20,333 research outputs found

    A Decoupled Parameters Estimators for in Nonlinear Systems Fault diagnosis by ANFIS

    Get PDF
    This paper presents a new and efficient Adaptive Neural Fuzzy Inference Systems approach for satellite’s attitude control systems (ACSs) fault diagnosis. The proposed approach formulates the fault modelling problem of system component into an on-line parameters estimation The learning  ability of the adaptive neural fuzzy inference system allow as to decoupling the effect of each fault from the estimation of the others.  Our solution provides a method to detect, isolate, and estimate various faults in system components, using Adaptive Fuzzy Inference Systems Parameter Estimators (ANFISPEs) that are designed and based on parameterizations related to each class of fault. Each ANFISPE estimates the corresponding unknown Fault Parameter (FP) that is further used for fault detection, isolation and identification purposes. Simulation results reveal the effectiveness of the developed FDI scheme of an ACSs actuators of a 3-axis stabilized satellite.DOI:http://dx.doi.org/10.11591/ijece.v2i2.22

    Transient fault area location and fault classification for distribution systems based on wavelet transform and Adaptive Neuro-Fuzzy Inference System (ANFIS)

    Get PDF
    A novel method to locate the zone of transient faults and to classify the fault type in Power Distribution Systems using wavelet transforms and Adaptive Neuro-Fuzzy Inference Systems (ANFIS) has been developed. It draws on advanced techniques of signal processing based on wavelet transforms, using data sampled from the main feeder current to extract important characteristics and dynamic features of the fault signal. In this method, algorithms designed for fault detection and classification based on features extracted from wavelet transforms were implemented. One of four different algorithms based on ANFIS, according to the type of fault, was then used to locate the fault zone. Studies and simulations in an EMTP-RV environment for the 25kV power distribution system of Canada were carried out by considering ten types of faults with different fault inception, fault resistance and fault locations. The simulation results showed high accuracy in classifying the type of fault and determining the fault area, so that the maximum observed error was less than 2%

    ANFIS Models for Fault Detection and Isolation in the Drive Train of a Wind Turbine

    Get PDF
    The paper aims to improve the fault detection and isolation process in wind turbine systems by developing intelligent systems that can effectively identify and isolate faults. Specifically, the paper focuses on the drive train part of a horizontal axis wind turbine machine. The proposed fault diagnostic strategy is designed using an adaptive neural fuzzy inference system (ANFIS), which is a type of artificial neural network that combines the advantages of both fuzzy logic and neural networks. The ANFIS is used to generate residuals that occur after faults have been detected, and to determine the appropriate thresholds needed to correctly detect faults. The simulation results show that the proposed fault diagnostic strategy is effective in detecting faults in the drive train part of the wind turbine system. By using intelligent systems such as ANFIS, the fault detection process can be automated and streamlined, potentially reducing maintenance costs and improving the overall performance and efficiency of wind turbine systems

    Adaptive Neural Subtractive Clustering Fuzzy Inference System for the Detection of High Impedance Fault on Distribution Power System

    Get PDF
    High impedance fault (HIF) is abnormal event on electric power distribution feeder which does not draw enough fault current to be detected by conventional protective devices. The algorithm for HIF detection based on the amplitude ratio of second and odd harmonics to fundamental is presented. This paper proposes an intelligent algorithm using an adaptive neural- Takagi Sugeno-Kang (TSK) fuzzy modeling approach based on subtractive clustering to detect high impedance fault. It is integrating the learning capabilities of neural network to the fuzzy logic system robustness in the sense that fuzzy logic concepts are embedded in the network structure. It also provides a natural framework for combining both numerical information in the form of input/output pairs and linguistic information in the form of IF– THEN rules in a uniform fashion. Fast Fourier Transformation (FFT) is used to extract the features of the fault signal and other power system events. The effect of capacitor banks switching, non-linear load current, no-load line switching and other normal event on distribution feeder harmonics is discussed. HIF and other operation event data were obtained by simulation of a 13.8 kV distribution feeder using PSCAD. The results show that the proposed algorithm can distinguish successfully HIFs from other events in distribution power syste

    Real Time Monitoring and Neuro-Fuzzy Based Fault Diagnosis of Flow Process in Hybrid System

    Get PDF
    Process variables vary with time in certain applications. Monitoring systems let us avoid severe economic losses resulting from unexpected electric system failures by improving the system reliability and maintainability The installation and maintenance of such monitoring systems is easy when it is implemented using wireless techniques. ZigBee protocol, that is a wireless technology developed as open global standard to address the low-cost, low-power wireless sensor networks. The goal is to monitor the parameters and to classify the parameters in normal and abnormal conditions to detect fault in the process as early as possible by using artificial intelligent techniques. A key issue is to prevent local faults to be developed into system failures that may cause safety hazards, stop temporarily the production and possible detrimental environment impact. Several techniques are being investigated as an extension to the traditional fault detection and diagnosis. Computational intelligence techniques are being investigated as an extension to the traditional fault detection and diagnosis methods. This paper proposes ANFIS (Adaptive Neural Fuzzy Inference System) for fault detection and diagnosis. In ANFIS, the fuzzy logic will create the rules and membership functions whereas the neural network trains the membership function to get the best output. The output of ANFIS is compared with Back Propagation Algorithm (BPN) algorithm of neural network. The training and testing data required to develop the ANFIS model were generated at different operating conditions by running the process and by creating various faults in real time in a laboratory experimental model

    An Intelligent Approach To High Impedance Fault Detection

    Get PDF
    In this poster, High Impedance Fault (HIF) is detected in Primary Distribution Network (PDN) using an Adaptive-Neuro Fuzzy Inference System (ANFIS) model. The detection of HIF in PDN is quite challenging because of its characteristic features (low fault current magnitude amongst others) and its delayed or non-detection causes devastating scenarios such as electric shock, wildfire, electrocution, system malfunctioning and power outages. This poster proposes an Intelligent approach in a simulated study. Simulink toolbox in MATLAB software was used to model a typical 33kV distribution network (DN) in Nigeria and accurate detection of HIF in the DN was achieved using fault current signal data to train the ANFIS model. The modeled network was simulated for normal and fault conditions. The results show that the ANFIS model was able to detect HIF using binary codes 0 for normal condition or 1 for fault condition on one or more phases

    Fuzzy-logic-based control, filtering, and fault detection for networked systems: A Survey

    Get PDF
    This paper is concerned with the overview of the recent progress in fuzzy-logic-based filtering, control, and fault detection problems. First, the network technologies are introduced, the networked control systems are categorized from the aspects of fieldbuses and industrial Ethernets, the necessity of utilizing the fuzzy logic is justified, and the network-induced phenomena are discussed. Then, the fuzzy logic control strategies are reviewed in great detail. Special attention is given to the thorough examination on the latest results for fuzzy PID control, fuzzy adaptive control, and fuzzy tracking control problems. Furthermore, recent advances on the fuzzy-logic-based filtering and fault detection problems are reviewed. Finally, conclusions are given and some possible future research directions are pointed out, for example, topics on two-dimensional networked systems, wireless networked control systems, Quality-of-Service (QoS) of networked systems, and fuzzy access control in open networked systems.This work was supported in part by the National Natural Science Foundation of China under Grants 61329301, 61374039, 61473163, and 61374127, the Hujiang Foundation of China under Grants C14002 andD15009, the Engineering and Physical Sciences Research Council (EPSRC) of the UK, the Royal Society of the UK, and the Alexander von Humboldt Foundation of Germany

    Data-driven Soft Sensors in the Process Industry

    Get PDF
    In the last two decades Soft Sensors established themselves as a valuable alternative to the traditional means for the acquisition of critical process variables, process monitoring and other tasks which are related to process control. This paper discusses characteristics of the process industry data which are critical for the development of data-driven Soft Sensors. These characteristics are common to a large number of process industry fields, like the chemical industry, bioprocess industry, steel industry, etc. The focus of this work is put on the data-driven Soft Sensors because of their growing popularity, already demonstrated usefulness and huge, though yet not completely realised, potential. A comprehensive selection of case studies covering the three most important Soft Sensor application fields, a general introduction to the most popular Soft Sensor modelling techniques as well as a discussion of some open issues in the Soft Sensor development and maintenance and their possible solutions are the main contributions of this work

    A Review of Fault Diagnosing Methods in Power Transmission Systems

    Get PDF
    Transient stability is important in power systems. Disturbances like faults need to be segregated to restore transient stability. A comprehensive review of fault diagnosing methods in the power transmission system is presented in this paper. Typically, voltage and current samples are deployed for analysis. Three tasks/topics; fault detection, classification, and location are presented separately to convey a more logical and comprehensive understanding of the concepts. Feature extractions, transformations with dimensionality reduction methods are discussed. Fault classification and location techniques largely use artificial intelligence (AI) and signal processing methods. After the discussion of overall methods and concepts, advancements and future aspects are discussed. Generalized strengths and weaknesses of different AI and machine learning-based algorithms are assessed. A comparison of different fault detection, classification, and location methods is also presented considering features, inputs, complexity, system used and results. This paper may serve as a guideline for the researchers to understand different methods and techniques in this field
    corecore