82,247 research outputs found

    Fault detection, diagnosis, and prognosis of a process operating under time-varying conditions

    Get PDF
    In the industrial panorama, many processes operate under time-varying conditions. Adapt¬ing high-performance diagnostic techniques under these relatively more complex situations is ur¬gently needed to mitigate the risk of false alarms. Attention is being paid to fault anticipation, requiring an in-depth study of prediction techniques. Predicting remaining life before the occurrence of faults allows for a comprehensive maintenance management protocol and facilitates the wear management of the machine, avoiding faults that could permanently compromise the integrity of such machinery. This study focuses on canonical variate analysis for fault detection in processes operating under time-varying conditions and on its contribution to the diagnostic and prognostic analysis, the latter of which was performed with machine learning techniques. The approach was validated on actual datasets from a granulator operating in the pharmaceutical sector

    An Online Adaptive Machine Learning Framework for Autonomous Fault Detection

    Get PDF
    The increasing complexity and autonomy of modern systems, particularly in the aerospace industry, demand robust and adaptive fault detection and health management solutions. The development of a data-driven fault detection system that can adapt to varying conditions and system changes is critical to the performance, safety, and reliability of these systems. This dissertation presents a novel fault detection approach based on the integration of the artificial immune system (AIS) paradigm and Online Support Vector Machines (OSVM). Together, these algorithms create the Artificial Immune System augemented Online Support Vector Machine (AISOSVM). The AISOSVM framework combines the strengths of the AIS and OSVM to create a fault detection system that can effectively identify faults in complex systems while maintaining adaptability. The framework is designed using Model-Based Systems Engineering (MBSE) principles, employing the Capella tool and the Arcadia methodology to develop a structured, integrated approach for the design and deployment of the data-driven fault detection system. A key contribution of this research is the development of a Clonal Selection Algorithm that optimizes the OSVM hyperparameters and the V-Detector algorithm parameters, resulting in a more effective fault detection solution. The integration of the AIS in the training process enables the generation of synthetic abnormal data, mitigating the need for engineers to gather large amounts of failure data, which can be impractical. The AISOSVM also incorporates incremental learning and decremental unlearning for the Online Support Vector Machine, allowing the system to adapt online using lightweight computational processes. This capability significantly improves the efficiency of fault detection systems, eliminating the need for offline retraining and redeployment. Reinforcement Learning (RL) is proposed as a promising future direction for the AISOSVM, as it can help autonomously adapt the system performance in near real-time, further mitigating the need for acquiring large amounts of system data for training, and improving the efficiency of the adaptation process by intelligently selecting the best samples to learn from. The AISOSVM framework was applied to real-world scenarios and platform models, demonstrating its effectiveness and adaptability in various use cases. The combination of the AIS and OSVM, along with the online learning and RL integration, provides a robust and adaptive solution for fault detection and health management in complex autonomous systems. This dissertation presents a significant contribution to the field of fault detection and health management by integrating the artificial immune system paradigm with Online Support Vector Machines, developing a structured, integrated approach for designing and deploying data-driven fault detection systems, and implementing reinforcement learning for online, autonomous adaptation of fault management systems. The AISOSVM framework offers a promising solution to address the challenges of fault detection in complex, autonomous systems, with potential applications in a wide range of industries beyond aerospace

    Fault diagnosis of a granulator operating under time-varying conditions using canonical variate analysis

    Get PDF
    Granulators play a key role in many pharmaceutical processes because they are involved in the production of tablets and capsule dosage forms. Considering the characteristics of the production processes in which a granulator is involved, proper maintenance of the latter is relevant for plant safety. During the operational phase, there is a high risk of explosion, pollution, and contamination. The nature of this process also requires an in-depth examination of the time-dependence of the process variables. This study proposes the application of canonical variate analysis (CVA) to perform fault detection in a granulation process that operates under time-varying conditions. Beyond this, a different approach to the management of process non-linearities is proposed. The novelty of the study is in the application of CVA in this kind of process, because it is possible to state that the actual literature on the theme shows some limitations of CVA in such processes. The aim was to increase the applicability of CVA in variable contexts, with simple management of non-linearities. The results, considering process data from a pharmaceutical granulator, showed that the proposed approach could detect faults and manage non-linearities, exhibiting future scenarios for more performing and automatic monitoring techniques of time-varying processes

    A review of convex approaches for control, observation and safety of linear parameter varying and Takagi-Sugeno systems

    Get PDF
    This paper provides a review about the concept of convex systems based on Takagi-Sugeno, linear parameter varying (LPV) and quasi-LPV modeling. These paradigms are capable of hiding the nonlinearities by means of an equivalent description which uses a set of linear models interpolated by appropriately defined weighing functions. Convex systems have become very popular since they allow applying extended linear techniques based on linear matrix inequalities (LMIs) to complex nonlinear systems. This survey aims at providing the reader with a significant overview of the existing LMI-based techniques for convex systems in the fields of control, observation and safety. Firstly, a detailed review of stability, feedback, tracking and model predictive control (MPC) convex controllers is considered. Secondly, the problem of state estimation is addressed through the design of proportional, proportional-integral, unknown input and descriptor observers. Finally, safety of convex systems is discussed by describing popular techniques for fault diagnosis and fault tolerant control (FTC).Peer ReviewedPostprint (published version

    Statistical process monitoring of a multiphase flow facility

    Get PDF
    Industrial needs are evolving fast towards more flexible manufacture schemes. As a consequence, it is often required to adapt the plant production to the demand, which can be volatile depending on the application. This is why it is important to develop tools that can monitor the condition of the process working under varying operational conditions. Canonical Variate Analysis (CVA) is a multivariate data driven methodology which has been demonstrated to be superior to other methods, particularly under dynamically changing operational conditions. These comparative studies normally use computer simulated data in benchmark case studies such as the Tennessee Eastman Process Plant (Ricker, N.L. Tennessee Eastman Challenge Archive, Available at 〈http://depts.washington.edu/control/LARRY/TE/download.html〉 Accessed 21.03.2014). The aim of this work is to provide a benchmark case to demonstrate the ability of different monitoring techniques to detect and diagnose artificially seeded faults in an industrial scale multiphase flow experimental rig. The changing operational conditions, the size and complexity of the test rig make this case study an ideal candidate for a benchmark case that provides a test bed for the evaluation of novel multivariate process monitoring techniques performance using real experimental data. In this paper, the capabilities of CVA to detect and diagnose faults in a real system working under changing operating conditions are assessed and compared with other methodologies. The results obtained demonstrate that CVA can be effectively applied for the detection and diagnosis of faults in real complex systems, and reinforce the idea that the performance of CVA is superior to other algorithms

    Towards Distributed and Adaptive Detection and Localisation of Network Faults

    Get PDF
    We present a statistical probing-approach to distributed fault-detection in networked systems, based on autonomous configuration of algorithm parameters. Statistical modelling is used for detection and localisation of network faults. A detected fault is isolated to a node or link by collaborative fault-localisation. From local measurements obtained through probing between nodes, probe response delay and packet drop are modelled via parameter estimation for each link. Estimated model parameters are used for autonomous configuration of algorithm parameters, related to probe intervals and detection mechanisms. Expected fault-detection performance is formulated as a cost instead of specific parameter values, significantly reducing configuration efforts in a distributed system. The benefit offered by using our algorithm is fault-detection with increased certainty based on local measurements, compared to other methods not taking observed network conditions into account. We investigate the algorithm performance for varying user parameters and failure conditions. The simulation results indicate that more than 95 % of the generated faults can be detected with few false alarms. At least 80 % of the link faults and 65 % of the node faults are correctly localised. The performance can be improved by parameter adjustments and by using alternative paths for communication of algorithm control messages

    An initial approach to distributed adaptive fault-handling in networked systems

    Get PDF
    We present a distributed adaptive fault-handling algorithm applied in networked systems. The probabilistic approach that we use makes the proposed method capable of adaptively detect and localize network faults by the use of simple end-to-end test transactions. Our method operates in a fully distributed manner, such that each network element detects faults using locally extracted information as input. This allows for a fast autonomous adaption to local network conditions in real-time, with significantly reduced need for manual configuration of algorithm parameters. Initial results from a small synthetically generated network indicate that satisfactory algorithm performance can be achieved, with respect to the number of detected and localized faults, detection time and false alarm rate

    A review on analysis and synthesis of nonlinear stochastic systems with randomly occurring incomplete information

    Get PDF
    Copyright q 2012 Hongli Dong et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.In the context of systems and control, incomplete information refers to a dynamical system in which knowledge about the system states is limited due to the difficulties in modeling complexity in a quantitative way. The well-known types of incomplete information include parameter uncertainties and norm-bounded nonlinearities. Recently, in response to the development of network technologies, the phenomenon of randomly occurring incomplete information has become more and more prevalent. Such a phenomenon typically appears in a networked environment. Examples include, but are not limited to, randomly occurring uncertainties, randomly occurring nonlinearities, randomly occurring saturation, randomly missing measurements and randomly occurring quantization. Randomly occurring incomplete information, if not properly handled, would seriously deteriorate the performance of a control system. In this paper, we aim to survey some recent advances on the analysis and synthesis problems for nonlinear stochastic systems with randomly occurring incomplete information. The developments of the filtering, control and fault detection problems are systematically reviewed. Latest results on analysis and synthesis of nonlinear stochastic systems are discussed in great detail. In addition, various distributed filtering technologies over sensor networks are highlighted. Finally, some concluding remarks are given and some possible future research directions are pointed out. © 2012 Hongli Dong et al.This work was supported in part by the National Natural Science Foundation of China under Grants 61273156, 61134009, 61273201, 61021002, and 61004067, the Engineering and Physical Sciences Research Council (EPSRC) of the UK under Grant GR/S27658/01, the Royal Society of the UK, the National Science Foundation of the USA under Grant No. HRD-1137732, and the Alexander von Humboldt Foundation of German

    Fault detection for markovian jump systems with sensor saturations and randomly varying nonlinearities

    Get PDF
    This is the post-print version of the Article. The official published version can be accessed from the link below - Copyright @ 2012 IEEE.This paper addresses the fault detection problem for discrete-time Markovian jump systems with incomplete knowledge of transition probabilities, randomly varying nonlinearities and sensor saturations. For the Markovian mode jumping, the transition probability matrix is allowed to have partially unknown entries, while the cases with completely known or completely unknown transition probabilities are also investigated as two special cases. The randomly varying nonlinearities and the sensor saturations are introduced to reflect the limited capacity of the communication networks resulting from the noisy environment, probabilistic communication failures, measurements of limited amplitudes, etc. Two energy norm indices are used for the fault detection problem in order to account for, respectively, the restraint of disturbance and the sensitivity of faults. The purpose of the problem addressed is to design an optimized fault detection filter such that 1) the fault detection dynamics is stochastically stable; 2) the effect from the exogenous disturbance on the residual is attenuated with respect to a minimized H∞-norm; and 3) the sensitivity of the residual to the fault is enhanced by means of a maximized H∞-norm. The characterization of the gains of the desired fault detection filters is derived in terms of the solution to a convex optimization problem that can be easily solved by using the semi-definite programme method. Finally, a simulation example is employed to show the effectiveness of the fault detection filtering scheme proposed in this paper.This work was supported in part by the National 973 Project under Grant 2009CB320600, the National Natural Science Foundation of China under Grants 61028008, 61134009, 60825303, 90916005 and 61004067, the Engineering and Physical Sciences Research Council (EPSRC) of the U.K. under Grant GR/S27658/01, the Royal Society of the U.K., and the Alexander von Humboldt Foundation of Germany
    corecore