Association for Scientic Computing Electronics and Engineering (ASCEE): Open Journal Systems
Not a member yet
    393 research outputs found

    Enhancing the Performance of Power System under Abnormal Conditions Using Three Different FACTS Devices

    Get PDF
    In this paper, a comparison between Flexible Alternating Current Transmission System (FACTS) devices including Static Synchronous Compensator (STATCOM), Static Synchronous Series Compensator (SSSC) and Unified Power Flow Controller (UPFC) for providing a better adaptation to changing operating conditions and improving the usage of current systems. The power system using FACTS devices is presented under different conditions such as single phase fault and three phase fault. A digital simulation using Matlab/Simulink software package is carried out to demonstrate the better performance including the voltage and the current of the presented system using FACTS that located between buses B1 and B2 under different faults types. The results obtained investigate that the presented system gives better response with FACTS as compared to not using them under abnormal conditions besides, the UPFC gives better performance of power system under several faults as compared to STATCOM or SSSC as It can absorb reactive power in a manner which significantly reduced the fault current. It is demonstrated that UPFC can reduce the peak fault current at bus B1 โ€Žto 63.85% of its value without โ€Žusing FACTS devices under line to ground fault and 79.18% under three line to โ€Žground fault whereas STATCOM and SSSC reduce it โ€Žto (75.21, 94.35%) and (75.40, 94.68%), respectively

    Induction Motor Performance Improvement using Super Twisting SMC and Twelve Sector DTC

    Get PDF
    Induction motor (IM) direct torque control (DTC) is prone to a number of weaknesses, including uncertainty, external disturbances, and non-linear dynamics. Hysteresis controllers are used in the inner loops of this control method, whereas traditional proportional-integral (PI) controllers are used in the outer loop. A high-performance torque and speed system is consequently needed to assure a stable and reliable command that can tolerate such unsettled effects. This paper treats the design of a robust sensorless twelve-sector DTC of a three-phase IM. The speed controller is conceived based on high-order super-twisting sliding mode control with integral action (iSTSMC). The goal is to decrease the flux, torque, the current ripples that constitute the major conventional DTC drawbacks. The phase current ripples have been effectively reduced from 76.92% to 45.30% with a difference of 31.62%. A robust adaptive flux and speed observer-based fuzzy logic mechanism are inserted to get rid of the mechanical sensor. Satisfactory results have been got through simulations in MATLAB/Simulink under load disturbance. In comparison to a conventional six-sector DTC, the suggested technique has a higher performance and lower distortion rate

    Intelligent Temperature-Controlled Poultry Feed Dispensing System with Fuzzy Logic Algorithm

    Get PDF
    This study introduces a novel fuzzy logic algorithm tailored to the thermoneutral zone of poultry, offering a precise and adaptive approach to feed dispensation. This involved the utilization of an LCD module to present essential information such as the selected age, real-time ambient temperature, current time, and the dispensed feed quantity. Data gathered during the process were stored in a memory device. The design of the fuzzy logic algorithm centered on the thermoneutral zone of the chicken serves as the determinant for feed dispensed by the system. It's crucial to note that while the system lacked artificial intelligence (AI), its logical analysis operated based on the fuzzy logic algorithm. Rigorous testing ensued, encompassing the comparison of feed dispensation between automated and manual systems and the assessment of feed waste and broiler weight.ย  Significant feed waste reduction in the first week demonstrated the efficacy of the fuzzy-based method, with consistently low p-values of 0.00069, 0.015195, and 0.034 across subsequent weeks confirming the consistent outperformance in broiler weight compared to the traditional feeding technique. The findings contribute to the advancement of temperature-based poultry feed systems, addressing key challenges in optimizing feed quantity. The study successfully met its objectives, demonstrating the system's capability to dispense feeds effectively across varying ambient temperatures.ย  Notably, the study revealed a consistent alignment of system outputs with those obtained from a digital thermometer and digital weighing scale, confirming the accuracy and reliability of the temperature-based feed dispensing system

    Robust Voltage Vector-Controlled Three-Phase SAPF-based BPMVF and SVM for Power Quality Improvement

    Get PDF
    The multiplication of nonlinear loads leads to significant degradation of the energy quality, thus the interconnection network is subject to being polluted by the generation of harmonic components and reactive power, which causes a weakening efficiency, especially for the power factor. In three-phase systems, they can cause imbalances by causing excessive currents at the neutral. This research treats the operation of robust voltage-oriented control (VOC) for a shunt active power filter (SAPF). The main benefit of this technique is to guarantee a decoupled control of the active and reactive input currents, as well as the input reference voltage. To sustain the DC voltage, a robust PI-structure-based antiwindup is inserted to ensure active power control. Besides, a robust phase-locked loop (PLL)-based bandpass multivariable filter (BPMVF) is used to improve the network voltage quality. Furthermore, a space vector modulation (SVM) is designed to replace the conventional one. A sinusoidal network current and unitary power factor are achieved with fewer harmonics. The harmonics have been reduced from 27.98% to 1.55% which respects the IEEE 519-1992 standard. Expanded simulation results obtained from the transient and steady-state have demonstrated the high performance of the suggested control scheme

    Exploring Indonesia government outbreak response: Misinformation of public officials in handling of Covid-19 Pandemic

    Get PDF
    The Covid-19 outbreak started in March 2020, and the Indonesian government has taken a long time to respond to it. With different ambiguous statements, public leaders contributed to the disruption of knowledge concerning the Covid-19 pandemic. Therefore, the study aims to investigate the communication strategy of Indonesiaโ€™s government in response to the early Covid-19 pandemic in March 2020. This study uses a qualitative method that analyzes news text from online media. The data collection technique in this research is a literature study. The source of this research data comes from statements by four Indonesian ministers regarding the Covid-19 outbreak from online media. The goal of this study is to understand the narrative in online media concerning Indonesian public officials' response to COVID-19 by analyzing the word frequency using NVIVO 12 Plus software. Findings from this study indicate that numerous issues with the utilization and dissemination of information about the COVID-19 pandemic demonstrate a lack of maturity and caution on the part of the government and media. Indonesiaโ€™s government could not provide excellent and precise information that followed the community's expectations regarding the pandemic. Indonesian public officials contributed to misinformation regarding the Covid-19 epidemic when dealing with the pandemic by providing ambiguous, incorrect, and misleading information

    Comparative Study of Takagi-Sugeno-Kang and Madani Algorithms in Type-1 and Interval Type-2 Fuzzy Control for Self-Balancing Wheelchairs

    Get PDF
    This study examines the effectiveness of four different fuzzy logic controllers in self-balancing wheelchairs. The controllers under consideration are Type-1 Takagi-Sugeno-Kang (TSK) FLC, Interval Type-2 TSK FLC, Type-1 Mamdani FLC, and Interval Type-2 Mamdani FLC. A MATLAB-based simulation environment serves for the evaluation, focusing on key performance indicators like percentage overshoot, rise time, settling time, and displacement. Two testing methodologies were designed to simulate both ideal conditions and real-world hardware limitations. The simulations reveal distinct advantages for each controller type. For example, Type-1 TSK excels in minimizing overshoot but requires higher force. Interval Type-2 TSK shows the quickest settling times but needs the most force. Type-1 Mamdani has the fastest rise time with the lowest force requirement but experiences a higher percentage of overshoot. Interval Type-2 Mamdani offers balanced performance across all metrics. When a 2.7 N control input cap is imposed, Type-2 controllers prove notably more efficient in minimizing overshoot. These results offer valuable insights for future design and real-world application of self-balancing wheelchairs. Further studies are recommended for the empirical testing and refinement of these controllers, especially since the initial findings were limited to four-wheeled self-balancing robotic wheelchairs

    New classes of exponentially general nonconvex variational inequalities

    Get PDF
    In this paper, some new classes of exponentially general nonconvex variational inequalities are introduced and investigated. Several special cases are discussed as applications of these nonconvex variational inequalities. Projection technique is used to establish the equivalence between the non covex variational inequalities and fixed point problem. This equivalent formulation is used to discuss the existence of the solution. Several inertial type methods are suggested and analyzed for solving exponentially general nonconvex variational inequalities. using the technique of the projection operator and dynamical systems. Convergence analysis of the iterative methods is analyzed under suitable and appropriate weak conditions. In this sense, our result can be viewed as improvement and refinement of the previously known results. Our methods of proof are very simple as compared with other techniques

    Controlling Pulse-Like Self-Sustained Oscillators Using Analog Circuits and Microcontrollers

    Get PDF
    Using simulation from analog electronic circuits and from a microcontroller, this paper considers the control or synchronization of pulse-like self-sustained oscillators described by the equations derived from the chemical system known as Brusselator. The attention is focused on the effect of proportional control when the Brusselator is subjected to disturbances such as pulse-like oscillations and square signals. The analog electronic circuits simulation is based on Multisim, while the microcontroller simulation uses mikroC software and PIC 18F4550. In order to determine the intervals for which the synchronization is effective, the equations of the Brusselator are solved numerically using the fourth-order Runge-Kutta method. As software used for conducting numerical simulations, FORTRAN 95 version PLATO is used for numerical simulation and MATLAB for plotting curves using the data generated from FORTRAN simulations. It has been shown that the control is effective for some values of the proportional control parameter. A good qualitative and quantitative agreement is found from the results of the numerical simulation and those obtained from the analog electronic circuits as well as those delivered by the microcontroller. Since the oscillations delivered by the heart are pulsed oscillations, this study gives an idea of how to control the heart frequency of an individual whose heart is subject to certain disturbances related to stress or illness, to name just a few examples

    Backstepping Controller for Mobile Robot in Presence of Disturbances and Uncertainties

    Get PDF
    The objective of this work is to devise an effective control system for addressing the trajectory tracking challenge in nonholonomic mobile robots. Two primary control approaches, namely kinematic and dynamic strategies, are explored to achieve this goal. In the kinematic control domain, a backstepping controller (BSC) is introduced as the core element of the control system. The BSC is utilized to guide the mobile robot along the desired trajectory, leveraging the robotโ€™s kinematic model. To address the limitations of the kinematic control approach, a dynamic control strategy is proposed, incorporating the dynamic parameters of the robot. This dynamic control ensures real-time control of the mobile robot. To ensure the stability of the control system, the Lyapunov stability theory is employed, providing a rigorous framework for analyzing and proving stability. Additionally, to optimize the performance of the control system, a genetic algorithm is employed to design an optimal control law. The effectiveness of the developed control approach is demonstrated through simulation results. These results showcase the enhanced performance and efficiency achieved by the proposed control strategies. Overall, this study presents a comprehensive and robust approach for trajectory tracking in nonholonomic mobile robots, combining kinematic and dynamic control strategies while ensuring stability and performance optimization

    Finite-Time Synchronization of the Rabinovich and Rabinovich-Fabrikant Chaotic Systems for Different Evolvable Parameters

    Get PDF
    This paper addresses the challenge of synchronizing the dynamics of two distinct 3D chaotic systems, specifically the Rabinovich and Rabinovich-Fabrikant systems, employing a finite-time synchronization approach. These chaotic systems exhibit diverse characteristics and evolving chaotic attractors, influenced by specific parameters and initial conditions. Our proposed low-cost finite-time synchronization method leverages the signum function's tracking properties to facilitate controlled coupling within a finite time frame. The design of finite-time control laws is rooted in Lyapunov stability criteria and lemmas. Numerical experiments conducted within the MATLAB simulation environment demonstrate the successful asymptotic synchronization of the master and slave systems within finite time. To assess the global robustness of our control scheme, we applied it across various system parameters and initial conditions. Remarkably, our results reveal consistent synchronization times and dynamics across these different scenarios. In summary, this study presents a finite-time synchronization solution for non-identical 3D chaotic systems, showcasing the potential for robust and reliable synchronization under varying conditions

    363

    full texts

    393

    metadata records
    Updated in lastย 30ย days.
    Association for Scientic Computing Electronics and Engineering (ASCEE): Open Journal Systems is based in Indonesia
    Access Repository Dashboard
    Do you manage Open Research Online? Become a CORE Member to access insider analytics, issue reports and manage access to outputs from your repository in the CORE Repository Dashboard! ๐Ÿ‘‡