1,217 research outputs found

    Particle-resolved numerical simulations of the gas–solid heat transfer in arrays of random motionless particles

    Get PDF
    Particle-resolved direct numerical simulations of non-isothermal gas–solid flows have been performed and analyzed from microscopic to macroscopic scales. The numerical configuration consists in an assembly of random motionless spherical particles exchanging heat with the surrounding moving fluid throughout the solid surface. Numerical simulations have been carried out using a Lagrangian VOF approach based on fictitious domain framework and penalty methods. The entire numerical approach (numerical solution and post-processing) has first been validated on a single particle through academic test cases of heat transfer by pure diffusion and by forced convection for which analytical solution or empirical correlations are available from the literature. Then, it has been used for simulating gas–solid heat exchanges in dense regimes, fully resolving fluid velocity and temperature evolving within random arrays of fixed particles. Three Reynolds numbers and four solid volume fractions, for unity Prandtl number, have been investigated. Two Nusselt numbers based, respectively, on the fluid temperature and on the bulk (cup-mixing) temperature have been computed and analyzed. Numerical results revealed differences between the two Nusselt numbers for a selected operating point. This outcome shows the inadequacy of the Nusselt number based on the bulk temperature to accurately reproduce the heat transfer rate when an Eulerian–Eulerian approach is used. Finally, a connection between the ratio of the two Nusselt numbers and the fluctuating fluid velocity–temperature correlation in the mean flow direction is pointed out. Based on such a Nusselt number ratio, a model is proposed for it

    A Moving Boundary Flux Stabilization Method for Cartesian Cut-Cell Grids using Directional Operator Splitting

    Full text link
    An explicit moving boundary method for the numerical solution of time-dependent hyperbolic conservation laws on grids produced by the intersection of complex geometries with a regular Cartesian grid is presented. As it employs directional operator splitting, implementation of the scheme is rather straightforward. Extending the method for static walls from Klein et al., Phil. Trans. Roy. Soc., A367, no. 1907, 4559-4575 (2009), the scheme calculates fluxes needed for a conservative update of the near-wall cut-cells as linear combinations of standard fluxes from a one-dimensional extended stencil. Here the standard fluxes are those obtained without regard to the small sub-cell problem, and the linear combination weights involve detailed information regarding the cut-cell geometry. This linear combination of standard fluxes stabilizes the updates such that the time-step yielding marginal stability for arbitrarily small cut-cells is of the same order as that for regular cells. Moreover, it renders the approach compatible with a wide range of existing numerical flux-approximation methods. The scheme is extended here to time dependent rigid boundaries by reformulating the linear combination weights of the stabilizing flux stencil to account for the time dependence of cut-cell volume and interface area fractions. The two-dimensional tests discussed include advection in a channel oriented at an oblique angle to the Cartesian computational mesh, cylinders with circular and triangular cross-section passing through a stationary shock wave, a piston moving through an open-ended shock tube, and the flow around an oscillating NACA 0012 aerofoil profile.Comment: 30 pages, 27 figures, 3 table

    Combustion research for gas turbine engines

    Get PDF
    Research on combustion is being conducted at Lewis Research Center to provide improved analytical models of the complex flow and chemical reaction processes which occur in the combustor of gas turbine engines and other aeropropulsion systems. The objective of the research is to obtain a better understanding of the various physical processes that occur in the gas turbine combustor in order to develop models and numerical codes which can accurately describe these processes. Activities include in-house research projects, university grants, and industry contracts and are classified under the subject areas of advanced numerics, fuel sprays, fluid mixing, and radiation-chemistry. Results are high-lighted from several projects

    Direct numerical simulation of reactive flow through a fixed bed of catalyst particles

    Get PDF
    Many catalytic refining and petrochemical processes involve two-phase reactive systems in which the continuous phase is a fluid and the porous phase consists of rigid particles randomly stacked. Improving both the design and the operating conditions of these processes represents a major scientific and industrial challenge in a context of sustainable development. Thus, it is above all important to better understand all the intricate couplings at stake in these flows: hydrodynamic, chemical and thermal contributions. The objective of our work is to build up a multi-scale modelling approach of reactive particulate flows and at first to focus on the development of a microscopic-scale including heat and mass transfers and chemical reactions for the prediction of reactive flows through a dense or dilute fixed bed of catalyst particles. Please download the full abstract below

    LES/RANS Simulation of a Supersonic Reacting Wall Jet

    Get PDF
    This work presents results from large-eddy / Reynolds-averaged Navier-Stokes (LES/RANS) simulations of the well-known Burrows-Kurkov supersonic reacting wall-jet experiment. Generally good agreement with experimental mole fraction, stagnation temperature, and Pitot pressure profiles is obtained for non-reactive mixing of the hydrogen jet with a non-vitiated air stream. A lifted flame, stabilized between 10 and 22 cm downstream of the hydrogen jet, is formed for hydrogen injected into a vitiated air stream. Flame stabilization occurs closer to the hydrogen injection location when a three-dimensional combustor geometry (with boundary layer development resolved on all walls) is considered. Volumetric expansion of the reactive shear layer is accompanied by the formation of large eddies which interact strongly with the reaction zone. Time averaged predictions of the reaction zone structure show an under-prediction of the peak water concentration and stagnation temperature, relative to experimental data and to results from a Reynolds-averaged Navier-Stokes calculation. If the experimental data can be considered as being accurate, this result indicates that the present LES/RANS method does not correctly capture the cascade of turbulence scales that should be resolvable on the present mesh. Instead, energy is concentrated in the very largest scales, which provide an over-mixing effect that excessively cools and strains the flame. Predictions improve with the use of a low-dissipation version of the baseline piecewise parabolic advection scheme, which captures the formation of smaller-scale structures superimposed on larger structures of the order of the shear-layer width

    Mass transfer towards a reactive particle in a fluid flow: Numerical simulations and modeling

    Get PDF
    We study mass transfer towards a solid spherical catalyst particle experiencing a first order irreversible reaction coupled to an external laminar flow. Internal chemical reaction and convective-diffusive mass transfer in the surrounding fluid flow are coupled by concentration and flux boundary conditions at the particle surface. Through this coupling, the mean particle surface and volume concentrations are predicted and the internal/external Sherwood numbers are obtained. We investigate the interplay between convection, diffusion, and reaction by computational fluid dynamics and establish a model for the mass transfer coefficient accounting for diffusion and internal first-order chemical reaction. We obtain a prediction of the mass transfer coefficient through mass balance or using the classical additivity rule. The model is numerically validated by fully resolved numerical simulations over a wide range of Reynolds number, Schmidt number and Thiele modulus which shows that assuming decoupled treatment of external and internal mass transfer gives very accurate predictions. Finally, we test the unsteady response of the model. The model predicts the evolution of the mean volume concentration for a particle placed in a steady convective-diffusive stream. Predictions of the unsteady model are in very good agreement with computed results

    Effects of radiative heat transfer on the structure of turbulent supersonic channel flow

    Get PDF
    International audienceThe interaction between turbulence in a minimal supersonic channel and radiative heat transfer is studied using large-eddy simulation. The working fluid is pure water vapour with temperature-dependent specific heats and molecular transport coefficients. Its line spectra properties are represented with a statistical narrow-band correlated-k model. A grey gas model is also tested. The parallel no-slip channel walls are treated as black surfaces concerning thermal radiation and are kept at a constant temperature of 1000 K. Simulations have been performed for different optical thicknesses (based on the Planck mean absorption coefficient) and different Mach numbers. Results for the mean flow variables, Reynolds stresses and certain terms of their transport equations indicate that thermal radiation effects counteract compressibility (Mach number) effects. An analysis of the total energy balance reveals the importance of radiative heat transfer, compared to the turbulent and mean molecular heat transport

    Numerical Investigation on the Hydrogen-Assisted Start-Up of Methane-Fueled, Catalytic Microreactors

    Get PDF
    The hydrogen-assisted start-up of methane-fueled, catalytic microreactors has been investigated numerically in a plane-channel configuration. Transient 2-D simulations have been performed in a platinum-coated microchannel made of either ceramic or metallic walls. Axial heat conduction in the solid wall and surface radiation heat transfer were accounted for. Simulations were performed by varying the inlet pressure, the solid wall thermal conductivity and heat capacity, and comparisons were made between fuel mixtures comprising 100% CH4 and 90% CH4-10% H2 by volume. A significant reduction in the ignition (t ig) and steady-state (t st) times was evident for microreactors fed with hydrogen-containing mixtures in comparison to pure methane-fueled ones, for all pressures and reactor materials investigated, with hydrogen having a direct thermal rather than chemical impact on catalytic microreactor ignition. The positive impact of H2 addition was attenuated as the pressure (and the associated CH4 catalytic reactivity) increased. Reactors with low wall thermal conductivity (cordierite material) benefited more from hydrogen addition in the fuel stream and exhibited shorter ignition times compared to higher thermal conductivity ones (FeCr alloy) due to the creation of spatially localized hot spots that promoted catalytic ignition. At the same time, the cordierite material required shorter times to reach steady state. Microreactor emissions were impacted positively by the addition of hydrogen in the fuel stream, with a significant reduction in the cumulative methane emissions and no hydrogen breakthrough. Finally, gas-phase chemistry was found to elongate the steady-state times for both ceramic and metallic material
    • …
    corecore