7,523 research outputs found

    Managing evolution and change in web-based teaching and learning environments

    Get PDF
    The state of the art in information technology and educational technologies is evolving constantly. Courses taught are subject to constant change from organisational and subject-specific reasons. Evolution and change affect educators and developers of computer-based teaching and learning environments alike – both often being unprepared to respond effectively. A large number of educational systems are designed and developed without change and evolution in mind. We will present our approach to the design and maintenance of these systems in rapidly evolving environments and illustrate the consequences of evolution and change for these systems and for the educators and developers responsible for their implementation and deployment. We discuss various factors of change, illustrated by a Web-based virtual course, with the objective of raising an awareness of this issue of evolution and change in computer-supported teaching and learning environments. This discussion leads towards the establishment of a development and management framework for teaching and learning systems

    Design of a 5G Multimedia Broadcast Application Function Supporting Adaptive Error Recovery

    Full text link
    The demand for mobile multimedia streaming services has been steadily growing in recent years. Mobile multimedia broadcasting addresses the shortage of radio resources but introduces a network error recovery problem. Retransmitting multimedia segments that are not correctly broadcast can cause service disruptions and increased service latency, affecting the quality of experience perceived by end users. With the advent of networking paradigms based on virtualization technologies, mobile networks have been enabled with more flexibility and agility to deploy innovative services that improve the utilization of available network resources. This paper discusses how mobile multimedia broadcast services can be designed to prevent service degradation by using the computing capabilities provided by multiaccess edge computing (MEC) platforms in the context of a 5G network architecture. An experimental platform has been developed to evaluate the feasibility of a MEC application to provide adaptive error recovery for multimedia broadcast services. The results of the experiments carried out show that the proposal provides a flexible mechanism that can be deployed at the network edge to lower the impact of transmission errors on latency and service disruptions.Comment: 14 pages, 10 figure

    Models of everywhere revisited: a technological perspective

    Get PDF
    The concept ‘models of everywhere’ was first introduced in the mid 2000s as a means of reasoning about the environmental science of a place, changing the nature of the underlying modelling process, from one in which general model structures are used to one in which modelling becomes a learning process about specific places, in particular capturing the idiosyncrasies of that place. At one level, this is a straightforward concept, but at another it is a rich multi-dimensional conceptual framework involving the following key dimensions: models of everywhere, models of everything and models at all times, being constantly re-evaluated against the most current evidence. This is a compelling approach with the potential to deal with epistemic uncertainties and nonlinearities. However, the approach has, as yet, not been fully utilised or explored. This paper examines the concept of models of everywhere in the light of recent advances in technology. The paper argues that, when first proposed, technology was a limiting factor but now, with advances in areas such as Internet of Things, cloud computing and data analytics, many of the barriers have been alleviated. Consequently, it is timely to look again at the concept of models of everywhere in practical conditions as part of a trans-disciplinary effort to tackle the remaining research questions. The paper concludes by identifying the key elements of a research agenda that should underpin such experimentation and deployment

    Big Data and the Internet of Things

    Full text link
    Advances in sensing and computing capabilities are making it possible to embed increasing computing power in small devices. This has enabled the sensing devices not just to passively capture data at very high resolution but also to take sophisticated actions in response. Combined with advances in communication, this is resulting in an ecosystem of highly interconnected devices referred to as the Internet of Things - IoT. In conjunction, the advances in machine learning have allowed building models on this ever increasing amounts of data. Consequently, devices all the way from heavy assets such as aircraft engines to wearables such as health monitors can all now not only generate massive amounts of data but can draw back on aggregate analytics to "improve" their performance over time. Big data analytics has been identified as a key enabler for the IoT. In this chapter, we discuss various avenues of the IoT where big data analytics either is already making a significant impact or is on the cusp of doing so. We also discuss social implications and areas of concern.Comment: 33 pages. draft of upcoming book chapter in Japkowicz and Stefanowski (eds.) Big Data Analysis: New algorithms for a new society, Springer Series on Studies in Big Data, to appea

    Applications of Soft Computing in Mobile and Wireless Communications

    Get PDF
    Soft computing is a synergistic combination of artificial intelligence methodologies to model and solve real world problems that are either impossible or too difficult to model mathematically. Furthermore, the use of conventional modeling techniques demands rigor, precision and certainty, which carry computational cost. On the other hand, soft computing utilizes computation, reasoning and inference to reduce computational cost by exploiting tolerance for imprecision, uncertainty, partial truth and approximation. In addition to computational cost savings, soft computing is an excellent platform for autonomic computing, owing to its roots in artificial intelligence. Wireless communication networks are associated with much uncertainty and imprecision due to a number of stochastic processes such as escalating number of access points, constantly changing propagation channels, sudden variations in network load and random mobility of users. This reality has fuelled numerous applications of soft computing techniques in mobile and wireless communications. This paper reviews various applications of the core soft computing methodologies in mobile and wireless communications

    Inclusive Intelligent Learning Management System Framework - Application of Data Science in Inclusive Education

    Get PDF
    Dissertation presented as the partial requirement for obtaining a Master's degree in Data Science and Advanced Analytics, specialization in Data ScienceBeing a disabled student the author faced higher education with a handicap which as experience studying during COVID 19 confinement periods matched the findings in recent research about the importance of digital accessibility through more e-learning intensive academic experiences. Narrative and systematic literature reviews enabled providing context in World Health Organization’s International Classification of Functioning, Disability and Health, legal and standards framework and information technology and communication state-of-the art. Assessing Portuguese higher education institutions’ web sites alerted to the fact that only outlying institutions implemented near perfect, accessibility-wise, websites. Therefore a gap was identified in how accessible the Portuguese higher education websites are, the needs of all students, including those with disabilities, and even the accessibility minimum legal requirements for digital products and the services provided by public or publicly funded organizations. Having identified a problem in society and exploring the scientific base of knowledge for context and state of the art was a first stage in the Design Science Research methodology, to which followed development and validation cycles of an Inclusive Intelligent Learning Management System Framework. The framework blends various Data Science study fields contributions with accessibility guidelines compliant interface design and content upload accessibility compliance assessment. Validation was provided by a focus group whose inputs were considered for the version presented in this dissertation. Not being the purpose of the research to deliver a complete implementation of the framework and lacking consistent data to put all the modules interacting with each other, the most relevant modules were tested with open data as proof of concept. The rigor cycle of DSR started with the inclusion of the previous thesis on Atlñntica University Institute Scientific Repository and is to be completed with the publication of this thesis and the already started PhD’s findings in relevant journals and conferences
    • 

    corecore