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Abstract—We present a statistical probing-approach to dis-
tributed fault-detection in networked systems, based on au-
tonomous configuration of algorithm parameters. Statistical mod-
elling is used for detection and localisation of network faults.
A detected fault is isolated to a node or link by collaborative
fault-localisation. From local measurements obtained through
probing between nodes, probe response delay and packet drop
are modelled via parameter estimation for each link. Estimated
model parameters are used for autonomous configuration of
algorithm parameters, related to probe intervals and detection
mechanisms. Expected fault-detection performance is formulated
as a cost instead of specific parameter values, significantly
reducing configuration efforts in a distributed system. The benefit
offered by using our algorithm is fault-detection with increased
certainty based on local measurements, compared to other
methods not taking observed network conditions into account.
We investigate the algorithm performance for varying user
parameters and failure conditions. The simulation results indicate
that more than 95% of the generated faults can be detected with
few false alarms. At least 80% of the link faults and 65% of
the node faults are correctly localised. The performance can be
improved by parameter adjustments and by using alternative
paths for communication of algorithm control messages.

Index Terms—Adaptive probing; distributed fault-detection;
fault-localisation.

I. INTRODUCTION

Approaches to fault-detection and localisation in networked
systems can be sorted into two categories; centralised and
distributed methods [1]. Centralised methods are based on
collecting network data for analysis in one or several dedi-
cated network modules. Such methods are typically useful for
analytical applications, in which it is of interest to identify
network behaviour patterns, or deviating events in various
parts of the network. Distributed methods locally process data
collected in the immediate neighbourhood, which allow for
e.g., fast detection of network faults and flexibility to varying
topologies. In this paper, we present a statistical, distributed
approach to adaptive fault-detection and localisation. Specif-
ically, we attempt to detect network behaviour that deviates
from normal observations, i.e., symptoms of physical or logical
network faults, rather than finding a particular type of fault.

The approach is based on probing for two purposes. First,
probes are sent between nodes in order to measure response
delay and drop rate on each connection. Second, adaptive
probe tests are performed in each node for detection of

abnormal network behaviour. Note that here the term response

delay refers to the probe reply time or round-trip time.
For each connection parameter estimation is performed to

model the probability distribution of observed delays, such that
the expected response delay can be computed. Based on the
expected response delay and drop rate, probe tests and probing
intervals are autonomously adapted to the observed behaviour
of individual connections. Probe tests are performed in each
node to test the availability of adjacent nodes and links. If a
probe test on a connection fails, a symptom of a network fault
has been detected and a fault-localisation process based on
node collaboration is initiated (see Figure 1).
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Fig. 1: Example of algorithm functionality.

The fault-detection approach is designed to meet the fol-
lowing three requirements. First, the autonomous adaptation
of algorithm parameters should significantly reduce the efforts
on manual configuration. This is achieved by having probing
mechanisms be specified as the cost of sending probes, rather
than in terms of e.g., time intervals. Second, the autonomous
configuration of the probing mechanisms should allow for
improved efficiency of bandwidth usage, compared to con-
ventional monitoring based on fixed interval probing. Third,
the algorithm should, without rigorous modification, run on
different types of networks and network layers.

This is the first step towards a fully adaptive method
for fault-detection in distributed systems. Here, we focus
on autonomous probing and detection mechanisms. Further
development includes adaptation to long-term changes and
detection of probe response delays deviating from normal
observations.

A. Related work

In a paper by Yu et al., one of the main risks of centralised
approaches identified is increased link load, close to the



central collection point [2]. Further, the authors point out
that neighbour-coordination for fault-detection reduces com-
munication overhead. In addition, network faults can be de-
tected with increased certainty using neighbour-collaboration.
They also mention the importance of simple management and
flexibility, specifically in sensor-networks where focus is on
energy-preservation. These arguments summarise some of the
principles, under which our algorithm is designed.

Different strategies for fault-detection have been investi-
gated by Zhuang et al. [3]. The authors divide fault-detection
into passive and active methods. Passive approaches eaves-
drop on packets for monitoring the status of other nodes,
whereas active monitoring methods are based on end-to-
end transactions between nodes. Further, two categories of
fault-localisation approaches are identified; nodes can either
independently or collaboratively decide the status of a neigh-
bouring node. The approach that we apply relates to the second
category. The results presented in [3] show that algorithms
based on neighbour-collaboration and information-sharing can
reduce the detection time, but increases the control overhead.

There are a number of active methods based on probing.
In general the goal is to determine the best probing action
given certain conditions, for the purpose of reducing com-
munication overhead while achieving reliable fault-handling.
One such method is based on logical trees for determining
a candidate node for probing [4]; in another approach, the
authors solve the NP-hard problem of computing a minimal set
of probe messages to be transmitted by the stations for fault-
isolation and latency measurements, applying a polynomial-
time greedy approximation algorithm [5]. Other techniques
for active probing are based on statistics and information-
theoretic approaches; for example probabilistic reasoning is
performed to select the most informative probe test [6]. As a
final example, Tang et al. propose a combination of passive
and active methods for isolating faults via probing, involving
heuristic fault-reasoning and fidelity measures for decision
making [7]. Compared to these approaches, the design of our
method is aimed at reducing communication overhead by using
two types of individually set probe intervals on each link,
based on local end-to-end transactions between adjacent nodes.

The probing method that we use relates to that described by
Andersen et al. [8], in which two different probing frequencies
are applied and used for outage detection. Their probing
approach is based on fixed time intervals applied to all con-
nections in the network. In contrast, probing intervals are here
set by taking into account variations in probe response delays
and packet loss, individually measured for each connection.
Moreover, the detection mechanism that they use is based
on the number of lost probe responses, whereas we apply a
probabilistic detection threshold in order to achieve reliable
fault-detection with few false alarms.

B. Contribution

Our contribution is a statistical and relatively simple method
that reliably and with high certainty can detect and localise
faults, based on locally observed measurements. We see that

distributed probing is the simplest and most flexible approach
for networks e.g., under churn, compared to centralised meth-
ods. In addition, protocols needed to run the monitoring
algorithm are already implemented in most network equipment
of today. By taking into account the drop rate and the variance
in probe response delays, increased reliability and robustness
can be achieved compared to other probing methods, in which
these factors are not considered. Further, probing parameters
are here set autonomously based on parameter estimation for
each link, which facilitates and reduces manual configuration
efforts while only a small amount of link load is produced.

Section II and III describe our approach to fault localisation.
Section IV contains algorithm descriptions, followed by an
overview of the simulation environment, experimental results,
and concluding remarks in sections V, VI, VII and VIII.

II. FAULT-DETECTION USING ADAPTIVE PROBING

The mechanisms for detecting and isolating faults are based
on the adaptation of algorithm parameters related to probing.
Specifically, the intervals between probes and the number of
probes needed to detect a fault are adjusted to the locally
observed probe response delay and packet drop rate.

In run-time, observations of probe response delays are
continuously collected via probing, forming a two-parameter
Gamma probability density function (PDF), from which the
parameters α and β are estimated [9]:

P (t) = t(β−1) e−t/α

αβΓ(β)
. (1)

The choice of model is motivated by the assumption that the
response delay is a sum of independent exponential trans-
mission delays caused by e.g., queueing times in processing
nodes. Empirical tests indicate that the Gamma PDF matches
real-world probe response delays quite well [10]. Similar
conclusions about network traffic delays (on different network
levels) matching Gamma, or other exponential distributions,
have been made in several papers, such as [11], [12].

The fault-detection approach also involves the probability
of packet drops P (D). In order to increase the certainty of a
suspected fault without specifying fixed detection conditions,
we observe the joint probability of P (t) and P (D) (see
section II-C). Further, we assume independence between the
response delay and the drop rate, since packet loss is mainly
related to malfunctioning equipment or link quality, rather than
to transmission delays in processing nodes.

A. Parameter estimation

The probability of packet drops P (D) is computed as
the rate between dropped probes and the number of sent
probes. Further, a method of moments approach is applied
for estimation of the Gamma distribution parameters α and β
from the first and second sample moments s1 = 1

n

�
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s2 = 1
n

�
i t

2
i . Given that αβ = s1 and α2β(β+1) = s2 , the

estimates α∗ and β∗ are [9], [13]:

α∗ =
s2 − s21

s1
, β∗ =

s21
s2 − s21

. (2)



This approach produces parameter estimates with less pre-
cision than maximum likelihood estimations, but requires
less computational resources. Since these estimations are fre-
quently performed in each node (which in practice may have
limited computational resources) we accept less precision for
the benefit of computational efficiency.

B. Adjustments of probing intervals

From the inverted cumulative distribution of P (t) the time
interval between probes is computed. Two types of intervals
are used and controlled by parameters τ and θ, both adjusted
to the observed response delays and the costs cτ and cθ of
sending a probe:

τ = cτf
−1
cdf (l), θ = cθf

−1
cdf (l). (3)

The function f−1
cdf (l) is the inverted cumulative density func-

tion of
�∆t
0 P (t), and l is a fraction that is used to determine

the corresponding probe interval. The fraction l and the costs
cτ and cθ are set manually by the user as a trade-off between
the detection performance and the amount of probing traffic.

The parameter τ controls the interval between probe tests,
whereas parameter θ determines the time interval between
individual probes (see section IV). These time intervals are
adjusted for each update of the Gamma parameter estimates;
in performed simulations the parameters and the intervals are
updated for each new response delay observation, but if needed
this can be done at a sparser level.

The interval parameter θ is significantly smaller than τ . This
way the link load caused by probing traffic is reduced during
normal network behaviour, while being somewhat increased
when a network fault is about to be detected. Compared to or-
dinary monitoring with fixed intervals, the use of two probing
intervals that are autonomously set based on measurements in
the network can reduce the total link load caused by probing.

C. Decision model

We assume that the probe response delay and the drop rate
are mutually independent [14]. The probability of receiving a
probe response R∆t within delay ∆t is then computed as:

P (R∆t) = (1− P (D))

� ∆t

0
P (t;α∗,β∗)dt. (4)

The fault-detection mechanism relies on probe tests, i.e., series
of probes sent with autonomously set time intervals. The
purpose of sending several probes is to increase the certainty
about a detected fault and to reduce the amount of false alarms.

To decide if a fault truly has been encountered, we assume
that the joint probability of not receiving any response R given
a set of statistically independent [14] probes in a probe test is

P (¬R|∆t(1),∆t(2), . . . ,∆t(n)) =
n�

i

(1− P (R(i)
∆t)) (5)

The probe test is stopped either when a probe response is ob-
tained or when P (¬R|∆t(1),∆t(2), . . . ,∆t(n)) reaches below
the detection threshold ψ, subsequently triggering the fault-
localisation process. The number of probes needed to reach

below the detection threshold ψ is thus adapted to P (R∆t) in
eq. 4. Smaller values on ψ increase the certainty about a fault
but at the cost of increased probe traffic. Hence, the detection
performance is a trade-off between communication overhead
and the amount of false alarms.

III. COLLABORATIVE FAULT-LOCALISATION

The fault-localisation process involves collaboration be-
tween nodes in order to localise the origin of the abnormal
network behaviour. The algorithm is designed to distinguish
between symptoms of node faults and link faults.

A. Collaboration scheme

Each node n has a list of all adjacent nodes and their
neighbours (protocols to obtain such information are easily
implemented). The rate, at which each node n will probe
a neighbour n̂, is determined locally as described. When a
probe test from node n to a node n̂ fails, node n initiates the
fault-localisation process. This involves collaboration with the
neighbouring nodes of n̂, i.e., ñ = {ñ1, ñ2, . . . , ñi}, in order
to test the connection to n̂ and report back to n. If at least
one node ñi reports a successful probe response, a link fault
is indicated (Figure 2a). If none of the nodes in ñ receive a
probe response, a node fault in n̂ is indicated. The outcome
of the fault-localisation is reported to the operator by n.

In the case a link fault is concluded, information about
the detected fault is conveyed from n to n̂ via ñ to prevent
n̂ triggering a second fault-localisation process. Similarly,
neighbouring nodes affected by a node fault in n̂ are informed
by n to avoid triggering several fault-localisation processes.

The exchange of information between the detecting node
and the collaborative nodes depend on timers, which control
the duration that the nodes wait before returning to normal
operation. In each node the timers are based on the expected
probe response delay, the number of neighbours N to n̂ and a
cost c, such that T = cNf−1

cdf (l) (section II-B). If the timer of
a detecting node expires before receiving all probe test results
(possibly due to communication faults or packet loss), the fault
is reported as undecidable. Similarly, the collaborating node
returns to normal operation if the timer expires while waiting
for the final result from the detecting node.
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Fig. 2: Figure a) node n sends requests to ñi, ñj to test the
connection of n̂. The outcome of the probe test between ñi and
n̂ is successful, and the fault is reported as link fault. Figure b)
communication fails between node n, n̂ and ñ - node n reports the
fault as undecidable. Figure c) the fault detected by node n is reported
as undecidable, as control messages on the path to node ñ are lost.



B. Special cases

We assume that in-band signalling is used, in the sense
that the network links and nodes under supervision are also
the ones used for transmission of control messages of the
algorithm. In some cases, this means that the origin of a
detected fault is undecidable. This problem occurs if there are
no other routes available to communicate control messages to
a collaborating neighbour ñ of the possibly failed node (see
Figure 2b). Similar situations occur if any of the connections
toward a collaborating node ñ has failed (see Figure 2c). Thus,
if control messages can be communicated via alternative paths,
these problems become much less prominent. In practice this
can be achieved in e.g., wireless networks sharing the same
channel and in virtualised networks.

IV. FORMAL ALGORITHM DESCRIPTION

In this section, the subroutines forming the fault-detection
process are described in algorithms 1, 3 and 2 shown below.
Let n be a node in the network. Each node needs to keep track
of the set of neighbouring nodes, Nn, as well as the sets of
neighbours to each of these neighbours i, N i

n.
Let each node n store an error state Si

n for each neighbour
i. Each Si

n represents the current state of ni as viewed from n,
and can be assigned one of four different error states, namely
no fault, link fault, node fault and finally, link or node fault

(used when the cause of the detected fault is undecidable).

Algorithm 1 Monitor node n̂ from node n

Require: n̂ ∈ Nn

repeat
if Test node n̂ from n fails then

if Sn̂
n = No fault then
for all ñ ∈ N n̂

n do
Confirm fault of n̂ for n in ñ

end for
if Any ñ ∈ N n̂

n report success then
Sn̂
n ← Link fault

for all ñ ∈ N n̂
n do

Inform n̂ about failed link
end for
Report failed link from n to n̂

else if All ñ ∈ N n̂
n report fault then

Sn̂
n ← Node fault

for all ñ ∈ N n̂
n do

Sn̂
ñ ← Node fault

end for
Report failed node n̂

else
Sn̂
n ← Link or node fault

Report link or node fault
end if

end if
else

if Sn̂
n �= No fault then
Sn̂
n ← No fault

if Sn̂
n = Node fault then
for all ñ ∈ Nn do

Sn̂
ñ ← No fault

end for
end if
Report working link from n to n̂ and node n̂

end if
end if
Wait τ s

until n̂ disconnects

Algorithm 2 Test node n̂ from n

Require: n̂ ∈ Nn

repeat
Send test transaction to n̂
Wait θ s

until Any response or
�

i(1 − P (R(i)
∆t)) < ψ

if Any response then
return Success

else
return Fault

end if

Algorithm 3 Confirm fault of n̂ for n in ñ

Require: n̂ ∈ Nñ, n ∈ N n̂
ñ

t ← Test node n̂ from ñ
Report t to n

V. SIMULATION ENVIRONMENT AND IMPLEMENTATION

We have implemented the algorithm in the discrete event
simulator environment OMNET++ [15], and used it to sim-
ulate link delays, fault events (i.e., communication faults)
and drop rates. In performed simulations, randomly selected
Gamma parameters drawn from a normal distribution were
used to symmetrically simulate probe response delays on each
link. Further, fault events were randomly generated over the
whole population of nodes and links, drawn from a Poisson
distribution with parameter λ, specifying the expected number
of fault events within a given time period. Finally, the drop rate
was symmetrically set on all links and randomly drawn from
a Gaussian distribution with mean ξ and deviation σ = 0.2ξ.

VI. EXPERIMENTS

We have investigated the algorithm performance with re-
spect to different parameter settings and varying network
conditions. The results were obtained by performing two series
of experiments on two types of network topologies.

In the first series of experiments, the algorithm perfor-
mance was tested when varying the parameters ψ and cτ in
τ = cτf

−1
cdf (l), while holding the expected number of fault

events λ = 5 and the drop rate ξ = 0.025 fixed. In the
second series of experiments, the algorithm performance under
varying network conditions was tested for different values of
ξ and λ while cτ = 28 and ψ = 10−4 were held fixed.

In all the experiments we assumed that in each period of 4
hours the expected number of λ fault events was generated
on uniformly selected network elements. Further, the fault
duration was randomly set up to 1 hour. Simulated response
delays in each direction were based on randomly drawn pa-
rameter values from a Gaussian distribution, with µ = 2.5−3,
σ = 5−4 for the scale parameter α and µ = 30, σ = 6 for the
shape parameter β. The probing interval θ between individual
probes was set to θ = f−1

cdf (0.8). During initialisation, each
node sent 200 probes to obtain preliminary estimates of α
and β. For statistical significance, all results are based on 4
days of simulated time and shown as the mean of 10 runs.



A. Network topologies

The experiments were performed on a synthetically gener-
ated scale-free network, and on a real-world network topology.
The synthetic network consists of 30 nodes and 81 undirected
links, and was generated using the Barabási-Albert method,
starting with a small random network of 5 nodes and 3 links
added at each iteration [16]. Scale-free networks resemble to
some degree the structures of real-world topologies. To achieve
a slightly more realistic topology (such as nodes with single
connections), 10% of the links were randomly removed. The
real-world network topology consists here of 172 nodes and
381 undirected links, extracted from original network topology
data from a European ISP (1755-EBONE) [17].

VII. RESULTS

As performance metrics we investigated the localisation
rate, detection rate, false positives rate and the probe rate.
The localisation rate is the number of faults that was correctly
localised to a link or node relative the number of generated
fault events of each type. The detection rate is based on the
number of detected symptoms relative the total number of
generated fault events. The rate of false positives is the number
of detected symptoms caused by drop rates and other factors
not related to generated fault events, relative the total number
of detected fault symptoms. The probing rate is the number
of probes needed to detect abnormal behaviour, and is here
normalised by the largest number of probes for each series
of experiments. Note that the probing rate is mainly used to
show the probing behaviour for different parameter settings,
rather than showing the number of actually sent probes.

A. Algorithm performance for different user parameters

In general, we observe from the results obtained in the first
series of the experiments that nearly all of the generated fault
events can be detected (Figure 3). Further, we see that the
localisation rates for node faults are lower for the real-world
ISP topology (Figure 3c, d) compared to the synthetic network
(Figure 3a, b). This can be explained by the characteristics of
the topologies. The synthetic network has a fraction of 0.03
single connections whereas the fraction is 0.13 for the ISP
topology. The single connections and the lack of alternative
paths for communicating algorithm control messages generally
causes lower localisation rates for node faults (see section III).

The results obtained for increasing values of cτ , indicate
that the rate of false positives can be reduced (fig. 3a, c).
Further, we observe that the localisation and probing rates
are relatively stable up to a certain point. When cτ is set
to very large values, the overall performance decreases as
an effect of reduced reliability of the estimated parameters,
caused by significantly fewer probing tests. In addition, we see
in Figure 4 that the detection time increases with cτ , as a result
of fewer probe tests. Combined with the results in Figure 3a
and Figure 3c, it is verified that by adjusting τ satisfactory
performance can be achieved at relatively low levels of link
load caused by probing traffic. Thus, cτ is a trade-off between
communication overhead and detection performance.
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Fig. 3: Performance rates with varying probe test interval τ =
cτf

−1
cdf (0.8) and detection threshold ψ, obtained from a synthetic

network (Figure 3a,b) and a real-world ISP topology (Figure 3c,d)
when holding drop rate and expected number of fault events fixed.
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Fig. 4: Shortest mean detection time for varying probe test interval
τ = cτf

−1
cdf (0.8), obtained from the synthetic network (Figure 4a)

and the real-world ISP topology (Figure 4b), when holding drop rate
and expected number of fault events fixed.

In Figure 3b and 3d, we see that the rate of false positives
varies with increasing values of parameter ψ. Since the ability
to correctly localise a fault is independent from the detection
threshold, the localisation rates are relatively fixed for different
values of ψ. For a fixed level of dropped traffic, the probing
rate decreases linearly with increasing ψ. Probabilistically a
larger ψ means that the confidence of a detected symptom is
relaxed. In turn, this leads to a higher degree of false positives
as fewer probes are used in order to detect and localise fault
symptoms. Indeed, we see that up to a certain value of ψ,
the probing rate can be reduced while the number of false
positives are kept relatively fixed. Thus, our results indicate
that the value of ψ is a trade-off between the probing rate and
the rate of false positives.

B. Detection performance for varying network conditions

The results from the second series of experiments generally
show fixed detection rates for varying ξ and λ (Figure 5).
Further, we see that the localisation rates decrease with in-
creasing drop rate ξ as a result of dropped control messages



for the fault-localisation processes (Figure 5a, c). In addition,
the rate of false positives and the probing rate increase with
the drop rate ξ. In this case when ψ is fixed, we see that the
probing rate is autonomously adapting to the drop rate, while
the rate of false positives is kept relatively low.

For increasing number of fault events λ, we observe that
the probing rate and the rate of false positives remain fairly
invariant (Figure 5b, d). The localisation rate, on the other
hand, gradually decreases for increasing values of λ, as a
result of unavailable network equipment needed in the fault-
localisation processes. The actual impact of increasing λ
relates directly to the size of the network. In the smaller
synthetic network the degradation in localisation performance
is more significant compared to the much larger ISP network,
relative the number of fault events.
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Fig. 5: Performance rates with fixed probe test cost cτ and detection
threshold ψ, obtained from a synthetic network (Figure 5a,b) and a
real-world ISP topology (Figure 5c,d) when varying the drop rate ξ
and the expected number of fault events λ.

VIII. CONCLUSION AND FUTURE WORK

We have presented a first approach to distributed, adaptive
fault-detection and localisation. The use of statistical mod-
elling of observed network behaviour (here probe response
delay and packet drop rate) allows for autonomous configu-
ration of algorithm parameters, such as probing intervals and
decision-conditions used for fault-detection.

The gains of distributed probing are quick adaptation and
fault-detection on local network level, compared to centralised
methods. On the other hand, probing can cause increased
link load, if for example the intervals are fixed and based on
simple assumptions (as in conventional heartbeat probing). The
problem is here addressed by adjusting probing intervals to
the expected probe response delay, and by using two different
intervals for probe tests and individual probes on each link.

The experimental results indicate that satisfactory perfor-
mance, in terms of detected faults, can be achieved with

small rates of false positives for autonomously set probing
parameters. As indicated earlier, the somewhat low localisation
rates for node faults are due to the lack of alternative paths
between nodes. Moreover, it has been verified that the number
of probes needed to detect faults is autonomously adapted
to observed network measurements. This property allows for
fault-detection with high certainty and few false alarms.

Aiming for a fully adaptive method, future work include
extensions for detection of drifting probe response delays,
based on the same probabilistic model as described. Shifts
in local network latencies can be symptoms of malfunctioning
equipment, malicious activities, misconfiguration, varying user
behaviour etc. For the purpose of capturing such shifts, we
will investigate how to account for long-term network devel-
opment, by estimating parameters from recently observed data
while gradually forgetting about older observations. Finally,
we will investigate the algorithm performance when using
alternative paths for efficient communication of control mes-
sages.
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