465 research outputs found

    Is There Light at the Ends of the Tunnel? Wireless Sensor Networks for Adaptive Lighting in Road Tunnels

    Get PDF
    Existing deployments of wireless sensor networks (WSNs) are often conceived as stand-alone monitoring tools. In this paper, we report instead on a deployment where the WSN is a key component of a closed-loop control system for adaptive lighting in operational road tunnels. WSN nodes along the tunnel walls report light readings to a control station, which closes the loop by setting the intensity of lamps to match a legislated curve. The ability to match dynamically the lighting levels to the actual environmental conditions improves the tunnel safety and reduces its power consumption. The use of WSNs in a closed-loop system, combined with the real-world, harsh setting of operational road tunnels, induces tighter requirements on the quality and timeliness of sensed data, as well as on the reliability and lifetime of the network. In this work, we test to what extent mainstream WSN technology meets these challenges, using a dedicated design that however relies on wellestablished techniques. The paper describes the hw/sw architecture we devised by focusing on the WSN component, and analyzes its performance through experiments in a real, operational tunnel

    Distributed intelligent illumination control in the context of probabilistic graphical models

    Get PDF
    Lighting systems based on light-emitting diodes (LEDs) possess many benefits over their incandescent counterparts including longer lifespans, lower energy costs, better quality of light and no toxic elements, all without sacrificing consumer satisfaction. Their lifespan is not affected by switching frequency allowing for better illumination control and system efficiency. In this paper, we present a fully distributed energy-saving illumination dimming control strategy for the system of a lighting network which consists of a group of LEDs and user-Associated devices. In order to solve the optimization problem, we are using a distributed approach that utilizes factor graphs and the belief propagation algorithm. Using probabilistic graphical models to represent and solve the system model provides for a natural description of the problem structure, where user devices and LED controllers exchange data via line-of-sight communication

    Distributed smart lighting systems : sensing and control

    Get PDF

    Advancements in the Industrial Internet of Things for Energy Efficiency

    Get PDF
    The Internet of Things is an emerging field that leverages the connections of everyday objects for the betterment of society. A subfield of this trend, the Industrial Internet of Things (IIoT), has been referred to as an industrial revolution that enhances both productivity and safety in the industrial environment. While still in its early stages, identified improvements have the potential to markedly improve manufacturing productivity. Energy efficiency within manufacturing plants has traditionally received little focus. The Industrial Assessment Center Program demonstrates the potential energy improvements that can be realized in manufacturing plants, but these assessments also highlight some of the traditional barriers to energy efficiency. Some of these barriers include the lack of data to justify actionable improvements, unclear correlations between improvement costs and potential cost savings, and lack of knowledge on how energy improvements provide ancillary benefits to the plant. The IIoT has the potential to increase energy efficiency implementation in manufacturing plants by addressing these challenges. This dissertation discusses the framework in which energy efficiency enhancements within the IIoT environment can be realized. The dissertation initially details the potential benefits of IIoT for energy efficiency and presents a general framework for these improvements. While proposed IIoT frameworks vary, they all include the core elements of improved sensing capabilities, enhanced data analysis, and intelligent actuation. In addition to presenting the framework generally, the dissertation provides detailed case studies on how each of these framework elements lead to improved energy efficiency in manufacturing. The first case study demonstrates improved sensing capabilities in the IIoT framework. A non-intrusive flow meter for use in compressed air and other fluid systems is presented. The second case study discusses Autonomous Robotic Assessments of Energy, which use advanced data analysis to autonomously perform a lighting energy assessment in facilities. The third case study is then presented on intelligent actuation, which uses a novel k-means algorithm to autonomously determine appropriate times to actuate compressors for air systems in manufacturing plants. Each of the presented case studies includes experimental tests demonstrating their capabilities

    On-demand sensor node wake-up using solar panels and visible light communication

    Get PDF
    To significantly reduce, or eliminate completely, the energy waste caused by the standby (idle) mode of wireless sensor nodes, we propose a novel on-demand wake-up system, which allows the nodes to be put into sleep mode unless their activation is truly necessary. Although there have been many studies proposing RF-based wake-up radio systems, in this work, we develop the first visible light communication (VLC)-based wake-up system. The developed system can extend the existing VLC systems and can be exploited to derive new application areas such as VLC tags. The system uses an off-the-shell indoor solar panel as receptor device of the wake-up signal as well as for energy harvesting purposes, through which it is able to harvest enough energy for its autonomous work. The design, implementation details and the experimental evaluation results are presented, which include flickering characterization and wake-up range evaluations. The results show that the developed system achieve reasonable wake-up distances for indoor environments, mainly where the use of VLC systems are considered.Peer ReviewedPostprint (published version

    INDOOR ENVIRONMENTAL QUALITY (IEQ) AND BUILDING ENERGY OPTIMIZATION THROUGH MODEL PREDICTIVE CONTROL (MPC)

    Get PDF
    This dissertation aims at developing a novel and systematic approach to apply Model Predictive Control (MPC) to improve energy efficiency and indoor environmental quality in office buildings. Model predictive control is one of the advanced optimal control approaches that use models to predict the behavior of the process beyond the current time to optimize the system operation at the present time. In building system, MPC helps to exploit buildings’ thermal storage capacity and to use the information on future disturbances like weather and internal heat gains to estimate optimal control inputs ahead of time. In this research the major challenges of applying MPC to building systems are addressed. A systematic framework has been developed for ease of implementation. New methods are proposed to develop simple and yet reasonably accurate models that can minimize the MPC development effort as well as computational time. The developed MPC is used to control a detailed building model represented by whole building performance simulation tool, EnergyPlus. A co-simulation strategy is used to communicate the MPC control developed in Matlab platform with the case building model in EnergyPlus. The co-simulation tool used (MLE+) also has the ability to talk to actual building management systems that support the BACnet communication protocol which makes it easy to implement the developed MPC control in actual buildings. A building that features an integrated lighting and window control and HVAC system with a dedicated outdoor air system and ceiling radiant panels was used as a case building. Though this study is specifically focused on the case building, the framework developed can be applied to any building type. The performance of the developed MPC was compared against a baseline control strategy using Proportional Integral and Derivative (PID) control. Various conventional and advanced thermal comfort as well as ventilation strategies were considered for the comparison. These include thermal comfort control based on ASHRAE comfort zone (based on temperature and relative humidity) and Predicted Mean Vote (PMV) and ventilation control based on ASHRAE 62.1 and Demand Control Ventilation (DCV). The building energy consumption was also evaluated with and without integrated lighting and window blind control. The simulation results revealed better performance of MPC both in terms of energy savings as well as maintaining acceptable indoor environmental quality. Energy saving as high as 48% was possible using MPC with integrated lighting and window blind control. A new critical contaminant - based demand control ventilation strategy was also developed to ensure acceptable or higher indoor air quality. Common indoor and outdoor contaminants were considered in the study and the method resulted in superior performance especially for buildings with strong indoor or outdoor contaminant sources compared to conventional CO2 - based demand control ventilation which only monitors CO2 to vary the minimum outdoor air ventilation rate

    MOCAST 2021

    Get PDF
    The 10th International Conference on Modern Circuit and System Technologies on Electronics and Communications (MOCAST 2021) will take place in Thessaloniki, Greece, from July 5th to July 7th, 2021. The MOCAST technical program includes all aspects of circuit and system technologies, from modeling to design, verification, implementation, and application. This Special Issue presents extended versions of top-ranking papers in the conference. The topics of MOCAST include:Analog/RF and mixed signal circuits;Digital circuits and systems design;Nonlinear circuits and systems;Device and circuit modeling;High-performance embedded systems;Systems and applications;Sensors and systems;Machine learning and AI applications;Communication; Network systems;Power management;Imagers, MEMS, medical, and displays;Radiation front ends (nuclear and space application);Education in circuits, systems, and communications

    Cognitive Buildings

    Get PDF
    Cognitive building is a pioneering topic envisioning the future of our built environment. The concept of "cognitive" provides a paradigm shift that steps from the static concept of the building as a container of human activities towards the modernist vision of "machine Ă  habiter" of Le Corbusier, where the technological content adds the capability of learning from users' behavior and environmental variables to adapt itself to achieve major goals such as user comfort, energy-saving, flexible functionality, high durability, and good maintainability. The concept is based on digital frameworks and IoT networks towards the concept of a smart city
    • …
    corecore