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ABSTRACT

The increasing complexity and autonomy of modern systems, particularly in the aerospace
industry, demand robust and adaptive fault detection and health management solutions. The
development of a data-driven fault detection system that can adapt to varying conditions
and system changes is critical to the performance, safety, and reliability of these systems.
This dissertation presents a novel fault detection approach based on the integration of the
artificial immune system (AIS) paradigm and Online Support Vector Machines (OSVM).
Together, these algorithms create the Artificial Immune System augemented Online Support
Vector Machine (AISOSVM).

The AISOSVM framework combines the strengths of the AIS and OSVM to create a fault
detection system that can effectively identify faults in complex systems while maintaining
adaptability. The framework is designed using Model-Based Systems Engineering (MBSE)
principles, employing the Capella tool and the Arcadia methodology to develop a structured,
integrated approach for the design and deployment of the data-driven fault detection system.
A key contribution of this research is the development of a Clonal Selection Algorithm that
optimizes the OSVM hyperparameters and the V-Detector algorithm parameters, resulting
in a more effective fault detection solution. The integration of the AIS in the training
process enables the generation of synthetic abnormal data, mitigating the need for engineers
to gather large amounts of failure data, which can be impractical.

The AISOSVM also incorporates incremental learning and decremental unlearning for the
Online Support Vector Machine, allowing the system to adapt online using lightweight com-
putational processes. This capability significantly improves the efficiency of fault detection
systems, eliminating the need for offline retraining and redeployment.

Reinforcement Learning (RL) is proposed as a promising future direction for the AISOSVM,
as it can help autonomously adapt the system performance in near real-time, further miti-
gating the need for acquiring large amounts of system data for training, and improving the

efficiency of the adaptation process by intelligently selecting the best samples to learn from.

i



The AISOSVM framework was applied to real-world scenarios and platform models,
demonstrating its effectiveness and adaptability in various use cases. The combination of
the AIS and OSVM, along with the online learning and RL integration, provides a robust
and adaptive solution for fault detection and health management in complex autonomous
systems.

In conclusion, this dissertation presents a significant contribution to the field of fault
detection and health management by integrating the artificial immune system paradigm
with Online Support Vector Machines, developing a structured, integrated approach for de-
signing and deploying data-driven fault detection systems, and implementing reinforcement
learning for online, autonomous adaptation of fault management systems. The AISOSVM
framework offers a promising solution to address the challenges of fault detection in com-
plex, autonomous systems, with potential applications in a wide range of industries beyond

acrospace.
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1 Introduction
In this introductory chapter, the stage is set for the research presented in the dissertation
by discussing the importance and challenges associated with fault detection in complex sys-
tems. The chapter begins by highlighting the need for fault detection in various applications
and the significance of developing innovative solutions. Subsequently, a literature survey is
performed for fault detection methodologies with an overview of the motivation behind the
data-driven approach. Finally, a discussion of the relevant research questions, methods, and

scope of the study follow with a detailed structure of the dissertation.

1.1 The Need for Fault Detection

Fault detection is of paramount importance in a wide range of applications, from in-
dustrial systems and vehicles to autonomous platforms and spacecraft. The capability to
identify and diagnose faults in real-time enables systems to operate safely and efficiently, re-
duces the risk of catastrophic failures, and prolongs the lifespan of the equipment. Early and
accurate fault detection can lead to timely maintenance, avoiding costly repairs and reduc-
ing the overall cost of ownership. Furthermore, fault detection contributes to improving the
reliability and dependability of systems, which is essential for mission-critical applications
where the cost of failure is extremely high.

The growing complexity and interconnectivity of systems have significantly increased
the challenge of fault detection. Modern systems often consist of multiple interconnected
subsystems that interact in intricate and nonlinear ways, making the identification of faults
more difficult. In addition, the increasing reliance on autonomous systems necessitates the
development of advanced fault detection methods that can operate in real-time and adapt
to evolving conditions. As a result, there is a pressing need for innovative fault detection
methodologies that can cope with the challenges posed by complex and dynamic systems.

Traditionally, fault detection methods have been based on model-driven approaches,
which rely on mathematical models of the system’s behavior to identify deviations from

the expected performance. While these methods have proven effective in some applications,



they often require a deep understanding of the system dynamics and may not be suitable
for systems with complex and nonlinear behavior. Moreover, model-driven approaches can
be computationally expensive and may struggle to handle large amounts of data generated
by modern systems.

In recent years, there has been a growing interest in data-driven fault detection methods,
which leverage the wealth of data generated by systems to identify faults without requiring
an explicit model of the system’s behavior. Machine learning and artificial intelligence tech-
niques have emerged as promising tools for developing data-driven fault detection methods,
due to their ability to learn complex relationships and patterns from large datasets. These
methods have the potential to overcome some of the limitations of model-driven approaches,
offering greater flexibility and adaptability to handle the challenges posed by complex sys-
tems.

Despite the advances in data-driven fault detection, there are still several challenges
that need to be addressed. One key challenge is the scarcity of labeled data, particularly
for abnormal conditions. Collecting and labeling data for all possible fault scenarios can be
time-consuming, expensive, and often impractical, especially for safety-critical systems where
the occurrence of faults is rare. Moreover, systems may experience unforeseen faults that
are not represented in the training data, leading to reduced detection accuracy. Therefore,
there is a need for fault detection methods that can cope with limited and potentially noisy
data, as well as adapt to new and unseen fault conditions.

Another challenge lies in the real-time requirements of many fault detection applications.
The ability to identify and diagnose faults quickly is crucial for ensuring the safety and
reliability of systems. However, many machine learning techniques are computationally
intensive and may struggle to meet the real-time constraints imposed by some applications.
Developing efficient and scalable fault detection methods that can operate in real-time is
therefore a key research objective.

Finally, the increasing autonomy of systems raises the need for fault detection methods



that can adapt and learn autonomously, without requiring human intervention. In many
cases, systems operate in dynamic and uncertain environments, where the conditions may
change over time. Autonomous fault detection methods should be capable of adapting to
these changes and updating their knowledge to maintain high detection accuracy. This
necessitates the development of fault detection methods that incorporate elements of rein-
forcement learning and online learning, allowing them to adapt continuously as new data

becomes available.

1.2 Fault Detection Methodologies

As the technology of autonomous systems advances, the need for robust, online health
monitoring systems that can identify and compensate for faults in these systems grows.
Faults can manifest in various forms, such as sensor errors, uncertainties in vehicle dynamics,
subsystem failures, or externally induced behaviors. Despite the progression of technologies
and advanced mitigation strategies, anomalies remain a common occurrence in autonomous
systems. In particular, spacecraft are highly complex and isolated systems, which makes fault
detection and isolation even more critical. The loss of space systems is often irreversible and
typically preceded by performance degradation of system components and devices. Unfore-
seen circumstances and naturally occurring faults necessitate an on-board fault diagnosis
system for space vehicles capable of autonomous Fault Detection, Isolation, and Recovery
(FDIR) in order to maintain space operations and mitigate operational gaps as mission
complexities increase.

In the field of fault detection, two main approaches are commonly employed: model-
based and data-driven methods. Both approaches have their advantages and drawbacks,
and selecting the most suitable method depends on the specific requirements of the system
under consideration.

Model-based approaches rely on the development of a mathematical model that accu-
rately represents the system’s behavior. These models can be derived from physical laws

or through system identification techniques, and they often incorporate a detailed under-
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Figure 1.1 General model-based fault detection architecture.

standing of the underlying system dynamics. Figure [1.1| provides a general schematic of
a model-based approach. The primary advantage of model-based methods is their ability
to capture the underlying physics of the system, which can lead to more accurate and in-
terpretable fault detection results [I]. The fault detection performance of these models,
because they are based on derived system dynamics, are analytically verifiable unlike data-
driven methods. However, developing an accurate model can be challenging, particularly
for complex systems with many interacting components or where the system dynamics are
not well understood. Additionally, model-based approaches may require substantial compu-
tational resources, which can be a concern for systems with limited processing capabilities,
such as spacecraft.

On the other hand, data-driven approaches for fault detection rely on the analysis of
historical data to identify patterns and relationships that may indicate faults. These methods
often employ machine learning algorithms, such as neural networks, support vector machines,
or artificial immune systems, to learn the complex relationships between various system
parameters and fault conditions. Data-driven approaches can be particularly advantageous
in situations where the system dynamics are not well understood, or where it is difficult
to develop an accurate mathematical model [2]. Furthermore, these methods can often be
more computationally efficient than model-based approaches, making them suitable for real-
time fault detection applications. Figure [1.2| provides a general schematic of a data-driven

approach.
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Figure 1.2 General data-driven fault detection architecture.

However, data-driven methods come with their own set of challenges. The success of these
approaches heavily depends on the quality and quantity of the available data. Insufficient or
unrepresentative data can lead to poor fault detection performance, as the algorithms may
not be able to learn the necessary relationships between the system parameters and fault
conditions. Moreover, data-driven methods often require extensive testing, simulation veri-
fication, and validation to determine the necessary features for capturing system dynamics.
This can be particularly challenging for spacecraft, where obtaining sufficient fault data can
be difficult due to the rarity and unpredictability of faults.

In many conventional space systems, fault detection takes place within the ground seg-
ment after engineers receive and process telemetry data from the spacecraft. This approach
can create a gap in nominal operations for the space system, limiting its capabilities and
allowing the anomaly to propagate and cause additional adverse effects. When developing
health monitoring systems, it is crucial to strike a balance between processing requirements
and response accuracy. For many space systems, a common approach involves hardware re-
dundancy; this design concept employs identical components and sensors with outputs that

are used for direct comparison. Although this method requires minimal computation, the



added hardware can be costly and contributes to the spacecraft’s mass constraint.

Machine learning algorithms have been extensively explored and applied to various aerospace
vehicle health monitoring systems [3]. Gao et al. [II, 2] reviewed multiple autonomous sys-
tem fault detection algorithms, including both model-based and data-driven strategies. In
the context of health monitoring, Kalman filters have been employed within sensor fusion
networks [4]. Furthermore, Neural Networks and system model parameter estimation have
been successfully applied to satellite fault detection [5 [6]. However, these fault detection
algorithms necessitate prior knowledge of the vehicles they are applied to, as well as accurate
system models.

Data-driven Artificial Immune System (AIS) methods have been proposed for aerospace
system fault detection and isolation [7]. These health monitoring paradigms utilize the prin-
ciple of self-nonself-discrimination to differentiate between nominal data entities belonging
to the system’s operational envelope and entities outside of it. This approach tackles the
complexity and multi-dimensionality of aerospace system dynamic responses in abnormal
conditions and aids spacecraft in performing real-time recovery maneuvers [§]. One chal-
lenge in implementing AIS strategies for fault detection is the need for extensive testing,
simulation verification, and validation to determine the necessary features for capturing sys-
tem dynamics. These algorithms often demand a large amount of data for training to ensure
sufficient coverage of both nominal and off-nominal system behaviors.

Health monitoring systems have employed AIS strategies to enhance and optimize machine-
learning-based classifier models. For instance, the Clonal Selection Algorithm, inspired by
the immune system metaphor, has been utilized to define feature sets and perform param-
eter optimization for support vector machine classifiers for real-world applications [9] [10].
Moreover, the Clonal Selection Algorithm has been used to improve the performance of
other AIS-inspired methods, such as the Real-Valued Negative Selection algorithm, for fault
detection applications [I1].

Traditionally, on-board spacecraft health monitoring systems have relied on various rule-



based techniques or offline-based machine learning approaches, which can be challenging to
verify and validate. For the development of future autonomous systems, a fault detection
system that balances accurate fault detection, design choices, and real-time performance is

essential.

1.3 Research Questions, Methods, and Scope

The primary aim of this dissertation is to develop and evaluate an autonomous fault
detection architecture that can be applied to complex systems, with a particular focus on
spacecraft. This research will address the challenges associated with the design, implemen-
tation, and validation of such an architecture, taking into account the unique constraints
and requirements of spacecraft and other autonomous systems. To achieve this objective,

the following research questions will be investigated:

1. How can an autonomous fault detection system be designed and implemented to ef-
fectively handle the complexities and multi-dimensionality of spacecraft and other au-
tonomous systems, while incorporating a structured implementation approach for the

fault detection strategy?

2. What are the most suitable machine learning algorithms and techniques for the devel-
opment of a robust, real-time fault detection system capable of handling large amounts

of data without overfitting or excessive computational requirements?

3. How can an autonomous fault detection system be adapted and improved over time to
maintain or enhance its performance in response to changes in system behavior or the

emergence of new faults?

4. How can the performance of the proposed fault detection system be evaluated, com-
pared to existing methods, and validated to ensure its effectiveness and reliability in

real-world applications?



To address these research questions, this research will employ a combination of theoreti-
cal, computational, and experimental methods. The development of the fault detection sys-
tem, the Artificial Immune System augmented Online Support Vector Machine (AISOSVM),
will involve the selection and adaptation of appropriate machine learning techniques, as well
as the integration of artificial immune system algorithms to enhance performance. Addition-
ally, the research will involve designing and modeling a structured implementation approach
for the fault detection strategy, ensuring seamless integration with the overall system archi-
tecture. Incremental learning and reinforcement learning approaches will be investigated for
the autonomous adaptation of the system over time.

The scope of this dissertation will cover the development and evaluation of the proposed
fault detection system, with a specific focus on its application to spacecraft and other au-
tonomous systems. While the primary application domain is space systems, the proposed
methodology is designed to be tailored to other autonomous platforms, such as drones, au-
tonomous vehicles, and underwater vehicles. The performance of the proposed system will be
compared to existing methods and evaluated using a combination of simulated and real-world

data sets to ensure its effectiveness and reliability in real-world applications.

1.4 Dissertation Outline

This dissertation is organized into nine chapters, providing a comprehensive examination
of the development, implementation, and evaluation of the proposed autonomous fault detec-
tion system for spacecraft and other autonomous platforms. The outline of the dissertation

is as follows:

Chapter 1: Introduction. This chapter presents the motivation behind the research,
the significance of the problem, the state of the art, and introduces the research questions,

methods, and scope of the dissertation.

Chapter 2: Adaptive Fault Detection Framework. This chapter presents the in-

tegrated and structured approach for designing the fault detection design and deployment



framework, along with discussions on workflow and system modeling, data acquisition and
collection, data processing, feature selection and reduction, and clustering and training tech-

niques.

Chapter 3: Support Vector Machine. This chapter provides an overview of the support
vector machine, including its background, theory, framework, and support vector classifier

applications.

Chapter 4: Incremental Learning and Decremental Unlearning. This chapter dis-
cusses the concepts and algorithms related to incremental learning and decremental unlearn-

ing, focusing on the online support vector machine and model validation.

Chapter 5: Artificial Immune System Paradigm. This chapter presents the artificial
immune system paradigm, discussing the overview, concepts, negative selection algorithm,

clonal selection algorithm, and variable detector strategy.

Chapter 6: The AISOSVM. This chapter details the development, motivation, algo-
rithm, implementation, and integration of the OSVM with artificial immune system algo-

rithms.

Chapter 7: Autonomous Adaptation. This chapter investigates the use of Q-learning
and its integration with AISOSVM, addressing the challenges and potential solutions related

to autonomous adaptation, as well as the evaluation and validation of the approach.

Chapter 8: Results. This chapter presents the experimental setup and test scenarios,
comparison with alternative approaches, application to spacecraft systems, and insights and

lessons learned from the evaluation of the proposed fault detection system.



Chapter 9: Conclusion. This chapter provides a summary of the contributions of the
dissertation, discusses limitations and future work, and examines the broader impact and
applications of the research.

Each chapter is designed to provide a thorough understanding of the proposed au-
tonomous fault detection system, covering the theoretical foundations, practical implemen-
tation, and evaluation of the system’s performance in real-world scenarios. The dissertation
will also address the challenges and opportunities associated with the development of such
a system, aiming to contribute to the advancement of autonomous fault detection and man-

agement for spacecraft and other autonomous platforms.
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2 Adaptive Fault Detection Framework

In this chapter, the focus is on the development and application of an adaptive fault
detection framework, which is essential for the successful implementation of the proposed
AISOSVM methodology. The framework is designed and modeled using Model-Based Sys-
tems Engineering (MBSE) to thoroughly characterize the framework’s requirements and
needs, resulting in a fully integrated design and deployment process complete with the nec-
essary tools and process flow.

The chapter explores various aspects of the framework, including the importance of gath-
ering training data, its sources, and applications, as well as the various data processing
techniques employed during training, such as clustering and normalization. Additionally,
the chapter delves into sensitivity analysis for feature selection, the significance of features,
and the use of Principal Component Analysis (PCA) to reduce high-dimensional features for
application in the support vector machine binary classifier.

By providing a comprehensive understanding of the adaptive fault detection framework
and its critical components, this chapter sets the stage for the AISOSVM development

presented in later chapters.

2.1 An Integrated and Structured Approach

Developing an effective fault detection system for autonomous platforms requires a com-
prehensive understanding of the various components and stages involved in the process. To
ensure that the fault detection system functions optimally, it is crucial to adopt an integrated
and structured approach that effectively addresses the complexities and challenges involved
in the design, testing, and deployment phases.

The engineered approach offers several benefits, including better management of the
various stages of the process, improved system reliability, and enhanced fault detection ca-
pabilities. This approach is underpinned by a systematic organization of the framework
components and a well-defined methodology that guides the development process. By lever-

aging an integrated tool set, the various elements of the fault detection system are seamlessly
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interconnected, allowing for more effective communication and collaboration between the
components.

A structured workflow ensures that the development process is organized and follows a
logical progression. It enables the efficient allocation of resources, streamlined workflows, and
the identification of potential bottlenecks or issues before they escalate. Additionally, the
structured approach promotes the consistent application of best practices and methodologies,
which results in a more robust and reliable fault detection system.

In the context of the AISOSVM, the framework encompasses the entire process, from
the initial design and modeling stages to the final deployment and evaluation of the fault
detection system. By adopting this approach, the AISOSVM development benefits from a
coherent and well-planned process, which ultimately leads to a more effective and reliable

fault detection system for autonomous platforms.

2.2 Model-Based Systems Engineering

The development of a structured and integrated approach to designing and deploying
adaptive fault management systems is essential for achieving the desired functionality and
reliability of complex autonomous systems, such as spacecraft. MBSE offers a structured,
systematic, and visual approach to system and process design, which is beneficial for the
development of fault management systems. This enables the creation of a comprehensive
system representation that captures the interactions between fault management components
and the operating system, facilitating the identification and analysis of potential inadeque-
cies and their impacts [12]. By providing a single source of truth for system design, MBSE
enhances communication and collaboration between stakeholders, simplifying the design pro-
cess and reducing the risk of errors and inconsistencies.

One example of a model-based fault management system in the aerospace industry is
the Model-Based Off-Nominal State Identification and Detection (MONSID) tool [13], [14].
MONSID offers engineers and users a graphical interface to build system models and design

and deploy model-based fault management systems, simplifying the entire process. The
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MONSID tool has been successfully applied to free-flying satellites and robotic space systems.
This work aims to adopt MBSE to leverage its benefits of comprehensive and verifiable design

methods for data-driven fault detection strategies.

2.2.1 Arcadia Method and the Capella Tool

Capella, an open source MBSE tool, is employed to apply the Arcadia method, an MBSE
methodology focused on designing complex systems and software architectures [15], to the
AISOSVM Fault Management Framework design process. The Arcadia methodology is a
model-based systems engineering approach that emphasizes the importance of architecture-
driven and requirements-driven system and process design. This methodology provides a
coherent and traceable process for the development and management of complex systems,
promoting a comprehensive understanding of the system architecture and its components.

The Arcadia method comprises several stages, starting with the Operational Analysis
(OA) stage, where the operational context, stakeholder needs, and operational requirements
are identified. Next, the System Analysis (SA) stage further refines the functional chains and
system components to achieve the desired system behavior transforming system requirements
into allocated actor and system responsibilities and functions. The Logical Architecture
(LA) and Physical Architecture (PA) stages are then used to define the logical and physical
implementation of the system, respectively. Each stage provides a progressively more detailed
representation of the system, allowing for the effective integration of system requirements,
functional chains, and architectural elements [16].

By following the Arcadia methodology, the workflow and toolflow design benefits from
a structured and systematic design methodology that ensures the effective integration of
system requirements, functional chains, and architectural elements, ultimately leading to a

more resilient and adaptable fault management system for various autonomous platforms.

2.2.2 MBSE for Data-Drive Fault Management Systems
Applying MBSE to data-driven fault management systems, such as the AISOSVM, en-

ables a comprehensive understanding of the system’s architecture and interactions between
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its components. This understanding is crucial for the development of an effective fault de-
tection and health management system, as it allows for the identification of potential failure
modes, their impacts, and appropriate mitigation strategies. Furthermore, the use of MBSE
promotes a systematic approach to system design [I7], ensuring that all relevant aspects,
such as data acquisition, processing, feature selection, and classification, are considered and
integrated effectively for different operating domains and platforms.

The Arcadia method and Capella tool facilitate the modeling of the AISOSVM framework
by providing a coherent process for capturing the system’s operational context, requirements,
functions, and architectural elements. This process ensures that the fault management sys-
tem is designed to meet the specific needs of the application and adapt to changes in system
dynamics or operational environment. The AISOSVM framework can be represented in the
various stages of the Arcadia method, starting with stakeholder needs and system require-
ments. The system needs analysis and system analysis stages are used to define the system
functions, such as data acquisition, processing, feature selection, and classification, as well
as their interactions and relationships with other system components.

Throughout the design process, the Capella tool facilitates the creation and visualization
of the AISOSVM framework’s models, enabling the efficient communication and collabo-
ration between stakeholders. Moreover, the tool supports the continuous validation and
verification of the system’s design, ensuring that the fault management system meets its
requirements and can effectively adapt to changes in system dynamics. The result of this
MBSE-driven design for the data-driven fault management approach is an integrated system
model of the design approach and software components that can be reused in future system

models and used for verification and validation of the AISOSVM framework implementation.

2.3 Framework Design and Modeling
The AISOSVM framework design and modeling process leverages the capabilities of
MBSE, Arcadia, and Capella to create a comprehensive and adaptable fault management

system for complex autonomous platforms. Utilizing MBSE in conjunction with the Arcadia
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method provides a structured and systematic approach to the fault management framework
design process, enabling a seamless transition from the Operational Analysis through the
various levels of system and software decomposition.

The use of MBSE in the design of the AISOSVM Framework facilitated the creation
of an organized and coherent workflow for fault detection system design and deployment.
Additionally, it provided a foundation for the necessary tool set required to integrate the
AISOSVM into various autonomous platforms. A first iteration of a fault detection frame-
work model is developed promoting reusability across diverse platforms and process integra-

tions for future AISOSVM framework development.

2.3.1 Operational Analysis

Operational Analysis is a crucial stage in the Arcadia method and serves as the foundation
for the design and development of any system, including the AISOSVM Framework. It
primarily focuses on understanding the stakeholders’ needs, defining the operational context,
and capturing the high-level use cases in the form of Operational Capabilities. By performing
an Operational Analysis, a clear vision of the system’s purpose and objectives is established
while key operational entities and their interactions are defined. The Operational Analysis
provides an initial perspective for the concept of operations for the fault detection framework,
ensuring that the system’s development aligns with its intended operational context.

The Operational Analysis began with the creation of high-level use cases in the form of
Operational Capabilities. Operational Capabilities describe the fundamental abilities that
a system must possess to achieve its objectives and satisfy the needs of its stakeholders.
These capabilities serve as a bridge between the stakeholders’ expectations and the system’s
functional design.

In the AISOSVM Framework, the following Operational Capabilities were identified:

e Design and Configure Fault Management Models: describes the process of
designing and configuring the fault management models that will be utilized in the

system to detect and diagnose faults.
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e Perform Real-Time Fault Management: involves the real-time monitoring and

management of faults within the system, ensuring timely detection and diagnosis.

¢ Provide Data Management and Integration: focuses on managing the data uti-
lized by the fault management system, including data acquisition, storage, retrieval,
deletion, and modification and also encompasses the integration of various data sources

to support analysis.

e Verify and Validate Fault Detection Models: focuses on the implementation
of verification and validation processes for the fault detection models, ensuring their

accuracy, reliability, and effectiveness in detecting faults.

Additionally, the following Operational Entities were identified as the primary stakeholder

groups for a fault management design and deployment process:

e Autonomous System Operations Management (ASOM): ASOM is responsible
for overseeing the operation and performance of the autonomous system. It consists
of engineers and system operators who design, configure, monitor, and maintain the
Autonomous System and the fault management models to ensure the system’s relia-
bility and performance. ASOM interacts with the other operational entities to ensure
the system operates within its intended environment while meeting operational needs

and use cases.

e Autonomous System: The Autonomous System represents the platform or vehicle
that relies on the fault management framework for its fault detection, diagnosis, and
response capabilities. This entity is directly impacted by the proper functioning of
the fault management framework and plays a critical role in the operational context
by providing data, allowing for model deployment, and executing fault management

actions based on the framework’s outputs.
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e Operating Environment: The Operating Environment encompasses the external
conditions and factors that the Autonomous System operates within, including weather,
terrain, and other environmental variables. The operating environment can influence
the performance and behavior of the autonomous system and its fault management

processes and can directly cause faults and failures to occur.

To detail the interactions between the operational entities and the activities required
to fulfill these capabilities, Operational Activity Interaction Blanks (OAIBs) were created.
Within each OAIB, need statements, represented as Operational Activities, were defined
to capture the essential actions and processes involved in addressing the operational needs.
These need statements were allocated to the appropriate Operational Entities, ensuring that
all responsibilities and roles within the operational context were accurately represented.

Subsequently, the Operational Activities were transformed into Functional Chains within
the Operational Architecture Blank (OAB), illustrating the interdependencies and flow of
activities between the operational entities. The Operational Architecture Blank (OAB)
diagram offers a high-level view of the system’s operating domain and is shown in Figure [2.1]
The OAB diagram presents an abstract representation of the main needs for the operational
entities that must to be satisfied by the proposed system; it also illustrates the interactions
of these entities as a part of the concept of operations. By capturing the needed operational
behavior of the system, the OAB diagram allows stakeholders to gain a better understanding
of the system and its components, facilitating communication and collaboration. The OAB
diagram from Capella outlines four primary functional chains, representing the main use
cases of the framework: Data Management, Real-Time Fault Management, Design Fault
Management Models, and Verify and Validate System. These functional chains depict the
sequence of activities required to accomplish the respective objectives.

The Operational Analysis stage effectively translates the stakeholders’ needs into a struc-
tured and coherent operational context, laying the foundation for the System Analysis phase.

By maintaining a clear focus on the operational needs and context, the AISOSVM Frame-

17



‘oreordde yuowAojdep pur uSisop NWASOSIY PoIeISoU] [ g a4nbiy]

wa)sAs Juswiabeue|y 1ne4 a1epleA pue Ajusp Af.

uoneiBaiu| pue Juswabeue|y eleq apincid nf.

JusWaBRUBIA JNe4 WIL-[eay Lo f.

s[epo|N Juswabeue|y 3ne4 ainbyuod pue ubiseq nmu.

‘SUoRIpUOd
|EJUSWIUOIIAUD ()
snotiea apioad o

fupqeaden syuswainbay (&

sjuawiaainbas

aoueuniopad

s)eaw wayshs
ay3 jeu Ausn ol

@ |erep 353} pajepn

JUSLIUOIIAUS

parenwis
s =0 @

e Ul wajshs
3y} Ajuan oy

‘swizysAs Juswabeuew

‘suonesado Joy
|9pow juswiabeuew

3|ney ojul $92INOS ejep @ (i)
1jney paziwndo
adiyjnw syeibaul of
ay) Aojdap o
ejep washs uawabeuew yne4 [@q

waysAs uawabffuew yne paziundo &

‘fioyisodal ejep
e ul ejep a:
pue 21035 O]

ebio @

‘suonesado awn-jeal
Jeau Joj sijeweled @@
Japow aziwndo o)

‘adueInsse
SJUIeAISUOD pue
Ayjenb ssed i w
suoneyIwl| wayshs
pue uonesyad @8 @ @
10 Buipuejsiapun
|euonesado adojarua [euonelado [&0
e g3 e spinoid o]
ansIyde 0] 1
‘swyyLoBble
‘uoneziensia
pue sjooy
‘ejep Anawa)s; gy kil ue sisAjeue (@
P 2} ® eep Anawaja )| @& O REEAGED p 1l @
wiaysAs apinoid o) Lq ejep wiopad o)
ejep ssadoud o]
‘ejep 353} punoib
pue pajejnui
eaep uoeinuis B 59008 O]
Siney ou yney @
515913p 40 SHBE 4
P P} I @
leunioyu >ifsoubeiq pue
1 B 'sjiney pasouberp jo
‘uonewLojul SMEal oL bl 2
1oedwi pue Auenss @)
y|eay wayshs
() auIWIaIBp Of
pue sisoubeip 3jney
awi-|eas apinoid o)
supsas uon>atop yney &1
23U Juawabeuew 3jne;
‘e}ep 8y} B Ined [€
0) [spow Juswabeuew @@
‘e1ep WaysAs ney ayy Ajdde o ‘ubisap |apow
awi-|eal 193]|0d Em Juswabeuew
weahs eyep jeubneiado

pue sjesausb o)

VY

Juawuonauz bunppiado H

192 JuawuoIT [

waysAs snowouony

}Iney 4oy pasu
auy) Aynuapr op

SJuIe.}SUOd
pue syuswaiinbas @8
wia)sAs azhjeue o)

uoneinbiyuo>fuawabeuew ynej {=]

swawainbai Fawabeuew ynes fQ

sbumas
pue sisjowesed @
|apow ainbyuod o)

ainpajydie
|spow juswabeuew
1Iney sjeudoudde
13j9s 0]

(Wosv)

do wajshs

2inpayy>Ie papales [l

18



work’s design remains grounded in its intended application, ensuring a successful implemen-
tation and integration within various autonomous platforms. Appendix [A] provides other
AISOSVM framework model-based views that comprise the concept of operations and de-

rived use cases.

2.3.2 System Analysis

The System Analysis phase began with the creation of Functional and Nonfunctional
Requirements for the fault management framework. These requirements were traced back to
the high-level use cases (Operational Capabilities) and need statements from the Operational
Analysis. Furthermore, relationships between requirements at the system level were estab-
lished, indicating which system requirements were derived from other system requirements.

Three Requirements Diagrams were created in Capella: one for System Functional Re-
quirements, one for System Nonfunctional Requirements, and one for displaying only the
requirements with relationships to each other. These diagrams allowed for a clear under-
standing of the requirements and their interdependencies, ensuring that all aspects of the
fault management framework were considered. The nonfunctional requirements diagram is
shown in Figure illustrating the Capella requirements diagramming process.

Next, Missions and Capabilities diagrams were created. Missions are derived directly
from from the Operational Analysis, specifically from the defined Operational Capabilities
which incorporate the needed use cases the AISOSVM Framework system must achieve. For
each System Mission, a set of System Capabilities was allocated; these System Capabilities
are a decomposition of the high level use case and form specific functions or needs that must
be implemented into the system to achieve the respective mission. These System Capabilities

can be traced back to system requirements and have been outlined as follows:

e Configure Fault Management Models: focuses on creating, customizing, and con-
figuring fault management models to adapt to specific system requirements and con-

straints.

19



‘WrRISRIP sjuOWRINDboI Wo)sAs [ruojounjuou WASOSIV &g 24nbf

‘sanuIepIRdUN

ejep pue suonipuod [euoiesado

SNOLIBA 3[pUBY O} SPPOLL Juawabeuew
1|ne} a4} JO SSAUISNCOI Bl 3INSUS

JIeYS sjIomauely Wuswabeue yneq ay) -

‘uoneziwndo pue sisAjeue welsAs 1e|nbal
yBnouyy Juswanciduwll Snonunuod ajel|ide)

lleys lomauwiely juswiabeueyy yneq ayj -

‘eyap aduewlopad
pauyspaid bunssw sjiym sisoubeip
pue uoiPa}Bp 3jney awin-jeas spiroid

lIeys lomawield Juswabeue yneq ay| -

juatuao.dwy snonupue) £10-4AN-1N4 €)

aoueuLoped 900-44N-4N4 €D

‘saxyy bnq pue

sajepdn saje

e} 1oy} 3INPNIS © pue
UOILJUSLUNIOP 183 LM ‘3|qeuleulew aq

lleys iomawielq Juawabeuey yneq ayj -

Alpqeueluel $00-44N-4N4 €

ssaupsnqoy BPoIN 6L0-¥4N-Jd €D

*S]BULIOJ B1EP PUE S3INDIYLDIE WWd)SAS
SNOWOUOINE SNOLIBA UM 3|qeladoaul

aq |[eys lomawiely Juswiabeuely 3neq ayj -

“Apuaniye
pue AAnDaye walsAs Ayl Ym 1oeI3jul o)
$I85N SMOJ|e 1y} 8DBLIBIUI 1SN B YUM ‘S|qesn

aq |[eys Spomauiely yuswiabeuely yneq ay) -

‘W J2A0 spuRwRACIdWI
PpuE sainea) Mau Jo uonippe
‘a|qisua1Xa 3 [[eys

Spomawiely juawabeuely yneq ay) -

3y} 1o} Bumo|

‘synsal

sisoubeip pue uod3BP J|ney a|qeljal pue
PaLiod apiroid o} sppow juswiabeuew
1|ney ayy jo Aoeandde ayy aInsus

lleys Spomauiely yuswiabeuely yneq ay) -

Aupqesedossiul ZL0-4AN-1N4 €

fmdesn 200-44N-4W4 €D

Aupgisuspa £00-UAN-4Nd

£oeIoy [BPOW LLO-44N-d4 X

'swig)sAg snowouoiny pue juswisbeuew
j|ney 1o} saulpinG pue ‘suone|nbal
‘spiepuels Ansnpui juessppi ypm Ajdwiod

lleys >iomawielq Juawabeuely yneq ay) -

adueydwo) 0L0-Y4N-INd €D

‘SUOIIPUOD BUIKIEA SSOI0B JUBLUSSISSE
pue ‘sisoubelp ‘uoda}ap Jyney ajeInde
pue jusysisuod buipinoid ‘s|qeljpi aq

lIeys Sjiomawiely juswabeur|y yneq ay) -

‘sisoubelp pue uonoa}ep ey

auwin-[eal oy _umg__‘__uwh Sa2Inosal _mzo_umt‘_n_rr_nuu
3L} AZIWIUIL O} SPPOW JuBLaheueL

1yney ay Jo AHuapiye euoneindwos ay) eziwndo

[leys sjIomaLLely yuaWaBeUR k4 Y -

Aujiqeipy 900-¥4N-4N4 €D

sjusuodwiod juensjpl 1Yo

Pue WR)sAS snowouoINy ay) Yum uoneidajul

ssa|weas 1o} Bumojje ‘3|qeiadoisiul

aq [|eys sjlomalel JuaLiaBeuely 1jney ay) -

‘Buuadwey pue ssaxe
pazuoLneun woy 3 1330.1d pue elep
PaIois 8y} Jo AUND3S 3y) AINSUS [[eYs

sjlomauely JusWwabeue| yneq ay| -

fouspyy3 jeuoneindwio) 9L0-yAN-4N4 )

Auqessdossu 600-4AN-1N4 €3

Aumas §00-y4AN-1N4 ¥

‘papaau se
spuauodwion jo [erowial pue uoneibajul
a Joj Bumoje “iejnpouw aq [leys

iomaueld uawabeue|y ned ay) -

Aueinpojy 200-YAN-4N4 €

“Axejdwod jo s[pas| Juaisyp pue
SwiR)sAS snowouolNy Jo sazis sNoLeA
3J2poLIWoddL O} 3|qe[eds 3 |[eys

Sjioma e 1 JusWIBBEURA| 1N Ay -

fcejeds L00-44N-1N4 €D

20



Real-Time Fault Detection and Diagnosis: encompasses the real-time detection,
diagnosis, and management of faults within the system, enabling quick and accurate

responses to emerging issues.

Data Acquisition and Integration: involves collecting, integrating, and analyzing
data from various sources, ensuring that the fault management framework has access

to all necessary information for effective operation.

Optimize and Deploy Fault Management Models: involves the optimization,
testing, and deployment of fault management models, ensuring their accuracy, effec-

tiveness, and seamless integration into the system.

Monitor System Health: focuses on the continuous monitoring of system health,

performance, and the detection of anomalies that could indicate potential faults.

System Certification and Quality Assurance: includes certifying the fault man-
agement system’s compliance with relevant standards and ensuring that quality assur-

ance processes are in place.

Verification and Validation: encompasses the testing, verification, and validation
of the fault management models and the overall system to ensure their accuracy and

effectiveness.

Each System Capability was refined further with a System Data Flow Blank (SDFB) di-

agram, which described the specific functions and data flows required to achieve the higher-

level System Capability. The functions within each SDFB were then allocated to a System

Level Actor or the Fault Management Framework System itself. This allocation process

ensured that responsibilities were clearly assigned to the appropriate entity within the sys-

tem. The System Level Actors, which were derived from the Operational Entities, include

personnel and other entities that would directly interact with the system. These actors

include:
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Engineers: Engineers are responsible for designing, configuring, and maintaining the
fault management models. They work closely with the fault management framework
to develop, optimize, and validate the models according to the specific requirements of

the autonomous system.

System Operators: System Operators are the personnel responsible for overseeing
and managing the day-to-day operations of the autonomous system. They rely on the
fault management framework to monitor system health, receive alerts, and diagnose

potential issues in real-time.

Operating Environment: The Operating Environment represents the external con-
ditions and factors in which the autonomous system operates. This entity provides
essential environmental data that must be integrated into the fault management frame-

work for a more accurate and comprehensive analysis.

Autonomous System: The Autonomous System is the primary subject of the fault
management framework and encompasses the hardware, software, and control systems
required for autonomous operation. The fault management framework is designed to
monitor, detect, diagnose, and respond to faults within the Autonomous System to

ensure its safe and efficient operation.

To further define responsibilities and interactions between actors, functional chains were

created for each system capability in each of the contextual SDFB diagram. These func-

tional chains provided a valuable representation of the interactions and dependencies among

functions required to achieve the respective system capability.

The System Architecture Blank (SAB) diagram was then constructed, showing the system

functions, System Actors, and data flow between all allocations of functions and responsi-

bilities. This diagram provided a comprehensive understanding of the interactions between

system components and the flow of information and actions within the fault management

22



framework. Figure[2.3provides a reduced SAB diagram depicting the fault management con-
figuration, optimization, and deployment use cases. Appendix [A] provides other AISOSVM

framework model-based views that comprise the system analysis and requirements flowdown.

2.3.3 Deriving Software Components for Fault Detection

Having defined the operational and system analyses of the AISOSVM framework, the
next step was to derive the specific software components required for implementing the fault
detection aspect of the framework. The focus on fault detection and the online adaptation
of the fault detection algorithm was the primary objective for this dissertation.

To derive the software components, a detailed analysis of the system functions, data flows,
and system capabilities was performed. This analysis helped identify the specific software
components needed to achieve the desired fault detection functionality. The software compo-
nents were derived from the functions allocated to the Fault Management Framework within
the System Architecture Blank diagram, taking into account the necessary interactions and
dependencies among the components.

The derived software components include:

e Data Acquisition and Integration: This component is responsible for collecting
and integrating data from various sources, such as sensor measurements, system logs,
and environmental data. It ensures that all relevant data is made available to other

software components in the framework in a timely and efficient manner.

e Feature Extraction: This component processes the raw data obtained from the Data
Acquisition and Integration component and extracts relevant features that are useful
for fault detection. It applies various signal processing and machine learning techniques

to reduce the dimensionality of the data and identify patterns indicative of faults.

e Model Training and Optimization: This component is responsible for training,

optimizing, and selecting the most suitable fault detection models using the features
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extracted from the Feature Extraction component. It employs machine learning algo-
rithms and optimization techniques to adapt the models based on the specific require-

ments and constraints of the autonomous system.

e Real-Time Fault Detection: This component continuously monitors the system’s
health by applying the optimized fault detection models to the incoming data stream.
It detects potential faults and generates alerts for system operators and engineers to

diagnose and respond to the issues.

e Model Deployment and Update: This component manages the deployment of the
optimized fault detection models to the Real-Time Fault Detection component. It is
also responsible for updating the models when new data becomes available or when

changes in the system’s operational conditions require the adaptation of the models.

These software components were designed to work together within the AISOSVM frame-
work to provide a comprehensive fault detection solution. The components were derived
based on their ability to satisfy the system functions, data exchanges, and system capabil-
ities defined in the System Analysis. The modular design of these components allows for
flexibility and adaptability in addressing the diverse fault detection needs of different au-
tonomous systems while promoting reuse and scalability. The identified software components
helped structure the implementation framework.

The structured implementation framework, as depicted in Figure[2.4] is a vital component
of the AISOSVM fault management system design, as it allows for a systematic and traceable
approach to system development. This framework is created through a logical decomposition
of the derived system requirements and the operational architecture developed using the
Capella tool and Arcadia methodology. By breaking down the system requirements and
architecture into smaller, manageable elements, the framework provides a clear roadmap for
implementing and deploying the AISOSVM fault management system in various autonomous

platforms.
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Figure 2.4 Integrated AISOSVM design and deployment approach.

One of the key benefits of this designed framework is its adaptability to various au-
tonomous platforms. By providing a clear, step-by-step process for system development,
the framework enables users to tailor the AISOSVM fault management system to specific
platforms, ensuring optimal performance and seamless integration. This flexibility is critical
in the ever-evolving field of autonomous systems, where technology advancements and new
application domains continually introduce new challenges and requirements. Additionally,
the structured implementation framework fosters effective verification and validation (V&V)
of the AISOSVM fault management system. By aligning the V&V activities with the sys-
tem requirements and architecture, the framework ensures that the system’s performance
and behavior are consistent with the intended design objectives. This comprehensive V&V
process is critical in establishing confidence in the system’s capabilities and its ability to
detect and manage faults effectively.

The design and implementation framework modeling process leverages the strengths of
MBSE, the Capella toolset, and the Arcadia method to create a structured, systematic, and
visual approach to system and process design. This methodology ensures that complex as-

pects within the data-driven AISOSVM approach can be effectively monitored, traced, and
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tailored to new platforms while maintaining the robustness required for mission-critical ap-
plications, such as spacecraft health monitoring. By adopting a model-based approach, the
AISOSVM framework can harness benefits offered by model-based and data-driven fault de-
tection methodologies, providing a foundation for implementing a comprehensive, adaptable,

and reliable fault management system.

2.4 Data Acquisition and Collection

In the development of an effective fault detection system, such as the AISOSVM, data
acquisition and collection play a pivotal role. The quality and quantity of data significantly
influence the performance of the fault detection algorithm, as well as the accuracy and
reliability of the system. This section will discuss the importance of data acquisition and
collection in the context of autonomous fault detection systems, the various sources of data,
and the challenges and considerations involved in obtaining relevant and representative data.

A key aspect of data acquisition and collection is ensuring that the data used for train-
ing and evaluation adequately represents the operational conditions and scenarios that the
autonomous platform may encounter [I8]. The data should encompass both nominal and
off-nominal operating conditions, providing the fault detection system with a comprehensive
understanding of the platform’s behavior under various circumstances. This diverse set of
data enables the fault detection system to effectively distinguish between normal and faulty
conditions, thereby enhancing its fault detection capabilities.

Data can be sourced from various channels, including simulations, experimental setups,
and historical records of the platform’s operation. Each data source has its advantages
and limitations, and the choice of the data source should be guided by factors such as the
availability of data, the accuracy and reliability of the data, and the specific requirements of
the fault detection system.

Simulations, for instance, offer the flexibility to generate data under controlled condi-
tions, enabling the generation of diverse scenarios and the ability to explore edge cases.

Experimental setups, on the other hand, can provide more realistic data that captures the
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nuances of the platform’s operation, while historical records offer valuable insights into the
platform’s performance over time.

One of the challenges in data acquisition and collection is ensuring data quality and
consistency, as noise, outliers, and inconsistencies can adversely affect the performance of
the fault detection system [19]. It is essential to adopt appropriate preprocessing techniques
and data validation methods to address these issues and enhance the overall quality of the

data used in the development of the fault detection strategy.

2.5 Data Processing

The performance and efficacy of a fault detection system are heavily influenced by the
quality and format of the input data. Data processing, a crucial step in the development
pipeline, involves transforming raw data into a format that is suitable for analysis, feature
extraction, and model training.

Data processing consists of several stages that are designed to enhance the quality, con-
sistency, and interpretability of the input data. These stages include data cleaning, data
normalization, and data transformation, each of which plays a crucial role in preparing the
data for further analysis and model training.

Data cleaning involves the identification and handling of missing values, noise, and out-
liers present in the raw data. Techniques such as filtering and outlier detection can be
employed to address these issues and ensure data consistency. Data cleaning is particularly
important for fault detection systems, as inconsistencies in the data can impair the system’s
ability to accurately identify and isolate faults.

Data normalization is a crucial step in data processing, particularly when dealing with
data from diverse sources or of varying scales. Normalization techniques, such as min-max
scaling and z-score normalization, help to bring the data onto a common scale, facilitating
comparison and analysis [20]. Normalizing data is essential for the proper functioning of the
AISOSVM, as it ensures that the features used in the model have equal significance and that

the algorithm is not biased towards specific features.
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Data transformation is another critical aspect of data processing, which involves con-
verting raw data into a more suitable format for analysis and modeling. Transformation
techniques such as principal component analysis (PCA), feature extraction, and feature en-
gineering can help to reduce the dimensionality of the data, enhance its interpretability, and
facilitate the identification of meaningful patterns and relationships. Data transformation
is particularly relevant for fault detection systems like the AISOSVM, where the ability to
identify and isolate faults is contingent upon the system’s capacity to discern meaningful
patterns in the input data.

Data processing is an indispensable component of the development process for fault
detection systems such as the AISOSVM. By employing appropriate data cleaning, normal-
ization, and transformation techniques, the quality and interpretability of the input data
can be enhanced, enabling the AISOSVM to effectively learn to detect and isolate faults in

autonomous systems.

2.6 Feature Selection and Reduction

Feature selection and reduction are crucial steps in the development of an effective fault
management system, particularly for data-driven approaches. These processes involve iden-
tifying the most relevant and informative features from the collected data and reducing the
dimensionality of the dataset to improve computational efficiency and mitigate the impact
of the curse of dimensionality.

Principal Component Analysis (PCA) is a widely used technique for feature reduction
and dimensionality reduction in machine learning and data analysis [21]. PCA works by
transforming the original data into a new coordinate system, where the axes, known as prin-
cipal components, capture the maximum variance in the data. The first principal component
captures the largest variance, the second principal component captures the second-largest
variance, and so on. By retaining only a few principal components that account for a sig-
nificant portion of the total variance, PCA can effectively reduce the dimensionality of the

dataset while retaining most of its essential information [22]. Within a fault management
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system architecture, PCA can be employed to identify and retain the most informative fea-
tures from the collected data. By transforming the original dataset into a lower-dimensional
space, PCA enables the system to focus on the most critical aspects of the data, which in
turn enhances the performance of the fault detection and isolation processes. Furthermore,
PCA can help mitigate the risk of overfitting, as it reduces the complexity of the model by
removing less relevant features.

K-means clustering is another technique employed in fault management systems for fea-
ture selection and reduction. K-means is an unsupervised learning algorithm that aims to
partition a dataset into K distinct clusters based on the similarity of the data points. The
algorithm works by iteratively assigning each data point to the nearest cluster centroid and
updating the centroid positions based on the average of the points in the cluster |23 24]. In
the context of feature selection, K-means clustering can be used to identify groups of sim-
ilar features that potentially carry redundant information. By analyzing the relationships
between features within and across clusters, it is possible to identify the most representative
features in each group and eliminate redundant or less informative ones. This process can
effectively reduce the dimensionality of the dataset and enhance the computational efficiency
of the fault management system.

The implementation of K-means clustering can aid in the identification of the most suit-
able feature space for the AISOSVM model. By exploring different combinations of features
and assessing their impact on the clustering results, the algorithm can guide the selection of
the most informative and discriminative feature set for the fault detection process.

The feature selection and reduction are essential processes in fault management systems,
as they enable the system to focus on the most relevant and informative aspects of the
data. By employing techniques like PCA and K-means clustering, the system can effectively
reduce the dimensionality of the dataset, improve computational efficiency, and enhance the
performance of the fault detection and isolation processes. These methods play a critical

role in ensuring the robustness and reliability of fault management architectures in various
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autonomous platforms.
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3 Support Vector Machine

In this chapter, Support Vector Machines (SVMs) and their thory are introduced. SVMs
are a powerful and widely used machine learning technique for classification and regression
tasks. SVMs have been successfully applied in various fields, including fault detection and
isolation, due to their ability to handle high-dimensional and nonlinear data. The chapter
begins with the background of SVMs, providing an overview of their development, applica-
tion areas, and key features. Following this, the discussion delves into the SVM framework,
explaining the general pieces and process of SVMs and their use in fault detection. Lastly, the
theory behind SVM classifiers is covered in depth, discussing their formulation, optimization,
and essential components. The goal of this chapter is to provide a comprehensive under-
standing of SVMs and lay the groundwork for the development of the proposed AISOSVM

methodology in the subsequent chapters.

3.1 Background of Support Vector Machines

Support Vector Machines (SVMs) are a group of learning algorithms that have gained
prominence due to their ability to automatically estimate dependencies between data. De-
veloped and expanded by Vapnik [25], SVMs are based on the statistical learning theory that
were originally largely applied to applications such as text categorization, image recognition,
network monitoring, among others |26, 27]. As a representative of the statistical learning
theory, SVMs focus on mathematical fundamentals and have since evolved into numerous
variants, addressing different problems and applications [28].

At the core of SVMs are two key characteristics: the maximal margin and the kernel
method. The maximal margin is a geometric concept that aims to maximize the distance
between decision boundaries and the nearest data points belonging to different classes. The
kernel method, on the other hand, involves the use of kernel functions to transform data
into higher-dimensional spaces where linear separation is more likely [25]. Kernel functions
play a crucial role in SVMs, as they enable the approximation of real-valued functions. Some

commonly used kernel functions include linear kernel, polynomial kernel, sigmoid kernel, and
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radial basis function (RBF) [29] [30]. Cervantes et al. [31] provides a detailed survey of SVM
kernel function implementations and how these functions have been applied to various SVM
variants to address specific challenges and improve performance.

SVMs can be broadly categorized into two types: Support Vector Classification (SVC)
and Support Vector Regression (SVR). SVC is utilized for classification problems, where data
is divided into two or more groups based on the provided features. It has been successfully
applied in areas such as text categorization and bioinformatics, [27, B2]. In contrast, SVR
is employed for regression problems, where the aim is to predict continuous-valued outputs
based on time-series data. SVR has been utilized in various applications, including financial
market forecasting [33], electricity price prediction [34], and aircraft anomaly detection [35].
The AISOSVM developed as a part of this research focuses on the application of SVMs as a
classifier for its ability to perform accurate, multi-class failure detection and diagnosis.

In recent years, SVMs have been applied to the domain of fault detection and diagnosis
in complex systems such as spacecraft. Farahani and Rahimi [36] developed an anomaly
detection and diagnosis approach for spacecraft control moment gyros using an optimized
support vector machine model. Yao et al. [37] implemented SVMs to detect and classify fail-
ure modes of various battery pack hardware for industrial systems. Gao et al. [38] presented
a fault detection and diagnosis approach for spacecraft and is combined successfully with

Principal Component Analysis (PCA) for feature space reduction and optimization.

3.2 The Support Vector Machine Framework

The primary goal of the SVM framework is to find an optimal decision boundary, known
as the hyperplane, which maximizes the margin between data points belonging to differ-
ent classes. This is achieved through a combination of optimization techniques and kernel
functions. The optimization process aims to minimize a cost function, which represents the
trade-off between maximizing the margin and minimizing classification errors. The kernel
function is employed to transform the input data into a higher-dimensional space, where

linear separation is more likely to be achievable.
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The SVM framework can be summarized in the following steps:

e Data preprocessing: Raw data is preprocessed to ensure compatibility with the SVM

algorithm. This may involve normalization, feature selection, and reduction techniques.

e Kernel function selection: A suitable kernel function is chosen based on the nature of
the input data and the desired output. Commonly used kernel functions include linear,

polynomial, RBF, and sigmoid kernels.

e Model training: The SVM algorithm is trained on a dataset to learn the optimal
hyperplane. This involves solving a convex optimization problem using techniques

such as Sequential Minimal Optimization (SMO) or gradient descent.

e Model evaluation: The trained SVM model is evaluated on a validation dataset to
assess its performance. Performance metrics such as accuracy, precision, recall, and

F1l-score are used to gauge the model’s effectiveness.

e Model deployment: Once the SVM model is deemed satisfactory, it can be deployed

for real-world applications such as fault detection in complex systems.

In the context of fault detection, the SVM framework can be adapted to identify and
classify various types of faults in a system. The input data, which consists of features
extracted from sensor measurements or system states, is preprocessed and transformed using
a kernel function. The SVM algorithm then learns to distinguish between different fault
classes based on the transformed data. When new data is encountered, the trained SVM
model can classify it as either normal operation or a specific fault type, enabling timely fault
detection and isolation. Figure illustrates the architecture of a classical SVM classifier.

The inherent binary classification nature of SVMs poses a challenge when dealing with
multi-class problems, such as fault detection and isolation in autonomous systems. In such

systems, there can be multiple fault types or even combinations of faults that need to be
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Figure 3.1 The classical SVM architecture.

identified and isolated. To address this challenge, SVMs can be extended to handle multi-
class problems using techniques like one-vs-one (OvO) or one-vs-all (OvA) strategies.

In the one-vs-one (OvO) strategy, SVM classifiers are trained to distinguish between each
pair of classes. For a problem involving k classes, the OvO method would require training
k(k—1)/2 classifiers, as each classifier is responsible for discriminating between a unique pair
of classes. This approach results in a large number of classifiers for problems with a high
number of classes, increasing the computational complexity. However, the OvO strategy has
the advantage of being less sensitive to class imbalance, as each classifier is trained on a
balanced subset of the data containing only two classes.

On the other hand, the one-vs-all (OvA) strategy involves training k classifiers, where
each classifier is responsible for distinguishing between one class and the rest of the classes
combined. In the context of fault detection and isolation, this approach requires fewer
classifiers than the OvO strategy, making it computationally more efficient. However, the
OvA strategy can be more susceptible to class imbalance since each classifier is trained on
an imbalanced dataset containing one class versus all other classes.

The SVM framework is a robust and versatile approach to classification and regression
tasks. Its ability to handle high-dimensional data and nonlinear relationships makes it
particularly well-suited for fault detection in complex systems. As the dissertation progresses,
the integration of the SVM framework with the adaptive fault detection strategy and its

application to spacecraft fault diagnosis will be explored in more detail.
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3.3 Support Vector Machine Classifiers

The support vector machine provides a supervised learning technique for classification.
For an n-dimensional space, the input vector, @ € R", belongs to one of two classes, class
1 or class 2. From this input vector, a data set is defined (x;,y;), where (: = 1...k) and
y € —1,4+1 are the labels associated with both classes; a label of —1 is issued for members
of the class 1 subset and a label of +1 is issued for members of the class 2 subset. SVM
seeks to find a decision boundary such that the input data can be separated linearly with a

hyper-plane given by Equation (3.1)):

y=f(z,w)=w'z+b (3.1)

where w € R" is an n-dimensional weight vector and b € R is a bias value. This equation
determines the maximum margin to separate class 1 from class 2. The decision boundary is

shown in Equation (3.2]).

yi(we; +0) >1, i=1.k (3.2)

The distance from a data point « to this hyperplane that separates the classes of data is

given by:

(3.3)

The margin of the hyperplane is defined as the smallest distance between the hyperplane
and any data point belonging to either class. The objective of support vector classifiers
is to find the hyperplane that maximizes this margin. Using a soft margin concept, this
can be converted to a quadratic programming problem equivalent to solving the following

optimization process:
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with parameters C' > 0 and & > 0. The slack variables &; are positive definition variables,
and relax the optimization process providing a fuzzy classification boundary allowing some
data, like outliers, to be unclassified or classified incorrectly. The hyperparameter, C is
a penalty parameter that can be selected and tuned by the user and penalizes the SVM
optimization algorithm for incorrectly classified data; the larger the value C', the higher the
penalty.

The minimization problem, with its constraints, can be reformulated and solved using

Lagrange multipliers.

k k
. 1
Minimize L(«a) = E @G =3 E ;05 (... x5)
i=1 i,j=0
(
k
> i Yici =0 (3.5)

Subject to a; >0

i=1,2,...k

\

where «; are the Lagrange multipliers that determine the optimal hyperplane by maximizing
L(«). The values for a; become the support vectors by solving the optimization problem.

The decision boundary that separates the classes of data can be written as:

f(x) = sign(z ayip(xi, ) + b) (3.6)
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oz, ;) = e~ le—=ill*/2° (3.7)

where ¢(x, ;) is the kernel function. For many applications, input data is often not linearly
separable; thus, to handle non-linearly separable data, the input data can be transformed to
a higher dimensional space using a nonlinear transformation with the kernel function [39].
A kernel function ¢(x,x;) computes the inner product of two data points in the higher-

dimensional space. Commonly used kernel functions include:

Linear kernel: ¢(x,x;) = ' x;

Polynomial kernel: ¢(zx, ;) = (x’x; + c)?

Radial basis function (RBF) kernel: ¢(x,z;) = exp(—||z — x;||*/20?%)

Sigmoid kernel: ¢(x, x;) = tanh(kx’x; + 0)

The kernel function selected for this research effort and implementation is the well-known
Radial Basis Function (RBF) shown in Equation (3.7)). The constant o is a tuning parameter
that controls the width of the kernel. The RBF offers excellent generality and flexibility for

regression and classification.

3.4 Model Selection and Regularization

In support vector classifiers, the choice of the kernel function and its parameters, as well
as the regularization parameter C', have a significant impact on the model’s performance.
The regularization parameter C' controls the trade-off between maximizing the margin and
minimizing the classification error. A smaller value of C' allows for a larger margin at the cost
of allowing some misclassifications, while a larger value of C' enforces a stricter separation
between classes, which may result in a smaller margin.

Model selection typically involves choosing the kernel function, its parameters, and the

regularization parameter C' based on their performance on a validation set or using cross-
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validation techniques. Commonly used cross-validation techniques include k-fold cross-
validation and leave-one-out cross-validation. The optimization process implemented by
the artificial immune system paradigm utilizes the feedback from this validation testing to
optimize the regularization parameter and kernel parameter within the AISOSVM.

The Support Vector Classifier is implemented in the AISOSVM as it provides a powerful,
versatile, and relatively low computation method for online binary classification tasks. By
finding the optimal decision boundary that maximizes the margin between classes, support
vector classifiers offer robust performance even in the presence of noise and outliers. The
use of kernel functions enables SVMs to handle non-linearly separable data, while model
selection and regularization help to prevent overfitting and ensure generalization to unseen

data.
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4 Incremental Learning and Decremental Unlearning

This chapter derives the concepts of incremental learning and decremental unlearning
in the context of Support Vector Machines (SVMs) applied to fault detection. As systems
evolve and new data becomes available, it is crucial for the fault detection model to adapt
accordingly. Incremental learning allows the model to learn from new data, incorporating
novel information and patterns, while decremental unlearning enables the model to forget
outdated or irrelevant information. The combination of these two processes ensures that the
model remains up-to-date and effective in detecting faults as the system conditions change.
This chapter will provide an in-depth exploration of the mechanisms underlying incremental
learning and decremental unlearning, their integration with the SVM framework, and their
potential benefits for enhancing the performance of the adaptive fault detection strategy in

complex systems such as spacecraft.

4.1 The online support vector machine

The Online Support Vector Machine (OSVM) is a dynamic learning method designed to
adapt to changing environments and data patterns, addressing the challenges associated with
online data classification [40]. One of the primary issues with online data classification is
the difficulty in acquiring sufficient training data that is representative of all the underlying
classification problems. As a result, a classifier trained on limited data may perform poorly
when classifying a stream of data not well covered during the learning phase [41]. Addi-
tionally, the data stream’s characteristics, such as the underlying data distribution, might
change over time, causing the classifier built on old data to become inconsistent with new
data, a condition known as concept drift.

To tackle these problems, the online support vector machine incorporates incremental
learning and decremental unlearning techniques to update the model with new data while
simultaneously discarding obsolete or irrelevant information. Cauwenberghs and Poggio [42]
proposed the first incremental algorithm for updating an existing OSVM when new samples

are acquired, providing an efficient method for incorporating new information into the exist-
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ing classifier model. This algorithm adapts the classifier to changes imposed by the addition
of new data without re-estimating all the model parameters from scratch. Additionally, it
includes an unlearning scheme that allows selective removal of less informative patterns with-
out reducing the classifier’s quality, addressing the concept drift issue. This algorithm was
expanded upon in Diehl and Cauwenberghs [43] to include more efficient adptation methods
through the use of adiabatic perturbations.

The online support vector machine’s ability to learn from new data and adapt to changing
environments has proven valuable in applications where system conditions or data distribu-
tions may change over time, such as fault detection in spacecraft [44, 45]. However, most
investigations into incremental OSVM learning algorithms have focused on the training phase
rather than the larger model selection process. The model selection phase involves tuning ad-
ditional variables, known as "hyper-parameters,’ to find a classifier with optimal performance

for classifying previously unseen data.

4.2 Algorithm and Implementation

The Incremental Learning and Decremental Unlearning process integrated into the AISOSVM
architecture follows the process and derivation of Diehl and Cauwenberghs [43]. With the es-
tablished Support Vector Machine quadratic programming problem as seen in Equation [3.4]
Karush-Kuhn Tucker (KKT) conditions are derived which define the solution of dual param-
eters for the Langrange multipliers and bias term, «; and b, respectively. This is achieved

by minimizing the set of equations:

)
>0 ;=0
k
SW
gi=5—-=> Quostyb-1 {-0 0<a,<C
= (4.1)
<0 o=0C
\

W&
h:E:;ijéj:O
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Using the partial derivatives g;, the training samples can be divided into three distinct

groups:
1. Set M, which contains the margin support vectors that lie on the margin, g; = 0.

2. Set F consisting of error support vectors that breach the margin and are defined by

g; < 0.
3. Set R which comprises the reserve vectors that surpass the margin g; > 0

4. Set U keeps all new samples before moving through the learning process to eventually

become either margin or error support vectors.

Within the process of incremental learning, new training samples with gi > 0 are directly
assigned to R, as they inherently do not contribute to the solution.

Adiabatic increments are used when learning new samples incrementally. When incorpo-
rating unlearned samples into the solution, the objective is to maintain the KKT conditions
for all previously encountered training data. The KKT conditions are maintained by varying
the margin vector coefficients in response to the perturbation caused by the incremented new
coefficients. As a result, elements within different vector sets might shift states, leading to in-
cremental learning that proceeds through a series of these ”adiabatic” steps. Prior to a given
perturbation of the OSVM solution, the partial derivatives with respect to «;,b: Vi € M,

where M is the set of margin support vectors, is:

gi= Quaj+yb—1=0 Yie M (4.2)

J

h = Zyjaj =0 (43)
J

From this set of equations, they can be rearranged and reformulated to be expressed

deferentially following the effects of the perturbations and incremented coefficients:
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Considering a specific alteration of the coefficients for the unlearned vectors, represented
as Aqp: VI € U, the goal is to identify the necessary modifications in the margin vector
coefficients, represented as Aay : Vk € M, and the bias Ab to ensure the KKT conditions
remain satisfied for all existing data. The entire process of perturbation is governed by a
perturbation parameter, p, which remains bounded from 0 to 1, as the OSVM solution evolves
from its "unlearned” state to the "learned” state. When p = 0, the solution reestablishes
the previous state before incorporating the new samples. During each perturbation step, the
parameter p is incremented by the minimal value, Apy;,, which triggers a change in category
for at least one sample. By the time p = 1, all unlearned vectors are part of one of three
groups: M, E, or R, ensuring both new and existing data comply with the KKT conditions.

The adiabatic changes, denoted by Aq;’s, can be described as the product of Ap and the
associated coefficient sensitivities. Define Aoy, = B Ap for kK € M, Aoy = NAp for 1 € U,
and Ab = SAp. After incorporating these expressions into Equation [£.4 and Equation
and dividing the result by Ap, the differential KKT conditions can be expressed with respect

to the coefficient sensitivities:

Ag; .
Yi = Ag = Z Qi By + Z QuN +yB=0Vie M (4.6)
P em leu
Ah
~ = D wht ) uh=0 (4.7)
P keM leu

where ~; is are the perturbation coefficients. These perturbation coefficients can be freely

chosen. Considering that the unlearned vector coefficients will alter by at most by the penalty
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factor, C, before the unlearned samples switch categories, the solution for the perturbation
coeflicients can be set to C such that \; = C' : VI € U. The associated coefficient sensitivities,
Bk, B : Yk € S, can be derived by resolving this set of equations. Upon determining the
coefficient sensitivities, it becomes possible to calculate the margin sensitivities ~; for the
error, reserve, and unlearned vectors.

From this problem statement, and using the KKT conditions, a set of rules can be derived
and established for determining the data sample transitions between vectors. Table [4.1
lists these viable sample category changes that can occur during incremental learning and
decremental unlearning. Within the table, the perturbation parameter Ap, is governed by the
coefficient sensitivities, the margin sensitivities, and the perturbation coefficients previously

defined.

Table 4.1 online support vector machine sample learning and unlearning conditions.

Training
Initial Category \ New Category \ Ap \ Conditional
Margin Reserve —% Bi <0
Error Margin gz ~vi >0
Reserve Margin —% v <0
Incremental & Decremental Learning

Margin Error % Bi >0
Unlearned Margin —% v >0
Unlearned Error Cv;a v >0

Regularization Parameter, C, Perturbation

Margin Error 5?_‘&"6 ‘ B; > AC
Kernel Parameter, o, Perturbation
Margin Error % Bi >0
Unlearned Margin —%—i Y:9; < 0
Unlearned Reserve —% v <0
Unlearned Error C,y;a v >0

When no initial OSVM solution is available, special attention is required. In this case,
all the training samples are unlearned at the outset, and oy = 0,b =0 : V] € U. This leads

to the immediate solution and maintenance of the KKT conditions. However, when the
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coefficients of the unlearned vectors begin to increase, this condition will be violated unless
> rev Ye = 0, which results in Equation . It is common to have an unequal distribution of
samples across classes, making it generally challenging to maintain the equality conditions
of the KKT. The margin vector coefficients help in preserving this condition when an initial
OSVM solution is already present. The margin vectors provide the necessary flexibility to
adjustment the unlearned vector coefficients. One method to uphold the KKT conditions is
to initiate the learning process by selecting one example from each class and developing an

initial OSVM.

h=>Y yja;+CApY g =0 (4.8)
J

kel

In order to now determine the coefficient sensitivities, S, the system of equations pre-
sented in Equation 4.6/ and Equation must be solved. The system of equations can be

rewritten in a matrix form for solution as:

QB =— Z AV (4.9)
le
_ 5 _ _ i _
8= B v = Qfl’l (4.10)
_Bsn_ _an,l_
i 0 Ys; -+ Ys, ]

s st stn
Ysy 151 1 (411)

Ys., ansl ansn_

With these definitions in place, the sensitivities can be computed. Let R = Q™', then
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B=-> ARv, (4.12)

lind
0
T
R 1 /Bsn 1 /Bsn 1
R « + ' ’ (4.13)
0f e | o1 1
0 ...00

When removing a margin vector sample from M, R as shown in Equation [4.14] Within

this equation, the first element, the zeroth index, is the bias term, b.

R Ry , . . o
Rij = Rij — };k:] VijeM U {0k #k (4.14)

4.3 Model Validation

Model validation is an essential step in the development of any machine learning model,
including support vector machines (SVMs). The purpose of model validation is to assess the
performance and generalization capabilities of the model when applied to new, unseen data.
In this section, two prominent model validation techniques, Leave-One-Out (LOO) estima-

tion and back-testing, will be discussed in the context of Online Support Vector Machines

(OSVMs).

4.3.1 Leave-One-Out Estimation

Leave-One-Out (LOO) estimation is an essential cross-validation technique that assesses
a model’s ability to generalize and make accurate predictions on unseen data. The primary
objective of LOO is to estimate the prediction error of a model by simulating the process of
making out-of-sample predictions.

In LOO cross-validation, the model is trained on all but one data point (n — 1 samples),
with the omitted data point serving as the validation sample. This process is iteratively

performed for each data point in the dataset, resulting in n separate models, where n is
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the total number of samples in the dataset. For each iteration, an out-of-sample prediction
is made for the omitted data point, and the error between the true label and the predic-
tion is computed. By aggregating these errors, LOO provides an estimate of the model’s
generalization error, indicating its ability to perform well on unseen data.

The LOO error estimator for OSVMs can be computed using the following formula:

LOOI = %Zi Ly, fa() (4.15)

where n denotes the total number of samples in the dataset, L(y;, f_i(z;)) represents the loss
function evaluated on the true label y; and the prediction f_;(z;) obtained by training the
model without the i-th example, and LOOz signifies the LOO error estimate. By calculating
the average error across all iterations, the LOO error provides a comprehensive measure of
the model’s performance and generalization capabilities.

There are several benefits to using the LOO cross-validation technique. One primary
advantage is that it makes maximum use of the available data for training, as each model
is trained on (n — 1) samples, utilizing nearly the entire dataset. This can lead to more
accurate performance estimates, especially for smaller datasets.

Additionally, LOO estimation provides an unbiased estimate of the model’s generalization
error. Since each data point is used as a validation sample exactly once, the results are
not sensitive to random partitioning or the selection of specific subsets, unlike other cross-
validation methods like k-fold cross-validation.

However, LOO estimation can be computationally expensive, particularly for large datasets,
as it requires training n separate models. Fortunately, for OSVMs, the LOO error estimator
can be computed efficiently, as the sensitivity of the margin to the removal of each example
is already available from the incremental learning and decremental unlearning process. This
eliminates the need to retrain the model from scratch for each omitted example, significantly
reducing the computational burden.

By providing an unbiased and comprehensive estimate of the model’s generalization error,
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the LOO error estimator plays a vital role in model selection and hyperparameter tuning.
It allows practitioners to identify the best model configuration and monitor the model’s

performance over time, detecting potential issues like concept drift and overfitting.

4.3.2 Back-Testing

Another method for model validation is back-testing, which involves supplying the train-
ing vectors back into the trained OSVM model to determine the predicted outputs on those
trained points. This process provides insight into the model’s ability to capture the under-
lying patterns and relationships in the training data, the known nominal conditions, as well
as its robustness against overfitting issues.

By evaluating the model’s performance on the training vector sets, it is possible to assess
the quality of the decision boundary and the model’s ability to generalize to the current per-
formance of the autonomous system. This can be an important diagnostic tool in identifying
potential issues with the model, such as overfitting or underfitting, and informing potential
improvements or adjustments to the learning process.

To perform back-testing on an OSVM model, the following steps can be followed:

e Train the OSVM on the available data using incremental learning and decremental

unlearning.

e Collect the labeled data that became a part of the sample sets of the trained model.
These are the data points that contribute to the decision boundary and overall best fit

curve for the model.

e Supply the training vectors as input to the trained OSVM model, and obtain the

corresponding predicted outputs.

e Compare the predicted outputs with the true labels of the support vectors to compute

the model’s performance metrics, such as accuracy.
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The OSVM simplifes the applications of back-testing as it already separates the training
data into three separate vectors: the margin vector, the error vector, and the reserve vector.
Therefore, the back-testing metric can be directly acquired from the length of the error

vector, or the number of samples misclassified.

4.3.3 Model Validation in the AISOSVM

In the context of autonomous system fault detection, rigorous model validation is par-
ticularly important, as the performance of the AISOSVM directly impacts the safety and
reliability of the system. By ensuring that the AISOSVM is well-suited to the task and
capable of generalizing to new, unseen data, it becomes possible to increase confidence in
the system’s ability to detect faults and respond accordingly. Both LOO and backtesting are
performed as a part of the Clonal Selection Algorithm optimization during the AISOSVM
design and training process. The Clonal Selection Algorithm uses the results of the back-
testing as a part of the accuracy score within the objective function and also monitors the
LOO to ensure a threshold of error estimation is not exceeded. This combined model vali-
dation produces a viable AISOSVM fault detection system with a balance in accuracy and

robustness to historical and future data.

4.4 Incremental Support Vector Machine Application

The efficacy of the AISOSVM’s ability to converge to a model solution, regardless of
whether it is initially trained on the entire dataset or incrementally learns the dataset in parts,
was validated. This adaptability is crucial in scenarios where data is acquired progressively
over time, making it impractical to retrain the model from scratch each time new data
becomes available. Instead, the AISOSVM can incrementally learn from the new data while
maintaining its performance.

To validate the AISOSVM’s capability to converge to a model solution, experiments
were conducted using a representative dataset. The dataset was gathered from a spacecraft
simulation environment discussed in Chapter 8. The variable detector algorithm, discussed in

Chapter 5, was invoked to create the positive class of data that surrounds and separates the
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samples indiciating nominal performance. The feature space belongs to the attitude control
system of the spacecraft and consists of the spacecraft pitch rate, p, and the spacecraft yaw
rate, r. The data was gathered from the simulation after the spacecraft was commanded to

slew 15 degrees.

e The first model was trained on the entire dataset from the beginning, offline.

e The second model was initially trained on a subset of the training set. It then in-
crementally learned the rest of the data set, in an online fashion, one sample at a

time.

The performance of both models was compared in terms of classification accuracy, de-
tection rate, false discovery rate, and other relevant metrics. Additionally, the model size
and computational complexity were analyzed to determine the efficiency of the AISOSVM
approach. The offline trained AISOSVM model is presented in Figure For the online,
incrementally trained AISOSVM, the AISOSVM is illustrated after 70 sample increments.
These snapshots are provided in Figure 4.2| The total number of samples learned by both
models is 382.

The results demonstrated that the AISOSVM, when trained incrementally on the dataset
in an online process, converged to the solution obtained when trained on the entire dataset
during offline traing. Both models exhibited exact performance in terms of classification
accuracy, detection rate, and false discovery rate. This finding substantiates the AISOSVM’s
ability to adapt to new data without the need to retrain the model from scratch, making
it an attractive choice for applications where data is acquired over time. Additionally, this
provides a fundamental step to for applying Reinforcement Learning for autonomous model
adaptation as it provides insight into the learning process stability and its impact on the
underlying OSVM model.

Additionally, the model size and computational complexity of the incrementally trained

AISOSVM were found to be comparable to the model trained on the entire dataset. This
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Figure 4.1 The final AISOSVM model after training offline on the entire data set. The blue
samples are negative class and the red samples are the positive class of data. Black boxes
indicate correct class predictions on those samples during back-testing.

result suggests that the AISOSVM can effectively manage its resource requirements while

maintaining its performance, making it a suitable solution for real-world applications where

computational efficiency is crucial.
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Figure 4.2 Incrementally trained AISOSVM model. In each subplot, the blue data points
present the negative class and the red presents the positive class of data. Black boxes
indicate correct class predictions on those samples during back-testing.
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5 Artificial Immune System Paradigm

This chapter delves into the Artificial Immune System (AIS) paradigm, a bio-inspired
computational framework derived from the principles and processes of the human immune
system. AIS has been applied to a wide range of domains, including optimization, pattern
recognition, and fault detection, due to its adaptability, robustness, and ability to learn from
experience. The chapter begins by providing an overview of the fundamental concepts and
components of the human immune system, followed by a discussion of how these principles
have been translated into computational models. Specifically, the focus will be on the Clonal
Selection Algorithm, the Negative Selection Algorithm, and the V-Detector Algorithm, ex-
amining their underlying concepts and applications. The exploration of AIS in the context

of fault detection in complex systems and the AISOSVM architecture will be presented.

5.1 Overview and Concepts

The AIS paradigm is a class of biologically inspired algorithms that draw upon the
principles and mechanisms of the natural immune system. These algorithms leverage the
immune system’s remarkable ability to distinguish between self and non-self, adapt to new
threats, and retain a memory of past encounters, making them particularly well-suited for
fault detection and other pattern recognition tasks.

The major concepts of AIS algorithms include:

e Self-nonself discrimination: AIS algorithms differentiate between normal system be-
havior, referred to as "self,” and abnormal behavior, known as "non-self.” By learning
to recognize the patterns associated with self and non-self, the algorithms can identify

and respond to faults or threats in the system.

e Affinity: The immune system uses a measure of similarity called affinity to determine
how well an antibody binds to an antigen. AIS algorithms employ similar measures
to assess the similarity between detectors and patterns in the data, allowing them to

identify and classify faults.

53



e Adaptation and memory: The immune system adapts to new threats by generating
new lymphocytes and maintaining a memory of past encounters. AIS algorithms in-
corporate mechanisms for adaptation and memory, enabling them to learn from new

data and adapt to changing system behavior.

e Diversity: The immune system generates a diverse population of lymphocytes to rec-
ognize a wide range of antigens. AIS algorithms mimic this by creating diverse sets of
detectors or classifiers to cover different regions of the feature space, ensuring robust

fault detection.

Three widely studied AIS algorithms are the Negative Selection Algorithm (NSA), the
Clonal Selection Algorithm (CSA), and the Variable Detector Algorithm (V-Detector). Each
of these algorithms has been applied to fault detection tasks with varying degrees of success.

The Negative Selection Algorithm is inspired by the process of self-tolerance in the im-
mune system, where T-cells that recognize self-antigens are eliminated during maturation.
In NSA, a set of detectors is generated that do not match any self patterns, allowing them
to recognize non-self patterns indicative of faults [46]. The NSA has been used for anomaly
detection, intrusion detection, and fault diagnosis in various domains.

The Clonal Selection Algorithm is based on the principle of clonal selection, where B-
cells that recognize antigens undergo rapid proliferation and affinity maturation. In CSA,
detectors with high affinity for non-self patterns are selected and modified through a process
of mutation, enhancing their ability to recognize faults [47]. The CSA has been employed in
optimization, pattern recognition, and fault detection tasks.

The V-Detector Algorithm focuses on the generation of a diverse set of detectors, with
each detector being responsible for recognizing different fault patterns. The V-Detector
algorithm uses an iterative process to adjust the size and shape of the detectors, ensuring
coverage of the feature space and robust fault detection [48], [49].

AIS algorithms offer a promising approach to fault detection by leveraging the powerful

mechanisms of the natural immune system. The NSA, CSA, and VDA have been applied
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to various fault detection tasks, demonstrating the potential of AIS algorithms for detecting

and adapting to faults in complex systems.

5.2 Negative Selection Algorithm

The AISOSVM optimization approach is grounded in the AIS paradigm, which simulates
the biological immune system’s response to antigens and other threats in living organisms.
The immune system can differentiate between foreign cells (nonself, S) and the organism’s
natural cells (self, S). The AIS models the generation of T-cells by the thymus gland, which
are designed to detect and identify antigens entering the body. In autonomous systems,
these pathogens can represent system faults, anomalies, or cyber-attacks [I1]. T-cells that
do not react with the identified self are allowed to mature and remain active in the immune
system to bind and destroy antigens. This process is known as negative selection. The AIS
can be employed within a FDIR algorithm to search for abnormal conditions by comparing a
current configuration of nominal features within the vehicle against the current configuration
of features of the same vehicle under upset conditions [50].

In the AIS-inspired fault detection and diagnosis paradigm, the negative selection al-
gorithm is responsible for generating antibodies or detectors for a specific system feature
space. The dimension of this feature space equals the number of identifiers chosen by the
designer, which can be any system measurement (e.g., system states) or computed variables
(e.g., state estimates) relevant to the system’s performance and having a clear impact on
nominal and abnormal conditions. While this specific application focuses on a spacecraft,
the algorithm is system-agnostic. The identifier values are normalized between 0 and 1 and
cover the entire range of the feature space under nominal conditions. In this fault detection
strategy, the self (S) represents the subset of the system feature space ¥ corresponding to
normal flight conditions, while the nonself (S) represents the abnormal conditions. The self

and nonself should be disjoint sets that span the feature space [51]:

SNS=0 and SUS=YX (5.1)
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The Negative Selection Algorithm (NSA) generates detectors (antibodies) from data clus-
ters (cells). The self and nonself are represented by a set of geometrical hyperbodies, with
clusters being a subregion of the self and detectors or antibodies being a subregion of the
nonself. For this fault detection application, a fixed-radius NSA using hyperspheres is em-
ployed to generate the classes of data belonging to the self-nonself regions of the chosen

feature space of the system. The sets of hyperspherical clusters, D, and antibodies, D,, are

defined as:

Ds = (Csa Ts) Da = (Cmra) (52)

where ¢, € R™ and ¢, € R" represent the hyperspace locations of the centers of the clusters
and detectors, respectively, and r, € R and r, € R represent the radii of the clusters and
detectors, respectively. In a fixed-radius NSA, each data element has the same radius as the
other elements in their subspace.

The method begins by defining the self through the collection of a data set containing
all representative self samples. Then, new immature detectors, or candidate detectors D,
are randomly generated and compared with the self set. If D, overlaps an existing mature
detector D or the self, D, is terminated, and a new detector is created. If the immature
detector does not overlap, the detector matures and is added to the array of detectors.
This process continues until a chosen threshold is reached for the number of consecutively
terminated immature detectors. Detector overlapping is computed using the Minkowski

distance:

d= (Z 18 — @i ) (5.3)

where d is the distance from the center x; of ch to the center of the self or mature detector
sample, (5;, and A is the dimension of the data set. For a two-dimensional problem, A = 2,

and the Minkowski distance becomes equivalent to the Euclidean distance. The error can be
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obtained from this distance using the following equation:

E=d—v
(5.4)
N =Tq+Ts
where r, is the radius of the detector, and ry is the radius of the self samples. If £ > 0,
the candidate detector D, does not match the self samples or the existing detectors and will
mature and be included in the detector set. If ' < 0, the candidate detector overlaps an
existing sample and will be terminated.

The AISOSVM is a two-class classifier and a supervised machine learning algorithm,
requiring two sets of data for training the underlying online support vector machine to
differentiate between the two data sets. However, generating sufficient data that captures
all normal and abnormal behaviors is challenging within complex vehicle dynamics, harsh
environments, and unpredictable subsystem operations. To address this, the NSA is uti-
lized within the OSVM training and optimization process to mitigate the need for strenuous
modeling and simulation testing. The NSA enables OSVM training with limited a priori
knowledge of failure conditions, as OSVM training can now be used with nominal perfor-
mance data. The NSA creates the data points that capture the nonself. An example of the
NSA-generated antibodies surrounding the self data can be seen in Figure [5.1} This data
was obtained from two states, yaw and roll rate, of a spacecraft operating at nominal flight
conditions. For the NSA, antibodies with a fixed radius were chosen to reduce variability in
the optimization process and increase OSVM training accuracy, as the OSVM hyperplane is
only a function of the data point locations themselves and not the arbitrary distance of the

nonself data point center to the nearest self data point.

5.3 Variable Detector Strategy
A related fault detection and diagnosis approach grounded in the AIS paradigm and
self-nonself-discrimination methodology is the Variable Detector (V-Detector) algorithm. V-

Detector uses a negative selection process to generate antibodies or detectors that cover the
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Figure 5.1 Final generation of antibodies using NSA showing self (blue) and nonself (red).

nonself region based on collected data defining the self, or nominal dynamics of a system.
However, in contrast to the general NSA that employs a fixed radius for the generated
antibodies, the V-Detector algorithm adopts a pseudo-optimization process, allowing the
radius of each antibody to change to maximize nonself region coverage with the fewest
antibodies without overlapping the self [52, [53].

The V-Detector strategy starts by selecting features representing the nominal dynamics
of the system. These features can be sensor measurements or estimated quantities, but the
chosen features should be sensitive to the system’s normal or abnormal conditions. After
identifying the features, the values are normalized in the range [0.0, 1.0], thereby defining
the self space. Following the normalization of the self data, an initial candidate detector
pool is generated with a vector of randomly selected coordinates corresponding to the center
of each detector.

During each iteration, the V-Detector strategy selects a candidate detector from the

candidate detector pool and evaluates if the candidate should mature and become part of
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the final detector set. In the first iteration before any detectors are matured, a candidate’s
radius is set equal to the minimum distance to the self points. The distance is determined
using the Minkowski distance, d, as previously defined in Equation . When a candidate
detector is closest to a self data point, the detector radius is set to r, = d — ry, where ry is
a fixed radius value for all self points. Conversely, if the candidate detector is closest to a
matured detector, the radius of the candidate is set to the distance d.

A candidate detector can be rejected for two reasons. If the candidate covers any part
of the self region, it is immediately rejected. This violation is determined using the same
process as the negative selection algorithm with Equation. When the candidate is
closest to a matured detector, a designer-defined threshold indicates the acceptable amount
of overlap between detectors. If the candidate with radius r,_ overlaps a mature detector with
radius r,,, more than the threshold, it is rejected. The threshold, J, defining the maximum

allowable overlap is bounded from [0, 1] and calculated using Equation(5.5]) [52]:

7aac + TO/"L + d
2r!

5= (5.5)

where 21/ is the smaller detector radius among the two detectors being compared. This can-
didate detector maturing process continues until either a predefined number of antibodies is
reached, indicating appropriate self-nonself coverage, or until a maximum number of itera-
tions is achieved. Once this process concludes, the resulting antibody set and corresponding
radii are sorted in descending order by radius size. Figure displays the generated an-
tibodies with varying radius sizes surrounding the self for a roll rate and yaw rate feature
space from a generic satellite model.

During system testing and online fault detection when the V-detector algorithm is de-
ployed by itself, samples of the feature sets are collected, normalized, and their distances
individually checked against each mature detector in the antibody set. With the antibodies
sorted in descending order by radius, the incoming sample is compared to the detectors most

likely to be activated first. Detector activation is determined by the distance, d, between the
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sample point and a mature detector such that d < r,, where r, is the radius of the mature
detector in the comparison. Due to the close clustering and overlapping of detectors, a buffer
is generally used to mitigate false alarms. Once a number, n of detectors are activated in
n sequential time steps, a fault is detected. When applied to the OSVM for the training
process, these individual detectors are generalized to the decision boundary of the OSVM.
Thus, instead of comparing each new sample to these generated detectors, the output of the

OSVM determines the class of data and whether or not a detector is activated.

Normalized Yaw Rate, r

Normalized Roll Rate, p

Figure 5.2 Generated detectors (red) surrounding self data (blue) using V-Detector the
method.

5.4 Clonal Selection Algorithm

Optimizing the antibody set generated by the negative selection algorithms and the
hyperparameter configuration for AISOSVM models is crucial to fault detection performance.
To achieve this optimization, CSA is employed. The Clonal Selection Theory models an

adaptive immune system’s response. When an organism encounters an antigen or foreign

60



cell, B lymphocytes are produced in the bone marrow. If the B-Cells can bind to the antigen,
they mature and divide, creating clones through mitosis, which forms the basis of the clonal
selection theory [54]. The main features of the clonal selection theory, of which CSA is

derived, follows the CLONALG implementation [55]. The CLONALG includes:

e random and accelerated genetic changes of generated cells to an antibody pattern
e proliferation of cells with bound antigens

e maintenance and retention of a single antibody pattern expressed by a differentiated

cell - clone

CSA applies the clonal selection theory to create an immune system-inspired optimiza-
tion process, which is proven to be an adaptive optimizer similar to genetic algorithms.
CSA continues until a predetermined stopping threshold is reached, based on the number
of generations. The Clonal Selection Algorithm is outlined in Figure [5.3] but its process is
described as follows, using the strategy outlined by CLONALG [47]:

(1) Generate a binary string for each parameter that CSA will optimize. Include a
maximum and minimum value for each parameter, and decode the string to a suitable figure
for use in subsequent calculations.

(2) Create an initial antibody population randomly from the binary string representa-
tions. The number of antibodies generated for each generation depends on the user.

(3) Rank the antibodies using an affinity-proportionate function and clone the best n
individuals, creating an initial clone set (C). Generate the number of clones for each popu-
lation according to the user-defined C'lone,;., which is a percentage of the population size
such that the new clones Nc = round(Clone,q. - P).

(4) Mutate the clones, C, using bit flips in their binary representation. The mutations are
proportionate to the clone’s affinity, with lower affinities having a higher chance of mutation.

The function exp(—Mutation,q. + Af finityeandidate) defines this probability.
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(5) Create a new population of "memory cells” using the population of clones, C, which
replaces the best populations of P, and the remaining population of candidates.

(6) Replace several antibodies within the new memory cell population with randomly
generated candidates. The number of random candidates added to each generation is set by
the user. Replace the lowest affinity antibodies with these new cells.

(7) Terminate CSA if the maximum generation limit is reached. Otherwise, use the new

population to replace the antibody population from the previous iteration.

Create antibody population, P

v

Calculate affinities of each antibody

v

Clone selection process, C

v

Affinity proportional mutation

v

Mature and generate memory cells, Pand C

Y

iteration limit reached?
( Terminate )

Figure 5.3 Clonal selection algorithm process.

Y
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6 The AISOSVM

In Chapter 6, the AISOSVM (Artificial Immune System Optimized Support Vector Ma-~
chine) approach is presented, which combines the strengths of both artificial immune systems
and support vector machines. This chapter elucidates the rationale behind integrating these
two methodologies, demonstrating the benefits of leveraging the robustness and adaptability
of artificial immune systems with the powerful classification capabilities of support vector
machines. The AISOSVM implementation details and key components, such as the clonal
selection algorithm and the variable detector algorithm, are discussed to provide a compre-

hensive understanding of the proposed methodology.

6.1 Development and Motivation

The AISOSVM is a novel approach to fault detection that combines the strengths of
artificial immune system algorithms with the adaptive capabilities of online support vector
machines. This innovative method addresses some of the key challenges faced by traditional
data-driven and model-based fault detection schemes, particularly in the context of complex
systems like spacecraft, where the accurate prediction of system behavior and fault propa-
gation is often difficult. This section discusses the development and motivation behind the
AISOSVM, highlighting the benefits of integrating AIS algorithms with Online SVMs and
comparing this approach to the current state of the art in fault detection.

AIS algorithms are inspired by the natural immune system’s ability to adapt to new
and evolving threats, providing robust protection against a wide range of pathogens. In the
context of fault detection, AIS algorithms offer several significant advantages over conven-
tional methods. First, they are capable of optimizing the hyperparameters of the OSVM,
ensuring that the model is well-tuned to the specific characteristics of the system being
monitored. This can improve the overall accuracy and performance of the fault detection
process, particularly when dealing with noisy or incomplete data.

Second, AIS algorithms can generate synthetic data to enhance class separation and

mitigate the need for gathering ”failure” data during the training process. This is particularly
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valuable in complex systems like spacecraft, where failures can be unpredictable and difficult
to replicate for training purposes. By creating synthetic data that accurately represents
potential fault conditions, the AISOSVM can be trained to detect a wide range of faults,
even those that may not have been observed in the real system. This ability to ”learn”
from synthetic data, combined with the optimization of OSVM hyperparameters, enables
the AISOSVM to achieve high levels of fault detection accuracy and sensitivity, surpassing
the performance of many traditional approaches that require extensive training data.

The integration of the OSVM with incremental learning and decremental unlearning adds
an additional layer of adaptability to the AISOSVM, allowing it to respond to new conditions
as they occur within the system and to new ”"nominal” conditions. This is particularly
important in complex systems like spacecraft, where the operating environment and system
behavior can change over time, necessitating the continuous updating of the fault detection
model. By incorporating incremental learning and decremental unlearning techniques, the
AISOSVM can adapt to these changes in real-time, ensuring that it remains effective even
as the system evolves.

Moreover, the adaptive nature of the AISOSVM allows the system to be trained even after
deployment, once "nominal” conditions have been established and verified in the operating
environment. This further mitigates the need for high-quality data obtained during the
training process, as the model can continue to refine its understanding of the system behavior
and fault conditions after it has been deployed. In this way, the AISOSVM offers a significant
advantage over traditional data-driven and model-based fault detection schemes, which often
require extensive pre-deployment training and may not be able to adapt to changes in the
system behavior or operating environment.

Despite the numerous advantages of the AISOSVM, it is important to acknowledge cer-
tain limitations and weaknesses inherent in the approach. One potential drawback is the
computational complexity involved in optimizing the OSVM hyperparameters and generat-

ing synthetic data using AIS algorithms. This can lead to increased computational demands,
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particularly in large-scale or high-dimensional systems, potentially impacting the efficiency
and real-time applicability of the fault detection process. Another potential issue is the re-
liance on the quality of the synthetic data generated by the AIS algorithms. If the synthetic
data does not accurately represent the true fault conditions, the AISOSVM may struggle
to detect certain types of faults, reducing its overall effectiveness. Additionally, the adapt-
ability of the AISOSVM, while beneficial in many respects, could lead to overfitting if not
properly controlled, particularly in situations where the system is exposed to a high degree
of noise or uncertainty. It is crucial to carefully balance the trade-offs between adaptability
and generalization to ensure that the AISOSVM remains effective across a wide range of
fault scenarios and system conditions.

In comparison to model-based fault detection approaches, the AISOSVM’s data-driven
nature presents some unique challenges. One significant drawback is the inability to ana-
lytically validate the AISOSVM as can be done with model-based approaches. Model-based
methods often rely on well-established physical models and mathematical relationships, pro-
viding a level of certainty and confidence in their performance. In contrast, data-driven
methods like the AISOSVM are heavily dependent on the quality and representativeness of
the training data, which can make it difficult to guarantee the system’s performance and re-
liability under all possible conditions. Additionally, model-based approaches are often more
transparent and interpretable, allowing for easier identification of the root causes of faults
and a clearer understanding of the underlying system dynamics. With the AISOSVM, the
decision-making process may be more opaque, making it challenging to diagnose issues and
implement effective corrective actions.

The AISOSVM represents an advancement in fault detection capabilities, offering a highly
adaptive and flexible approach that combines the strengths of artificial immune system al-
gorithms and online support vector machines. By optimizing the OSVM hyperparameters,
generating synthetic data to represent potential fault conditions, and adapting to new con-

ditions in real-time, the AISOSVM can achieve high levels of fault detection accuracy and
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sensitivity, surpassing the performance of many traditional data-driven and model-based
methods. As such, it represents a promising alternative for complex systems like spacecraft,
where the accurate prediction of system behavior and fault propagation is often challenging
or impossible. The development and motivation behind the AISOSVM underscore its poten-
tial to revolutionize fault detection in complex systems, enabling more reliable and robust

monitoring of critical components and ensuring the safety and longevity of these systems.

6.2 Algorithm and Implementation

The proposed threat detection strategy utilizes a support vector machine optimized using
bio-inspired algorithms that mimic the immune system response to antigens. The Clonal
Selection Algorithm (CSA) performs the optimization process by mimicking the production
and adaptation of immunizing cells when an antigen enters the body. Negative selection-
based algorithms, namely the Variable Detector (V-Detector) algorithm, are employed during
this optimization process to create the distinction between nominal and off-nominal system
performance and to improve the online support vector machine training and optimization.
The proposed threat detection process is outlined in Figure 6.1

The AISOSVM architecture aims to provide a comprehensive and adaptive fault detection
solution, specifically designed to address the challenges faced by complex systems. The
architecture is divided into two main phases: the Offline Training phase and the Online
Detection and Isolation phase.

The Offline Training phase commences with the General Training Set, a compilation of
labeled data samples that encompasses normal or normal and faulty operating conditions
of the system. Data acquisition is a crucial aspect of this step, as the quality and diver-
sity of data directly influence the performance of the AISOSVM. The data can be sourced
from simulations, ground test data, or historical operational data, ensuring a comprehensive
representation of the system’s behavior under various conditions. To facilitate the training
process, this data set undergoes normalization to ensure that all features share the same

scale. Following normalization, the Clonal Selection Algorithm is applied, incorporating the
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Figure 6.1 The immune system augmented fault detection architecture.
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The Clonal Selection Algorithm serves as the optimization algorithm for generating an
optimized OSVM. Its primary function is to optimize the OSVM hyperparameters, which in
turn adjust the OSVM’s performance based on the training data. Additionally, the Clonal
Selection Algorithm optimizes the parameters of the V-Detector algorithm in terms of de-
tector generation performance and detector radius generation. The V-Detector algorithm
generates synthetic data points, which enhance class separation and mitigate the need for
gathering failure data during the training process. This synthetic data creation is particu-
larly beneficial in situations where obtaining failure data is difficult, expensive, or impossible.
The Clonal Selection Algorithm optimizes the OSVM’s hyperparameters, ensuring that the
OSVM model is tailored to the training data, maximizing its performance. The Perform
Analysis step evaluates the performance of the trained OSVM model on a validation set,
determining its effectiveness in detecting faults.

Once the training is complete, the trained OSVM Model is saved and deployed onboard
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the system for use during the Online Detection and Isolation phase.

The Online Detection and Isolation phase begins with the deployed fault detection sys-
tem operating onboard the autonomous system for health monitoring. Operational data is
sampled from the system sensors and data streams in near real-time. These samples are
normalized to maintain consistency with the training data. The samples are then passed
through the OSVM Model within the Fault Detection Process to determine the data label
(i.e. nominal or abnormal). The output of the OSVM Model provides this classification.
If the sample fits the model’s nominal classification, the process continues with the next
Incoming Data sample. If not, the system moves into a Fault Detected stage to determine
if a fault is actually detected.

At this juncture, the system may be in an ” Override” mode. This operating mode allows
operators to make the decision to adapt the OSVM model and to learn this sample as a
new nominal condition or to decrementally learn previous samples to adjust accuracy as
desired. If the Override is active, the process transitions to the Learn Sample step, updating
the OSVM Model with the new sample, and no fault is detected. This adaptability allows
the AISOSVM to acclimate to new nominal conditions, enhancing its performance over time.
Operators may want to enter this Override mode during the first period of operations once the
autonomous system’s performance is verified to be nominal. This will allow even a partially
trained OSVM model to learn in near real-time the true nominal conditions without requiring
operators in the loop. This can be especially useful for spacecraft as downlink operational
data, retraining the system on the ground, and then redeploying and uplinking the updated
model to the spacecraft may be restricted. If the Override is not active, the process concludes
with Fault Confidence & Fault Trend, signaling a fault detection. Within this terminating
step, operators can be notified of the fault with additional fault metadata corresponding
to the confidence level of the classification and a quantifiable indicator for fault severity to
assist with fault diagnosis processes and system recovery maneuvers.

The AISOSVM architecture offers a comprehensive and adaptive solution to fault detec-
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tion, melding the power of artificial immune system algorithms with the adaptability of the
online support vector machine. By incorporating the Clonal Selection Algorithm for opti-
mizing OSVM hyperparameters and the V-Detector algorithm parameters, the AISOSVM
overcomes some limitations of traditional data-driven approaches. Moreover, its ability to
adapt to new conditions during the Online Detection and Isolation phase ensures a more
robust and reliable fault detection system, making it an ideal candidate for mission-critical

applications like spacecraft health monitoring.

6.3 Integration with Artificial Immune System Algorithms

As previously described, once the initial set of training data is acquired and normalized,
CSA is invoked to generate the AISOSVM model. Within the optimization algorithm, each
optimization parameter is assigned a definite range for the antibodies which are encoded
into a binary string. The parameters used for the AIS optimized OSVM are the OSVM
hyperparameters C' and ¢ and the self and nonself cell radii, r; and r, respectively, for
NSA. The CSA features and values used for optimization for all simulation test cases are

given in Table[6.1] These values provided a standard and wide sweeping range for parameter

tuning of the AISOSVM.

Table 6.1 Optimization parameters used within CSA for AISOSVM model generation.

Clonal Selection Algorithm (CSA)

Number of generations 100
Population size 50
Mutation factor, Mutation,.. -2
Clone factor, Clone,qe 30%
Number of random cells generated 10%

Online Support Vector Machine

Penalty Factor, C (0.1, 50]
RBF Kernel Parameter, o [0.001, 5]

V-Detector Algorithm
Minimum Nonself radius, r, [0.01, 0.06]

The OSVM is trained using the sequential minimal optimization process for each CSA
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population member n;. The two OSVM hyperparameters and NSA antibody radii are used
with the nominal data obtained from the spacecraft simulation to train the AISOSVM. The
AISOSVM process calculates the value of the objective functions for each population member
F(ny). The affinity of each ny is obtained with the objectives of obtaining the best C, o,
rs, and r, combination. The multi-objective affinity is defined in Equation [6.1] and the final

objective function is given in Equation [6.2}

;

Fi(np) = 100 x auc

Fg(nb) — 100 x (1 N #SuppOJI\';SVGCtOI‘S) (61)

F3(nb) = 100 x (M)

coverage threshold

F(my) = —(a- Fi(m) + 8- Fa(mp) +6 - F3(n)),  fora > 8,6 (6.2)

where the variable "auc” refers to the ” Area Under the Curve” of the Receiver Operating
Characteristic (ROC) curve, and N is the number of training data. The first two objective
functions are defined to obtain the OSVM parameters, C' and o. The other two fitness
functions are used to ensure the NSA generates sufficient antibodies to cover the abnormal
conditions while avoiding extreme cases of overfitting. The fitness functions are combined
with a weighted subtraction to create a minimization objective function, F(n), for the
AISOSVM model. The weights for this objective function can be tuned by the user to
assess various model characteristics. For fault detection applications, classification accuracy
remains priority over the other parameters; thus, « is selected to be largest weight. The
weights used for the satellite fault detection application are shown in Table [6.2] If the
population member’s affinity is a good match to the antigen, that member is selected for
cloning and the next generation. Using the objective function, the OSVM performance is
calculated for each population member at each generation until the maximum generation is
reached. After the last generation is evaluated, the best member that minimizes the objective

function is chosen as the AISOSVM model for threat detection.
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Table 6.2 Objective Function Weights for AISOSVM model optimization.

Objective Function Value
Weight
Q 0.50
B 0.30
0 0.20

6.4 Fault Trend Analysis

Fault trend analysis is an essential aspect of fault detection systems, as it facilitates
the identification of gradual changes in the system’s behavior before a critical event occurs.
In this section, we discuss leveraging the prediction output from the online support vector
machine as an indicator of the dynamics trend within the feature space.

The OSVM classifies samples into two classes: —1 or +1, representing nominal and
abnormal samples, respectively. The classification is performed using Equation . How-
ever, if the sign reduction is excluded, the output provides a pseudo-distance to the decision

boundary, represented as:

flx) = Z ayid(ai, ) + b (6.3)

The output from Equation does not provide the actual distance to the support vector
machine decision boundary. However, this output can still be used to produce a generic
understanding of where a sample is located within the OSVM model relative to other samples
and the decision boundary. Samples lying along the decision boundary have an output of
zero from this equation. By analyzing this output, fault trends within the system can be
deduced. The derived fault trend analysis thresholds are summarized Table [6.3]

Monitoring the output of the OSVM and analyzing the fault trends allows not only for
fault or failure detection but also for anticipating their occurrence. This approach provides
an additional layer of intelligence to the fault detection system, enabling operators to make
informed decisions and implement preventive measures to minimize the impact of faults on

the system’s performance. Figure[6.2]and Figure[6.3| provides examples of this trend analysis
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Table 6.3 OSVM rule-based fault trend analysis.

Condition \ Fault Trend

flx) < -1 Nominal samples
f(x) > —1and f'(x) <0 Trending nominal
f(x) > —1and f'(x) >0 Trending abnormal

f(x) >0 Abnormal samples

for a nominal test and a failure test case, respectively. In these figures, yellow signifies a
warning that a data sample is between 0 and —1, green indicates the sample is stables
and less than or equal to —1 and red indicates a positively classified sample portraying an
anomaly or failure.

Furthermore, the ability to discern fault trends can provide valuable information for
system health management, allowing for more accurate predictions of the remaining useful
life of components, subsystems, and the overall system. By incorporating fault trend analysis,
maintenance scheduling can be optimized, leading to reduced maintenance costs, improved
system reliability, and extended system lifespan.

Incorporating fault trend analysis into the AISOSVM framework enhances its ability to
autonomously adapt to changing system dynamics. By continuously monitoring the system’s
behavior and identifying fault trends, the AISOSVM can adjust its model parameters to
maintain high detection accuracy and reduce false alarms. This adaptability makes the
AISOSVM a powerful tool for fault detection in complex and dynamic systems, such as
aerospace platforms.

Moreover, the fault trend analysis can be employed to detect and diagnose multiple
fault types, including abrupt faults, incipient faults, and intermittent faults. Abrupt faults
manifest themselves suddenly and significantly affect the system’s performance. Incipient
faults are characterized by a gradual change in the system’s behavior and can eventually lead
to catastrophic failures if left undetected. Intermittent faults are sporadic in nature and can
occur at irregular intervals, making them difficult to detect and diagnose. By observing the

output of the OSVM and analyzing the fault trends, the AISOSVM can effectively detect
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Figure 6.2 Example of the AISOSVM used for fault trend analysis for a nominal test case
with no detected anomalies.
and diagnose these various fault types, allowing for timely intervention and maintenance

actions to prevent further damage or system failures.
Additionally, fault trend analysis can be utilized in conjunction with other diagnostic

techniques, such as feature extraction and signal processing, to enhance the overall fault
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Figure 6.3 Example of the AISOSVM used for fault trend analysis for a failure test case.

detection and diagnosis capabilities of the AISOSVM framework. This multimodal approach
allows for increased robustness and adaptability, as well as improved accuracy and precision
in detecting and diagnosing faults.

Fault trend analysis plays a crucial role in fault detection systems by providing valuable

insights into the system’s dynamics and behavior. By incorporating this analysis into the
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AISOSVM framework, the system’s adaptability and fault detection capabilities are signif-
icantly enhanced. This approach allows for the effective detection and diagnosis of various
fault types, optimization of maintenance scheduling, and improved system health manage-
ment. As a result, the AISOSVM, when augmented with fault trend analysis, becomes an

indispensable tool for fault detection in complex and dynamic systems.

6.5 Performance Metrics

Several performance metrics can be used to evaluate the effectiveness of the AISOSVM for
fault detection in autonomous systems. These metrics are essential in providing an objective
assessment of the algorithm’s ability to identify faults accurately and efficiently. The chosen
metrics take into consideration the different aspects of the fault detection problem, such as
the balance between true and false detection notifications and the robustness of the model
under different conditions.

The Receiver Operating Characteristic (ROC) is a graphical representation used to eval-
uate the performance of a binary classification system, such as the AISOSVM fault detection
system. It displays the relationship between the true positive rate (sensitivity) and the false
positive rate (1-specificity) at various threshold settings. The ROC curve is plotted with the
true positive rate (TPR) on the y-axis and the false positive rate (FPR) on the x-axis. The
closer the curve is to the top-left corner of the graph, the better the classification system’s
performance. A perfect classification system would have a ROC curve that passes through
the top-left corner, indicating 100% sensitivity and 100% specificity. An example of an ROC
is depicted in Figure

The Area Under the ROC Curve (AUC) is a scalar value that summarizes the overall
performance of a binary classification system. It represents the probability that a randomly
chosen positive instance will have a higher score than a randomly chosen negative instance.
An AUC value of 1.0 signifies perfect classification, while an AUC value of 0.5 indicates that
the classifier performs no better than random chance. Higher AUC values correspond to

better classification performance.
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Figure 6.4 An example Receiver Operating Characterstic curve for the AISOSVM.

The True Positives (TP), False Positives (FP), True Negatives (TN), and False Negatives
(FN) are fundamental metrics in binary classification problems. These metrics provide a way

to quantify the number of correct and incorrect detections made by the AISOSVM:

True Positives (TP): The number of faults correctly identified as faults.

False Positives (FP): The number of non-faults incorrectly identified as faults.

True Negatives (TN): The number of non-faults correctly identified as non-faults.

False Negatives (FN): The number of faults incorrectly identified as non-faults.

The Detection Rate (DR), False Positive Rate (FPR), and False Discovery Rate (FDR)
are essential performance metrics that offer complementary insights into the effectiveness of

the AISOSVM for fault detection in autonomous systems. By examining these metrics, we
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can gain a deeper understanding of the trade-offs between accurate fault detection and the
occurrence of false alarms.

The DR, also known as sensitivity or recall, measures the proportion of true positive
detections to the total number of actual faults provided by Equation . A higher DR
value indicates that the AISOSVM is successful in identifying a larger fraction of the faults
present in the system. However, a high DR does not necessarily imply that the algorithm is
perfect, as it might still produce a significant number of false alarms. To strike an optimal
balance between accurate fault detection and the number of false alarms, we also need to

consider the False Positive Rate and the False Discovery Rate.

TP

DR=——
R=Tprrn

(6.4)

False alarm metrics include the FPR and the FDR. FPR, also known as the Type I
error rate or (l-specificity), is the proportion of actual negative cases that are incorrectly
identified as positive by the classifier as shown in Equation [6.5] Applied to the AISOSVM
fault detection system, the FPR is the ratio of false positives to the sum of false positives
and true negatives given by Equation . A lower FPR indicates better performance in
avoiding false alarms. The FDR, one the other hand, is the proportion of positive cases
identified by the classifier that are actually false positives. In the context of the AISOSVM
fault detection system, the FDR is the ratio of false positives to the sum of false positives
and true positives. A lower FDR indicates better performance in minimizing false alarms.
It is important to minimize these metrics, as false alarms can lead to unnecessary corrective
actions, which could be resource-intensive and potentially detrimental to the spacecraft’s

operation.

FP

FPR= ————
B=tpiTn

(6.5)
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FP
FDR= —— .
R=Fpirp (6.6)

When evaluating the performance of the AISOSVM, it is crucial to consider both detec-
tion rate and false alarm metrics in tandem, as they provide a more comprehensive view of
the algorithm’s effectiveness. A well-performing AISOSVM would ideally exhibit a high DR
and a low false alarm rates, which would signify accurate fault detection with a minimal
number of false alarms. However, there is often a trade-off between these two metrics, and
optimizing one may come at the expense of the other. For instance, if the AISOSVM is
tuned to be more conservative in its fault detection, it might result in a lower DR, as fewer
true faults are detected, but also a lower FPR and FDR, as fewer false alarms are generated.
Conversely, a more aggressive AISOSVM might achieve a higher DR by detecting more true
faults but may also produce a higher FOR and FDR due to an increased number of false
alarms.

Previously discussed in Chapter 4, to assess the robustness and generalization of the
AISOSVM, Leave-One-Out (LOO) estimation and the k-folds validation method are also
employed. In the LOO estimation, one data point is held out as the validation set, while the
remaining data points are used for training. This process is repeated for each data point, and
the average performance across all iterations is calculated. The k-folds validation method is
an extension of the LOO estimation, where the dataset is divided into k equal-sized folds.
In each iteration, one fold is used as the validation set, while the remaining k£ — 1 folds are
used for training. The average performance across all k iterations is then calculated.

By evaluating the AISOSVM using these performance metrics, a comprehensive under-
standing can be obtained regarding its effectiveness and robustness in detecting faults within
spacecraft systems. The performance metrics discussed in this section provide a comprehen-
sive evaluation of the AISOSVM fault detection system’s effectiveness in accurately detecting
faults. The ROC curve and AUC measure the overall classification performance, while the

TP, FP, TN, and FN metrics help quantify the system’s accuracy, sensitivity, and specificity.
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The detection rate, false alarm rates (FPR and FDR), and LOO estimation further contribute
to understanding the system’s performance in identifying faults and minimizing false alarms.
By examining these performance metrics, we can determine the AISOSVM fault detection

system’s suitability for real-world applications and identify areas for potential improvement.
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7 Autonomous Adaptation

This chapter delves into the crucial aspect of autonomous adaptation in the context of
developing a robust and effective machine learning model for fault detection in autonomous
systems. The chapter explores the integration of reinforcement learning, specifically deter-
ministic Q-learning, with the previously discussed AISOSVM model. This combination aims
to enhance the AISOSVM model’s ability to adapt to changing environments and system
dynamics autonomously. Furthermore, the chapter discusses the methodology for integrating
Q-learning with the AISOSVM model, elucidating the underlying principles and mechanisms
that facilitate the fusion of these two techniques. A foundation is constructed that outlines
potential viability of integrating the reinforcement learning methods for autonomous online

learning with the incremental learning process of the AISOSVM.

7.1 Reinforcement Learning with Q-Learning

Reinforcement learning (RL) is a subfield of machine learning focused on developing
algorithms that enable agents to learn optimal decision-making policies through interaction
with an environment. The primary objective of RL is to maximize the cumulative reward
obtained by the agent as it navigates the environment and takes actions. RL has been
successfully applied to various fields, such as robotics, game playing, autonomous vehicle
control, and resource allocation, among others [56, [57].

One of the key concepts in reinforcement learning is the Markov Decision Process (MDP),
which provides a formal framework for modeling decision-making problems in stochastic
environments [58, 59]. An MDP is defined by a tuple (S, A, P, R), where S represents the
set of states, A denotes the set of actions, P is the state transition probability function, and
R is the reward function. The goal in an MDP is to find a policy 7 : S — A, which maps
states to actions, that maximizes the expected cumulative reward over time.

Q-learning is a popular model-free, off-policy reinforcement learning algorithm that has
been extensively studied and widely applied to various problems. The central idea behind

Q-learning is to learn the action-value function Q(s,a), which represents the expected cu-
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mulative reward for taking action a in state s and following an optimal policy thereafter.

The action-value function is defined as:

Q(s,a) =E nyth+1|St =s,A =a,7" (7.1)

t=0
where v € [0, 1) is the discount factor, R;;; is the reward at time ¢+ 1, and 7* is the optimal
policy.

The Q-learning algorithm iteratively updates the action-value function by performing
temporal-difference (TD) updates based on the agent’s experience [60]. The update rule for

Q-learning is given by:

Qsty ar) 4 Qs @) + a 101 + Y max Q(siar, ') — Qsi, a) (7.2)

where « is the learning rate, s; and a; are the current state and action, r;, is the immediate
reward, and s;.; is the next state. The term max, Q(s;41,a’) represents the maximum
action-value for the next state, which is used to update the current action-value estimate
[61].

Q-learning has several attractive properties, such as convergence to the optimal action-
value function under certain conditions, even when the agent follows an exploratory policy.
This enables Q-learning to be used in settings where the agent has limited knowledge of
the environment and must balance exploration (discovering new states and actions) with
exploitation (choosing actions that maximize the expected reward).

There are various approaches to implementing Q-learning, depending on the nature of the
state and action spaces. For discrete state and action spaces, the action-value function can
be represented as a table, with entries for each state-action pair. However, for continuous or
high-dimensional state spaces, function approximation techniques, such as neural networks
or kernel methods, are often employed to represent the action-value function [62].

In the context of autonomous system fault detection, reinforcement learning, and specif-

81



ically Q-learning, can provide several benefits:

e Adaptability. Q-learning enables the agent to learn and adapt to the environment and
system dynamics in an online fashion, making it well-suited for dealing with changing

conditions and non-stationary processes.

e Robustness. The model-free nature of Q-learning allows it to be robust to uncertain-
ties and inaccuracies in the environment’s model, as it does not rely on prior knowledge

of the state transition probabilities or reward function.

e Scalability. Q-learning can handle large state and action spaces when combined with
function approximation techniques, enabling its application to complex systems with

numerous variables and components.

e Decision-Making. By learning an optimal policy, Q-learning allows the agent to
make autonomous decisions that maximize the expected cumulative reward, which can

be useful for identifying and responding to faults in the system.

Integrating Q-learning with the AISOSVM model for fault detection in autonomous sys-
tems involves several key steps. First, the system’s state representation must be designed to
capture relevant information about the system’s dynamics, components, and potential faults.
This representation should be concise and informative, allowing the RL agent to learn an
effective policy efficiently. Next, the action space must be defined, which typically includes
actions the agent can take to diagnose and mitigate faults or to further explore the system.

Once the state and action spaces are defined, the Q-learning algorithm can be applied to
learn the action-value function and, subsequently, the optimal policy for fault detection and
response. The learning process involves the agent interacting with the environment, taking
actions, observing state transitions and rewards, and updating the action-value function
according to the Q-learning update rule. The agent may follow an exploratory policy, such as

e-greedy, to balance exploration and exploitation. This e-greedy function defines a threshold
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e € [0, 1] that governs the probability of choosing one method over the other. The Q-Learning
process flow is provided in Figure

. Start

A A

|dentify current State

Y

Determine exploration or
exploitation

Y Y

Exploitation: Choose action Exploration: choose random

with highest Q-value action
»> Reward or Penalize <
Y NO
Goal
Update Q-table Achieved?

End

._J h_.

Figure 7.1 Q-learning process flowchart.

In the next section, the integration of Q-learning with the AISOSVM model will be
discussed in greater detail, outlining the methodology and specific techniques used to fuse

these two approaches into a cohesive framework for autonomous fault detection.

7.2 Q-Learning Integration with the AISOSVM
The integration of Q-learning with AISOSVM aims to enhance the adaptability and

autonomy of the fault detection system. By incorporating Q-learning into the AISOSVM
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framework, the system can autonomously adapt its parameters in response to the changing
dynamics of the environment or the system itself. This integration enables the AISOSVM
to learn from the system’s experiences and improve its performance over time.

In the proposed AISOSVM framework, Q-learning is used to update the action-value
function based on the observed system states, actions taken, and the rewards received. The
rewards can be defined as the accuracy of the fault detection, the speed of detection, or a
combination of both. The Q-learning algorithm explores different actions, such as adjusting
the OSVM parameters, the feature selection process, or the AIS algorithms, to optimize
the performance of the fault detection system. This incorporation of reinforcement learning

within the fault detection system architecture is illustrated in Figure

r- ) -
| Offline Training | | Online Detection and Isolation
General -
L Normalization| |
Training Set !
Y

V-Detector

Fault Confidence
& Fault Trend

Reinforcement
Learning

Modifications

OVERRIDE

v

Clonal Selection
Algorithm

SVM Parameter
Tuning

v

Performance
Analysis

v

Save Trained
OSVM Model

Lelarn Sample Fault Detected?

Fault Detection
Process

Sample fits model?

Normalization
\

YES

Incoming Data

________

Figure 7.2 Implementation impact of Reinforcement Learning on the AISOSVM

For the AISOSVM implementation, the following actions and states could be used for

the Q-Learning process:

e Actions:

architecture.
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— Perturb the regularization parameter, C'
— Perturb the kenerl parameter, o

— Learn the newly encountered sample

— Unlearn a previously encountered sample

— Do nothing
e States:

— Detection Rate (DR)

— False Discovery Rate (FDR)

Other possible states could include the false positive rate and the F1-Score. These are
bounded between [0, 1]. Within this defined problem setup, the states within the Q-table
would be a R™ ™ matrix where n is the number of states for both the Detection Rate and
False Discovery Rate. For the AISOSVM, a step of 0.01 was used for the two states. The
goal of the Q-Learning method is to achieve a very high detection rate (optimal is Detection
Rate = 1.0) and a very low number of false alarms (optimal is False Discovery Rate = 0.0).
An example of the Q-Table is provided in Table [7.1] The table is arranged with the DR
state column ranging from [0, 1] and the FDR column ranging from [1,0]. Additionally, for
each state pair, the five actions are also represented as a number between 0 and 4 mapping

to one of the five actions previously discussed.

Table 7.1 Q-Table example.

Entry ID | Action | DR | FDR | Q
0 0 0.99 0.01 0.0100
1 1 0.99 0.01 -0.0100
2 2 0.99 0.01 0.0190
3 3 0.99 0.01 -0.0100
4 4 0.99 0.01 0.0271
5 0 0.99 0.00 0.0340
6 1 0.99 0.00 -0.0100
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Once the Q-learning algorithm converges to an optimal policy, it provides guidance for the
ATISOSVM on how to adjust its parameters and strategies in different system states to achieve
optimal performance in fault detection. The integration of Q-learning with AISOSVM en-
ables the development of a more robust and adaptive fault detection system that can handle
a wide range of operating conditions and fault scenarios. This autonomous adaptation ca-
pability is particularly important for spacecraft systems, as it allows them to respond to

unforeseen events and maintain their functionality in the face of faults or anomalies.

7.3 Q-Learning Implementation

The primary objective of integrating Q-learning into the OSVM is to enhance the model’s
adaptability and maintain its performance while keeping the model size low, thus minimizing
computational resources required for its management.

The Q-learning process starts with a partially trained support vector machine, providing
an initial state for the algorithm. Two possible actions are defined: (1) learn the new
incoming sample, and (2) do nothing. The Q-learning table converges to a specific value for
the given starting point and a predetermined number of episodes, based on the following
reward structure:

Action: Do nothing

e If the OSVM performance metrics for detection rate (DR) or false discovery rate (FDR)

does not degrade, reward 1.

e If the OSVM’s DR and FDR both worsen compared to the previous OSVM, penalize
-1.

Action: Learn sample
e If the OSVM’s DR and FDR improve, reward 1.5.

e If the OSVM’s DR and FDR degrade, penalize -2.
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The rationale behind this reward system is to encourage the OSVM to maintain its
performance while minimizing the model size; this rationale is part of a Do No Harm”
policy. When performing autonomous fault management within autonomous systems, such
a policy must be implemented to ensure the fault management does not adversely affect
the system. A "Do No Harm” policy prioritizes the maintenance of the current OSVM’s
performance such that is does not deteriorate due to a learning action taken by the Q-
learning algorithm. Additionally, it is crucial to avoid learning every new sample to prevent
an increase in model size and subsequent computational resource requirements.

To implement Q-learning within the AISOSVM architecture, the state representation
should capture the current performance of the OSVM, including its detection rate and false
discovery rate. The state space can be discretized to facilitate the implementation of the
Q-learning algorithm, and the Q-table can be initialized with arbitrary values. During each
episode, the Q-learning algorithm follows an exploratory policy, such as the e-greedy strat-
egy, to balance exploration and exploitation. The agent interacts with the environment by
selecting actions based on the current Q-table and observing the resulting state transitions
and rewards. The Q-table is then updated according to the Q-learning update rule provided
in Equation Upon convergence of the Q-learning table, the learned Q-values can be used
to inform the decision-making process for learning new samples within the AISOSVM frame-
work. This adaptive, data-driven approach enables the OSVM to maintain its performance
while keeping the model size low, ultimately providing an effective solution for autonomous
system fault detection and adaptation.

For this initial test of the Q-Learning implementation, the parameters for the Q-Learning
process is provided in Table [7.2]

The Q-Table was trained from an initial state taken from the detection rate and the false
discovery rate of an initial AISOSVM model. This fault detection model was initially trained
on 100 data samples with a set regularization parameter and kernel parameter. The initial

detection rate was 0.72 and the original false discovery rate was 0.31. The original output
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Table 7.2 Q-Learning parameters for AISOSVM integration.

Parameter | Value
Learning rate, « 0.1
Discount factor, ~ 0.5
Greed factor, € 0.1
Episodes 100

of this initial model is shown in Figure [7.3|
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Figure 7.8 Initial AISOSVM model used for Q-Table generation.

After achieving this initial state, the Q-Learning implementation was invoked to train

the Q-Table on the best actions to improve the model performance. After 100 episodes, the

Q-Table displays a trend and convergence to a set of best actions for the AISOSVM model

states as shown in Figure[7.4, The Q-learning process is able to converge to a reward system

value that improves the performance of AISOSVM model. The Q-Values correspond to the

best actions to take based on the initial starting state and any subsequent states as well.

After determining the Q-Values and best actions for this initial model, the table was used
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online to dictate whether a new sample should be learned and added to the model or whether
no action should be taken to adapt the model. Figure provides a map indicating the best
action to take based on the maximum Q-value for an initial detection rate ("state_dr”) and
false discovery rate ("state_fdr”). This map showcases the Q-Learning table implementation
for 50 learning actions taken across each of the 100 episodes within the training process.
This map shows a clear trend emerging from the training process; the Q-Learning process is
trending towards the bottom right of the map representing the goal state of the AISOSVM:
100% detection rate and 0% false alarms.

Using this Q-Table for autonomous training decisions within the AISOSVM architecture,
the autonomously selected actions improved the initial model’s performance by increasing
the detection rate and decreasing the false discovery rate. This online AISOSVM adaptation
demonstration used the maximum Q-Value to determine the best action to take for the
model’s given state for a single feature space. Additionally, to ensure the model actions
did not get stuck in a decision loop where the only action to take was to do nothing thus
never incrementing the model state, a 1% chance to take a random action was provided so
long as that action did not degrade the AISOSVM performance from its current condition.
From this process, the final adapted model is shown in Figure[7.6] Additionally, a Table[7.3

provides the online Q-Learning process results.

Table 7.3 Online AISOSVM adaptation results.

Initial Conditions

Detection Rate, DR 72%

False Discovery Rate, FDR 31%
Q-Table Actions

Nothing Actions Taken 1934

Learning Actions Taken 426

Percentage of Nothing Actions 81.9%

Percentage of Learning Actions 18.1%
Final Conditions

Detection Rate, DR 83%

False Discovery Rate, FDR 23%
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Figure 7.4 Average Q-Values for all trained state-action pairs and the initial AISOSVM
model states.
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Figure 7.5 Best action Q-values based on the current AISOSVM model state.
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Figure 7.6 AISOSVM model adapted online using the generated Q-Table.

This demonstration only covered an initial start state for the AISOSVM due to the
limitations of the deterministic learning process and the requirement to be trained on each
state-action pair. Future work will investigate additional framework requirements for fully
implementing the Q-Learning process online with the AISOSVM architecture. To gather a
complete map of the state action feature space, the Q-Learning table may need to be trained
alongside the initial AISOSVM in order to gain a greater coverage of potential states. An
alternate approach could be simple rule-based systems to limit the total state action feature
space to those within the surrounding area of the initial AISOSVM model and to implement
the Do No Harm” protocol to revert the model if an action is taken to the detriment of the
performance. Ideally, the output of the AISOSVM offline training process should be a model
with very high detection rates and very low false discovery rates. Therefore, it may be of
benefit to limit the scope of the Q-Learning process to the immediate vicinity of that initial
state as a single misclassified sample would not change the state parameters by a significant

amount assume the AISOSVM model size is a few hundred samples.
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8 Applications and Case Studies

In this chapter, we present the results obtained from the implementation and testing of
the AISOSVM fault management system on different spacecraft scenarios. A comprehensive
evaluation of the system’s performance is conducted, focusing on its effectiveness in detecting
faults in near real-time. The results are discussed in the context of the system’s practical
applicability and potential impact on spacecraft operations. Furthermore, we delve into
the implications of the findings for the overall research objectives and explore the potential
avenues for future work to enhance and expand the AISOSVM fault management system.
This chapter aims to demonstrate the system’s capabilities in addressing the challenges of
fault detection and health management in autonomous spacecraft, validating the theoretical
underpinnings and the practical implementation of the AISOSVM framework presented in
the preceding chapters. The AISOSVM is experimentally evaluated in simulation using a
high-fidelity spacecraft simulation environment; the AISOSVM implementation process and
fault detection performance was further validated using flight data collected from a spacecraft

hardware testbed.

8.1 The Simulation Environment

To validate the performance of the AISOSVM for fault detection in spacecraft systems, a
series of experiments and test scenarios were designed and conducted in simulation. While the
AISOSVM has the potential to be applied to any autonomous system, spacecraft applications
were chosen for their criticality and the need for accurate, near real-time fault detection
capabilities. Spacecraft are highly complex and isolated systems, making fault detection
vital to mission success and the safety of assets. The simulations tests aimed to assess the
ability of the AISOSVM to identify faults in different subsystems, as well as its capability
to adapt and learn from new data in real-time.

The experiments were carried out using a comprehensive spacecraft simulation that en-
compassed various subsystems, including the reaction wheels and the attitude controller, to

replicate a realistic operating environment. The spacecraft simulation served as the founda-
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tion for the test scenarios, providing a platform for evaluating the AISOSVM’s performance
under various conditions. The reaction wheel model, an essential component of the space-
craft’s attitude control system, was used to simulate faults in the reaction wheel assembly.
By testing the AISOSVM in these operationally reflective spacecraft scenarios, the pro-
posed methodology’s effectiveness and adaptability in addressing the challenges of fault de-
tection could be thoroughly assessed. The spacecraft application serves as a demanding
testbed, with stringent requirements for accuracy, timeliness, and robustness, highlighting
the value of the AISOSVM in mission-critical environments. These experiments provide
valuable insights into the potential applications of the AISOSVM not only in the field of
spacecraft health monitoring but also in other autonomous systems where reliable and adap-

tive fault detection is of paramount importance.

8.1.1 The Simulation Environment

A spacecraft simulation environment was developed to support the design, testing, and
evaluation of the fault detection concepts. As shown in Figure 8.1} the simulation was
generated as a modular structure within Matlab/Simulink using the Aerospace Toolbox
and Aerospace Blockset. These toolboxes provide the general framework for solving the
equations of motion of a six-degree-of-freedom (6DOF') spacecraft with dynamics that include
J2000 and solar radiation pressure perturbations as presented in Bate et al. [63], Vallado
[64]; this environment is portable and flexible for generating system data given different
control configurations and flight conditions. The simulation environment includes dynamic
models for a generic microsat, the Low-Earth Orbit (LEO) space environment, autonomous
Lyapunov-based flight controller, and data visualizations of the system response.

A 6DOF spacecraft simulation environment was used to gather data for fault detection
algorithm training and evaluation. The simulation implements the nonlinear equations of
motion for a system in Earth orbit with spherical harmonic and solar radiation pressure
dynamics [64] 65]. The spacecraft model is defined with physical parameters representative

of a small, 150 kg microsatellite. The spacecraft does not have propulsion capabilities for
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Figure 8.1 Spacecraft simulation block diagram.

translating motion. Each test case using this simulation environment was initialized with
spacecraft orbital parameters corresponding to a satellite in a Sun-Synchronous Orbit (SSO).

Table summarizes these orbital parameters.

Table 8.1 Initialized spacecraft orbital parameters.

Orbital Parameter

Periapsis altitude, km 500
Eccentricity, e 0.001
RAAN 92°
Inclination 98°
Argument of periapsis 90°

8.1.2 The Reaction Wheel Model

Reaction wheels operate by employing a rotating momentum wheel, driven by an inbuilt
brushless DC motor, which interacts with the spacecraft body to either speed up or slow
down the wheel, consequently altering the magnitude of the wheel’s momentum. These
components serve as both momentum transfer and storage devices, delivering reaction torque
and conserving angular momentum [66]. Reaction wheels are frequently utilized as the

actuators within the Attitude Control Systems (ACS) of small spacecraft.
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The simulation reflects the use of four reaction wheels, integrated in a tetrahedral config-
uration for attitude control given as four commanded output torques, each with three torque
components, one for each defined axis of rotation (roll, pitch, and yaw) of the reaction wheel
relative to the spacecraft’s body frame. Figure [8.2] shows a representation of this reaction
wheel configuration. The reaction wheel model was designed and implemented using a simi-
lar approach as presented in Gutierrez Martinez [67]. Figureprovides a block diagram for
the ACS model used within the simulation environment. Additionally, Figure provides

a lower level view of the individual reaction wheel models.

Figure 8.2 Tetrahedral reaction wheel configuration.

These reaction wheels implemented for the simulation environment and test case scenar-
ios were modeled using Sinclair Interplanetary’s 1 Nms reaction wheel by Rocket Lab. The
hardware specification used for this modeling is provided by Rocket Lab [68] and summa-
rized in Table [8.2] This reaction wheel configuration and maximum control torque reflects

commercially available systems for the modeled spacecraft mass class.

8.1.3 Attitude Control Laws
The control torques themselves are generated using control laws derived from the quater-

nion error kinematics and a Lyapunov candidate function as defined in Equation (8.1)) and
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Table 8.2 Reaction wheel model specifications.

Parameter \ Reaction Wheel Specification
Momentum 1.0 Nms
Torque 0.1 N-m at 0.8 Nms
Maximum Current 1.53 Amps
Supply Voltage 28V
Power Requirement Maximum: 43 W @ 0.6 N-m
Dimension 154 mm x 146 mm x 45 mm
Mass 1.380 kg

Equation (8.2)) respectively. These control laws were derived following the process in Schaub
and Junkins [69]. The Lyapunov candidate function considered was chosen to generate the
torque commands that will drive both the vector and scalar portion of the error quaternion
to zero and unity respectively while simultaneously nulling the error angular rates. Lastly,
a saturation function is used to ensure only achievable torque commands are generated re-

flective of the chosen reaction wheel capabilities.

Ge = 52 (we)q,
(8.1)
Q) —wT w

where g, is the error quaternion and the quaternion is defined as ¢ = [n,]” with n ¢ R3?!

and € € R!. A Lyapunov Candidate is chosen as:

1
V= §wZK_1Jw + 20"+ (1 — &%) (8.2)

where K € R3%3 is the positive-definite matrix of gains and J e R3*3 is the inertia tensor
matrix. From this Lyapunov candidate function, and following the Lyapunov Direct Method,

the resulting control torque, T, is defined by Equation (8.3]):

97



T=whJwp — JWR.w; + JR.w; — 2¢.Kn, — Cw, (8.3)

where w, are the error rotation rates, w, are the desired rotation rates, wy is the desired
angular accelerations, R, € R3*3 is the rotation matrix that maps to the body-fixed reference
frame, the superscript z signifies a skew operator, and C' € R3%3 is a positive-definite matrix.
The resulting time-derivative of the candidate function remains a valid function as long as

K ~'C is positive definite. To ensure this condition, selection of these matrices can implement

the following:

K =FkJ

(8.4)
C=cJ

where k and c are small and positive scalar values. Control torques generated by this control

law for an attitude change maneuver are presented in Figure |8.5]
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Figure 8.5 Generated control torques from Lyapunov-based controller.
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8.2 Simulated Scenarios and Data Acquisition

The spacecraft simulation was used to generate the training data and to gather data rep-
resentative of a failure scenario. Various test case scenarios were simulated for the generic
spacecraft to perform the various analyses and to assist with designing the AISOSVM ar-
chitecture. For the purpose of assessing performance, the fault detection process focused on
the spacecraft’s attitude dynamics. The test cases consisted of nominal operating conditions
and the other representing anomalous conditions within the attitude control system. The

nominal and failure test case scenarios simulated are described as follows:

e Nominal data acquisition. The nominal response of the system was generated
by executing five hundred attitude commands within the range of [—15,15]° to track
a target orientation. Each simulation allowed sufficient time for the spacecraft to
stabilize at the new attitude using the control system previous detailed. The nominal
attitude control performance of one such nominal spacecraft simulation is presented in
Figure and Figure [8.7] which provide the spacecraft attitude tracking information

and reaction wheel torques, respectively.

The simulated nominal test cases served as training data for class 1 of the support
vector machine. The five hundred simulations provided the fault detection process with
over ninety-six thousand data points, capturing the typical response of the spacecraft

dynamics for small to medium attitude changes.

e Failure test scenario #1. For AISOSVM verification and validation tests, an anoma-
lous test case generated failure data representative of a torque saturation in one of the
reaction wheels within the attitude control system. This failure was injected by using a
torque saturation of 50% directly on the ACS model output on one of the three output
torques. This simplified the feature space of the spacecraft to just the angular rates

(p, ¢, r) and the attitude.

e Failure test scenario #2. For higher fidelity simulation test scenarios, an anoma-
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Figure 8.7 Nominal reaction wheel output torque.
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lous test cases, representing a failed or saturated reaction wheel scenario, generated
a second set of data points that could be compared to the trained model to evaluate
fault detection performance. For these test cases, the friction of Reaction Wheel #
2 (one of four reactions wheels) was increased by 50%; this change impacts both the
controller stability as well as the power supply requirements requiring both systems to
become more active to account for the loss in torque output. This simulates a reaction
wheel subsystem that experiences an anomaly in the bearing assembly similar to the
failures experienced by the Dawn spacecraft [70]. The failure attitude control perfor-
mance of one such failure mode simulation is presented in Figure 8.8 and Figure [8.9]
which provide the spacecraft attitude tracking information and reaction wheel torques,
respectively. As depicted, the system is able to remain stable; however, the control
system responds more erratically for commanded torques and the power system must
supply additional current to maintain the required torque. A comparison of the cur-
rent draw is provided in Figure demonstrating the difference between the nominal

reaction wheel performance and the failure mode.

8.3 Evolution of the Negative Selection Augmentation

During the initial development stages of the AISOSVM architecture, both the fixed radius
Negative Selection Algorithm and the Variable Detector algorithm were investigated for the
immune system augmentation and generation of synthetic fault data for the model training
process. The NSA was considered as the fixed radii detectors could potentially provide a
more uniform distribution of detectors surrounding gathered self data. Alternatively, the V-
Detector algorithm with the varying radius detectors was considered in order to maintain a
small support vector machine model as the algorithm is designed to generate as few detectors

as possible with the highest feature space coverage.

8.3.1 A Comparative Study
The angular rates, p, ¢, and r, were selected as the primary features due to their signifi-

cant potential and sensitivity to attitude control system failures. The feature space can be
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Figure 8.8 Effects of failure on attitude tracking.

103



X-Axis Torgue, N-m

1
0 1000 2000 3000 4000 5000

Time, s
%107
E 1 T T T T T
=
@
=
g
o
'—
tn
5
0 1000 2000 3000 4000 5000
Time, s
%1072

Z-Axis Torgue, N-m
=

1
0 1000 2000 3000 4000 5000
Time, s

Figure 8.9 Reaction wheel output torques with increased bearing friction.

0.25 T T T T T 1

02r 1 081

RW Current, A
o
o
RW Current, A
o
(5]

o

0.05

0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000

Time, s Time, s

Figure 8.10 (right) The nominal current draw for a spacecraft reaction wheel and (left) the
effect of the failure mode on the current draw.

104



further expanded and combined with other dynamics and system states as needed, as will
be demonstrated in Section [R.4l

The AISOSVM training and optimization process follows the method shown in Figure|6.1}
The first class of data, class -1 representing the nominal performance of the spacecraft, was
obtained from the spacecraft simulation environment. The immune system strategies, CSA
and NSA, generated an optimized SVM model for the fault detection applications.

As previously described, once the initial set of nominal spacecraft training data is acquired
and normalized, CSA is invoked to generate the AISOSVM model. Within the optimization
algorithm, each optimization parameter is assigned a definite range for the antibodies which
are encoded into a binary string. The parameters used for the AIS optimized SVM are the
SVM hyperparameters C' and ¢ and the self and nonself cell radii, ry and r, respectively,

for NSA. The CSA features and values used for optimization are given in Table [6.1]

8.3.2 Fixed Radius NSA Augmentation

The objective of the optimization is to generate a variable self-nonself representation
while maintaining high SVM classification performance. The Clonal Selection Algorithm
used four fitness parameters for optimization to generate the AISOSVM model used for
fault detection. One parameter is the model’s classification accuracy. This accuracy revolves
around the number of true positives, true negatives, false positives, and false negatives for
the classification of test data. This test data was selected as a portion of the nominal data
and the generated antibodies from NSA. Other fitness parameters are the number of support
vectors, the number of antibodies, and the ratio of radii for the self cells and antibodies.
Using this process, the SVM and NSA parameters are dynamically optimized to generate
an AISOSVM model that will then perform the online fault detection. The SVM training
process used the sequential minimal optimization process for each CSA population member
ny. The two SVM hyperparameters and NSA antibody radii are used with the nominal data
obtained from the spacecraft simulation to train the AISOSVM. The AISOSVM process

calculates the value of the objective functions for each population member F(n;). The
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affinity of each m; is obtained with the objectives of obtaining the best C', o, ry, and 7,
combination. The multi-objective affinity is defined in Equation and the final objective
function is given in Equation (/6.2]).

The results from the best performing AISOSVM model generation using the fixed radius
detectors are presented in Figure[8.11] The figures show the output of the negative selection
algorithm on the left and the final AISOSVM model on the right with the support vectors
emphasized and the decision boundary between nominal (blue) and abnormal (red) classes.
In the NSA plot, the red circles depict the generated antibodies to cover the abnormal
subregion while the blue circles are the normalized self training data obtained from the
spacecraft simulation. The features are comprised of the angular rates with chosen feature
spaces being p vs. r, p vs. ¢, and g vs. r. Together, these three feature spaces are used to
classify incoming data as either nominal or abnormal. The optimized parameters for each

feature space are provided in Table [8.3]

Table 8.3 Optimized AISOSVM parameters for the fixed radius NSA fault detection
feature spaces.

Feature Space
Parameter | p vs. q \ pVvs. T \ qvs. T
C 15.24 229.72 204.40
o 0.004 0.005 0.005
Ts 0.010 0.010 0.010
Tq 0.058 0.014 0.020

8.3.3 V-Detector Augmentation

The AISOSVM with V-Detector augmentation, is expected to generate a finer self-nonself
boundary by varying the size of each individual detector allowing the algorithm to achieve
greater detector coverage than the fixed radius method. This fault detection architecture uses
CSA to generate an optimized SVM model for the health monitoring application. To generate
the AISOSVM + VD system, the same CSA optimization parameters are maintained, as

shown in Table [6.1] CSA is used to optimize the SVM hyperparameters C' and o, and
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Figure 8.11 AISOSVM with the fixed radius NSA self-nonself generation (left column) and
corresponding trained SVM with overlayed data (right column) for the angular velocity
feature set.
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the self and nonself cell radii, r; and r,, respectively, for the V-Detector process. The V-
Detector method generates the variable sized antibodies around the self data points which
are given a fixed radius as part of CSA. The r, in the V-Detector algorithm corresponds
to a minimum radius that can be given to a generated antibody. Within the CSA process,
V-Detector is still able to change the radii of each individual antibody. Additionally, because
the V-Detector is wrapped into the CSA optimization process and coupled with the Support
Vector Machine, a lower generation threshold can be used since the support vector machine
fault detection performance does not require strict coverage like the standalone V-Detector
strategy due to its ability to generalize with few data points.

The results from the best performing AISOSVM + VD model generation are presented
in Figure 8.12] The figures show the output of the V-Detector on the left and the final
AISOSVM + VD model on the right with the support vectors emphasized and the decision
boundary between nominal (blue) and abnormal (red) classes. The Variable Detector plot
shows that the generated antibodies are generally able to cover more of the nonself space
in comparison to the fixed radius NSA. The following figures show the chosen features used
for spacecraft fault detection; the features are comprised of the angular rates with chosen

feature spaces being p vs. r, p vs. ¢, and q vs. r. The optimized parameters for each feature

space are provided in Table [8.4]

Table 8.4 Optimized AISOSVM + VD parameters for the fault detection feature spaces.

Feature Space
Parameter | p vs. g \ pVs. T \ qvVs. T
C 208.02 145.35 193.04
o 0.005 0.003 0.003
T 0.010 0.010 0.010
T, 0.011 0.012 0.012

8.3.4 Fixed Radius NSA Augmentation Performance
The spacecraft simulation environment generated the nominal and failure data to evaluate

the capabilities of the AISOSVM for fault detection. The AISOSVM was trained using
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Figure 8.12 AISOSVM with the V-Detector self-nonself generation (left column) and
corresponding trained SVM with overlayed data (right column) for the angular velocity
feature set.
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this simulation data to generate the model for fault detection offline. Once optimized, the
anomalous data generated by Failure Scenario #1 was injected into the AISOSVM in an
online scenario. The failure data for this demonstration was generated using the spacecraft
simulation and saturating the output torque of the ACS by 50%.

For both nominal and anomalous test scenarios, the AISOSVM classified the data provid-
ing fault detection capabilities when the anomalous data exceeded the pre-trained boundaries
that enveloped the nominal performance for the roll, pitch, and yaw control systems. The
AISOSVM was tested with using the same model parameters for each feature space as pro-
vided in Table Figure [8.13] shows the AISOSVM models with the blue and red regions
highlighting the self and nonself subspaces, respectively, for each feature space. The injected
anomalous data from a single failure simulation is overlayed to show the general detection
process for the health monitoring system. For each feature space for each ADCS failure sce-
nario, the AISOSVM flagged the failure occurrence when the performance of the spacecraft
went outside of the self boundary. Each feature spaces were able to recognize the anomaly

within the initial seconds of the commanded attitude change.

8.3.5 V-Detector Augmentation Performance

The AISOSVM + VD was trained using the same process and the AISOSVM and V-
Detector systems involving offline training and online detection. This architecture generated
a hybrid model with optimized detectors and support vector machine parameters. To eval-
uate the affects of the hybrid architecture, the anomalous data generated by the simulation
was injected into the AISOSVM + VD. Again, this failure data for this demonstration was
generated using the spacecraft simulation and Failure Scenario #1 which saturated the out-
put torque from the ACS by 50%.

Similar to the AISOSVM with the fixed radius detectors, the AISOSVM + VD classified
the nominal data providing fault detection capabilities when the anomalous data exceeded
the pre-trained boundaries that enveloped the nominal performance for the roll, pitch, and

yaw control systems. This health monitoring system used the same optimization parameters
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for each feature space as provided in Table Figure [8.14] shows the AISOSVM + VD
model with the injected anomalous data from a single failure simulation overlayed to show

the general detection process for the health monitoring system.

8.3.6 Design Selection of V-Detector Algorithm

The results of the fault detection systems after following the offline training and online
detection phases show that the immune system augmented machine learning strategies are
capable of accurate fault detection. The optimization process performed by the Clonal

Selection Algorithm allows the various performance tuning parameters to be adjusted to
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account for user defined priorities such as model size and accuracy.

It is important to note, although not directly compared, a standalone machine learning
classifier would be inadequate in comparison to the immune system augmented approaches.
As these are data-driven methods, two classes of data are needed in order to train the
classifier for nominal and abnormal dynamics. Without the immune system augmentation,
this would require significant simulation time in order to model and generate data for failure
modes. Additionally, since most systems have numerous, near-infinite failure behaviors, it is
difficult to verify and validate that the simulated failure conditions adequately capture the
failure dynamics that would be present in an operational scenario.

Table [8.5] summarizes and compares the average performance of the two immune system
augmented approaches across the three feature spaces. Although both methods performed
fairly well with near zero false alarms, the V-Detector immune system augmented machine
learning algorithm performed better overall with higher detection rates, and even lower false
alarms, at the expense of a slightly slower training time. The V-Detector was able to mitigate
the issues that can occur from overfitting and this comparative study verified the originally
perceived benefits of the V-Detector augmentation. The issue of overfitting can start be
seen in the p-r and ¢-r feature spaces as discontinuities in the self-nonself regions become
more apparent and common. The detection rate of both algorithm implementations is low
due to the nature of the tested failure. The output torque of the spacecraft model, along a
single body axis, was limited by 50%. Event though this is clearly the beginning of a more
catastrophic failure, the spacecraft was still able to achieve the commanded attitude with only
a small deviation from the norm and then was capable of settling at the commanded attitude.
However, despite the platform remain stable with the injected failure, the AISOSVM models
were able to successfully detect and flag the difference in dynamics.

Surprisingly, the V-Detector was also able to provide a higher granularity and resolution
in detector generation in comparison to the fixed radius NSA. Post analysis suggests that

the ability for the V-Detector to reduce the size of generated detectors where permitted
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allows a very high coverage around and within the self region where the NSA is limited
to all the same size for all detectors. This means that the resolution and coverage metric
within the CSA optimization process is conflicted with the desire for a smaller model, which
is weighted higher. The ”"Model Size” metric in Table refers to the number of data points
that create the model for online detection. This metric correlates to processing requirements
for online detection. Based on the results, the AISOSVM + VD approach performed better
in comparison to the AISOSVM with the fixed radius NSA at the expense of additional
training time. All models were trained and simulations run on Windows 10 on a Lenovo

ThinkPad X1 Extreme laptop with an Intel(R) Core(TM) i7-8750 CPU at 2.20 GHz.

Table 8.5 Comparison of average model performances and characteristics.

\ AISOSVM | AISOSVM + VD
Detection Rate 9.17% 11.83%
False Discovery Rate 0.30 % 0.06%
Model Size 212 162
Training Time, [s] 2216 2663

8.4 Spacecraft Attitude Control System Simulation Results

In this section, the proposed AISOSVM fault detection approach is applied to a higher
fidelity model of a spacecraft attitude control system with individual reaction wheels. Space-
craft attitude control systems, and their reaction wheels, play a critical role in maintaining
the desired orientation of a spacecraft, ensuring the proper functioning of its onboard in-
struments, and enabling accurate navigation. The inherent complexities and uncertainties
in the spacecraft’s environment, coupled with the limited computational resources available
on-board, make it essential to employ efficient and adaptive fault detection and control
techniques.

The AISOSVM model was trained using the nominal test case data. Features were
selected that best represent the measureable dynamics of the system and that are deemed
or expected to be sufficiently sensitive to the nominal and abnormal operating conditions.

The ten primary features used within this application are shown in Table The main
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features of interest correspond to the Reaction Wheel #2 states. It is this reaction wheel
that is failed according to the Failure Scenario #2 described previously. It is important to
note that the performance of any data-driven fault management system is only as good as
the coverage of the features’ historical data to the nominal and failure conditions as well as
the sensitivity of those features to the failure modes the fault management system designer
wishes to detect.

Table 8.6 Selected features and states for the spacecraft and attitude control system.

\ Feature \ Desription
1 WRW, Reaction Wheel #2 Speed
2 Trw, Reaction Wheel #2 output torque
3 LRW, Reaction Wheel #2 power bus draw
4 Q0urror Scalar quaternion error
5 Qopror ¢1 quaternion error
6 2error @2 quaternion error
7 Q3erron gs quaternion error
8 P Spacecraft roll rate
9 q Spacecraft pitch rate
10 r Spacecraft yaw rate

The AISOSVM was trained using the framework outlined in Figure [6.1] This process
generated binary classifiers for fault detection based on the nominal data obtained through
simulation data acquisition and the generated antibodies produced by the V-Detector algo-
rithm. For fault detection, the AISOSVM was constructed using a One-vs-One configuration.
This implies that each feature is combined with every other feature to produce a feature space
for fault detection. In this configuration, the number of features required for full maximum

possible coverage is provided by

Njp= 2D (8.5)

where Ny, is the total possible number of feature space projections and N is the number of
states or features. For this application, a total of 45 possible projections could be considered.

However, based on inspection, this number of projections was down selected to 12 to remove
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insensitive pairs or projections that would not directly provide meaning data for the given
failure mode being tested, namely a RW wheel output torque failure caused by increase wheel
friction.

Once the AISOSVM models were trained, they were back-tested and analyzed through
Leave-One-Out estimation to ensure model robustness and accuracy. After training, the se-
lected feature spaces were validated using simulation data from a nominal test scenario. This
validation test data was not used within the original AISOSVM training process. Figure[8.15
through Figure [8.18| shows the validation test results of several of the more sensitive and rel-
evant feature spaces for the spacecraft ACS and reaction wheel systems. The AISOSVM
models correctly classified the validation data as nominal will nearly 100% accuracy for each
model. Only the ¢s_,,,. Vs igw, feature space contained any false alarms. Table pro-
vides the individual AISOSVM model performance metrics. It is important to note that the
provided LOO estimation is obtained from the AISOSVM training data, not this validation
data, to provide insight into the model’s robustness to unseen data and a probability of

incorrectly classifying new data.

Table 8.7 AISOSVM model performance metrics for the ACS validation test.

Feature Space AUC FPR LOO Es-
Score timation
WRW,y VS. ﬂgvy2 1.0 00% 0.0235
WRW, VS. iRWg 1.0 00% 0.0498
WRW, VS. P 1.0 0.0% 0.0379
WRW, VS. ¢ 1.0 0.0% 0.0556
WRW, VS. T 1.0 0.0% 0.0376
TRW2 VS. iR[/{/2 1.0 00% 0.1094
irRw, VS. qolrror 1.0 0.0% 0.0000
trw, VS. q1Error 1.0 0.0% 0.0355
irw, vs. gsError 0.998 0.132% 0.0777
IRW, VS. D 1.0 0.0% 0.0610
LRW, VS. @ 1.0 0.0% 0.0716
LRW, VS. T 1.0 0.0% 0.0764

After successful model validation, the same AISOSVM models and feature spaces were
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Figure 8.15 Trained AISOSVM models with nominal validation data overlay in green (left)
and fault trend outputs (right).
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used to classify the reaction wheel failure as described in the failure test scenario #2. The
most sensitive feature projects revolved around the relationships between the attitude dy-
namics and the reaction wheel speed. Figure through Figure [8.22] provides the clas-
sification results and fault trend analyses for each of the primary selected feature space
projections. There was a clear emergent behavior in the spacecraft dynamics after the reac-
tion wheel friction was increased. For the commanded attitude change, the spacecraft was
not able to achieve the nominal rotation rates due to the slower reaction wheel rotation and
reduced torque output. Additionally, for the igw, vs. wrw, projection, the reduced wheel
speed caused by the increased bearing friction resulted in a shift in the required current
draw to achieve the desired rotation speed. The results of the experiments showed that the
proposed AISOSVM approach was successful in detecting faults in the spacecraft attitude
control system.

The injected fault of increased bearing friction provided a noticeable yet fairly benign
failure mode. The spacecraft with its redundant reaction wheels and robust control system
was able to maintain stability and achieve the commanded orientation. The fault detec-
tion system was still able to detect the abnormal dynamics. Additionally, the fault trend
analysis for many of the feature space sets reflected these dynamics with large positively
identified data samples occurring at both slew maneuver actuation peaks where the required
reaction wheel torque peaked. Table [8.8) provides a summary of the AISOSVM failure data
performance metrics. Overall, the AISOSVM approach maintained its performance in terms
of fault detection and false alarm rate throughout the incremental learning process. The
application to a spacecraft attitude control system demonstrates its potential for efficient
and adaptive fault detection and control. The adaptability and computational efficiency of
the approach make it a promising solution for spacecraft attitude control systems and other

complex, resource-constrained environments.
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Table 8.8 AISOSVM model performance metrics for the ACS failure test.

Feature Space \ DR \ TP \ FN

wrws VS, Trws 0.439% 50 11322
R — TT13% 884 10488
WRW, VS. P 7.686% 874 10498
WRW, VS. 28.095% 3195 8177
Wrw, VS. T 10.026% 1140 10232
Trw, VS. irw, 6.006% 683 10689
irw, VS. qoError 0.600% 68 11304
trw, VS. q1Error 9.647% 1097 10275
irRw, VS. qzError 9.207% 1047 10325
iR, V. D 11.080% 1261 10111
LRW, VS. ¢ 2.515% 286 11086
LRW, VS. T 11.819% 1344 10028

8.5 Spacecraft Testbed Experimental Setup

A high fidelity spacecraft tested, the Extreme Access System (EASY) Spacecraft, was
used to test the AISOSVM algorithms for operational system verification and validation.
The EASY Spacecraft Testbed is a concept spacecraft designed at the Advanced Dynamics
and Control Laboratory (ADCL) of Embry-Riddle Aeronautical University, FL, with the
primary purpose of supporting the development of innovative autonomous space exploration
spacecraft for in situ resource utilization in environments such as asteroids, where gravita-
tional force is minimal. Figure provides a picture of this testbed configuration. The
EASY Spacecraft is mounted on a three-degree-of-freedom gimbaled platform, enabling free
motion in roll, pitch, and yaw axes. This setup simulates full attitude control and angular
rate regulation in microgravity environments, facilitating the testing of trajectory tracking
and recovery from tumbles or other abnormal conditions that may arise in space.

The EASY Spacecraft features 24 solenoid-valves acting as thrusters, with sixteen fixed
thrusters arranged in pairs and eight Thrust Vectoring Control (TVC) thrusters placed in
pairs around the z-axis. The fixed thrusters are organized in horizontal and vertical config-
urations, enabling yaw and pitch rotations, respectively. The TVC thrusters are connected

to a servo motor mechanism, allowing each pair to rotate around its position for additional
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Figure 8.23 Extreme Access System (EASY) Spacecraft Test Bed.

yaw rotation control.Figure [8.24] shows the location of each thruster around the z and y axes
of EASY.

- .

bottom  up

bottom  up

Figure 8.2/ Location of the thrusters in the z and y axes. Yellow for TVC; red and blue
for horizontal configuration, left and right side respectively; dark blue for vertical
configuration, denoting both bottom or up.

The propulsion system of the spacecraft relies on compressed air stored in two high-
pressure reservoirs, which can hold up to 4500 psi of pressure. Four pressure regulators
reduce the pressure from the reservoirs to the desired operating pressure of 130 psi for
the thrusters. Pressure sensors monitor the system’s pressure levels, and relief valves are

employed for safety in case of over-pressure. The opening and closing of the solenoid valves
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are regulated by Pulse Width Modulated (PWM) signals from the digital IO pins on the
onboard computer. Figure provides a schematic of this cold gas thruster configuration

and propellant feed lines.

(R2 ) % T ﬁ ;

RV3

B_%—M

Figure 8.25 Propulsion System.

The flight computer used for the EASY Spacecraft is the PC/104 PCM-3355, which is
integrated with the Emerald MM-4M-Port serial module and the Onyx MM Digital 1/O
module. This integration allows the spacecraft to include serial and analog input modules,
along with digital 1/O, which are used to actuate each of the solenoid valves to regulate
the appropriate amount of air required for attitude control. An Inertial Measurement Unit
(IMU) from Microstrain is employed to provide accurate measurements of attitude and an-
gular rates, which are necessary for the controllers. The Microstrain IMU communicates
with the flight computer through an RS232 communication protocol. A robust Nonlinear
Dynamic Inversion (NLDI) controller is provides the command control for attitude tracking
as described in [7].

The hardware components were tested individually to ensure full functionality before

being mounted and integrated into the EASY Spacecraft. The testbed is connected to the
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host computer via a high data rate Wi-Fi connection, which is crucial for online tuning of
the controllers and signal monitoring. Figure [8.26| illustrates the EASY Spacecraft and lab

control workstation setup.
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Figure 8.26 Schematic of Test Bed and Hardware used on EASY.

8.6 Spacecraft Testbed Data Acquisition

The application process of the AISOSVM fault detection system began with data accu-
mulation for offline training. This involved conducting several nominal test cases with the
testbed, enabling the creation of a training vector. This series of nominal test cases required
the spacecraft to execute various roll maneuvers ranging between 28 and 35 degrees. It is
important to note that the pitch and yaw axes of the spacecraft gimbal were locked in order
to improve repeatability of the tests. The purpose of the tests was to generate a diverse
set of data, representing a range of normal operating conditions for the spacecraft to per-
form this maneuver. This information was vital in the creation of a robust training vector
for the AISOSVM, which would be essential for accurate fault detection during real-world

operations.
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Throughout the nominal test cases, several key data streams were recorded to provide
a comprehensive understanding of the spacecraft’s behavior during these maneuvers. These
data streams created the selected features to represent the nominal dynamics of the testbed.

Eighteen primary features used within this application are shown in Table

Table 8.9 Selected features and states for the EASY Spacecraft.

‘ Feature ‘ Desription
1 P Roll Rate, deg/s
2 0] Roll angle, deg
3 Ti Thruster 1 Actuation
4 T Thruster 2 Actuation
5 T Thruster 3 Actuation
6 T, Thruster 4 Actuation
7 Ts Thruster 5 Actuation
8 T Thruster 6 Actuation
9 T Thruster 7 Actuation
10 T3 Thruster 8 Actuation
11 Ty Thruster 9 Actuation
12 Tio Thruster 10 Actuation
13 Ti1 Thruster 11 Actuation
14 T Thruster 12 Actuation
15 Ti3 Thruster 13 Actuation
16 T4 Thruster 14 Actuation
17 Tis5 Thruster 15 Actuation
18 T Thruster 16 Actuation

Once the nominal data had been gathered, the AISOSVM was trained on the selected
feature spaces to ensure the model’s adaptability to new and unseen scenarios. This training
process created 153 possible feature space representations and enabled the AISOSVM to de-
velop a comprehensive understanding of the spacecraft’s normal behavior and, subsequently,
enhance its ability to detect any deviations from this norm, indicating potential faults. This
feature space was reduced to the first 10 features for their sensitivity to roll thruster failures.
Thrusters Ty through Ty provide yaw control. Since only a roll maneuver is commanded
and the yaw gimbal is locked for this test scenario, these features are disregarded simplifying

the fault detection test.
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To test the AISOSVM’s fault detection capability, a failure test case was conducted to
simulate a fault within the spacecraft’s attitude control thruster system. In this scenario,
Thruster 1 was intentionally turned off, preventing the EASY spacecraft from utilizing a
commanded roll maneuver. The roll rate, roll angle, and commanded thruster actutation
for T} through Ty are provided in Figure [8.27, Figure [8.28 Figure [8.29] and Figure for
a nominal and failure test case for comparison. The nominal data was acquired from a 32
degree roll maneuver test case scenario and the failure data was acquired from a 35 degree

commanded roll maneuver with the injected thruster error in 77.
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Figure 8.27 Nominal EASY spacecraft roll angle test data (left) and injected failure test
data (right).
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Figure 8.28 Nominal EASY spacecraft roll rate test data (left) and injected failure test
data (right).
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Thrusters Command

Figure 8.30 Thruster actuation data with injected failure in 77.
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8.7 Spacecraft Testbed Implementation Results

The AISOSVM models were validated with a nominal test data set acquired from four
separate experiments with the EASY Spacecraft performing roll maneuvers between 28 -
35 degrees. This validation data was acquired from a 32-degree roll maneuver that the
AISOSVM was not previously trained on. The results for twelve of the most sensitive
features are presented in Figure through Figure along with the trend analysis for
each of the feature spaces. For the EASY Spacecraft measurements, the AISOSVMs were
able to create self-nonself spaces to separate the nominal and abnormal dynamics of the
spacecraft; however, due to the sparse nature of the training data, which contained only
about 30 seconds of data for four separate, unique maneuvers, the generated AISOSVM
models suffered partially from over-fitting creating a restrictive decision boundary. This
created more instances of false alarms previously unseen in the simulation experiments where
significantly more training data could be acquired. Despite the sparsity of the training data,
the AISOSVM models still showed good performance in correctly classifying the nominal
data with a false positive rate (F'PR) consistently less than 1.0% for the feature spaces. The

performance metrics for these feature spaces are summarized in Table [8.10]

Table 8.10 AISOSVM model performance metrics for the EASY Spacecraft validation test.

Feature Space AUC FPR LOO Es-
Score timation
p VS, ¢ 1.0 0.0% 0.0382
pvs. Ty 0.993 0.687% 0.1170
pvs. Ty 0.998 0.245% 0.0993
pvs. Ty 0.997 0.245% 0.0854
pvs. Ty 0.996 0.437% 0.1225
pvs. Ty 0.998 0.250% 0.0893
pvs. Tg 0.993 0.656% 0.1009
pvs. Tr 0.997 0.312% 0.1618
pvs. Ty 0.999 0.125% 0.0800
pvs. Ty 0.999 0.125% 0.1314
¢ vs. Ty 0.996 0.437% 0.0881
¢ vs. Ty 0.998 0.156% 0.0994
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The trained AISOSVM models were applied to the EASY Spacecraft failure data acquired
from injecting a complete failure into Thruster 1, 77. Each of the AISOSVM models were
able to detect the thruster failure, each with detection rates, DR, greater than 6.0% with
several feature spaces achieving a detection rate above 10.0%. These performance metrics
for the failure test case are summarized in Table [8.11 Additionally, the AISOSVM model
data and the trend analysis are provided in Figure through Figure for the selected
feature spaces.

It is important to note that the EASY Spacecraft, despite having a failed thruster, was
able to both remain stable and achieve the commanded attitude with little deviation from
nominal. This is most likely an emergent behavior due to the pitch and yaw gimbal axes
being locked while still using redundant thrusters. Had the gimbals not been locked, the
failed thruster could have caused a more significant deviation in the nominal dynamics of
the testbed. This effect is reflected in the AISOSVM detection rates where only a small
percentage of the failure data was correctly classified as a failure mode because the EASY

spacecraft was able to recover quickly.

Table 8.11 AISOSVM model performance metrics for the EASY Spacecraft failure test.

Feature Space | DR | TP | FN
PR 10.278% 329 2872
pvs. Ty 6.748% 216 2085
pvs. Ty 7.685% 246 2955
pvs. Ty 10.552% 341 2860
pvs. Ty 7.591% 243 2958
pvs. Ty 7.591% 243 2958
pvs. Ty 7.622% 244 2957
pvs. Ty 7.310% 234 2967
pvs. Ty 10.153% 325 2876
pvs. Ty 7.248% 232 2969
o vs. Ty 13.651% 437 2764
o vs. Ty 14.902% 477 2724
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9 Conclusion

This final chapter serves as a summary of the research presented throughout the dis-
sertation, emphasizing the key findings and contributions of the Artificial Immune System
augmented Online Support Vector Machine (AISOSVM) fault management system in ad-
dressing the challenges of fault detection and health management for autonomous spacecraft.
The chapter highlights the significance of the study and its impact on the field, along with
the potential implications for practical applications in the aerospace industry. Additionally,
the limitations of the current research and the AISOSVM framework are acknowledged, pro-
viding a basis for identifying areas that warrant further investigation. Lastly, future research
directions are proposed, offering a roadmap for continuous improvement and expansion of
the AISOSVM fault management system, ultimately aiming to enhance the robustness and

reliability of autonomous spacecraft operations.

9.1 Summary of Contributions

This dissertation has made several key contributions to the field of fault detection and
health management for autonomous spacecraft through the development and implementation
of the AISOSVM fault management system. The primary contributions have expanded the
understanding and application of immune system paradigms in fault detection and have
demonstrated the effectiveness of an adaptive architecture. Furthermore, this work has laid
a strong foundation for the integration of reinforcement learning in future research to further
enhance fault detection capabilities.

The main contributions of this dissertation are:

e Integration of the immune system paradigm to augment fault detection
e Development of an adaptive fault detection architecture

e Development of a structured and integrated approach for the design and deployment

of a data-driven fault detection system
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e Foundational work for integrating reinforcement learning for online, autonomous fault

detection system adaption

e Application of the designed data-driven fault detection framework to real world sce-

narios and platform models

The integration of the immune system paradigm has been a crucial contribution to aug-
menting fault detection capabilities. By incorporating the Artificial Immune System (AILS)
paradigm with the Online Support Vector Machine (OSVM), the AISOSVM framework has
significantly improved the efficiency and accuracy of fault detection in autonomous space-
craft. This innovative approach has demonstrated the value of incorporating bio-inspired
techniques to enhance fault detection and health management systems.

The development of an adaptive fault detection architecture has been another significant
contribution. The AISOSVM framework, which combines the AIS paradigm and OSVM,
has shown its adaptability to different training data and system configurations. This adap-
tive nature ensures accurate and efficient fault detection across various spacecraft scenarios,
highlighting the potential of this approach in practical aerospace applications.

The creation of a structured and integrated approach for the design and deployment of
a data-driven fault detection system is another key contribution. By utilizing Model-Based
Systems Engineering (MBSE) and the Capella tool with the Arcadia methodology, a system-
atic design process for the AISOSVM fault management system has been established. This
approach allows for a comprehensive understanding of the system requirements, operational
architecture, and design, leading to an efficient tailoring process for various autonomous
spacecraft platforms.

The foundational work for integrating reinforcement learning for online, autonomous fault
detection system adaption has been an important contribution. Although not fully developed
within the scope of this dissertation, the groundwork laid in this research paves the way for
future studies to incorporate reinforcement learning into the AISOSVM framework. This

integration would allow for continuous online learning and adaptation, further enhancing the
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performance and applicability of the fault detection system in a wide range of autonomous
systems.

An additional vital contribution of this dissertation is the application of the designed
data-driven fault detection framework to real-world scenarios and platform models. By ap-
plying the AISOSVM framework to a variety of spacecraft scenarios and models, including
the reaction wheel model and the attitude controller, this research has demonstrated the
practical applicability and effectiveness of the developed approach. These real-world tests
have not only validated the performance of the AISOSVM fault management system but have
also showcased its adaptability and robustness when faced with complex and dynamic op-
erational environments. This practical application of the AISOSVM framework contributes
to bridging the gap between theoretical research and real-world implementation, ultimately
promoting the adoption of advanced fault detection and health management systems in the
aerospace industry.

Together, these contributions represent a significant advancement in the field of fault
detection and health management for autonomous spacecraft, providing a robust, adaptive,

and scalable solution that can be tailored to various platforms and operational scenarios.

9.2 Limitations and Future Work

While the AISOSVM-based fault detection system presented in this dissertation has
demonstrated promising results, there are some limitations that should be acknowledged.
Additionally, these limitations present opportunities for future research to address and fur-

ther improve the capabilities of the fault detection and health management system.

1. Fault Isolation: The current AISOSVM framework focuses primarily on fault detec-
tion, without providing a comprehensive strategy for fault isolation. In real-world
applications, isolating the root cause of a fault is essential for the rapid diagnosis
and resolution of system issues. Future work could expand the AISOSVM framework
to incorporate fault isolation strategies, potentially by integrating additional machine

learning algorithms or model-based approaches.
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2. Online Learning: While the AISOSVM architecture does allow for adaptation based on
operator intervention, it currently does not support fully autonomous online learning.
The integration of reinforcement learning or other online learning techniques could
enable the AISOSVM to adapt autonomously, enhancing its performance and further

reducing the reliance on human intervention.

3. Multi-Model Testing: The AISOSVM framework has been applied and validated using
specific spacecraft scenarios and platform models. However, to establish the broader
applicability of the framework, it is necessary to test its performance on a diverse
range of autonomous systems, spanning various domains and industries. Future work
could investigate the implementation and adaptation of the AISOSVM framework for
different autonomous systems, such as unmanned aerial vehicles, robotic systems, and

power grids.

4. User Interface and System Integration: The current framework does not include the
fully envisioned tool and workflow. Additional work can be performed such as the
development of a user interface or provisions for seamless integration with existing
system models. To facilitate broader adoption and ease of use, future work could focus
on the development of a graphical user interface (GUI) and the creation of application
programming interfaces (APIs) for seamless integration with other software and system

models.

5. Scalability: The AISOSVM framework has been demonstrated to work effectively for
the considered spacecraft scenarios, but its performance in larger-scale systems with
increased complexity remains to be evaluated. Future research could explore the scal-
ability of the AISOSVM framework, assessing its ability to handle systems with larger

numbers of sensors, features, and operational modes.

By addressing these limitations and exploring future research directions, the AISOSVM

framework can continue to evolve and improve, further solidifying its potential as a valuable

147



fault detection and health management tool for a wide range of autonomous systems.

9.3 Broader Impact and Applications

The AISOSVM-based fault detection system developed in this dissertation has the poten-
tial to significantly impact various industries and applications beyond spacecraft fault man-
agement. By leveraging the inherent adaptability and robustness of the artificial immune
system paradigm, the AISOSVM framework can be applied to a wide range of autonomous
systems and domains, enhancing their reliability and overall performance. In this section, we
discuss some of the broader impacts and potential applications of the AISOSVM framework.

Unmanned Aerial Vehicles (UAVs): The reliability and safety of UAVs, commonly known
as drones, are crucial concerns in their operation, especially in applications such as package
delivery, infrastructure inspection, and search and rescue missions. The AISOSVM fault
detection framework can be employed to monitor the health of UAVs in real-time, identifying
faults and enabling prompt remedial actions, ultimately improving the safety and efficiency

of UAV operations.

1. Robotics and Automation: As the adoption of robotics and automation continues
to grow in various industries, such as manufacturing, agriculture, and healthcare, the
need for effective fault detection and health management systems becomes increasingly
critical. The AISOSVM framework can be applied to monitor the performance of
robots and automated systems, ensuring their reliability and minimizing downtime

due to unexpected faults.

2. Smart Grids and Energy Systems: With the increasing complexity of power grids and
the integration of renewable energy sources, the demand for robust fault detection and
health management systems in the energy sector is growing. The AISOSVM framework
can be utilized to monitor the health of power grids and energy systems, allowing for
rapid identification and resolution of faults, which in turn helps maintain the stability

and efficiency of the grid.
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3. Transportation Systems: Modern transportation systems, such as trains, buses, and
autonomous vehicles, require reliable fault detection to ensure safety and efficiency.
The AISOSVM framework can be implemented to monitor the health of these trans-
portation systems, detecting faults and potential failures in real-time, thereby reducing

the risk of accidents and improving overall system performance.

4. Industrial Internet of Things (IIoT): The proliferation of connected devices and sen-
sors in industrial settings presents both opportunities and challenges. One significant
challenge is the effective management and monitoring of these devices to ensure their
proper functioning. The AISOSVM framework can be employed to monitor the health
of connected devices within the IToT ecosystem, providing early warning of faults and

enabling preventative maintenance.

The applicability of the AISOSVM framework to these diverse domains highlights its po-
tential to revolutionize fault detection and health management across various industries. By
further developing and refining the AISOSVM framework, we can contribute to safer, more
reliable, and more efficient autonomous systems, ultimately leading to a more sustainable

and connected world.
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Figure A.1 Operational Capabilities diagram outlining fault management use cases.
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