
TKK Reports in Information and Computer Science

Espoo 2009 TKK-ICS-R16

APPROACHES TO GRID-BASED SAT SOLVING

Antti E. J. Hyvärinen

AB TEKNILLINEN KORKEAKOULU
TEKNISKA HÖGSKOLAN
HELSINKI UNIVERSITY OF TECHNOLOGY
TECHNISCHE UNIVERSITÄT HELSINKI
UNIVERSITE DE TECHNOLOGIE D’HELSINKI

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aaltodoc Publication Archive

https://core.ac.uk/display/80700747?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

TKK Reports in Information and Computer Science

Espoo 2009 TKK-ICS-R16

APPROACHES TO GRID-BASED SAT SOLVING

Antti E. J. Hyvärinen

Helsinki University of Technology

Faculty of Information and Natural Sciences

Department of Information and Computer Science

Teknillinen korkeakoulu

Informaatio- ja luonnontieteiden tiedekunta

Tietojenkäsittelytieteen laitos

Distribution:

Helsinki University of Technology

Faculty of Information and Natural Sciences

Department of Information and Computer Science

P.O.Box 5400

FI-02015 TKK

FINLAND

URL: http://ics.tkk.fi

Tel. +358 9 451 1

Fax +358 9 451 3369

E-mail: series@ics.tkk.fi

©c Antti E. J. Hyvärinen

ISBN 978-951-22-9942-3 (Print)

ISBN 978-951-22-9943-0 (Online)

ISSN 1797-5034 (Print)

ISSN 1797-5042 (Online)

URL: http://lib.tkk.fi/Reports/2009/isbn9789512299430.pdf

TKK ICS

Espoo 2009

ABSTRACT: In this work we develop techniques for using distributed com-
puting resources to efficiently solve instances of the propositional satisfiabil-
ity problem (SAT). The computing resources considered in this work are
assumed to be geographically distributed and connected by a non-dedicated
network. Such systems are typically referred to as computational grid envi-
ronments.

The time a modern SAT solver consumes while solving an instance varies
according to a random distribution. Unlike many other methods for dis-
tributed SAT solving, this work identifies the random distribution as a valu-
able resource for solving-time reduction. The methods which use random-
ness in the run times of a search algorithm, such as the ones discussed in this
work, are examples of multi-search. The main contribution of this work is
in developing and analyzing the multi-search approach in SAT solving and
showing its efficiency with several experiments. For the purpose of the analy-
sis, the work introduces a grid simulation model which captures several of the
properties of a grid environment which are not observed in more traditional
parallel computing systems.

The work develops two algorithmic frameworks for multi-search in SAT.
The first, SDSAT, is based on using properties of the distribution of the
solving time so that the expected time required to solve an instance is re-
duced. Based on the analysis of SDSAT, the work proposes an algorithm
for efficiently using large number of computing resources simultaneously to
solve collections of SAT instances. The analysis of SDSAT also motivates
the second algorithmic framework, CL-SDSAT. The framework is used to
efficiently solve many industrial SAT instances by carefully combining infor-
mation learned in the distributed SAT solvers.

All methods described in the work are directly applicable in a wide range
of grid environments and can be used together with virtually unmodified
state-of-the-art SAT solvers. The methods are experimentally verified using
standard benchmark SAT instances in a production-level grid environment.
The experiments show that using the relatively simple methods developed
in the work, SAT instances which cannot be solved efficiently in sequential
settings can be now solved in a grid environment.

KEYWORDS: Propositional Satisfiability, SAT Solving, Computational Grids,
Distributed Search, Multi-search.

CONTENTS

1 Introduction 7
1.1 Contributions . 9
1.2 Related Work . 10

1.2.1 Distributed Search 10
1.2.2 Multi-Search . 11
1.2.3 Complementary Search Methods 12

1.3 Outline . 12

2 Propositional Satisfiability 13
2.1 Propositional Satisfiability 13
2.2 SAT Solvers . 13

2.2.1 Backtracking Search 14
2.2.2 Constructing a Learned Clause 16
2.2.3 DPLL SAT Solvers 18
2.2.4 Restarts and Randomization 18

3 Parallelization Methods in SAT Solving 20
3.1 Distributed Search with Guiding Paths 20

3.1.1 Scheduling in Guiding Paths 21
3.1.2 Learning and Guiding Paths 21

3.2 Scattering . 22
3.3 Multi-Search in SAT . 23
3.4 Remarks . 26

4 Computational Grids 27
4.1 The Grid Environment . 27
4.2 The Simulation Environment 29

5 Randomized Parallel Solving in Grids 32
5.1 Restart Strategies in a Sequential Setting 33

5.1.1 Run Time Distributions 35
5.2 Parallel Solving of a Single Instance 39
5.3 Parallel Solving of a Set of Instances 47
5.4 Remarks . 49

6 Techniques for Parallel Learning 50
6.1 Motivation . 50
6.2 Simplifications . 52
6.3 The CL-SDSAT Framework 52
6.4 Analyzing the Key Aspects of CL-SDSAT 55
6.5 Grid Implementation . 64
6.6 Remarks . 68

7 Conclusions 69
7.1 Distributed SAT Solving . 69
7.2 Future Work . 70

CONTENTS 5

Bibliography 73

6 CONTENTS

1 INTRODUCTION

This work develops methods for solving instances of the propositional sat-
isfiability problem (SAT), which concerns deciding whether a given logical
formula over a set of Boolean variables evaluates to true for some truth assign-
ment on the variables. As the platform for solving SAT instances, this work
considers computational grid environments consisting of high performance
computing clusters connected with a non-dedicated network.

The SAT problem belongs to the class of NP-complete decision prob-
lems [22], for which all known algorithms need in the worst case exponential
number of steps with respect to the size of the problem instance. Further-
more, if one of the NP-complete problems has such a polynomial time solv-
ing procedure, then the same procedure could be used for every problem in
NP [83].

Despite the notorious complexity of solving SAT instances, there are sev-
eral implementations, called SAT solvers, capable of solving instances with
a large number of variables efficiently. Since the first implementations of
SAT solvers [25, 24], originally designed for first-order theorem proving, SAT
solving has experienced tremendous enhancements in algorithm design, and
recent solvers [28, 80] represent in many ways the state-of-the-art in solving
NP-complete problems. Many engineering problems seem to be naturally
transformable to a SAT instance, and can then be efficiently solved by a gen-
eral purpose SAT solvers.

In recent years, SAT has experienced an increase of interest from the in-
dustry with applications such as planning [63], automated test pattern gen-
eration [67, 13], cryptanalysis [79] and bounded model checking [77]. The
cumbersome and rather theoretical machinery developed for SAT solving is
brought to the level of applications usually by a relatively simple process.
Problems from the application domain are encoded as a SAT instance, and
the instance is then solved using a general-purpose SAT solver. Crucial to
the approach is, of course, that the satisfying truth assignment possibly ob-
tained by the solver from the encoding can be mapped to a solution of the
original problem in the application area. In this paradigm the programmer
is relieved from algorithm design, a task already performed in building the
solver. Instead, the emphasis is on how to build the encoding. This work
does not directly address the issue of building the encoding, but rather stud-
ies how a SAT solver can efficiently be used for obtaining the satisfying truth
assignment for the encoding.

The approach described above is an example of declarative problem solv-
ing. One of the most widely known examples of the approach is the Fifth
Generation Project [96] which aimed at using massive amounts of parallel
resources for efficient computing in artificial intelligence. The project built
on ideas developed for Prolog systems [104], which, compared to SAT, carry
a burden of their complicated procedural semantics. The complicated se-
mantics render parallelizing Prolog systems more difficult [89].

While problem solving using Prolog systems resembles programming in
traditional languages, a more declarative approach is that based on describ-
ing the applications as constraint satisfaction problem (CSP) instances [90].

1. INTRODUCTION 7

Compared to SAT, CSP offers a wider spectrum of constraints over the vari-
ables for the programmer. In fact, SAT is viewed by many as a special case of
CSP. However, this hierarchy is not always clear in practice: in some cases
the constraints in CSP are compactly and more efficiently expressible as SAT
instances [109, 50]. Therefore, comparing SAT and CSP is an active research
area, general differences being studied, for example, in [18] and efficiencies
for some commonly occurring encodings in [75].

An alternative to programming using Prolog systems is Answer set pro-
gramming [81] (ASP), a logic programming paradigm also closely related to
CSP, which uses the stable model semantics [38] as its basis. The paradigm
has an established track record in planning [26], product configuration [102],
formal verification [45], and even biology [30], among others. In part, the
success of the paradigm is due to several highly optimized implementations,
such as [98, 69, 27]. Stable model semantics are closely related to SAT [59,
72, 12]. Recent experimental evaluations, such as [75], suggest that in some
cases of practical relevance the machinery developed for SAT solvers is valu-
able in finding stable models of ASP programs.

The limitations placed by SAT and ASP encodings to the application do-
mains that can be efficiently described are rather strict. While in theory any
polynomial-time algorithm can be encoded as a SAT instance using the con-
struction of Cook [83], the straightforward process is hopelessly inefficient for
domains including for example integers or floating-point arithmetics. The
relatively new approach of satisfiability modulo theories (SMT) [93, 19, 82,
37], combines the successful SAT solving and other methods specifically de-
signed for expressing domain-specific information. The SMT solvers work
on encodings where the propositional part is augmented with a theory T
which embeds the special features of the problem being modeled in a form
where the theory-specific algorithms can be used while maintaining and even
enhancing the powerful algorithms for propositional semantics. For exam-
ple, an instance originating from domain considering integers together with
scheduled planning is usually inefficient to express as a SAT problem. If the
encoding is based on SMT, then the part of the domain considering integers
can be encoded as an integer theory T while the propositional part is still
efficiently solvable using algorithmic ideas that have proved useful in propo-
sitional theories.

SAT solvers can be roughly divided into two categories: incomplete solvers
based on local search such as random walk or similar methods [95], and com-
plete solvers usually based on backtracking search, such as those based on the
Davis-Putnam-Logemann-Loveland (DPLL) [25, 24] algorithm. Outside of
this categorization lie methods based on knowledge compilation, such as
binary decision diagrams [20], and the more recently introduced decompos-
able negation normal form [23].

The focus of this work is on the DPLL solvers. Unlike the local search
methods, DPLL solvers are able to establish unsatisfiability, and are less
prone to exponential memory consumption occasionally observed in meth-
ods based on knowledge compilation. They are also largely observed to per-
form significantly better on many industrial SAT instances than the methods
based on local search.

8 1. INTRODUCTION

1.1 CONTRIBUTIONS

This work analyzes and implements distributed SAT solving techniques which
exploit two key elements of modern SAT solvers: randomness in time re-
quired to solve a particular instance, and the property of SAT solving algo-
rithms that they learn clauses while solving an instance.

The work first defines an abstract distributed computing environment mod-
eling a computing grid. This environment is used for studying the effect of
delays and resource bounds on a framework called simple distributed SAT
solving (SDSAT), based on distributed randomized SAT solvers. The SDSAT
framework is studied in the context of several restart strategies [74]. Based on
the experimental evaluation, the work describes a method for efficiently solv-
ing a set of SAT instances in a grid. This method is general in the sense that
it works on all so called Las Vegas type algorithms [83] and instances which
can be associated with a run time behavior similar to those of SAT instances.

Based on the results, the work devises the Clause-Learning Simple Dis-
tributed SAT Solving (CL-SDSAT) framework which incorporates the pow-
erful clause learning techniques of modern SAT solvers in a distributed envi-
ronment. The framework is analyzed with respect to several learning strate-
gies that can be implemented in such environments. The CL-SDSAT frame-
work uses a limited form of communication, which is analyzed in controlled
experiments and shown efficient for a large amount of distributed resources.
The efficiency of CL-SDSAT is demonstrated by solving several well-known
and hard SAT problems using an implementation of CL-SDSAT and a pro-
duction level grid.

The results presented in Chapts. 5 and 6 show that the two relatively re-
stricted frameworks are sufficient to yield concrete speed-up on many known
hard SAT instances compared to state-of-the-art single-CPU SAT solvers.
Furthermore, the experimental evaluation using instances from the SAT
2007 competition (http://www.satcompetition.org/) resulted in solv-
ing several problems which were not solved by any SAT solver in the compe-
tition, and even problems that could not be solved using no time limitations
at all. The literature reports few positive results obtained on parallel SAT
solving when the actual solving time is measured, and therefore the signifi-
cance of the results presented in this work is also in showing that high-latency
grid environments can be efficiently used in algorithms that are not trivially
distributable. The author of this work sees this as an important contribution,
since grid-based computing has been gaining more popularity among those
in possession of computational resources, and will therefore be of interest to
a wider audience in the future. While similar results have been obtained for
highly controlled grid environments [9], the results reported here are one of
the first for production-level grids.

1. INTRODUCTION 9

1.2 RELATED WORK

This work considers distributed solving as a method of reducing the solving
time of a SAT instance1. The study is motivated by the fact that an abstract
model for parallelism would allow at most linear speed-up with respect to
resources; however, in a more realistic environment, delays associated with
distributed solving result in lower than linear speed-up. As a result of this ob-
servation, many distributed algorithms focus on minimizing communication.

Different approaches to declarative problem solving enable various meth-
ods for obtaining speed-up via parallelization. The approaches are divided to
vertical and horizontal parallelism in [10]. Vertical parallelism is based on
obtaining speed-up by simultaneously studying different truth assignments of
a SAT or ASP solver, and in simultaneous selection of different clauses which
unify to the same goal in Prolog systems2. The use of vertical parallelism is
based on operations on data structures recording the currently active and the
yet unexplored search spaces of the algorithm. Examples of such data struc-
tures are stacks [88] used in Prolog systems, and guiding paths, which are
used in ASP and SAT solvers [115, 15].

In contrast to vertical parallelism, horizontal parallelism refers to paral-
lelizing propagation rules (e.g. [25]) when applied to SAT and ASP solving,
and in principle should results in speed-up for computing the same truth as-
signment. There seems to be no direct counterpart for horizontal parallelism
in Prolog systems. Since in many cases applying propagation rules is inex-
pensive, the use of horizontal parallelism is limited in high-delay distributed
environments. However, horizontal parallelism can be efficiently used to
some extent in certain cases for ASP [10]. The approach is even less applica-
ble to SAT solving, unless it is obtained with special hardware [117, 76], or
as a more computationally involved parallel look-ahead [86].

In the context of this work a more useful taxonomy of the distribution
methods aiming at obtaining speed-up in solving SAT problem instances is
presented in [17]. The taxonomy identifies two strategies: distributed search
which involves the explicit partitioning of the search space, and multi-search
with no such explicit partitioning, but instead some overlapping of parallel
searches. This section overviews the two strategies and their relation to a
realistic environment for distributed computing. The issue will be addressed
in more detail later in the work.

1.2.1 Distributed Search

The main challenge in obtaining speed-up in distributed search is in con-
structing partitions having equally large search spaces. The task is particularly
difficult for the type of search problems discussed in this work, which typically
posses highly imbalanced search spaces [103]. For example, a partitioning of
the search space of a SAT problem performed at the beginning of the solving
usually results in some partitions being much easier to solve than others. Al-
most independent of how the partitioning is performed and what partitions

1Other applications of distributed solving, such as distributing sensitive information
among independent parties [6], are out of the scope of the work.

2The method is referred to as or-parallelism in Prolog terminology [7].

10 1. INTRODUCTION

are assigned to the computing resources, some of the resources run out of
work before others. This results in a need to repartition the work of those
resources which have not yet fully explored their partitions. Repartitioning
requires communication, which decreases the amount of simultaneous com-
puting and ultimately the profit obtained from distributing the solving. The
phenomenon is often referred to as the ping-pong effect [62], and may be
tackled with work scheduling which concerns the partitioning of the search
space dynamically during the solving process. Most distributed search algo-
rithms discussed in this work are loosely based on scheduling ideas presented
in [32], where idle resources request work from those which are busy.

The use of distributed search builds usually on methods similar to those
in vertical parallelism, and they use the same data structures recording the
currently active search space and the yet unexplored search spaces of the
algorithm. The relatively complicated semantics of Prolog, such as those
related to execution order, unavoidably result in more overhead compared to
SAT solving [89]. Nevertheless, at least for a relatively small number of CPUs
the method of distribution based on stack splitting seems promising [88].
Guiding paths are an important tool for partitioning the search space of ASP
problems, and there are several examples where it has proved useful [44,
33, 87, 68]. A method similar to guiding paths is scattering [53, 21], where
search space is encoded to the problem instances instead of providing it more
directly as a guiding path.

Distributed search has been used in high-delay distributed environments
similar to the grid environment discussed in this work [21, 14, 53]. The two
main challenges in applying the method is in the amount of communication
required and an inherent, forced duplicate work in all methods based on
distributed search. This duplicate work results from the approach typically
followed in distributed search that two partitions are forced not to explore
the same search space, therefore requiring the completion of all distributed
solvers in order to guarantee completeness. This issue will be addressed in
more detail in Chapt. 3.

1.2.2 Multi-Search

While distributed search has attracted much attention in developing meth-
ods for solving logic programs and performing constraint-based search, this
work mainly develops approaches based on multi-search. Contrasted to dis-
tributed search, this approach has several advantages in environments involv-
ing high communication costs. Multi-search requires no communication be-
tween the solvers and therefore does not necessarily involve communication
overhead typical to distributed search. However, such communication may
significantly improve the speed-up that can be obtained in solving and will
therefore be considered in this work. More importantly, multi-search seems
to avoid the duplicate work that is inherent under certain circumstances in
methods based on distributed search. This surprising observation will be ad-
dressed in Chapt. 3.

The multi-search method discussed in this work is based on using a ran-
domized SAT solver together with clause learning and restarts, both discussed
later in Chapt. 2. Another possibility is to employ different SAT solvers, such

1. INTRODUCTION 11

as in parallelizing algorithm portfolios [41]. Algorithm portfolios can also be
incorporating with clause learning (e.g. [57]). While the algorithm portfo-
lio method is more general than the one based on a single SAT solver, the
method does not provide similar controlled environment for analysis that is
of interest in this work. Instead of strict partitioning of the search space, it has
been suggested that parts of the search space can be delegated to other paral-
lel solvers in a less strict manner than what is done in distributed search. This
method, referred to as nagging [34, 94], is a hybrid of multi-search and dis-
tributed search, and the results reported on the performance reflect the fact
that nagging avoids the duplicate work observed in other distributed search
algorithms.

1.2.3 Complementary Search Methods

A complementary approach to the distributed search and multi-search is
based on partitioning the instance as opposed to partitioning the search space,
and having a central solver query the constraints which are distributed. The
method has been considered in the context of model checking extremely
large encodings which otherwise do not fit into the memory of a single com-
puter [36]. A somewhat similar approach is followed in [99], where solutions
are computed independently for subsets of the constraints and later com-
bined. These approaches suffer either from high communication rate or the
increase of the problem complexity from NP to #P [99] and it is doubtful if
they would be useful in obtaining speed-up in solving.

1.3 OUTLINE

This work presents results based on multi-search. The main novelty is in
showing that a highly efficient SAT solver can be combined with simple ideas
originating from randomized restarts and parallelism to solve problems pre-
viously beyond the capabilities of the solver. This is achieved not only in
simulations or using a dedicated super-computer, but also in practice using
an existing, easily available and inexpensive grid environment.

Before presenting the main results, this work first describes the principles
of a modern SAT solver in Chapt. 2. Using the previously introduced con-
cepts, the work then describes differences between multi-search, scattering
and guiding paths in Chapt. 3 and provides some intuition to the power of
multi-search in SAT. The distributed computing environment and the cor-
responding simulation environment are described in Chapt. 4. The algo-
rithmic frameworks of SDSAT and CL-SDSAT are presented in Chapts. 5
and 6, where they are also analyzed using the simulation environment and
finally used for solving hard SAT instances in a grid. The work concludes
in Chapt. 7, which also discusses some ideas for future work arising from the
results.

12 1. INTRODUCTION

2 PROPOSITIONAL SATISFIABILITY

This chapter presents in detail how modern, complete SAT solvers operate
on solving instances of the propositional satisfiability problem. The chap-
ter begins by describing the propositional satisfiability problem, continues to
describe the search algorithm, gives a characterization of the clause learn-
ing used both to guide the search algorithm and limit the search space, and
concludes with notes on randomization and restarts.

2.1 PROPOSITIONAL SATISFIABILITY

Let V be a set of Boolean variables. A propositional formula in conjunctive
normal form (CNF) over V is a conjunction of clauses which are disjunctions
of positive and negative literals a,¬a where a ∈ V . Both conjunctions of
clauses and disjunctions of literals are convenient to present as sets and the
work will use the set notation wherever convenient. For example, the CNF
formula

F = ((¬e ∨ b) ∧ (¬d ∨ a) ∧ (¬a ∨ c) ∧ (¬c ∨ a) ∧ (¬a ∨ ¬b ∨ ¬d)) (2.1)

can be presented as

F = {{¬e, b}, {¬d, a}, {¬a, c}, {¬c, a}, {¬a,¬b,¬d}} .

The negation of a literal a is ¬a, whereas the negation of a literal ¬a is a, also
denoted by ¬¬a. Let F be a formula in CNF over V and M ⊆ V a truth
assignment. The truth value of a variable a ∈ V is true in M if a ∈ M , and
otherwise it is false in M . In short, we say that a variable is true or false if the
truth assignment is clear from the context. The literal a is true if the variable
a is true, while the literal ¬a is true if the variable a is false. A clause C is
satisfied by M if and only if C contains a true literal. A CNF formulaF is sat-
isfied by M if and only if all clauses in F are satisfied. For example, the CNF
in (2.1) is satisfied by M = {b}. The problem of determining whether F has
a satisfying truth assignment is called the propositional satisfiability problem
(SAT). The SAT problem is NP-complete, and all known SAT solvers require
in the worst case exponential amount of time with respect to the length of F
to solve the problem [83].

A CNF formula F ′ is a logical consequence of F if each satisfying truth
assignment of F also satisfies F ′. Two formulas F and F ′ are logically equiv-
alent, denoted F ≡ F ′, if they are logical consequences of each other.

2.2 SAT SOLVERS

Most current complete SAT solvers, such as zChaff [80] and MiniSAT [28]
are based on the Davis-Putnam-Logemann-Loveland algorithm [25, 24] ex-
tended with clause learning techniques [78, 116], and their implementations
follow the ideas described in this section. Such solvers are referred to as con-
flict driven clause learning (CDCL) solvers [116]. The CDCL algorithm

2. PROPOSITIONAL SATISFIABILITY 13

will first be described in sufficient detail in Sect. 2.2.1 to then describe the
clause learning techniques in Sect. 2.2.2. The chapter closes with remarks
on restarts and randomization.

2.2.1 Backtracking Search

The CDCL algorithm described in this section searches a satisfying truth
assignment for a formulaF . If there is such a truth assignment, the algorithm
returns sat . Otherwise, the algorithm returns unsat . The search corresponds
roughly to a depth-first search, which is performed in the set of all truth
assignments. This section describes the algorithm in detail, but prior to that
introduces some additional terminology.

A partial truth assignment is a set of literals P with the additional restric-
tion that for no a, both a ∈ P and ¬a ∈ P . A partial truth assignment
corresponds to all truth assignments M , where a variable a ∈ M if a ∈ P ,
and a 6∈ M if ¬a ∈ P . The variables and literals a ∈ V such that a 6∈ P and
¬a 6∈ P are unknown in P .

Each variable a such that a ∈ P or ¬a ∈ P is associated with a unique
decision level dl(a) which is determined by how and when the literal was
included to the partial truth assignment. The definition is extended to literals
¬a ∈ P so that dl(¬a) = dl(a). In the CDCL algorithm, there are two rules
for including literals to P , and they also determine the decision levels:

• The branching rule states that a partial truth assignment P can be ex-
tended with a decision literal l to P ∪ {l} if l is unknown in P . The
decision level dl(l) of such decision literal l is one more than the num-
ber of decision literals in P .

• The unit propagation rule (or simply propagation rule) states that if a
SAT instance F contains a clause (l1 ∨ · · · ∨ lk) such that for some
1 ≤ j ≤ k, lj is unknown and for all li such that i 6= j and 1 ≤ i ≤ k,
li are false in P , then P can be extended to a set P∪{lj}. The decision
level dl(lj) of such lj is the number of decision literals in P .

The process of iteratively applying the propagation rule is called propaga-
tion, and the literals obtained by propagation are called implied literals.
The propagation is performed until P cannot be extended further with the
propagation rule, or applying the rule results in a conflict, which is a clause
(l1 ∨ · · · ∨ lk) ∈ F such that all literals li in the clause are false.

The CDCL algorithm performs the search by extending an initially empty
partial truth assignment with propagation and branching rule until (i) prop-
agation results in a conflict, or (ii) no unknown variables remain for branch-
ing. In (i), the CDCL algorithm backtracks to some previous decision level d
by removing all literals associated with decision level greater than d, and con-
tinues the search with the resulting partial truth assignment. If (i) happens
when P contains no decision literals, the algorithm has found the instance
unsatisfiable and terminates. In (ii), the algorithm has found a partial truth
assignment corresponding to a satisfying truth assignment completely deter-
mined by the partial truth assignment and also terminates.

When the CDCL algorithm results in a conflict in propagation, it creates
a learned clause. The learned clause is a logical consequence of F having a

14 2. PROPOSITIONAL SATISFIABILITY

Input: F , a SAT formula; s, a random seed
1 Initialize prng with seed s
2 let C = ∅
3 while (true)
4 while (propagate(F ∪ C) 6= false)
5 if (branch(prng()) = false)
6 return sat
7 if P contains no decision literals
8 return unsat
9 if restartPoint()
10 backtrack to decision level 0
11 let C = analyze()
12 backtrack(C)
13 let C = C ∪ {C}

Figure 2.1: The CDCL algorithm

unique literal associated with the highest decision level and all of its literals
false in the partial truth assignment where the conflict occurred. The CDCL
algorithm uses the learned clause to backtrack to the second highest decision
level associated with any literal in the learned clause. After the backtrack-
ing, the literal previously associated with the highest decision level becomes
unknown, and therefore becomes implied on the new decision level after
propagation. Learned clauses are collected to a set C which is considered as
a part of the SAT instance in propagation.

The CDCL algorithm is described in Fig. 2.1. For simplicity, the in-
clusion and removal of literals from the partial truth assignment P are not
handled explicitly in the pseudo-code, but are instead performed implicitly
at lines 4, 5, 10 and 12, as explained later.

Lines 1 and 2 consist of an initialization of the CDCL algorithm. The ini-
tialization addresses the set of learned clauses and randomization, which are
two aspects of the algorithm that we will extensively use in the development
in this work. At line 1, the algorithm seeds the pseudo-random number gen-
erator prng using the seed s provided as input. The pseudo-random number
generator is used at line 5, which corresponds to application of the branching
rule. Line 2 initializes the set of learned clauses C to the empty set.

The search is performed in the loop at lines 3 to 13. The propagation, per-
formed at line 4 by the function propagate(), returns true if no conflict arises.
In this case, the algorithm proceeds to line 5, where the pseudo-random num-
ber generator is used in the function branch(n) to obtain a decision literal.
The function branch(n) returns false if all variables have a value. From this
and the fact that propagation resulted in no conflicts it follows that the prob-
lem is satisfiable and P corresponds to a satisfying truth assignment for the
SAT instance.

In case propagation results in a conflict, the propagation is interrupted
and analyzed at lines 7 to 11. If the conflict occurs with no decision literals,
the instance has been shown unsatisfiable. Otherwise, the algorithm may
either perform a restart or continue the analysis from line 11. In the latter

2. PROPOSITIONAL SATISFIABILITY 15

1 let l be a conflict literal
2 if ¬l is not a decision literal
3 let C = resolve(r(l), r(¬l), l)
4 else
5 let C = r(l)
6 while |maxdl(C)| > 1
7 let C = resolve(C, r(l), l) for some implied l such that ¬l ∈ C
8 return C

Figure 2.2: The (non-deterministic) analyze() function for clause learning

case, analysis results in a new learned clause C. The learned clause is used to
direct backtracking (line 12) and then included to the set of learned clauses
at line 13, so that the unique literal previously associated with the highest
decision level in C is implied at line 4 unless this results in another conflict.
In the former case, where the algorithm performs a restart, all literals l with
decision level dl(l) > 0 are removed from the partial truth assignment P and
the execution of the algorithm continues from line 4.

2.2.2 Constructing a Learned Clause

This section describes the construction of learned clauses which a CDCL
SAT solver uses to guide its search and prune the search space while solving
an instance. The discussion is slightly more declarative but essentially the
same as the standard discussion, e.g., in [78], which uses conflict graphs.

Propagation described in the previous section results in implied literals
being included to the partial truth assignment P , or in a conflict, which is
a clause (l1 ∨ · · · ∨ lk) that is either part of the original SAT instance F or
one of the previously learned clauses from the set C such that all its literals
are false in P . Given a clause where no literal is unknown, let maxdl(C) be
the set of literals with highest decision level in C. All literals l ∈ maxdl(C)
of a conflict C except the decision literal are conflict literals. All conflicts
contain a conflict literal since a decision literal is selected after propagation
and therefore is never the only unknown literal in a clause.

The learned clauses are constructed using information related to how lit-
erals were included to P . To construct the learned clause, each implied
literal l is associated with a unique reason r(l) ∈ F ∪ C such that

• r(l) = (l1 ∨ · · · ∨ lk) such that for all i, 1 ≤ i ≤ k and li 6= l, it holds
that ¬li ∈ P , and

• l ∈ maxdl((l1 ∨ · · · ∨ lk)).

Intuitively, the set of reasons represents the order in which the implied literals
have been obtained by propagation rule while running the CDCL algorithm.
To capture this, we need an additional restriction on the set of reasons: the
set of all reasons {r(l) | l is implied} must have a partial ordering ≺ such
that for all literals li ∈ r(l) such that neither li nor ¬li is a decision literal
and li 6= l, the ordering satisfies r(¬li) ≺ r(l).

16 2. PROPOSITIONAL SATISFIABILITY

We will now describe how the learned clause is constructed algorith-
mically using the reason clauses by describing the analyze() algorithm in
Fig. 2.2.

Line 1 (non-deterministically) chooses a conflict literal l which has a rea-
son r(l). If also ¬l has a reason, then the reasons are resolved at line 3 by
the function resolve(C1, C2, l) = (C1∪C2)\{l,¬l}, which takes two clauses
C1, C2 where one contains literal l and other ¬l, and results in a new clause.
The resulting clause is a logical consequence of F , since both C1 and C2 are
logical consequences of F (either by induction hypothesis or since they are
part of F), and the function resolve, when provided with two logical conse-
quences produces a clause which is a logical consequence of the two clauses.
If ¬l is a decision literal, it has no reason and the algorithm sets C to the
reason of l at line 5. Line 6 uses the function maxdl(C) to determine when
C satisfies the criterion for learned clauses, that is, C has a single literal at
the highest decision level. At line 7, the algorithm resolves clause C with
the reason r(l) using one of its literals ¬l ∈ C. There always is at least one
such literal, since initially all literals of C are false, and after the resolution
step, only false literals are added from r(l). Furthermore, the argument C at
line 7 never consists of only decision literals since |maxdl(C)| > 1 by line 6
and each decision level greater than 0 is associated with exactly one decision
literal. The loop at lines 6 and 7 is guaranteed to terminate because of the
partial ordering of the reason clauses. Finally, C is returned as the learned
clause at line 8.

The following example illustrates the construction of a learned clause in
the middle of an execution of the CDCL algorithm.

Example 1 The CDCL algorithm is provided with the CNF presented in
Eq. (2.1) and the partial truth assignment P of the algorithm is {e, b} where
e is a decision literal and dl(e) = dl(b) = 1. Assume that the function
branch() results in P = {e, b, d}, where dl(d) = 2. The propagation (at
line 4) has now, for example, the two following outcomes: either (i) P =
{e, b, d, a, c} or (ii) P = {e, b, d, a}. Both outcomes are terminated by the
conflict (¬a ∨ ¬b ∨ ¬d).

The conflict clause (¬a ∨ ¬b ∨ ¬d) contains two conflict literals, ¬a and
¬d both with the conflict as the reason. For implied literal a, the reason r(a)
cannot be (¬c∨a) since this cannot be ordered by ≺ with the unique reason
r(c). Therefore, r(a) = (¬d ∨ a) and the ordering, when conflict literal is
¬d, becomes essentially r(a) ≺ r(c), r(a) ≺ r(¬d) and r(b) ≺ r(¬d).

The analyze() function continues to line 5, to obtain C = (¬a ∨ ¬b ∨
¬d), and produces by resolving with r(a) the clause C = (¬b ∨ ¬d) having
maxdl(C) = {¬d}, and therefore C is the new learned clause.

The CDCL algorithm then backtracks to decision level 1 resulting after
propagation in P = {b,¬e,¬d}, with dl(b) = dl(¬e) = dl(¬d) = 1. Branch
on¬a results after propagation in P = {b,¬e,¬d,¬a,¬c} corresponding to a
satisfying truth assignment {b} with which the CDCL algorithm terminates.

In addition to directing the backtracking of the algorithm, learned clauses
also contribute to the efficiency of propagation. On one hand, the learned
clauses result in at least as much propagation with a given partial truth as-
signment as the original instance. This helps to reduce the size of the search

2. PROPOSITIONAL SATISFIABILITY 17

space covered by the algorithm. On the other hand, propagation consumes
time proportional to the number of learned clauses. The minimum set of
learned clauses the CDCL algorithm requires consists of the clauses which
are reasons for currently implied literals. Modern CDCL solvers tend to
keep some other clauses in memory as well by employing various heuristics.
Later in Chapt. 6 we will study certain heuristics for collecting such clauses
in other settings.

2.2.3 DPLL SAT Solvers

The conflict analysis described here corresponds to what most modern SAT
solvers, such as MiniSAT, employ in guiding their search. In contrast, ear-
lier implementations [25, 71] record their search state more directly using
guiding paths [115]. To make the distinction clear, we refer to these solvers
as DPLL solvers as opposed to the CDCL solvers described above. We will
overview such solvers here since their approach for storing the search state is
used when describing some modern parallel solving techniques in Chapt. 3.
Guiding paths store the decision literals of a DPLL search tree as a sequence
GP = (〈l1, δ1〉, . . . , 〈li, δi〉) of branches 〈lj, δj〉, where for all 1 ≤ j ≤ i, lj is
the j:th decision literal and either b(lj) = 0 or b(lj) = 1. The value of b(lj)
is 1 if the SAT solver has proved that there are no satisfying truth assignments
corresponding to a partial truth assignment {l1, . . . , lj−1,¬lj}. A branch
〈lj, 1〉 is called a closed branch. A branch 〈lj, 0〉, called an open branch,
signifies that the solver has not proved that there are no satisfying truth assign-
ments corresponding to a partial truth assignment {l1, . . . , lj−1,¬lj}. Hence,
the backtracking needs to be performed only to decision levels corresponding
to open branches.

Upon reaching a conflict, a DPLL solver always backtracks to the highest
decision level which is open, say, decision level j. The backtracking, in addi-
tion to the standard removal of literals from the partial truth assignment, also
removes the branches corresponding to the decision levels j + 1, . . . , i and
changes the branch 〈lj, 0〉 to 〈¬lj, 1〉. Therefore the search of a DPLL solver
can be viewed as traversing a tree where nodes are labeled with decision vari-
ables and the two children of a node correspond to truth assignments where
the decision variable is true and false.

The conflict analysis of a CDCL algorithm can be restricted to produce
a similar search. To achieve this, the learned clause must always contain
the negation of the most recent decision literal and at least one false literal
from the previous decision level. When such clause is included to the set
of learned clauses, the propagation will result in a truth assignment where
literals from higher decision levels are removed and the previous literal is
included negated. Intuitively, such search will be essentially the same as the
search of the corresponding DPLL solver1.

2.2.4 Restarts and Randomization

In addition to clause learning, most modern SAT solvers also apply search
restarts and some form of randomization to avoid getting stuck at hard sub-

1The decision levels will be completely different, however.

18 2. PROPOSITIONAL SATISFIABILITY

problems [42].
The function branch() in Fig. 2.1 relies on actual implementation to some

of the numerous heuristics described in the literature when selecting the de-
cision literal (e.g., [66, 46, 58, 97, 48, 71, 61, 47]). Most heuristics employ
randomization to break ties, and often implement a form of deliberate in-
crease in the random behavior either by introducing a heuristic equivalence
parameter [41] or by simply mixing the random heuristic (a heuristic which
selects a literal pseudo-randomly from the set of all unknown literals) to-
gether with a more context-dependent heuristic. While the introduction of
randomness might seem counter-intuitive as the predictability of run time is
usually a desired property of an algorithm, it turns out that the randomness
can in fact be used to decrease the expected time required to solve a SAT
instance.

Restarts are motivated by the empirical observation that some SAT in-
stances, when solved by a CDCL algorithm, obey a heavy-tailed run time dis-
tribution [42]. Such distributions have a large probability of producing “out-
lier” samples, that is, run times which are far from median run times. The
distributions have an infinite standard deviation or even an infinite mean2.
For instances obeying the heavy-tailed distribution it is useful to interrupt the
search procedure after some time and start the search again from the begin-
ning. It can be shown that restarts together with randomization eliminate
heavy-tailed distributions [42].

Technically, restarts are events where the CDCL algorithm decides (in
Fig. 2.1 at line 9) to backtrack to decision level 0 and continue the search
as if it were started from the very beginning. Often a restart also involves
removing some of the clauses learned by the solver during the search. Ran-
domization and restarts will be covered in more detail in Chapts. 3 and 5,
but it is useful to state here that restarts together with clause learning do in-
crease the strength of the CDCL algorithm when compared to a traditional
DPLL algorithm as described in [24]: it can be shown that clause learning
together with restarts can be as powerful as general resolution, resulting in
some cases exponentially smaller proofs (e.g., the total number of decision
literals covered during the search) than those achievable with the traditional
DPLL SAT solvers [11, 49].

2Since propositional formulas have a finite search space and the CDCL algorithm is
complete, the statistics are of course finite. However, since the search space is in the worst
case exponential in the size of the formula, the statistics can in practice be considered as
infinite for some formulas [43].

2. PROPOSITIONAL SATISFIABILITY 19

3 PARALLELIZATION METHODS IN SAT SOLVING

This chapter describes how the guiding path method [115, 15] described
in the previous chapter is used in distributed search, contrasts it to scatter-
ing [53], points out the pitfalls of methods based on distributed search and
gives an intuition why multi-search performs sometimes better in practice
than methods based on explicit partitioning [53]. Finally, the chapter dis-
cusses and reviews work studying restart strategies, a framework closely re-
lated to multi-search.

3.1 DISTRIBUTED SEARCH WITH GUIDING PATHS

A guiding path records the search state of a DPLL SAT solver, as described in
Chapt. 2. Guiding paths can be used in connection with restarts to avoid per-
forming the same search multiple times, as in [114], but are more commonly
used to express partitions of search spaces for parallelizing search [115, 15].

Guiding paths direct the parallel search in a fashion similar to the sequen-
tial case. Each parallel solver maintains its own guiding path which, in addi-
tion to storing information about the search state, is used to delegate parts of
the search space to other solvers. If a branch j is closed for some 1 ≤ j < i,
then either some other SAT solver is exploring truth assignments correspond-
ing to a partial truth assignment {l1, . . . , lj−1,¬lj}, or, as in the sequential
case, such truth assignments have been proved unsatisfiable. Therefore, after
proving a branch unsatisfiable the SAT solver needs only to explore the open
branches as discussed in Chapt. 2.

A SAT solver whose search state is represented by a guiding path GP may
delegate parts of its search space to a new solver by constructing a delegate
guiding path GPd and continuing the search on an altered guiding path GPa

representing the remaining search space of GP not contained in GPd. This
is done by (1) selecting a set of open branches to be delegated from GP ,
(2) copying the contents of GP to GPa, (3) copying the contents of GP to
GPd up to and including the last open branch to be delegated, (4) closing
the previously selected open branches from GPa, (5) closing the branches in
GPd remaining open in GPa, and (6) replacing the last (open) branch 〈lj, 0〉
of GPd by 〈¬lj, 1〉.
Example 2 For sake of an example, assume that a DPLL SAT solver with
guiding path

GP = (〈l1, 0〉, 〈l2, 1〉, 〈l3, 0〉, 〈l4, 1〉, 〈l5, 0〉, 〈l6, 1〉)
wishes to delegate the parts corresponding to open branches l3 and l5 by con-
structing a guiding path GPd for the delegated part and maintain a guiding
path GPa consisting of the remaining search space to itself. The solver closes
the two open branches resulting in

GPa = (〈l1, 0〉, 〈l2, 1〉, 〈l3, 1〉, 〈l4, 1〉, 〈l5, 1〉, 〈l6, 1〉),
and delegates the guiding path

GPd = (〈l1, 1〉, 〈l2, 1〉, 〈l3, 0〉, 〈l4, 1〉, 〈¬l5, 1〉).

20 3. PARALLELIZATION METHODS IN SAT SOLVING

Guiding path creation is dynamic in the sense that if a SAT solver has
closed all branches of its guiding path, the search space is fully explored
and the solver may request a new guiding path from some other solver. The
parallel search based on guiding paths terminates in two cases: if a solver
finds a satisfying truth assignment, which then shows that the instance is
satisfiable, or if no guiding paths with branches remaining to be explored
exist, which shows that the problem is unsatisfiable.

3.1.1 Scheduling in Guiding Paths

While the construction of a single guiding path is not expensive, the com-
munication associated with delegating guiding paths might consume a signif-
icant portion of SAT solving time. Therefore it is important to minimize the
number of dividing operations. Scheduling in the context of guiding paths
addresses the problem of determining which parts of a guiding path should
be delegated in order to result in a balanced partition, ultimately leading to
small number of dividing operations.

The types of scheduling in guiding paths can be classified to top schedul-
ing and bottom scheduling [10]. In top scheduling, only the search space
corresponding to the first open branch is delegated to a new solver. In this
case, it suffices to delegate the beginning of the guiding path up to and in-
cluding the first previously open branch to the new solver. Bottom schedul-
ing, on the other hand, corresponds to delegating the last open branch, and
possibly other branches as well. The two scheduling types are compared
in [10] for ASP, where bottom scheduling performs better in most cases. Sim-
ilar results are obtained for Prolog [88]. It remains unclear whether bottom
scheduling is effective in SAT, although some negative results have been
claimed [14]. It seems that there is no comprehensive study for this question
in SAT.

Distributed search is almost exclusively implemented with guiding paths
and some form of scheduling. Results in [100], albeit based on only few ex-
periments, suggest that also static partitioning of the search space may result
in speed-up.

3.1.2 Learning and Guiding Paths

Most parallel SAT solvers which share learned clauses among parallel pro-
cesses use distributed search based on guiding paths [101, 14, 70, 92, 31].
The two similar approaches based on distributed environments in [101, 14]
and tightly coupled environments, such as multi-core CPUs, in [70, 92, 31]
are both able to produce speed-ups in some problems, although [31] re-
ports mostly negative results. However, [70] provides empirical evidence
that a careful design of data structures overcomes the problems mainly re-
lated to memory bandwidth and thread locking identified in [31]. Since
the amount of learned clauses is usually overwhelming even in sequential
SAT solving, parallel solvers need to employ different forms of filtering for
the shared clauses so that the memory exhaustion and excess overhead re-
lated to propagation is avoided. A simple yet efficient filtering criterion is
the length of clauses [101, 14, 70]. More complex filtering mechanisms in-

3. PARALLELIZATION METHODS IN SAT SOLVING 21

volve the amount of backtracking resulting from the inclusion of the learned
clause [92].

In many implementations, the learned clauses are shared dynamically,
while the solvers are running. Therefore, a shared learned clause might be
in any of the following modes for the receiving SAT solver, identified by the
partial truth assignment of that solver:

1. satisfied, in which case the clause does not affect the partial truth as-
signment in any way;

2. conflict, in which case backtracking must be performed until at least
one of the literals in the clause is no longer false;

3. implying, i.e., one of the literals is unknown and all others are false.
In this case the remaining literal needs to be propagated, together with
possibly backtracking to the highest decision level of the false literals in
the clause;

4. none of the above, when at least two of the literals in the clause are
unknown.

While cases 1 and 4 have no direct effect on the search state, 2 and 3 might
result in behavior very similar to restarting. For example, clauses consisting
of a single literal not appearing in the partial truth assignment result in back-
tracking to the first decision level and might significantly affect the run of the
algorithm [92].

Implementing the above functionality involves the tuning of the inner
loop of the DPLL-based SAT solver, which in addition to the delays associ-
ated with communication might slow down the execution of the solver more
than what is gained from the learned clauses. Therefore, some parallel solvers
based on distributed search avoid involved changes in the solver. For exam-
ple, a parallel SAT solver described in [21] splits the search space by fixing the
first decision literal and producing another instance where the literal is fixed
with an opposite value. Hence, the scheduling corresponds to top scheduling
guiding path. The learned clauses are shared so that only those which are not
satisfied on the new instance on decision level d = 0 are transferred to the
solver solving the new instance. Since delegating guiding paths is relatively
infrequent, the overall price resulting from special handling of the learned
clauses is low. Unlike in the more involved parallel solvers which modify the
inner loop of the SAT solver, this is the only cost associated with clause shar-
ing since no learned clauses are shared between solvers during the execution
of the inner loop of the SAT solvers.

3.2 SCATTERING

Guiding paths are limited in the sense that they can only express a single
path in the DPLL search tree and the literals which are still available for
branching on the path. A more general approach is presented in [53, 52].
The approach, called scattering, is based on expressing the division of the

22 3. PARALLELIZATION METHODS IN SAT SOLVING

search space of a SAT instance F to n SAT instances F1, . . . , Fn such that

Fi =

F ∧ T1 if i = 1
F ∧ ¬T1 ∧ · · · ∧ ¬Ti−1 ∧ Ti if 1 < i < n
F ∧ ¬T1 ∧ · · · ∧ ¬Tn−1 if i = n.

(3.1)

Each Ti is a heuristically selected conjunction li1∧· · ·∧lidi
of literals, and ¬Ti

is the clause (¬li1 ∨ · · · ∨ ¬lidi
). The amount of literals di in Ti is determined

so that the search space corresponding to Fi is approximately equal for all
1 ≤ i ≤ n. Solving of the SAT instance F then reduces to either showing
that one of the SAT instances Fi has a satisfying truth assignment or that
none of the SAT instances is satisfiable.

Scattering can be seen as a generalization of guiding paths where each
parallel SAT solver is given a set of guiding paths instead of a single guiding
path. The number of guiding paths corresponding to a SAT instance Fi is
in the worst case exponential in i. For example, to express the search space
of the instance Fn as a set of guiding paths, there will in the worst case be a
guiding path for each satisfying truth assignment for ¬Ti∧ · · · ∧¬Tn−1. Note
that scattering can simulate guiding paths: a guiding path

GP = (〈l1, δ1〉, . . . , 〈ln, δn〉)

corresponds to the scattered instance

F = (l1 ∧ · · · ∧ ln) ∨
∨

1≤i≤n s.t. δi=0

(l1 ∧ · · · ∧ li−1 ∧ ¬li).

The formula F can be presented in conjunctive normal form with size poly-
nomial in n by introducing new variables [107].

In [53], the resulting SAT instances F1, . . . , Fn are recursively scattered
to form a scattering tree, which is then solved by either showing one of the
instances corresponding to the nodes in the tree satisfiable, or showing a set
of instances corresponding to a cut in the tree unsatisfiable. Recursive scat-
tering can be seen as a form of scheduling, since only problems not already
shown unsatisfiable are scattered. Unfortunately, the results reported in [53]
are obtained using only a very limited form of clause learning. It is currently
an open question whether scattering outperforms methods based on guiding
paths in practice.

3.3 MULTI-SEARCH IN SAT

Despite the intuitive appeal of distributed search, all methods based on par-
titioning the search space are prone to partitioning on don’t cares. To give
a concrete example on the subject, let the Simple Distributed SAT Solving
(SDSAT) be the simple method of running the same randomized SAT solver
on the same instance in parallel with no communication between the solvers
until one of the solvers solves the instance. Suppose a SAT instance contains
an unsatisfiable core, which involves only a subset of the variables but show-
ing the unsatisfiability of the core suffices to show the full instance unsatisfi-
able. If the search space is partitioned, for example using guiding paths, with

3. PARALLELIZATION METHODS IN SAT SOLVING 23

1

10

100

1000

10000

100000

1 10 100 1000 10000

sp
e
e
d
-u

p

N

α = 0.01
α = 0.4
α = 0.6
α = 0.8

Figure 3.1: Speed-up on two-valued discrete distribution, where probability
of finding a solution in exactly one hour is α and in exactly 10,000 hours is
1− α, as a function of number of resources N

a variable not in the core, the distributed search has to solve the same core
twice to show the instance unsatisfiable. A sequential solver clearly needs to
solve the problem only once. For example, let qF (t) be the probability that
the SAT instance F is solved within time t by a single solver, and let Fx, F¬x

be the SAT instances F ∧ (x) and F ∧ (¬x) for some literal pair x,¬x not in
the core of F . Then the probability that F is solved within time t using SD-
SAT with two CPUs is 1− (1−qF (t))2 whereas the probability that problems
Fx and F¬x are both solved is qF (t)2, assuming that qFx = qF¬x = qF . If F is
solved in one hour with probability 0.8, then the corresponding probabilities
are 0.96 for SDSAT and 0.64 for the search space partitioning method.

There is some empirical evidence that the SDSAT method is competitive
compared to distributed search (for example, [53] and the results reported in
the SAT Race organized as part of the SAT 2008 conference). One reason
for this counter-intuitive result could be the tendency of distributed search to
solve a core several times as exemplified above.

As it turns out, for many SAT problems the search space seems to be so
huge that the explicit partitioning of the search space is not required because
the overlap in the searches of independent randomized SAT solvers is small.

Typically an implementation of a randomized constraint solver, such as
a (randomized) SAT solver, has a highly erratic run time behavior [74, 42,
108]. The SDSAT framework is a natural way of harnessing the variance
in run times to obtain speed-up in a parallel environment. Continuing the
previous example, assume that the probability that the instance F is solved in
exactly one hour is α and otherwise the instance is solved in exactly 10,000
hours. The expected run time for the solver is then α× 1 + (1− α)× 10000
hours. Using again SDSAT with two CPUs, the expected run time becomes
(1 − (1 − α)2) × 1 + (1 − α)2 × 10000 hours. For α = 0.8 this results in
expected running time of 2000.8 hours for single solver and 400.96 hours for
two solvers. Perhaps surprisingly, the speed-up is super-linear with respect
to the number of resources. Figure 3.1 shows the speed-up for the discrete
distribution for different values of α.

The speed-up phenomenon seems to be related to particular type of dis-

24 3. PARALLELIZATION METHODS IN SAT SOLVING

tributions, called heavy-tailed distributions, typical to search problems such
as SAT [42, 108] and especially satisfiable instances [40]. The variability in
run times of a randomized backtracking search is significant enough to be
taken into account in designing of SAT solvers [43], leading to the concept
of restart strategies [74], interleaving strategies, and other algorithm portfo-
lios [41]. A restart strategy defines a sequence of time periods (t1, t2, . . .),
and is employed by running an algorithm for time period ti, 1 ≤ i, and —
if the instance is not solved — restarting the algorithm and running it for
the time period ti+1. It can be shown that a simple restart strategy where ti
is some constant for all i results in lowest expected run time over all restart
strategies [74]. However, determining the optimum restart strategy requires
obtaining the run time distribution of the instance, which is seldom avail-
able in practical settings. A similar argument shows that there is a universal
restart strategy which guarantees an expected run time within logarithmic fac-
tor from the optimal restart strategy [74]. However, this factor is in practice
high, and comparisons between other strategies are undetermined, as can be
seen by contrasting [42, 49] and the results reported in this work. Parallel
restart strategies are studied, for example, in [73, 41] and this work extends
the results by studying a realistic parallel environment with various instances
and restart strategies. Overall, restart strategies together with clause learning
significantly increase the power of DPLL-based SAT solvers [49, 11].

The problem of determining restart strategies becomes more tractable if
some information is available from the run time distributions of instances.
Using a large number of learning data, run time information can be used
to determine good restart strategies for similar instances [64, 110] or statis-
tically dependent sequence of instances [91]. Most of the methods require
an initial, expensive training phase, although restart strategies can be learned
on-the-fly with reasonable performance early in the process [35]. Further-
more, there is some evidence that the run-time distribution of an instance
can be classified as heavy-tailed based on the shape of the search tree of a
backtracking search [40]. The overall impact of restart strategies is analyzed,
for example, in [111], where various restart strategies are contrasted both
analytically and experimentally. Similar methods have been used in the al-
gorithm portfolio setting in [112], where characteristics of an instance are
analyzed in an initial phase and, based on these results, a set of algorithms
expected to perform well are run on the instance. The performance of the
method in this setting seems promising.

The problem of computing an approximation of the optimal portfolio is
NP-hard, meaning that the worst-case complexity of all known methods of
determining an optimal portfolio is at least exponential in the number of
available algorithms for the portfolios. Fortunately, this number is usually
relatively low, and there are algorithms which perform well in practice [105,
84]. The problem of determining optimal restart strategy seems to be hard as
well [106].

3. PARALLELIZATION METHODS IN SAT SOLVING 25

3.4 REMARKS

This chapter studies different methods for obtaining speed-up in solving SAT
problems. The analysis provides insight to distributed search by comparing
different methods for implementing search space partitioning. The chapter
also gives a condition when multi-search is preferable to distributed search in
practice. This motivates the study of algorithmic frameworks for multi-search
that forms large part of the rest of this work.

While there is a substantial amount of research dedicated to the design
of restart strategies, the results obtained later in this work do not completely
justify these efforts in distributed environments. It seems that simultaneous
solving of instances is sufficiently powerful to provide the run-time reducing
effect obtained by restart strategies, and therefore the methodology for learn-
ing a good restart strategy for a particular instance is irrelevant. The effect
of restart strategies to the run time in a distributed environment is further di-
minished for many SAT instances by the high latencies in the environment.

26 3. PARALLELIZATION METHODS IN SAT SOLVING

4 COMPUTATIONAL GRIDS

This chapter describes the grid computing environment that will be em-
ployed in the upcoming chapters. Most of the methodology presented in
the following chapters are designed based on the assumption that the under-
lying environment provides the capabilities of a grid as described here, and
nothing more. More specifically, the underlying environment provides

• a master-worker architecture, where all communication is performed
between a unique master and a set of workers and no communication
takes place between the workers, and

• high-latency communication, where all communication between the
master and the workers takes several orders of magnitude more time
than the single steps of the algorithm.

After motivating the environment, this chapter describes a simulation envi-
ronment that will be used for studying the efficiency of the methodology
described in later chapters in order to avoid the unpredictability of actual
grid environments arising from, e.g., network glitches and hardware failures.

4.1 THE GRID ENVIRONMENT

The parallel solving environment used in this work is that provided by com-
putational grids. The environments considered as grids in this work consist
of large number of geographically distributed computers which are available
through a uniform interface. Such environments are readily available, and
examples include UNICORE (http://www.unicore.eu/) and NorduGrid
(http://www.nordugrid.org/), the latter being used in some of the exper-
iments of this work.

Grids can be contrasted to the more commonly used computing clusters
consisting of a large number geographically localized computers also avail-
able through a uniform interface. The geographical proximity allows build-
ing systems with somewhat lower-latency communication, making cluster
computing more competitive in terms of computational efficiency. How-
ever, a single cluster owned by a single organization may suffer from high-
utilization peaks during which the capacity of the cluster is not sufficient for
the use of the organization. Avoiding such peaks is achieved, in general, by
larger investments to computing hardware. This is both expensive and envi-
ronmentally unfriendly because large numbers of resources are under-used
outside of the peak utilization. An improvement to this is to share a number
of clusters among collaborating organizations. Grid computing addresses this
issue by providing a uniform interface for the clusters and usually at least an
option for a form of load balancing between the clusters.

Grid environments usually compose of several clusters. Therefore they are
characterized by a large number of relatively efficient CPUs, very much like
the more traditional cluster computing environments. Since a grid can be
formed by several independent but collaborating organizations which decide

4. COMPUTATIONAL GRIDS 27

to share the computing resources, it is common that two jobs submitted to the
grid are not guaranteed to be able to communicate with each other at all. For
example, such limitations are typically posed by the networks of the organi-
zations in NorduGrid used in the experiments. Therefore, in the algorithms
developed in this work we assume that jobs cannot communicate directly
with each other. This assumption leads naturally to a master-worker archi-
tecture, where all communication takes place between the workers and the
master, whereas the workers do not communicate directly with each other.

This work builds largely on the observation that the computations submit-
ted to a grid can be described as jobs consisting of programs and their inputs,
needing no user input during their execution. A job places requirements on
the CPU resources, amount of memory, and disk space on the computers
where it can run. When the requirements are not excessively restrictive, the
number of available CPUs for the job is higher and therefore the job can
usually be executed sooner in the grid.

The jobs submitted to a grid environment are executed on a collection of
computing resources called computing elements (CEs). A CE corresponds
to one or more CPUs depending on the requirements of the job. Each CE
executes a single job at a time and usually corresponds to a CPU or a set of
CPUs in one of the clusters in the grid.

The entry point of a submission of a job to CE is a queue which accepts
jobs with requirements matching those provided by the queue. The submis-
sion of a job consists of selecting the target queue and transferring the job
to the selected queue. The time required to submit the job to the queue is
the submission delay of a job. In the model described here the submission
cannot be parallelized, meaning that the submission delay places an upper
limit on the number of jobs that can be submitted in a unit of time.

Each queue is associated with a set of CEs corresponding to a set of CPUs,
usually within one cluster. A job starts executing when the queue assigns the
job to a CE. The time between finishing the submission and assignment to a
CE is the queuing delay of a job. This delay does not affect the rate at which
jobs can be submitted, but instead contributes to the efficiency of computing,
that is, the number of operations the program can effectively perform on the
input per unit of time. Usually there is also some delay associated with the
actual finishing of the execution and the detection that a job is finished. This
can be seen as contributing to the queuing delay since there is little that can
be done from the point of view of the master process during this time.

The two delays described above result from several causes. Firstly, if a job
involves transmitting a large amount of data, the amount of network band-
width may greatly affect the submission delay [85]. The submission delay
is also affected by the possibility of jobs disappearing due to maintenance
breaks or various random faults in the CEs. Secondly, the queuing delay
depends on the amount and types of previously submitted jobs still in the
queue, and the remaining run times of the jobs currently executing in the
CEs. Thirdly, the efficiency of the computing is also affected by the fact that
the run time of a job in a CE depends on the load potentially placed by other
jobs on the other CPUs that share the same memory or disk resources, as well
as the types of the CPUs in the CE.

The two delays described above together with the CPU selection pose a

28 4. COMPUTATIONAL GRIDS

major challenge on maximizing the speed-up obtained by using a grid. This
is performed usually by job management, sometimes referred to as schedul-
ing or brokering. Efficient job management in grids is a non-trivial task and is
typically handled by special tools (for example [29, 60, 51]), often designed
for particular applications since a generic method seems to be difficult to
achieve [65]. In those experiments of this paper that are run in NorduGrid,
we use a fault-tolerant and efficient job management system called the Grid
Job Manager (GridJM) [51]. The system incorporates ideas from monitoring
the historical behavior of the grid environment as well as information pro-
vided by the clusters composing the grid, an approach shown useful in [113].

The requirement placed on CPU time by a job affects in some cases the
queuing delay experienced by the job. For instance, most clusters support
a mechanism called reservation, where a complicated task requesting a CE
of several CPUs will force a queue to start reserving CPUs. This means that
no new jobs requesting a CE will be assigned from the queue, unless the
run time of the job is short enough to finish before the time expected for the
requested CE of several CPUs to become available. On the other hand, the
restrictions of the run time of a job together with the submission delay dictate
the number of CEs that can be simultaneously obtained. Therefore it would
be preferable to submit sufficiently long running jobs so that the submission
delays do not dominate the total run time. Based on our previous experience,
in the experiments in NorduGrid that are presented in this work we use jobs
where the run time is limited to one hour.

4.2 THE SIMULATION ENVIRONMENT

In order to compare the performances of SAT solving algorithms developed
in this work, there is a need for a benchmarking system. Realistic grid systems
pose certain challenges for rigorous algorithm benchmarking, since both the
delays and the efficiency of computing vary, rendering the reproduction of
results difficult. To overcome these challenges, this work employs a simple
grid model based on the following components:

(1) A unique central process M initiating new jobs and monitoring old
jobs, and a set of N CEs receiving jobs from and reporting the results
to M .

(2) A submission delay describing the amount of time required to submit
a job to the grid. The delay d(N) can be modeled as a random variable
depending on the number of CEs employed. The delay is simulated
by M and results in a bottleneck when initiating new computations.

(3) A queuing delay which is the sum of two components: the time spent
queuing to a CE, and the time spent receiving the results after the job
has finished. The delay dq(N) can be modeled as a random variable
depending on the number of CEs employed. The delay is experienced
by the job and does not form a bottleneck for submission.

(4) A maximum resource limit Tc describing the amount of time a job is
allowed to execute in a CE before the job is terminated and the CE

4. COMPUTATIONAL GRIDS 29

t

d(N)

dq(N)

N

︸ ︷︷ ︸
Tc

Figure 4.1: A time line of an execution in grid representing the number N
of CEs, queue delay dq(N), and the submit delay d(N). In the example, the
first job has executed the maximum allowed time Tc on a CE.

becomes ready to accept a new job.

We believe that this environment provides a realistic model for distributed
computing in grids, as justified here: (1) A central process managing jobs
provides a natural synchronization mechanism. (2&3) Most such systems
have a delay associated with the synchronization, and specifically shared dis-
tributed environments require certain communication in selecting the CE
to be employed. (4) Batch systems such as grids usually limit the resources
available to a single job, for example, to provide fairness in scheduling.

The model does not directly consider the effect of various CPU models
and the load on the CPUs on the run time. Such effects can be obtained by
adjusting the queue delay and the resource limit accordingly. The simulation
environment provides large enough flexibility to study the effect of different
delays. This is needed to achieve reliable results on the different method-
ologies that do not depend excessively on the job management aspects left
outside of the scope of this work.

We may study an application submitting jobs to the grid through a central
process M as a time line, illustrated in Fig. 4.1. Time advances to the right
in the figure and the abstract CEs can be seen as N bands placed on top of
each other. The filled rectangles represent jobs, and the dark areas inside
the jobs represents the CPU time, while the rest of the rectangle consists
of the queuing delay. The time in the figure starts when the first job (the
long rectangle at the bottom of the figure) has been submitted into a queue
of a CE. The second job is submitted immediately after this, and it reaches
the queue immediately after the submission delay d(N). Meanwhile, the
first job has reached the CE. After ten finished submissions, the first job
finishes execution, and the finishing is finally observed by the master after
the finishing delay.

When performing the actual simulations, we make the following simplify-
ing assumptions on the model:

• submit delay d(N) = d is constant for every CE and does not depend
on N , and

• queue delay dq(N) = dq is constant for every CE and does not depend
on N .

The assumptions are necessary since the actual distributions would be dif-
ficult to obtain and the focus of this work is not on these distributions but

30 4. COMPUTATIONAL GRIDS

instead on the run time distributions of the SAT solver when solving a given
instance. If the effect of the number of CEs is taken into account, the delays
will increase since in practice the jobs will interfere with each other. This
means that using the simplifying assumptions the resulting run time is under-
estimated and this error increases with the number of CEs employed. Hence,
the model with the simplifying assumptions gives overly optimistic results on
speed-ups for larger numbers of CEs which needs to be taken into considera-
tion when interpreting the results. Nevertheless, these assumptions allow us
to study the effect of delays in a simple yet reasonably realistic environment.

4. COMPUTATIONAL GRIDS 31

5 RANDOMIZED PARALLEL SOLVING IN GRIDS

In this chapter we develop strategies for solving collections of hard instances
of the propositional satisfiability problem (SAT) with a randomized SAT
solver run in a grid. The results reported here have been published ear-
lier in [55]. We study alternative strategies by using a simulation framework
described in Chapt. 4 together with run-time distributions of a randomized
solver, obtained by running a state-of-the-art SAT solver on a collection of
hard instances. In terms of the taxonomy discussed in Chapt. 3, this corre-
sponds to multi-search with no information exchanged between the solvers.
While all the experimental results are obtained using a conflict-driven clause
learning SAT solver similar in design to that discussed in Chapt. 2, the results
and techniques are in principle not specific to SAT solving, but can be gen-
eralized to any technique where similar run time distributions are observed.

The results are experimentally validated in a production level grid that
was used as a model for the simulation framework. When solving a single
hard SAT instance, the results show that in practice only a relatively small
amount of parallelism can be efficiently used; the speed-up obtained by in-
creasing parallelism thereafter is negligible. This observation leads to a novel
strategy of using a grid to solve collections of hard instances. Instead of solv-
ing instances one-by-one, the strategy aims at decreasing the overall solution
time by applying an alternating distribution schedule.

One of the design criteria of the techniques developed here is to use state-
of-the-art SAT solvers with no or only minor modifications. To achieve this,
we use the Simple Distributed SAT (SDSAT) framework, whose basic ver-
sion consists of simply running N randomized SAT solvers in parallel until
one of them finds the solution. We consider extensions of the basic version
obtained by incorporating different restart strategies and study their effects in
a specifically built simulation environment.

This chapter first studies the effect of applying several restart strategies on
a benchmark set of hard SAT instances in the sequential setting. The re-
sults show that there are instances on which the optimal fixed restart strategy
provides a substantial reduction in the expected run time. The two uni-
versal strategies considered can also reduce the expected run time on some
instances but result in a significant increase on other instances. The reason
is that the universal strategies can spend too much time in trying to find a
short run; when an instance has none, all that time is wasted.

Based on results in the sequential case, the chapter considers ways to par-
allelize restart strategies in the SDSAT framework and use the simulation
model to benchmark them. The results give rise to two major observations.
First, parallelism seems to be an effective “luck enhancer”; when random-
ized solvers are run in parallel, the probability that one of them finds a short
run grows quite quickly. This seems to render elaborate restart strategies prac-
tically useless in the parallel setting as the simple approach with no restarts
tends to provide quite good results consistently. The second observation is
that only a relatively small amount of parallelism seems to be effectively ex-
ploitable; after a certain amount, adding more parallel solvers does not seem
to give any significant performance gain. There seems to be two reasons for

32 5. RANDOMIZED PARALLEL SOLVING IN GRIDS

this: (i) the probability that a short run is found is already quite high with a
smallish number of parallel solvers, and (ii) the delays in the grid environ-
ment reduce the effect of restart strategies.

The above results suggest that when solving a set of instances, a good
speed-up is not obtained by solving instances of the set one-by-one in a grid.
Instead, the instances should be solved in parallel by reserving a smallish
amount of computing resources for each instance. This idea will be vali-
dated in Sect. 5.3 both with the simulation model and by using a production
level grid.

5.1 RESTART STRATEGIES IN A SEQUENTIAL SETTING

The key idea we will exploit is that a complete SAT solver can be viewed as
a randomized search procedure (RSP) when it is implemented as described
in Chapt. 2. For example, MiniSAT [28] 1.14 makes by default 2% of its
heuristic choices pseudo-randomly; thus, a natural modification to turn Min-
iSAT into a RSP is to seed its pseudo-random number generator differently
for each run. Such a randomized search procedure, when provided with an
input x, is guaranteed to give a correct result RSP (x) when the computa-
tion of the procedure finishes. However, due to the randomization, the time
required for computing RSP (x) is not known in advance but is described
by a random variable TRSP (x). The random variable TRSP (x), and thus the
run time of RSP (x), is completely characterized by its cumulative run time
distribution function, qRSP (x)(t), giving the probability that the computation
on the input x will terminate before or at time t. This randomization of a
SAT solver may sound counter-intuitive as one usually tries to remove all
non-determinism in order to make runs reproducible to ease benchmarking
and debugging. However, in the SDSAT framework as well as when employ-
ing restart strategies to a RSP (discussed below), the goal is to exploit the
short runs (if any) in the distribution to decrease the expected run time of
the overall system.

The expected run time of a randomized search procedure can often be
substantially reduced by periodically restarting the procedure [42]. For ex-
ample, assume that TRSP (x) = 1s with probability 0.3 and TRSP (x) = 10s with
probability 0.7. Then the expected run time ETRSP (x) is 0.3×1s+0.7×10s =
7.3s. If the RSP is modified so that it restarts itself immediately after time
t = 1s, the expected run time becomes

∑∞
i=1 0.7i−1 × 0.3× i ≈ 3.3s. Such

a modification, where the procedure is forced to start from the beginning af-
ter running t1 seconds, then after t2 seconds, and so forth, is called a restart
strategy S = (t1, t2, . . .) and the time ti the i:th restart limit. When a restart
strategy is employed to a RSP , the result is a randomized algorithm that also
has a run time distribution and an expected run time. The restart strategy
employed in the previous example is a special case of a fixed restart strategy
St = (t, t, . . .) and the algorithm corresponding to the fixed restart strat-
egy St employed on a RSP is denoted by FIXEDt,RSP (or simply FIXEDt

when the RSP is implicitly known). Fixed restart strategies are important
in our analysis, since if qRSP (x)(t) is known, then t can be chosen so that
the expected run time of FIXEDt(x) is the minimal among all the algorithms

5. RANDOMIZED PARALLEL SOLVING IN GRIDS 33

obtainable from RSP (x) by employing any restart strategy [74]. However,
in practice qRSP (x)(t) is not known: obtaining information about qRSP (x)(t)
in general requires solving RSP (x), which is the overall goal in many appli-
cations. To circumvent this problem, several universal restart strategies have
been suggested [74, 108]: they do not depend on the instance x and let the
restart limits grow arbitrary large in order to preserve the completeness of the
algorithm.

Given a randomized search procedure RSP and a problem instance x, it
is possible to associate a distribution qRSP (x)(t) with the run time of RSP (x).
Employing a restart strategy S on a RSP results in a new algorithm with a
potentially different run time distribution. In the following the instance x
and the randomized search procedure RSP are both clear from the context,
and therefore we often use notation q(t) = qRSP (x)(t). This section discusses
the effect of using several such algorithms on a collection of SAT instances
presented shortly by comparing the run time distributions qRSP (x)(t) with the
run time distributions of the new algorithms. We use the following restart
strategies and corresponding algorithms:

• OPTIMUM. The fixed restart strategy St and the corresponding algo-
rithm FIXEDt have the property that there is a restart limit t∗ which is
optimal for a given RSP and instance x [74]. If the cumulative distri-
bution function q(t) of the instance is known, the optimal restart limit
t∗ may be determined by minimizing the expected run time ETFIXEDt(x)

as a function of the restart limit t,

ETFIXEDt(x) =
t−

∫ t

t′=0
q(t′)dt′

q(t)
, (5.1)

i.e., t∗ = argmint(ETFIXEDt(x)). Determining an approximation of t∗

can be done in our simulation environment but not usually in practice
as the distribution q(t) is typically not known.

• LUBY. Luby et al. [74] define the universal strategy SL = (l(1), l(2), . . .)
where

l(i) =

{
2k−1, if i = 2k − 1 for some k ∈ N
l(i− 2k−1 + 1), if 2k−1 ≤ i < 2k − 1 for some k ∈ N.

For example, the first few terms of SL are

(1, 1, 2, 1, 1, 2, 4, 1, 1, 2, 1, 1, 2, 4, 8, . . .).

When the strategy SL is employed on a RSP , the corresponding algo-
rithm is called LUBY. In [74] it is further shown that the expected run
time of LUBY(x) is within a logarithmic factor from the expected run
time of OPTIMUM(x) independently of x.

• WALSH. Another universal strategy is the strategy

SW = (w(1), w(2), . . .),

where w(i) = 21.2i, presented in [108]. The strategy differs from the
Luby strategy SL, for example, in the rate of growth. Clearly, the restart
limits in SW grow exponentially, whereas those in SL grows only lin-
early with respect to i. The corresponding algorithm will be referred to
as WALSH.

34 5. RANDOMIZED PARALLEL SOLVING IN GRIDS

5.1.1 Run Time Distributions

As a representative collection of SAT instances we use a set of benchmarks
from the SAT 2007 Competition (see http://www.satcompetition.org/

2007/). The instances, with the full name, abbreviated name, and satisfia-
bility, are listed below.

• mod2-rand3bip-sat-250-3.shuffled-as.sat05-2220, mod2-250, a satisfiable
instance.

• mod2-rand3bip-sat-280-1.sat05-2263.reshuffled-07, mod2-280, a satis-
fiable instance.

• 999999000001nc.shuffled-as.sat05-446, 99999900, an unsatisfiable in-
stance.

• clqcolor-10-07-09.shuffled-as.sat05-1258, clqcolor, an unsatisfiable in-
stance.

• cube-11-h14, cube, a satisfiable instance.

• dated-10-13-s, dated, a satisfiable instance.

• mizh-md5-48-5, mizh-md5, a satisfiable instance.

• vmpc_28.shuffled-as.sat05-1957, vmpc_28, a satisfiable instance.

• AProVE07-16, AProVE07, an unsatisfiable instance.

The set is selected so that it covers both industrial and hand-crafted instances,
and the run times of the instances are typically thousands of seconds for a
state-of-the-art SAT solver. The run times are obtained by running all the
instances from the SAT 2007 competition once in a heterogeneous environ-
ment with MiniSAT 1.14 [28].

The SAT solver run time distributions are approximated by using a collec-
tion of samples for each instance. The samples are obtained by 100 separate
randomized runs of a state-of-the-art SAT solver (MiniSAT version 1.14 with
its pseudo-random number generator initialized differently for each run).
The randomized runs are used as a basis for constructing a distribution of run
times with linear interpolation between the sample points, assuming proba-
bility 0 for runs shorter than the minimum sampled time and for runs longer
than the maximum sampled time1.

Table 5.1 documents for each instance the abbreviated names and the
SAT solver run times for minimum, fifth percentile, median, 95th percentile
and maximum of the samples (the other columns can be ignored for now).
Also provided is the average of the samples, i.e., an approximation of the
expected run time of the solver on the instance, in the RSP column. At
this point, of particular interest are the large dynamics in certain distribu-
tions, such as vmpc_28 with over 19000-fold difference between minimum
and maximum run time. The cumulative run time distributions for two of

1Omitting the linear interpolation and using discrete distribution did not significantly
affect the results.

5. RANDOMIZED PARALLEL SOLVING IN GRIDS 35

0

0.2

0.4

0.6

0.8

1

700060005000400030002000

q
(t

im
e)

t (s)

q(t)
q8(t)

Figure 5.1: Run time distributions for clqcolor

1000

10000

100000

1e+06

700060005000400030002000

t(
s)

t (s)

E(TFIXED t
)

E(TFIXED
p

t
)

Figure 5.2: Expected run times for clqcolor. The horizontal lines corre-
spond to maximum and minimum run times of the distribution.

the test instances are presented in Figs. 5.1 and 5.3, where the distribution is
the increasing graph q(t). The horizontal lines in Figures 5.2 and 5.4 indi-
cate the maximum and minimum run times of the instance and the vertical
line indicates the maximum run time on the x-axis, i.e., the value of t where
q(t) = 1.

It can be argued that 100 samples is not enough to give us a realistic view
of the run time distribution of an instance. In order to estimate the mag-
nitude of the error introduced to the finite distribution, the distributions of
cube with 100 samples and 1000 samples are compared in the first two rows
of Table 5.2. Even though the minimum run time decreases and the max-
imum run time increases, the distribution seems to remain relatively stable
when increasing the number of samples. To have an impression on how, for
example, a short run would affect the results, an artificial short time not ob-
tained while solving the instance is inserted to the samples. The resulting
distribution seem similar to the distribution of vmpc_28.

Table 5.1 compares the three algorithms against the run time of RSP .
Column RSP reports the expected run time of RSP (x) for different in-

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10 100 1000

q
(t

im
e)

t (s)

q(t)
q8(t)

Figure 5.3: Run time distributions for vmpc_28

36 5. RANDOMIZED PARALLEL SOLVING IN GRIDS

Ta
bl

e
5.

1:
C

ha
ra

ct
er

ist
ic

so
ft

he
ru

n
tim

es
fo

rt
he

te
st

in
st

an
ce

s
In

st
an

ce
M

in
5%

M
ed

ia
n

95
%

M
ax

R
S
P

O
P

T
IM

U
M

t∗
L

U
B

Y
W

A
L

S
H

m
o
d
2
-
2
5
0

40
.1

6
97

.1
6

1,
21

0
2,

67
5

3,
08

8
1,

18
1

1,
18

1
∞

2,
71

5
1,

51
0

m
o
d
2
-
2
8
0

9.
18

4
55

.7
1

1,
73

2
6,

61
1

7,
77

5
2,

38
2

91
8.

4
9.

18
4

1,
27

4
1,

71
8

9
9
9
9
9
9
0
0

1,
07

2
1,

20
4

2,
05

6
3,

10
1

3,
72

5
2,

06
5

2,
06

5
∞

25
,0

70
4,

56
0

c
l
q
c
o
l
o
r

1,
19

8
1,

30
0

1,
92

2
2,

95
5

4,
32

9
1,

90
0

1,
90

0
∞

23
,0

60
4,

15
8

c
u
b
e

2,
62

9
2,

89
6

4,
70

8
7,

93
6

10
,0

49
4,

83
2

4,
83

2
∞

10
6,

20
0

18
,5

00
d
a
t
e
d

10
.0

9
46

.5
3

80
3.

0
12

,5
50

37
,9

30
2,

27
9

71
6.

1
29

.0
8

90
1.

5
99

3.
3

m
i
z
h
-
m
d
5

49
.7

6
12

8.
7

86
1.

7
5,

78
4

9,
48

9
1,

66
0

1,
23

6
89

9.
3

3,
40

3
1,

47
1

v
m
p
c
_
2
8

0.
13

70
3.

90
5

39
4.

7
1,

73
0

2,
72

0
62

3.
3

12
.7

1
0.

25
60

13
7.

4
27

9.
6

A
P
r
o
V
E
0
7

87
9.

4
1,

07
1

1,
47

1
2,

71
3

2,
85

5
1,

56
4

1,
56

4
∞

17
,3

30
3,

38
1

5. RANDOMIZED PARALLEL SOLVING IN GRIDS 37

Table
5.2:

C
om

parison
ofthe

distributions
for

cube
w

ith
100

sam
ples

(c
u
b
e

1
0
0),1000

sam
ples

(c
u
b
e

1
0
0
0),and

a
m

odified
distribution

w
ith

one
artificialshortrun

inserted
(c
u
b
e

1
0
0
1
m

).
Instance

M
in

5%
M

edian
95%

M
ax

R
S
P

O
P

T
IM

U
M

t ∗
L

U
B

Y
W

A
L

S
H

c
u
b
e

1
0
0

2,629
2,896

4,661
7,617

8,821
4,832

4,832
∞

106,200
18,500

c
u
b
e

1
0
0
0

1,441
2,990

4,914
7,664

14,050
5,067

5,067
∞

97,360
31,510

c
u
b
e

1
0
0
1
m

0.7352
2,990

4,914
7,647

14,050
5,061

725.9
0.735

5,101
30,280

38 5. RANDOMIZED PARALLEL SOLVING IN GRIDS

0.1

1

10

100

1000

10000

1 10 100 1000

t(
s)

t (s)

E(TFIXED t
)

E(TFIXED
p

t
)

Figure 5.4: Expected run times for vmpc_28. The horizontal lines corre-
spond to maximum and minimum run times of the distribution.

stances x. The optimum restart limit t∗ is computed using the run time
distribution qRSP (x)(t) for each instance and minimizing Eq. (5.1). The re-
sulting expected run time is reported on column OPTIMUM and the corre-
sponding restart limit in column t∗. The value ∞ is used to mark the cases
when run times for OPTIMUM(x) and RSP (x) are equal. In this collection
of instances, in five cases out of nine the expected run time of OPTIMUM(x)
is equal to that of RSP (x). Some of the satisfiable instances, though not
all, seem to profit from employing a fixed restart strategy with small restart
limit. As an example, the expected run time for the algorithm FIXEDt with
input vmpc_28, is shown in Fig. 5.4 as a function of the restart limit t (graph
labeled ETFIXEDt). In other cases, the expected run times of algorithms with
larger restart limits compare favorably to those with smaller restart limits. An
example is shown in Fig. 5.2 (again ETFIXEDt).

The results for the two universal strategies are shown in columns LUBY
and WALSH of Table 5.1. Based on the results, it seems that in most cases the
instances where ETOPTIMUM(x) is less than ETRSP (x) also profit of more com-
plex strategies. The strategy LUBY performs very badly on many instances
with a high minimum run time. This is a consequence of the slow growth of
the restart limit in the strategy SL. In general, the algorithm WALSH seems
to offer a relatively robust approach, resulting in good speed-up where such
would be obtainable with FIXEDt∗ given that t∗ is known, and still perform-
ing usually well in cases where ETOPTIMUM(x) = ETRSP (x). This is a slightly
surprising result, since it can be shown that unlike the Luby strategy, SW is
exponentially worse than the best strategy for some distributions [111]2.

5.2 PARALLEL SOLVING OF A SINGLE INSTANCE

In the previous section we discussed several restart strategies and resulting se-
quential algorithms when the strategies are employed to a RSP. In this section
we develop a number of parallel algorithms for grid environments based on
the restart strategies. Here we consider a grid environment as an efficient dis-
tributed system for running jobs. Hence, the algorithmic design boils down
to approaches to constructing a sequence of jobs j1, j2, . . . to be submitted to
the grid for execution based on a RSP and a restart strategy. Since each job

2The example distribution used in [111] is a pathological example of a discrete distribu-
tion and seems to be rare in practice.

5. RANDOMIZED PARALLEL SOLVING IN GRIDS 39

has a resource limit Tc limiting the execution time, we employ a finite restart
strategy (discussed below) on the RSP which guarantees that the run time of
the resulting algorithm is not more than Tc. Hence, each job ji consists of
the RSP, the input x to be solved and a finite restart strategy.

A finite restart strategy S = (t1, t2, . . . , tn) is a finite sequence of restart
limits which, when employed on a RSP , will terminate the resulting algo-
rithm unless a solution is found by the end of the restart limit tn. The length
of the finite restart strategy S, denoted by |S|, is n. Given a restart strategy
S = (t1, t2, . . .) and a resource limit Tc, we define an operator finiteTc(S) for
constructing finite restart strategies from S as

finiteTc(S) =

{
(Tc) if t1 > Tc

(t1, t2, . . . , tm) s.t. m maximizes
∑m

i=1 ti ≤ Tc otherwise.

For any restart strategy S, the run time of the algorithm obtained by employ-
ing finiteTc(S) on a RSP is less than or equal to Tc.

The most intuitive way of constructing jobs from a restart strategy S =
(t1, t2, . . .) is to assign the job ji the restart strategy (ti) for i = 1, 2, In
practice this approach performs very poorly due to the high delays in actual
grid environments. Therefore, the parallel algorithms are based on two gen-
eral schemes for constructing a sequence of jobs, given a restart strategy S.

• Straightforward scheme. Given a restart strategy S for constructing jobs
we define a sequence of restart strategies S1, S2, . . . in the following
way: let S1 = S and given a strategy Si, the restart strategy Si+1 is con-
structed from Si by removing the first |finiteTc(Si)| restart limits from
Si. Given an environment with N computing elements, in the straight-
forward scheme jobs are constructed from the sequence S1, S2, . . . by
assigning the restart strategy finiteTc(S1) for the jobs j1, . . . , jN , then
finiteTc(S2) for the jobs jN+1, . . . , j2N and so forth. This strategy is
discussed in [73].

• Faithful scheme. In this scheme given a restart strategy S we construct
the sequence S1, S2, . . . as above and then assign the job j1 the restart
strategy finiteTc(S1), the job j2 the restart strategy finiteTc(S2), and so
forth.

Both schemes are illustrated in Fig. 5.5

Parallel Algorithms. Given the randomized search procedure and the dis-
tributed environment, the parallel algorithm is uniquely determined by the
used scheme (introduced above) and the restart strategy. Furthermore, for all
fixed restart strategies, the straightforward and faithful schemes result in the
same parallel restart strategy, and thus the same algorithm. We will discuss
six parallel algorithms:

• The maximum parallel algorithm FIXEDp
Tc

is formed from the fixed
restart strategy STc .

• The parallelized optimal algorithm FIXEDp
t∗ is formed by finding a

value t∗ which minimizes the parallel run time distribution

ETFIXEDp
t (x) =

t−
∫ t

t′=1
(1− (1− q(t′))N)dt′

1− (1− q(t))N
(5.2)

40 5. RANDOMIZED PARALLEL SOLVING IN GRIDS

t5

t5

t5

t5

· · ·

t3t1

t8

· · ·

t6

t2 t3t1 t9

t4

· · ·

t2 t3t1

t7

t7

t6t2 t3t1 t9

t4 t7

t8

t8t6

t8

t4

t9 · · ·

t9

t6 t7

t4

t2

t23

t25

t34t33

· · ·

· · ·

· · ·

· · ·

t5

t12

t16 t18t17

t10 t11

t7 t8 t9 t21

t22

t4

t35t24

t26

t6

t36

t28 t29 t30

t31 t32

t27

t14

t2

t15

t3

t13

t1

t19 t20

Figure 5.5: Illustration of the faithful (bottom) and straightforward (top)
schemes with the same exemplary restart strategy. The x-axis in the figures
correspond to time and y-axis to the parallel resources. See Fig. 4.1 and re-
lated text for more details on the grid environment. The queuing delays are
omitted in the figures.

for RSP (x) with the run time distribution q(t). Equation (5.2) is ob-
tained from Eq. (5.1) by substituting q(t) with the corresponding par-
allel distribution 1− (1− q(t))N . However, as shown in [73], there are
run time distributions for which FIXEDp

t∗ does not result in minimum
expected run time over all parallel algorithms.

• The faithful parallel Luby and Walsh algorithms, denoted LUBY-Fp

and WALSH-Fp, are constructed by using the faithful scheme on the
strategies SL and SW, respectively.

• The straightforward parallel Luby and Walsh algorithms LUBY-Sp and
WALSH-Sp are constructed by using the straightforward scheme on the
strategies SL and SW, respectively.

Zero-Delay Parallel Environment. In this subsection we consider an ide-
alized grid environment captured by the grid model, where we set the delays
d = dq = 0 and the resource limit Tc = 3600s. This provides us with a lower
bound on the run times achievable in more realistic grid environments.

The results for the maximum parallel algorithm are reported in column
FIXEDp

Tc
of Table 5.3 for 16 and 64 CEs. For comparison, the column

FIXEDp
t∗ reports the results when using the parallelized optimal algorithm

FIXEDp
t∗ . These results have been computed with no limits on the resources.

Therefore t∗ may be greater than Tc.
The speed-up is in most cases linear with respect to the added resources,

and for vmpc_28 even super-linear, for both FIXEDp
Tc

and FIXEDp
t∗ . For some

instances, however, the speed-up is negligible. It seems that there are certain
distributions for which the parallelization method does not result in speed-
up after a certain amount of CEs has been reached. Two different examples
of this phenomenon are closer studied in Figs. 5.2 and 5.4 for N = 1 and
N = 8. The graphs labeled ETFIXEDp

t
in the figures are the expected run

times of the algorithm FIXEDp
t as a function of the restart limit t. In Fig. 5.2,

the run time of the algorithm FIXEDp
t with large values of t is almost equal to

that of the shortest sampled run (the lower horizontal line) which can also be
seen from the run time distribution of the algorithm FIXEDp

t when N = 8,
q8(t), in Fig 5.1. The situation is different in Fig 5.4, where the shortest run

5. RANDOMIZED PARALLEL SOLVING IN GRIDS 41

Table
5.3:R

esultsfordifferentstrategiesand
the

zero-delay
parallelenvironm

ent
Instance

N
F

IX
E

D
pt ∗

F
IX

E
D

pT
c

L
U

B
Y-S

p
W

A
L

S
H

-S
p

L
U

B
Y-F

p
W

A
L

S
H

-F
p

m
o
d
2
-
2
5
0

16
105.7

116.2
334.2

177.5
171.8

114.0
64

47.25
47.25

194.6
84.86

50.23
45.32

m
o
d
2
-
2
8
0

16
61.82

84.52
71.44

76.65
67.65

79.32
64

19.36
21.55

22.29
25.69

21.44
24.58

9
9
9
9
9
9
0
0

16
1,219

1,219
14,657

2,910
1,620

1,238
64

1,097
1,097

14,530
2,784

1,213
1,094

c
l
q
c
o
l
o
r

16
1,293

1,293
14,730

2,963
1,553

1,301
64

1,223
1,223

14,660
2,899

1,287
1,224

c
u
b
e

16
2,891

2,891
33,600

6,777
8,105

2,996
64

2,682
2,682

33,410
6,570

3,086
2,687

d
a
t
e
d

16
48.44

64.12
59.30

53.29
63.46

60.15
64

15.89
16.33

15.92
16.05

14.69
19.26

m
i
z
h
-
m
d
5

16
133.8

133.8
525.8

116.6
162.1

125.4
64

73.23
73.23

259.2
126.1

84.53
81.76

v
m
p
c
_
2
8

16
0.834

7.293
4.694

6.065
4.366

11.22
64

0.251
0.539

0.6507
0.7994

0.6550
0.5003

A
P
r
o
V
E
0
7

16
1,049

1,049
11,040

2,285
1,299

1,064
64

918.8
918.8

7,823
1,823

1,056
915.4

42 5. RANDOMIZED PARALLEL SOLVING IN GRIDS

is much shorter than the expected run also when N = 8.
The difference between FIXEDp

Tc
and FIXEDp

t∗ becomes insignificant when
N increases. The intuitive explanation for this is that the benefit of aggressive
restarting can be obtained by running several solvers in parallel, as discussed
in Chapt. 3. The important consequence of the phenomenon is that with a
large number of CEs, the significance of the restart strategies decreases.

The remaining columns in Table 5.3 show the behavior of the strategies
SL and SW. The results are obtained by simulating 100 runs of the parallel
algorithms and reporting the mean time required to find the solution. The
columns LUBY-Sp and WALSH-Sp correspond to the straightforward paral-
lel restart strategy for SL and SW. This scheme has the benefit that small
restart limits are attempted often. However, especially LUBY-Sp suffers from
the repeating of the short runs in cases where the smallest run time is high.
The results corresponding to the faithful scheme are reported in columns
LUBY-Fp and WALSH-Fp. In most cases the faithful scheme performs signifi-
cantly better than the straightforward scheme, and when this is not the case,
the difference is relatively small.

A natural generalization of the strategies SL and SW is to multiply the
restart limits of the strategies by a constant factor f . Table 5.4 shows the
results for different values of f and 64 CEs. Based on these results, the factor
does not seem to have a significant effect on the run times. The runs in
Table 5.3 (as in Table 5.5) are measured with f = 15.0.

Table 5.5 studies the effect of a larger sample base similar to the case in
Table 5.2 in the zero-delay environment. For this particular instance, the
strategy FIXEDp

t∗ is equal to the maximum strategy both when the amount
of samples is 100 and 1000. In this case, when the number of samples is
increased, the expected solving time decreases for most algorithms. There is
no significant difference between WALSH-Fp and FIXEDp

Tc
whereas LUBY-Fp

suffers from a larger number of short unsuccessful runs (even though not
visible in Table 5.2, the distributions are significantly different when t ≤ Tc;
e.g. q(3600s) ≈ 0.24 in the 100 samples distribution but only approximately
0.14 in the 1000 samples case). Since cube is a satisfiable instance, it is
possible that there is a short run time for the randomized SAT solver. Since
the 1000 samples did not reveal a short run time, it might be that the run is
extremely improbable. To study the effect of such a short successful run we
may modify the sample set of the instance cube to include a single, artificial,
short run. The resulting run times are given in the row labeled cube1001m. In
this case, LUBY-Fp is better than FIXEDp

Tc
because of the higher probability of

finding the short run. Based on the two first rows of the table, may conclude
that hundred is usually sufficiently large amount of samples to determine the
trends for restart strategies on an instance, even though outliers, when such
exist, will significantly alter the result.

Non-Zero Delay Parallel Environment. The simulation results from the
parallel environment with zero submission delay and zero queuing delay
provide some insight to how the parallelization method based on random-
izing algorithms can perform on the benchmark set. However, realistic par-
allel environments in general, and grid environments in particular, always in-
clude some overhead related to initializing the computations. As described

5. RANDOMIZED PARALLEL SOLVING IN GRIDS 43

Table
5.4:C

om
parison

of64-C
E

L
U

B
Y-F

p
and

W
A

L
S

H
-F

p
w

ith
f

=
1,f

=
15,and

f
=

100

L
U

B
Y-F

p
W

A
L

S
H

-F
p

Instance
f

=
1

f
=

15
f

=
100

f
=

1
f

=
15

f
=

100

m
od2-250

68.09
50.23

47.19
46.54

48.85
48.55

m
od2-280

34.71
21.44

20.16
23.82

21.69
18.55

99999900
1,372

1,213
1,166

1,093
1,096

1,105
clqcolor

1,345
1,287

1,262
1,220

1,224
1,222

cube
3,950

3,086
2,977

2,696
2,688

2,677
dated

28.43
14.69

18.71
18.74

15.85
18.57

m
izh-m

d5
98.35

84.53
74.76

82.65
72.48

79.45
vm

pc_28
0.5140

0.6550
0.6560

0.4717
0.5401

0.4870
AProV

E
07

1,088
1,056

992.2
930.2

936.2
914.76

44 5. RANDOMIZED PARALLEL SOLVING IN GRIDS

in Sect. 4.2, we divide the delays into two categories: submit delay d and
queue delay dq. Typical values in NorduGrid are currently d = 12s and
dq = 125s. However, the two values seem to vary strongly. The simulated
experiments are presented in Table 5.6 under the title “large delay”. All re-
sults are obtained by computing the mean run time over 100 samples using
Tc = 3600s for the jobs.

The results show that the maximum parallel algorithm FIXEDp
Tc

almost
always outperforms those based on universal restart strategies on these in-
stances. It is worth noting that increasing the number of CEs four-fold brings
next to nothing in speed-up, a consequence of the long queuing delays.

It is possible that the submission and queue delays are significantly shorter
in, say, some other grid environments. The effect of smaller delays can be
simulated by using submission delay d = 5s and queue delay dq = 30s.
The results are reported under the caption “small delay”. Even though the
strategies SL and SW are now more competitive, their effectiveness still suf-
fers from the high delays and it can be argued that the maximum timeout
is a sufficient approximation of the optimum. The super-linear speed-up ob-
served in zero-delay environment cannot be observed in either of the delayed
environments. For certain instances, such as 99999900 and cube, already a
smallish number of parallel runs suffices to find a short run from the samples.
As a result, obtainable speed-up is small.

These results are confirmed by repeating them for two instances in the
NorduGrid grid environment. Two instances are selected which, according
to the simulated results, are illustrative examples on the techniques used in
parallel solving. The instance vmpc_28 shows super-linear speed-up in sim-
ulations in zero-delay environments, but only a moderate speed-up for larger
number of CEs in delayed environments using the techniques we have stud-
ied. The instance AProVE07, on the other hand, has a less dynamic distri-
bution in the simulations and yields no significant speed-up at the transition
from 16 to 64 CEs even in the zero-delay environment. The results are pre-
sented in Table 5.7. The submission delays seem to be below the average
delay of 12 seconds, but the results correspond approximately to the simu-
lated results. No speed-up seems to be achieved when the number of CEs is
increased.

We may draw the following conclusions from the experiments described
in this section:

• Outlier samples greatly affect the strategy that is most effective in solv-
ing a given instance, but hundred samples seems to be enough in prac-
tice to provide reliable information on the distribution.

Table 5.5: Effect of additional samples on the zero-delay solving of cube with
64 CEs

Instance FIXEDp
t∗ FIXEDp

Tc
LUBY-Fp WALSH-Fp

cube100 2,682 2,682 3,086 2,687
cube1000 2,364 2,364 3,760 2,270
cube1001m 11.86 2,175 969.8 2,185

5. RANDOMIZED PARALLEL SOLVING IN GRIDS 45

Table
5.6:R

esultsfordifferentstrategiesand
delayed

parallelenvironm
ents.T

he
tw

o
row

sforeach
instance

correspond
to

N
=

16
(top)and

N
=

64
(bottom

)
sm

alldelay
large

delay

Instance
N

F
IX

E
D

pt ∗
F

IX
E

D
pT

c
L

U
B

Y-F
p

W
A

L
S

H
-F

p
F

IX
E

D
pt ∗

F
IX

E
D

pT
c

L
U

B
Y-F

p
W

A
L

S
H

-F
p

m
o
d
2
-
2
5
0

16
177.0

145.1
232.7

164.4
352.8

379.3
399.8

399.3
64

161.5
157.7

182.7
133.5

364.4
355.7

422.7
350.4

m
o
d
2
-
2
8
0

16
125.8

159.0
137.4

150.7
306.8

331.0
321.4

350.0
64

118.1
126.2

135.2
132.4

296.3
327.7

320.9
340.1

9
9
9
9
9
9
0
0

16
1,242

1,268
1,672

1,306
1,431

1,477
1,984

1,527
64

1,208
1,246

1,401
1,253

1,432
1,485

1,756
1,490

c
l
q
c
o
l
o
r

16
1,340

1,353
1,455

1,378
1,506

1,525
1,846

1,577
64

1,328
1,351

1,448
1,352

1,508
1,536

1,777
1,554

c
u
b
e

16
2,882

2,960
9,209

3,067
3,094

3,117
9,233

3,195
64

2,792
2,840

3,489
2,842

3,050
3,121

4,159
3,145

d
a
t
e
d

16
112.1

140.5
138.2

126.1
272.2

323.8
281.6

312.1
64

104.7
114.1

116.6
117.4

284.3
309.2

293.8
305.8

m
i
z
h
-
m
d
5

16
181.4

190.4
268.7

199.4
352.6

391.2
445.0

395.3
64

190.4
186.3

208.5
195.0

379.8
385.2

464.8
392.0

v
m
p
c
_
2
8

16
43.27

67.35
62.70

65.49
155.7

206.7
198.4

214.0
64

42.18
68.06

62.59
64.30

155.5
218.3

200.0
212.0

A
P
r
o
V
E
0
7

16
1,073

1,089
1,313

1,127
1,262

1,289
1,569

1,310
64

1,073
1,065

1,205
1,061

1,292
1,299

1,568
1,300

46 5. RANDOMIZED PARALLEL SOLVING IN GRIDS

Table 5.7: Experimental results in grid for selected instances. Reported is
the average over 10 runs using the strategy FIXEDp

Tc
. The column d reports

the measured submission delay.
Instance CEs Time d

vmpc_28 8 105.4 3.333
16 125.7 7.668
64 134.5 5.189

Instance CEs Time d

AProVE07 8 1,624 5.917
16 1,574 9.714
64 1,271 8.555

Table 5.8: Expected solving times in parallel solving of a set of instances
Instance set Single CE 64 CEs / instance one-

by-one (simulated)
8 CEs/instance
simultaneously

All but cube 13,650 5,916 1,865
All 18,486 9,037 5,136

• Linear scaling of the restart strategies does not significantly change
their behavior.

• Usually the faithful scheme is more efficient than the straightforward
scheme, which occasionally increases the solving time for some in-
stances significantly compared to other parallel algorithms.

• The significance of restart strategies to the expected run times of the in-
stances is large for small amounts of CEs and decreases as the amount
of CEs increases.

• The differences between restart strategies are small when delays are
considered.

5.3 PARALLEL SOLVING OF A SET OF INSTANCES

Often in realistic solving scenarios we are not interested in solving a single
SAT instance, but instead a set of previously created SAT instances. The re-
sults from the following experiment show that in such case it is more efficient
to limit the number of CEs reserved for each instance and solve simultane-
ously several instances from the set than it is to use all available CEs to solve
each instance one-by-one.

For this experiment, 8 problems from the benchmark set of 9 problems
are selected and run in parallel with 64 CEs, reserving at most eight CEs
per problem. This enables comparing the results of this experiment against a
strategy where 64 CEs are dedicated for a single instance at a time.

Initially the instance cube is excluded from the set of instances, since

5. RANDOMIZED PARALLEL SOLVING IN GRIDS 47

this problem is in the limit of solvable problems within 3600 seconds in the
grid environment, having expected run time of 4708 seconds in the simu-
lation environment. The run times for the set is reported on the first row
on Table 5.8. The columns report in order the expected solving time when
each instance is solved one-by-one using single CE (results on Table 5.1),
when 64 CEs are used for solving the instances one-by-one (results on Ta-
ble 5.6 and long delays) and when at most 8 CEs are reserved for each in-
stance and all are solved simultaneously (results on NorduGrid). The speed-
up when switching from one-by-one solving to simultaneous solving is over
three, while the total speed-up when switching from using a single CE to the
simultaneous solving is slightly more than seven. Therefore, the effect of si-
multaneous solving is significant even compared to the effect of introduction
of more computing elements.

However, the results can be significantly worse if a difficult instance, such
as cube, is included in the set of problems to solve. The bottom row of
Table 5.8 compares the results now using resource limit Tc = 7200 seconds
and including cube to the set of problems to solve. This resulted in a speed-
up less than two with average solving time compared to the expected solving
time when solving instances one-by-one with long delays and 64 CEs. When
these results are compared against a simple strategy of running the problems
on a single CE with no delays, the speed-up is 3.60.

The maximum obtainable speed-up in solving instances simultaneously
in the setting discussed in this paper is the maximum of minimum run times
over all instances in the set. Based on the results in Table 5.1, this speed-
up is slightly over 11 for the first row and slightly over 7 for the second row.
Therefore the speed-ups obtained with the simultaneous solving are relatively
good in a realistic widely distributed computing environment.

Based on these results, the design of an algorithm for solving a collection
of SAT instances efficiently in a grid environment should consider the two
observations:

(i) an increase in the number of CEs does not result in a corresponding
speed-up when solving a single instance, and

(ii) for a large number of problems to solve, a good speed-up is not ob-
tained by using all the resources for solving a single problem at a time,
but rather by dedicating only a certain amount of CEs for a single
problem and solving multiple problems simultaneously instead.

These observations lead to the following locally-aided fair-share algorithm:
Given a collection of instances, the instances are sent for solving in a round-
robin manner by using the maximum parallel algorithm FIXEDp

Tc
. In addi-

tion, the problems are also solved locally at the same time using an algorithm
similar to LUBY with the modified strategy

SL,C = (min{l(1), C}, min{l(2), C}, . . .),

where C is a maximum local run time constant. Local solving should be per-
formed in a round-robin manner. The effect of the addition of local solving
into the above results does not significantly alter the results, since they are
dominated by the run times of the difficult instances.

48 5. RANDOMIZED PARALLEL SOLVING IN GRIDS

5.4 REMARKS

In this chapter we have developed techniques for solving collections of hard
SAT instances in a grid using a randomized SAT solver. The idea of ran-
domization and restarts, introduced in Chapt. 2 and widely used in sequen-
tial SAT solvers as well as forming the basis of some multi-search methods
as discussed in Chapt. 3, were extensively studied as a means of obtaining
speed-up in grid environments. The results show that modern SAT solvers
already perform quite well with their restarts. This can be seen from the rel-
atively high degree of instances for which the expected run time, when the
optimum restart strategy is employed, equals the expected run time of the
underlying SAT solver. They also show that randomization is a good source
of speed-up when relatively small number of computing elements are used
simultaneously.

We have compared different approaches using a simulation framework
consisting of the grid model capturing the communication and management
delays, and obtained a representative collection of run-time distributions by
running a randomized SAT solver on a set of instances. The results are ex-
perimentally confirmed also in NorduGrid which is a European-wide dis-
tributed production-level grid. When solving a single hard SAT instance, the
results show that in practice often (i) a relatively small number of parallel
jobs suffices to increase the probability of finding a short run in the distribu-
tion to a significant level and (ii) the non-negligible delays in a grid eliminate
super-linear speed-ups that could be obtained in an ideal environment with-
out any delays. Hence, attempts to decrease the overall expected run time by
using clever universal restart strategies or by finding optimal restart limits do
not lead to significant improvements compared to using the resource limit
implied by the grid environment as the restart limit.

These observations lead to a novel strategy of using grid to solve collec-
tions of hard instances. Instead of solving instances one-by-one, the strategy
aims at decreasing the overall solution time by applying an alternating distri-
bution schedule called locally-aided fair-share algorithm: Given a collection
of instances, the instances are solved in parallel in a straightforward manner,
but in addition also locally using a restart strategy which is a slightly modified
version of the Luby strategy described in [74].

Speed-up obtainable on an instance by using exclusively restart strategies
is limited by the minimum run time required to solve the instance. The
following chapter discusses an approach based on the learned clauses con-
structed by a CDCL SAT solver during its search. This allows altering the
minimum run time of an instance and therefore lifts the limitation on the
obtainable speed-up.

5. RANDOMIZED PARALLEL SOLVING IN GRIDS 49

6 TECHNIQUES FOR PARALLEL LEARNING

This chapter extends the techniques described in the previous section by in-
corporating clause learning of the conflict-driven clause learning SAT algo-
rithms, known to yield significant speed-ups in the sequential case, in grid
environments similar to those described in Chapt. 4. The results in this
chapter have previously been published in [54]1. Compared to the SDSAT
approach discussed in the previous section, the techniques aim at solving a
wider range of SAT instances. The techniques exploit the principle of ex-
tending the instance using the results obtained from the jobs which were not
able to determine the satisfiability of the instance. The approach exploits ex-
isting state-of-the-art CDCL SAT solvers which are modified so that the set
of learned clauses they maintain can be extracted after they are finished ex-
ecuting as a result of reaching a resource limit. Some of the learned clauses
obtained from such solvers are included to the original SAT instance so that
the search space of the original SAT instance is reduced, hopefully resulting
in an instance with lower solving time. Such modifications preserve the log-
ical equivalence between the original and the altered instance and therefore
the techniques are examples of multi-search with a limited form of communi-
cation according to the taxonomy discussed in Chapt. 3. Faithful to the grid
environment described in Chapt. 4, the approach observes the master-worker
architecture.

A substantial amount of controlled experiments demonstrates that the CL-
SDSAT framework enables a form of efficient clause learning which is not
directly available in the underlying sequential SAT solver. Finally, an imple-
mentation of the algorithm is run in a production level grid where it solves
several problems not solved in the SAT 2007 solver competition.

6.1 MOTIVATION

This chapter describes an enhancement for the SDSAT approach called
Clause Learning Simple Distributed SAT (CL-SDSAT). The basic idea is
quite straightforward: a master process submits jobs consisting of a random-
ized state-of-the-art clause learning SAT solver and a SAT instance to the
distributed environment until one of the jobs solves the problem. In or-
der to solve hard problems in the presence of resource limits imposed on
jobs, the approach exploits the work done in unsuccessful jobs (i.e. those
that exceeded the resource limits without finding a solution) by transferring
some of the clauses learned by the solver back to the master process. When
new jobs are submitted later, some of the learned clauses are passed to the
jobs to constrain the search of the solver. This approach enables a form of
clause learning which is not directly available in the underlying sequential
SAT solver: on one hand, learned clauses from multiple independent unsuc-
cessful jobs are combined and, on the other hand, the clauses learned from
such combinations are cumulated. The proposed approach is designed to
fit well the distributed environment provided by standard grid environments

1The chapter is based on the article [56], currently in peer-review.

50 6. TECHNIQUES FOR PARALLEL LEARNING

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 1 10 100 1000 10000

p
ro

b
a
b
il
it
y

t(s)

q(t)
q8(t)

Figure 6.1: The run time distribution of a SAT instance for single (the q(t)
plot) and eight (the q8(t) plot) randomized SAT solvers.

as (i) the amount of data transferred back to the master process is relatively
low and can be performed at the end of the computing, (ii) the jobs have no
need to communicate with each other, (iii) each job has predefined resource
limit for the time and memory it is allowed to consume, and (iv) CE fail-
ures do not affect the correctness or completeness of the approach. Although
more involved than in the SDSAT approach, the modifications required in
CL-SDSAT to the SAT solver are still relatively small; therefore it should
be easy to exploit the future improvements in clause learning SAT solvers in
the CL-SDSAT approach. However, the benefits of CL-SDSAT when com-
pared to SDSAT are clear. Although the SDSAT approach can reduce the
expected time to solve an instance, it cannot reduce it below the minimum
running time (i.e. the smallest t for which q(t) > 0). For an example, observe
the sequential run time distribution q(t) of a SAT instance given in Fig. 6.1
(a SAT instance encoding prime number factorization); the variation of the
run time is relatively small and the instance seems to have no short running
times. Contrasting this to the run time distribution in Fig. 5.3 it is clear
that the speed-up obtained will be much less impressive for the distribution
in Fig. 6.1. Consequently, running eight SAT solvers in parallel (the plot
q8(t)) does not reduce the expected running time significantly; in numbers,
the (approximated) expected running time for this instance is 2,065 seconds
with one solver and 1,334 seconds (i.e., only less than two times faster) for
eight parallel solvers. Even more importantly, the minimum running time
stays the same irrespective of how many parallel solvers are employed. This
is a serious drawback when solving hard SAT problems in a grid-like envi-
ronment where the computing elements usually impose an upper limit for
the computing time available for a single job. For example, if the computing
elements only allow four hours of CPU time for each job, the basic SDSAT
approach simply cannot solve any problem with a longer minimum running
time because none of the SAT solvers running in parallel can solve the prob-
lem within that time. Notice that the “straightforward” approach of storing
the memory image of a solver execution just before the time limit is reached
and then continuing the execution in a new job in another computing el-

6. TECHNIQUES FOR PARALLEL LEARNING 51

ement is not a viable solution due to the amount of data that should be
transferred between the jobs.

6.2 SIMPLIFICATIONS

This chapter uses two standard concepts in order to remove some redun-
dancy in large clause sets. First, given a formula (i.e., a set of clauses) F , the
set Prop(F) of unit clauses implied by unit propagation is the smallest set U
containing all literals obtained by propagation using the formula F and the
empty partial truth assignment as unit clauses (see Sect. 2.2.1). We note that
the set of unit clauses implied by unit propagation are exactly the implied
literals obtained by the propagation rule of a SAT solver before applying the
branching rule for the first time. A key property of these literals is that a for-
mula F is logically equivalent to the formula augmented with the implied
unit clauses, i.e. F ∪ U . Furthermore, if Prop(F) contains two mutually
inconsistent unit clauses (v) and (¬v), then F is unsatisfiable.

Second, given a set U of unit clauses, a formula (i.e. a set of clauses) F
can be simplified with respect to U by (i) removing all clauses that contain a
literal appearing in U , and (ii) removing from all the remaining clauses every
literal whose negation appears in U . Formally, letting Û = {l | (l) ∈ U} we
define

FU =
{

C \
{
¬l | l ∈ Û

}
| C ∈ F and C ∩ Û = ∅

}
. (6.1)

The key property of this simplification is that the formulas F∪U and FU ∪U
are logically equivalent. In particular, we will use the property that if F
is a formula, C is a set of clauses that are logical consequences of F , and
U = Prop(F ∪ C), then F and FU ∪ CU ∪ U are logically equivalent.

Example 3 Given a formula F = (x)∧ (¬x∨¬y)∧ (y∨¬x∨ z)∧ (x∨ v)∧
(y∨v∨¬w), the set of unit clauses implied by unit propagation is Prop(F) =
{(x), (¬y), (z)}, and simplifying F with this set results in FProp(F) = (v ∨
¬w).

6.3 THE CL-SDSAT FRAMEWORK

The basic idea of the proposed CL-SDSAT approach is to exploit the master-
worker architecture described in Chapt. 4 so that the most CPU intensive
work is performed in the workers, while the master computes less expensive
work based on the information produced by the workers. A master process
submits jobs consisting of a randomized SAT solver S and the SAT instance
F to be solved into a grid-like distributed environment DE(r), which consists
of r computing elements (CEs) performing computations dictated by the
jobs. Each job occupies a CE for a time depending on the background load
of the DE(r), the properties of the job, and the resource limits of the job
which determine the amount of CPU time and memory the job can use on
a CE.

If a job solves the problem (that is, the satisfiability of F is decided) within
the resource limits, the whole algorithm terminates with the solution. If the

52 6. TECHNIQUES FOR PARALLEL LEARNING

solution is not found in the job, some of the clauses the solver has learned
during its search are transferred back to the master process. The master pro-
cess maintains a database of such clauses, and whenever a new job is submit-
ted, a subset of the clauses in the current database is conjuncted with F in
the submitted SAT instance.

Given a clause database at a particular time, the jobs which are con-
structed by conjoining F with some of the clauses in the clause database are
called subsequent to that clause database. Conversely, a job precedes a given
clause database if the learned clauses of the job have at some point been
previously included to the clause database. The CL-SDSAT algorithm aims
at pruning the search space of subsequent jobs by using the learned clauses
of preceding jobs. The jobs are are randomized, and therefore the clauses
returned by jobs subsequent to the same clause database usually differ. The
following explains the proposed approach in more detail; the next sections
then study different aspects of the approach using controlled experiments.

The framework for the approach is presented in pseudo-code in Fig. 6.2.
The learned clauses are collected to an initially empty database of clauses,
denoted by ClauseDB . The database is allowed to vary in size and its current
maximum size is imposed by the variable MaxDBSize. From this database, a
subset of size at most SubmSZ is provided to each solver instance S together
with the original SAT instance F . The unit clauses U are stored separately.
The set is used for simplification (see Eq. (6.1)) of the clause database.

The main loop of the framework consists of two concurrent tasks (for
clarity described as a sequential algorithm): submitting subsequent jobs to
idle CEs in the distributed environment and receiving the results of the
finished jobs. The submitting of subsequent jobs is described on lines 2–
4. If there are idle CEs in the environment (line 2), then a job 〈S,F ∪
U ∪ Choose(ClauseDB , SubmSZ)〉 is submitted to it (line 4). The function
Choose selects a subset of the clauses in the current database ClauseDB so
that the size of the subset is at most SubmSZ.2 The size of the subset is
restricted for two reasons: transferring data in a widely distributed environ-
ment takes non-negligible time and having an excessive amount of learned
clauses can slow down the inner loop of the SAT solver. In order to keep
the approach complete (that is, the approach is eventually able to determine
the satisfiability of any SAT instance), the size limit SubmSZ may have to be
increased during the search (line 3); this issue is discussed at the end of this
section.

The results received from the DE are handled on lines 5–11 with two
cases.

• If the result is either SAT or UNSAT, the algorithm terminates with
that result (line 7). The correctness of the result in this case, that is,
the soundness of the framework, follows directly from the properties of
learned clauses: a SAT instanceF∪U∪Choose(ClauseDB , SubmSZ)
submitted to a CE is satisfiable if and only if the original instance F is
satisfiable because all the clauses in U∪Choose(ClauseDB , SubmSZ)
are (simplified) learned clauses and, thus, logical consequences of F .

2The size of a set of clauses means here and in the following the sum of the number of
the literals in the clauses in the set.

6. TECHNIQUES FOR PARALLEL LEARNING 53

Input:F
,a

SAT
instance;S

,a
random

ized
SAT

solver;
D

E
,the

environm
entcontaining

C
E

s.

let
C
lau

seD
B

=
∅

letM
axD

B
Size

be
the

initialsize
lim

itofthe
clause

database
letSubm

SZ
be

the
initialsize

ofthe
learned

clausessubm
itted

w
ith

the
job

let
U

=
P

rop
(F

)
1

w
hile

(True):
2

ifthere
are

idle
C

E
sin

D
E

:
3

update
Subm

SZ
4

subm
itthe

job
〈S

,F
∪

U
∪

C
hoose(C

lau
seD

B
,Subm

SZ
)〉

to
an

idle
C

E
5

if〈result,C〉
isreceived

from
D

E
:

6
ifresultisin

{SAT
,U

N
SAT}:

7
return

result
8

else
9

update
M

axD
B

Size
10

let
U

=
P

rop
(F

∪
U
∪

C
lau

seD
B
∪
C
)

11
let

C
lau

seD
B

=
M

erge(U
,C

lau
seD

B
,C

,M
axD

B
Size)

Figure
6.2:A

generalfram
ew

ork
forC

L-SD
SAT

54 6. TECHNIQUES FOR PARALLEL LEARNING

• If a job is unsuccessful, the clause database ClauseDB is updated with
the set C of learned clauses returned from the job (lines 10 and 11).
The function Merge takes the sets U ′, ClauseDB and C and the size
MaxDBSize as input. Here ClauseDB is the clause database and
MaxDBSize is its maximum size, C are the learned clauses, and U ′

is the new set of unit clauses obtained by propagation from the SAT
instance F , old unit clauses U , ClauseDB and C. The result of Merge
is a new database ClauseDB ′ ⊆ (ClauseDB ∪ C)U of size at most
MaxDBSize.

When instantiating the framework into a concrete implementation, of
special interest are the heuristics used in the two operators Choose and Merge.
The next section analyzes key aspects of the operators.

Completeness. If the resource limits for the jobs as well as the size lim-
its for the clause database (MaxDBSize) and submitted learned clause sets
(SubmSZ) are fixed, the framework is not complete (that is, there are SAT in-
stances for which the framework does not terminate). The range of problems
solvable with the framework can be extended by increasing the parameters
MaxDBSize and SubmSZ periodically during the search until a solution is
found. Naturally, the Choose and Merge operators must use this increased
space by returning clause sets of analogously increasing size. Observe the
similarity to clause learning SAT solvers: they also usually increase the limit
for the number of stored learned clauses gradually during the search. How-
ever, for very large problems and clause sets, it is of course possible that the
resource limits are exceeded before a job is able to produce any new learned
clauses; this results in incompleteness. In practice this seems not to be a
concern.

6.4 ANALYZING THE KEY ASPECTS OF CL-SDSAT

This section studies empirically the key aspects of the parallel learning strate-
gies in the CL-SDSAT algorithm in Fig. 6.2. The study is divided into three
parts. Part A experiments on four heuristics for selecting learned clauses to
a subsequent job. This is done in a controlled setting involving one round
of learning where a number of independent jobs are run with a randomized
SAT solver on the same SAT instance and the resulting learned clauses are
used to construct a derived instance. The four heuristics are compared by
studying the run time distribution of a SAT solver on a SAT instance and
the corresponding derived instances where the learned clauses selected by
the heuristics have been included. Part B studies how the run time distribu-
tion of the derived instance behaves as the number of CEs is increased and,
hence, the number of independent jobs in the round grows. Part C studies
the cumulative effect of learned clauses by increasing the number of rounds.

All the experiments of this section are conducted in a controlled envi-
ronment without background load, using Intel Xeon 5130 2GHz CPUs with
16GB of memory.

The benchmark instances are selected from a representative set of bench-
marks from the SAT 2007 Solver Competition, formed in three phases as

6. TECHNIQUES FOR PARALLEL LEARNING 55

follows. In the first phase, an initial set of problems was selected such that it
consisted of the instances which were solved by MiniSAT in the 2007 com-
petition, but required at least 2000 seconds for solving. This set consists of
53 problems. Second, each of these problems were solved 100 times using
MiniSAT v1.14 using different seeds, and only those for which the minimum
run time was more than 1000 seconds were qualified. This set consists of
28 instances, of which all but one are unsatisfiable. From the resulting set,
a representative subset consisting of 17 instances was formed so that from
each instance family there is only one representative. The instance families
were identified based on the names of the instances. Table 6.1 reports the
names together with the short labels used later in the experiments. The only
satisfiable instance is labeled cube.

A. Heuristics for the Operator Choose. Central to the CL-SDSAT frame-
work presented in Fig. 6.2 is the criterion for selecting clauses in line 4. In
many of the sequential as well as distributed CDCL solver implementations
which address the problem of selecting learned clauses, such as [78, 101],
this criterion is the length of the clauses. In the actual implementation we
will use a criterion which prefers the shortest learned clauses, and call this
heuristic Chooselen. This approach is well justified in the CL-SDSAT frame-
work: length based heuristic is efficiently implementable, and in this form
guarantees the progress of the search because new clauses are included to
the database as long as the database size limitation is not exceeded.

It is possible to vision other types of heuristics as well, which could be
based, for example, on the number of occurrences of certain clauses in all
learned clauses obtained from the unsuccessful jobs. Such heuristics are less
straightforward to implement. For example, the heuristic Choosefreq, prefer-
ring the most commonly learned clauses in the preceding jobs, would require
centralizing all learned clauses to a single place. This approach does not
scale well, as an excessive amount of memory is required when the number
of clauses increases. Even more importantly, it is unclear how the historical
frequency of a clause should be interpreted as new frequent clauses are in-
cluded to the SAT instance to be solved. Nevertheless, we experiment with
the heuristic Choosefreq in a sufficiently simple framework to study how such
a heuristic differs from Chooselen.

The heuristic Chooselen is also contrasted to two other heuristics, which
are Choose123 which only considers clauses of length at most three, and
Chooserand which selects random clauses from the clause database. The for-
mer only selects a subset of the clauses selected by Chooselen, and helps
to study the effect of longer clauses when contrasted to Chooselen. Since
Choose123 does not consider clauses longer than three, it cannot guaran-
tee progress (and therefore, completeness) in instances where short learned
clauses are rare. Therefore it is not generic enough for the purposes we are
considering. The heuristic Chooserand is useful as a reference, as all learned
clauses are already carefully selected by the solver and it is not a priori clear
if heuristics are required to obtain better results.

We repeat the definitions of the four heuristics below.

• Chooselen prefers short learned clauses within ClauseDB . Short clauses
are potentially effective in pruning the search space.

56 6. TECHNIQUES FOR PARALLEL LEARNING

Ta
bl

e
6.

1:
B

en
ch

m
ar

k
in

st
an

ce
sf

ro
m

SA
T

20
07

co
m

pe
tit

io
n

an
d

th
ei

rs
ho

rt
la

be
ls

N
am

e
La

be
l

A
P
r
o
V
E
0
7
-
0
9

A
P
r
o
V
E

c
o
n
t
e
s
t
0
3
-
S
G
I
_
3
0
_
5
0
_
3
0
_
2
0
_
3
-
d
i
r
.
s
a
t
0
5
-
4
4
0
.
r
e
s
h
u
f
f
l
e
d
-
0
7

c
o
n
t
e
s
t

c
u
b
e
-
1
1
-
h
1
4
-
s
a
t

c
u
b
e

d
a
t
e
d
-
1
0
-
1
1
-
u

d
a
t
e
d

e
m
p
t
y
r
o
o
m
-
4
-
h
2
1
-
u
n
s
a
t

e
m
p
t
y
r
o
o
m

e
q
.
a
t
r
e
e
.
b
r
a
u
n
.
1
1
.
u
n
s
a
t

a
t
r
e
e

h
w
b
-
n
2
8
-
0
2
-
S
8
1
8
9
6
2
5
4
1
.
s
a
t
0
5
-
4
9
2
.
r
e
s
h
u
f
f
l
e
d
-
0
7

h
w
b

l
i
n
v
r
i
n
v
5
.
s
a
t
0
5
-
5
6
4
.
r
e
s
h
u
f
f
l
e
d
-
0
7

l
i
n
v
r
i
n
v

m
a
n
o
l
-
p
i
p
e
-
f
9
b

m
a
n
o
l

m
o
d
2
c
-
3
c
a
g
e
-
u
n
s
a
t
-
1
0
-
2
.
s
a
t
0
5
-
2
5
6
7
.
r
e
s
h
u
f
f
l
e
d
-
0
7

m
o
d
2
c

p
m
g
-
1
2
-
U
N
S
A
T
.
s
a
t
0
5
-
3
9
4
0
.
r
e
s
h
u
f
f
l
e
d
-
0
7

p
m
g

p
y
h
a
l
a
-
b
r
a
u
n
-
u
n
s
a
t
-
4
0
-
4
-
0
2
.
s
a
t
0
5
-
4
5
9
.
r
e
s
h
u
f
f
l
e
d
-
0
7

p
y
h
a
l
a

Q
G
7
-
g
e
n
s
y
s
-
u
k
n
0
0
3
.
s
a
t
0
5
-
3
3
4
6
.
r
e
s
h
u
f
f
l
e
d
-
0
7

G
Q
7

s
1
0
1
-
1
0
0

s
1
0
1
-
1
0
0

s
o
r
t
n
e
t
-
6
-
i
p
c
5
-
h
1
1
-
u
n
s
a
t

s
o
r
t
n
e
t

t
o
t
a
l
-
1
0
-
1
3
-
u

t
o
t
a
l

u
n
s
a
t
-
s
e
t
-
b
-
f
c
l
q
c
o
l
o
r
-
1
0
-
0
7
-
0
9
.
s
a
t
0
5
-
1
2
8
2
.
r
e
s
h
u
f
f
l
e
d
-
0
7

f
c
l
q
c
o
l
o
r

6. TECHNIQUES FOR PARALLEL LEARNING 57

• Choose123 returns only clauses of at most three literals. Such clauses
are even more effective in pruning the search space but might be rare
in practice in some cases.

• Choosefreq prefers the most common learned clauses. Such clauses
are intuitively good since they are encountered in many jobs. From
equally frequent clauses, the shorter ones are preferred. It is not clear
how this heuristic could be realized in the full CL-SDSAT framework.

• Chooserand returns a set of clauses which are randomly picked from the
set of learned clauses so that each learned clause is returned with equal
probability.

In the experiments the clause database is simplified before the heuristics
are used for selecting the set of clauses. This has several subtle consequences:
the length of a clause in the clause database may decrease as a result of
simplification and if two longer clauses reduce to the same short clause, the
frequency of the short clause increases. Also none of the heuristics need to
return unit clauses, as unit clauses are included into the submitted instance
separately.

The aim of the first experiment is to study the effect of including learned
clauses to benchmark SAT instances when doing one round of learning. A
fixed number of SAT solvers produce a large candidate set of learned clauses
for each benchmark. The candidate set acting as the clause database is then
given to several different heuristics which produce the derived instances con-
sisting of the benchmark SAT instance and a subset of the clause database.
Finally the derived instance is solved using a SAT solver. All solvers used in
the experiments are modified versions of MiniSAT v1.14 with the capabil-
ity of accepting as input a seed for internal random number generator or, in
addition to that, terminating the search at a given time and outputting the
learned clauses held at that time.

In order to construct the clause database, the minimum run time of each
benchmark is determined by solving it hundred times. The clause database
is then constructed by running a number of solvers for one fourth of the
minimum run time of the instance and collecting the learned clauses.

More formally, let C1, . . . , Cr be the learned clauses returned by the solvers.
Then let the clause database

ClauseDB = (C1 ∪ · · · ∪ Cr)
Prop(F∪C1∪···∪Cr). (6.2)

A derived instance is constructed by employing the respective Choose heuris-
tic to select a subset of the clause database, that is,

F ∪ U ∪ Choose(ClauseDB , SubmSZ)

(line 4 of the algorithm in Fig. 6.2), with SubmSZ set to 100,000 literals
and r = 8. The size limitation of ClauseDB is effectively ignored by setting
MaxDBSize to infinity in these experiments.

Table 6.2 gives an overview of the results by comparing the expected run
times over fifty runs of the derived instances when using the heuristics. For
comparison, the table reports expected run times for the original instances

58 6. TECHNIQUES FOR PARALLEL LEARNING

without additional learned clauses (Base). The table also reports the expected
number of decisions made by the SAT solver, which measures the expected
size of the search space for the instance, below the run time. The lowest of
these numbers on each row is printed in bold face.

Based on these results, the expected number of decisions is lowest when
using the length-based heuristic (Chooselen), and the expected run time is
lowest when only clauses of length two and three are considered (Choose123).
If all clauses are considered in the length based heuristic, the run time of the
instance can be high, being often higher than when no clauses are included.
The experiment allows us to conclude that while length is an efficient cri-
terion for selecting clauses, the inclusion of longer clauses results in more
overhead than what is gained by reduction of the size of the search space.
On the other hand, using frequent clauses (Choosefreq) results also in good
speed-up in expected run times. These clauses are at least as long as the
clauses preferred by Chooselen, suggesting that carefully selected long clauses
can be used to speed up the solving. The results from Chooserand show also
reduction in both expected number of decisions and run time. The clauses
returned by MiniSAT seem to be good in reducing the number of decisions
even when no particular heuristic is used in selecting the clauses. The com-
parison to other heuristics reveals though that an appropriate heuristic can
significantly lower the expected run time of a derived instance.

The results on this benchmark set are surprisingly consistent: in 13 cases,
Chooselen results in lowest expected number of decisions, while in ten cases,
Choose123 results in lowest expected run time. Using eight sources of learned
clauses, in every case at least one heuristic succeeds in reducing the expected
time required to solve the instance compared to Base.

Interestingly, Choosefreq seems to perform compared to Chooselen. The
relatively good performance might be an indication that an approach based
on clause frequencies has potential. However, further studies are required
to determine if this actually is the case. If so, more work is needed to ob-
tain an efficiently implementable realistic approximation of the Choosefreq

heuristics.

B: The Effect of Increasing the Number of CEs. In many realistic scenar-
ios, the number of CEs used in a computation can grow much higher than
that used in Table 6.2. This corresponds to increase of r in Eq. (6.2), and
should intuitively result in decrease of the expected run time for the derived
instance.

This experiment confirms this intuition for the heuristic Chooselen by
showing the decrease of expected run time of a job subsequent to a clause
database after a single round of learning with r preceding jobs as r is in-
creased.

Starting from an empty database, one round of learning is performed by
submitting r subsequent jobs. The jobs are guaranteed to be unsuccessful as
the run time of each job is again limited to 25% of the previously measured
minimum run time. The resulting clauses are merged to clause database,
denote by ClauseDB r. While performing these experiments, used sizes are
MaxDBSize = 10, 000, 000 and SubmSZ = 100, 000. As discussed above,
the experiments use the Chooselen heuristic. The benchmark instances are

6. TECHNIQUES FOR PARALLEL LEARNING 59

Table 6.2: Expected run times for selected benchmarks from SAT 2007 com-
petition
Name Base Chooselen Choosefreq Choose123 Chooserand

AProVE 4,016
8,461,866

1,994
4,388,463

2,616
4,716,035

2,264
5,532,927

3,393
7,451,391

atree 3,096
22,311,255

2,967
7,831,761

2,152
13,263,105

1,439
9,034,391

2,481
14,404,941

contest 1,432
1,240,001

70
165,721

485
541,943

211
357,978

343
467,458

cube 4,832
1,273,485

4,483
967,851

4,939
1,096,322

4,888
1,238,110

5,294
1,313,385

dated 9,889
1,639,566

2,037
1,058,664

1,977
998,103

2,187
1,146,487

5,240
2,246,003

emptyroom 5,205
1,885,355

1,498
688,156

1,631
813,027

1,704
853,642

1,954
1,052,777

fclqcolor 2,027
41,172,989

1,153
13,696,945

1,388
29,946,390

1,196
25,945,033

1,864
26,103,961

hwb 4,654
125,472,477

14,128
68,950,042

5,001
123,220,119

4,454
97,041,128

10,211
82,550,196

linvrinv 2,828
40,917,769

7,837
25,824,068

2,620
37,369,017

2,518
36,283,860

4,030
32,008,217

manol 10,620
4,954,967

13,336
5,308,314

9,196
4,328,594

7,120
3,401,500

10,814
5,101,791

mod2c 3,020
271,766,780

3,827
62,714,188

2,659
221,568,484

2,496
195,269,018

4,392
87,430,751

pmg 4,268
84,245,813

9,372
40,690,352

4,189
69,882,275

2,955
48,750,743

7,876
56,061,825

pyhala 2,641
2,775,304

887
1,001,999

1,086
1,855,329

782
1,436,653

1,348
2,245,269

QG7 1,594
6,799,632

760
2,081,121

1,196
5,256,338

513
2,737,811

1,506
5,436,088

s101-100 2,528
170,749,796

5,047
47,196,913

2,502
167,440,762

2,428
166,645,578

4,907
46,054,481

sortnet 4,886
2,743,833

1,521
900,265

2,893
1,842,295

1,507
980,166

4,694
2,607,584

total 3,279
1,178,947

1,296
690,406

1,109
682,302

1,695
998,194

1,722
997,008

Sum 73,383
789,589,835

72,213
284,378,607

47,639
684,820,440

40,357
597,653,219

72,069
373,533,126

60 6. TECHNIQUES FOR PARALLEL LEARNING

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1 10 100 1000 10000

q(
tim

e)

time (s)

0

16
32

48
64

80

96

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 10000 100000 1e+06 1e+07

q(
de

ci
si

on
s)

decisions

0

16
32

48
64

80

96

Figure 6.3: Distributions for run time and number of decisions for contest
using different values of preceding jobs r and Chooselen

selected using the results of Table 6.2 as a criterion.
The run time distributions for instances contest is shown in Fig. 6.3,

and for manol in Fig. 6.4, where the former seems to scale well using all
heuristics, and the latter does not clearly benefit from any heuristic and is
especially bad for Chooselen in Table 6.2. For comparison, the figures also
give the distributions for the number of decisions. Table 6.3 provides statistics
for these and two other instances.

In all of the experiments, the number of decisions and the run time de-
crease when the amount of preceding jobs increases sufficiently. The in-
stance contest becomes easy to solve relatively soon. As the typical run
time reaches values less than one second, it becomes difficult to see if the
added clauses help in solving the problem further. Some of the instances
show a slowdown in the decrease of the run time. The slowdown is well
illustrated by Fig. 6.4 for manol. The expected run time for the instance
first decreases gradually from almost three hours to slightly over 25 minutes
reaching the minimum when the number of preceding jobs is 64. Increas-
ing the amount of preceding jobs does not help to decrease the expected run
time, which indeed seems to slightly increase, as the expected run time is
almost five minutes higher when there are 96 preceding jobs.

The other two instances in Table 6.3 show a nearly consistent decrease in

6. TECHNIQUES FOR PARALLEL LEARNING 61

Table
6.3:M

inim
um

,expected
and

m
axim

um
run

tim
esfordifferentvaluesofpreceding

jobs
r

and
C

hoose
len

Label
0

16
32

48
64

80
96

c
o
n
t
e
s
t

M
in

1,080
6.58

0.70
0.53

0.41
0.17

0.16
E

xp
1,430

8.39
0.88

0.53
0.41

0.17
0.16

M
ax

1,990
10.9

1.36
0.53

0.41
0.17

0.16

f
c
l
q
c
o
l
o
r

M
in

1,010
384

138
84.1

54.9
24.9

22.6
E

xp
2,030

595
281

161
102

55.9
51.1

M
ax

3,650
1,450

529
297

187
120

162

h
w
b

M
in

3,600
7,040

5,980
5,470

3,520
2,666

2,320
E

xp
4,650

8,770
7,880

6,710
4,680

3,390
3,000

M
ax

6,190
11,300

9,990
9,045

6,590
4,780

4,100

m
a
n
o
l

M
in

1,510
1,394

924
516

589
584

576
E

xp
10,600

4,570
2,320

1,580
1,540

1,652
1,820

M
ax

65,400
14,700

5,250
4,540

3,480
5,700

4,880

62 6. TECHNIQUES FOR PARALLEL LEARNING

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1000 10000 100000

q(
tim

e)

time (s)

0

16
32

48
64

80

96

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1e+06 1e+07 1e+08

q(
de

ci
si

on
s)

decisions

0

16
32

48
64

80

96

Figure 6.4: Distributions for run time and number of decisions for manol
using different values of preceding jobs r and Chooselen

all statistics. Interestingly, the expected run time of hwb in Table 6.3 reaches
that of the original instance (see Table 6.2) only when there are more than
64 preceding jobs.

We note briefly that the expected total time required to solve, for exam-
ple, the derived instance manol when r = 48 is 1,580 seconds. Even when
the time required to obtain the derived instance is taken into consideration
(0.25× 1, 510 + 1, 580), the problem can be solved five times faster than the
original instance.

However, these results show that there are instances such that after a sin-
gle round of learning in CL-SDSAT, even the minimum run time of the
derived instance does not become arbitrarily small no matter how much r is
increased.

C: Cumulative Effect of Learned Clauses. As the previous experiment in-
dicates, in many cases after a single round of learning the subsequent jobs
do still exceed the time limitation imposed by the DE. In the CL-SDSAT
framework, the clauses are cumulated to overcome the problem. This means
that not all jobs are subsequent to the same clause database, but the set of
preceding jobs is allowed to grow arbitrarily as jobs are submitted. The effect
is studied by continuing the previous experiment as follows. As previously,

6. TECHNIQUES FOR PARALLEL LEARNING 63

Table 6.4: Minimum, expected (Exp) and maximum run times for differ-
ent number of rounds i in jobs subsequent to ClauseDB i

16, 0 ≤ i ≤ 4 and
Chooselen

Label 0 1 2 3 4

fclqcolor Min 1,010 384 5.15
Exp 2,030 595 9.10
Max 3,650 1,450 30.4

hwb Min 3,600 7,040 4,520 1,060 2.77
Exp 4,650 8,770 6,000 1,350 3.16
Max 6,190 11,300 7,880 1,900 3.87

manol Min 1,510 1,394 618 76.9
Exp 10,600 4,570 1,350 157
Max 65,400 14,700 3,350 313

total Min 1,190 892 370 6.19
Exp 3,280 1,480 568 7.01
Max 8,530 2,020 830 8.41

each clause database is assumed to include the unit literals. Let ClauseDB0
n

denote the empty clause database, and denote by ClauseDB i+1
n the clause

database after one round of learning from n SAT instances obtained from
ClauseDB i

n. The experiment studies the behavior of the job subsequent to
ClauseDB i

n with fixed n = 16 as the number of rounds i increases. A re-
source limit is imposed on the subsequent jobs so that their run time is at
most 25% of the experimental minimum run time of the original instance.
The process terminates when the instance is solved within this time. Other
parameters are as in the previous experiment.

Reported here are the results for the same problems as in the previous
case, with the exception that contest is replaced by total since contest

is easily solved in a job subsequent to ClauseDB1
16. The results are shown

in Fig. 6.5 and Table 6.4. We may compare the results illustrated for manol
in Fig. 6.5 against those in Fig. 6.4 bearing in mind that each round corre-
sponds to 16 jobs. When clauses are cumulated, the run times decrease at a
consistent pace, as opposed to the slowdown illustrated in Fig. 6.4. Similar
results are reported for several other instances in Table 6.4. For example,
CL-SDSAT is able to overcome the increase in the run time of the derived
instances of hwb relatively soon when the number of rounds increases.

The results support the hypothesis that hard instances with practical rele-
vance can be made solvable within typical resource limits for individual jobs
in realistic distributed environments considered in this work.

6.5 GRID IMPLEMENTATION

The ideas developed in this work have been implemented in a prototype of
the proposed CL-SDSAT framework. The prototype uses NorduGrid (http:
//www.nordugrid.org/), a production level grid, as the distributed envi-

64 6. TECHNIQUES FOR PARALLEL LEARNING

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 100 1000 10000 100000

q(
tim

e)

time (s)

0

1

2

3

Figure 6.5: Run time distributions for jobs which are subsequent to
ClauseDB0

16,ClauseDB1
16,ClauseDB2

16 and ClauseDB3
16 for manol and

Chooselen

ronment, and MiniSAT version 1.14 (with modifiable pseudo-random num-
ber generator seed) as the randomized SAT solver. The job management in
the grid is handled by GridJM [51], and each job has a resource limit re-
stricting the use of CPU time to one hour and the use of memory to one
gigabyte. The implementation uses the heuristic Chooselen preferring the
shortest clauses for parallel learning; other heuristics discussed in Sect. 6.4
were not implemented in the prototype. Furthermore, the requirements
needed for guaranteeing completeness are ignored by simply using a fixed
clause database size of 1,000,000 literals. Similarly, unsuccessful jobs do not
return all their learned clauses but only the shortest ones that together have
at most 100,000 literals.

As the benchmark problems a set of hard SAT instances is selected such
that there was little or no a priori information about the run time distribu-
tion. Such problems are available from the SAT 2007 solver competition
(http://www.satcompetition.org/), where some of the instances were
not solved by any of the competing solvers within the time bounds (10,000
seconds for the industrial and 5,000 seconds for the crafted category). Ta-
ble 6.5 presents the results of running the CL-SDSAT prototype on a subset
of these unsolved problems as well as on some other problems which were
not solved by MiniSAT in the competition. Each instance was run for three
days allowing the use of 64 CEs simultaneously. Column MiniSAT also re-
ports the run times of the sequential MiniSAT v1.14 with no time limit but
the memory usage restricted to two gigabytes. The runs were performed us-
ing an Intel Xeon 5130 2GHz CPU. It should be noted that the exact run
times reported in the column Grid in the table are dependent on factors
such as the background load of the grid environment and therefore difficult
to reproduce.

Two phenomena can be observed from the results. Firstly, some problems,

6. TECHNIQUES FOR PARALLEL LEARNING 65

such as vmpc_33, are solved in less than one hour with the CL-SDSAT pro-
totype and are, thus, clearly also solvable with the basic SDSAT method (see
Chapt. 5) with no need for the learning-enhanced techniques of CL-SDSAT.
Secondly, and more importantly, the prototype solves, with one hour time
limit for each job, several problems which were not solved by any solver in
SAT 2007 competition in 10,000 seconds. This suggests that the proposed
CL-SDSAT framework also works for very hard problems and causes the run
time distribution to “shift leftwards” (recalling Fig. 6.5 and the results from
Table 6.4) as more learned clauses are seen. The other, much more unlikely
explanation for this is that the problems have a very small but non-zero prob-
ability to be solved in less than one hour and, thus, would have been solved
with the basic SDSAT method by using hundreds of parallel solvers.

Some of the instances were not solved in the grid within three days. The
two instances the implementation was not able to solve suffered from the
slow rate of change in the clause database. This in part was a result of the
eventual high number of binary clauses in the clause database together with
the property of the heuristic Chooselen that it cannot differentiate clauses of
the same length. When the clause database does not change, the subsequent
jobs are similar to each other and the progress of the search is slow. This
is of course a consequence of ignoring the completeness argument by not
increasing the size of the clause database as the search progresses. Imple-
menting this feature is an interesting direction of future work. We also note
that it is often possible to simplify binary clauses with sophisticated tech-
niques [8, 39]. However, experiments are required to determine whether
such approaches are useful in this setting.

66 6. TECHNIQUES FOR PARALLEL LEARNING

Ta
bl

e
6.

5:
W

al
lc

lo
ck

tim
es

fo
rs

om
e

di
ffi

cu
lt

in
st

an
ce

sf
ro

m
SA

T
20

07
co

m
pe

tit
io

n
so

lv
ed

in
gr

id
an

d
w

ith
st

an
da

rd
M

in
iS

AT
v1

.1
4.

M
em

or
y

ou
ts

ar
e

de
no

te
d

by
‘*

’,
tim

e
ou

ts
by

‘—
’

So
lv

ed
by

so
m

e
so

lv
er

in
SA

T
20

07
,n

ot
by

M
in

iS
AT

N
am

e
Ty

pe
G

rid
(s

)
M

in
iS

AT
(s

)

e
z
f
a
c
t
6
4
_
5
.
s
a
t
0
5
-
4
5
2
.
r
e
s
h
u
f
f
l
e
d
-
0
7

SA
T

4,
82

6
65

,7
39

v
m
p
c
_
3
3

SA
T

66
9

18
4,

92
8

s
a
f
e
-
5
0
-
h
5
0
-
s
a
t

SA
T

12
,0

70
*

c
o
n
n
m
-
u
e
-
c
s
p
-
s
a
t
-
n
8
0
0
-
d
-
0
.
0
2
-
s
1
5
4
2
4
5
4
1
4
4
-

.
s
a
t
0
5
-
5
3
3
.
r
e
s
h
u
f
f
l
e
d
-
0
7

SA
T

5,
97

4
11

9,
72

4

N
ot

so
lv

ed
by

an
y

so
lv

er
in

SA
T

20
07

N
am

e
Ty

pe
G

rid
(s

)
M

in
iS

AT
(s

)

A
P
r
o
V
E
0
7
-
0
1

U
N

SA
T

13
,7

80
39

,6
27

A
P
r
o
V
E
0
7
-
2
5

U
N

SA
T

94
,9

74
30

6,
63

4
Q
G
7
a
-
g
e
n
s
y
s
-
u
k
n
0
0
2
.
s
a
t
0
5
-

-
3
8
4
2
.
r
e
s
h
u
f
f
l
e
d
-
0
7

U
N

SA
T

8,
26

0
12

7,
80

1

v
m
p
c
_
3
4

SA
T

3,
92

5
90

,8
27

s
a
f
e
-
5
0
-
h
4
9
-
u
n
s
a
t

—
*

p
a
r
t
i
a
l
-
1
0
-
1
3
-
s
.
c
n
f

SA
T

7,
96

0
*

s
o
r
t
n
e
t
-
8
-
i
p
c
5
-
h
1
9
-
s
a
t

—
*

d
a
t
e
d
-
1
0
-
1
7
-
u

U
N

SA
T

11
,7

47
10

5,
82

1
e
q
.
a
t
r
e
e
.
b
r
a
u
n
.
1
2
.
u
n
s
a
t

U
N

SA
T

9,
07

2
59

,2
29

6. TECHNIQUES FOR PARALLEL LEARNING 67

6.6 REMARKS

This section has described a new approach to solving hard satisfiability prob-
lems in a distributed computing environment similar in properties to a typical
grid. The approach can tolerate the severe restrictions imposed on the jobs
executed in such an environment, e.g., it requires no inter-node communi-
cation and is inherently fault-tolerant. These restrictions correspond to the
simulation environment described in Chapt. 4. The approach is based on
combining (i) a natural method for solving SAT in parallel by independent
randomized SAT solvers already considered in Chapt. 5, and (ii) the pow-
erful conflict driven clause learning technique employed in many modern,
sequential, CDCL SAT solvers described in Chapt. 2. This combination
results in a novel parallel and cumulative clause learning approach which
extends the capabilities of the previously discussed SDSAT framework. We
have compared different heuristics for selecting learned clauses that are dy-
namically stored during the process, and demonstrated that the approach
enables a form of clause learning that is not directly available in the underly-
ing sequential clause learning SAT solver. Preliminary experimental results
carried out in a production level grid indicate that the approach can indeed
solve very hard SAT problems, including several that were not solved in the
SAT 2007 competition by any solver, and one that we could not solve se-
quentially even without time limitations. This suggests that the developed
algorithm is also useful in practical environments.

68 6. TECHNIQUES FOR PARALLEL LEARNING

7 CONCLUSIONS

This work considers logic programming and constraint-based search, which
both have a long history in computer science and are actively studied in re-
search communities as well as in the industry. The consideration in this work
is in context of solving SAT instances and assuming a simultaneous access to
a large quantity of computing resources. Specifically, the work concentrates
on how distributed computing resources can be used to efficiently solve SAT
instances in parallel, even though such resources unavoidably suffer from de-
lays and even failures in completing the jobs assigned to them. In the work,
it is generally assumed that the distributed resources are part of a computa-
tional grid environment and that the studied distributed solving techniques
should be directly applicable in existing computational grids. Faithful to this
assumption, the results are experimentally verified in a computational grid,
the NorduGrid (http://www.nordugrid.org/).

The results support strongly the conclusion that many problems which are
challenging for sequential SAT solvers can be solved in less time using a grid
environment. This holds even though the execution in the environment is
strongly restricted and the delays in communication are high. Furthermore,
the results show that also instances which are not practically solvable using
sequential SAT solvers can be solved using basically the same solvers and
combining the results in a simple yet powerful way.

7.1 DISTRIBUTED SAT SOLVING

This work identifies two aspects of SAT solving based on the taxonomy de-
scribed in [17]: distributed search and multi-search, the former consisting of
identifying and solving distinct partitions of the search space of a problem
instance and the latter being based on running independent solvers on the
same input instance with possibly some form of communication between the
solvers and potential overlapping in the search spaces.

It is well-known that SAT instances are non-trivial to partition for efficient
distributed search. Often the run time of the resulting partitions are highly
imbalanced [103] resulting in reduced parallelism [15, 62]. On the other
hand, multi-search, even with no communication, performs well on many
SAT instances since SAT solver run times are inherently random and the
randomness can be efficiently used in reducing the run time [74, 41].

There is some experimental evidence (for example, see [53]) that dis-
tributed search in context of SAT might have detrimental effect on the ex-
pected solving time of an instance since (i) an inefficient partitioning of the
search space might result in instances which are essentially the same as the
original instance and (ii) most distributed search methods expect that all par-
titions must be solved.

The results reported in this work show that the simple algorithmic frame-
work, SDSAT, which is based on multi-search with no communication, pro-
vides surprisingly good speed-up in a grid environment. They also show that
SDSAT can only be used to obtain significant speed-up for instances with run

7. CONCLUSIONS 69

times that can be described by a certain type of distribution. Unfortunately,
there are several, both satisfiable and unsatisfiable, difficult SAT instances
which do not satisfy this condition and therefore SDSAT does not provide
us with substantial speed-up when applied to these instances. The experi-
ments allow us to conclude that while the run times of some instances vary
significantly, there is in practice a minimum, non-negligible time required
to solve many of the instances using the SDSAT framework. The grid en-
vironment discussed in this work places an upper bound on the computing
resources a grid job can consume and therefore it seems there are instances
which cannot be solved with any implementation of the SDSAT framework.

This limitation can be overcome with a simple yet powerful specialization
of the SDSAT framework, called CL-SDSAT. The CL-SDSAT framework
uses the property of some modern SAT solvers that as a side-effect of the solv-
ing, the solver produces learned clauses even though the solver is not able
to find a solution to the instance. Such learned clauses can be combined
and used to guide the searches of the subsequent SAT solvers. However, the
task of combining the learned clauses is not straightforward and it is possible
— in fact, quite common — that an instance containing learned clauses has
a higher expected run time than the instance without the learned clauses.
The effect is counter-balanced by the construction of more powerful learned
clauses based on the previously obtained learned clauses. Gradually the in-
stance is transformed using the learned clauses, so that solving within a given
resource limit is possible.

The work reports the solving of instances not previously solved by any SAT
solver, using an implementation of the CL-SDSAT framework. The results
also show there are instances that cannot be solved with this implementation,
and as the immediate reason for the failure suggest that the amount of learned
clause information is limited in a very straightforward manner. The limit
exists in order to avoid an excessive overhead which otherwise would result
from the use of propagation. In many cases already this limit plays against the
goal of reducing the time required to solve an instance. Hence, increasing
the limit might not help to reduce the solving time, even though it seems
to always decrease, for example, the amount of branching rule applications
required to solve the instance. The work does not experimentally address
this issue in the CL-SDSAT framework, but it is recognized as an interesting
direction for future work.

7.2 FUTURE WORK

Excluding the anomalous super-linearity often observed in SAT solving, the
maximum theoretical speed-up that can be obtained by parallelization is lin-
ear. This results from the fact that any parallel algorithm can be sequential-
ized with a linear overhead. Nevertheless, there are examples of instances
which cannot be solved using a sequential solver but can be solved relatively
fast using the CL-SDSAT framework and the same sequential solver. In the
examples, the limiting factor seems to have been memory usage of the se-
quential solvers, and therefore it is doubtful if the approach could be sequen-
tialized with only a linear overhead. The sequential version would involve

70 7. CONCLUSIONS

transferring large amounts of learned clauses from memory to a medium with
much higher latencies, e.g., a hard disk.

An explanation for the success of the CL-SDSAT framework in solving
hard SAT problems is that — unlike sequential solvers — the memory used
by the parallel solver is allowed to be distributed. Then the critical property
of CL-SDSAT is its ability to compress the search it has performed into the
information that is transmitted from the worker processes to the master pro-
cess. The analysis on different approaches to filtering this information reveal
that the length of the clauses is not the best possible criterion. The results
presented in this work leave open certain questions, such as:

• Is it possible to efficiently implement filtering the learned clauses based
on the frequencies they occur in a search.

• Could the simplification performed in the master process be efficiently
implemented so that it would not be limited to using only unit clauses.

• In [16] the authors report good results on clustering related first-order
lemmas based on some dependency. The search concentrates so that
each distributed solver specializes on different subproblems, helping to
improve the overall performance. Would such methods, when applied
to learned clauses, be useful in the CL-SDSAT framework as well.

• Assuming that the amount of learned clause information is limited, it
is evident that at some point the simplification will not be able to help
progress the search by providing more space to the clause database,
e.g., by using unit clauses. Would it be efficient to perform distributed
search, by constructing new branches of the search, based on the infor-
mation in the clause database. This approach could be seen as resort-
ing to distributed search after multi-search has reached its limits.

• Could the methods described in this work be used to develop more
efficient sequential algorithms?

• Would a more formal treatment of these presented methods result in
more insight in how the efficient distributed solving should be per-
formed?

The emphasis in this work is in multi-search. However, there are many
open questions in distributed search as well; for example the relationship
between guiding paths and scattering, shortly described in Chapt. 3, needs to
be addressed with more mathematical rigor.

The grid environment and the corresponding simulation, which is de-
scribed in Chapt. 4, is still relatively simplistic. Issues related to scheduling of
jobs in the grid are considered out of the scope of this work. However, there
are still some issues related to the interface of the grid that should be further
studied, and which could possibly help in efficiently implementing some of
the ideas discussed in this section. For example, the information obtained by
a SAT solver in a computing node usually consumes large amounts of mem-
ory and is therefore impractical to transfer to the master or even to store in
the master. Therefore it might be useful for the master to query this informa-
tion in order to obtain the most relevant information in the limited space that

7. CONCLUSIONS 71

can be efficiently transmitted. Some grid environments do allow this type of
interaction, but in the lack of experimental evaluation it is difficult to argue
whether such features would be useful in grid-based SAT solving.

72 7. CONCLUSIONS

ACKNOWLEDGMENTS

This report is a reprint of my Licentiate’s Thesis. During the writing of this
work as well as while carrying out the research presented in it I have had the
privilege of receiving the overwhelming amounts of support, guidance, time,
and advice from my supervisor, Professor Ilkka Niemelä, and my instructor,
Doctor Tommi Junttila. I am grateful to Docent Tomi Janhunen for his valu-
able feedback to this work and insights to the research area, and would like
to use this opportunity to express my hopes that these fruitful discussions will
continue.

I thank my other co-authors Mikko Pitkänen, Xin Zhou, and Dr. Henning
Müller. I have also enjoyed both professional support and warm friendship
of Olli Tourunen, Michael Gindonis, and Dr. Ivan Degtyarenko from CSC,
and numerous people, including Dr. Alexandr Konstantinov, Dr. Balázs
Kónya and Dr. Oxana Smirnova, from NorduGrid. The research has been
carried out in TKK Department of Computer Science and Engineering (De-
partment of Information and Computer Science as of 2008), and I thank my
colleagues here for creating the atmosphere where I so much enjoy working.

The work has been funded by TKK Department of Computer Science
and Engineering, Helsinki Graduate School in Computer Science and En-
gineering, and Academy of Finland projects number 122399 and 211025.
I have also received financial support from Jenny ja Antti Wihurin rahasto,
Emil Aaltosen säätiö, CICM’08 Doctoral Programme, and the NorduGrid
collaboration.

In addition to the valued professional contacts, I also want to thank Salla
Hakkola, Heikki Hiltunen, Fredrik Löf and Kristian A. J. Meurman. Thank
you for not letting me forget there are other worlds as well. I am grateful to
everyone in my big family for their support. I am fortunate to have the best
friends I could possibly imagine. And I thank my fiancée Hissu Mikkonen
for everything she has given me while this work has progressed.

7. CONCLUSIONS 73

BIBLIOGRAPHY

[1] Proceedings of the 15th ACM/IEEE SC2003 Conference on High
Performance Networking and Computing. Phoenix, AZ, November
15-21, 2003 (2003), IEEE Press. CD-ROM.

[2] 6th International Conference on Theory and Applications of Satisfi-
ability Testing, SAT 2003. Santa Margherita Ligure, Italy, May 5-8,
2003, Selected Revised Papers (2004), vol. 2919 of Lecture Notes in
Computer Science, Springer-Verlag.

[3] Proceedings of the 9th International Conference on Theory and Appli-
cations of Satisfiability Testing, SAT 2006. Seattle, WA, USA, August
12-15, 2006 (2006), vol. 4121 of Lecture Notes in Computer Science,
Springer-Verlag.

[4] Proceedings of the 20th International Joint Conference on Artificial
Intelligence, IJCAI 07. Hyberabad, India, January 6-12, 2007 (2007).
Online proceedings at http://www.ijcai.org/proceedings07.

php.

[5] Proceedings of the 22nd Conference on Artificial Intelligence, AAAI
2007. Vancouver, Canada, July 22-26, 2007 (2007), AAAI Press.

[6] ADJIMAN, P., CHATALIC, P., GOASDOUÉ, F., ROUSSET, M.-C.,
AND SIMON, L. Distributed reasoning in a peer-to-peer setting: Appli-
cation to the semantic web. Journal of Artificial Intelligence Research
25 (2006), 269–314.

[7] ALI, K. A. M., AND KARLSSON, R. Full Prolog and scheduling or-
parallelism in Muse. International Journal of Parallel Programming
19, 6 (1990), 445–475.

[8] BACCHUS, F., AND WINTER, J. Effective preprocessing with hyper-
resolution and equality reduction. In 6th International Conference
on Theory and Applications of Satisfiability Testing, SAT 2003. Santa
Margherita Ligure, Italy, May 5-8, 2003, Selected Revised Papers [2],
pp. 341–355.

[9] BAL, H., AND VERSTOEP, K. Large-scale parallel computing on
grids. Electronic Notes in Theoretical Computer Science 220 (2008),
3–17.

[10] BALDUCCINI, M., PONTELLI, E., ELKHATIB, O., AND LE, H. Is-
sues in parallel execution of non-monotonic reasoning systems. Paral-
lel Computing 31, 6 (2005), 608–647.

[11] BEAME, P., KAUTZ, H. A., AND SABHARWAL, A. Towards under-
standing and harnessing the potential of clause learning. Journal of
Artificial Intelligence Research 22 (2004), 319–351.

74 BIBLIOGRAPHY

[12] BEN-ELIYAHU, R., AND DECHTER, R. Propositional semantics for
disjunctive logic programs. Annals of Mathematics and Artificial In-
telligence 12, 1-2 (1994), 53–87.

[13] BIERE, A., AND KUNZ, W. SAT and ATPG: Boolean engines for
formal hardware verification. In Proceedings of the 20th IEEE/ACM
International Conference on Computer Aided Design. San Jose, CA,
November 10-14, 2002 (2002), Association for Computing Machin-
ery, pp. 782–785.

[14] BLOCHINGER, W., SINZ, C., AND KÜCHLIN, W. Parallel proposi-
tional satisfiability checking with distributed dynamic learning. Paral-
lel Computing 29, 7 (2003), 969–994.

[15] BÖHM, M., AND SPECKENMEYER, E. A fast parallel SAT-solver:
Efficient workload balancing. Annals of Mathematics and Artificial
Intelligence 17, 4-3 (1996), 381–400.

[16] BONACINA, M. P. Experiments with subdivision of search in dis-
tributed theorem proving. In Proceedings of the 2nd International
Symposium on Parallel Symbolic Computation. Maui, Hawaii, July
20 - 22, 1997 (1997), Association for Computing Machinery, pp. 88–
100.

[17] BONACINA, M. P. A taxonomy of parallel strategies for deduction.
Annals of Mathematics and Artificial Intelligence 29, 1-4 (2000), 223–
257.

[18] BORDEAXU, L., HAMADI, Y., AND ZHANG, L. Propositional sat-
isfiability and constraint programming: A comparative survey. ACM
Computing Surveys 38, 4 (2006), 12–12.

[19] BOZZANO, M., BRUTTOMESSO, R., CIMATTI, A., JUNTTILA,
T. A., VAN ROSSUM, P., SCHULZ, S., AND SEBASTIANI, R. Math-
SAT: Tight integration of SAT and mathematical decision procedures.
Journal of Automated Reasoning 35, 1-3 (2005), 265–293.

[20] BRYANT, R. Graph-based algorithms for Boolean function manipula-
tion. IEEE Transactions on Computers 35, 8 (1986), 677–691.

[21] CHRABAKH, W., AND WOLSKI, R. GridSAT: A chaff-based dis-
tributed SAT solver for the grid. In Proceedings of the 15th
ACM/IEEE SC2003 Conference on High Performance Networking
and Computing. Phoenix, AZ, November 15-21, 2003 [1], pp. 37–37.
CD-ROM.

[22] COOK, S. The complexity of theorem-proving procedures. In Pro-
ceedings of the Third Annual ACM Symposium on Theory of Com-
puting (1971), Association for Computing Machinery, pp. 151–158.

[23] DARWICHE, A. Decomposable negation normal form. Journal of the
ACM 48, 4 (2001), 608–647.

BIBLIOGRAPHY 75

[24] DAVIS, M., LOGEMANN, G., AND LOVELAND, D. A machine pro-
gram for theorem proving. Communications of the ACM 5, 7 (1962),
394–397.

[25] DAVIS, M., AND PUTNAM, H. A computing procedure for quantifi-
cation theory. Journal of the ACM 7, 3 (1960), 201–215.

[26] DIMOPOULOS, Y., NEBEL, B., AND KOEHLER, J. Encoding plan-
ning problems in nonmonotonic logic programs. In Recent Advances
in AI Planning, Proceedings of the 4th European Conference on Plan-
ning, ECP’97. Toulouse, France, September 24 - 26, 1997 (1997),
vol. 1348 of Lecture Notes in Artificial Intelligence, Springer-Verlag,
pp. 169–181.

[27] DRESCHER, C., GEBSER, M., GROTE, T., KAUFMANN, B.,
KÖNIG, A., OSTROWSKI, M., AND SCHAUB, T. Conflict-driven dis-
junctive answer set solving. In Proceedings of the 11th International
Conference on Principles of Knowledge Representation and Reason-
ing, KR 2008. Sydney, Australia, September 16-19, 2008 (2008), AAAI
Press, pp. 422–432.

[28] EÉN, N., AND SÖRENSSON, N. An extensible SAT-solver. In 6th
International Conference on Theory and Applications of Satisfiability
Testing, SAT 2003. Santa Margherita Ligure, Italy, May 5-8, 2003,
Selected Revised Papers [2], pp. 502–518.

[29] ELMROTH, E., AND TORDSSON, J. An interoperable, standards-
based grid resource broker and job submission service. In Proceed-
ings of the 1st IEEE Conference on e-Science and Grid Comput-
ing. December 5 - 8, 2005, Melbourne, Australia (2005), IEEE Press,
pp. 212–220.

[30] ERDEM, E., AND TÜRE, F. Efficient haplotype inference with an-
swer set programming. In Proceedings of the 23rd Conference on
Artificial Intelligence, AAAI 2008. Chicago, Illinois, July 13-17, 2008
(2008), AAAI Press, pp. 436–441.

[31] FELDMAN, Y., DERSHOWITZ, N., AND HANNA, Z. Parallel multi-
threaded satisfiability solver: Design and implementation. Electronic
Notes in Theoretical Computer Science 128, 3 (2005), 75–90.

[32] FINKEL, R. A., AND MANBER, U. DIB - a distributed implementa-
tion of backtracking. ACM Transactions on Programming Languages
and Systems 9, 2 (1987), 235–256.

[33] FINKEL, R. A., MAREK, V. W., MOORE, N., AND TRUSZCZYNSKI,
M. Computing stable models in parallel. Tech. Rep. SS-01-01, AAAI,
2001.

[34] FORMAN, S., AND SEGRE, A. NAGSAT: A randomized, complete,
parallel solver for 3-SAT. In 5th International Symposium on the The-
ory and Applications of Satisfiability Testing, SAT 2002. Cincinnati,

76 BIBLIOGRAPHY

Ohio, May 6-9, 2002 (2002). Online proceedings at http://gauss.
ececs.uc.edu/Conferences/SAT2002/sat2002list.html.

[35] GAGLIOLO, M., AND SCMIDHUBER, J. Learning restart strategies.
In Proceedings of the 20th International Joint Conference on Arti-
ficial Intelligence, IJCAI 07. Hyberabad, India, January 6-12, 2007
[4], pp. 792–797. Online proceedings at http://www.ijcai.org/
proceedings07.php.

[36] GANAI, M. K., GUPTA, A., YANG, Z., AND ASHAR, P. Efficient dis-
tributed SAT and SAT-based distributed bounded model checking. In
Correct Hardware Design and Verification Methods. Proceedings of
the 12th Advanced Research Working Conference on Correct Hard-
ware Design and Verification Methods. L’Aquila, Italy, October 21 -
24, 2003 (2003), vol. 2860 of Lecture Notes in Computer Science,
Springer-Verlag, pp. 334–347.

[37] GANZINGER, H., HAGEN, G., NIEUWENHUIS, R., OLIVERAS, A.,
AND TINELLI, C. DPLL(T): Fast decision procedures. In Proceed-
ings of the 16th International Conference on Computer Aided Verifi-
cation, CAV 2004. Boston, MA, July 13-17, 2004 (2004), vol. 3114 of
Lecture Notes in Computer Science, Springer-Verlag, pp. 175–188.

[38] GELFOND, M., AND LIFSCHITZ, V. The stable model semantics
for logic programming. In Proceedings of the 5th International Con-
ference and Symposium on Logic Programming, ICLP 88. Seattle,
Washington, August 15-19, 1988 (1988), MIT Press, pp. 1070–1080.

[39] GERSHMAN, R., AND STRICHMAN, O. Cost-effective hyper-
resolution for preprocessing CNF formulas. In Proceedings of the
8th International Conference on Theory and Applications of Satisfi-
ability Testing, SAT 2005. St. Andrews, Scotland, June 19-23, 2005
(2005), vol. 3569 of Lecture Notes in Computer Science, Springer-
Verlag, pp. 423–429.

[40] GOMES, C. P., FERNÁNDEZ, C., SELMAN, B., AND BESSIÈRE,
C. Statistical regimes across constrainedness regions. Constraints 10
(2005), 317–337.

[41] GOMES, C. P., AND SELMAN, B. Algorithm portfolios. Artificial
Intelligence 126, 1-2 (2001), 43–62.

[42] GOMES, C. P., SELMAN, B., CRATO, N., AND KAUTZ, H. A.
Heavy-tailed phenomena in satisfiability and constraint satisfaction
problems. Journal of Automated Reasoning 24, 1/2 (2000), 67–100.

[43] GOMES, C. P., SELMAN, B., AND KAUTZ, H. A. Boosting com-
binatorial search through randomization. In Proceedings of the 15th
National Conference on Artificial Intelligence, AAAI 1998. Madison,
Wisconsin, July 26-30, 1998 (1998), AAAI Press, pp. 431–437.

BIBLIOGRAPHY 77

[44] GRESSMANN, J., JANHUNEN, T., MERCER, R. E., SCHAUB, T.,
THIELE, S., AND TICHY, R. Platypus: A platform for distributed
answer set solving. In Proceedings of the 8th International Confer-
ence on Logic Programming and Nonmonotonic Reasoning, LPNMR
2005. Diamante, Italy, September 5-8 (2005), vol. 3662 of Lecture
Notes in Computer Science, Springer-Verlag, pp. 227–239.

[45] HELJANKO, K. Using logic programs with stable model semantics to
solve deadlock and reachability problems for 1-safe Petri nets. Funda-
menta Informaticae 37, 3 (1999), 247–268.

[46] HERBSTRITT, M., AND BECKER, B. Conflict-based selection of
branching rules. In 6th International Conference on Theory and Ap-
plications of Satisfiability Testing, SAT 2003. Santa Margherita Lig-
ure, Italy, May 5-8, 2003, Selected Revised Papers [2], pp. 441–451.

[47] HEULE, M. J. H., AND VAN MAAREN, H. March_dl: Adding adap-
tive heuristics and a new branching strategy. Journal on Satisfiability,
Boolean Modeling and Computation 2 (2006), 47–59.

[48] HOOKER, J. N., AND VINAY, V. Branching rules for satisfiability.
Journal of Automated Reasoning 15, 3 (1995), 359–383.

[49] HUANG, J. The effect of restarts on the efficiency of clause learn-
ing. In Proceedings of the 20th International Joint Conference on
Artificial Intelligence, IJCAI 07. Hyberabad, India, January 6-12, 2007
[4], pp. 2318–2323. Online proceedings at http://www.ijcai.org/
proceedings07.php.

[50] HUANG, J. Universal Booleanization of constraint models. In Pro-
ceedings of the 14th International Conference on Principles and Prac-
tice of Constraint Programming, CP08. Sydney, Australia, September
14-18, 2008 (2008), vol. 5202 of Lecture Notes in Computer Science,
Springer-Verlag, pp. 144–158.

[51] HYVÄRINEN, A. E. J. GridJM. A Computer Program. http://www.
tcs.hut.fi/~aehyvari/gridjm/.

[52] HYVÄRINEN, A. E. J. SATU: A system for distributed propositional
satisfiability checking in computational grids. Research Report A100,
TKK, Laboratory for Theoretical Computer Science, Espoo, Finland,
February 2006.

[53] HYVÄRINEN, A. E. J., JUNTTILA, T., AND NIEMELÄ, I. A distri-
bution method for solving SAT in grids. In Proceedings of the 9th
International Conference on Theory and Applications of Satisfiabil-
ity Testing, SAT 2006. Seattle, WA, USA, August 12-15, 2006 [3],
pp. 430–435.

[54] HYVÄRINEN, A. E. J., JUNTTILA, T., AND NIEMELÄ, I. Incorpo-
rating learning in grid-based randomized SAT solving. In Proceed-
ings of the 13th International Conference on Artificial Intelligence:

78 BIBLIOGRAPHY

Methodology, Systems, Applications, AIMSA 2008. Varna, Bulgaria,
September 4-6, 2008 (2008), vol. 5253 of Lecture Notes in Artificial
Intelligence, Springer-Verlag, pp. 247–261.

[55] HYVÄRINEN, A. E. J., JUNTTILA, T., AND NIEMELÄ, I. Strategies
for solving SAT in Grids by randomized search. In Proceedings of the
9th International Conference on Artificial Intelligence and Symbolic
Computation, AISC 2008. Birmingham, UK, July 31 - August 1 2008
(2008), vol. 5144 of Lecture Notes in Artificial Intelligence, Springer-
Verlag, pp. 125–140.

[56] HYVÄRINEN, A. E. J., JUNTTILA, T., AND NIEMELÄ, I. Incorpo-
rating clause learning in grid-based randomized SAT solving. Journal
on Satisfiability, Boolean Modeling and Computation (January 2009).
Submitted.

[57] INOUE, K., SOH, T., UEDA, S., SASAURA, Y., BANBARA, M., AND
TAMURA, N. A competitive and cooperative approach to proposi-
tional satisfiability. Discrete Applied Mathematics 154, 16 (2006),
2291–2306.

[58] IRGENS, M., AND HAVENS, W. S. On selection strategies for the
DPLL algorithm. In Proceedings of the 17th Conference of the Cana-
dian Society for Computational Studies of Intelligence, Canadian AI
2004. London, Ontario, Canada, May 17-19, 2004 (2004), vol. 3060
of Lecture Notes in Artificial Intelligence, Springer-Verlag, pp. 277–
291.

[59] JANHUNEN, T. Some (in)translatability results for normal logic pro-
grams and propositional theories. Journal of Applied Non-Classical
Logics 16, 1-2 (2006), 35–86.

[60] JENSEN, H. T., KLEIST, J., AND LETH, J. R. A framework for job
management in the NorduGrid ARC middleware. In European Grid
Conference. Amsterdam, The Netherlands, February 14-16, 2005, Re-
vised Selected Papers (2005), vol. 3470 of Lecture Notes in Computer
Science, Springer-Verlag, pp. 861–871.

[61] JEROSLOW, R. G., AND WANG, J. Solving propositional satisfiability
problems. Annals of Mathematics and Artificial Intelligence 1 (1990),
167–187.

[62] JURKOWIAK, B., LI, C., AND UTARD, G. A parallelization scheme
based on work stealing for a class of SAT solvers. Journal of Automated
Reasoning 34, 1 (2005), 73–101.

[63] KAUTZ, H., AND SELMAN, B. Planning as satisfiability. In Pro-
ceedings of the 10th European Conference on Artificial Intelligence,
ECAI 92. Vienna, Austria, August 3-7, 1992 (1992), John Wiley and
Sons, pp. 359–363.

BIBLIOGRAPHY 79

[64] KAUTZ, H. A., HORVITZ, E., RUAN, Y., GOMES, C. P., AND SEL-
MAN, B. Dynamic restart policies. In Proceedings of the 18th Na-
tional Conference on Artificial Intelligence, AAAI 2002. Edmonton,
Canada, July 28-August 1, 2002 (2002), AAAI Press, pp. 674–681.

[65] KRAUTER, K., BUYYA, R., AND MAHESWARAN, M. A taxonomy
and survey of grid resource management systems for distributed com-
puting. Software - Practice and Experience 32, 2 (2002), 135–164.

[66] LAGOUDAKIS, M. G., AND LITTMAN, M. L. Learning to select
branching rules in the DPLL procedure for satisfiability. Electronic
Notes in Discrete Mathematics 9 (2001), 344–359.

[67] LARRABEE, T. Test pattern generation using Boolean satisfiability.
IEEE Transactions on Computer-Aided Design 11, 1 (1992), 6–22.

[68] LE, H. V., AND PONTELLI, E. Dynamic scheduling in parallel an-
swer set programming solvers. In Proceedings of the 2007 Spring Sim-
ulation Multiconference, SpringSim 2007, Norfolk, Virginia, USA,
March 25-29, 2007, Volume 2 (2007), Association for Computing Ma-
chinery, pp. 367–374.

[69] LEONE, N., PFEIFER, G., FABER, W., EITER, T., GOTTLOB, G.,
PERRI, S., AND SCARCELLO, F. The DLV system for knowledge
representation and reasoning. ACM Transactions on Computational
Logic 7, 3 (2006), 499–562.

[70] LEWIS, M. D. T., SCHUBERT, T., AND BECKER, B. Multithreaded
SAT solving. In Proceedings of the 12th Conference on Asia South Pa-
cific Design Automation, ASP-DAC 2007. Yokohama, Japan, January
23-26, 2007 (2007), IEEE Press, pp. 926–931.

[71] LI, C. M., AND ANBULAGAN. Heuristics based on unit propagation
for satisfiability problems. In Proceedings of the 15th International
Joint Conference on Artificial Intelligence, IJCAI 97. Nagoya, Japan,
August 23-29, 1997, Volume 1 (1997), Morgan Kaufmann, pp. 366–
371.

[72] LIN, F., AND ZHAO, Y. ASSAT: computing answer sets of a logic
program by sat solvers. Artificial Intelligence 157, 1-2 (2004), 115–
137.

[73] LUBY, M., AND ERTEL, W. Optimal parallelization of Las Vegas al-
gorithms. In Proceedings of the 11th Annual Symposium on Theoreti-
cal Aspects of Computer Science, STACS 94. Caen, France, February
24 - 26, 1994 (1994), vol. 775 of Lecture Notes in Computer Science,
Springer-Verlag, pp. 463–474.

[74] LUBY, M., SINCLAIR, A., AND ZUCKERMAN, D. Optimal speedup
of Las Vegas algorithms. Information Processing Letters 47, 4 (1993),
173–180.

80 BIBLIOGRAPHY

[75] MANCINI, T., MICALETTO, D., PATRIZI, F., AND CADOLI, M.
Evaluating ASP and commercial solvers on the CSPLib. Constraints
13, 4 (2008), 407–436.

[76] MANOLIOS, P., AND ZHANG, Y. Implementing survey propagation
on graphics processing units. In Proceedings of the 9th International
Conference on Theory and Applications of Satisfiability Testing, SAT
2006. Seattle, WA, USA, August 12-15, 2006 [3], pp. 311–324.

[77] MARQUES-SILVA, J. Model checking with Boolean satisfiability. Jour-
nal of Algorithms 63, 1-3 (2008), 3–16.

[78] MARQUES-SILVA, J. P., AND SAKALLAH, K. A. GRASP: A search
algorithm for propositional satisfiability. IEEE Transactions on Com-
puters 48, 5 (1999), 506–521.

[79] MIRONOV, I., AND ZHANG, L. Applications of SAT solvers to crypt-
analysis of hash functions. In Proceedings of the 9th International
Conference on Theory and Applications of Satisfiability Testing, SAT
2006. Seattle, WA, USA, August 12-15, 2006 [3], pp. 102–115.

[80] MOSKEWICZ, M. W., MADIGAN, C. F., ZHAO, Y., ZHANG, L.,
AND MALIK, S. Chaff: Engineering an efficient SAT solver. In Pro-
ceedings of the 38th Design Automation Conference, DAC 2001. Las
Vegas, NV, June 18-22, 2001 (2001), Association for Computing Ma-
chinery, pp. 530–535.

[81] NIEMELÄ, I. Logic programming with stable model semantics as a
constraint programming paradigm. Annals of Mathematics and Artifi-
cial Intelligence 25, 3-4 (1999), 241–273.

[82] NIEUWENHUIS, R., OLIVERAS, A., AND TINELLI, C. Solving
SAT and SAT modulo theories: From an abstract Davis-Putnam-
Logemann-Loveland procedure to DPLL(T). Journal of the ACM 53,
6 (2006), 937–977.

[83] PAPADIMITRIOU, C. H. Computational Complexity. Addison-
Wesley, Boston, MA, 1994.

[84] PETRIK, M., AND ZILBERSTEIN, S. Learning parallel portfolios of
algorithms. Annals of Mathematics and Artificial Intelligence 48, 1-2
(2006), 85–106.

[85] PITKANEN, M. J., ZHOU, X., HYVÄRINEN, A. E., AND MÜLLER,
H. Using the grid for enhancing the performance of a medical im-
age search engine. In Proceedings of the 21st IEEE/ACM Inter-
national Symposium on Computer-Based Medical Systems, CBMS
2008. Jyväskylä, Finland, June 17-19, 2008 (2008), IEEE Press,
pp. 367–372.

[86] PLAZA, S., KOUNTANIS, I., ANDRAUS, Z., BERTACCO, V., AND
MUDGE, T. Advances and insights into parallel SAT solving. In
International Workshop on Logic Synthesis (January 2006). Online
version at http://www.gigascale.org/pubs/1093.html.

BIBLIOGRAPHY 81

[87] PONTELLI, E., AND EL-KHATIB, O. Construction and optimiza-
tion of a parallel engine for answer set programming. In Proceedings
of the 3rd International Symposium on Practical Aspects of Declara-
tive Languages, PADL 2001. Las Vegas, Nevada, March 11-12, 2001
(2001), vol. 1990 of Lecture Notes in Computer Science, Springer-
Verlag, pp. 288–303.

[88] PONTELLI, E., VILLAVERDE, K., GUO, H.-F., AND GUPTA, G.
PALS: Efficient or-parallel execution of Prolog on Beowulf clusters.
Theory and Practice of Logic Programming 7, 6 (2007), 633–695.

[89] RANJAN, D., PONTELLI, E., AND GUPTA, G. On the complexity of
or-parallelism. New Generation Computing 17, 3 (1999), 285–307.

[90] ROSSI, F., VAN BEEK, P., AND WALSH, T., Eds. Handbook of Con-
straint Programming. Elsevier Science Publishers Ltd., Amsterdam,
The Netherlands, 2006.

[91] RUAN, Y., HORVITZ, E., AND KAUTZ, H. A. Restart policies with
dependence among runs: A dynamic programming approach. In Pro-
ceedings of the 8th International Conference on Principles and Prac-
tice of Constraint Programming, CP01. Paphos, Cyprus, November
26-December 1, 2001 (2002), vol. 2470 of Lecture Notes in Com-
puter Science, Springer-Verlag, pp. 573–586.

[92] SCHUBERT, T., LEWIS, M., AND BECKER, B. PaMira — a parallel
SAT solver with knowledge sharing. In Proceedings of the 6th Inter-
national Workshop on Microprocessor Test and Verification, MTV’05,
Common Challenges and Solutions. Austin, Texas, November 3-4,
2005 (2005), IEEE Press, pp. 29–36.

[93] SEBASTIANI, R. Lazy satisfiability modulo theories. Journal on Satis-
fiability, Boolean Modeling and Computation 3 (2007), 141–224.

[94] SEGRE, A. M., FORMAN, S. L., RESTA, G., AND WILDENBERG,
A. Nagging: A scalable fault-tolerant paradigm for distributed search.
Artificial Intelligence 140, 1/2 (2002), 71–106.

[95] SELMAN, B., AND KAUTZ, H. A. An empirical study of greedy local
search for satisfiability testing. In Proceedings of the 11th National
Conference on Artificial Intelligence, AAAI 1993. Washington, DC,
July 11-15, 1993 (1993), AAAI Press, pp. 46–51.

[96] SHAPIRO, E. Y., WARREN, D. H. D., FUCHI, K., KOWALSKI,
R. A., FURUKAWA, K., UEDA, K., KAHN, K. M., CHIKAYAMA, T.,
AND TICK, E. The fifth generation project: Personal perspectives.
Communications of the ACM 36, 3 (1993), 46–103.

[97] SILVA, J. P. M. The impact of branching heuristics in propositional
satisfiability algorithms. In Progress in Artificial Intelligence. Pro-
ceedings of the 9th Portuguese Conference on Artificial Intelligence,
EPIA’99. Évora, Portugal, September 21-24, 1999 (1999), vol. 1695 of
Lecture Notes in Computer Science, Springer-Verlag, pp. 62–74.

82 BIBLIOGRAPHY

[98] SIMONS, P., NIEMELÄ, I., AND SOININEN, T. Extending and im-
plementing the stable model semantics. Artificial Intelligence 138,
1-2 (2002), 181–234.

[99] SINGER, D., AND MONNET, A. JaCk-SAT: a new parallel scheme to
solve the satisfiablity problem (SAT) based on join-and-check. In 7th
International Conference on Parallel Processing and Applied Mathe-
matics, PPAM 2007. Gdansk, Poland, September 9-12, 2007, Revised
Selected Papers (2007), vol. 4967 of Lecture Notes in Computer Sci-
ence, Springer-Verlag, pp. 249–258.

[100] SINGER, D., AND VAGNER, A. Parallel resolution of the satisfiability
problem (SAT) with OpenMP and MPI. In 6th International Confer-
ence on Parallel Processing and Applied Mathematics, PPAM 2005.
Poznan, Poland, September 11-14, 2005, Revised Selected Papers
(2006), vol. 3911 of Lecture Notes in Computer Science, Springer-
Verlag, pp. 380–388.

[101] SINZ, C., BLOCHINGER, W., AND KÜCHLIN, W. PaSAT — Parallel
SAT-checking with lemma exchange: Implementation and applica-
tions. In Proceedings of the LICS 2001 Workshop on Theory and Ap-
plications of Satisfiability Testing, SAT 2001. Co-located with the 16th
Annual IEEE Symposium on Logic in Computer Science, Boston,
Massachusetts, June 16-19, 2001 (2001), vol. 9 of Electronic Notes in
Discrete Mathematics, Elsevier Science Publishers Ltd., pp. 12–13.

[102] SOININEN, T., AND NIEMELÄ, I. Developing a declarative
rule language for applications in product configuration. In Pro-
ceedings of the 1st International Workshop on Practical Aspects of
Declarative Languages, PADL 1999, Co-located with the 26th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, POPL 1999, San Antonio, Texas, January 18-19, 1999 (1999),
vol. 1551 of Lecture Notes in Computer Science, Springer-Verlag,
pp. 305–319.

[103] SPECKENMEYER, E., BÖHM, M., AND HEUSCH, P. On the im-
balance of distributions of solutions of CNF-formulas and its impact
on satisfiability solvers. In Satisfiability Problem: Theory and Appli-
cations. Proceedings of the DIMACS Workshop, March 11-13, 1996
(1997), vol. 35 of DIMACS Series in Discrete Mathematics and Theo-
retical Computer Science, American Mathematical Society, pp. 669–
676.

[104] STERLING, L., AND SHAPIRO, E. Y. The Art of Prolog. MIT Press,
Cambridge, MA, 1987.

[105] STREETER, M., GOLOVIN, D., AND SMITH, S. F. Combining mul-
tiple heuristics online. In Proceedings of the 22nd Conference on Ar-
tificial Intelligence, AAAI 2007. Vancouver, Canada, July 22-26, 2007
[5], pp. 1197–1203.

BIBLIOGRAPHY 83

[106] STREETER, M., GOLOVIN, D., AND SMITH, S. F. Restart sched-
ules for ensembles of problem instances. In Proceedings of the
22nd Conference on Artificial Intelligence, AAAI 2007. Vancouver,
Canada, July 22-26, 2007 [5], pp. 1204–1210.

[107] TSEITIN, G. S. On the complexity of derivation in propositional
calculus. In Studies in Constructive Mahtematics and Mathemat-
ical Logic, Part II, Volume 8 of Seminars in Mathematics, V. A.
Steklov Mathematical Institute (Leningrad, 1969), Consultants Bu-
reau. Translated from Russian. Reprinted in J. Siekmann and G.
Wrightson, editors, Automation of Reasoning 2: Classical Papers on
Computational Logic 1967-1970, pages 466-483. Springer, 1983.

[108] WALSH, T. Search in a small world. In Proceedings of the 16th Inter-
national Joint Conference on Artificial Intelligence, IJCAI 99. Stock-
holm, Sweden, July 31 - August 6, 1999 (1999), Morgan Kaufmann,
pp. 1172–1177.

[109] WALSH, T. SAT v CSP. In Proceedings of the 6th International
Conference on Principles and Practice of Constraint Programming,
CP00. Singapore, September 18-21, 2000 (2000), vol. 1894 of Lecture
Notes in Computer Science, Springer-Verlag, pp. 441–456.

[110] WU, H., AND VAN BEEK, P. On portfolios for backtracking search in
the presence of deadlines. In Proceedings of the 19th IEEE Interna-
tional Conference on Tools with Artificial Intelligence, ICTAI 2007.
Patras, Greece, October 29-31, 2007 (2007), IEEE Press, pp. 231–238.

[111] WU, H., AND VAN BEEK, P. On universal restart strategies for back-
tracking search. In Proceedings of the 13th International Conference
on Principles and Practice of Constraint Programming, CP07. Provi-
dence, RI, September 23-27, 2007 (2007), vol. 4741 of Lecture Notes
in Computer Science, Springer-Verlag, pp. 681–695.

[112] XU, L., HUTTER, F., HOOS, H. H., AND LEYTON-BROWN, K.
SATzilla: portfolio-based algorithm selection for SAT. Journal of Arti-
ficial Intelligence Research 32 (2008), 565–606.

[113] YANG, L., SCHOPF, J. M., AND FOSTER, I. T. Conservative
scheduling: Using predicted variance to improve scheduling decisions
in dynamic environments. In Proceedings of the 15th ACM/IEEE
SC2003 Conference on High Performance Networking and Comput-
ing. Phoenix, AZ, November 15-21, 2003 [1], p. 31. CD-ROM.

[114] ZHANG, H. A complete random jump strategy with guiding paths.
In Proceedings of the 9th International Conference on Theory and
Applications of Satisfiability Testing, SAT 2006. Seattle, WA, USA,
August 12-15, 2006 [3], pp. 96–101.

[115] ZHANG, H., BONACINA, M., AND HSIANG, J. PSATO: A dis-
tributed propositional prover and its application to quasigroup prob-
lems. Journal of Symbolic Computation 21, 4 (1996), 543–560.

84 BIBLIOGRAPHY

[116] ZHANG, L., MADIGAN, C. F., MOSKEWICZ, M. W., AND MA-
LIK, S. Efficient conflict driven learning in boolean satisfiability
solver. In Proceedings of the ICCAD 2001 International Confer-
ence on Computer-Aided Design. San Jose, CA, November 4-8, 2001
(2001), Association for Computing Machinery, pp. 279–285.

[117] ZHAO, Y., MALIK, S., MOSKEWICZ, M. W., AND MADIGAN, C. F.
Accelerating boolean satisfiability through application specific pro-
cessing. In Proceedings of the 14th International Symposium on Sys-
tems Synthesis, ISSS 2001. Montréal, Canada, September 30 - Octo-
ber 3, 2001 (2001), Association for Computing Machinery, pp. 244–
249.

BIBLIOGRAPHY 85

TKK REPORTS IN INFORMATION AND COMPUTER SCIENCE

TKK-ICS-R6 Alexander Ilin, Tapani Raiko
Practical Approaches to Principal Component Analysis in the Presence of Missing Values.
June 2008.

TKK-ICS-R7 Kai Puolamäki, Samuel Kaski

Bayesian Solutions to the Label Switching Problem. June 2008.

TKK-ICS-R8 Abhishek Tripathi, Arto Klami, Samuel Kaski

Using Dependencies to Pair Samples for Multi-View Learning. October 2008.

TKK-ICS-R9 Elia Liitiäinen, Francesco Corona, Amaury Lendasse
A Boundary Corrected Expansion of the Moments of Nearest Neighbor Distributions.
October 2008.

TKK-ICS-R10 He Zhang, Markus Koskela, Jorma Laaksonen

Report on forms of enriched relevance feedback. November 2008.

TKK-ICS-R11 Ville Viitaniemi, Jorma Laaksonen

Evaluation of pointer click relevance feedback in PicSOM. November 2008.

TKK-ICS-R12 Markus Koskela, Jorma Laaksonen

Specification of information interfaces in PinView. November 2008.

TKK-ICS-R13 Jorma Laaksonen

Definition of enriched relevance feedback in PicSOM. November 2008.

TKK-ICS-R14 Jori Dubrovin
Checking Bounded Reachability in Asynchronous Systems by Symbolic Event Tracing.
April 2009.

TKK-ICS-R15 Eerika Savia, Kai Puolamäki, Samuel Kaski

On Two-Way Grouping by One-Way Topic Models. May 2009.

ISBN 978-951-22-9942-3 (Print)

ISBN 978-951-22-9943-0 (Online)

ISSN 1797-5034 (Print)

ISSN 1797-5042 (Online)

