1,598 research outputs found

    A survey on fractional order control techniques for unmanned aerial and ground vehicles

    Get PDF
    In recent years, numerous applications of science and engineering for modeling and control of unmanned aerial vehicles (UAVs) and unmanned ground vehicles (UGVs) systems based on fractional calculus have been realized. The extra fractional order derivative terms allow to optimizing the performance of the systems. The review presented in this paper focuses on the control problems of the UAVs and UGVs that have been addressed by the fractional order techniques over the last decade

    Design and assessment of a multiple sensor fault tolerant robust control system

    Get PDF
    This paper presents an enhanced robust control design structure to realise fault tolerance towards sensor faults suitable for multi-input-multi-output (MIMO) systems implementation. The proposed design permits fault detection and controller elements to be designed with considerations to stability and robustness towards uncertainties besides multiple faults environment on a common mathematical platform. This framework can also cater to systems requiring fast responses. A design example is illustrated with a fast, multivariable and unstable system, that is, the double inverted pendulum system. Results indicate the potential of this design framework to handle fast systems with multiple sensor faults

    Fractional Order Fault Tolerant Control - A Survey

    Get PDF
    In this paper, a comprehensive review of recent advances and trends regarding Fractional Order Fault Tolerant Control (FOFTC) design is presented. This novel robust control approach has been emerging in the last decade and is still gathering great research efforts mainly because of its promising results and outcomes. The purpose of this study is to provide a useful overview for researchers interested in developing this interesting solution for plants that are subject to faults and disturbances with an obligation for a maintained performance level. Throughout the paper, the various works related to FOFTC in literature are categorized first by considering their research objective between fault detection with diagnosis and fault tolerance with accommodation, and second by considering the nature of the studied plants depending on whether they are modelized by integer order or fractional order models. One of the main drawbacks of these approaches lies in the increase in complexity associated with introducing the fractional operators, their approximation and especially during the stability analysis. A discussion on the main disadvantages and challenges that face this novel fractional order robust control research field is given in conjunction with motivations for its future development. This study provides a simulation example for the application of a FOFTC against actuator faults in a Boeing 747 civil transport aircraft is provided to illustrate the efficiency of such robust control strategies

    A review of convex approaches for control, observation and safety of linear parameter varying and Takagi-Sugeno systems

    Get PDF
    This paper provides a review about the concept of convex systems based on Takagi-Sugeno, linear parameter varying (LPV) and quasi-LPV modeling. These paradigms are capable of hiding the nonlinearities by means of an equivalent description which uses a set of linear models interpolated by appropriately defined weighing functions. Convex systems have become very popular since they allow applying extended linear techniques based on linear matrix inequalities (LMIs) to complex nonlinear systems. This survey aims at providing the reader with a significant overview of the existing LMI-based techniques for convex systems in the fields of control, observation and safety. Firstly, a detailed review of stability, feedback, tracking and model predictive control (MPC) convex controllers is considered. Secondly, the problem of state estimation is addressed through the design of proportional, proportional-integral, unknown input and descriptor observers. Finally, safety of convex systems is discussed by describing popular techniques for fault diagnosis and fault tolerant control (FTC).Peer ReviewedPostprint (published version

    Advanced Mathematics and Computational Applications in Control Systems Engineering

    Get PDF
    Control system engineering is a multidisciplinary discipline that applies automatic control theory to design systems with desired behaviors in control environments. Automatic control theory has played a vital role in the advancement of engineering and science. It has become an essential and integral part of modern industrial and manufacturing processes. Today, the requirements for control precision have increased, and real systems have become more complex. In control engineering and all other engineering disciplines, the impact of advanced mathematical and computational methods is rapidly increasing. Advanced mathematical methods are needed because real-world control systems need to comply with several conditions related to product quality and safety constraints that have to be taken into account in the problem formulation. Conversely, the increment in mathematical complexity has an impact on the computational aspects related to numerical simulation and practical implementation of the algorithms, where a balance must also be maintained between implementation costs and the performance of the control system. This book is a comprehensive set of articles reflecting recent advances in developing and applying advanced mathematics and computational applications in control system engineering

    Robust Fault-Tolerant Control for aircraft systems

    Get PDF
    The need to design controllers that guarantee both stability and performance upon the occurrence of faults has been an active area of research. To address this problem, in this thesis we present different methodologies to design robust controllers that guarantee both stability and robustness for actuator faults and uncertainties. In the first part of this thesis, we introduce the classical uncertainty formulation using Linear Fractional Transformation (LFT) and describe LFT\u27s special cases-norm bounded and convex polytopic uncertainty descriptions. Practical methods to formulate these uncertainty structures are described. In the same spirit, formulation of faults and their modeling for robust control system design is provided. In the second part of this thesis, we demonstrate the application of a Luenberger observer for fast Fault Diagnosis and Isolation (FDI). We describe the methodology to design a robust optimal control for actuator faults and present controller reconfiguration mechanism based on switching for the design of Fault Tolerant Control (FTC). System with both norm bounded uncertainties and actuator faults is formulated and an analytic method to find a robust stabilizing and guaranteed cost reliable controllers are also mentioned. To the end, we implement designed linear controllers in Boeing 747 (B747) nonlinear system. We also define and evaluate potential problems that arise in switching based FTC and their effect on the closed loop nonlinear system. Robustness of linear controllers in nonlinear B747 was evaluated using excessive Monte Carlo simulation and results are presented

    Data-Driven Architecture to Increase Resilience In Multi-Agent Coordinated Missions

    Get PDF
    The rise in the use of Multi-Agent Systems (MASs) in unpredictable and changing environments has created the need for intelligent algorithms to increase their autonomy, safety and performance in the event of disturbances and threats. MASs are attractive for their flexibility, which also makes them prone to threats that may result from hardware failures (actuators, sensors, onboard computer, power source) and operational abnormal conditions (weather, GPS denied location, cyber-attacks). This dissertation presents research on a bio-inspired approach for resilience augmentation in MASs in the presence of disturbances and threats such as communication link and stealthy zero-dynamics attacks. An adaptive bio-inspired architecture is developed for distributed consensus algorithms to increase fault-tolerance in a network of multiple high-order nonlinear systems under directed fixed topologies. In similarity with the natural organisms’ ability to recognize and remember specific pathogens to generate its immunity, the immunity-based architecture consists of a Distributed Model-Reference Adaptive Control (DMRAC) with an Artificial Immune System (AIS) adaptation law integrated within a consensus protocol. Feedback linearization is used to modify the high-order nonlinear model into four decoupled linear subsystems. A stability proof of the adaptation law is conducted using Lyapunov methods and Jordan decomposition. The DMRAC is proven to be stable in the presence of external time-varying bounded disturbances and the tracking error trajectories are shown to be bounded. The effectiveness of the proposed architecture is examined through numerical simulations. The proposed controller successfully ensures that consensus is achieved among all agents while the adaptive law v simultaneously rejects the disturbances in the agent and its neighbors. The architecture also includes a health management system to detect faulty agents within the global network. Further numerical simulations successfully test and show that the Global Health Monitoring (GHM) does effectively detect faults within the network

    Speed control of Five-Phase IPMSM through PI, SMC and FITSMC approaches under normal and open phase faulty conditions

    Get PDF
    This paper focuses on speed control of Five-Phase interior permanent magnet synchronous motor (IPMSM) through proportional-integral (PI) controller, sliding mode control (SMC) and novel fractional integral terminal sliding mode control (FITSMC) approaches under normal and open one-phase and two-phase faulty conditions. The SMC and FITSMC design processes have been deeply illustrated, while the stability of the aforementioned controllers has been guaranteed via Lyapunov theory. These ones are all designed based on rotor speed error which is generated from its measured and referenced values. Simulation results confirm the effectiveness and feasibility of the proposed control approaches in the fault tolerant control strategy and normal drive for Five-Phase IPMSM
    corecore