try adapting maximum common subgraph

algorithms to solve the decision problem. However, our main aim with this problem is to
avoid the prohibitive memory requirements that come with the maximum common subgraph
algorithms discussed earlier in this chapter.

Instead, we will discuss a new algorithm, inspired by the subgraph isomorphism algorithm
introduced in Chapter 5. This algorithm requires only O(|V(P)|2 |V(T)|) space (which can
be thousands of times less than maximum common subgraph approaches, once the constant
factors and orders of T in these instances are considered).

7.4.3 Experimental Setup and Instances

We continue to perform our experiments on systems with dual Intel Xeon CPU E5-2640 v2
processors with 64GBytes of RAM. For datasets, we will switch to the 5,725 instances used in
Chapter 5 for the subgraph isomorphism problem. Note that many of these instances are much

larger than the maximum common subgraph instances we have looked at so far: this dataset
contains graphs with up to 6,671 vertices. For the constraint programming forward-checking
algorithm, 1,560 of the instances cannot fit in the amount of RAM we have available—we treat
these instances as having timed out. The situation for the clique encoding is even worse, and
3,653 of these instances do not fit in 64GBytes of RAM. In contrast, for the k-less algorithm,
every instance fits comfortably.

7.4.4 Domain Filtering Using Degrees

Let p be a vertex in a graph P . The degree of vertices gives us an invariant, which may be
used to eliminate some infeasible values from domains as follows.

Proposition 7.3. Let p be a vertex in P and t a vertex in T . For both non-induced and induced
k-less subgraph isomorphisms, if p k 7→ t then deg(p)− k ≤ deg(t).

190 CHAPTER 7. MAXIMUM COMMON SUBGRAPH PROBLEMS

b ca

d

p q

Figure 7.9: There is a non-induced isomorphism from the first graph to the second, using the
highlighted vertices. No such isomorphism exists between the first and third graphs, but there
is a 1-less non-induced isomorphism which omits vertex b.

Proof. Let p be a vertex in P , and t a vertex in T , with p 7→ t. Then by the definition of
subgraph isomorphism, deg(p) ≤ deg(t). Let P ′ be P less k vertices and p a vertex in P ′.
Then

degP (p)− k ≤ degP ′(p) ≤ degP (p) ≤ deg(t).

Recall that the neighbourhood degree sequence of a vertex p, S(G, p), is the (non-
ascending) sequence of degrees of its neighbours; in this section we omit G where it is
clear from the context. As discussed in Chapter 5, this may be used for filtering in subgraph
isomorphism. We extend this for the k-less setting as follows.

Let S = (s1, . . . , sn) and T = (t1, . . . , tm) be two sequences. As in Chapter 5, we say that
S � T if n ≤ m and ∀si ∈ S there exists a distinct tj ∈ T with si ≤ tj . When considering
a k-less subgraph isomorphism we say that S k� T if n− k ≤ m, and if there exists some
subsequence Sk of S containing up to k members such that ∀si ∈ S \Sk, there exists a distinct
tj ∈ T with si − k ≤ tj .

Proposition 7.4. If p k 7→ t, then S(p) k� S(t).

Proof. Let p k 7→ t. Then deg(p) − k ≤ deg(q), by Proposition 7.3, which implies that
|S(p)| − k ≤ |S(t)|. Also, p k 7→ t implies that for each q ∈ N(p) \ Pk, where Pk is some
subset of the vertices of P with |Pk| ≤ k, we have q k 7→ u, where u ∈ N(t) and each u is
distinct. Then deg(q)− k ≤ deg(u), by Proposition 7.3. Hence S(p) k� S(t).

For example, consider the pattern graph P and the two target graphs T and U shown in
Figure 7.9. The neighbourhood degree sequence of pattern vertex p is S(p) = (3, 3, 2). We
highlight a subgraph in T which is non-induced isomorphic to P . The vertex p can be mapped
to q in the target graph T , as S(q) = (5, 5, 4, 2, 2). There is a non-induced mapping of the
pattern graph P into U by removing b of P . This removal changes the neighbourhood degree
sequence of p in the k-less version of P to S(p) = (2, 2).

Figure 7.9 also illustrates the three cases possible when filtering by neighbourhood degree
sequence. Removing vertex d causes each entry in S(p) to be reduced; removing vertex a
removes an entry from S(p); and removing either of vertex b or c causes both the size of S(p)

to be reduced and an entry in S(p) to be reduced.

7.4. K-LESS SUBGRAPH ISOMORPISM 191

10−30 10−25 10−20 10−15 10−10 10−5 100

5725

0

1000

2000

3000

4000

5000

N
um

be
ro

fi
ns

ta
nc

es

Search space size reduced to at least this proportion

k = 0

k = 1
k = 2
k = 3
k = 4
k = 5

Figure 7.10: The amount of domain reduction achieved for the induced problem, with
increasing k. The y value shows for how many instances we may reduce the initial search
space to be at most the x proportion of the size the search space would be for the maximum
common subgraph problem.

Corollary 7.1. Since both S(p) and S(t) are non-ascending, without loss of generality we
can replace S \ Sk from the definition of S k� T with the subsequence consisting of all but
the first k members of S.

Figure 7.10 demonstrates that Proposition 7.4 is effective in practice: we show the amount
of domain reduction which can be achieved at the top of search by using invariants and a
fixed k, compared to the search space size for the maximum common subgraph problem.
We look at the product of the domain sizes, rather than the number of eliminations, as this
better reflects the number of combinations remaining to be considered. The results on the
non-induced version show a similar but slightly weaker trend.

Some other invariants do not translate. For example, another rule which can be effective
on regular graphs involves counting the number of neighbours of a vertex which are present
in a triangle (McKay and Piperno, 2014). Removing a single vertex can alter this count
arbitrarily, so we cannot make use of this fact.

7.4.5 Filtering During Search Using Paths

As well as reasoning about degrees, we can also reason about paths. Let paths(p, q, n) be the
number of paths of length n between the vertices p and q.

Proposition 7.5. Let p, q ∈ V(P) and t, u ∈ V(T) be pairs of pattern and target vertices
respectively. If p k 7→ t and q k 7→ u then paths(p, q, 2)− k ≤ paths(t, u, 2).

192 CHAPTER 7. MAXIMUM COMMON SUBGRAPH PROBLEMS

Proof. Let P2 be the set of all paths of length two between p and q,

P2 = {((p, x), (x, q)) : (p, x), (x, q) ∈ E(P)}.

As we are looking at paths of length 2, the intermediate vertices lie in both neighbour vertex
sets of p and q. We can rewrite P2 as

P2 = {((p, x), (x, q)) : x ∈ N(p) and x ∈ N(q)},

in other words the intermediate vertices lie in the intersection of the neighbour sets of p and q,

P2 = {((p, x), (x, q)) : x ∈ N(p) ∩ N(q)}.

Therefore paths(p, q, 2) = |N(p) ∩ N(q)| ≤ deg(p).
If we remove up to k vertices from the neighbourhood of p, it will impact the intersection

of the neighbourhoods of p and q, and by Proposition 7.3, as p k 7→ t,

|N(p) ∩ N(q)| − k ≤ deg(p)− k ≤ deg(t).

As |N(p) ∩ N(q)| ≤ deg(p) ≤ |N(t) ∩ N(u)| ≤ deg(t), we have

|N(p) ∩ N(q)| − k ≤ deg(p)− k

≤ |N(t) ∩ N(u)|

≤ deg(t)

which tells us
paths(p, q, 2)− k ≤ paths(t, u, 2).

Corollary 7.2. Recall from Chapter 5 that for a graph G, we define Gn,` to be the graph
with vertex set V(G), and edges between vertices p and q if there are at least n simple
paths of length exactly ` between p and q in G. Then any k-less subgraph isomorphism
P k� T induces a new k-less subgraph isomorphism P n+k,2

k� T n,2 using the same vertex
assignments.

Unlike in conventional subgraph isomorphism, we cannot extend this filtering to look at
paths of length three: as the example in Figure 7.11 shows, removing a single vertex can delete
arbitrarily many such paths. We could instead count paths of any length which are vertex
disjoint, although calculating this appears to be too expensive to be beneficial in practice.

To allow for fast propagation, rather than calculating paths dynamically like Audemard,
Lecoutre, et al. (2014), we follow the approach introduced in Chapter 5 and instead construct
supplemental graphs, finding a mapping which is simultaneously a non-induced subgraph

7.4. K-LESS SUBGRAPH ISOMORPISM 193

Figure 7.11: The pattern graph on the left cannot be found in the target graph on the right,
but if one vertex is removed, then a subgraph isomorphism exists.

isomorphism between every supplemental graph pair. We use paths of length 2, looking at
whether there are at least 1, 2, and 3 in the target graph (and so whether there are at least
1 + k up to 3 + k in the pattern). We then investigate whether this leads to new constraints
being generated.

By an assignment, we mean considering mapping a pattern vertex p to a target vertex t (and
not ⊥) which does not violate any loop constraints. An assignment pair is two assignments
with distinct p and distinct t, which we say is permitted if it does not violate any adjacency
constraint. We define the permitted assignment pair ratio to be the proportion of assignment
pairs which are permitted. Given this, in Figure 7.12 we scatter plot the permitted assignment
pair ratio with and without supplemental graphs. (Because of the large sizes of the domains,
we randomly sample one million pairs rather than considering every pair. In some cases, we
have nearly a thousand domains, each with nearly ten thousand values—a complete quadratic
calculation involving even a trivial arithmetic operation on this would take many hours.)

For k = 0, we see many points above the x − y diagonal, which shows that for many
instances, a substantial number of new constraints are created at the top of search; on the
other hand, there are also points on the diagonal, which shows that sometimes this technique
provides no benefit. (Occasionally, points fall below the x− y diagonal. This is because the
use of neighbourhood degree sequence reasoning on supplemental graphs can also lead to
increased domain filtering, which could in turn eliminate a higher proportion of forbidden
than permitted assignment pairs.) For k = 1 and k = 2, the proportion of points above the
diagonal diminishes, but we are still able to create new constraints for many instances. By
the time k = 3, most of the benefit is disappearing—although sometimes we are still able to
make a difference, and bear in mind that sometimes adding just one new constrained pair can
vastly reduce the search space.

7.4.6 A New Algorithm

Algorithm 7.2 integrates these techniques into a full algorithm. This is derived from Algo-
rithm 5.1, with additions to handle null values for the k-less case. The algorithm performs a
constraint-based search. We have a set D containing a variable Dv for each vertex v in the
pattern graph. Each variable has a domain containing one value for every vertex in the target
graph. The algorithm is bit-parallel: each Dv is stored using bitset, and all graphs are stored

194 CHAPTER 7. MAXIMUM COMMON SUBGRAPH PROBLEMS

0

1

0 1

W
ith

Without

k = 0

0

1

0 1
W

ith
Without

k = 1

0

1

0 1

W
ith

Without

k = 2

0

1

0 1

W
ith

Without

k = 3

0

1

0 1

W
ith

Without

k = 4

0

1

0 1
W

ith
Without

k = 5

Figure 7.12: For the induced problem, the proportion of pairs of assignments from the filtered
domains which are not permitted simultaneously, without path constraints on the x-axis and
with path constraints on the y-axis, for increasing values of k. Point colours show instance
families, as in Section 5.3.

as adjacency matrices.

In line 8 we use the reasoning from Section 7.4.4 to eliminate infeasible initial values
from the domains. We do not use iterated label filtering (Zampelli, Deville, and Solnon, 2010)
to recalculate neighbourhood degree sequences if any vertices are not present in any target
domain after construction: preliminary experiments indicated that this happened very rarely
on these instances.

To handle unmapped vertices, on line 9 we include k additional wildcard ⊥ values in each
domain (rather than a single value which may be used k times).

We begin by trying to infer domain deletions. The propagate function looks for
domains which contain either only a single value, or only wildcards—we call such a domain
effectively-unit. If such a domain Dv exists, we eliminate its value from every other domain,
and then propagate adjacency: for each domain corresponding to a vertex adjacent to v, we
eliminate any value from its domain which is not adjacent to v (treating wildcards as being
adjacent to all vertices). If a domain wipeout occurs, we return failure.

We deal with the additional constraints discussed in Section 7.4.5 by constructing supple-
mental graphs, as in Chapter 5. This is done on line 4: the variable L contains a list of pattern /
target pairs, and following corollary 7.2, we will search for a mapping which is simultaneously
a subgraph isomorphism between every pair in this list. We also do degree-based reasoning

7.4. K-LESS SUBGRAPH ISOMORPISM 195

Algorithm 7.2: A bit-parallel algorithm for the k-less subgraph isomorphism problem.
1 klessSubgraphIsomorphism (Graph P , Graph T , Int k)→ Bool
2 begin
3 if |V(P)|+ k > |V(T)| then return false
4 L←

[
(P , T), (P(, T() only if we want induced,

(P1+k,2, T 1,2), (P2+k,2, T 2,2), (P3+k,2, T 3,2)
]

5 foreach v ∈ V(P) do
6 Dv ← V(T)
7 foreach (P, T) ∈ L do
8 Dv ← {w ∈ Dv : v ∼P v ⇒ w ∼T w ∧ SP (v) k� ST (w)}
9 Dv ← Dv ∪ k distinct wildcard values

10 if propagate(L, D) then return search(L, {E ∈ D : |E| > 1}, k)
11 else return false

12 search (GraphPairs L, Domains D, Int k)→ Bool
13 begin
14 if D = ∅ then return true
15 Dv ← the smallest domain in D
16 foreach v′ ∈ Dv ordered by static degree in T do
17 if v′ is not the first wildcard tried then

continue
18 D′ ← clone(D)
19 D′v ← {v′}
20 if propagate(L, D’) then
21 if search(L, {E ∈ D′ : |E| > 1}, k) then return true

22 propagate (GraphPairs L, Domains D)→ Bool
23 begin
24 while true do
25 if no effectively-unit domains remain then
26 if not countingAllDifferent(D) then return false
27 if no effectively-unit domains remain then return true
28 Dv ← an effectively-unit domain from D
29 v′ ← the single value in Dv, or an arbitrary wildcard value
30 foreach Dw ∈ D −Dv do
31 Dw ← Dw − v′
32 foreach (P, T) ∈ L do
33 if v ∼P w then
34 Dw ← Dw ∩ (NT (v′) ∪ wildcards)

35 if Dw = ∅ then return false

196 CHAPTER 7. MAXIMUM COMMON SUBGRAPH PROBLEMS

using each of these graph pairs.

If no effectively-unit domains remain, we attempt stronger propagation for the all-different
constraint. The countingAllDifferent function is the bit-parallel propagator used in
Chapter 5, and is not the usual matching-based propagator (Régin, 1994) which guarantees
generalised arc consistency. Because we use multiple wildcard values, we do not need to
modify the algorithm to allow a single wildcard value to be used more than once. This
propagation could create new effectively-unit domains; if so, we repeat the process.

If propagation is unable to prove unsatisfiability, we search. We pick the smallest domain
(line 15) and try giving it each of its remaining values in turn. We use the value ordering
heuristic from the original algorithm; wildcards are treated as having degree zero, in an attempt
to maximise the expected number of solutions remaining during search (as in Chapter 6). We
introduce a symmetry break (line 17) to try only a single wildcard value for each variable.

For the induced case, we make use of Proposition 7.1 (line 4). We considered using path
reasoning on complement graphs, but this is expensive to calculate and provides little benefit
in practice on these instances. We also do not strip isolated vertices as the original algorithm
did, as this is not a valid simplification in the induced case.

7.4.7 Empirical Evaluation

We now evaluate Algorithm 7.2 and show that it is effective in practice, even on the larger
subgraph isomorphism instances. In Figure 7.13 we give cumulative distributions for the
induced and non-induced problems, with k ranging from 0 to 5 (we discuss the other lines
in this plot in Section 7.4.8). The results are strong: with k = 0 we may solve nearly every
instance, whilst even at k = 5 we can solve over 4, 000 instances in both variants.

But are we learning anything about the results—that is, are there instances for which
k = 0 is unsatisfiable, but that are satisfiable for small k? For the problem families which
do not consist entirely of satisfiable instances, we plot this in Figure 7.14. In the “phase”
family, which consists of instances crafted to be extremely difficult to solve, we are not able
to answer this question, and in the “scalefree” family we see no satisfiable instances with low
but not zero k (this is simply due to there being many vertices with loops in some pattern
graphs, but no loops at all in the targets). However, in several of the remaining families we
can more than double the number of instances for which exact solutions are known, and gain
upper bounds on many more. This is particularly interesting for the “images” family due to
Damiand et al. (2011), where the size of the solution has a direct real-world interpretation in
terms of closeness of image matching.

7.4. K-LESS SUBGRAPH ISOMORPISM 197

5725

0

1000

2000

3000

4000

5000

100 101 102 103 104 105 106

N
um

be
rS

ol
ve

d

Runtime (ms)

Induced

k = 0
k = 1
k = 2
k = 3
k = 4
k = 5

Clique

CP FC

k↓

5725

0

1000

2000

3000

4000

5000

100 101 102 103 104 105 106

N
um

be
rS

ol
ve

d

Runtime (ms)

Non-Induced

k = 0
k = 1
k = 2
k = 3
k = 4
k = 5

k↓

Figure 7.13: The cumulative number of instances solved over time, with different values of k.
We also show the results of iteratively increasing k, and in the induced case, the performance
of the two implementations discussed earlier in this chapter.

0

0.2

0.4

0.6

0.8

1

scalefree

LV largerLV

images

meshes

phase

Pr
op

or
tio

n
of

In
st

an
ce

s
Sa

tis
fia

bl
e Induced

0

0.2

0.4

0.6

0.8

1

scalefree

LV largerLV

images

meshes

phase

Pr
op

or
tio

n
of

In
st

an
ce

s
Sa

tis
fia

bl
e Non-Induced

k = 0
k = 1
k = 2
k = 3
k = 4
k = 5
larger

Figure 7.14: The proportion of instances, in different families, which become satisfiable for
increasing values of k. The “larger” instances are those where we can prove unsatisfiability
for k = 5, whilst the gap between the top of the bar and the top of the graph is the fraction of
instances where a timeout was reached for at least one value of k.

4110

0

500

1000

1500

2000

2500

3000

3500

100 101 102 103 104 105 106

N
um

be
rS

ol
ve

d

Runtime (ms)

Clique
CP FC
k↓

k
↓

R
un

tim
e

(m
s)

Clique Runtime (ms)

100

101

102

103

104

105

106

100 101 102 103 104 105 106
100

101

102

103

104

105

106

100 101 102 103 104 105 106
0

1

10

≥ 102

Figure 7.15: On the left, the cumulative number of instances solved over time, for the
unlabelled maximum common subgraph instances. On the right, an instance by instance
comparison with the clique approach.

198 CHAPTER 7. MAXIMUM COMMON SUBGRAPH PROBLEMS

7.4.8 Solving From the Top Down

What would happen if we used this approach to solve the maximum common (induced)
subgraph problem? We could simply start at k = 0, and increase k until a solution is found.
This would be tackling the problem in the opposite direction from the previous two approaches,
which work by attempting to construct larger and larger solutions. The remaining lines in
Figure 7.13 show this approach: “k↓” is this algorithm, whilst “FC” and “clique” are the
two algorithms discussed earlier in this chapter. Recalling the disclaimer in Section 7.4.3
regarding instances not fitting in the 64GBytes of RAM we have available, we see that this
approach is able to close over twice as many of these instances as the previous state of the art.
(The same conclusion holds even if every instance which is satisfiable with k = 0 is removed
from the dataset.)

What if we use the instances designed for the maximum common subgraph problem? In
Figure 7.15 we again compare these approaches, but returning to the undirected, unlabelled
maximum common subgraph instances. In these instances the number of vertices in the
pattern and target graphs is the same, which is not ideal for this algorithm (although the
invariants are still effective in many cases). Nonetheless, this is by a small margin the single
strongest solver so far. Interestingly, this algorithm often has complementary performance to
the clique approach, which suggests that there is scope for an algorithm which runs both an
upper bound and a constructive lower bound approach simultaneously or in parallel, stopping
when the two bounds meet.

7.5 A Splitting Algorithm

We return now to the basic forward-checking constraint programming algorithm. McCreesh,
Prosser, and Trimble (2017) make the following observation: at any stage in the search, the
domains of any two variables are either identical or disjoint (excluding ⊥, which is either
present in every domain or in no domain). This allows the traditional set-based domain
store to be replaced with flat arrays, one containing a permutation of all the values, and the
other mapping each variable to a contiguous subset of this permutation—this is similar to
data structures used in partition backtracking for graph isomorphism (López-Presa and Anta,
2009; McKay and Piperno, 2014) and the Bron and Kerbosch (1973) clique enumeration
algorithm. Doing so allows for fast propagation (each subset is simply split in two following an
assignment), allows the matching-based bound calculation to be replaced with a simple linear-
time counting operation, and opens up opportunities for better variable ordering heuristics
which can make use of dual viewpoint (Geelen, 1992) information for no cost.

The intricacies of this algorithm are described in McCreesh, Prosser, and Trimble (2017),
and are not a contribution of this thesis. Here we simply present computational results in the
left-hand column of Figure 7.16 which show that this algorithm is consistently at least an order

7.5. A SPLITTING ALGORITHM 199

8140

0

1000

2000

3000

4000

5000

6000

7000

100 101 102 103 104 105 106

N
um

be
rS

ol
ve

d

Runtime (ms)

33% Labelled

Clique
Split
CP MAC

Sp
lit

N
od

es

CP FC Nodes

33% Labelled

100

102

104

106

108

1010

100 102 104 106 108 1010
100

102

104

106

108

1010

100 102 104 106 108 1010
0

1

10

≥ 102

8140

0

1000

2000

3000

4000

5000

6000

7000

100 101 102 103 104 105 106

N
um

be
rS

ol
ve

d

Runtime (ms)

33% Vertex Labelled

Clique
Split

CP FC
Sp

lit
N

od
es

CP FC Nodes

33% Vertex Labelled

100

102

104

106

108

1010

100 102 104 106 108 1010
100

102

104

106

108

1010

100 102 104 106 108 1010
0

1

10

≥ 102

4110

0

500

1000

1500

2000

2500

3000

3500

100 101 102 103 104 105 106

N
um

be
rS

ol
ve

d

Runtime (ms)

Unlabelled

Clique

k↓

Split

CP FC

Sp
lit

N
od

es

CP FC Nodes

Unlabelled

100

102

104

106

108

1010

100 102 104 106 108 1010
100

102

104

106

108

1010

100 102 104 106 108 1010
0

1

10

≥ 102

Figure 7.16: On the left, cumulative number of maximum common subgraph instances solved
in under a certain time. On the right, search space size comparisons between the splitting and
conventional forward checking algorithms.

200 CHAPTER 7. MAXIMUM COMMON SUBGRAPH PROBLEMS

5725

0

1000

2000

3000

4000

5000

100 101 102 103 104 105 106

N
um

be
rS

ol
ve

d

Runtime (ms)

Subgraph Isomorphism Instances

CP FC

Clique

k↓

Split

Split↓

Sp
lit
↓

N
od

es

k↓ Nodes

Subgraph Isomorphism Instances

100

102

104

106

108

1010

100 102 104 106 108 1010
100

102

104

106

108

1010

100 102 104 106 108 1010
0

1

10

≥ 102

Figure 7.17: On the left, cumulative number of instances solved in under a certain time. On
the right, search space size comparisons between the splitting and k↓ algorithms.

of magnitude faster than the conventional constraint programming model, whilst performing
similar amounts of work to the forward-checking algorithm (shown in the right-hand column;
the slight reduction in work is due to the dual viewpoint value-ordering heuristics).

The algorithm is similarly strong on the large subgraph isomorphism instances, when
adapted to use a top-down iteration method similar to that of k↓. We show these results in
Figure 7.17. However, on these instances, the heatmap shows a more interesting picture:
although this approach is often fastest, it does not benefit from the additional constraints
and variable filtering available to the k↓ algorithm, it often does much more work, and it is
sometimes much worse on an instance by instance basis.

Finally, there are many kinds of constraint which this approach cannot handle at all, since
they would violate the disjoint domains assumption. For example, we could not incorporate
the additional constraints and filtering available to the k↓ algorithm. Nor could we adapt this
technique for the non-induced k-less problem. However, it can be adapted to find maximum
common connected subgraphs to great effect, as shown in Figure 7.18: again, it vastly
outperforms the conventional constraint programming implementations.

7.6 Parallel Search

The results so far suggest there are three promising but very different approaches for maximum
common (connected) subgraph problems: depending upon the orders of the graphs, and
whether they have labels, we may wish to use clique-based models (Sections 7.2 and 7.3.3),
k-less subgraph isomorphism (Section 7.4), or the splitting algorithm (Section 7.5). We now
investigate whether these approaches can be parallelised. We should perhaps not expect to be
successful—Minot, Ndiaye, and Solnon (2015) suggest that decomposition for “embarrasingly
parallel search” style parallelism (Malapert, Régin, and Rezgui, 2016) is very difficult for

7.6. PARALLEL SEARCH 201

8140

0

1000

2000

3000

4000

5000

6000

7000

100 101 102 103 104 105 106

N
um

be
rS

ol
ve

d

Runtime (ms)

33% Labelled Connected

Clique
Split
CP MAC Both

4110

0

500

1000

1500

2000

2500

3000

3500

100 101 102 103 104 105 106

N
um

be
rS

ol
ve

d

Runtime (ms)

Unlabelled

Clique

Split

CP FC Both

Figure 7.18: Cumulative numbers of maximum common connected subgraph instances
solved in under a certain time, for labelled and unlabelled instances.

these problems.

For the clique model, we use the method described in Chapter 3. This technique applies
identically in the connected case (Algorithm 7.1). Preliminary experiments suggested that, as
for some of the maximum k-clique instances in Chapter 4, a splitting depth of 3 would lead to
work balance problems, so we use a depth of 5. As before, we explicitly steal from highest in
the search tree first, to introduce diversity into the search.

For the k-less algorithm, we follow the same process as in Chapter 5, using parallelism
to help solve each value of k in turn (rather than exploring different values of k in parallel).
Recall that the key idea is to proceed with execution as normal, but to use threads to pre-
compute future iterations of the value assignment foreach loop (line 16 in Algorithm 7.2),
and to terminate search globally when a solution is found. Also recall that helper threads can
themselves be helped (which is necessary for work balance), and that parallelism is again
tailored to offset weak early branching choices. We also parallelise the neighbourhood degree
sequence and supplemental graph initialisation steps, using routine parallel loops.

For the splitting algorithm, things are not so simple: although it is a branch and bound
algorithm with a strong constraint programming flavour, it makes heavy use of in-place,
backtrackable data structures, and does not copy state between recursive calls. This is
important from a performance perspective, particularly when one of the graphs is large—
unconditionally copying data leads to more than a factor of ten slowdown for some instances.
We therefore adopt a slightly different approach for parallelising the value-assignment for
loop: before the loop, we make a single copy of inplace data structures. The active thread then
proceeds as normal. To allow for parallelism, whenever a helper thread starts pre-computing
future items in the foreach loop, it makes its own copies of the copies, and replays the entire
foreach loop but skipping any recursive calls which have already been made. This somewhat
reduces the overhead penalties compared to unconditional copying; to further reduce the costs,

202 CHAPTER 7. MAXIMUM COMMON SUBGRAPH PROBLEMS

we limit parallelism to a depth of 5 in the search tree, and use a non-copying search below that.
Otherwise, we follow the same approach as before: for the regular algorithm, we parallelise
the search and share an incumbent, and for the descending algorithm we use parallelism to
accelerate search rather than to consider different decision problems simultaneously.

7.6.1 Experimental Results

Cumulative performance plots comparing each parallel algorithm to its sequential version
are given in Figure 7.19, using 32 threads on 16 core hyper-threaded Intel Xeon E5-2640
v2 systems. The results are consistent: in each case the parallel algorithm is clearly and
substantially better than its sequential version, except when the sequential runtime is below
100 milliseconds.

Figure 7.20 gives instance-by-instance comparisons for a representative subset of these
algorithm and problem combinations. For the clique algorithm on unlabelled graphs (top left),
the results show fairly consistent speedups for harder instances: there is only a single instance
whose sequential runtime is over two seconds where we obtain a speedup of less than ten.
We also see a significant number of superlinear speedups. Referring back to the discussion
in Chapter 3, this is because there are relatively long proofs of optimality for most of the
harder instances, but strong solutions are usually found quickly (and where they are not, the
additional diversity helps). The results are similarly positive on labelled graphs (centre left),
with speedups of greater than ten being the norm for harder instances, although there is more
variety in the results.

For k↓ on the unlabelled maximum common subgraph instances (top centre), the typical
speedup is between two and ten, and occasionally there are speedups of between ten and one
hundred. A few instances show small slowdowns: remember that when running 32 threads
on a 16 core, hyper-threaded system, each individual thread runs somewhat slower than it
would if only a single thread were running—in other words, these slight slowdowns are due
to hardware effects, not changes to the search tree.

On the larger subgraph isomorphism instances (bottom left), we see a concentration of
speedups of around ten. We also see strongly superlinear speedups in some cases, with eight
instances finishing in under one second which timed out sequentially at one thousand seconds.
Examining these instances closely shows that in each case, they are satisfiable with either
k = 0 or very low values of k, and that the superlinear speedups are due to the parallel search
introducing early diversity, offsetting an incorrect initial value-ordering heuristic choice.
We also see more instances with slight absolute slowdowns: these are instances where the
additional threads contribute no helpful work to the solution, and where the slowdown due
to not having 32 times as many resources when using 32 threads is particularly pronounced
(memory contention is much more of a problem for these larger graphs). Although not ideal,
in aggregate these results are rare and are more than offset by the superlinear speedups for

7.6. PARALLEL SEARCH 203

8140

0

1000

2000

3000

4000

5000

6000

7000

100 101 102 103 104 105 106

N
um

be
rS

ol
ve

d

Runtime (ms)

33% Vertex Labelled

Clique
Split

4110

0

500

1000

1500

2000

2500

3000

3500

100 101 102 103 104 105 106

N
um

be
rS

ol
ve

d

Runtime (ms)

Unlabelled

Clique
k↓

Split

8140

0

1000

2000

3000

4000

5000

6000

7000

100 101 102 103 104 105 106

N
um

be
rS

ol
ve

d

Runtime (ms)

33% Labelled

Clique
Split

4110

0

500

1000

1500

2000

2500

3000

3500

100 101 102 103 104 105 106

N
um

be
rS

ol
ve

d

Runtime (ms)

Unlabelled Connected

Clique
Split

8140

0

1000

2000

3000

4000

5000

6000

7000

100 101 102 103 104 105 106

N
um

be
rS

ol
ve

d

Runtime (ms)

33% Labelled Connected

Clique
Split

5725

0

1000

2000

3000

4000

5000

100 101 102 103 104 105 106

N
um

be
rS

ol
ve

d

Runtime (ms)

Subgraph Isomorphism Instances

k↓
Split↓

Figure 7.19: The cumulative number of instances solved in under a certain time, comparing
sequential (solid lines) and parallel (dotted lines) algorithms, for six different families of
maximum common (connected) subgraph problems. All experiments use 32 threads on a 16
core, hyper-threaded system.

204 CHAPTER 7. MAXIMUM COMMON SUBGRAPH PROBLEMS
Pa

ra
lle

lC
liq

ue
R

un
tim

e
(m

s)

Sequential Clique Runtime (ms)

Unlabelled

100

102

104

106

100 102 104 106
100

102

104

106

100 102 104 106

Pa
ra

lle
lk

↓
R

un
tim

e
(m

s)

Sequential k↓ Runtime (ms)

Unlabelled

100

102

104

106

100 102 104 106
100

102

104

106

100 102 104 106

Pa
ra

lle
lS

pl
it

R
un

tim
e

(m
s)

Sequential Split Runtime (ms)

Unlabelled

100

102

104

106

100 102 104 106
100

102

104

106

100 102 104 106

Pa
ra

lle
lC

liq
ue

R
un

tim
e

(m
s)

Sequential Clique Runtime (ms)

33% Labelled

100

101

102

103

104

105

106

100 101 102 103 104 105 106
100

101

102

103

104

105

106

100 101 102 103 104 105 106

Pa
ra

lle
lS

pl
it

R
un

tim
e

(m
s)

Sequential Split Runtime (ms)

33% Labelled

100

101

102

103

104

105

106

100 101 102 103 104 105 106
100

101

102

103

104

105

106

100 101 102 103 104 105 106

Pa
ra

lle
lk

↓
R

un
tim

e
(m

s)

Sequential k↓ Runtime (ms)

Subgraph Isomorphism Instances

100

101

102

103

104

105

106

100 101 102 103 104 105 106
100

101

102

103

104

105

106

100 101 102 103 104 105 106

Pa
ra

lle
lS

pl
it↓

R
un

tim
e

(m
s)

Sequential Split↓ Runtime (ms)

Subgraph Isomorphism Instances

100

101

102

103

104

105

106

100 101 102 103 104 105 106
100

101

102

103

104

105

106

100 101 102 103 104 105 106

Figure 7.20: The benefits of parallelism, for different sets of problem instances and for
different algorithms. All experiments use 32 threads on a 16 core, hyper-threaded system;
points below the top diagonal line indicate a speedup, and the lower diagonal line is a sixteen
times speedup.

7.6. PARALLEL SEARCH 205

other instances.

What about the splitting algorithm? On unlabelled instances (top right), our speedups
are typically between those obtained from the clique algorithm and those from k↓, being
mainly a little below ten times. However, in some cases we see absolute slowdowns of up
to four times: in these cases, parallelism does little, and is not enough to offset the costs
we paid when switching from an in-place data structure to a data structure which requires
copying. Interestingly, we also see many more superlinear speedups for this algorithm, which
suggests that its value ordering heuristics are particularly poor early-on in search. (This last
point is not particularly surprising: compared to k↓, the splitting algorithm does not try to
reduce domains at all at the top of search. The clique encoding, meanwhile, is able to capture
even richer information about variable-value relationships. The splitting algorithm is fast, but
comparatively stupid.)

Similar trends occur with the subgraph isomorphism instances (bottom right), and the
absolute slowdowns go as high as a factor of ten—this is on instances with particularly large
target graphs, where copying is most expensive, and where there is a high branching factor at
the root of the search tree. Again, superlinear speedups are common.

On labelled instances (centre right), the parallel performance is less erratic. Although
we no longer see absolute slowdowns (excluding on very easy instances), we also see fewer
superlinear speedups, with most speedups being between one and ten. In many of these
instances, parallelism does very little: restricting splitting to a depth of five in these cases
gives work balance problems, but does help us avoid the substantial overheads that come with
deeper splitting. This is because the search trees for these instances tend to have a very low
branching factor—in constraint programming terms, the labels make each domain contain
only a few values.

Figures 7.19 and 7.20 show that for all three algorithms, parallel search is beneficial,
and also (reasonably) risk-free: although in a few cases the constant factor slowdowns due
to hardware limitations and having to make changes to data structures are unpleasant, we
do not encounter any exponential slowdowns due to search tree changes. But what about
reproducibility and scalability? Further experiments in Figure 7.21 establish that both of
these properties also hold. In the left-hand column, we plot each algorithm run against itself,
using 32 threads in both cases. For the clique and k↓ approaches, every instance is on the
central diagonal line, showing an extremely high level of reproducibility. For the splitting
algorithm, there is a little more variability, particularly for easier instances: inspecting the
results suggests that this is not down to different amounts of search work being performed,
but rather whether or not helper threads end up triggering additional copying.

In the right-hand column of Figure 7.21, we plot the effects of moving from 8 threads
(on the same system) to 32 threads. Points below the diagonal line indicate an improvement.
For the clique approach, increasing the number of threads is unequivocally beneficial. For

206 CHAPTER 7. MAXIMUM COMMON SUBGRAPH PROBLEMS
Se

co
nd

32
T

hr
ea

d
C

liq
ue

R
un

tim
e

(m
s)

First 32 Thread Clique Runtime (ms)

Unlabelled

100

101

102

103

104

105

106

100 101 102 103 104 105 106
100

101

102

103

104

105

106

100 101 102 103 104 105 106

32
T

hr
ea

d
C

liq
ue

R
un

tim
e

(m
s)

8 Thread Clique Runtime (ms)

Unlabelled

4×

100

101

102

103

104

105

106

100 101 102 103 104 105 106
100

101

102

103

104

105

106

100 101 102 103 104 105 106

Se
co

nd
32

T
hr

ea
d
k
↓

R
un

tim
e

(m
s)

First 32 Thread k↓ Runtime (ms)

Unlabelled

100

101

102

103

104

105

106

100 101 102 103 104 105 106
100

101

102

103

104

105

106

100 101 102 103 104 105 106

32
T

hr
ea

d
k↓

R
un

tim
e

(m
s)

8 Thread k↓ Runtime (ms)

Unlabelled

4×

100

101

102

103

104

105

106

100 101 102 103 104 105 106
100

101

102

103

104

105

106

100 101 102 103 104 105 106

Se
co

nd
32

T
hr

ea
d

Sp
lit
↓

R
un

tim
e

(m
s)

First 32 Thread Split↓ Runtime (ms)

Unlabelled

100

101

102

103

104

105

106

100 101 102 103 104 105 106
100

101

102

103

104

105

106

100 101 102 103 104 105 106

32
T

hr
ea

d
Sp

lit
↓

R
un

tim
e

(m
s)

8 Thread Split↓ Runtime (ms)

Unlabelled

4×

100

101

102

103

104

105

106

100 101 102 103 104 105 106
100

101

102

103

104

105

106

100 101 102 103 104 105 106

Figure 7.21: Parallel search is reproducible and scalable, as well as risk-free and beneficial. In
the left-hand column, we compare each of the three parallel algorithms against a repeated run
with the same parameters, on the unconnected, unlabelled instances (points on the diagonal
line show reproducibility of runtimes). In the right-hand column, we compare going from 8
threads to 32 threads (points below the diagonal line are an improvement). All experiments
are on a 16 core, hyper-threaded system.

7.7. CONCLUSION 207

the k↓ algorithm, the benefits are slim, and sometimes performance worsens slightly due to
memory contention (not work done) but we do not see any exponential slowdowns. Finally,
for the splitting algorithm, the results are usually strictly better, although in a few cases the
overheads increase further giving a slowdown; we also see an increase in the occurrence of
strongly superlinear speedups.

It is likely that the parallel results for the splitting algorithm can be improved further. In
the labelled case, we are often not obtaining a good work balance. However, deeper splitting
is expensive, particularly with larger graphs. One option to consider would be recomputing
parts of the search tree to avoid the costs of potentially allowing a copy in the future. This
would be extremely unpleasant from an implementation perspective, but may be necessary to
obtain more even results. However, even without this change, the parallel algorithm is clearly
preferable to the sequential one.

7.7 Conclusion

We looked at two established and two new ways of solving the maximum common subgraph
problem. Contradicting earlier claims in the literature, we have seen that a modern clique
algorithm can perform competitively for maximum common subgraph problems, particularly
when vertex or edge labels are involved. There may be futher scope for tailoring clique
algorithms for these kinds of problem instance—for example, the first vertex selected has
unusually strong filtering power in these instances, so it may be worth treating it specially
(Suters et al., 2005). Better initial vertex orderings, and a bound functions which is aware that
it is working on an association graph, may also be beneficial.

A deeper understanding of the colour bound’s behaviour would be beneficial, since many
of these instances appear to have unusually long proofs of optimality. The clique bound
is potentially stronger than the soft all-different bound, since it can capture (the lack of)
relationships between values in different domains. However, it can also severely misbehave.
Not only does it sometimes produce colourings using more colours than there are variables in
the constraint programming model, but it can produce colourings which remain too large at
every level of branching (as an example, consider a greedy colouring on the association graph
of a graph with no edges, and a graph with one edge).

However, we also saw that the association graph encoding was much too large to be prac-
tical for many instances which we would like to solve; conventional constraint programming
models also struggle at this size. We therefore discussed two new approaches to the problem.

By considering a restricted variation of the problem, we have been able to go some of the
way towards tackling the maximum common subgraph problem on much larger graphs than
have previously been possible. We saw that some invariants from the subgraph isomorphism
problem can still be used, albeit in a weakened form, with considerable effect when a small

208 CHAPTER 7. MAXIMUM COMMON SUBGRAPH PROBLEMS

number of vertices can be removed. We have by no means cracked the problem completely—
these results are still far from where we would like them to be for use in real-world applications,
and many instances remain open. However, for many of the open instances we are at least
able to get upper bounds on the result for the first time.

We also had a first look at a promising forthcoming approach, which emulates the con-
straint programming algorithm, but using in-place data structures which exploit special
structure present in domains for much faster propagation and reduced memory usage. Such
an approach can explore the search space very quickly, making it strong in aggregate, but in
individual cases it is often beaten by the k-less approach. The experimental results suggest
there is work to be done in combining these two approaches, starting with the k-less algorithm,
and switching to the splitting algorithm (or the clique algorithm) when k-less is no longer
beneficial.

We do not have a clear picture of what makes maximum common subgraph instances
hard: having a relatively large solution certainly seems to help, as do vertex labels, but other
factors appear not to be useful in predicting runtimes. Our answers for this question are
less definitive than in previous chapters, which raises an interesting question: are maximum
common subgraph problems genuinely different in their difficulties, or are existing algorithms
still unnecessarily weak on certain classes of instance?

We also looked at the maximum common connected subgraph problem. We introduced
a novel clique-like algorithm, seeing how to adapt the combined bound and branching
rule to this new setting; this clique-like algorithm performed particularly well on labelled
instances. For constraint programming models, we looked at using a branching rule for
maintaining connectedness during search, rather than simply as an ordering heuristic. This is
unconventional and does not cleanly fit into the abstractions used by toolkits. However, we
saw that combining conventional filtering and the special branching rule was beneficial.

There are other variants of the problem. We have yet to investigate partial (i.e. non-
induced) or weighted graphs. Nor do we know a good way to find strongly connected common
subgraphs—this would make the branching approach impossible, and filtering would be much
more complicated. More generally, both the clique encoding and the splitting algorithm have
limitations on the kinds of side constraints which they could support, whereas the conventional
constraint programming and k-less algorithms do not. For example, restrictions on which
vertices may or may not be removed, similar to the approach of Zampelli, Deville, and Dupont
(2005), may require reverting to a weaker starting algorithm.

Our main goal of the chapter, however, was to introduce parallelism. This was a success:
not only is the parallel algorithm clearly better overall than the best sequential algorithm in
each case, but it is almost always better on an instance-by-instance basis (except for very
easy instances with short sequential runtimes). This is despite overheads from changes to
the algorithm design, and hardware complications like hyper-threading and limited memory

7.7. CONCLUSION 209

bandwidth. Furthermore, we saw that our parallel runtimes are reproducible, that increasing
the number of threads does not introduce an exponential slowdown, and that we can use the
interaction between work splitting and value ordering heuristics to our advantage. This is
particularly significant, since simpler techniques like embarassingly parallel search (which
does not provide these basic performance guarantees, let alone give a controlled interaction
with value-ordering heuristics) behave poorly on these problems.

210

211

Chapter 8

Conclusion

This thesis has improved the state of the art in exact, practical algorithms for three families of
hard subgraph problem: maximum clique, subgraph isomorphism, and maximum common
subgraph. In each case, the results are then further improved by the use of parallel search to
exploit the multiple cores present in every modern processor.

However, the most interesting parts of this work are not the faster algorithms we introduced.
Rather, by combining careful thought and detailed experiments, we have achieved a deeper
understanding of why these sequential and parallel algorithms behave the way they do, and
this understanding has implications for problems beyond those considered in this thesis. We
therefore conclude by reflecting upon the relationships between empirical hardness, heuristics,
and parallelism, and considering the broader implications of our results.

8.1 Are Hard Subgraph Problems Hard?

Despite all these problems being NP-hard, for clique and subgraph isomorphism we were
able to work with graphs with thousands of vertices. In an attempt to explain why we were
so successful, we looked in detail at the behaviour of random instances for these problems.
By generating instances close to a satisfiable / unsatisfiable phase transition, we were able
to create small, really hard instances, and reassure ourselves that these algorithms could
exhibit exponential behaviour. For clique and non-induced subgraph isomorphisms, we saw
behaviour similar to that of other NP-complete problems. However, in Chapter 6 we saw that
for induced subgraph isomorphisms, constrainedness and “closeness to a phase transition”
gave very different predictions, with constrainedness matching empirical observations.

For common subgraph problems it is less clear whether similar behaviour occurs: although
having many labels and a large solution makes instances reasonably easy, in general every
approach struggles even with relatively small input graphs.

The primary goal of these algorithms is not to solve random instances, although as we
discussed in Chapter 1 and demonstrated in Chapters 2 and 6, experiments on large families

212 CHAPTER 8. CONCLUSION

of random instances can be helpful as a way of improving algorithm design. Hence we also
experimented with real-world and other commonly-used sets of problem instances, which
we argued were of varying levels of quality. For the maximum clique problem, the standard
DIMACS instances exhibit a range of interesting properties, but there are not very many
of them, which can lead to overfitting in algorithm design. The most widely-used suite for
subgraph isomorphism is much larger, but uses synthetic data which is supposed to mimic
real-world properties. We saw in Chapter 6 that use of this dataset can lead to extremely
misleading conclusions. This is unfortunate: both clique and subgraph isomorphism are used
in many papers and practical applications for a huge range of problems, but problem instances
are rarely published. We therefore view Solnon’s (2016) growing collection of subgraph
isomorphism instances as particularly valuable, and would encourage others to contribute to
it.

8.2 Lessons from Constraint Programming

Constraint programming toolkits have not appeared in this thesis (although they were used for
preliminary experiments during development, as a sanity check on more complex algorithms).
Despite this, almost every algorithm we discussed was either explicitly influenced by con-
straint programming, or has been better understood by reinterpreting it using language from
constraint programming.

The first algorithm we discussed was for the maximum clique problem, in Chapter 2.
This algorithm performs a combination of (very simple) inference and backtracking search,
but its combined branching and bounding rule does not fit into the traditional constraint
programming paradigm. This rule was also not understood, even by its inventors: our
experiments demonstrated that the claimed reasons for its success were entirely false. By
rephrasing this rule in terms of variables and ordering heuristics, we saw that it was a surrogate
for the well-known “smallest domain first” heuristic (albeit with a different set of variables at
each level of search). Although exploiting this knowledge only allowed us to obtain at-best
marginal performance gains, the understanding is still useful, and should help inform future
improvements to this family of algorithms.

The subgraph isomorphism algorithm we introduced in Chapter 5 is more obviously a
constraint programming algorithm: it features domains, explicit variable- and value-ordering
heuristics, and propagators. The domains are stored using bitsets, and the adjacency con-
straints are propagated using bit-parallel operations rather than sequentially. The choice of a
bit-parallel all-different propagator rather than achieving generalised arc consistency is not
standard, but is justified experimentally. There is also no constraint propagation queue, since
a fixed ordering is possible. Together, these design choices meant that using a dedicated
algorithm rather than a toolkit is not simply a matter of a small performance boost.

8.3. PERSPECTIVES ON PARALLEL SEARCH 213

For the maximum common subgraph problem from Chapter 7, the CP and k↓ algorithms
are similarly inspired by constraint programming. The splitting algorithm, meanwhile, carries
out the same inference and search, but using different data structures for domain stores, and
unusual propagation algorithms. Similarly, the restricted branching rule we used to maintain
connectedness does not fit cleanly into the way propagation and heuristics are usually separated
in constraint programming toolkits, although constraint programming terminology makes the
rule relatively easy to explain (at least compared to the version appearing in the clique-inspired
algorithm).

Finally, the use of constraint programming as an aid to enlightenment was not limited
to helping us understand and improve algorithms. It also helped us to identify problems in
the design of larger systems: the second half of Chapter 6 highlights the need for constraints
research to inform the redesign of graph databases, despite constraints technology not being
used directly in these systems.

8.3 Perspectives on Parallel Search

Each of the algorithms in this thesis comes in a thread-parallel version, and in each case the
parallel version is clearly the better choice. By this, we do not just mean that the parallel
version is fastest. Instead, we mean that parallelism is not a risky choice: we can unequivocally
state that enabling or increasing parallelism is not going to make things exponentially worse.
Nor does opting for parallelism introduce new complications with reproducibility—although
possibly less important for regular end users, for developers and scientists this factor can be
critical.

Indeed, we believe that without these guarantees, parallel search cannot reasonably become
the default for an optimisation toolkit. We therefore encourage researchers to think about
these properties, and to see whether they hold both in theory and in practice when proposing
new parallelisation mechanisms. We do not claim that doing so will be easy—indeed, it
may be that such guarantees cannot be provided for many modern sequential algorithms. In
Chapter 4 we saw that multi-objective optimisation could theoretically cause problems in this
respect (although we did not witness them in practice, and in this case enforcing injectivity on
the objective function would suffice to work around the problem, albeit with a potential loss of
superlinear speedups). Weighted heuristics cause similar theoretical difficulties, and detailed
experiments would be needed to establish whether these problems are common in practice.
And unfortunately, it appears that learning solvers might be fundamentally incompatible with
any kind of parallelism guarantee.

In our experiments, superlinear speedups were reasonably common. In Chapter 3 we
justified why this is not unexpected: although we have value-ordering heuristics which are
quite good most of the time for these graph problems, they ultimately use degree information,

214 CHAPTER 8. CONCLUSION

and so are particularly weak at the top of search. One could certainly argue that these
algorithms should therefore use something other than plain backtracking search, although
discrepancy searches introduce considerable overheads. Instead, we have seen that using
parallelism to introduce diversity tends to be successful in finding strong solutions faster,
without adding cost to optimality proofs. Critical to this success is controlling the interaction
between work splitting and value-ordering heuristics: given the extensive research into
ordering heuristics in constraint programming, it is not surprising that systems which ignore
these effects are limited to enumeration problems and certain optimisation problems with a
high solution density.

8.4 Implementing Parallelism

But if you want your application to benefit from the continued exponential through-

put advances in new processors, it will need to be a well-written concurrent (usually

multithreaded) application. And that’s easier said than done, because not all prob-

lems are inherently parallelizable and because concurrent programming is hard.

Sutter (2005)

Our experience from this thesis has been that implementing parallelism properly is hard.
It requires deep and intrusive coupling with the algorithm, and can increase the amount of
code needed by as much as an order of magnitude. This coupling has thus-far prevented us
from separating parallel search mechanisms into a library: we found, for example, that each
of the algorithms in Chapter 7 required subtle but important differences in how parallel search
was implemented due to differing assumptions in the underlying sequential algorithms.

Now that we have spent time identifying the aspects which are most important for success,
we hope that parallelism and programming languages researchers will be able to do more to
help simplify this process. We found the high-level mechanisms offered by Intel Cilk Plus
to be very convenient as a starting point for some algorithms, but not others: these subtle
and important differences can mean the difference between Cilk being trivial to introduce or
effectively impossible. The use of Cilk can also require introducing overheads and speculative
copying for potential parallelism which may never be exploited. The costs of doing so are
variable, and are both algorithm- and instance-dependent, ranging from negligible (in the
clique case for small graphs) to over a factor of four (for large instances in the splitting
maximum common subgraph case). Cilk’s work stealing strategy is also hard-coded, and is
not aware of value-ordering heuristics—although current implementations which steal early
tend to give good diversity by a happy coincidence.

Cilk is limited to multi-core systems, and is not designed for distributed parallelism.
Our experience is that high-level distributed systems like MPI are designed primarily for

8.5. FUTURE DIRECTIONS 215

parallel loops and similar computations which occur when solving differential equations, and
that they struggle with highly irregular task parallelism. We continue to dream of a simple,
non-intrusive task parallelism system which works at any scale, from trivial instances on a
multi-core desktop up to supercomputers, which can solve the unnecessary copying problem,
and which offers programmer control over the work distribution strategy.

8.5 Future Directions

We have seen the benefits that constraint programming and artificial intelligence technologies
can bring to subgraph solving. We conclude this conclusion with a brief discussion of three
pieces of work which we intend to carry out next, which if successful, could contribute
knowledge back to the constraint programming community.

The unexpected success of the clique encoding for the maximum common subgraph
problem in Chapter 7 suggests that it may be worth revisiting microstructure as a practical
way of solving some other constraint problems. Because the objective function was, in effect,
a 0/1-weighted scalar product over assignments, we could reformulate the maximum common
subgraph problem as a maximum clique problem, rather than as a sequence of clique decision
problems. We have not discussed the maximum weight clique problem in this thesis, but
supporting weights would relax the 0/1 restriction and give more flexibility in this direction.
It is also likely possible to tailor clique algorithms further for this application, by exploiting
the special structure of microstructure graphs—for example, understanding which vertices
correspond to which variables could improve the colour bound.

However, microstructure encodings can be very memory-intensive, and cannot easily be
used for constraints that do not have a straightforward binary decomposition. In Chapters 4
and 7 we looked at integrating additional constraints into an augmented clique algorithm
instead. Although effective in these two cases, the interaction with the bound was non-trivial,
and it is not clear when else such an approach might be fruitful.

We also intend to continue our attempts to integrate learning into a subgraph solver. As
well as the potential for direct performance benefits, this would pave the way for subgraph

modulo theories problems. A hybrid system involving a learning subgraph algorithm commu-
nicating with a constraint programming or mixed integer solver could deliver the strengths of
both approaches, combining the flexibility of a general-purpose solver with the performance
and scalability of dedicated subgraph algorithms. Hybrid solving could also broaden the
appeal of a microstructure solver, allowing a clique algorithm to handle a subset of variables
and constraints whilst leaving the remainder of the problem to conventional propagators.

Finally, Chapters 2 and 6 suggest that we still do not fully understand variable- and
value-ordering heuristics, particularly for optimisation problems. We believe that more
research into the empirical hardness of subgraph problems would be helpful. For example,

216 CHAPTER 8. CONCLUSION

we have started to repeat the experiments in Chapter 6 using k-regular and scale-free random
models. These models are ideal for experimental work, since they have a suitable number of
parameters to vary—not too many to be computationally infeasible or impossible to visualise,
but enough to uncover much richer behaviour than is seen in single-parameter phase transition
experiments. Preliminary experiments with weighted maximum clique algorithms, where both
densities and weight distributions can be varied, suggest a similar story: there is a complex
interaction between the parameters, and this affects how heuristics should be designed (should
we branch based upon weight or degree?), but existing research cannot fully explain what
we see. Knowing how to design tailored maximum weight clique heuristics could have
broader implications: just as induced subgraph isomorphism can be viewed as solving two
non-induced subgraph isomorphism problems simultaneously, many real-world constraint
programming problems resemble a mix of two or more NP-hard problems.

217

References

Abello, James, Mauricio G. C. Resende, and Sandra Sudarsky (2002). “Massive Quasi-Clique
Detection”. In: LATIN 2002: Theoretical Informatics, 5th Latin American Symposium,

Cancun, Mexico, April 3-6, 2002, Proceedings. Ed. by Sergio Rajsbaum. Vol. 2286.
Lecture Notes in Computer Science. Springer, pp. 598–612. ISBN: 3-540-43400-3. DOI:
10.1007/3-540-45995-2_51 (cit. on p. 123).

Achlioptas, Dimitris, Michael S. O. Molloy, Lefteris M. Kirousis, Yannis C. Stamatiou,
Evangelos Kranakis, and Danny Krizanc (2001). “Random Constraint Satisfaction: A More
Accurate Picture”. In: Constraints 6.4, pp. 329–344. DOI: 10.1023/A:1011402324562
(cit. on p. 157).

Aho, Alfred V., David S. Johnson, Richard M. Karp, S. Rao Kosaraju, and Catherine C.
McGeoch (1996). Theory of computing: Goals and directions. Special Report of the
National Science Foundation of the USA (cit. on p. 13).

Aisch, Gregor (2013). Mastering Multi-hued Color Scales with Chroma.js. URL: https :
//www.vis4.net/blog/posts/mastering-multi-hued-color-scales/ (visited on March 31,
2017) (cit. on p. 16).

Akiba, Takuya and Yoichi Iwata (2016). “Branch-and-reduce exponential/FPT algorithms in
practice: A case study of vertex cover”. In: Theor. Comput. Sci. 609, pp. 211–225. DOI:
10.1016/j.tcs.2015.09.023 (cit. on pp. 18, 60).

Akutsu, Tatsuya and Takeyuki Tamura (2013). “A Polynomial-Time Algorithm for Computing
the Maximum Common Connected Edge Subgraph of Outerplanar Graphs of Bounded
Degree”. In: Algorithms 6.1, pp. 119–135. DOI: 10.3390/a6010119 (cit. on p. 179).

Anton, Cǎlin and Lane Olson (2009). “Generating Satisfiable SAT Instances Using Random
Subgraph Isomorphism”. In: Advances in Artificial Intelligence. Ed. by Yong Gao and
Nathalie Japkowicz. Vol. 5549. Lecture Notes in Computer Science. Springer Berlin
Heidelberg, pp. 16–26. ISBN: 978-3-642-01817-6. DOI: 10.1007/978-3-642-01818-3_5
(cit. on p. 145).

Araujo Tavares, Wladimir (2016). “Algoritmos exatos para problema da clique maxima
ponderada”. Portugese. PhD thesis. Universidade Federal do Cearà (cit. on p. 59).

218 REFERENCES

Archibald, Blair, Ciaran McCreesh, Patrick Maier, Rob Stewart, and Phil Trinder (2017).
“Replicable Parallel Branch and Bound Search”. In: CoRR abs/1703.05647 (cit. on p. 90).

Audemard, Gilles, Christophe Lecoutre, Mouny Samy Modeliar, Gilles Goncalves, and Daniel
Cosmin Porumbel (2014). “Scoring-Based Neighborhood Dominance for the Subgraph
Isomorphism Problem”. In: Principles and Practice of Constraint Programming - 20th

International Conference, CP 2014, Lyon, France, September 8-12, 2014. Proceedings. Ed.
by Barry O’Sullivan. Vol. 8656. Lecture Notes in Computer Science. Springer, pp. 125–
141. ISBN: 978-3-319-10427-0. DOI: 10.1007/978-3-319-10428-7_12 (cit. on pp. 125,
133, 134, 192).

Audemard, Gilles and Laurent Simon (2014). The Glucose SAT Solver (cit. on p. 154).

Bacchus, Fahiem and Adam J. Grove (1995). “On the Forward Checking Algorithm”. In: Prin-

ciples and Practice of Constraint Programming - CP’95, First International Conference,

CP’95, Cassis, France, September 19-22, 1995, Proceedings. Ed. by Ugo Montanari and
Francesca Rossi. Vol. 976. Lecture Notes in Computer Science. Springer, pp. 292–308.
ISBN: 3-540-60299-2. DOI: 10.1007/3-540-60299-2_18 (cit. on p. 169).

Backofen, Rolf and Sebastian Will (2002). “Excluding Symmetries in Constraint-Based
Search”. In: Constraints 7.3-4, pp. 333–349. DOI: 10.1023/A:1020533821509 (cit. on
p. 118).

Bader, David A., William E. Hart, and Cynthia A. Phillips (2005). “Parallel Algorithm Design
for Branch and Bound”. In: Tutorials on Emerging Methodologies and Applications in

Operations Research. Ed. by HJ. G. Vol. 76. International Series in Operations Research
& Management Science. New York, NY, USA: Springer New York. Chap. 5, pp. 1–44.
ISBN: 978-0-387-22826-6. DOI: 10.1007/0-387-22827-6_5 (cit. on p. 66).

Bahiense, Laura, Gordana Manic, Breno Piva, and Cid C. de Souza (2012). “The maxi-
mum common edge subgraph problem: A polyhedral investigation”. In: Discrete Applied

Mathematics 160.18, pp. 2523–2541. DOI: 10.1016/j.dam.2012.01.026 (cit. on p. 174).

Balas, Egon and William Niehaus (1993). “Finding large cliques in arbitrary graphs by
bipartite matching”. In: Cliques, Coloring, and Satisfiability, Proceedings of a DIMACS

Workshop, New Brunswick, New Jersey, USA, October 11-13, 1993. Ed. by David S.
Johnson and Michael A. Trick. Vol. 26. DIMACS Series in Discrete Mathematics and
Theoretical Computer Science. DIMACS/AMS, pp. 29–52 (cit. on p. 30).

Balas, Egon and Jue Xue (1996). “Weighted and Unweighted Maximum Clique Algorithms
with Upper Bounds from Fractional Coloring”. In: Algorithmica 15.5, pp. 397–412. DOI:
10.1007/BF01955041 (cit. on p. 57).

Balas, Egon and Chang Sung Yu (1986). “Finding a Maximum Clique in an Arbitrary Graph”.
In: SIAM J. Comput. 15.4, pp. 1054–1068. DOI: 10.1137/0215075 (cit. on p. 175).

REFERENCES 219

Balasundaram, Balabhaskar and Sergiy Butenko (2006). “Graph Domination, Coloring and
Cliques in Telecommunications”. In: Handbook of Optimization in Telecommunications.
Ed. by Mauricio G. C. Resende and Panos M. Pardalos. Springer, pp. 865–890. ISBN:
978-0-387-30662-9. DOI: 10.1007/978-0-387-30165-5_30 (cit. on p. 45).

Balasundaram, Balabhaskar, Sergiy Butenko, and Svyatoslav Trukhanov (2005). “Novel
Approaches for Analyzing Biological Networks”. In: J. Comb. Optim. 10.1, pp. 23–39.
DOI: 10.1007/s10878-005-1857-x (cit. on p. 96).

Batagelj, Vladimir and Andrej Mrvar (2006). Pajek datasets. URL: http://vlado.fmf.uni-
lj.si/pub/networks/data/ (visited on March 31, 2017) (cit. on pp. 99, 114).

Batsyn, Mikhail, Boris Goldengorin, Evgeny Maslov, and Panos M. Pardalos (2014). “Im-
provements to MCS algorithm for the maximum clique problem”. In: J. Comb. Optim.

27.2, pp. 397–416. DOI: 10.1007/s10878-012-9592-6. (Cit. on pp. 43, 57–59, 90, 119).

Battiti, Roberto and Franco Mascia (2007). “An Algorithm Portfolio for the Sub-graph
Isomorphism Problem”. In: Engineering Stochastic Local Search Algorithms. Designing,

Implementing and Analyzing Effective Heuristics, International Workshop, SLS 2007,

Brussels, Belgium, September 6-8, 2007, Proceedings. Ed. by Thomas Stützle, Mauro
Birattari, and Holger H. Hoos. Vol. 4638. Lecture Notes in Computer Science. Springer,
pp. 106–120. ISBN: 978-3-540-74445-0. DOI: 10.1007/978-3-540-74446-7_8 (cit. on
pp. 145, 168).

Bergman, David, André A. Ciré, Ashish Sabharwal, Horst Samulowitz, Vijay A. Saraswat,
and Willem Jan van Hoeve (2014). “Parallel Combinatorial Optimization with Decision
Diagrams”. In: Integration of AI and OR Techniques in Constraint Programming - 11th

International Conference, CPAIOR 2014, Cork, Ireland, May 19-23, 2014. Proceedings.
Ed. by Helmut Simonis. Vol. 8451. Lecture Notes in Computer Science. Springer, pp. 351–
367. ISBN: 978-3-319-07045-2. DOI: 10.1007/978-3-319-07046-9_25 (cit. on pp. 59, 66).

Berman, Piotr and Andrzej Pelc (1990). “Distributed probabilistic fault diagnosis for multipro-
cessor systems”. In: Proceedings of the 20th International Symposium on Fault-Tolerant

Computing, FTCS 1990, Newcastle Upon Tyne, UK, 26-28 June, 1990. IEEE Computer
Society, pp. 340–346. ISBN: 0-8186-2051-X. DOI: 10.1109/FTCS.1990.89383. (Cit. on
p. 43).

Bessière, Christian and Jean-Charles Régin (1996). “MAC and Combined Heuristics: Two
Reasons to Forsake FC (and CBJ?) on Hard Problems”. In: Proceedings of the Second

International Conference on Principles and Practice of Constraint Programming, Cam-

bridge, Massachusetts, USA, August 19-22, 1996. Ed. by Eugene C. Freuder. Vol. 1118.
Lecture Notes in Computer Science. Springer, pp. 61–75. DOI: 10.1007/3-540-61551-2_66
(cit. on p. 127).

220 REFERENCES

Bessiere, Christian, Bruno Zanuttini, and Cèsar Fernàndez (2004). “Measuring Search Trees”.
In: Workshop on Modelling and Solving Problems with Constraints - ECAI’2004. Ed. by
Hnich B. and Walsh T. Workshop held in conjunction with the 16th European Conference
on Artificial Intelligence (ECAI 2004). Valencia, Spain: Hnich B., pp. 31–40 (cit. on
pp. 14, 34, 37).

Binstock, Andrew (2008). “Interview with Donald Knuth”. In: InformIT (cit. on p. 19).

Blindell, Gabriel Hjort, Roberto Castañeda Lozano, Mats Carlsson, and Christian Schulte
(2015). “Modeling Universal Instruction Selection”. In: Principles and Practice of Con-

straint Programming - 21st International Conference, CP 2015, Cork, Ireland, August

31 - September 4, 2015, Proceedings. Ed. by Gilles Pesant. Vol. 9255. Lecture Notes in
Computer Science. Springer, pp. 609–626. ISBN: 978-3-319-23218-8. DOI: 10.1007/978-
3-319-23219-5_42 (cit. on p. 125).

Bomze, Immanuel M., Marco Budinich, Panos M. Pardalos, and Marcello Pelillo (1999). “The
Maximum Clique Problem”. In: Handbook of Combinatorial Optimization: Supplement

Volume A. Ed. by Ding-Zhu Du and Panos M. Pardalos. Boston, MA: Springer US, pp. 1–
74. ISBN: 978-1-4757-3023-4. DOI: 10.1007/978-1-4757-3023-4_1 (cit. on pp. 43, 45).

Bonnici, Vincenzo, Rosalba Giugno, Alfredo Pulvirenti, Dennis Shasha, and Alfredo Ferro
(2013). “A subgraph isomorphism algorithm and its application to biochemical data”. In:
BMC Bioinformatics 14.7, S13. ISSN: 1471-2105. DOI: 10.1186/1471-2105-14-S7-S13
(cit. on p. 125).

Borland, D. and R. M. Taylor II (2007). “Rainbow Color Map (Still) Considered Harmful”.
In: IEEE Computer Graphics and Applications 27.2, pp. 14–17. ISSN: 0272-1716. DOI:
10.1109/MCG.2007.323435 (cit. on p. 16).

Bourjolly, Jean-Marie, Gilbert Laporte, and Gilles Pesant (2000). “Heuristics for finding
k-clubs in an undirected graph”. In: Computers & OR 27.6, pp. 559–569. DOI: 10.1016/
S0305-0548(99)00047-7 (cit. on p. 96).

Bourjolly, Jean-Marie, Gilbert Laporte, and Gilles Pesant (2002). “An exact algorithm for the
maximum k-club problem in an undirected graph”. In: European Journal of Operational

Research 138.1, pp. 21–28. DOI: 10.1016/S0377-2217(01)00133-3 (cit. on p. 96).

Brélaz, Daniel (1979). “New Methods to Color Vertices of a Graph”. In: Commun. ACM 22.4,
pp. 251–256. DOI: 10.1145/359094.359101. (Cit. on p. 56).

Brockington, Mark and Joseph C. Culberson (1993). “Camouflaging independent sets in
quasi-random graphs”. In: Cliques, Coloring, and Satisfiability, Proceedings of a DIMACS

Workshop, New Brunswick, New Jersey, USA, October 11-13, 1993. Ed. by David S.
Johnson and Michael A. Trick. Vol. 26. DIMACS Series in Discrete Mathematics and
Theoretical Computer Science. DIMACS/AMS, pp. 75–88. (Cit. on pp. 40, 62).

REFERENCES 221

Bron, Coenraad and Joep Kerbosch (1973). “Finding All Cliques of an Undirected Graph
(Algorithm 457)”. In: Commun. ACM 16.9, pp. 575–576 (cit. on pp. 60, 172, 198).

Brown, Kenneth. N., Patrick Prosser, J. Christopher Beck, and Christine Wei Wu (2005).
“Exploring the use of constraint programming for enforcing connectivity during graph
generation”. In: Proceedings IJCAI Workshop on Modelling and Solving Problems with

Constraints, Edinburgh, Scotland, pp. 26–31 (cit. on p. 180).

Bruschi, Danilo, Lorenzo Martignoni, and Mattia Monga (2006). “Detecting Self-mutating
Malware Using Control-Flow Graph Matching”. In: Detection of Intrusions and Mal-

ware & Vulnerability Assessment, Third International Conference, DIMVA 2006, Berlin,

Germany, July 13-14, 2006, Proceedings. Ed. by Roland Büschkes and Pavel Laskov.
Vol. 4064. Lecture Notes in Computer Science. Springer, pp. 129–143. ISBN: 3-540-
36014-X. DOI: 10.1007/11790754_8 (cit. on p. 125).

Bunke, Horst (1997). “On a relation between graph edit distance and maximum common
subgraph”. In: Pattern Recognition Letters 18.8, pp. 689–694. DOI: 10.1016/S0167-
8655(97)00060-3 (cit. on p. 171).

Bunke, Horst, Pasquale Foggia, C. Guidobaldi, Carlo Sansone, and Mario Vento (2002). “A
Comparison of Algorithms for Maximum Common Subgraph on Randomly Connected
Graphs”. In: Structural, Syntactic, and Statistical Pattern Recognition, Joint IAPR Inter-

national Workshops SSPR 2002 and SPR 2002, Windsor, Ontario, Canada, August 6-9,

2002, Proceedings. Ed. by Terry Caelli, Adnan Amin, Robert P. W. Duin, Mohamed S.
Kamel, and Dick de Ridder. Vol. 2396. Lecture Notes in Computer Science. Springer,
pp. 123–132. ISBN: 3-540-44011-9. DOI: 10.1007/3-540-70659-3_12 (cit. on p. 177).

Butenko, Sergiy and Wilbert E. Wilhelm (2006). “Clique-detection models in computational
biochemistry and genomics”. In: European Journal of Operational Research 173.1, pp. 1–
17. DOI: 10.1016/j.ejor.2005.05.026 (cit. on p. 45).

Caniou, Yves, Philippe Codognet, Daniel Diaz, and Salvador Abreu (2011). “Experiments in
Parallel Constraint-Based Local Search”. In: Evolutionary Computation in Combinatorial

Optimization - 11th European Conference, EvoCOP 2011, Torino, Italy, April 27-29, 2011.

Proceedings. Ed. by Peter Merz and Jin-Kao Hao. Vol. 6622. Lecture Notes in Computer
Science. Springer, pp. 96–107. ISBN: 978-3-642-20363-3. DOI: 10.1007/978-3-642-
20364-0_9 (cit. on p. 82).

Cao, Ning, Zhenyu Yang, Cong Wang, Kui Ren, and Wenjing Lou (2011). “Privacy-Preserving
Query over Encrypted Graph-Structured Data in Cloud Computing”. In: 2011 International

Conference on Distributed Computing Systems, ICDCS 2011, Minneapolis, Minnesota,

USA, June 20-24, 2011. IEEE Computer Society, pp. 393–402. ISBN: 978-0-7695-4364-2.
DOI: 10.1109/ICDCS.2011.84 (cit. on p. 163).

222 REFERENCES

Carletti, Vincenzo (2016). “Exact and Inexact Methods for Graph Similarity in Structural
Pattern Recognition”. PhD thesis. Université de Caen; Universita degli studi di Salerno
(cit. on pp. 126, 169).

Carletti, Vincenzo, Pasquale Foggia, and Mario Vento (2015). “VF2 Plus: An Improved
version of VF2 for Biological Graphs”. In: Graph-Based Representations in Pattern

Recognition - 10th IAPR-TC-15 International Workshop, GbRPR 2015, Beijing, China,

May 13-15, 2015. Proceedings. Ed. by Cheng-Lin Liu, Bin Luo, Walter G. Kropatsch, and
Jian Cheng. Vol. 9069. Lecture Notes in Computer Science. Springer, pp. 168–177. ISBN:
978-3-319-18223-0. DOI: 10.1007/978-3-319-18224-7_17 (cit. on pp. 126, 169).

Carrabs, Francesco, Raffaele Cerulli, and Paolo Dell’Olmo (2014). “A Mathematical Program-
ming Approach for the Maximum Labeled Clique Problem”. In: Procedia - Social and Be-

havioral Sciences 108.0, pp. 69–78. ISSN: 1877-0428. DOI: 10.1016/j.sbspro.2013.12.821
(cit. on pp. 3, 108, 109, 111, 112, 114, 123, 124).

Carraghan, Randy and Panos M. Pardalos (1990). “An exact algorithm for the maximum
clique problem”. In: Operations Research Letters 9.6, pp. 375–382. ISSN: 0167-6377.
DOI: 10.1016/0167-6377(90)90057-C. (Cit. on p. 29).

Carvalho, Filipa D. and Maria Teresa Almeida (2016). “The triangle k-club problem”. In:
Journal of Combinatorial Optimization, pp. 1–33. ISSN: 1573-2886. DOI: 10.1007/s10878-
016-0009-9 (cit. on p. 96).

Chang, Maw-Shang, Ling-Ju Hung, Chih-Ren Lin, and Ping-Chen Su (2013). “Finding large
k-clubs in undirected graphs”. In: Computing 95.9, pp. 739–758. DOI: 10.1007/s00607-
012-0263-3 (cit. on pp. 96, 97, 103, 104, 106).

Cheeseman, Peter, Bob Kanefsky, and William M. Taylor (1991). “Where the Really Hard
Problems Are”. In: Proceedings of the 12th International Joint Conference on Artificial In-

telligence. Sydney, Australia, August 24-30, 1991. Ed. by John Mylopoulos and Raymond
Reiter. Morgan Kaufmann, pp. 331–340. ISBN: 1-55860-160-0 (cit. on pp. 35, 146).

Cheng, James, Yiping Ke, Wilfred Ng, and An Lu (2007). “Fg-index: towards verification-free
query processing on graph databases”. In: Proceedings of the ACM SIGMOD International

Conference on Management of Data, Beijing, China, June 12-14, 2007. Ed. by Chee Yong
Chan, Beng Chin Ooi, and Aoying Zhou. ACM, pp. 857–872. ISBN: 978-1-59593-686-8.
DOI: 10.1145/1247480.1247574 (cit. on p. 163).

Chu, Geoffrey, Christian Schulte, and Peter J. Stuckey (2009). “Confidence-Based Work
Stealing in Parallel Constraint Programming”. In: Principles and Practice of Constraint

Programming - CP 2009, 15th International Conference, CP 2009, Lisbon, Portugal,

September 20-24, 2009, Proceedings. Ed. by Ian P. Gent. Vol. 5732. Lecture Notes in
Computer Science. Springer, pp. 226–241. ISBN: 978-3-642-04243-0. DOI: 10.1007/978-
3-642-04244-7_20 (cit. on pp. 83, 93).

REFERENCES 223

Clausen, Jens (1997). “Parallel Branch and Bound — Principles and Personal Experiences”.
In: Parallel Computing in Optimization. Ed. by Athanasios Migdalas, Panos M. Pardalos,
and Sverre Storøy. Boston, MA: Springer US, pp. 239–267. ISBN: 978-1-4613-3400-2.
DOI: 10.1007/978-1-4613-3400-2_7 (cit. on p. 81).

Clearwater, Scott H., Bernardo A. Huberman, and Tad Hogg (1991). “Cooperative Solution of
Constraint Satisfaction Problems”. In: Science 254.5035, pp. 1181–1183. DOI: 10.1126/
science.254.5035.1181 (cit. on p. 91).

Coffman, Thayne, Seth Greenblatt, and Sherry Marcus (2004). “Graph-based technologies for
intelligence analysis”. In: Commun. ACM 47.3, pp. 45–47. DOI: 10.1145/971617.971643
(cit. on p. 125).

Cohen, David A., Martin C. Cooper, Páidí Creed, Dániel Marx, and András Z. Salamon
(2012). “The Tractability of CSP Classes Defined by Forbidden Patterns”. In: J. Artif.

Intell. Res. (JAIR) 45, pp. 47–78. DOI: 10.1613/jair.3651 (cit. on p. 12).

Cohen, David A., Peter G. Jeavons, Christopher Jefferson, Karen E. Petrie, and Barbara M.
Smith (2006). “Symmetry Definitions for Constraint Satisfaction Problems”. In: Con-

straints 11.2-3, pp. 115–137. DOI: 10.1007/s10601-006-8059-8 (cit. on p. 12).

Cohen, David A., Christopher Jefferson, and Karen E. Petrie (2016). “A Theoretical Frame-
work for Constraint Propagator Triggering”. In: Proceedings of the Ninth Annual Sympo-

sium on Combinatorial Search, SOCS 2016, Tarrytown, NY, USA, July 6-8, 2016. Ed. by
Jorge A. Baier and Adi Botea. AAAI Press, pp. 19–27. ISBN: 978-1-57735-769-8 (cit. on
p. 10).

Combier, Camille, Guillaume Damiand, and Christine Solnon (2013). “Map Edit Distance
vs. Graph Edit Distance for Matching Images”. In: Graph-Based Representations in

Pattern Recognition - 9th IAPR-TC-15 International Workshop, GbRPR 2013, Vienna,

Austria, May 15-17, 2013. Proceedings. Ed. by Walter G. Kropatsch, Nicole M. Artner, Yll
Haxhimusa, and Xiaoyi Jiang. Vol. 7877. Lecture Notes in Computer Science. Springer,
pp. 152–161. ISBN: 978-3-642-38220-8. DOI: 10.1007/978-3-642-38221-5_16 (cit. on
p. 171).

Conte, Donatello, Pasquale Foggia, Carlo Sansone, and Mario Vento (2004). “Thirty Years Of
Graph Matching In Pattern Recognition”. In: IJPRAI 18.3, pp. 265–298. DOI: 10.1142/
S0218001404003228 (cit. on p. 125).

Conte, Donatello, Pasquale Foggia, and Mario Vento (2007). “Challenging Complexity of
Maximum Common Subgraph Detection Algorithms: A Performance Analysis of Three
Algorithms on a Wide Database of Graphs”. In: J. Graph Algorithms Appl. 11.1, pp. 99–
143 (cit. on p. 177).

224 REFERENCES

Cook, Diane J. and Lawrence B. Holder (1994). “Substructure Discovery Using Minimum De-
scription Length and Background Knowledge”. In: J. Artif. Intell. Res. (JAIR) 1, pp. 231–
255. DOI: 10.1613/jair.43 (cit. on p. 171).

Cook, Stephen A. and David G. Mitchell (1996). “Finding hard instances of the satisfiability
problem: A survey”. In: Satisfiability Problem: Theory and Applications, Proceedings of a

DIMACS Workshop, Piscataway, New Jersey, USA, March 11-13, 1996. Ed. by Ding-Zhu
Du, Jun Gu, and Panos M. Pardalos. Vol. 35. DIMACS Series in Discrete Mathematics
and Theoretical Computer Science. DIMACS/AMS, pp. 1–18 (cit. on p. 11).

Cooper, Martin C., Peter G. Jeavons, and András Z. Salamon (2010). “Generalizing constraint
satisfaction on trees: Hybrid tractability and variable elimination”. In: Artif. Intell. 174.9-
10, pp. 570–584. DOI: 10.1016/j.artint.2010.03.002 (cit. on p. 12).

Cordella, Luigi P., Pasquale Foggia, Carlo Sansone, and Mario Vento (2004). “A (Sub)Graph
Isomorphism Algorithm for Matching Large Graphs”. In: IEEE Trans. Pattern Anal. Mach.

Intell. 26.10, pp. 1367–1372. DOI: 10.1109/TPAMI.2004.75 (cit. on pp. 26, 126, 133, 134,
138, 147, 165).

Corrêa, Ricardo C., Philippe Michelon, Bertrand Le Cun, Thierry Mautor, and Diego Delle
Donne (2014). “A Bit-Parallel Russian Dolls Search for a Maximum Cardinality Clique
in a Graph”. In: CoRR abs/1407.1209. (Cit. on pp. 43, 59).

Crainic, Teodor Gabriel, Bertrand Le Cun, and Catherine Roucairol (2006). “Parallel Branch-
and-Bound Algorithms”. In: Parallel Combinatorial Optimization. Hoboken, NJ, USA:
John Wiley & Sons, Inc., pp. 1–28. ISBN: 9780470053928. DOI: 10.1002/9780470053928.
ch1 (cit. on p. 66).

Crawford, James M., Matthew L. Ginsberg, Eugene M. Luks, and Amitabha Roy (1996).
“Symmetry-Breaking Predicates for Search Problems”. In: Proceedings of the Fifth Inter-

national Conference on Principles of Knowledge Representation and Reasoning (KR’96),

Cambridge, Massachusetts, USA, November 5-8, 1996. Ed. by Luigia Carlucci Aiello,
Jon Doyle, and Stuart C. Shapiro. Morgan Kaufmann, pp. 148–159. ISBN: 1-55860-421-9
(cit. on p. 118).

Dalla Preda, Mila and Vanessa Vidali (2017). “Abstract Similarity Analysis”. In: Electronic

Notes in Theoretical Computer Science 331. Proceedings of the Sixth Workshop on
Numerical and Symbolic Abstract Domains (NSAD 2016), pp. 87–99. ISSN: 1571-0661.
DOI: 10.1016/j.entcs.2017.02.006 (cit. on p. 125).

Damiand, Guillaume, Christine Solnon, Colin de la Higuera, Jean-Christophe Janodet, and
Émilie Samuel (2011). “Polynomial algorithms for subisomorphism of nD open combina-
torial maps”. In: Computer Vision and Image Understanding 115.7, pp. 996–1010. DOI:
10.1016/j.cviu.2010.12.013 (cit. on pp. 125, 134, 196).

REFERENCES 225

Daylight Chemical Information Systems, Inc. (2011). Daylight Theory Manual, version 4.9.
http://www.daylight.com/dayhtml/doc/theory/theory.thor.html (cit. on p. 161).

De Santo, Massimo, Pasquale Foggia, Carlo Sansone, and Mario Vento (2003). “A large
database of graphs and its use for benchmarking graph isomorphism algorithms”. In:
Pattern Recognition Letters 24.8, pp. 1067–1079. DOI: 10.1016/S0167-8655(02)00253-2
(cit. on pp. 145, 177).

De Bruin, Arie, Gerard A. P. Kindervater, and Harry W. J. M. Trienekens (1995). “Asyn-
chronous Parallel Branch and Bound and Anomalies”. In: Parallel Algorithms for Irreg-

ularly Structured Problems, Second International Workshop, IRREGULAR ’95, Lyon,

France, September 4-6, 1995, Proceedings. Ed. by Afonso Ferreira and José D. P. Rolim.
Vol. 980. Lecture Notes in Computer Science. Springer, pp. 363–377. ISBN: 3-540-60321-
2. DOI: 10.1007/3-540-60321-2_29 (cit. on pp. 67, 80).

Debroni, Jennifer, John D. Eblen, Michael A. Langston, Wendy Myrvold, Peter W. Shor,
and Dinesh Weerapurage (2011). “A complete resolution of the Keller maximum clique
problem”. In: Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on

Discrete Algorithms, SODA 2011, San Francisco, California, USA, January 23-25, 2011.
Ed. by Dana Randall. SIAM, pp. 129–135. ISBN: 978-0-89871-993-2. DOI: 10.1137/1.
9781611973082.11 (cit. on pp. 42, 44, 66).

Delavallade, Thomas, Simon Fossier, Claire Laudy, and Gaëlle Lortal (2016). “On the
Challenges of Using Social Media for Crisis Management”. In: Fusion Methodologies in

Crisis Management: Higher Level Fusion and Decision Making. Ed. by Galina Rogova
and Peter Scott. Cham: Springer International Publishing, pp. 137–175. ISBN: 978-3-319-
22527-2. DOI: 10.1007/978-3-319-22527-2_8 (cit. on p. 171).

Dent, Michael J. (1996). “Minimal Forward Checking–a Lazy Constraint Satisfaction Search
Algorithm: Experimental And Theoretical Results”. PhD thesis. The University of Western
Ontario (cit. on p. 169).

Dent, Michael J. and Robert E. Mercer (1994). “Minimal Forward Checking”. In: Sixth

International Conference on Tools with Artificial Intelligence, ICTAI ’94, New Orleans,

Louisiana, USA, November 6-9, 1994. IEEE Computer Society, pp. 432–438. ISBN:
0-8186-6785-0. DOI: 10.1109/TAI.1994.346460 (cit. on p. 169).

Depolli, Matjaz, Janez Konc, Kati Rozman, Roman Trobec, and Dusanka Janezic (2013).
“Exact Parallel Maximum Clique Algorithm for General and Protein Graphs”. In: Journal

of Chemical Information and Modeling 53.9, pp. 2217–2228. DOI: 10.1021/ci4002525
(cit. on pp. 44, 64, 66–70, 73, 78, 90, 92, 105).

Djoko, Surnjani, Diane J. Cook, and Lawrence B. Holder (1997). “An Empirical Study of
Domain Knowledge and Its Benefits to Substructure Discovery”. In: IEEE Trans. Knowl.

Data Eng. 9.4, pp. 575–586. DOI: 10.1109/69.617051 (cit. on p. 171).

226 REFERENCES

Dooms, Grégoire, Yves Deville, and Pierre Dupont (2005). “CP(Graph): Introducing a
Graph Computation Domain in Constraint Programming”. In: Principles and Practice

of Constraint Programming - CP 2005, 11th International Conference, CP 2005, Sitges,

Spain, October 1-5, 2005, Proceedings. Ed. by Peter van Beek. Vol. 3709. Lecture Notes
in Computer Science. Springer, pp. 211–225. ISBN: 3-540-29238-1. DOI: 10 . 1007 /
11564751_18 (cit. on p. 180).

Droschinsky, Andre, Nils Kriege, and Petra Mutzel (2016). “Faster Algorithms for the Max-
imum Common Subtree Isomorphism Problem”. In: 41st International Symposium on

Mathematical Foundations of Computer Science, MFCS 2016, August 22-26, 2016 -

Kraków, Poland. Ed. by Piotr Faliszewski, Anca Muscholl, and Rolf Niedermeier. Vol. 58.
LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 33:1–33:14. ISBN: 978-3-
95977-016-3. DOI: 10.4230/LIPIcs.MFCS.2016.33 (cit. on pp. 174, 179).

Droschinsky, Andre, Nils Kriege, and Petra Mutzel (2017). “Finding Largest Common
Substructures of Molecules in Quadratic Time”. In: SOFSEM 2017: Theory and Practice

of Computer Science - 43rd International Conference on Current Trends in Theory and

Practice of Computer Science, Limerick, Ireland, January 16-20, 2017, Proceedings.
Ed. by Bernhard Steffen, Christel Baier, Mark van den Brand, Johann Eder, Mike Hinchey,
and Tiziana Margaria. Vol. 10139. Lecture Notes in Computer Science. Springer, pp. 309–
321. ISBN: 978-3-319-51962-3. DOI: 10.1007/978-3-319-51963-0_24 (cit. on p. 174).

Durand, Paul J, Rohit Pasari, Johnnie W Baker, and Chun-che Tsai (1999). “An efficient
algorithm for similarity analysis of molecules”. In: Internet Journal of Chemistry 2.17,
pp. 1–16 (cit. on p. 175).

Eblen, John D., Charles A. Phillips, Gary L. Rogers, and Michael A. Langston (2012). “The
maximum clique enumeration problem: algorithms, applications, and implementations”.
In: BMC Bioinformatics 13.S-10, S5. DOI: 10.1186/1471-2105-13-S10-S5 (cit. on pp. 45,
60).

Ehrlich, Hans-Christian and Matthias Rarey (2011). “Maximum common subgraph isomor-
phism algorithms and their applications in molecular science: a review”. In: Wiley Inter-

disciplinary Reviews: Computational Molecular Science 1.1, pp. 68–79. ISSN: 1759-0884.
DOI: 10.1002/wcms.5 (cit. on pp. 4, 171, 179).

Englert, Péter and Péter Kovács (2015). “Efficient Heuristics for Maximum Common Sub-
structure Search”. In: Journal of Chemical Information and Modeling 55.5, pp. 941–955.
DOI: 10.1021/acs.jcim.5b00036 (cit. on p. 174).

Eppstein, David and Darren Strash (2011). “Listing All Maximal Cliques in Large Sparse
Real-World Graphs”. In: Experimental Algorithms - 10th International Symposium, SEA

2011, Kolimpari, Chania, Crete, Greece, May 5-7, 2011. Proceedings. Ed. by Panos M.
Pardalos and Steffen Rebennack. Vol. 6630. Lecture Notes in Computer Science. Springer,

REFERENCES 227

pp. 364–375. ISBN: 978-3-642-20661-0. DOI: 10.1007/978-3-642-20662-7_31. (Cit. on
p. 55).

Fahle, Torsten (2002). “Simple and Fast: Improving a Branch-And-Bound Algorithm for
Maximum Clique”. In: Algorithms - ESA 2002, 10th Annual European Symposium, Rome,

Italy, September 17-21, 2002, Proceedings. Ed. by Rolf H. Möhring and Rajeev Raman.
Vol. 2461. Lecture Notes in Computer Science. Springer, pp. 485–498. ISBN: 3-540-
44180-8. DOI: 10.1007/3-540-45749-6_44. (Cit. on p. 30).

Fang, Meng, Jie Yin, Xingquan Zhu, and Chengqi Zhang (2015). “TrGraph: Cross-Network
Transfer Learning via Common Signature Subgraphs”. In: IEEE Trans. Knowl. Data Eng.

27.9, pp. 2536–2549. DOI: 10.1109/TKDE.2015.2413789 (cit. on p. 171).

Fernández, Mirtha-Lina and Gabriel Valiente (2001). “A graph distance metric combining
maximum common subgraph and minimum common supergraph”. In: Pattern Recognition

Letters 22.6/7, pp. 753–758 (cit. on p. 171).

Fischetti, Matteo, Michele Monaci, and Domenico Salvagnin (2014). “Self-splitting of Work-
load in Parallel Computation”. In: Integration of AI and OR Techniques in Constraint

Programming - 11th International Conference, CPAIOR 2014, Cork, Ireland, May 19-23,

2014. Proceedings. Ed. by Helmut Simonis. Vol. 8451. Lecture Notes in Computer Science.
Springer, pp. 394–404. ISBN: 978-3-319-07045-2. DOI: 10.1007/978-3-319-07046-9_28
(cit. on p. 83).

Foggia, Pasquale, Gennaro Percannella, and Mario Vento (2014). “Graph Matching and
Learning in Pattern Recognition in the Last 10 Years”. In: IJPRAI 28.1. DOI: 10.1142/
S0218001414500013 (cit. on p. 125).

Frenkel, Karen A. (1986). “Complexity and Parallel Processing: An Interview with Richard
Karp”. In: Commun. ACM 29.2, pp. 112–117. ISSN: 0001-0782. DOI: 10.1145/5657.6326
(cit. on p. 19).

Freuder, Eugene C. (1982). “A Sufficient Condition for Backtrack-Free Search”. In: J. ACM

29.1, pp. 24–32. DOI: 10.1145/322290.322292. (Cit. on p. 55).

Frieze, Alan M. (1990). “On the independence number of random graphs”. In: Discrete

Mathematics 81.2, pp. 171–175. DOI: 10.1016/0012-365X(90)90149-C (cit. on p. 61).

Fukagawa, Daiji, Takeyuki Tamura, Atsuhiro Takasu, Etsuji Tomita, and Tatsuya Akutsu
(2011). “A clique-based method for the edit distance between unordered trees and its
application to analysis of glycan structures”. In: BMC Bioinformatics 12.S-1, S13. DOI:
10.1186/1471-2105-12-S1-S13 (cit. on p. 45).

Gao, Debin, Michael K. Reiter, and Dawn Xiaodong Song (2008). “BinHunt: Automatically
Finding Semantic Differences in Binary Programs”. In: Information and Communications

Security, 10th International Conference, ICICS 2008, Birmingham, UK, October 20-22,

2008, Proceedings. Ed. by Liqun Chen, Mark Dermot Ryan, and Guilin Wang. Vol. 5308.

228 REFERENCES

Lecture Notes in Computer Science. Springer, pp. 238–255. ISBN: 978-3-540-88624-2.
DOI: 10.1007/978-3-540-88625-9_16 (cit. on p. 171).

Garey, M. R. and David S. Johnson (1979). Computers and Intractability: A Guide to the

Theory of NP-Completeness. W. H. Freeman. ISBN: 0-7167-1044-7 (cit. on pp. 5, 115).

Gay, Steven, François Fages, Thierry Martinez, Sylvain Soliman, and Christine Solnon (2014).
“On the subgraph epimorphism problem”. In: Discrete Applied Mathematics 162, pp. 214–
228. DOI: 10.1016/j.dam.2013.08.008 (cit. on pp. 143, 171).

Gebser, Martin, Benjamin Kaufmann, Roland Kaminski, Max Ostrowski, Torsten Schaub,
and Marius Thomas Schneider (2011). “Potassco: The Potsdam Answer Set Solving
Collection”. In: AI Commun. 24.2, pp. 107–124. DOI: 10.3233/AIC-2011-0491 (cit. on
p. 154).

Geelen, Pieter Andreas (1992). “Dual Viewpoint Heuristics for Binary Constraint Satisfaction
Problems”. In: ECAI, pp. 31–35 (cit. on p. 198).

Gendreau, Michel, Patrick Soriano, and Louis Salvail (1993). “Solving the maximum clique
problem using a tabu search approach”. In: Annals OR 41.4, pp. 385–403. DOI: 10.1007/
BF02023002 (cit. on p. 40).

Gent, Ian P. (1998). “Heuristic Solution of Open Bin Packing Problems”. In: J. Heuristics 3.4,
pp. 299–304. DOI: 10.1023/A:1009678411503 (cit. on p. 169).

Gent, Ian P., Warwick Harvey, and Tom Kelsey (2002). “Groups and Constraints: Symmetry
Breaking during Search”. In: Principles and Practice of Constraint Programming - CP

2002, 8th International Conference, CP 2002, Ithaca, NY, USA, September 9-13, 2002,

Proceedings. Ed. by Pascal Van Hentenryck. Vol. 2470. Lecture Notes in Computer
Science. Springer, pp. 415–430. ISBN: 3-540-44120-4 (cit. on p. 118).

Gent, Ian P., Ewan MacIntyre, Patrick Prosser, Barbara M. Smith, and Toby Walsh (1996). “An
Empirical Study of Dynamic Variable Ordering Heuristics for the Constraint Satisfaction
Problem”. In: Proceedings of the Second International Conference on Principles and

Practice of Constraint Programming, Cambridge, Massachusetts, USA, August 19-22,

1996. Ed. by Eugene C. Freuder. Vol. 1118. Lecture Notes in Computer Science. Springer,
pp. 179–193. DOI: 10.1007/3-540-61551-2_74 (cit. on p. 151).

Gent, Ian P., Ewan MacIntyre, Patrick Prosser, Barbara M. Smith, and Toby Walsh (2001).
“Random Constraint Satisfaction: Flaws and Structure”. In: Constraints 6.4, pp. 345–372.
DOI: 10.1023/A:1011454308633 (cit. on p. 157).

Gent, Ian P., Ewan MacIntyre, Patrick Prosser, and Toby Walsh (1996). “The Constrainedness
of Search”. In: Proceedings of the Thirteenth National Conference on Artificial Intelligence

and Eighth Innovative Applications of Artificial Intelligence Conference, AAAI 96, IAAI

96, Portland, Oregon, August 4-8, 1996, Volume 1. Ed. by William J. Clancey and Daniel S.

REFERENCES 229

Weld. AAAI Press / The MIT Press, pp. 246–252. ISBN: 0-262-51091-X (cit. on pp. 146,
156).

Gent, Ian P., Ian Miguel, and Peter Nightingale (2008). “Generalised arc consistency for the
AllDifferent constraint: An empirical survey”. In: Artif. Intell. 172.18, pp. 1973–2000.
DOI: 10.1016/j.artint.2008.10.006 (cit. on p. 131).

Gent, Ian P., Karen E. Petrie, and Jean-François Puget (2006). “Symmetry in Constraint
Programming”. In: Handbook of Constraint Programming. Ed. by Francesca Rossi, Peter
van Beek, and Toby Walsh. Vol. 2. Foundations of Artificial Intelligence. Elsevier, pp. 329–
376. ISBN: 978-0-444-52726-4. DOI: 10.1016/S1574-6526(06)80014-3 (cit. on p. 118).

Gent, Ian P. and Toby Walsh (1994). “Easy Problems are Sometimes Hard”. In: Artif. Intell.

70.1-2, pp. 335–345. DOI: 10.1016/0004-3702(94)90109-0 (cit. on p. 16).

Gent, Ian P. and Toby Walsh (1995). “Phase transitions from real computational problems”.
In: Proceedings of the 8th International Symposium on Artificial Intelligence, pp. 356–364
(cit. on p. 17).

Giugno, Rosalba, Vincenzo Bonnici, Nicola Bombieri, Alfredo Pulvirenti, Alfredo Ferro,
and Dennis Shasha (2013). “GRAPES: A Software for Parallel Searching on Biological
Graphs Targeting Multi-Core Architectures”. In: PLOS ONE 8.10, pp. 1–11. DOI: 10.
1371/journal.pone.0076911 (cit. on p. 165).

Goldberg, Mark K. and Reid D. Rivenburgh (1993). “Constructing cliques using restricted
backtracking”. In: Cliques, Coloring, and Satisfiability, Proceedings of a DIMACS Work-

shop, New Brunswick, New Jersey, USA, October 11-13, 1993. Ed. by David S. Johnson
and Michael A. Trick. Vol. 26. DIMACS Series in Discrete Mathematics and Theoretical
Computer Science. DIMACS/AMS, pp. 89–102 (cit. on p. 30).

Gomes, Carla P. and Bart Selman (2001). “Algorithm portfolios”. In: Artif. Intell. 126.1-2,
pp. 43–62. DOI: 10.1016/S0004-3702(00)00081-3 (cit. on p. 168).

Gomes, Carla P., Bart Selman, and Henry A. Kautz (1998). “Boosting Combinatorial Search
Through Randomization”. In: Proceedings of the Fifteenth National Conference on Artifi-

cial Intelligence and Tenth Innovative Applications of Artificial Intelligence Conference,

AAAI 98, IAAI 98, July 26-30, 1998, Madison, Wisconsin, USA. Ed. by Jack Mostow and
Chuck Rich. AAAI Press / The MIT Press, pp. 431–437. ISBN: 0-262-51098-7 (cit. on
p. 91).

Grömping, Ulrike (2014). “R Package FrF2 for Creating and Analyzing Fractional Factorial
2-Level Designs”. In: Journal of Statistical Software 56.1, pp. 1–56. ISSN: 1548-7660.
DOI: 10.18637/jss.v056.i01 (cit. on p. 160).

Hamadi, Youssef, Saïd Jabbour, and Lakhdar Sais (2009). “ManySAT: a Parallel SAT Solver”.
In: JSAT 6.4, pp. 245–262 (cit. on p. 91).

230 REFERENCES

Hamadi, Youssef and Christoph M. Wintersteiger (2012). “Seven Challenges in Parallel SAT
Solving”. In: Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence,

July 22-26, 2012, Toronto, Ontario, Canada. Ed. by Jörg Hoffmann and Bart Selman.
AAAI Press (cit. on p. 23).

Han, Jiawei, Hong Cheng, Dong Xin, and Xifeng Yan (2007). “Frequent pattern mining:
current status and future directions”. In: Data Min. Knowl. Discov. 15.1, pp. 55–86. DOI:
10.1007/s10618-006-0059-1 (cit. on p. 163).

Haralick, Robert M. and Gordon L. Elliott (1980). “Increasing Tree Search Efficiency for
Constraint Satisfaction Problems”. In: Artif. Intell. 14.3, pp. 263–313. DOI: 10.1016/0004-
3702(80)90051-X (cit. on pp. 10, 48, 168).

Harary, Frank and Ian C. Ross (1957). “A Procedure for Clique Detection Using the Group
Matrix”. In: Sociometry 20.3, pp. 205–215. ISSN: 00380431. (Cit. on p. 29).

Hartung, Sepp, Christian Komusiewicz, and André Nichterlein (2015). “Parameterized Algo-
rithmics and Computational Experiments for Finding 2-Clubs”. In: J. Graph Algorithms

Appl. 19.1, pp. 155–190. DOI: 10.7155/jgaa.00352 (cit. on p. 96).

Harvey, William D. and Matthew L. Ginsberg (1995). “Limited Discrepancy Search”. In:
Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence,

IJCAI 95, Montréal Québec, Canada, August 20-25 1995, 2 Volumes. Morgan Kaufmann,
pp. 607–615 (cit. on pp. 73, 76, 90, 92).

He, Yongning, Feng Lin, Paul R. Chipman, Carol M. Bator, Timothy S. Baker, Menachem
Shoham, Richard J. Kuhn, M. Edward Medof, and Michael G. Rossmann (2002). “Struc-
ture of decay-accelerating factor bound to echovirus 7: A virus-receptor complex”. In:
Proc Natl Acad Sci U S A 99.16. 12119400[pmid], pp. 10325–10329. ISSN: 0027-8424.
DOI: 10.1073/pnas.152161599 (cit. on p. 165).

Hoffmann, Ruth, Ciaran McCreesh, and Craig Reilly (2017). “Between Subgraph Isomor-
phism and Maximum Common Subgraph”. In: Proceedings of the Thirty-First AAAI

Conference on Artificial Intelligence, February 4-9, 2017, San Francisco, California, USA.

Ed. by Satinder P. Singh and Shaul Markovitch. AAAI Press, pp. 3907–3914 (cit. on
pp. 27, 173).

Hong, Liang, Lei Zou, Xiang Lian, and Philip S. Yu (2015). “Subgraph Matching with Set
Similarity in a Large Graph Database”. In: IEEE Trans. Knowl. Data Eng. 27.9, pp. 2507–
2521. DOI: 10.1109/TKDE.2015.2391125 (cit. on p. 164).

Hooker, John N. (1995). “Testing heuristics: We have it all wrong”. In: J. Heuristics 1.1,
pp. 33–42. DOI: 10.1007/BF02430364 (cit. on p. 92).

Hromkovič, Juraj (2004). Algorithmics for Hard Problems - Introduction to Combinatorial

Optimization, Randomization, Approximation, and Heuristics, Second Edition. Texts in

REFERENCES 231

Theoretical Computer Science. An EATCS Series. Springer. ISBN: 978-3-642-07909-2.
DOI: 10.1007/978-3-662-05269-3 (cit. on p. 5).

Janert, Philipp K. (2009). Gnuplot in Action: Understanding Data with Graphs. Greenwich,
CT, USA: Manning Publications Co. (cit. on p. 16).

Jégou, Philippe (1993). “Decomposition of Domains Based on the Micro-Structure of Finite
Constraint-Satisfaction Problems”. In: Proceedings of the 11th National Conference on

Artificial Intelligence. Washington, DC, USA, July 11-15, 1993. Ed. by Richard Fikes and
Wendy G. Lehnert. AAAI Press / The MIT Press, pp. 731–736. ISBN: 0-262-51071-5
(cit. on pp. 12, 176).

Jiang, Haoliang, Haixun Wang, Philip S. Yu, and Shuigeng Zhou (2007). “GString: A Novel
Approach for Efficient Search in Graph Databases”. In: Proceedings of the 23rd Inter-

national Conference on Data Engineering, ICDE 2007, The Marmara Hotel, Istanbul,

Turkey, April 15-20, 2007. Ed. by Rada Chirkova, Asuman Dogac, M. Tamer Özsu,
and Timos K. Sellis. IEEE Computer Society, pp. 566–575. ISBN: 1-4244-0802-4. DOI:
10.1109/ICDE.2007.367902 (cit. on p. 162).

Jiang, Hua, Chu-Min Li, and Felip Manyà (2016). “Combining Efficient Preprocessing and
Incremental MaxSAT Reasoning for MaxClique in Large Graphs”. In: ECAI 2016 - 22nd

European Conference on Artificial Intelligence, 29 August-2 September 2016, The Hague,

The Netherlands - Including Prestigious Applications of Artificial Intelligence (PAIS) 2016.
Ed. by Gal A. Kaminka, Maria Fox, Paolo Bouquet, Eyke Hüllermeier, Virginia Dignum,
Frank Dignum, and Frank van Harmelen. Vol. 285. Frontiers in Artificial Intelligence and
Applications. IOS Press, pp. 939–947. ISBN: 978-1-61499-671-2. DOI: 10.3233/978-1-
61499-672-9-939 (cit. on p. 60).

Johnson, David S. and Michael A. Trick (1993). “Introduction to the Second DIMACS
Challenge: Cliques, coloring, and satisfiability”. In: Cliques, Coloring, and Satisfiability,

Proceedings of a DIMACS Workshop, New Brunswick, New Jersey, USA, October 11-13,

1993. Ed. by David S. Johnson and Michael A. Trick. Vol. 26. DIMACS Series in Discrete
Mathematics and Theoretical Computer Science. DIMACS/AMS, pp. 1–10. (Cit. on
pp. 30, 40).

Kasif, Simon (1990). “On the Parallel Complexity of Discrete Relaxation in Constraint
Satisfaction Networks”. In: Artif. Intell. 45.3, pp. 275–286. DOI: 10.1016/0004-3702(90)
90009-O (cit. on p. 22).

Katsarou, Foteini, Nikos Ntarmos, and Peter Triantafillou (2015). “Performance and Scalabil-
ity of Indexed Subgraph Query Processing Methods”. In: PVLDB 8.12, pp. 1566–1577
(cit. on pp. 163, 165).

Katsarou, Foteini, Nikos Ntarmos, and Peter Triantafillou (2017). “Subgraph Querying with
Parallel Use of Query Rewritings and Alternative Algorithms”. In: Proceedings of the

232 REFERENCES

20th International Conference on Extending Database Technology, EDBT 2017, Venice,

Italy, March 21-24, 2017. Ed. by Volker Markl, Salvatore Orlando, Bernhard Mitschang,
Periklis Andritsos, Kai-Uwe Sattler, and Sebastian Breß. OpenProceedings.org, pp. 25–36.
ISBN: 978-3-89318-073-8. DOI: 10.5441/002/edbt.2017.04 (cit. on pp. 160, 167–169).

Kessel, Philippe Van and Claude-Guy Quimper (2012). “Filtering Algorithms Based on the
Word-RAM Model”. In: Proceedings of the Twenty-Sixth AAAI Conference on Artificial

Intelligence, July 22-26, 2012, Toronto, Ontario, Canada. Ed. by Jörg Hoffmann and
Bart Selman. AAAI Press (cit. on p. 132).

Knuth, Donald E. (1994). “The Sandwich Theorem”. In: Electr. J. Comb. 1 (cit. on p. 57).

Koch, Ina (2001). “Enumerating all connected maximal common subgraphs in two graphs”.
In: Theor. Comput. Sci. 250.1-2, pp. 1–30. DOI: 10.1016/S0304-3975(00)00286-3 (cit. on
pp. 177, 179, 184).

Konc, Janez and Dušanka Janežič (2007a). “A Branch and Bound Algorithm for Matching
Protein Structures”. In: Adaptive and Natural Computing Algorithms, 8th International

Conference, ICANNGA 2007, Warsaw, Poland, April 11-14, 2007, Proceedings, Part II.
Ed. by Bartlomiej Beliczynski, Andrzej Dzielinski, Marcin Iwanowski, and Bernardete
Ribeiro. Vol. 4432. Lecture Notes in Computer Science. Springer, pp. 399–406. ISBN:
978-3-540-71590-0. DOI: 10.1007/978-3-540-71629-7_45. (Cit. on p. 45).

Konc, Janez and Dušanka Janežič (2007b). “An improved branch and bound algorithm for the
maximum clique problem”. In: MATCH Commun. Math. Comput. Chem. 58.3, pp. 569–
590. (Cit. on p. 58).

Korf, Richard E. (1996). “Improved Limited Discrepancy Search”. In: Proceedings of the

Thirteenth National Conference on Artificial Intelligence and Eighth Innovative Applica-

tions of Artificial Intelligence Conference, AAAI 96, IAAI 96, Portland, Oregon, August

4-8, 1996, Volume 1. Ed. by William J. Clancey and Daniel S. Weld. AAAI Press / The
MIT Press, pp. 286–291. ISBN: 0-262-51091-X (cit. on p. 76).

Korf, Richard E. (2014). “How Do You Know Your Search Algorithm and Code Are Correct?”
In: Proceedings of the Seventh Annual Symposium on Combinatorial Search, SOCS 2014,

Prague, Czech Republic, 15-17 August 2014. Ed. by Stefan Edelkamp and Roman Barták.
AAAI Press. ISBN: 978-1-57735-676-9 (cit. on p. 15).

Kotthoff, Lars, Ciaran McCreesh, and Christine Solnon (2016). “Portfolios of Subgraph
Isomorphism Algorithms”. In: Learning and Intelligent Optimization - 10th International

Conference, LION 10, Ischia, Italy, May 29 - June 1, 2016, Revised Selected Papers.
Ed. by Paola Festa, Meinolf Sellmann, and Joaquin Vanschoren. Vol. 10079. Lecture
Notes in Computer Science. Springer, pp. 107–122. ISBN: 978-3-319-50348-6. DOI:
10.1007/978-3-319-50349-3_8 (cit. on pp. 26, 125, 127, 130, 133, 134, 137, 143, 168,
169).

REFERENCES 233

Kriege, Nils (2015). “Comparing graphs”. PhD thesis. Technische Universität Dortmund
(cit. on pp. 4, 171).

Krissinel, Evgeny B. and Kim Henrick (2004). “Common subgraph isomorphism detection by
backtracking search”. In: Softw., Pract. Exper. 34.6, pp. 591–607. DOI: 10.1002/spe.588
(cit. on p. 174).

Kubale, Marek and Boguslaw Jackowski (1985). “A Generalized Implicit Enumeration
Algorithm for Graph Coloring”. In: Commun. ACM 28.4, pp. 412–418. DOI: 10.1145/
3341.3350. (Cit. on p. 56).

Lai, Ten-Hwang and Sartaj Sahni (1984). “Anomalies in Parallel Branch-and-Bound Algo-
rithms”. In: Commun. ACM 27.6, pp. 594–602. DOI: 10.1145/358080.358103 (cit. on
pp. 24, 67, 92).

Langer, Akhil, Ramprasad Venkataraman, Udatta S. Palekar, and Laxmikant V. Kalé (2013).
“Parallel branch-and-bound for two-stage stochastic integer optimization”. In: 20th Annual

International Conference on High Performance Computing, HiPC 2013, Bengaluru (Ban-

galore), Karnataka, India, December 18-21, 2013. IEEE Computer Society, pp. 266–275.
ISBN: 978-1-4799-0730-4. DOI: 10.1109/HiPC.2013.6799130 (cit. on p. 84).

Larrosa, Javier and Pedro Meseguer (1998). “Partial Lazy Forward Checking for MAX-CSP”.
In: ECAI, pp. 229–233 (cit. on p. 169).

Larrosa, Javier and Gabriel Valiente (2002). “Constraint Satisfaction Algorithms for Graph
Pattern Matching”. In: Mathematical Structures in Computer Science 12.4, pp. 403–422.
DOI: 10.1017/S0960129501003577 (cit. on pp. 125, 133, 138).

Lee, Jinsoo, Wook-Shin Han, Romans Kasperovics, and Jeong-Hoon Lee (2012). “An In-
depth Comparison of Subgraph Isomorphism Algorithms in Graph Databases”. In: PVLDB

6.2, pp. 133–144 (cit. on p. 165).

Leroy, Rudi, Mohand Mezmaz, Nouredine Melab, and Daniel Tuyttens (2014). “Work Stealing
Strategies For Multi-Core Parallel Branch-and-Bound Algorithm Using Factorial Number
System”. In: Proceedings of the 2014 PPOPP International Workshop on Programming

Models and Applications for Multicores and Manycores, PMAM 2014, Orlando, Florida,

USA, February 15, 2014. Ed. by Pavan Balaji, Minyi Guo, and Zhiyi Huang. ACM, p. 111.
ISBN: 978-1-4503-2657-5. DOI: 10.1145/2560683.2560694 (cit. on p. 83).

Levi, Giorgio (1973). “A note on the derivation of maximal common subgraphs of two
directed or undirected graphs”. In: CALCOLO 9.4, pp. 341–352. ISSN: 1126-5434. DOI:
10.1007/BF02575586 (cit. on pp. 20, 154, 175).

Lewandowski, Gary and Anne Condon (1993). “Experiments with parallel graph coloring
heuristics and applications of graph coloring”. In: Cliques, Coloring, and Satisfiability,

Proceedings of a DIMACS Workshop, New Brunswick, New Jersey, USA, October 11-13,

1993. Ed. by David S. Johnson and Michael A. Trick. Vol. 26. DIMACS Series in Discrete

234 REFERENCES

Mathematics and Theoretical Computer Science. DIMACS/AMS, pp. 309–334 (cit. on
p. 91).

Leyton-Brown, Kevin, Holger H. Hoos, Frank Hutter, and Lin Xu (2014). “Understanding the
empirical hardness of NP-complete problems”. In: Commun. ACM 57.5, pp. 98–107. DOI:
10.1145/2594413.2594424 (cit. on p. 148).

Li, Chu-Min, Zhiwen Fang, and Ke Xu (2013). “Combining MaxSAT Reasoning and In-
cremental Upper Bound for the Maximum Clique Problem”. In: 2013 IEEE 25th Inter-

national Conference on Tools with Artificial Intelligence, Herndon, VA, USA, Novem-

ber 4-6, 2013. IEEE Computer Society, pp. 939–946. ISBN: 978-1-4799-2971-9. DOI:
10.1109/ICTAI.2013.143 (cit. on pp. 44, 57).

Li, Chu-Min, Hua Jiang, and Felip Manyà (2017). “On minimization of the number of branches
in branch-and-bound algorithms for the maximum clique problem”. In: Computers &

Operations Research 84, pp. 1–15. ISSN: 0305-0548. DOI: http://dx.doi.org/10.1016/j.cor.
2017.02.017 (cit. on p. 57).

Li, Chu-Min, Hua Jiang, and Ruchu Xu (2015). “Incremental MaxSAT Reasoning to Reduce
Branches in a Branch-and-Bound Algorithm for MaxClique”. In: Learning and Intelligent

Optimization - 9th International Conference, LION 9, Lille, France, January 12-15, 2015.

Revised Selected Papers. Ed. by Clarisse Dhaenens, Laetitia Jourdan, and Marie-Eléonore
Marmion. Vol. 8994. Lecture Notes in Computer Science. Springer, pp. 268–274. ISBN:
978-3-319-19083-9. DOI: 10.1007/978-3-319-19084-6_26 (cit. on p. 57).

Li, Chu-Min and Zhe Quan (2010a). “An Efficient Branch-and-Bound Algorithm Based on
MaxSAT for the Maximum Clique Problem”. In: Proceedings of the Twenty-Fourth AAAI

Conference on Artificial Intelligence, AAAI 2010, Atlanta, Georgia, USA, July 11-15, 2010.
Ed. by Maria Fox and David Poole. AAAI Press (cit. on p. 57).

Li, Chu-Min and Zhe Quan (2010b). “Combining Graph Structure Exploitation and Propo-
sitional Reasoning for the Maximum Clique Problem”. In: 22nd IEEE International

Conference on Tools with Artificial Intelligence, ICTAI 2010, Arras, France, 27-29 Octo-

ber 2010 - Volume 1. IEEE Computer Society, pp. 344–351. ISBN: 978-0-7695-4263-8.
DOI: 10.1109/ICTAI.2010.57 (cit. on p. 57).

Li, Guo-Jie and Benjamin W. Wah (1984). “How to Cope With Anomalies in Parallel Approx-
imate Branch-and-Bound Algorithms”. In: Proceedings of the National Conference on

Artificial Intelligence. Austin, TX, August 6-10, 1984. Ed. by Ronald J. Brachman. AAAI
Press, pp. 212–215. ISBN: 0-262-51053-7 (cit. on p. 67).

Li, Guo-Jie and Benjamin W. Wah (1986). “Coping with Anomalies in Parallel Branch-and-
Bound Algorithms”. In: IEEE Trans. Computers 35.6, pp. 568–573. DOI: 10.1109/TC.
1986.5009434 (cit. on p. 67).

REFERENCES 235

Lobachev, Oleg (2012). “Parallel Computation Skeletons with Premature Termination Prop-
erty”. In: Functional and Logic Programming - 11th International Symposium, FLOPS

2012, Kobe, Japan, May 23-25, 2012. Proceedings. Ed. by Tom Schrijvers and Peter
Thiemann. Vol. 7294. Lecture Notes in Computer Science. Springer, pp. 197–212. ISBN:
978-3-642-29821-9. DOI: 10.1007/978-3-642-29822-6_17 (cit. on p. 144).

López-Presa, José Luis and Antonio Fernández Anta (2009). “Fast Algorithm for Graph
Isomorphism Testing”. In: Experimental Algorithms, 8th International Symposium, SEA

2009, Dortmund, Germany, June 4-6, 2009. Proceedings. Ed. by Jan Vahrenhold. Vol. 5526.
Lecture Notes in Computer Science. Springer, pp. 221–232. ISBN: 978-3-642-02010-0.
DOI: 10.1007/978-3-642-02011-7_21 (cit. on p. 198).

Lu, Si Wei, Ying Ren, and Ching Y. Suen (1991). “Hierarchical attributed graph representation
and recognition of handwritten chinese characters”. In: Pattern Recognition 24.7, pp. 617–
632. DOI: 10.1016/0031-3203(91)90029-5 (cit. on p. 171).

Luce, R. Duncan (1950). “Connectivity and generalized cliques in sociometric group struc-
ture”. In: Psychometrika 15.2, pp. 169–190. ISSN: 0033-3123. DOI: 10.1007/BF02289199
(cit. on pp. 3, 96).

Luo, Chen, Xin Wang, Chun Su, and Zhonghua Ni (2017). “A Fixture Design Retrieving
Method Based on Constrained Maximum Common Subgraph”. In: IEEE Transactions on

Automation Science and Engineering PP.99, pp. 1–13. ISSN: 1545-5955. DOI: 10.1109/
TASE.2017.2674961 (cit. on pp. 171, 179).

Mackworth, Alan K. (1977). “Consistency in Networks of Relations”. In: Artif. Intell. 8.1,
pp. 99–118. DOI: 10.1016/0004-3702(77)90007-8 (cit. on p. 8).

Mahdavi Pajouh, Foad and Balabhaskar Balasundaram (2012). “On inclusionwise maximal
and maximum cardinality k-clubs in graphs”. In: Discrete Optimization 9.2, pp. 84–97.
DOI: 10.1016/j.disopt.2012.02.002 (cit. on p. 96).

Malapert, Arnaud, Jean-Charles Régin, and Mohamed Rezgui (2016). “Embarrassingly Paral-
lel Search in Constraint Programming”. In: J. Artif. Intell. Res. (JAIR) 57, pp. 421–464.
DOI: 10.1613/jair.5247 (cit. on pp. 70, 82, 105, 143, 200).

Malitsky, Yuri (2014). Instance-Specific Algorithm Configuration. Springer. ISBN: 978-3-319-
11229-9. DOI: 10.1007/978-3-319-11230-5 (cit. on p. 130).

Mannino, Carlo and Antonio Sassano (1993). “Edge projection and the maximum cardinality
stable set problem”. In: Cliques, Coloring, and Satisfiability, Proceedings of a DIMACS

Workshop, New Brunswick, New Jersey, USA, October 11-13, 1993. Ed. by David S.
Johnson and Michael A. Trick. Vol. 26. DIMACS Series in Discrete Mathematics and
Theoretical Computer Science. DIMACS/AMS, pp. 205–220 (cit. on p. 30).

Mannino, Carlo and Antonio Sassano (1995). “Solving hard set covering problems”. In: Oper.

Res. Lett. 18.1, pp. 1–5. DOI: 10.1016/0167-6377(95)00034-H (cit. on p. 44).

236 REFERENCES

Maslov, Evgeny, Mikhail Batsyn, and Panos M. Pardalos (2014). “Speeding up branch and
bound algorithms for solving the maximum clique problem”. In: J. Global Optimization

59.1, pp. 1–21. DOI: 10.1007/s10898-013-0075-9. (Cit. on pp. 43, 58, 90).

Matula, David W. and Leland L. Beck (1983). “Smallest-Last Ordering and clustering and
Graph Coloring Algorithms”. In: J. ACM 30.3, pp. 417–427. DOI: 10.1145/2402.322385.
(Cit. on p. 55).

McCool, Michael, James Reinders, and Arch Robison (2012). Structured Parallel Program-

ming: Patterns for Efficient Computation. 1st. San Francisco, CA, USA: Morgan Kauf-
mann Publishers Inc. (cit. on pp. 21, 89).

McCreesh, Ciaran, Samba Ndojh Ndiaye, Patrick Prosser, and Christine Solnon (2016).
“Clique and Constraint Models for Maximum Common (Connected) Subgraph Problems”.
In: Principles and Practice of Constraint Programming - 22nd International Conference,

CP 2016, Toulouse, France, September 5-9, 2016, Proceedings. Ed. by Michel Rueher.
Vol. 9892. Lecture Notes in Computer Science. Springer, pp. 350–368. ISBN: 978-3-319-
44952-4. DOI: 10.1007/978-3-319-44953-1_23 (cit. on pp. 26, 27, 173).

McCreesh, Ciaran and Patrick Prosser (2013). “Multi-Threading a State-of-the-Art Maximum
Clique Algorithm”. In: Algorithms 6.4, pp. 618–635. DOI: 10.3390/a6040618 (cit. on
pp. 40, 41, 43, 44, 64, 66, 68, 69, 71, 84, 92).

McCreesh, Ciaran and Patrick Prosser (2014a). “An Exact Branch and Bound Algorithm
with Symmetry Breaking for the Maximum Balanced Induced Biclique Problem”. In:
Integration of AI and OR Techniques in Constraint Programming - 11th International

Conference, CPAIOR 2014, Cork, Ireland, May 19-23, 2014. Proceedings. Ed. by Helmut
Simonis. Vol. 8451. Lecture Notes in Computer Science. Springer, pp. 226–234. ISBN:
978-3-319-07045-2. DOI: 10.1007/978-3-319-07046-9_16 (cit. on pp. 26, 95).

McCreesh, Ciaran and Patrick Prosser (2014b). “Reducing the Branching in a Branch and
Bound Algorithm for the Maximum Clique Problem”. In: Principles and Practice of Con-

straint Programming - 20th International Conference, CP 2014, Lyon, France, September

8-12, 2014. Proceedings. Ed. by Barry O’Sullivan. Vol. 8656. Lecture Notes in Computer
Science. Springer, pp. 549–563. ISBN: 978-3-319-10427-0. DOI: 10.1007/978-3-319-
10428-7_40 (cit. on pp. 25, 29).

McCreesh, Ciaran and Patrick Prosser (2015a). “A Parallel, Backjumping Subgraph Isomor-
phism Algorithm Using Supplemental Graphs”. In: Principles and Practice of Constraint

Programming - 21st International Conference, CP 2015, Cork, Ireland, August 31 -

September 4, 2015, Proceedings. Ed. by Gilles Pesant. Vol. 9255. Lecture Notes in Com-
puter Science. Springer, pp. 295–312. ISBN: 978-3-319-23218-8. DOI: 10.1007/978-3-
319-23219-5_21 (cit. on pp. 26, 127, 143, 147).

REFERENCES 237

McCreesh, Ciaran and Patrick Prosser (2015b). “A parallel branch and bound algorithm for
the maximum labelled clique problem”. In: Optimization Letters 9.5, pp. 949–960. DOI:
10.1007/s11590-014-0837-4 (cit. on pp. 26, 95, 133, 134).

McCreesh, Ciaran and Patrick Prosser (2015c). “The Shape of the Search Tree for the
Maximum Clique Problem and the Implications for Parallel Branch and Bound”. In:
TOPC 2.1, 8:1–8:27. DOI: 10.1145/2742359 (cit. on pp. 25, 64).

McCreesh, Ciaran and Patrick Prosser (2016). “Finding Maximum k-Cliques Faster Using
Lazy Global Domination”. In: Proceedings of the Ninth Annual Symposium on Combina-

torial Search, SOCS 2016, Tarrytown, NY, USA, July 6-8, 2016. Ed. by Jorge A. Baier and
Adi Botea. AAAI Press, pp. 72–80. ISBN: 978-1-57735-769-8 (cit. on pp. 26, 29, 95).

McCreesh, Ciaran, Patrick Prosser, and James Trimble (2016). “Heuristics and Really Hard
Instances for Subgraph Isomorphism Problems”. In: Proceedings of the Twenty-Fifth

International Joint Conference on Artificial Intelligence, IJCAI 2016, New York, NY, USA,

9-15 July 2016. Ed. by Subbarao Kambhampati. IJCAI/AAAI Press, pp. 631–638. ISBN:
978-1-57735-770-4 (cit. on pp. 26, 146).

McCreesh, Ciaran, Patrick Prosser, and James Trimble (2017). “A Partitioning Algorithm
for Maximum Common Subgraph Problems”. In: Proceedings of the Twenty-Sixth Inter-

national Joint Conference on Artificial Intelligence, IJCAI 2017, Melbourne, Australia,

19-25 August 2017. To appear (cit. on pp. 173, 198).

McGeoch, Catherine C. (2012). A Guide to Experimental Algorithmics. Cambridge University
Press. ISBN: 978-0-521-17301-8 (cit. on pp. 14, 17).

McGregor, James J. (1979). “Relational consistency algorithms and their application in finding
subgraph and graph isomorphisms”. In: Inf. Sci. 19.3, pp. 229–250. DOI: 10.1016/0020-
0255(79)90023-9 (cit. on p. 125).

McGregor, James J. (1982). “Backtrack Search Algorithms and the Maximal Common Sub-
graph Problem”. In: Softw., Pract. Exper. 12.1, pp. 23–34. DOI: 10.1002/spe.4380120103
(cit. on pp. 125, 174).

McKay, Brendan D. and Adolfo Piperno (2014). “Practical graph isomorphism, II”. In: J.

Symb. Comput. 60, pp. 94–112. DOI: 10.1016/j.jsc.2013.09.003 (cit. on pp. 18, 143, 191,
198).

Menouer, Tarek, Mohamed Rezgui, Bertrand Le Cun, and Jean-Charles Régin (2016). “Mixing
Static and Dynamic Partitioning to Parallelize a Constraint Programming Solver”. In:
International Journal of Parallel Programming 44.3, pp. 486–505. DOI: 10.1007/s10766-
015-0356-7 (cit. on p. 70).

Mercure, Hélène, Jean-Marie Bourjolly, Paul Gill, and Gilbert Laporte (1993). “An exact
quadratic 0-1 algorithm for the stable set problem”. In: Cliques, Coloring, and Satisfiability,

Proceedings of a DIMACS Workshop, New Brunswick, New Jersey, USA, October 11-13,

238 REFERENCES

1993. Ed. by David S. Johnson and Michael A. Trick. Vol. 26. DIMACS Series in Discrete
Mathematics and Theoretical Computer Science. DIMACS/AMS, pp. 53–74 (cit. on
p. 30).

Meyerhenke, Henning (2011). Clustering Instances. URL: http : / / www. cc . gatech . edu /
dimacs10/archive/clustering.shtml (visited on March 31, 2017) (cit. on p. 104).

Michel, Laurent, Andrew See, and Pascal Van Hentenryck (2009). “Transparent Parallelization
of Constraint Programming”. In: INFORMS Journal on Computing 21.3, pp. 363–382.
DOI: 10.1287/ijoc.1080.0313 (cit. on p. 90).

Minot, Mael, Samba Ndojh Ndiaye, and Christine Solnon (2015). “A Comparison of De-
composition Methods for the Maximum Common Subgraph Problem”. In: 27th IEEE

International Conference on Tools with Artificial Intelligence, ICTAI 2015, Vietri sul

Mare, Italy, November 9-11, 2015. IEEE, pp. 461–468. ISBN: 978-1-5090-0163-7. DOI:
10.1109/ICTAI.2015.75 (cit. on pp. 172, 200).

Mitchell, David G., Bart Selman, and Hector J. Levesque (1992). “Hard and Easy Distribu-
tions of SAT Problems”. In: Proceedings of the 10th National Conference on Artificial

Intelligence. San Jose, CA, July 12-16, 1992. Ed. by William R. Swartout. AAAI Press /
The MIT Press, pp. 459–465. ISBN: 0-262-51063-4 (cit. on pp. 35, 146).

Moisan, Thierry, Jonathan Gaudreault, and Claude-Guy Quimper (2013). “Parallel Discrep-
ancy-Based Search”. In: Principles and Practice of Constraint Programming - 19th

International Conference, CP 2013, Uppsala, Sweden, September 16-20, 2013. Proceed-

ings. Ed. by Christian Schulte. Vol. 8124. Lecture Notes in Computer Science. Springer,
pp. 30–46. ISBN: 978-3-642-40626-3. DOI: 10.1007/978-3-642-40627-0_6 (cit. on pp. 76,
90).

Mokken, Robert J. (1979). “Cliques, clubs and clans”. In: Quality and Quantity 13.2, pp. 161–
173. ISSN: 0033-5177. DOI: 10.1007/BF00139635 (cit. on p. 96).

Murray, Alastair Colin (2012). “Customising compilers for customisable processors”. PhD
thesis. The University of Edinburgh (cit. on pp. 125, 160).

Murray, Alastair Colin and Björn Franke (2012). “Compiling for automatically generated
instruction set extensions”. In: 10th Annual IEEE/ACM International Symposium on Code

Generation and Optimization, CGO 2012, San Jose, CA, USA, March 31 - April 04, 2012.
Ed. by Carol Eidt, Anne M. Holler, Uma Srinivasan, and Saman P. Amarasinghe. ACM,
pp. 13–22. ISBN: 978-1-4503-1206-6. DOI: 10.1145/2259016.2259019 (cit. on p. 125).

Mycielski, Jan (1955). “Sur le coloriage des graphes”. French. In: Colloq. Math. Vol. 3.
161-162, p. 9 (cit. on p. 11).

Ndiaye, Samba Ndojh and Christine Solnon (2011). “CP Models for Maximum Common
Subgraph Problems”. In: Principles and Practice of Constraint Programming - CP 2011

- 17th International Conference, CP 2011, Perugia, Italy, September 12-16, 2011. Pro-

REFERENCES 239

ceedings. Ed. by Jimmy Ho-Man Lee. Vol. 6876. Lecture Notes in Computer Science.
Springer, pp. 637–644. ISBN: 978-3-642-23785-0. DOI: 10.1007/978-3-642-23786-7_48
(cit. on pp. 173, 174, 177).

Nguyen, T. and Yves Deville (1998). “A Distributed Arc-Consistency Algorithm”. In: Sci.

Comput. Program. 30.1-2, pp. 227–250. DOI: 10.1016/S0167-6423(97)00012-9 (cit. on
p. 21).

Nikolaev, Alexey, Mikhail Batsyn, and Pablo San Segundo (2015). “Reusing the Same
Coloring in the Child Nodes of the Search Tree for the Maximum Clique Problem”. In:
Learning and Intelligent Optimization - 9th International Conference, LION 9, Lille,

France, January 12-15, 2015. Revised Selected Papers. Ed. by Clarisse Dhaenens, Laetitia
Jourdan, and Marie-Eléonore Marmion. Vol. 8994. Lecture Notes in Computer Science.
Springer, pp. 275–280. ISBN: 978-3-319-19083-9. DOI: 10.1007/978-3-319-19084-6_27.
(Cit. on pp. 58, 123).

Okubo, Yoshiaki and Makoto Haraguchi (2006). “Finding Conceptual Document Clusters
with Improved Top-N Formal Concept Search”. In: 2006 IEEE / WIC / ACM International

Conference on Web Intelligence (WI) 2006, 18-22 December 2006, Hong Kong, China.
IEEE Computer Society, pp. 347–351. ISBN: 0-7695-2747-7. DOI: 10.1109/WI.2006.81
(cit. on p. 45).

Östergård, Patric R. J. (2002). “A fast algorithm for the maximum clique problem”. In:
Discrete Applied Mathematics 120.1-3, pp. 197–207. DOI: 10.1016/S0166-218X(01)
00290-6. (Cit. on pp. 30, 59).

Otten, Lars and Rina Dechter (2017). “AND/OR Branch-and-Bound on a Computational
Grid”. In: J. Artif. Intell. Res. (JAIR) 59. To appear (cit. on p. 72).

Pardalos, Panos M., Jonas Rappe, and Mauricio G. C. Resende (1998). “An Exact Parallel
Algorithm for the Maximum Clique Problem”. In: High Performance Algorithms and

Software in Nonlinear Optimization. Ed. by Renato De Leone, Almerico Murli, Panos M.
Pardalos, and Gerardo Toraldo. Boston, MA: Springer US, pp. 279–300. ISBN: 978-1-
4613-3279-4. DOI: 10.1007/978-1-4613-3279-4_18 (cit. on p. 66).

Pardalos, Panos M. and Gregory P. Rodgers (1992). “A branch and bound algorithm for the
maximum clique problem”. In: Computers & OR 19.5, pp. 363–375. DOI: 10.1016/0305-
0548(92)90067-F. (Cit. on p. 29).

Pardalos, Panos M. and Jue Xue (1994). “The maximum clique problem”. In: J. Global

Optimization 4.3, pp. 301–328. DOI: 10.1007/BF01098364 (cit. on p. 30).

Park, Young Hee, Douglas S. Reeves, and Mark Stamp (2013). “Deriving common malware
behavior through graph clustering”. In: Computers & Security 39, pp. 419–430. DOI:
10.1016/j.cose.2013.09.006 (cit. on p. 171).

240 REFERENCES

Pataki, Gábor, Egon Balas, Sabastian Ceria, and Gerard Cornuejols (1993). “Polyhedral
methods for the maximum clique problem”. In: Cliques, Coloring, and Satisfiability,

Proceedings of a DIMACS Workshop, New Brunswick, New Jersey, USA, October 11-13,

1993. Ed. by David S. Johnson and Michael A. Trick. Vol. 26. DIMACS Series in Discrete
Mathematics and Theoretical Computer Science. DIMACS/AMS, pp. 11–28 (cit. on
p. 30).

Pattabiraman, Bharath, Md. Mostofa Ali Patwary, Assefaw Hadish Gebremedhin, Wei-keng
Liao, and Alok N. Choudhary (2013). “Fast Algorithms for the Maximum Clique Prob-
lem on Massive Sparse Graphs”. In: Algorithms and Models for the Web Graph - 10th

International Workshop, WAW 2013, Cambridge, MA, USA, December 14-15, 2013, Pro-

ceedings. Ed. by Anthony Bonato, Michael Mitzenmacher, and Pawel Pralat. Vol. 8305.
Lecture Notes in Computer Science. Springer, pp. 156–169. ISBN: 978-3-319-03535-2.
DOI: 10.1007/978-3-319-03536-9_13 (cit. on p. 60).

Pattabiraman, Bharath, Md. Mostofa Ali Patwary, Assefaw Hadish Gebremedhin, Wei-keng
Liao, and Alok N. Choudhary (2015). “Fast Algorithms for the Maximum Clique Problem
on Massive Graphs with Applications to Overlapping Community Detection”. In: Internet

Mathematics 11.4-5, pp. 421–448. DOI: 10.1080/15427951.2014.986778 (cit. on p. 60).

Peng, Peng, Lei Zou, Lei Chen, Xuemin Lin, and Dongyan Zhao (2016). “Answering subgraph
queries over massive disk resident graphs”. In: World Wide Web 19.3, pp. 417–448. DOI:
10.1007/s11280-014-0322-0 (cit. on p. 164).

Petit, Thierry, Jean-Charles Régin, and Christian Bessière (2001). “Specific Filtering Al-
gorithms for Over-Constrained Problems”. In: Principles and Practice of Constraint

Programming - CP 2001, 7th International Conference, CP 2001, Paphos, Cyprus, Novem-

ber 26 - December 1, 2001, Proceedings. Ed. by Toby Walsh. Vol. 2239. Lecture Notes in
Computer Science. Springer, pp. 451–463. ISBN: 3-540-42863-1. DOI: 10.1007/3-540-
45578-7_31 (cit. on p. 175).

Picker, Marten (2015). “Algorithms and Experiments for Finding Robust 2-Clubs”. MA thesis.
Technische Universität Berlin (cit. on p. 96).

Piperno, Adolfo (2008). “Search Space Contraction in Canonical Labeling of Graphs (Prelim-
inary Version)”. In: CoRR abs/0804.4881 (cit. on pp. 13, 18).

Piva, Breno and Cid Carvalho de Souza (2012). “Polyhedral study of the maximum common
induced subgraph problem”. In: Annals OR 199.1, pp. 77–102. DOI: 10.1007/s10479-011-
1019-8 (cit. on p. 174).

Poldner, Michael and Herbert Kuchen (2008). “Algorithmic Skeletons for Branch and Bound”.
In: Software and Data Technologies: First International Conference, ICSOFT 2006,

Setúbal, Portugal, September 11-14, 2006, Revised Selected Papers. Ed. by Joaquim Filipe,
Boris Shishkov, and Markus Helfert. Berlin, Heidelberg: Springer Berlin Heidelberg,

REFERENCES 241

pp. 204–219. ISBN: 978-3-540-70621-2. DOI: 10.1007/978-3-540-70621-2_17 (cit. on
pp. 81, 84).

Prosser, Patrick (2012). “Exact Algorithms for Maximum Clique: A Computational Study”.
In: Algorithms 5.4, pp. 545–587. DOI: 10.3390/a5040545. (Cit. on pp. 30, 33–35, 55–57).

Prosser, Patrick and Chris Unsworth (2006). “A Connectivity Constraint Using Bridges”. In:
ECAI 2006, 17th European Conference on Artificial Intelligence, August 29 - September

1, 2006, Riva del Garda, Italy, Including Prestigious Applications of Intelligent Systems

(PAIS) 2006), Proceedings. Ed. by Gerhard Brewka, Silvia Coradeschi, Anna Perini, and
Paolo Traverso. Vol. 141. Frontiers in Artificial Intelligence and Applications. IOS Press,
pp. 707–708. ISBN: 1-58603-642-4 (cit. on p. 180).

Prosser, Patrick and Chris Unsworth (2011). “Limited discrepancy search revisited”. In: ACM

Journal of Experimental Algorithmics 16. DOI: 10.1145/1963190.2019581 (cit. on p. 76).

Puget, Jean-Francois (1998). “A Fast Algorithm for the Bound Consistency of alldiff Con-
straints”. In: Proceedings of the Fifteenth National Conference on Artificial Intelligence

and Tenth Innovative Applications of Artificial Intelligence Conference, AAAI 98, IAAI 98,

July 26-30, 1998, Madison, Wisconsin, USA. Ed. by Jack Mostow and Chuck Rich. AAAI
Press / The MIT Press, pp. 359–366. ISBN: 0-262-51098-7 (cit. on p. 131).

Pullan, Wayne, Franco Mascia, and Mauro Brunato (2011). “Cooperating local search for the
maximum clique problem”. In: J. Heuristics 17.2, pp. 181–199. DOI: 10.1007/s10732-
010-9131-5 (cit. on p. 91).

Quimper, Claude-Guy and Toby Walsh (2005). “The All Different and Global Cardinality
Constraints on Set, Multiset and Tuple Variables”. In: Recent Advances in Constraints,

Joint ERCIM/CoLogNET International Workshop on Constraint Solving and Constraint

Logic Programming, CSCLP 2005, Uppsala, Sweden, June 20-22, 2005, Revised Selected

and Invited Papers. Ed. by Brahim Hnich, Mats Carlsson, François Fages, and Francesca
Rossi. Vol. 3978. Lecture Notes in Computer Science. Springer, pp. 1–13. ISBN: 3-540-
34215-X. DOI: 10.1007/11754602_1 (cit. on p. 131).

Raymond, John W. and Peter Willett (2002). “Maximum common subgraph isomorphism
algorithms for the matching of chemical structures”. In: Journal of Computer-Aided

Molecular Design 16.7, pp. 521–533. DOI: 10.1023/A:1021271615909 (cit. on pp. 171,
175, 179).

Rayward-Smith, Victor J., S. A. Rush, and Geoff P. McKeown (1993). “Efficiency considera-
tions in the implementation of parallel branch-and-bound”. In: Annals OR 43.2, pp. 123–
145. DOI: 10.1007/BF02024489 (cit. on p. 83).

Redmond, Ursula and Pádraig Cunningham (2013). “Temporal subgraph isomorphism”. In:
Advances in Social Networks Analysis and Mining 2013, ASONAM ’13, Niagara, ON,

Canada - August 25 - 29, 2013. Ed. by Jon G. Rokne and Christos Faloutsos. ACM,

242 REFERENCES

pp. 1451–1452. ISBN: 978-1-4503-2240-9. DOI: 10.1145/2492517.2492586 (cit. on
p. 142).

Redmond, Ursula and Pádraig Cunningham (2016). “Subgraph Isomorphism in Temporal
Networks”. In: CoRR abs/1605.02174 (cit. on p. 142).

Régin, Jean-Charles (1994). “A Filtering Algorithm for Constraints of Difference in CSPs”.
In: Proceedings of the 12th National Conference on Artificial Intelligence, Seattle, WA,

USA, July 31 - August 4, 1994, Volume 1. Ed. by Barbara Hayes-Roth and Richard E. Korf.
AAAI Press / The MIT Press, pp. 362–367. ISBN: 0-262-61102-3 (cit. on pp. 8, 131, 163,
165, 196).

Régin, Jean-Charles (1995). “Développement d’outils algorithmiques pour l’Intelligence
Artificielle. Application à la chimie organique”. French. PhD thesis. Université Montpellier
2 (cit. on p. 125).

Régin, Jean-Charles (2003). “Using Constraint Programming to Solve the Maximum Clique
Problem”. In: Principles and Practice of Constraint Programming - CP 2003, 9th In-

ternational Conference, CP 2003, Kinsale, Ireland, September 29 - October 3, 2003,

Proceedings. Ed. by Francesca Rossi. Vol. 2833. Lecture Notes in Computer Science.
Springer, pp. 634–648. ISBN: 3-540-20202-1. DOI: 10.1007/978-3-540-45193-8_43.
(Cit. on p. 30).

Régin, Jean-Charles, Mohamed Rezgui, and Arnaud Malapert (2013). “Embarrassingly Paral-
lel Search”. In: Principles and Practice of Constraint Programming - 19th International

Conference, CP 2013, Uppsala, Sweden, September 16-20, 2013. Proceedings. Ed. by
Christian Schulte. Vol. 8124. Lecture Notes in Computer Science. Springer, pp. 596–610.
ISBN: 978-3-642-40626-3. DOI: 10.1007/978-3-642-40627-0_45 (cit. on pp. 70, 82, 85).

Régin, Jean-Charles, Mohamed Rezgui, and Arnaud Malapert (2014). “Improvement of the
Embarrassingly Parallel Search for Data Centers”. In: Principles and Practice of Con-

straint Programming - 20th International Conference, CP 2014, Lyon, France, September

8-12, 2014. Proceedings. Ed. by Barry O’Sullivan. Vol. 8656. Lecture Notes in Computer
Science. Springer, pp. 622–635. ISBN: 978-3-319-10427-0. DOI: 10.1007/978-3-319-
10428-7_45 (cit. on p. 70).

Regula, Gergely and Béla Lantos (2013). “Formation Control of Quadrotor Helicopters with
Guaranteed Collision Avoidance via Safe Path”. In: Electrical Engineering and Computer

Science 56.4, pp. 113–124 (cit. on p. 45).

Rossi, Francesca, Peter van Beek, and Toby Walsh, eds. (2006). Handbook of Constraint

Programming. Vol. 2. Foundations of Artificial Intelligence. Elsevier. ISBN: 978-0-444-
52726-4 (cit. on p. 7).

REFERENCES 243

Rossi, Ryan A., David F. Gleich, Assefaw Hadish Gebremedhin, and Md. Mostofa Ali
Patwary (2013). “A Fast Parallel Maximum Clique Algorithm for Large Sparse Graphs
and Temporal Strong Components”. In: CoRR abs/1302.6256 (cit. on p. 66).

Sabin, Daniel and Eugene C. Freuder (1994). “Contradicting Conventional Wisdom in Con-
straint Satisfaction”. In: Principles and Practice of Constraint Programming, Second

International Workshop, PPCP’94, Rosario, Orcas Island, Washington, USA, May 2-4,

1994, Proceedings. Ed. by Alan Borning. Vol. 874. Lecture Notes in Computer Science.
Springer, pp. 10–20. ISBN: 3-540-58601-6. DOI: 10.1007/3-540-58601-6_86 (cit. on
pp. 8, 175).

San Segundo, Pablo (2012). “A new DSATUR-based algorithm for exact vertex coloring”. In:
Computers & OR 39.7, pp. 1724–1733. DOI: 10.1016/j.cor.2011.10.008. (Cit. on p. 56).

San Segundo, Pablo, Jorge Artieda, Mikhail Batsyn, and Panos M. Pardalos (2017). “An
enhanced bitstring encoding for exact maximum clique search in sparse graphs”. In:
Optimization Methods and Software 32.2, pp. 312–335. DOI: 10.1080/10556788.2017.
1281924 (cit. on p. 60).

San Segundo, Pablo, Jorge Artieda, Rafael León, and Cristóbal Tapia (2016). “An Enhanced
Infra-Chromatic Bound for the Maximum Clique Problem”. In: Machine Learning, Op-

timization, and Big Data - Second International Workshop, MOD 2016, Volterra, Italy,

August 26-29, 2016, Revised Selected Papers. Ed. by Panos M. Pardalos, Piero Conca, Gio-
vanni Giuffrida, and Giuseppe Nicosia. Vol. 10122. Lecture Notes in Computer Science.
Springer, pp. 306–316. ISBN: 978-3-319-51468-0. DOI: 10.1007/978-3-319-51469-7_26
(cit. on p. 57).

San Segundo, Pablo, Alvaro Lopez, Jorge Artieda, and Panos M. Pardalos (2017). “A parallel
maximum clique algorithm for large and massive sparse graphs”. In: Optimization Letters

11.2, pp. 343–358. DOI: 10.1007/s11590-016-1019-3 (cit. on p. 60).

San Segundo, Pablo, Alvaro Lopez, and Mikhail Batsyn (2014). “Initial Sorting of Vertices
in the Maximum Clique Problem Reviewed”. In: Learning and Intelligent Optimization

- 8th International Conference, Lion 8, Gainesville, FL, USA, February 16-21, 2014.

Revised Selected Papers. Ed. by Panos M. Pardalos, Mauricio G. C. Resende, Chrysafis
Vogiatzis, and Jose L. Walteros. Vol. 8426. Lecture Notes in Computer Science. Springer,
pp. 111–120. ISBN: 978-3-319-09583-7. DOI: 10.1007/978-3-319-09584-4_12 (cit. on
p. 55).

San Segundo, Pablo, Alvaro Lopez, Mikhail Batsyn, Alexey Nikolaev, and Panos M. Pardalos
(2016). “Improved initial vertex ordering for exact maximum clique search”. In: Appl.

Intell. 45.3, pp. 868–880. DOI: 10.1007/s10489-016-0796-9 (cit. on p. 55).

244 REFERENCES

San Segundo, Pablo, Alvaro Lopez, and Panos M. Pardalos (2016). “A new exact maximum
clique algorithm for large and massive sparse graphs”. In: Computers & OR 66, pp. 81–94.
DOI: 10.1016/j.cor.2015.07.013 (cit. on pp. 60, 105).

San Segundo, Pablo, Fernando Matía, Diego Rodríguez-Losada, and Miguel Hernando (2013).
“An improved bit parallel exact maximum clique algorithm”. In: Optimization Letters 7.3,
pp. 467–479. DOI: 10.1007/s11590-011-0431-y. (Cit. on pp. 30, 33, 57).

San Segundo, Pablo, Alexey Nikolaev, and Mikhail Batsyn (2015). “Infra-chromatic bound
for exact maximum clique search”. In: Computers & OR 64, pp. 293–303. DOI: 10.1016/j.
cor.2015.06.009 (cit. on p. 57).

San Segundo, Pablo, Alexey Nikolaev, Mikhail Batsyn, and Panos M. Pardalos (2016).
“Improved Infra-Chromatic Bound for Exact Maximum Clique Search”. In: Informatica,

Lith. Acad. Sci. 27.2, pp. 463–487 (cit. on pp. 44, 57).

San Segundo, Pablo, Diego Rodríguez-Losada, Ramón Galán, Fernando Matía, and Agustín
Jiménez (2007). “Exploiting CPU Bit Parallel Operations to Improve Efficiency in Search”.
In: ICTAI (1). IEEE Computer Society, pp. 53–59 (cit. on pp. 20, 132).

San Segundo, Pablo, Diego Rodríguez-Losada, and Agustín Jiménez (2011). “An exact bit-
parallel algorithm for the maximum clique problem”. In: Computers & OR 38.2, pp. 571–
581. DOI: 10.1016/j.cor.2010.07.019. (Cit. on pp. 30, 33).

San Segundo, Pablo, Diego Rodríguez-Losada, Fernando Matía, and Ramón Galán (2010).
“Fast exact feature based data correspondence search with an efficient bit-parallel MCP
solver”. In: Appl. Intell. 32.3, pp. 311–329. DOI: 10.1007/s10489-008-0147-6 (cit. on
p. 45).

San Segundo, Pablo and Cristóbal Tapia (2014). “Relaxed approximate coloring in exact
maximum clique search”. In: Computers & OR 44, pp. 185–192. DOI: 10.1016/j.cor.2013.
10.018 (cit. on p. 58).

San Segundo, Pablo, Cristóbal Tapia, and Alvaro Lopez (2013). “Watching Subgraphs to
Improve Efficiency in Maximum Clique Search”. In: Contemporary Challenges and

Solutions in Applied Artificial Intelligence. Ed. by Moonis Ali, Tibor Bosse, Koen V.
Hindriks, Mark Hoogendoorn, Catholijn M. Jonker, and Jan Treur. Heidelberg: Springer
International Publishing, pp. 115–122. ISBN: 978-3-319-00651-2. DOI: 10.1007/978-3-
319-00651-2_16. (Cit. on p. 57).

Sanchis, Laura A. (1992). “Test Case Construction for the Vertex Cover Problem”. In: Com-

putational Support for Discrete Mathematics, Proceedings of a DIMACS Workshop,

Piscataway, New Jersey, USA, March 12-14, 1992. Ed. by Nathaniel Dean and Gregory E.
Shannon. Vol. 15. DIMACS Series in Discrete Mathematics and Theoretical Computer
Science. DIMACS/AMS, pp. 315–326. (Cit. on p. 43).

REFERENCES 245

Sanchis, Laura A. (1995). “Generating Hard and Diverse Test Sets for NP-hard Graph
Problems”. In: Discrete Applied Mathematics 58.1, pp. 35–66. DOI: 10 .1016 /0166-
218X(93)E0140-T. (Cit. on p. 43).

Sanders, Peter (1995). “Better Algorithms for Parallel Backtracking”. In: Parallel Algorithms

for Irregularly Structured Problems, Second International Workshop, IRREGULAR ’95,

Lyon, France, September 4-6, 1995, Proceedings. Ed. by Afonso Ferreira and José D. P.
Rolim. Vol. 980. Lecture Notes in Computer Science. Springer, pp. 333–347. ISBN:
3-540-60321-2. DOI: 10.1007/3-540-60321-2_27 (cit. on p. 72).

Schulte, Christian and Peter J. Stuckey (2008). “Efficient constraint propagation engines”. In:
ACM Trans. Program. Lang. Syst. 31.1, 2:1–2:43. DOI: 10.1145/1452044.1452046 (cit. on
pp. 10, 131).

Schulte, Christian and Guido Tack (2009). “Weakly Monotonic Propagators”. In: Principles

and Practice of Constraint Programming - CP 2009, 15th International Conference, CP

2009, Lisbon, Portugal, September 20-24, 2009, Proceedings. Ed. by Ian P. Gent. Vol. 5732.
Lecture Notes in Computer Science. Springer, pp. 723–730. ISBN: 978-3-642-04243-0.
DOI: 10.1007/978-3-642-04244-7_56 (cit. on pp. 10, 131).

Schulte, Christian, Guido Tack, and Mikael Z Lagerkvist (2016). Modeling and programming

with Gecode. Version 5.0.0. (cit. on p. 81).

Sevegnani, Michele and Muffy Calder (2015). “Bigraphs with sharing”. In: Theor. Comput.

Sci. 577, pp. 43–73. DOI: 10.1016/j.tcs.2015.02.011 (cit. on p. 125).

Sewell, Edward C. (1993). “A. improved algorithm for exact graph coloring”. In: Cliques,

Coloring, and Satisfiability, Proceedings of a DIMACS Workshop, New Brunswick, New

Jersey, USA, October 11-13, 1993. Ed. by David S. Johnson and Michael A. Trick.
Vol. 26. DIMACS Series in Discrete Mathematics and Theoretical Computer Science.
DIMACS/AMS, pp. 359–376. (Cit. on p. 56).

Shahinpour, Shahram and Sergiy Butenko (2013). “Distance-Based Clique Relaxations in
Networks: s-Clique and s-Club”. In: Models, Algorithms, and Technologies for Network

Analysis: Proceedings of the Second International Conference on Network Analysis. Ed. by
Boris I. Goldengorin, Valery A. Kalyagin, and Panos M. Pardalos. New York, NY: Springer
New York, pp. 149–174. ISBN: 978-1-4614-8588-9. DOI: 10.1007/978-1-4614-8588-9_10
(cit. on p. 96).

Shang, Haichuan, Ying Zhang, Xuemin Lin, and Jeffrey Xu Yu (2008). “Taming verification
hardness: an efficient algorithm for testing subgraph isomorphism”. In: PVLDB 1.1,
pp. 364–375 (cit. on p. 165).

Sharad, Kumar and George Danezis (2013). “De-anonymizing d4d datasets.” In: Workshop

on Hot Topics in Privacy Enhancing Technologies, Bloomington, Indiana, USA. (Cit. on
p. 171).

246 REFERENCES

Sharmin, Sadia (2014). “Practical Aspects of the Graph Parameter Boolean-width”. PhD
thesis. The University of Bergen (cit. on pp. 18, 44).

Shasha, Dennis E., Jason Tsong-Li Wang, and Rosalba Giugno (2002). “Algorithmics and
Applications of Tree and Graph Searching”. In: Proceedings of the Twenty-first ACM

SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, June 3-5,

Madison, Wisconsin, USA. Ed. by Lucian Popa, Serge Abiteboul, and Phokion G. Kolaitis.
ACM, pp. 39–52. ISBN: 1-58113-507-6. DOI: 10.1145/543613.543620 (cit. on pp. 161,
171).

Smith, Barbara M. (1994). “The Phase Transition and the Mushy Region in Constraint
Satisfaction Problems”. In: ECAI, pp. 100–104 (cit. on p. 37).

Smith, Barbara M. and Martin E. Dyer (1996). “Locating the Phase Transition in Binary
Constraint Satisfaction Problems”. In: Artif. Intell. 81.1-2, pp. 155–181. DOI: 10.1016/
0004-3702(95)00052-6 (cit. on pp. 37, 151).

Smith, Barbara M. and Stuart A. Grant (1997). “Modelling Exceptionally Hard Constraint
Satisfaction Problems”. In: Principles and Practice of Constraint Programming - CP97,

Third International Conference, Linz, Austria, October 29 - November 1, 1997, Pro-

ceedings. Ed. by Gert Smolka. Vol. 1330. Lecture Notes in Computer Science. Springer,
pp. 182–195. DOI: 10.1007/BFb0017439 (cit. on p. 148).

Solnon, Christine (2010). “AllDifferent-based filtering for subgraph isomorphism”. In: Artif.

Intell. 174.12-13, pp. 850–864. DOI: 10.1016/j.artint.2010.05.002 (cit. on pp. 125, 133,
134, 147).

Solnon, Christine (2016). Benchmarks for the Subgraph Isomorphism Problem. URL: http:
//liris.cnrs.fr/csolnon/SIP.html (visited on March 31, 2017) (cit. on pp. 133, 212).

Solnon, Christine, Guillaume Damiand, Colin de la Higuera, and Jean-Christophe Janodet
(2015). “On the complexity of submap isomorphism and maximum common submap
problems”. In: Pattern Recognition 48.2, pp. 302–316. DOI: 10.1016/j.patcog.2014.05.019
(cit. on pp. 125, 134).

Soriano, Patrick and Michel Gendreau (1993). “Tabu search algorithms for the maximum
clique problem”. In: Cliques, Coloring, and Satisfiability, Proceedings of a DIMACS

Workshop, New Brunswick, New Jersey, USA, October 11-13, 1993. Ed. by David S.
Johnson and Michael A. Trick. Vol. 26. DIMACS Series in Discrete Mathematics and
Theoretical Computer Science. DIMACS/AMS, pp. 221–244 (cit. on p. 40).

Strash, Darren (2016). “On the Power of Simple Reductions for the Maximum Independent Set
Problem”. In: Computing and Combinatorics - 22nd International Conference, COCOON

2016, Ho Chi Minh City, Vietnam, August 2-4, 2016, Proceedings. Ed. by Thang N. Dinh
and My T. Thai. Vol. 9797. Lecture Notes in Computer Science. Springer, pp. 345–356.
ISBN: 978-3-319-42633-4. DOI: 10.1007/978-3-319-42634-1_28 (cit. on pp. 18, 60).

REFERENCES 247

Stroustrup, Bjarne (2012). “Software Development for Infrastructure”. In: IEEE Computer

45.1, pp. 47–58. DOI: 10.1109/MC.2011.353 (cit. on p. 21).

Stuckey, Peter J. and Carleton Coffrin (2016). Modeling Discrete Optimization. Coursera.
(MOOC) (cit. on p. 7).

Suters, W. Henry, Faisal N. Abu-Khzam, Yun Zhang, Christopher T. Symons, Nagiza F.
Samatova, and Michael A. Langston (2005). “A New Approach and Faster Exact Methods
for the Maximum Common Subgraph Problem”. In: Computing and Combinatorics, 11th

Annual International Conference, COCOON 2005, Kunming, China, August 16-29, 2005,

Proceedings. Ed. by Lusheng Wang. Vol. 3595. Lecture Notes in Computer Science.
Springer, pp. 717–727. ISBN: 3-540-28061-8. DOI: 10.1007/11533719_73 (cit. on p. 207).

Sutter, Herb (2005). “The Free Lunch Is Over: A Fundamental Turn Toward Concurrency in
Software”. In: Dr. Dobb’s Journal 30.3 (cit. on pp. 19, 214).

Sutter, Herb and James R. Larus (2005). “Software and the concurrency revolution”. In: ACM

Queue 3.7, pp. 54–62. DOI: 10.1145/1095408.1095421 (cit. on p. 19).

Tack, Guido (2009). “Constraint Propagation – Models, Techniques, Implementation”. Doc-
toral Dissertation. Saarland University (cit. on p. 10).

Tarhio, Jorma, Jan Holub, and Emanuele Giaquinta (2016). “Technology Beats Algorithms
(in Exact String Matching)”. In: CoRR abs/1612.01506 (cit. on p. 21).

Tian, Yuanyuan and Jignesh M. Patel (2008). “TALE: A Tool for Approximate Large Graph
Matching”. In: Proceedings of the 24th International Conference on Data Engineering,

ICDE 2008, April 7-12, 2008, Cancún, México. Ed. by Gustavo Alonso, José A. Blakeley,
and Arbee L. P. Chen. IEEE Computer Society, pp. 963–972. ISBN: 978-1-4244-1836-7.
DOI: 10.1109/ICDE.2008.4497505 (cit. on p. 164).

Tomita, Etsuji (2017). “Efficient Algorithms for Finding Maximum and Maximal Cliques
and Their Applications”. In: WALCOM: Algorithms and Computation: 11th International

Conference and Workshops, WALCOM 2017, Hsinchu, Taiwan, March 29–31, 2017,

Proceedings. Ed. by Sheung-Hung Poon, Md. Saidur Rahman, and Hsu-Chun Yen. Cham:
Springer International Publishing, pp. 3–15. ISBN: 978-3-319-53925-6. DOI: 10.1007/978-
3-319-53925-6_1 (cit. on p. 30).

Tomita, Etsuji and Toshikatsu Kameda (2007). “An Efficient Branch-and-bound Algorithm for
Finding a Maximum Clique with Computational Experiments”. In: J. Global Optimization

37.1, pp. 95–111. DOI: 10.1007/s10898-006-9039-7. (Cit. on pp. 30, 45, 47, 51, 56).

Tomita, Etsuji and Tomokazu Seki (2003). “An Efficient Branch-and-Bound Algorithm for
Finding a Maximum Clique”. In: Discrete Mathematics and Theoretical Computer Science,

4th International Conference, DMTCS 2003, Dijon, France, July 7-12, 2003. Proceedings.
Ed. by Cristian Calude, Michael J. Dinneen, and Vincent Vajnovszki. Vol. 2731. Lecture

248 REFERENCES

Notes in Computer Science. Springer, pp. 278–289. ISBN: 3-540-40505-4. DOI: 10.1007/3-
540-45066-1_22. (Cit. on p. 30).

Tomita, Etsuji, Yoichi Sutani, Takanori Higashi, Shinya Takahashi, and Mitsuo Wakatsuki
(2010). “A Simple and Faster Branch-and-Bound Algorithm for Finding a Maximum
Clique”. In: WALCOM: Algorithms and Computation, 4th International Workshop, WAL-

COM 2010, Dhaka, Bangladesh, February 10-12, 2010. Proceedings. Ed. by Md. Saidur
Rahman and Satoshi Fujita. Vol. 5942. Lecture Notes in Computer Science. Springer,
pp. 191–203. ISBN: 978-3-642-11439-7. DOI: 10.1007/978-3-642-11440-3_18. (Cit. on
pp. 30, 56).

Tomita, Etsuji, Kohei Yoshida, Takuro Hatta, Atsuki Nagao, Hiro Ito, and Mitsuo Wakatsuki
(2016). “A Much Faster Branch-and-Bound Algorithm for Finding a Maximum Clique”.
In: Frontiers in Algorithmics, 10th International Workshop, FAW 2016, Qingdao, China,

June 30- July 2, 2016, Proceedings. Ed. by Daming Zhu and Sergey Bereg. Vol. 9711.
Lecture Notes in Computer Science. Springer, pp. 215–226. ISBN: 978-3-319-39816-7.
DOI: 10.1007/978-3-319-39817-4_21. (Cit. on pp. 30, 43, 56, 58, 90).

Trienekens, Harry W. J. M. (1990). “Parallel Branch and Bound Algorithms”. PhD thesis.
Erasmus University Rotterdam (cit. on pp. 24, 67, 73).

Ullmann, Julian R. (1976). “An Algorithm for Subgraph Isomorphism”. In: J. ACM 23.1,
pp. 31–42. DOI: 10.1145/321921.321925 (cit. on pp. 125, 132, 163, 165).

Ullmann, Julian R. (2010). “Bit-vector algorithms for binary constraint satisfaction and
subgraph isomorphism”. In: ACM Journal of Experimental Algorithmics 15. DOI: 10.
1145/1671970.1921702 (cit. on p. 132).

Vasilyeva, Elena, Maik Thiele, Christof Bornhövd, and Wolfgang Lehner (2016). “Answering
"Why Empty?" and "Why So Many?" queries in graph databases”. In: J. Comput. Syst.

Sci. 82.1, pp. 3–22. DOI: 10.1016/j.jcss.2015.06.007 (cit. on p. 171).

Vehlow, Corinna, Henning Stehr, Matthias Winkelmann, José M. Duarte, Lars Petzold, Juliane
Dinse, and Michael Lappe (2011). “CMView: Interactive contact map visualization and
analysis”. In: Bioinformatics 27.11, p. 1573. DOI: 10.1093/bioinformatics/btr163 (cit. on
p. 165).

Verfaillie, Gérard, Michel Lemaître, and Thomas Schiex (1996). “Russian Doll Search for
Solving Constraint Optimization Problems”. In: Proceedings of the Thirteenth National

Conference on Artificial Intelligence and Eighth Innovative Applications of Artificial

Intelligence Conference, AAAI 96, IAAI 96, Portland, Oregon, August 4-8, 1996, Volume 1.

Ed. by William J. Clancey and Daniel S. Weld. AAAI Press / The MIT Press, pp. 181–187.
ISBN: 0-262-51091-X (cit. on p. 59).

Vismara, Philippe and Benoît Valery (2008). “Finding Maximum Common Connected Sub-
graphs Using Clique Detection or Constraint Satisfaction Algorithms”. In: Modelling,

REFERENCES 249

Computation and Optimization in Information Systems and Management Sciences, Sec-

ond International Conference, MCO 2008, Metz, France - Luxembourg, September 8-10,

2008. Proceedings. Ed. by Le Thi Hoai An, Pascal Bouvry, and Pham Dinh Tao. Vol. 14.
Communications in Computer and Information Science. Springer, pp. 358–368. ISBN:
978-3-540-87476-8. DOI: 10.1007/978-3-540-87477-5_39 (cit. on pp. 172, 174, 176, 177,
179, 180, 184).

Walsh, Toby (1997). “Depth-bounded Discrepancy Search”. In: Proceedings of the Fifteenth

International Joint Conference on Artificial Intelligence, IJCAI 97, Nagoya, Japan, August

23-29, 1997, 2 Volumes. Morgan Kaufmann, pp. 1388–1395 (cit. on p. 76).

Walsh, Toby (1998). “The Constrainedness Knife-Edge”. In: Proceedings of the Fifteenth Na-

tional Conference on Artificial Intelligence and Tenth Innovative Applications of Artificial

Intelligence Conference, AAAI 98, IAAI 98, July 26-30, 1998, Madison, Wisconsin, USA.

Ed. by Jack Mostow and Chuck Rich. AAAI Press / The MIT Press, pp. 406–411. ISBN:
0-262-51098-7 (cit. on pp. 51, 153).

Walsh, Toby (2015). How can you stop killer robots. Talk at TEDxBerlin (cit. on p. 45).

Walshaw, Chris (2016). The Graph Partitioning Archive. URL: http://chriswalshaw.co.uk/
partition/ (visited on March 31, 2017) (cit. on p. 104).

Wang, Guoren, Bin Wang, Xiaochun Yang, and Ge Yu (2012). “Efficiently Indexing Large
Sparse Graphs for Similarity Search”. In: IEEE Trans. Knowl. Data Eng. 24.3, pp. 440–
451. DOI: 10.1109/TKDE.2010.28 (cit. on p. 163).

Wang, Jing, Nikos Ntarmos, and Peter Triantafillou (2016). “Indexing Query Graphs to
Speedup Graph Query Processing”. In: Proceedings of the 19th International Conference

on Extending Database Technology, EDBT 2016, Bordeaux, France, March 15-16, 2016,

Bordeaux, France, March 15-16, 2016. Ed. by Evaggelia Pitoura, Sofian Maabout, Georgia
Koutrika, Amélie Marian, Letizia Tanca, Ioana Manolescu, and Kostas Stefanidis. Open-
Proceedings.org, pp. 41–52. ISBN: 978-3-89318-070-7. DOI: 10.5441/002/edbt.2016.07
(cit. on p. 164).

Williams, Anthony (2012). C++ concurrency in action: practical multithreading. Shelter
Island, NY: Manning Publ. (cit. on pp. 21, 22).

Wood, David R. (1997). “An algorithm for finding a maximum clique in a graph”. In: Oper.

Res. Lett. 21.5, pp. 211–217. DOI: 10.1016/S0167-6377(97)00054-0 (cit. on pp. 30, 57).

Wotzlaw, Andreas (2014). “On Solving the Maximum k-club Problem”. In: CoRR abs/
1403.5111 (cit. on pp. 96, 103, 104).

Wu, Qinghua and Jin-Kao Hao (2015). “A review on algorithms for maximum clique
problems”. In: European Journal of Operational Research 242.3, pp. 693–709. DOI:
10.1016/j.ejor.2014.09.064 (cit. on pp. 2, 45, 60).

250 REFERENCES

Xiang, Jingen, Cong Guo, and Ashraf Aboulnaga (2013). “Scalable maximum clique compu-
tation using MapReduce”. In: 29th IEEE International Conference on Data Engineering,

ICDE 2013, Brisbane, Australia, April 8-12, 2013. Ed. by Christian S. Jensen, Christopher
M. Jermaine, and Xiaofang Zhou. IEEE Computer Society, pp. 74–85. ISBN: 978-1-4673-
4909-3. DOI: 10.1109/ICDE.2013.6544815. (Cit. on pp. 66, 68, 70, 72, 73, 90).

Xu, Ke (2014). BHOSLIB: Benchmarks with Hidden Optimum Solutions for Graph Problems.
URL: http://www.nlsde.buaa.edu.cn/~kexu/benchmarks/graph-benchmarks.htm (visited
on March 31, 2017) (cit. on p. 44).

Xu, Ke, Frédéric Boussemart, Fred Hemery, and Christophe Lecoutre (2005). “A Simple
Model to Generate Hard Satisfiable Instances”. In: IJCAI-05, Proceedings of the Nine-

teenth International Joint Conference on Artificial Intelligence, Edinburgh, Scotland,

UK, July 30 - August 5, 2005. Ed. by Leslie Pack Kaelbling and Alessandro Saffiotti.
Professional Book Center, pp. 337–342. ISBN: 0938075934 (cit. on p. 44).

Xu, Ke and Wei Li (2006). “Many hard examples in exact phase transitions”. In: Theor.

Comput. Sci. 355.3, pp. 291–302. DOI: 10.1016/j.tcs.2006.01.001 (cit. on p. 44).

Yan, B. and S. Gregory (2009). “Detecting communities in networks by merging cliques”.
In: Intelligent Computing and Intelligent Systems, 2009. ICIS 2009. IEEE International

Conference on. Vol. 1, pp. 832–836. DOI: 10.1109/ICICISYS.2009.5358036 (cit. on
p. 45).

Yan, Xifeng, Philip S. Yu, and Jiawei Han (2004). “Graph Indexing: A Frequent Structure-
based Approach”. In: Proceedings of the ACM SIGMOD International Conference on

Management of Data, Paris, France, June 13-18, 2004. Ed. by Gerhard Weikum, Arnd
Christian König, and Stefan Deßloch. ACM, pp. 335–346. ISBN: 1-58113-859-8. DOI:
10.1145/1007568.1007607 (cit. on p. 161).

Yan, Xifeng, Philip S. Yu, and Jiawei Han (2005). “Graph indexing based on discriminative
frequent structure analysis”. In: ACM Trans. Database Syst. 30.4, pp. 960–993. DOI:
10.1145/1114244.1114248 (cit. on p. 162).

Yuan, Dayu and Prasenjit Mitra (2013). “Lindex: a lattice-based index for graph databases”.
In: VLDB J. 22.2, pp. 229–252. DOI: 10.1007/s00778-012-0284-8 (cit. on p. 163).

Yuan, Dayu, Prasenjit Mitra, and C. Lee Giles (2013). “Mining and Indexing Graphs for
Supergraph Search”. In: PVLDB 6.10, pp. 829–840 (cit. on p. 164).

Yuan, Dayu, Prasenjit Mitra, Huiwen Yu, and C. Lee Giles (2015). “Updating Graph Indices
with a One-Pass Algorithm”. In: Proceedings of the 2015 ACM SIGMOD International

Conference on Management of Data, Melbourne, Victoria, Australia, May 31 - June 4,

2015. Ed. by Timos K. Sellis, Susan B. Davidson, and Zachary G. Ives. ACM, pp. 1903–
1916. ISBN: 978-1-4503-2758-9. DOI: 10.1145/2723372.2746482 (cit. on p. 164).

REFERENCES 251

Zampelli, Stéphane, Yves Deville, and Pierre Dupont (2005). “Approximate Constrained
Subgraph Matching”. In: Principles and Practice of Constraint Programming - CP 2005,

11th International Conference, CP 2005, Sitges, Spain, October 1-5, 2005, Proceedings.
Ed. by Peter van Beek. Vol. 3709. Lecture Notes in Computer Science. Springer, pp. 832–
836. ISBN: 3-540-29238-1. DOI: 10.1007/11564751_74 (cit. on pp. 187, 208).

Zampelli, Stéphane, Yves Deville, and Christine Solnon (2010). “Solving subgraph isomor-
phism problems with constraint programming”. In: Constraints 15.3, pp. 327–353. DOI:
10.1007/s10601-009-9074-3 (cit. on pp. 125, 128, 130, 133, 145, 194).

Zhang, Shijie, Meng Hu, and Jiong Yang (2007). “TreePi: A Novel Graph Indexing Method”.
In: Proceedings of the 23rd International Conference on Data Engineering, ICDE 2007,

The Marmara Hotel, Istanbul, Turkey, April 15-20, 2007. Ed. by Rada Chirkova, Asuman
Dogac, M. Tamer Özsu, and Timos K. Sellis. IEEE Computer Society, pp. 966–975. ISBN:
1-4244-0802-4. DOI: 10.1109/ICDE.2007.368955 (cit. on p. 163).

Zhang, Shijie, Shirong Li, and Jiong Yang (2009). “GADDI: distance index based subgraph
matching in biological networks”. In: EDBT 2009, 12th International Conference on

Extending Database Technology, Saint Petersburg, Russia, March 24-26, 2009, Proceed-

ings. Ed. by Martin L. Kersten, Boris Novikov, Jens Teubner, Vladimir Polutin, and
Stefan Manegold. Vol. 360. ACM International Conference Proceeding Series. ACM,
pp. 192–203. ISBN: 978-1-60558-422-5. DOI: 10.1145/1516360.1516384 (cit. on p. 163).

Zhao, Peixiang, Jeffrey Xu Yu, and Philip S. Yu (2007). “Graph Indexing: Tree + Delta >=
Graph”. In: Proceedings of the 33rd International Conference on Very Large Data Bases,

University of Vienna, Austria, September 23-27, 2007. Ed. by Christoph Koch, Johannes
Gehrke, Minos N. Garofalakis, Divesh Srivastava, Karl Aberer, Anand Deshpande, Daniela
Florescu, Chee Yong Chan, Venkatesh Ganti, Carl-Christian Kanne, Wolfgang Klas, and
Erich J. Neuhold. ACM, pp. 938–949. ISBN: 978-1-59593-649-3 (cit. on p. 162).

Zheng, Weiguo, Xiang Lian, Lei Zou, Liang Hong, and Dongyan Zhao (2016). “Online
Subgraph Skyline Analysis over Knowledge Graphs”. In: IEEE Trans. Knowl. Data Eng.

28.7, pp. 1805–1819. DOI: 10.1109/TKDE.2016.2530063 (cit. on p. 164).

Zuckerman, David (2006). “Linear degree extractors and the inapproximability of max clique
and chromatic number”. In: Proceedings of the 38th Annual ACM Symposium on Theory

of Computing, Seattle, WA, USA, May 21-23, 2006. Ed. by Jon M. Kleinberg. ACM,
pp. 681–690. ISBN: 1-59593-134-1. DOI: 10.1145/1132516.1132612 (cit. on p. 18).

