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ABSTRACT 

 

The Internet of Things is an emerging field that leverages the connections of 

everyday objects for the betterment of society. A subfield of this trend, the Industrial 

Internet of Things (IIoT), has been referred to as an industrial revolution that enhances 

both productivity and safety in the industrial environment. While still in its early stages, 

identified improvements have the potential to markedly improve manufacturing 

productivity.  

Energy efficiency within manufacturing plants has traditionally received little 

focus. The Industrial Assessment Center Program demonstrates the potential energy 

improvements that can be realized in manufacturing plants, but these assessments also 

highlight some of the traditional barriers to energy efficiency. Some of these barriers 

include the lack of data to justify actionable improvements, unclear correlations between 

improvement costs and potential cost savings, and lack of knowledge on how energy 

improvements provide ancillary benefits to the plant. The IIoT has the potential to 

increase energy efficiency implementation in manufacturing plants by addressing these 

challenges.  

This dissertation discusses the framework in which energy efficiency 

enhancements within the IIoT environment can be realized. The dissertation initially 

details the potential benefits of IIoT for energy efficiency and presents a general 

framework for these improvements. While proposed IIoT frameworks vary, they all 

include the core elements of improved sensing capabilities, enhanced data analysis, and 
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intelligent actuation. In addition to presenting the framework generally, the dissertation 

provides detailed case studies on how each of these framework elements lead to 

improved energy efficiency in manufacturing.  

The first case study demonstrates improved sensing capabilities in the IIoT 

framework. A non-intrusive flow meter for use in compressed air and other fluid systems 

is presented. The second case study discusses Autonomous Robotic Assessments of 

Energy, which use advanced data analysis to autonomously perform a lighting energy 

assessment in facilities. The third case study is then presented on intelligent actuation, 

which uses a novel k-means algorithm to autonomously determine appropriate times to 

actuate compressors for air systems in manufacturing plants. Each of the presented case 

studies includes experimental tests demonstrating their capabilities.  
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CHAPTER 1 

INTRODUCTION TO THE INDUSTRIAL INTERNET OF THINGS FOR ENERGY 

EFFICIENCY 

 

The Internet of Things (IoT) is a recent emerging field that envisions the 

connection and utilization of everyday objects for the betterment of society. The global 

impacts from the IoT are expected to be widespread, with some terming it a 

technological revolution [1-3]. Recent advances in low cost communication and RFID 

technologies have enabled the networking of everyday objects, prompting a new field in 

which all things are connected together in a global network. At the core of the IoT is the 

embedding of electronics in everyday objects, connecting them to the global 

infrastructure and making them “smart.” The envisioned fields of application are diverse, 

ranging from personal smart homes to transportation and commercial applications. Xu, 

He, & Li identify some of the many widespread industries that stand to benefit from IoT, 

including transportation systems, environmental monitoring, healthcare, traffic 

monitoring, and industrial systems [4].  

The birth of IoT is rooted in the expansion of RFID technology, which enabled 

the fast, low-cost tracking of things in commercial and industrial environments. The 

field has grown rapidly, as indicated both in available market solutions and research in 

the literature [4]. The scope of IoT has widened recently to a broad range of potential 

applications and available sensors, but the field is still in its infancy.  In a survey paper 

of many IoT applications that are available in market, Perera observes that most 
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applications are narrow in focus [5]. Other researchers have observed that the field is 

still widely fragmented, with one-off solutions being developed for single applications 

[6]. Effort is now being performed to establish uniform frameworks and communication 

standards to facilitate functionality and communication between devices produced from 

different companies. The end vision of IoT involves use of information from a global 

connection of smart devices to adapt the environment for improved human productivity, 

safety, and convenience. Specifically, these applications will autonomously identify 

changes in the operating environment and adjust to provide desired service [6].  

1.1 Industrial Internet of Things 

Many subfields of IoT have been identified, including applications pertaining to 

the industrial environment. The Industrial Internet of Things (IIoT) is focused on 

applications in manufacturing environments. The IIoT is also commonly referred to as 

the Industrial Internet or Industry 4.0. Industry 4.0 refers to the next perceived revolution 

in industry, with previous revolutions pertaining to mechanization, assembly lines, and 

system automation.  

While the IoT at large is still in its early stages, this is especially true in the IIoT. 

Perera et. al. explore IIoT solutions that are commercially available in the marketplace, 

in contrast to solutions that have only been proposed in literature. [7]. They find that 

many products are available in residential and commercial markets, but very few are 

available in industrial facilities. Although some applications from the commercial sector 

could be used in an industrial environment, such as intelligent thermostats and air quality 

monitoring, these technologies lie on the peripheral of industry production and energy 
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use. The paper only identified a single supplier of IoT technologies for manufacturing 

equipment, with no identified suppliers for energy subsystems (such as compressed air 

systems, motors, or boilers).  

More potential applications in the IIoT have been identified and are being 

researched in the literature.  Within these application areas, some of the identified 

industrial solutions include improved climate control for energy efficiency in buildings, 

product tracking for enhanced manufacturing capability, and improved safety by 

monitoring equipment and processes [2]. Many solutions in the IoT rely primarily on 

RFID or similar tracking methods of inventory or processes [4, 8]. While RFID and 

other solutions are being explored specifically for the industrial sector, currently-

available technologies in the industrial field are notably behind their commercial and 

residential counterparts [5]. 

1.1.1 Challenges in IIoT 

While there is much discussion on potential productivity improvements in 

manufacturing through IIoT [9], some have expressed doubt at the ability of the IIoT to 

significantly improve manufacturing productivity [10]. There are several reasons for this 

scepticism on the Internet revolution for manufacturing. One illustrative difference 

comes from comparing the contrasting usage pattern between the industrial sector and 

the commercial/residential sectors. Residential and commercial buildings operate with 

similar equipment between buildings and predictable schedules based on building 

purpose. Manufacturing processes vary widely depending on the type of manufacturing 

process. These differences include the extent of process automation, product heating and 
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cooling needs, production operation hours, and support system requirements. This 

variance creates difficulty in predicting production schedules or energy use trends based 

solely on the type of industry. Specific solutions are at times unique to a facility and not 

readily applied to other facilities [11].  

Another potential reason for the expressed doubt in IIoT impact is the trend for 

industrial plants to lag behind consumer and commercial sectors in the adoption of new 

technology. This is especially true in smaller manufacturers, where concerns over 

disruptions in the production process overwhelm potential benefits of IIoT solutions. 

Relatively few potential solutions to date have been identified with impactful potential in 

industrial facilities, and Stanovic et al. note how there are many potential unidentified 

solutions due to this hesitation in technology adoption. [12]. 

 Other researchers have highlighted some additional unique challenges in IIoT 

compared to the IoT for traditional domestic applications [13, 14]. First, IIoT hardware 

often needs to integrate with other systems in the industrial plant. In contrast, domestic 

IoT solutions typically entail standalone, vertically integrated solutions. Second, 

domestic IoT safety considerations primarily focus on protecting user data, while IIoT 

needs to additionally prevent unauthorized access to equipment. Finally, as faulty 

operation of IIoT can potentially present safety hazards to human personnel, the 

technology must operate correctly without continuous access to the internet or 

connectivity with other smart devices. Faults in many residential or commercial IoT 

solutions create inconvenience or revenue loss, while faulty IIoT solutions can result in 

human endangerment. A high-tech analysis firm examined additional necessary 
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requirements for implementation of IIoT. They found that, when compared to typical 

IoT solutions, IIoT solutions must be more robust to extreme environments, have longer 

service lifetimes, be more resilient to failure, and be more secure against security threats 

[14].  

1.1.2 Growth Areas of IIoT 

With these challenges, there are a couple of avenues where IIoT is likely to see 

faster growth. Wang et. al. focuses on the IIoT as a paradigm for safety-critical 

applications in industrial facilities [13]. Specifically, IIoT applications have recently 

emerged in environments where equipment failure results in dangerous situations. In 

these environments, the IIoT has potential for immediate impact in identifying new 

faults more quickly or even prior to the fault. As opposed to IIoT solutions that enhance 

production with potential introduced safety risks, focusing on safety critical applications 

can enhance worker safety, which in turn enhances plant profitability. Wang et. al. 

specifically discusses safety critical application for the IIoT in the maritime industry 

[13], but there are many potential safety applications in a wide variety of industries such 

as chemical plants and mining [4]. 

A second avenue for early adoption of IIoT is in predictive maintenance and 

automatic fault detection [15, 16]. Predictive maintenance of equipment reduces 

unexpected shutdowns, decreases overall plant downtime, and increases productivity. 

There are additional safety benefits to production workers, as equipment failure and 

unexpected production line changes create safety risks. Finally, predictive maintenance 
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can reduce operational costs through reduced equipment replacement or refurbishment 

costs.  

1.1.3 Energy Applications in the Industrial Internet of Things 

Much of the literature that discusses energy in the framework of IoT and Big 

Data solutions reference Smart Grid concepts as the primary research area [17, 18]. 

While much research is necessary on the supply and distribution side of smart grids, 

there are plethora of opportunities on the demand side beyond facility load forecasting. 

To date, IIoT solutions that optimize energy use in manufacturing facilities have 

received limited attention in the literature.  

Improved energy efficiency of facility energy systems will reduce facility 

demand and consumption, providing benefits to the demand side of the smart grid. The 

Industrial Assessment Center (IAC) program performs energy assessments of regional 

small- to medium-sized manufacturers. These assessments identify potential energy 

efficiency improvements for the manufacturer. The impact of the national program is 

well documented in both decreased utility costs and student training [19].  

The IAC program demonstrates potential energy savings that may be achieved in 

manufacturing facilities, but it also highlights some of the reasons why energy efficiency 

in industry has received little attention in the literature. During energy assessments, there 

is little available time for data collection or in-depth study of the facility’s energy use. A 

survey of production managers, including some who were recipients of an IAC visit, 

reveal that retrofit recommendations are considered strongest when there are other 

ancillary benefits beyond reduced energy costs [20]. Energy efficiency investments are 
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often dropped at the management level because the endeavour is seen as unprofitable. 

The surveys revealed that often energy efficiency is not the principal driver of capital 

projects, but it is typically only considered in the context of other plant improvements.  

Production output and employee safety entail the primary foci of production 

managers, as these factors directly affects the bottom line of the company. Jiang el al. 

note that research performed in Big Data for energy applications all have a common 

purpose in cost minimization [17]. With a lack of knowledge prior to and following an 

energy efficiency upgrade, the only metric to gauge potential impacts of the upgrade is 

through utility bills. The large variations in energy usage on a daily and monthly usage 

make discerning energy savings from a specific project using utility bills impractical.  

Historically, the potential cost savings from energy reductions are the primary 

point that is emphasized in the adoption of energy-efficient technologies. These cost 

savings reduce overall operating expenses for manufacturers and contribute to the 

realized profits for manufacturers. However, one identified challenge in deploying 

Energy Efficiency Measures (EEMs) for energy efficiency is the initial cost to 

implement the EEM. While many EEMs benefit from a very small payback period [19], 

the initial cost of the consultation by experts and the cost of equipment can be 

prohibitive for the implementation of the technology [21].  

1.1.3.1 Marrying Energy Efficiency with Safety and Fault Detection in the IIoT 

A proposed approach to improve implementation of energy efficiency of 

industrial facilities in the IIoT framework is to focus on solutions that either offer energy 

efficiency as an ancillary benefit on major energy support systems or else improve the 



 

8 

 

process of performing system diagnostics. These solutions, which increase production or 

decrease downtime, are more likely to be implemented. 

Additionally, early IIoT solutions are likely found where solutions can be 

uniformly applied to a wide variety of industrial plants, provide increased worker safety, 

or incorporate machine fault detection. Energy support systems, such as boilers, 

compressed air and electric motors, are commonly found in most plants. Solutions that 

apply to these support systems can be readily implemented across many plants with little 

or no modification.  

As additional sensing becomes inexpensive and readily available, the cost 

decreases for health monitoring of equipment, optimizing production performance, or 

ensuring correct system operation. Lee et. al. have identified health monitoring and 

management of equipment as a key application area in the industrial environment. 

Proper equipment health monitoring can detect issues and potential failures prior to 

human operators, resulting in the avoidance of potential costly downtimes on the 

production floor. The researchers specifically identify fault detection and diagnosis as a 

key application area in equipment health monitoring [15]. These same data obtained 

from health equipment monitoring may be utilized to simultaneously make energy 

efficiency improvements to the system. Although EEMs are economically justifiable by 

themselves with a relatively low payback period, coupling energy efficiency solutions 

with fault detection or safety improvements provides increased incentive for managers to 

invest in these upgrades. These implemented projects will still benefit from a small 
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payback period, which reduces overall plant operational costs while still providing the 

benefits of equipment monitoring.   

Many of the safety-related faults in industrial systems initially start with soft 

faults prior to a hard fault. Soft faults reduce system efficiency but still meet operational 

requirements. Identifying and correcting soft system faults prevent hard faults of the 

system, generating additional energy and cost savings to manufacturers.   

1.2 Internet of Things Framework 

The IoT as a research field is still in its infancy in regards to standardization and 

frameworks. There are many proposed frameworks and solution approaches to IoT in the 

literature, many of which are summarized by Sundmaeker et al. [2]. This lack of a 

uniform framework creates challenges in designing IoT solutions. However, most all the 

frameworks contain several key components the constitute the core of an IoT solution 

[1-3, 6, 17, 18]. The referenced frameworks are not a comprehensive list of identified 

frameworks. Instead, they provide a sample of proposed approaches to illustrate that a 

large number of researchers have proposed similar approaches in this emerging field.  

The key components identified by most frameworks are visualized in Figure 1. 

The foundational three pillars of IoT are 1) the sensing layer in which the data on the 

physical world are collected, 2) the network layer in which data are transmitted and 

processed, and 3) the application layer in which the data are used to accomplish some 

useful purpose [1, 8]. 
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Figure 1. General framework for realizing the Internet of Things. 

As mentioned earlier, many potential application areas have been identified for 

future IoT solutions. While the application areas range from consumer trends, 

transportation, intelligent homes, and industrial applications, most every proposed 

framework includes these core areas of sensing, middleware, and actuation. Within 

middleware, most frameworks include elements of communication, data analysis, and 

ensuring security of devices and user data. The physical sensing layer interfaces with the 

world and provides insight on the current state of physical processes. As the sensors 

have limited communication and processing power, they are connected to a global 

network through the middleware. All the sensed data are available in the middleware, 

where greater computing power is available. The middleware has many different terms, 

but it typically consists of data processing, storage, communication protocols, analysis, 

and cyber security [22]. Through data analysis, improvements are identified and either 



 

11 

 

implemented autonomously through actuators or conveyed to operators through a user 

interface. This actuation or user interface constitutes the actuation layer, where improved 

decision making is achieved.  

The three layers that are identified above are key variables to realizing the full 

potential of the IoT both generally and specifically to industrial systems. Other variables 

that must be considered include security among devices, expanding the sensing and 

communication loops to outside the closed plant, ensuring robustness with aging sensors 

and processes, and ensuring effective communication protocols between interconnected 

devices [12]. This dissertation focuses on advances in the Industrial Internet of Things as 

it applies to energy systems. Specifically, the dissertation focuses on the three elements 

of data collection, autonomous data analysis, and intelligent control based on the 

analyzed data. The author recognizes the importance of advancement of communication 

and cybersecurity technologies in the IIoT, but these topics are not a focus of the 

presented work. Each of the five topics (Cybersecurity, Communication, Sensing, Data 

Analysis, and Intelligent Actuation) are discussed in the following sections.  

1.2.1 Communication and Cyber Security 

One large identified challenge to IoT is the reconciliation of various 

communications and networking standards [2, 6, 18, 23]. Communication between smart 

devices and equipment becomes increasingly important in industrial applications. 

Breakdown in communication between devices can have severe consequences, including 

loss of plant production or endangerment of human life. This problem is complicated by 

the large networks of devices and associated distributed communication. The challenge 
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in further exacerbated by IIoT solutions being developed with proprietary software and 

algorithms [11]. Multiple researchers and organizations are working to set uniform 

standards, as this is viewed as a key step to wide acceptance and implementation of IoT 

solutions, some of them specific to IIoT [4, 24]. Communication standards present a 

unique challenge in manufacturing systems, where processes and equipment vary so 

widely that uniform IIoT solutions are nearly impossible to identify. Communication 

standards are a necessary precursor to widespread IIoT solutions, as communication 

protocols for manufacturing equipment is likely to be equipment specific.  

Issues related to cyber security is an additional challenge that is readily identified 

by those creating IoT frameworks [2, 6, 17, 18, 23]. While readily identified, limited 

attention has been given to the topic [5]. There are two regularly cited challenges in 

regards to cyber security. The first is in the protection of individual consumer data, as 

sensitive information can cause significant harm to individual users or manufacturers. 

The second challenge is in the security of the IIoT devices. If security of the IIoT 

devices is breached, unauthorized users can control specific equipment on the 

manufacturing floor. This presents monumental economic and safety risks. Even small, 

imperceptible changes in a manufacturing line can result in final products that do not 

meet final specifications. The source of the alteration may be difficult to identify, and 

the resulting loss in productivity and product waste can be economically devastating to 

manufacturers. While both communication and security challenges are paramount to 

establishing an effective IIoT framework, these topics are not the focus of the 
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dissertation. The following chapters focus on technical aspects of data sensing, 

autonomous data analysis, and intelligent actuation.  

1.2.2 Advanced Data Sensing 

The field of Big Data uses large volumes of collected data to mine useful 

correlations and make informed decisions. IIoT relies on Big Data from the physical 

world to enable production, safety, or energy enhancements. This is only possible if the 

physical world can be sensed inexpensively so that sufficient data can be captured. 

Measurements that are currently expensive limit IIoT solutions, as advanced networking 

and communication can’t substitute for a lack of sensing. Insufficient measurement and 

monitoring has been found to be a key factor that limits implementation of energy-

saving technologies and best practices [11, 20].  

 Researchers have remarked on the increasing availability of sensed data, and 

they use this assumption of low-cost data when building an IoT infrastructure [4]. 

Further development in sensing technologies is therefore necessary to realize the full 

potential of IIoT solutions. While there are many readily-available sensors for use in 

monitoring equipment and processes, many desirable measurements are difficult to 

obtain. The desirable measurements may require prohibitively expensive equipment, be 

unreliable, or possibly can’t be obtained with the best available technology. 

Additionally, many straightforward methods for sensing often have ad hoc additions for 

specific circumstances to account for uncertainties in estimation of parameters. 

Advances in technology will drive down costs and make additional measurements 

possible. This is particularly true for IIoT for energy efficiency. As the primary benefit 
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of energy efficiency is cost savings to the manufacturer, any deployment of technology 

with energy efficiency as the primary driver must be low cost. 

When sensors for desired measurements are prohibitively expensive or otherwise 

unavailable, at times the desired measurement can be derived from other measurements. 

Often termed virtual sensors, physical laws and relationships from measured parameters 

are used to estimate the desired parameter. Virtual sensors are capable of determining 

parameters that are not immediately obvious or can’t be directly measured with available 

technology. Use of virtual sensors can at times bring down sensing cost by deriving the 

desired measurements implicitly from other readily-available, low-cost measurements. 

Developments in advanced sensors, in particular virtual sensors, is an area of active 

research in energy systems. The following section describes work done in the industrial 

field regarding advanced sensors.  

1.2.2.1 Examples of Advanced Sensing for Energy Applications 

While regular advances are made on lowering cost and improving sensitivity of 

direct measurement technologies, there is a large body of literature on use of virtual 

sensors for low-cost advancements in sensor technology. This section presents several 

virtual sensors being developed or in use in the industrial sector related to energy 

efficiency. The presented examples are not meant to be an exhaustive list of available 

and researched sensors in the field. Instead, the purpose is to provide a sampling of other 

work done in the literature to provide context and relevance for the example case study 

presented later in Chapter 2 and Chapter 3 of the dissertation. 
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A common application of virtual sensors is found in fault detection and diagnosis 

of heating, ventilation, and air conditioning (HVAC) systems. Research has been done 

for years in the context of both energy efficiency and compressor health monitoring [25, 

26].  Inexpensive temperature sensors are the primary sensors used to evaluate the 

HVAC systems. Virtual sensors, using these temperature measurements, can estimate the 

HVAC system pressure, refrigerant mass flow rate, and compressor power [27, 28]. The 

sensors are then used to detect and diagnose soft system faults that degrade system 

performance [29, 30]. The identification of soft faults helps reduce potential catastrophic 

faults, reducing unexpected shutdown of the equipment and a potential stop in 

production.  

A second example is illustrated in Chapter 5 on estimation of compressor load 

factor values using only pressure information. This work is presented in the context of 

intelligent actuation, but the load factor is a necessary sensed measurement to realize the 

intelligent control. For reciprocating compressors and compressors operating under a 

load/unload configuration, the rates of pressure rise and drop can be used to estimation 

compressor loading. This only requires pressure sensing somewhere in the system to 

estimate compressor loading conditions.  

A final example is found in estimation of motor loading factors and efficiencies 

in industrial processes. Estimating the load factor and efficiency of motors is a key 

element of predicting total motor energy use, but directly measuring the motor torque is 

difficult. Various approaches have been proposed and researched for estimating load 

factor through derived quantities, each with its own challenges and advantages. Some of 
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these approaches include using motor slip, motor electrical current, the airgap torque 

method, and statistical approaches [31, 32].   

1.2.3 Autonomous Data Analysis 

One challenge to energy efficiency in industrial facilities is the cost to identify 

and analyze potential retrofit opportunities. For both the external energy auditor and 

internal energy manager, the labor cost to evaluate potential energy-saving opportunities 

reduces the economic viability of such opportunities. In general, the increasing amount 

of data that are available in many fields require additional and automated data analysis 

techniques. The expected amount of data in the context of IIoT makes effective human 

analysis infeasible, and sensor data without proper analysis have little value [15, 33]. 

Large amounts of data on the sensed world provide a potential wealth of information, but 

advanced analysis must be accompanied with the data to mine useful knowledge.  

Data from diverse, low-cost sensors presents a standing challenge on how to 

marry incompatible data to generate production, safety, or energy improvements in the 

industrial facility. The middleware in the IIoT framework is where these large datasets 

are analyzed and useful relationships identified. The middleware consists of all data 

handling, communication, and data processing. There are several fields of research, 

including Big Data, that investigate data handling and analysis techniques to derive 

useful, easily-comprehensible trends from the data. In general, the phase “Big Data to 

Smart Data” is used to summarize the field of data analysis in the context of IIoT [11]. 

While strides have been made, researchers emphasize that large research challenges still 

exist for the IoT. Without additional analysis techniques, improvements to industrial 
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facilities are difficult to realize, and advanced analysis tools are a necessary element to 

gain useful insight [1, 15]. A survey paper on Big Data asserts that the processing 

capacity of Big Data in the IoT field has fallen behind data collection, and development 

of Big Data analysis techniques should be urgently pursued in order to advance IoT [8].  

Include in those listed challenges is automated or sophisticated data analysis techniques 

to productively analyze large streams of data while still accounting for human variability 

[8, 33, 34].  

Some researchers have applied IoT and Big Data frameworks to increase the 

energy efficiency in commercial buildings. While work has been done for various energy 

subsystems to optimize energy use of building subsystems in the context of occupant 

thermal comfort, Moreno et al. propose a whole building solution to electrical energy 

efficiency [21]. This work illustrates the difficult nature in defining all the factors that 

contribute to energy usage, as the complete model setup required manually defined 

occupancy schedules, thermal zoning, selection of model inputs, and selection of model 

structure in order to yield the best results. These manually tasks are time intensive and 

limit widespread applicability of IIoT solutions for energy efficiency.  

In addition to unclear relationships in sensed data, the large amount of sensed 

data can present an additional challenge when data come from unique sources with 

specific formatting. For example, weather data, utility data, and internal sensor data must 

all be converted to compatible types for data analysis use [17, 18]. This adds an 

additional layer of complexity in the data analysis that isn’t found in traditional IoT 

solutions that use a single sensor type.  
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1.2.3.1 Industry Examples of Autonomous Data Analysis for Energy Applications 

A first example of advanced data analysis is in health diagnostics of motors used 

in production and support processes. Rewound or replaced motors are a considerable 

cost to manufacturing facilities. Many of the root causes leading to motor failure come 

from inadequate lubrication in motor bearings [35, 36]. Evaluating motor bearing health 

to ensure proper lubrication can both increase energy efficiency of motors and decrease 

expensive motor overhaul costs. One approach to diagnose the health in motors is 

through a vibrational analysis of the motor [37]. Using low-cost accelerometers, 

advanced signal analysis is used to correlate the incoming vibration signal with motor 

bearing health [38].  

Other industrial examples can be found in process or system optimization. A 

common approach in industry for fault diagnosis is using data-driven approaches. While 

these models require large amount of data, no prior knowledge about the system is 

necessary. Common data driven approaches include principle component analysis, 

partial least squares, and independent component analysis [39].  

1.2.4 Intelligent Actuation 

One of the early challenges seen in Big Data is the difficulty of improving 

decision making based on the wealth of information available. The data produced and 

analyzed in the IIoT environment are all done with the goal of improved decision 

making. If no useful improvements are made to a process or system, then a typical IIoT 

solution fails to achieve its potential impact. To this end, improved decision making is a 
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necessary piece of any IIoT solution. All of the data collection, communication, and 

analysis serves the purpose of enhancing productivity, safety, or efficiency.  

Currently, changing needs and operating requirements in plants are manually 

identified, and actuation changes are initiated by plant personnel. In the IIoT, changing 

requirements are autonomously identified through data analysis. Controllers are 

automatically updated based on updated models from advanced data analysis [11]. In 

this respect, big data analytics, system identification, pattern recognition, and machine 

learning constitute methods for controller design. There are a wide variety of context-

aware approaches in the literature, including unsupervised learning, supervised learning, 

rule-based logic, fuzzy logic, and probabilistic logic [33]. Each of these approaches have 

the potential to draw useful trends and improved actuation from large data sets. 

One challenge in physical installation of actuators in IIoT applications regards 

the multiple layers of technology and equipment in the industrial process. New 

technology must be implemented into existing hardware and software of process systems 

[11]. The interdependence of equipment can present unanticipated consequences when 

actuating a single element in an entire system. In light of this challenge, focusing on 

energy support systems provides a feasible approach to initial adoption of IIoT. As 

mentioned previously in the chapter, energy support systems are readily found in most 

manufacturing plants. As such, implementation frameworks can be consistently applied 

across different manufacturing facilities. Additionally, corporate management typically 

do not perform a large overhaul of equipment specifically to increase plant energy 

efficiency. Instead, IIoT solutions for energy support systems can be implemented 
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incrementally in a facility with marginal additional cost. Finally, energy support systems 

often operate upstream and independent of the production process. For example, the 

interface of a pneumatic system with a manufacturing process consists of the available 

pressure and air flow capacity. As long as plant requirements are met for both pressure 

and flow, changes in the operation of the compressed air system will have no detrimental 

effect on the production process.  

1.2.4.1 Industry Examples of Intelligent Actuation for Energy Applications 

There are multiple available intelligent actuators in industrial applications to 

improve energy efficiency. One example is oxygen trim units used in boilers. Optimal 

boiler efficiency is achieved with proper air to fuel ratios. Boilers deviate from the 

optimal ratio due to changes in environmental and boiler conditions. Oxygen trim units 

automatically measure and adjust the air fuel ratio to achieve the optimal ratio. Another 

readily available actuator used in energy applications is automatic drain valves on 

compressed air systems. These valves sense the condensate build up in the compressed 

air line and purge the line when necessary. These drain valves eliminate compressed air 

loss compared to drain valves that use timers or other technologies.   

1.3 Dissertation Outline 

The remaining chapters of the dissertation are organized to provide examples of 

the three key elements of the IIoT framework. Specifically, technical analyses are 

presented that illustrate advanced data sensors, autonomous data analysis, and intelligent 

actuation. Each of these examples was developed to either improve the energy 

assessment process or illustrate a potential retrofit to improve the energy efficiency of 
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industrial buildings. Chapter 2 and Chapter 3 describe a non-intrusive flowmeter used in 

the diagnostics of compressed air leakage rate. Chapter 4 presents a prototype system 

capable of autonomously identifying and classifying facility lighting in order to make 

recommendations on energy efficient retrofits. Chapter 5 discusses a k-means pattern 

recognition algorithm for compressed air systems to intelligently adjust the compressor 

operating scheme for reduced energy use.  

1.4 Summary 

The Industrial Internet of Things is an emerging field in which sensors, 

middleware, and actuators are all networked together to create a smart environment. 

Potential improvements in the industrial field include enhanced manufacturing 

production, increased worker safety, and improved energy efficiency. This chapter 

discussed how energy efficiency fits in an IIoT framework by leveraging potential 

solutions that increase worker safety or improve preventative maintenance. This 

framework fundamentally consists of physical world sensors, middleware for 

communication and analysis, and actuators or user interfaces for improved performance. 

The remaining dissertation will present illustrative examples of each of the three 

foundational pillars of the framework.  
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CHAPTER 2 

ADVANCED SENSORS 

 

One aspect of the IIoT is the rapid increase in data storage and transmission 

capabilities. The ability to collect and store data is constrained by available sensors. A 

key component of advancing IIoT is the ability to sense important parameters and utilize 

that information for improved operation. While there are many readily-available sensors 

for use in monitoring equipment and processes, many desirable measurements are 

difficult to obtain. The desirable measurements may require prohibitively expensive 

equipment, be unreliable, or possibly can’t be obtained with available technology. 

Advances in technology will drive down costs and make additional measurements 

possible. In many applications of the IoT or the IIoT, development of advanced sensors 

is a necessary component for widespread deployment of the technology to be 

economically viable. This is particularly true for IIoT for energy efficiency. As the 

primary benefit of energy efficiency is cost savings to the manufacturer, any deployment 

of technology must be low cost and result in a short payback period. 

When sensors for desired measurements are prohibitively expensive or otherwise 

unavailable, at times the desired measurement can be derived from other measurements. 

Often termed virtual sensors, physical laws and relationships from measured parameters 

are used to estimate the desired parameter. This chapter describes a case study on how 

advanced sensors can derive desired measurements implicitly from other readily-

available measurements. Developments in advanced sensors, in particular virtual 
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sensors, is an area of active research in energy systems and constitutes a key component 

in the realization of the IIoT for energy efficiency. The chapter presents work on a non-

intrusive virtual flow meter. The need for an improved non-intrusive flow meter is 

discussed first, followed by a description of how the proposed system works. 

Simulations results are then presented, followed by results from experimental tests.  

2.1 Case Study: Non-intrusive Compressed Air Flow Measurement using Thermal 

Signatures 

In the Industrial Assessment Center, one of the most common energy 

recommendations is the repair of air leaks in compressed air systems. Accurate 

estimation of potential cost and energy savings to manufacturers requires a measurement 

of the air flow due to leaks in the system. This example case study presents work on a 

novel method to measure compressed air leakage rates in compressed air lines. 

The method uses heat pulses and the resulting thermal response to non-

intrusively derive the flow rate inside the compressed air line. The proposed system has 

the potential to simplify the process in determining leakage airflow rates in compressed 

air systems while maintaining similar or greater accuracy than current methods in the 

Industrial Assessment Center. Compared to these current methods, this system can 

simplify the calculations and reduce the possibility for error when taking multiple 

measurements. The methodology of the proposed method is explained, followed by 

simulations that validate the method. Simulation are performed to evaluate both a step 

response and frequency approach to maximize potential measurement sensitivity. An 

experimental system and results are then presented to confirm simulation results.  
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2.1.1 Background and Introduction 

Compressed air systems are one of the most common systems found in industrial 

facilities. In fact, the widespread use of compressed air in industry has led many people 

to term compressed air a fourth utility. Some estimates report that compressed air 

constitutes approximately 10% of all industrial electricity [40]. Due to inefficiencies in 

compression, the relative cost of compressed air is high [41]. Because of this high cost, 

any losses in the system result in substantial wasted electricity. There are several points 

of loss and inefficiencies in a compressed air system, including oversized compressors, 

high operating pressure, and inefficient compressed air drying [40, 42]. These 

inefficiencies in energy use result in waste, where losses in the system can range up to 

60% [43].  

One of the most common and worst contributors of losses is leaks in compressed 

air lines. Leaks in an unmaintained plant typically consume 10-40% of the total system 

usage [44]. The large amount of lost energy presents an opportunity for cost savings by 

repairing leaks. Additionally, plants often run the compressed air system at higher 

pressures to compensate for leaks in order to maintain downstream pressure at 

equipment. The higher pressure exacerbates compressed air leakage, inducing additional 

losses. Reducing these leaks has demonstrated significant cost savings for industrial 

plants [19]. 

Figure 2 displays data from the Texas A&M Industrial Assessment Center (IAC) 

on recommendations related to repairing compressed air leaks. The graph displays data 

taken from approximately 50 compressed air systems and shows the average leakage rate 
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for the facilities. The annual cost of the compressed air leaks depends on the cost of 

electricity, compressor efficiency, and operating hours of the plant.  For a 2-shift plant 

operating 5 days a week with a cost of electricity and demand of $0.06/kwh and 

$4/kW·mo, respectively, a leakage rate of 100 SCFM would result in an annual cost of 

$6,800. If the compressor continues to run when the plant is shutdown, the resulting cost 

of compressed air leaks is over $12,500. Figure 2 demonstrates that most systems have 

an opportunity to reduce utility expenditures in compressed air systems by reducing the 

leakage rate of air. Repairing leaking systems requires minimal capital investment and 

expertise, resulting in short payback periods. 

 
Figure 2. Measured leakage rates from approximately 50 compressed air systems in 

small- to medium-sized manufacturers. Data were taken from the Texas A&M 

University Industrial Assessment Center. 

2.1.1.1 Current IAC Compressed Air Flow Estimation Methods 

The primary measurement in estimating potential energy and cost savings is the 

quantification of the air flow rate due to leaks. Once the flow rate is determined, 

conversion factors are used to estimate the required electricity for compression. These 
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other factors and values are obtained from nameplates and utility information. The 

current methods for quantifying leakage rate either estimate total system rate or estimate 

flow from individual leaks. In estimating total system losses, the four primary methods 

are performing a leak-down test, measuring compressor power, using an ultrasonic flow 

meter, and installing an inline flow meter. All of these methods require production to be 

halted, so that all air flow in the compressed air lines comes from leaks in the system. 

Measuring individual leaks can be done while production is still running.  

Each of the listed methods has disadvantages that create high uncertainty in the 

air flow measurement. The following paragraphs describe each method along with the 

relative advantages and disadvantages of the method. Table 1 summarizes these 

advantages and disadvantages.  

2.1.1.1.1 Leak Dropdown Test 

A leak-down test records the time for pressure to drop off the system when the 

compressor is shut off. By estimating the volume of the system, a correlation can be 

made to estimate total flow [42]. Determining the volume of all major compressed air 

lines and tanks can be difficult, resulting in large uncertainties. Careful verification 

needs to be performed with this method because the estimated leakage rate at times 

exceeds the capacity of the air compressor.  

2.1.1.1.2 Ultrasonic Flow Meter 

Commercially available clamp-on ultrasonic flow meters use ultrasonic waves to 

estimate the speed of the air flowing inside of the compressed air line. This method 

requires extensive setup and calibration along with knowledge of several parameters that 
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are difficult to obtain. Additionally, strict requirements are given on the location of the 

meter and correct attachment to the pipe. Small variations in this setup create large 

uncertainties in flow measurement.  

2.1.1.1.3 Electrical Current Measurement 

Power measurement of the compressor directly measures the electricity required 

for compression due to leaks. This method is common in professional energy 

assessments, but the unique time limitations on the one-day assessments and limited 

training of students in the IAC program restricts the use of this method. Additionally, 

this method can only estimate total system flow; leakage rate of individual lines cannot 

be obtained from the power meter.   

2.1.1.1.4 Inline Airflow Measurement  

Inline flow meters are the most accurate method to measure flow rate in 

compressed air lines, but they require drilling into the line for installation of the meter. 

Limited time for data collection on the one-day assessments and substantial resistance 

from the plant for permanent alteration to plant equipment limit the ability to use inline 

meters during IAC assessments.  

2.1.1.1.5 Ultrasonic Detection of Individual Leaks 

In identifying individual leaks, the most common method for finding leaks is 

with ultrasonic leak detection [40]. Compressed air leaks are loud and can be identified 

audibly when other equipment is stopped. When production is still running, ultrasonic 

leak detectors can aid in identifying leaks among other loud equipment. Although some 

work has been performed to estimate sizes of individual leaks based on ultrasonic 
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measurements, typically the size of each leak is manually estimated [45]. The 

uncertainty in leak size, together with the challenge in determining all leak points, makes 

using this method to determine total system losses difficult. Figure 3 shows an example 

of an ultrasonic leak detector.  

 
Figure 3. Example of an ultrasonic leak detector used to find individual compressed 

air leaks. 

Table 1: Summary of Current Leak Quantification Methods 

Method Advantages Disadvantages 
Ultrasonic 
Flow Meter 

Commercially available  Highly sensitive to small 
perturbations 
Time intensive setup and calibration 
Unknown parameters must be 
guessed  

Leak 
Dropdown 
Test 

Simple physics correlation 
Limited required expertise 

Large uncertainties in measurement 

Electrical 
Current 
Measurement  

Direct electricity 
measurement 
 

Expertise required to install meter 
Only total system use is estimated 

Inline Airflow 
Meter 

Accurate measurement System must be permanently 
altered 
 

Individual 
Ultrasonic 
Detection 

Can be done during 
production 
Individual leaks are 
identified 

Leaks may be difficult to reach 
Time consuming  
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2.1.1.2 Operating Limitations in the IAC Program 

The IAC program has two primary purposes in performing energy assessments. 

1. Help manufacturers improve their competitiveness by identifying waste and cost-

effective measures to reduce utility use and improve productivity, and 2. Train 

undergraduate and graduate students in energy management and efficiency. While the 

visits have significant documented savings for participating manufacturers, the purpose 

of training students places unique operating requirements on data collection and analysis 

for recommendations. First, the expertise of the auditors can be limited as some students 

join the IAC program during their undergraduate sophomore year. Second, a typical one-

day assessment consists of a plant tour, interviews with facility personnel, identification 

of recommendation projects, and data collection. With these considerations, the 

operating requirements for quantifying air flow include minimal operator training, 

simplicity of setup & operation, nonintrusive data collection, and minimal time for data 

collection. These unique conditions for energy assessments dictate the restrictive 

operating requirements in obtaining compressed air flow of leaks. 

2.1.1.3 Other Industries and Applications for a Non-intrusive Flow Meter 

The unique requirements in the IAC program are atypical of traditional energy 

assessments, and the proposed flow meter may have limited market applicability in the 

energy assessment field. However, there are many industries in which the need for an 

improved non-intrusive flow meter has been identified. These industries generally fall 

into two categories. The first is one in which a one-time spot measurement is desired, 

and installing an inline flow meter is impractical or undesirable. The second main 
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category is in applications where the fluid inside the pipe is corrosive. Inline sensors 

quickly fail in these applications, and there is a strong maintenance and economic 

incentive for a non-intrusive meter. The identified applications for an improved non-

intrusive flow meter are listed in Table 2.   

Table 2. Other Applications for Non-intrusive Flow Meters 

Identified Application Applicable 
References 

Geothermal industry for brine flows  [46] 
Hot and chilled water on process and HVAC systems [47-49] 
Refrigerant flow on HVAC systems for fault detection and diagnosis [47] 
Diagnostic tool for pump performance in nuclear applications [46] 
Production water in oil and gas wells [50] 
Other oil and gas applications, including injected water, captured 
water and multiphase flows 

[50-52] 

Steam traps and steam systems [53] 

 
 
 

2.1.2 Proposed Design 

The proposed non-intrusive flow meter uses the thermal response of a 

compressed air line to derived the flow inside of the line. The setup of the system is 

diagrammed in Figure 4. The device is wrapped around a compressed air line with the 

heaters and thermocouples. Insulation is also wrapped around the thermocouple and 

heating elements to limit free convection off the surface of the pipe. Similar to other 

current methods, production use is halted, so that only the airflow due to leaks is 

measured. Once production use is stopped, the compressor remains running to maintain 

pressure in the system. The exterior of the pipe is heated using thermal heaters, and the 
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resulting temperature profile is measured using thermocouples or other similar 

temperature measurements. When heat is applied to the pipe, the resulting temperature 

profile will change depending on air flow in the pipe. Increased airflow with increase the 

convection coefficient on the inside of the pipe, and the resulting temperature will 

decrease relative to the reference temperature profile. There are different methods on 

how to relate the differing temperature profiles to the flow rate. There are two methods 

approached in this research: a steady state method and a dynamic method. Once the 

estimated leakage rate is obtained, the compressor specific efficiency is used to estimate 

the energy and monetary loss due to air leaks. 

 
Figure 4. Proposed device to measured airflow based on the thermal response. A 

controller is used to control the heaters to a specified temperature, and the 

thermocouple is used to measure the resulting temperature profile. Insulation 

reduces free convection off the outer surface of the pipe. 

2.1.2.1 Steady State Method 

An initial approach to flow estimation is to use the step response of the 

compressed air line to determine the flow. A pipe is heated to a reference temperature, 

after which the power to the heater is stopped and the response observed. The pipe will 

Thermocouple   

Heating Element

Airflow

Controller and Power Supply

Insulation
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cool back to the initial ambient temperature, and the rate of that cooling will depend on 

the airflow. This is illustrated in Figure 5. The Biot number of the pipe is sufficiently 

small to use lumped capacitance in the radial direction, thereby enabling the use of the 

outer surface temperature as an estimate of the inner surface temperature. A faster 

cooling rate expedites the temperature decay rate. A correlation between the estimated 

cool rate or time required to cool a specified temperature can be made to the flow rate. 

This method is basic in approach and relies predominantly on Newton’s law of cooling.  

 
Figure 5. Proposed methodology to differentiate flow rates based on cooling of a 

compressed air pipe. The temperature drops faster with higher flow due to the 

higher convection coefficient on the inner pipe surface. 

2.1.2.2 Dynamic Method 

The dynamic method uses periodic input signals to derive the flow rate inside the 

pipe. The dynamic method can potentially extract more accurate flow information or 

shorten the time of data collection relative to the steady state method. After transients 

have settled out, the output profile will be periodic with the same input frequency but 
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with a phase shift and a different amplitude. A sketch of this is shown in Figure 6. Since 

the output gain and phase shift will be affected by the flow rate inside the pipe, an 

experimental correlation can be developed to estimate the flow rate.  

 
Figure 6. The dynamic method uses the phase shift and difference in gain between 

the input and output signals to estimate flow rate inside the compressed air line. 

2.1.2.3 Advantages of Design 

There are several advantages of the proposed design over other methods for non-

intrusive measurement of flow rate. Each of these advantages is described in the 

following sections along with its significance. 

2.1.2.3.1 Minimal setup and required expertise 

The proposed method simplifies data collection to a single point of measurement 

with minimal setup and calibration. The device does not require extensive calibration or 

specialized expertise, making it suitable to undergraduate student technicians in the IAC 

program.  
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2.1.2.3.2 Simple dynamics 

Fundamentally, the dynamics of the system are governed by Newton’s law of 

cooling and Fourier’s law of heat conduction. Each of these equations are 

straightforward and simple. Resulting correlations are derived from these dynamics, 

which overall simplifies the data analysis. As a single measurement takes several 

minutes to complete, the method will also inherently average out small variations in flow 

or noise in the data. 

2.1.2.3.3 Low cost  

The required materials to build and operate the system consist of thermal heaters, 

thermocouples or similar temperature measuring devices, a microcontroller, and 

insulation. Each of these items is readily-available and low cost, which results in an 

overall low cost to build and operate the system.  

2.1.2.3.4 Independent of temperature 

The resulting temperature profile is measured relative to the ambient temperature 

so that the initial conditions of the system are zero. Since all measurements are measured 

relative to the ambient temperature and there is a linear relationship between the 

temperature difference and heat transfer, the system can operate at different ambient 

temperatures with negligible change in the response. 

2.1.2.3.5 Independent of pressure 

The measured flow rate inside the pipe using the thermal response is independent 

of the pressure inside the pipe. This point is non-intuitive, especially considering how 

methods such as the ultrasonic flow meter directly measure the speed in the pipe and rely 
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on knowledge of system pressure.  The governing equation for the thermal method is 

Newton’s law of cooling (Equation (1)). The pipe will cool down from conduction 

within the pipe and convection on the inner surface of the pipe. The heat rate due to 

conduction depends on the convection coefficient and the temperature difference 

between the pipe and the flowing air:  

 
 

(1)      Q̇ = hA(Tpipe − Tair) 

 
 
 

The convection coefficient in the heat transfer equation is a function of Reynolds 

number, the Prandtl number, the thermal conductivity of air, and pipe dimensions:  

 
 
(2)     h = f(Re, Pr, kair, D) 
 
 
 

The Reynolds number depends on the air density, speed, dynamic viscosity and the pipe 

diameter.  

 
 

(3)           Re =
ρavaD

µ
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When measuring the flow rate, the flow rate at standard conditions is the desired 

measurement. The flow rate at standard conditions is related to the flow rate at other 

pressures using the ratio of densities, as seen in Equation (4).  

 
 

(4)         V̇s = V̇a (
ρa

ρs
) = va (

πD2

4
) (

ρa

ρs
) 

 
 
 

Rewriting the equation and substituting into Equation (3), the Reynolds number can be 

rewritten and simplified as:  

 
 

(5)                     Re =
4ρsV̇s

µπD
 

 
 
 

Using this form of the Reynolds number equation, the convection coefficient is a 

function of the density at standard conditions, the dynamic viscosity, diameter, Prandtl 

number, thermal conductivity of air, and the volumetric flow rate. Using tabulated 

information for air, the differences in dynamic viscosity, Prandtl number, and thermal 

conductivity of air with respect to pressure are small. Using the values at 0 psig and 100 

psi, the convection coefficient is estimated using the Dittus-Boelter equation for both a 

2” and 3” line at various flow rates. Figure 7 shows the estimated flow rate under these 

conditions. As seen in the figure, the dependence of the heat transfer coefficient is small 

over the wide range of operating pressures. Most plant pressure setpoints will fall in a 
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much smaller range, highlighting the independence of flow rate measurement due to 

system pressure.  

 
Figure 7. The heat transfer on the inner surface of the compressed air line is 

independent of the pressure inside the compressed air line 

2.1.2.4 Method Limitations 

There are several challenges to the proposed system that are addressed in this 

section. These challenges will cause the estimation of flow to deviate from the true 

value, degrading the accuracy and repeatability of measurements. Each of the challenges 

is discussed individually along with the approach to minimize or remove the effect. 

2.1.2.4.1 Free Convection on the Outer Pipe Surface. 

The inner pipe surface temperature is estimated by measuring the outer surface 

temperature. The outer surface of the pipe will be subject to free convection based on the 

ambient air temperature, resulting in increased cooling. Additionally, as the 

thermocouple is located on the outer surface, free convection from the thermocouple will 
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result in sensor error. To reduce the effect of free convection in both these instances, an 

insulation blanket is wrapped around the device and surface of the pipe. 

2.1.2.4.2 Axial Conduction along the Pipe. 

Lumped capacitance can be used to estimate the inner pipe surface temperature 

from the outer pipe surface temperature because of the high thermal conductivity of the 

pipe material. However, the conductivity in the pipe results in large heat transfer along 

the axial direction of the pipe. When the heaters are turned off, axial thermal conduction 

will increase the rate of cooling, resulting in overestimation of flow rates. In the 

proposed method, multiple approaches are used to mitigate the effects of axial 

conduction in the pipe. The first way is by minimizing conduction through control of the 

heaters. Once the pipe is initially heated during a test, the pipe is maintained at the 

elevated temperature to minimize the effects of axial conduction when cooling. 

Conduction heat transfer is determined by the temperature gradient in the material. By 

maintaining the pipe at a constant temperature prior to shutting off the heaters, the 

temperature gradient at the thermocouple is reduced, thereby reducing the effects of 

axial conduction. 

The second approach to reduce the effect of axial conduction is through the 

testing procedure. During heating, the temperature is held for the same length of time on 

each test prior to turning the heaters off. Any remaining axial conduction will be 

incorporated into the experimental correlations because each test will be affected 

similarly by axial conduction.   
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2.1.2.4.3 Variability in Pipe Materials. 

Although the dimensions and material properties can nominally be determined 

from manufacturing specifications, variations in these properties are inevitable. 

Differences in conductivity, specific heat, density, and pipe thickness result in 

discrepancies between the actual and estimated flow rate. No approach is taken in the 

proposed method in this chapter to address this challenge; the work in Chapter 3 will 

account for variation in pipe materials. 

2.1.3 Evaluation of Design in Simulation 

The proposed method was tested in two separate simulation programs. The first 

program used was Finite Element Heat Transfer, a basic finite element program. To test 

the dynamic method of flow estimation, a separate numeric model was developed in 

Matlab. Both of these models are built as a 2-dimensional axisymmetric model. The 

setup of each of these simulations are described in the following sections.  

2.1.3.1 Setup of Simulation 

2.1.3.1.1 Finite Element Modeling 

A finite-element simulation software, Finite Element Heat Transfer (FEHT), was 

used to verify the initial concept and develop initial correlations between heat transfer 

coefficients and flow rates. The convection coefficient is directly correlated with the 

speed of the air and can be used to derive air flow rates. In simulating the system, the 

dimensions and material properties were used from an experimental compressed air line. 

The outer surface was specified as adiabatic. The heat transfer from the heaters to the 

pipe was simulated so that the pipe would have no axial conduction, thereby 
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guaranteeing all of the heat transfer occurred at the inner surface of the pipe. 

Gnielinski’s correlation was used to relate the convection term to an estimated flow rate 

[54]. Convection coefficients were chosen based on common air flow leakage rates 

found in IAC assessments.  

2.1.3.1.2 Dynamic State Space Representation 

A state space representation was used to simulate the thermal response of the 

pipe to a periodic or transient heat input. The numeric model used to analyze frequency 

responses was created using the model setup displayed in Figure 8. This two-

dimensional model allows for both axial and radial conduction with heat transfer on the 

inner surface of the pipe. Multiple inputs and outputs are allowed in the model, but only 

a single input and output was used in the simulation in testing the dynamic response. The 

input to the model is the signal given to the heater, while the output is the temperature on 

the outer surface on the pipe at the desired location. 

The individual state equations can be quite involved when considering the heat 

transfer effects from each neighboring element. As such, the following section presents 

the heat transfer equation for a state on the inside surface of the pipe. Equations for 

internal states, states on the exterior of the pipe, and states for the corners of the pipes 

are all included in the Appendix A.  

The model also captures the dynamics of air heating up in the pipe and the 

resulting asymmetric temperature profile around the heater. The derivation for the 

equations that include air differ significantly from the equations involving pipe material. 

As such, the derivation of these equations are presented in the following section.   
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Figure 8. Outline of the model used for analyzing the dynamic response of the pipe. 

2.1.3.1.2.1 Derivation of Interior Nodes Control Volume Equation 

The individual state equations are derived based on first principles model of the 

energy balance. In general terms, the energy balance states that the change in energy of a 

system is the sum of the energy interactions of the system with the surroundings as 

shown in Equation (6).  

 
 

(6)       
dE

dt
= Q̇x−1,r + Q̇x+1,r + Q̇x,r+1 + Q̇x,r−1 
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For the interior states, the energy interactions include conduction from 

neighboring pipe nodes and convection from the neighboring air node. Using the 

indexing format displayed in Figure 8, Equation (7) displays the energy balance of the 

interior states. 

 
 

(7)               ρc (πrIΔrΔx (1 +
Δr

4rI
))

∂T(m−2)n+i

∂t
= 

= kπrIΔr (1 +
1

4rI
)
(T(m−2)n+i−1 − T(m−2)n+i)

Δx
 

+kπrIΔr (1 +
1

4rI
)
(T(m−2)n+i+1 − T(m−2)n+i)

Δx
 

+(rI +
Δr

2
)Δx 

(T(m−3)n+i − T(m−2)n+i)

Δr
 

+h2πrIΔx(T(m−1)n+i − T(m−2)n+i) 

 
 
 

Grouping like terms and simplifying the equation, the equation can be written in 

a form compatible for a state space representation. Equation (8) shows the rewritten 

equation that is used in the generation of the state space representation. 

 
 

(8)   
∂T(m−2)n+i

∂t
= −[

2α

(Δx)2
+

2α

(Δr)2

(rI+
Δr

2
)

(rI+
Δr

4
)
+

2h

(1+
Δr

4rI
)ρcΔr

] T(m−2)n+i 

+
α

(Δx)2
(T(m−2)n+i+1 + T(m−2)n+i−1) 

+ 
2α

(Δr)2

(rI +
Δr
2 )

(rI +
Δr
4 )

T(m−3)n+i +
2h

(1 +
Δr
4rI

) ρcΔr
T(m−1)n+i 
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2.1.3.1.2.2 Incorporation of air heating up in the model 

In adding the effects of air heating up inside the test section of the pipe, the 

following assumptions were made: 

- Between time steps, the temperature of the air at each node remains constant. 

- The effects of conduction of the air between nodes upstream and downstream are 

negligible.  

- At each node, air is well mixed.  

For each time step, the temperature of control volume 𝑘 at time 𝑡 + Δ𝑡 is equal to 

the temperature of the control volume that is 𝑛𝑠 control volumes earlier plus the 

temperature increase as the volume of air passes through the pipe. Visually, this is 

displayed in Figure 9. Between time steps, the control volume travels 𝑛𝑠 time steps and 

heats up during that section. For the final ending node, the volume of air may start 

between two nodes, and this is accounted for in the derivation of the equations.  

CVk,t+Δt

ns = (u)(Δt)/(Δx)

CVk,t

 
Figure 9. Illustration of how the control volumes are selected for the air nodes in 

the pipe model. 
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Note that although the previous equations are derived in continuous state space, 

the actual implementation and simulation occurs in discrete time, so the method here can 

be applied. For the control volume (CV) 𝑘 of air, the number of nodes the CV travels in 

one time step is equal to: 

 
 

(9)      ns =
u Δt

Δx
 

 
 
 

The amount of time that the CV k spends at each node is equal to: 

 
 

(10)      ts =
ns

Δt
=

u

Δx
 

 
 
 

Let 𝑓𝑠 be the fractional part of ns, fl(ns) be the integer part of ns, and cl(ns) be 

the ceiling of 𝑛𝑠. Also, let 𝑐 = ts
hAi

pacp,aV
. Then the temperature of the CV 𝑘 which is 

located at node 𝑛(𝑚 − 1) + 𝑖 at the time 𝑡 + 𝛥𝑡 is given by: 

 
 

(11)   Tn(m−1)+i,t+Δt = (1 − c)fl(ns)(1 − c fr(ns))Tn(m−1)+i−ns,t 

+(1 − c)fl(ns)fr(ns)c Tn(m−2)+i−cl(ns),t 

+ ∑ (1 − c)fl(ns)−qc Tn(m−2)+i−fl(ns)+q−1,t

fl(ns)

q=1

 

 
 
 
Note that the summation is only used when 𝑓𝑙(𝑛𝑠) ≥ 1.  
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In this equation, the temperature at the starting location of the control volume is given by 

the following. 

 
 

(12)            Tn(m−1)+i−ns,t = (fs)(Tn(m−1)+i−cl(ns),t) + (1 − fs)(Tn(m−1)+i−fl(ns),t) 

 
 
 

Since the state space form is set up in terms of the temperature derivative at the specific 

location, the temperature relation is rearranged. 

 
 

(13)                   
Tn(m−1)+I,t+Δt−Tn(m−1)+I,t

Δt
= −

1

Δt
Tn(m−1)+I,t 

+
1

Δt
(1 − c)fl(ns)(1 − c fr(ns))(fs)(Tn(m−1)+i−cl(ns),t)

+
1

Δt
(1 − c)fl(ns)(1 − c fr(ns))(1 − fs)(Tn(m−1)+i−fl(ns),t)

+
1

Δt
(1 − c)fl(ns)fr(ns)c Tn(m−2)+i−cl(ns),t

+
1

Δt
∑ (1 − c)fl(ns)−qc Tn(m−2)+i−fl(ns)+q−1,t

fl(ns)

q=1

 

 
 
 

2.1.3.1.3 Model Reduction 

In order to accurately capture the dynamics of the temperature response, 

sufficient states are necessary in both the axial and radial directions. As additional states 

are added, computational time increases. Model reduction can be done to reduce model 

complexity while maintaining the model integrity. The numeric model, as derived in the 

previous section, can be written in the state space form:  
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(14)    ż = Fz + Gu                    y = Hx 
 
 
 

For model order reduction, a similarity transformation of the state space system 

is used to find a balanced realization of the system [55].  

 
 
(15)    ẋ = Ax + Bu                    y = Cx 
 
 
 

where,  

 
 
(16)    A = TFT−1           B = TG                C = HT−1 
 
 
 

The Hankel singular values are used to find an appropriate order of the system. 

Figure 10 shows the Hankel singular values for a 357-state system. As seen in the figure, 

the Hankel singular values quickly drop off. After approximately 4 states, the values are 

near zero, indicating that the additional states may be removed with minimal effect on 

the accuracy of the estimated model.  
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Figure 10. Hankel singular values for the numeric 357-state system. Only the first 

20 states are displayed on the figure. 

These states are eliminated from the model. The reduced order model is shown in 

Equation (17), where x1 indicates the new states in the system.  

 
 
(17)                                        ẋ1 = A11x1 + B1u                    y = C1x1 
 

   A = [
A11 A12

A21 A22
]                  B = [

B1

B2
]                    C = [C1 C2] 

 
 
 

In this form, 𝑥1 is of dimension [𝑘 𝑥 1], where 𝑘 is the reduced order of the 

model and all other matrices are of appropriate dimensions. Figure 11 shows the 

response for the full state model along with reduced model with 4 total states for a 

constant heat input. The models compare favorably to each other with minimal error. 

Figure 12 compares the models for an impulse response, where faster dynamics are 
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observed. Once again, the models compare favorably with minimal error. The reduced 

order model is used in simulation to reduce computation time. 

 
Figure 11. Comparison of the full- and reduced-order models with a constant heat 

input source. 
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Figure 12. Comparison of the full- and reduced-order models for an impulse. 

2.1.3.1.3 Comparison of FEHT and Finite Difference Models 

Before experimental verification of the models, the two different models were 

simulated under the same conditions to compare the results of the two models. The 

results of a constant heat input are shown in Figure 13. This figure demonstrates that 

both models demonstrate a similar response with negligible difference in error. The 

comparison verifies the numeric model in Matlab against FEHT, a commercially-

available software program for heat transfer simulation. The numeric model in Matlab 

has the additional capability of quickly simulating dynamic input signals, thereby 

enabling the dynamic analysis as described previously.  
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Figure 13. Comparison of the Finite Element Heat Transfer and Matlab models 

using the same parameters. 

2.1.3.2 Simulation Results for Steady State 

The ability to measure flow based on a steady state temperature response was 

tested in simulation using both the FEHT and Matlab numeric models. The two models 

gave similar responses, so only the Matlab model responses are displayed in the 

dissertation. In these simulations, the temperatures of all pipe nodes were set to an 

elevated temperature above ambient. In the experimental design, the heaters are set to 

maintain the pipe temperature for a specified period of time. The simulations capture the 

limiting case of maintaining the heater until the pipe is at uniform temperature. At the 

start of the simulation, the inner pipe wall is exposed to the air at ambient temperature, 

resulting in a step response of the pipe. The simulation results are displayed in Figure 14. 

The first graph displays the resulting temperature profiles for the different flow rates. As 
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expected, the instances with larger flow have a higher cooling rate. After the initial few 

seconds, the cooling rate of each test is approximately exponential.   

Different metrics from the temperature profile can be used in deriving 

correlations between flow rate and the temperature response. As Newton’s Law of 

Cooling predicts that the rate of temperature change is proportional to the temperature 

difference, the overall cooling rate is defined by exponential decay. The rate of cooling 

can be estimated by measuring the elapsed time at different percentages of the time 

constant. The second graph in Figure 14 shows the elapsed time for the temperature to 

reach 40% and 70% of one time constant. As can be seen in the graph, a clear trend 

indicates the relationship between the elapsed time and the flow rate. Additionally, the 

rate of exponential decay can be estimated by fitting an exponential curve to the 

measured temperature profile. The third graph shows the correlation of flow rate based 

on the estimated rate of exponential decay.   



 

52 

 

 
Figure 14. Temperature profiles and resulting flow rate correlations based on a 

finite-element simulation. Two different types of correlations were used, one based 

on measuring the time for the temperature to drop and the other based on the 

exponential decay rate. 
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2.1.3.3 Simulation Results for Dynamic Analysis 

To determine the feasibility of using dynamic analysis in deriving compressed air 

flow, the Bode diagrams are contrasted for different flow rates of air. Significant 

differences in phase angle or magnitude across different flow rates can enable flow 

measurement through these frequency characteristics. To compare the Bode diagrams, 

the phase angle and magnitude were evaluated on the Bode plot for varying flow rates 

inside the pipe. Figure 15 shows the differences in phase angle and Bode magnitude for 

different frequencies as a function of flow rate. 

This analysis reveals that using frequency response offers no practical benefit 

beyond a steady state approach. There are appreciable differences in phase angle for a 

certain range of frequencies. However, these frequencies are unreasonably long to 

achieve during data collection, especially because multiple time periods are often 

required for the transient response to die out. For very low frequencies (large time 

periods), including a step input, there is minimal difference in phase angle but a 

considerable difference in the magnitude of the output.   
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Figure 15. Use of frequency analysis to derive compressed air flow offers no 

practical advantage over a steady-state or step response. 

2.1.4 Experimental Verification 

2.1.4.1 Experimental Setup 

An experimental setup was created to validate the simulation results and evaluate 

the effect of noise on the estimation of flow. Figure 16 shows the experimental setup. 

Two heater bands were wrapped around the pipe with the test thermocouple between the 
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two heaters. Additional thermocouples were attached on either side of the heaters for 

additional data collection. These additional thermocouples were used to visualize the 

general temperature profile of the pipe but not to estimate flow. An insulation blanket, 

seen in the figure behind the thermocouples and heaters, was wrapped around the pipe 

surface. The test thermocouple and the heaters were connected to a control box. The 

control box was equipped with relays, a PID controller, and a fuse. All of the 

thermocouples were attached to a data acquisition module for data collection. As the 

correlation between flow rate and heat transfer is independent of pressure, a fan with a 

variable transformer was employed to generate flow through the pipe. A handheld 

anemometer was used at the end of the open pipe to measure actual flow through the 

pipe. 
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Figure 16. The physical test setup used in experimental work. Pipe heaters and 

thermocouples are attached to the compressed air line with an insulation blanket 

wrapped around the outside. 

2.1.4.1.1 Experimental Test Procedure 

Tests were run for a variety of flow rates between the minimum and maximum 

flow settings of the fan on a 2-inch and 3-inch pipe. Both pipes were schedule 40 black 

carbon steel. For each test, the fan was started a minimum of five minutes prior to 

activating the heaters. Once the heaters achieved the desired setpoint of 250 °F, the 

heaters maintained the temperature for ten minutes. Following these ten minutes, the 

heaters were turned off and data collection continued for a minimum of fifteen additional 

minutes.  The temperature profile for three complete tests on the 2-inch pipe is shown in 

Figure 17. As seen, the controller is underdamped and results in decaying oscillations 
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around the setpoint of 250 °F. These oscillations settle out prior to turning off the 

heaters. Similar to simulation, the resulting temperature drop depends on the flow rate 

inside the pipe, with higher flow rates resulting in faster temperature drops.  

 
Figure 17. Complete temperature profile for three tests on the two-inch compressed 

air pipe. The decay rate of each test depends on the internal flow rate. 

2.1.4.2 Experimental Test Results 

In the same manner as simulation, correlations for flow rates were established 

based on the time for the temperature to reach a certain percentage of the time constant 

as well as the estimated exponential decay rate. The experimental results are displayed in 

Figure 18 and Figure 19 for the two pipes. The figures demonstrate the clear correlation 
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between flow rate and the different metrics from the temperature profile. Compared to 

simulation, the experimental results show very similar trends in the correlation, although 

the magnitude of each trend differs. These similar trends indicate that the simulations 

captured the underlying dynamics of the compressed air line, while differing magnitude 

values likely result from errors in heat transfer correlations, material parameters, or 

physical dimensions.  

 
Figure 18. Experimental results for the two-inch pipe. 
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Figure 19. Experimental results for the three-inch pipe. 

2.1.5 Field Test 

Having verified the initial concept experimentally, the system was tested in an 

industrial setting to compare the test with other standard flow rate estimation methods. 

The compressed air system used for testing is shown in Figure 20. The system is run by 

a 15 hp, reciprocating compressor. A receiver tank is located directly under the 

compressor. The main header for the compressed air system is a two-inch copper 

compressed air line, with 70 feet of compressed air line in the compressor room. 
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Although the remaining compressed air lines in the facility could be measured, there is a 

minimum additional 350 feet of line in order to reach all areas of compressed air service. 

Although no additional receiver tanks were discovered in the facility, there is the 

possibility of an additional tank for air storage.  

 
Figure 20. Compressed air system used in field test. 

In the test case, the flow meter was installed on a straight section of 2” line. 

There was approximately 6 feet of straight line upstream of the installed meter and 30 

feet of straight line downstream. Figure 21 shows the installed flowmeter on the line for 

the field test. The test was performed at a time with no facility usage, so the only 

compressed air flow resulted from leaks. During the test, a leak dropdown test was 

performed to measure air flow. Additionally, using the on-off cycles of the reciprocating 
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compressor, the duty factor was measured and related to compressor nameplate data to 

estimate the average flow rate.  

 
Figure 21. Installed flowmeter on the 2" main header line. 

Figure 22 shows the temperature of the thermocouple during the test. Similar to 

the calibration tests, the pipe was heated to 121 °C (250 °F), and the temperature was 

held for 10 minutes prior to turning off the heater. The temperature response was then 

observed as the pipe cooled. The decay rate was used to estimate the flow rate to account 

for the different pipe material and dimensions.  

 
Figure 22. Original Temperature Profile 
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The original calibration tests were performed on black iron pipe, but the copper 

pipe has different material parameters is slightly thinner wall thickness. These 

parameters can be accounted for by using Newton’s law of cooling. As discussed earlier 

in the chapter, linear conduction is assumed negligible through the testing procedure of 

maintaining the pipe temperature prior to turning off the heater. Under the eliminated 

conduction, the temperature profile is given by Equation (18):  

 
 
(18)    T(t) = (To − T∞)e−αt + T∞ 
 
 
 

The decay rate, α, is defined in this equation according to Newton’s law of 

cooling, as seen in Equation (19): 

 
 

(19)    α = z ∗ h =
4Di

ρc(Do
2−Di

2)
∗ h 

 
 
 

The estimated decay rate is adjusted to account for the different parameters by 

looking at the ratio of the parameter, z, for each material according to Equation (20). The 

parameter values used for both the black iron and copper pipes are listed in Table 3.  

 
 

(20)    α =
zblack iron

zcopper
αmeasured 
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Table 3: Pipe Material Parameters 

Parameter Units Black Iron Copper 

𝜌 kg/m3 7854 8960 
𝑐 kJ/kgK 434 385 
𝐷𝑖 m 0.0525 0.0498 
𝐷𝑜 m 0.0603 0.0540 

 
 
 

A correlation between flow rate and the decay rate from the initial tests on the 

black iron pipe was developed based on a power law. This power law relationship was 

then used to estimate the flow rate of the field test. The measured decay rate of the test, 

the scaled decay rate, and the corresponding estimated flow rate are displayed in Table 

4. Additionally, the estimated flow rate from the test case is displayed together with the 

tests on the black iron pipe for the 2” pipe in Figure 23. The test case flow rate actually 

falls outside the lowest estimated flow rate from the initial tests. Since extrapolation can 

lead to extensive errors, there is uncertainty in the exact estimated flow rate using the 

previous tests on the black iron pipe. However, the estimated flow rate will confidently 

fall below the lowest measured flow rate of 37 SCFM from the initial experimental tests.  

Table 4. Test Case Results 

Parameter Units Value 

Measured Decay Rate s-1 0.00328 
Scaled Decay Rate s-1 0.00145 
Estimated Flow Rate SCFM 12.7 
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Figure 23. Estimated flow rate of the test case. 

2.1.5.1 Comparison to Other Flow Estimation Methods 

2.1.5.1.1 Duty Factor of Compressor 

The cycle time of the compressor was measured to estimate the flow rate based on the 

duty factor. The duty factor is measured as the fraction of time the compressor is running 

during one loading cycle. The compressor specific efficiency, which estimates the power 

required to produce one SCFM, can be utilized with the power of the compressor to 

estimate average system flow rate over one cycle. The measured duty cycle, compressor 

efficiency, motor power and the estimated flow rate are shown in Table 5. While the 

specific efficiency is dependent on the condition of the compressor, operating pressure, 

and other environmental conditions, the uncertainty due to these parameters is limited. 

Table 5. Estimated Flow Rate Using Compressor Duty Cycle 

Parameter Units Value 

Duty Factor N/A 0.166 
Motor Power hp 15 
Compressor Efficiency SCFM/hp 3.53 
Estimated Flow Rate SCFM 8.8  
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2.1.5.1.2 Drop-down Test 

A common method to estimate flow rate in the Industrial Assessment Center is to 

perform a drop-down test, where the volume of the system is correlated to the time 

required for a specified pressure to drop off the system. The correlation used for 

estimated flow rate is given in Equation (21): 

 
 

(21)     V̇ =
(Pdrop)(Vsys)

(Patm)(tdrop)
 

 
 
 

The pressure drop was recorded and timed at the main receiver tank for the 

system. The calculated volume was estimated based on the receiver tank, visible lines in 

the compressor room, and a header line that runs through the facility. The header line is 

assumed to be two inches, but the lines are inaccessible and couldn’t be verified. 

Uncertainty in compressed air system volume represents one of the primary limitations 

in a leak drop down test. Table 6 shows the calculated parameters and estimated flow 

rate using the drop-down test method.  

Table 6. Estimated Flow Rate Using the Drop-down Test 

Parameter Units Value 

Pressure Drop psi 6 
Time for Drop min 4.92 
System Volume ft3 23.5 
Atmospheric Pressure psi 14.7 
Estimated Flow Rate SCFM 2.0  
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2.1.5.2 Summary of Results 

All the methods for flow estimation compare favorably for the test case. With 

typical flow rates between 0-200 SCFM for a 2” line, all three methods consistently 

measure a relatively low flow rate. As the duty factor estimate of flow rate is likely to 

have small variations, the drop-down test illustrates the difficulty of measurement if not 

all of the compressed air lines can be measured in the facility. The drop-down tests 

significantly underpredicts the flow rate compared to the duty factor method and the 

proposed flow meter in this chapter. The most like cause of this underprediction is that 

not all of the volume in the system was measured for the calculation, highlighting one of 

the disadvantages of this method.  

2.1.6 Sensitivity of Method to Parameter Uncertainty 

One challenge with the method presented in this chapter is the sensitivity of flow 

measurement to other parameters. Uncertainty in pipe material parameters and 

dimensions affect the estimate of flow inside of the pipe. Manufacturing processes and 

tolerances affect these parameters, which are not immediately known during testing. 

Flow measurement sensitivity to parameters occurs in other non-intrusive flow meters; 

this issue is further explored and addressed in Chapter 3.  

2.2 Summary 

This chapter proposed a non-intrusive flow meter that uses the thermal response 

on the exterior surface of a compressed air line to estimate the flow inside the pipe. A 

pipe is heated to a specified temperature and maintained for a period of time. Once the 
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heater is turned off, the rate at which the temperature drops is observed. Since the 

cooling rate depends on flow inside the pipe, a correlation is established between cooling 

rate and flow.  

The method was tested in both simulation and experiment, and both methods 

demonstrated the ability to measure flow. Extension work includes verification of the 

method at high pressures and in actual industrial environments. Additional metrics of the 

temperature profile may be explored, including using power consumption to maintain a 

steady temperature or determining the steady-state temperature that is approached from a 

constant heat flux.  
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CHAPTER 3 

ENHANCING ADVANCED SENSORS THROUGH DATA EXPLOITATION 

 

The previous chapter presented how physical relationships can be used to create 

virtual sensors for parameters that are difficult to measure directly. Use of virtual sensors 

can drive down cost of measurement and increase which parameters can be measured. 

These simple relationships at times fail to incorporate all the physical effects on the 

measurement, resulting in measurement error or confounding factors. This chapter 

presents a case study on how processing the input data can improve overall parameter 

measurement. The work presented in this chapter extends the research in the previous 

chapter on the non-intrusive flow meter by exploiting the measurement data to improve 

the overall flow estimation. This is accomplished by simultaneously and dynamically 

determining pipe material parameters in addition to the flow measurement.  

The outline for the chapter is as follows. In this case study, previous research and 

potential application areas of the flow meter is summarized. The mathematical and 

numerical model used for dynamic parameter estimation is then presented. The gradient 

method used for parameter estimation is discussed, along with the approach to determine 

initial estimates of parameter values. The effectiveness of the dynamic parameter 

estimation and air flow measurement is then presented for both simulation and 

experimental systems. The chapter concludes by discussing two test cases in industrial 

environments.  
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3.1 Case Study: Dynamic Parameter Estimation for Improved Non-Intrusive 

Compressed Air Flow Measurement using Thermal Signatures 

Fluid flow in pipes is a key component in many industrial systems, including 

process heating & cooling, building space conditioning, oil & gas production, and steam 

systems. When evaluating these systems for potential energy savings or health 

diagnostics, one of the critical measurements is the flow rate of the working fluid. 

Current methods for non-intrusive, non-invasive methods are expensive and often 

require time-consuming calibration. Research in the literature on potential low-cost flow 

rate measurement relies on knowledge of pipe parameters, pipe dimensions and fluid 

properties. 

This case study presents work on using dynamic parameter estimation using the 

gradient descent method with the thermal response of a pipe to measure flow.  Using a 

constant heat flux and derived analytical model, the thermal diffusivity, heat capacity 

term, and internal flow rate are estimated online during data collection. These 

parameters are identified simultaneously to isolate the estimation of flow inside the pipe. 

Initial parameter estimates are dynamically determined to improve convergence by 

leveraging unique relationships in the thermal response. Simulation and experimental 

results show the potential of the method, and an additional two tests cases in industrial 

environments are presented.  

3.1.1 Background and Introduction 

In diagnosing or analyzing process systems, flow measurement inside of pipes is 

a necessary measurement that is difficult to obtain. There are many applications in which 
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one-time spot measurements are desirable to assess the health of the system, such as 

steam, process hot and chilled water or compressed air systems [47, 48, 53]. Other 

process systems, such as production water in the gas industry or brine in the geothermal 

industry contain corrosive fluids that quickly destroy inline sensors [46, 51, 52]. For 

both one-time measurements and corrosive fluids, use of non-intrusive, non-invasive 

flow meters are highly desirable.  

The use of non-intrusive meters for flow measurement has historically been 

limited. The primary commercially-available meter is an ultrasonic flow meter, which 

uses ultrasonic waves to ascertain the fluid speed inside the pipe. This method comes 

with several limitations that restrict its widespread adaptation in many industries. 

Beyond its high cost, the meter requires extensive calibration and placement in specific 

pipe sections to ensure accurate flow measurement. The calibration requires knowledge 

of several important parameters, including the speed of sound in the fluid of interest, 

pipe thickness, pipe material parameters, and pressure inside the pipe. These values can 

be difficult to obtain, and the parameter uncertainties contribute to total measurement 

uncertainty.  

Other types of non-intrusive flow meters have been proposed and studied in the 

literature. Several researchers have examined the use of turbulent-induced pipe vibration 

or acoustics to measure flow [51, 53, 56, 57]. They found that the standard deviation of 

the vibration is proportional to the velocity squared of the fluid. Early experimental 

results demosntrated the validity of the method. However, the method requires 

knowledge of the pipe materials, fluid properties, pipe support structure, and the pipe 
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dimensions [58]. Uncertainties in these parameters and disturbance vibrations from 

pumping or compressor equipment limit the widespread use of this method [52]. Others 

have explored using the thermal response of the pipe to estimate fluid flow inside the 

pipe [59]. They too note the strong dependence of flow on external parameters. Since the 

commercially-available ultrasonic meter and other researched non-intrusive flow meters 

in the literature depend on pipe parameters, improved knowledge of these parameters 

will decrease uncertainty in flow measurement. Many of these parameters are difficult to 

determine independently once a pipe is installed and in use.  

There has been limited work in the literature on parameter estimation for 

improvement in fluid flow measurement [60]. In the referenced paper, the researchers 

used a genetic algorithm with numerical simulations to match the simulated response to 

the experimental data. Prior to using parameter estimation, the researchers found high 

uncertainty in the initial correlation between the temperature response and fluid flow. 

The parameter estimation improved the overall estimation and helped insulate the 

uncertainty against these parameter values.  

3.1.2 Effect of Parameter Uncertainty on Flow Estimation 

Previous work by the authors used the temperature response on the exterior 

surface of the pipe to estimate gas flow rate inside a compressed air line. This work 

showed that there is a strong level of correlation between flow rate and a first order 

temperature step response. However, accurate estimation of the flow rate depends on 

knowledge of multiple pipe parameters, several of which are not readily available. The 

relationship between various parameters and their effect on flow measurement was 
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explored in simulation for the flow meter presented in Chapter 2. Figure 24 shows the 

effect on flow measurement for a 1% change in the indicated parameters. In the previous 

chapter, the two metrics used to estimated flow were the decay rate (α) and the time 

required to drop a specified temperature (t1). As seen in the figure, changes in the heat 

capacity, thermal conductivity, and pipe thickness all affect the measured flow rate. For 

other transient methods of flow estimation, thermal conductivity will also have a 

meaningful effect on the estimated flow.   

 
Figure 24. Percent change in flow estimation to a 1% change in the specified 

parameters. 

In addition to variations in material parameters, long measurement times and 

power requirements limit the effectiveness of the proposed method in the previous 

chapter. Although longer measurement times are often tolerable for one-time 

measurements, the proposed setup requires continual heating of the pipe for 

approximately 10-15 minutes, following which the pipe must cool down sufficiently 



 

73 

 

long before the decay rate can be determined. The long heating time results in large 

power requirements for the two heaters, limiting portability of the proposed method. 

 

3.1.3 Parameter Estimation 

3.1.3.1 Introduction 

The nonintrusive flow meters discussed in the previous section all rely on 

knowledge of multiple parameter for accurate estimation of flow. To accurately account 

for this, extensive testing is required to build calibration curves that account for changes 

in each of these properties. By simultaneously measuring these parameters along with 

the flow term, the effect of these terms can be separated from the flow measurement.  

Thermal parameters, such as the thermal diffusivity, are not typically measured 

directly for a material. Instead, many methods to measure thermal parameters use energy 

signals and the resulting temperature profiles of a sample. A common way to determine 

the thermal conductivity is with the laser flash method, which uses a laser pulse and the 

resulting temperature profile to derive the thermal diffusivity [61]. Knowledge of the 

heat capacity with the measured thermal diffusivity allows the ability to calculate the 

thermal conductivity, a difficult parameter to measure. Improvements and adaptations of 

this method have resulted in multiple ways to determine the thermal diffusivity, heat 

capacity, and related thermal conductivity. These methods rely on an induced 

temperature response with mathematical relations to determine the parameters of 

interest.  
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3.1.3.2 Alteration to the Initial Proposed Steady State Method 

The method proposed in the previous chapter works by heating a pipe with two 

heaters on either side of a thermocouple. The pipe temperature is maintained at a 

specified temperature for a period of time, after which the heaters are turned off. The 

period with elevated temperature is maintained long enough to reduce the effect of axial 

conduction along the pipe. When the heater is turned off, the temperature response of the 

pipe is analyzed. This is a first order system with a step response, and so the decay rate 

can be determined from the exponential decay. Figure 17 shows the complete 

temperature profiles for three experimental tests, with a clear distinction between the 

decay rate and different flow rates. The convection term is independent of pipe pressure, 

increasing the robustness of measurement.  

The proposed system in this chapter relies on dynamic parameter estimation 

during the initial warmup stage of the previously-described method. The parameters are 

determined online and flow rate calculated within approximately five minutes, reducing 

both measurement time and power requirements. Additionally, the method only requires 

a single heater and multiple thermocouples, thereby further reducing power requirements 

for the system.  A diagram of the proposed system is displayed in Figure 25. The 

thermocouples are placed upstream of the heater, and the power supply delivers a 

constant current to the heater. As the heater warms the pipe, the temperature profiles 

from the thermocouples are dynamically analyzed. In this work, only the initial heating 

of the pipe is considered. Potentially improved estimation of flow could be achieved by 
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also recording the temperature profile of the thermocouples as the pipe cools down once 

the heater is turned off. 

 
Figure 25. Proposed setup for parameter estimation method of measuring flow. 

3.1.3.3 Analytical Model Derivation 

The analytical model used for the dynamic parameter estimation is derived from 

heat transfer first principles. The pipe is modelled as a one-dimensional pipe with 

internal heat transfer due to the fluid flow in the pipe. The system is assumed to be 

axisymmetric and lumped capacitance is used in the radial direction in order to use a 

one-dimensional model. The following assumptions are made in the development of the 

model: 

• Due to lumped capacitance in the radial direction, the temperature at any 

location along the pipe is uniform in the radial direction of the pipe. In 

other words, the pipe is sufficiently thin and conductivity is sufficiently 

high to assume that the pipe temperature is the same for all radii at any 

given location along the pipe. 
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• The pipe is sufficiently long that it is assumed to be infinite in length. 

This is a valid assumption if the effects from the boundary conditions at 

the end of the pipe are negligible.  

• The boundary condition at x=0 is modeled by a heat flux into the pipe. 

For the initial modeling, a constant heat flux is assumed during heating, 

but any function of time can be used. Note that when no heat is added 

into the pipe, this heat flux is zero (an adiabatic condition). Due to 

symmetry in the problem, this assumption can still be used with no heat 

flux.   

• The flow inside of the pipe is steady. The constraint on the physical 

system from this assumption is the need for relatively constant flow 

during data collection. 

• The pipe is initially at a uniform temperature. 

• Specific heat, density, and conductivity of the material is constant with 

both space and time. 

• The outside of the pipe is insulated. 

• The flow through the pipe remains a constant temperature. 

Using these assumptions, the model is derived by analyzing the heat terms in a 

small section of pipe. The setup of the pipe is shown in Fig. 5. Using the first law of 

thermodynamics, the change in energy of the pipe is equal to the sum of the heat added 

and removed from the system as seen in Equation (22).  
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X = 0

ΔX

qcond, x+Δx

qcond, x
qconv, outer surface

qconv, inside surface

 
Figure 26. Energy balance used for analytical model. 

(22)   
∂E

∂t
= qcond,x − qcond,x+Δx − qconv,o − qconv,i 

 
 
 

Insulation is added to the exterior surface of the pipe, so the exterior surface is 

approximately adiabatic. Newton’s law of cooling is applied for the interior surface of 

the pipe, and Fourier’s law of heat conduction is use in the axial direction. The density, 



 

78 

 

specific heat, and pipe dimensions are assumed to be constant with space and time. After 

applying these laws and simplifying the equation consistent with constant material 

parameters, the resulting partial differential equation is given by Equation (23). 

 
 

(23) 
∂(ρcAcΔxT(x+

Δx

2
,t)) 

∂t
= −

kAc ∂T(x,t)

∂x
+

kAc ∂T(x+Δx,t)

∂x
− hPiΔx(T(x, t) − T∞),  

 
 
 

After applying these laws and simplifying the equation consistent with constant material 

parameters, the resulting partial differential equation is given by Equation (24).  

 
 

(24)   
 ∂u(x,t) 

∂t
= α ·

∂2u(x,t)

∂x2 − b · u(x, t) 

 
 
 

In this equation, the lumped parameters are defined in the nomenclature. In 

physical terms, α is the thermal diffusivity and the b term contains the convection 

coefficient. The boundary condition at the heater (x=0) is of the second type, which is 

physically described as a heat flux at the boundary. No physical condition is specified 

for the second boundary condition. Instead, the boundary condition is formed by 

recognizing that as x→∞, the temperature must remain bounded. The initial temperature 

of the pipe is assumed to be uniform throughout at the same temperature. Since the 

temperature scales can be arbitrarily shifted, all temperatures are shifted by the ambient 

temperature so that the initial condition is equal to zero throughout. These boundary 
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conditions and initial conditions are formalized in Equation (25) and Equation (26) . 

Note that positive 𝑄𝑐 indicates heat transferred into the system.  

Boundary Conditions 

 
 

1. 
∂u(0,t)

∂x
=

− qin

k
 = - Qc 

(25) 
    2. u(x→∞, t) < ∞ 
 
 
 
 

3.1.3.3.1 Initial Condition 

 
 
(26)    1. u(x,0)=ϕ(x,0)=0 
 
 
 

The solution to this partial differential equation can be solved by the method of 

separation of variables by assuming and verifying that the time component and space 

component of the solution are independent of each other. The solution is given by 

Polyanin [62] as seen in Equation (27).  

 
 

(27)  u(x, t)  = ∫ G(x, σ, t) · f(σ) dσ
∞

0
− α∫ g(τ)

t

0
· G(x, 0, t − τ)dτ 

 
 

where Equation (28) formalizes the function to in the integral. 
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(28)            G(x, σ, t) =  
e−bt

2√παt
{e

−(x−σ)2

4αt + e
−(x+σ)2

4αt } 

 
 
 

When the zero initial conditions are accounted for and the heat flux is assumed to 

be constant, the first term in the equation equals zero. The remaining simplified term is 

given by Equation (29). 

 
 

(29)                       u(x, t)  = Qc√
α

π
∫

e−b(t−τ)

√(t−τ)
e

−x2

4α(t−τ)dτ
t

0
 

 
 
 

The integral is simplified by introducing a substitution variable, y = √t − τ, and 

the temperature profile is solved in [63]. After applying the limits of integration, the 

temperature profile is given by Equation (30). 

 
 

(30)   u(x, t)  =
1

2
Qc√

α

b

[
 
 
 
 e

x√
b

α {erf (√bt + √
x2

4αt
) − 1 }

+e
−x√

b

α {erf (√bt − √
x2

4αt
 ) + 1}

]
 
 
 
 

 

 
 
 

In the equation, the time and space terms both appear in the error function terms. 

As the convection term approaches zero, the term on the left side of the equation 

approaches infinity while the error function initially starts at zero. But as time increases, 

the absolute value term of the function increases but remains finite. Therefore, this 
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model is only valid for b > 0. A separate model must be used when comparing the 

temperature profile for a no-convection case. Appendix B shows the model derivation 

and solution for the no-convection case.  

By introducing the non-dimensional parameters f=√x2/4αt, g= √bt, and the 

parameter w=Qcx/4, the temperature profile reduces to the Equation (31). This 

analytical solution is used in parameter estimation and flow measurement. Figure 27 

shows the temperature profile as given by Equation (31).  

 
 

(31)       u(x, t)  =
w

fg
[e2fg{erf(g + f) − 1 } + e−2fg{erf(g − f) + 1}] 

 
 
 

The temperature solution is completely defined by these three parameters. 

Estimation algorithms are used to determine these parameters, from which physical 

parameters may be derived.  

3.1.3.3.2 Temperature Derivative Derivation 

The slow dynamics of thermal systems enables the ability to captures the time 

derivative of the temperature in experimental tests with reasonable accuracy. The shape 

of the time derivative profile is more contoured than the temperature profile. As such, 

the time derivative time profile is also used in the parameter estimation algorithm. The 

complete time derivative of the temperature profile is given by Equation (32).  

 
 

(32)    
du(x,t)

dt
 =

∂u

∂g

dg

dt
+

∂u

∂f

df

dt
+

∂u

∂w

dw

dt
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where the partial derivatives of the non-dimensional parameters are given by Equation 

(33).  

 
 

(33)                    ∂g

∂t
=

g

2t
      ∂f

∂t
= −

f

2t
            ∂w

∂t
= 0 

 
 
 
The resulting time derivative, after all substitutions, is given by Equation (34).  

 
 

(34)                                                                 
du(x,t)

dt
 = 

−(
f

2t
) (e2fg[erf(g + f) − 1] [

2w

f
−

w

f2g
] − e−2fg[erf(g − f) + 1] [

2w

f
+

w

f2g
] )  

+(
g

2t
)(

e2fg[erf(g + f) − 1] [
2w

g
−

w

fg2] − e−2fg[erf(g − f) + 1] [
2w

g
+

w

fg2]

+
2w

fg

2

√π
e−g2−f2

)  

 
 
 

This equation can be simplified, and the simplified time derivative of the temperature 

profile is given by Equation (35).  

 
 

(35)    z =
du(x,t)

dt
= (

2w

ft√π
e−g2−f2) 

 
 

3.1.3.4 Gradient Descent Method Derivation 

The proposed method estimates parameters using the gradient descent method 

during data collection to match the actual temperature profile with the analytically-
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derived temperature profile. This method has been widely integrated in industry for 

many years across many applications [64]. The three parameters that are dynamically 

estimated are those found in Equation (31). Once these are determined, the thermal 

parameters can be derived from the non-dimensional terms. Specifically, the unknown 

parameters to be estimated are the thermal diffusivity of the pipe material, the lumped 

heat input term of the pipe, and the lumped convection term. By determining these 

values, other individual terms can be derived if desired. Additionally, another parameter 

of interest is the distance from the heater to the first thermocouple. Although a nominal 

distance can be measured, the physical edge of the heater may not correspond to the 

actual end of heat input. The distance between thermocouples is known with a high 

degree of accuracy, and so the offset from the physical edge of the heater to the thermal 

edge of the heater becomes a fourth parameter to estimate. The vector of estimated 

parameters is shown in Equation (36). 

 
 
(36)     θ=[α   b   Qc   xo] 

 
 
 

The parameter estimation problem is framed by using a cost function based on 

the error of the temperature profile as a function of the parameter values in Equation 

(37). 

 
 
(37)     e(θ)=u(θ) − um 
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The objective function, as seen in Equation (38),is a function of the squared error and is 

minimized to converge on parameter values. 

 
 

(38)     J(θ)=e(θ)2/2 

 
 
 
For each iteration, the update law for the parameters is based on the gradient of the 

objective function and is given in Equation (39). 

 
 
(39)   θk+1=θk+λ∇J(θk)=θk+λe(θk)∇u(θk)  

 
 
 

For the analytical solution seen in Equation (31), the gradient of the temperature profile 

with respect to the parameters is shown in Equation (40).  

 
 

(40)   ∇u(θ)= [
∂u

∂f

∂f

∂α
   

∂u

∂g

∂g

∂b
   

∂u

∂w

∂w

∂Qc
   

∂u

∂f

∂f

∂xo
+

∂u

∂w

∂w

∂xo
]  

 
 
 
3.1.3.4.1 Partial Derivatives of All Equations of Interest 

When using estimation techniques to derive the parameters, the relationship of how 

varying the different parameters affect the temperature profile needs to be known. In 

order to derive the relationship, each partial of the three dimensionless parameters in 

relation to the temperature profile is derived. These partial derivatives are shown in 

Equation (41). Individual steps in the solution are removed for brevity.  
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3.1.3.4.1.1 Partial Derivatives with Respect to Non-Dimensional Parameters 

 
 

   (41)             
∂u

∂f
= e2fg[erf(g + f) − 1] [

2w

f
−

w

f2g
] − e−2fg[erf(g − f) + 1] [

2w

f
+

w

f2g
]  

 
∂u

∂g
= e2fg[erf(g + f) − 1] [

2w

g
−

w

fg2]  

− e−2fg[erf(g − f) + 1] [
2w

g
+

w

fg2] +
2w

fg

2

√π
e−g2−f2   

 
∂u

∂w
=

1

fg
[e2fg{erf(g + f) − 1 } + e−2fg{erf(g − f) + 1}]  

 
 
 

3.1.3.4.1.2 Partial Derivatives with Respect to Estimated Parameters 

The derivatives of the partials of non-dimensional parameters are taken with respect to 

the different parameters of interest. Only non-zero derivatives are shown in Equation 

(42). Any derivative that is not shown is equal to zero.  

 
 

(42)                 
df

dα
= −

1

2
√

x2

4α3t
                   

df

dyo
=

1

√4αt
                      

dg

db
=

1

2
√

t

b
 

 
dw

dQC
=

x

4
                     dw

dxo
=

Qc

4
 

 
 
 
The partial derivatives in this section are used in Equation (40) for the gradient descent 

algorithm.  
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3.1.3.4.1.3 Partial Derivatives of the Temperature Derivative Equation 

Similarly, to use the parameter estimation algorithm on the profile of the time 

derivative of the temperature, the partial derivatives of Equation (35) with respect to the 

parameters of interest much be known. These partial derivatives are shown below with 

respect to the estimated parameters. The intermediate step of taking the partials with 

respect to the non-dimensional parameters and the partials of the non-dimensional 

parameters with respect to the estimated parameters is omitted for brevity.  
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3.1.3.5 Initial Parameter Guesses 

The gradient descent algorithm only works for sets in which the problem is 

convex for the correct parameter values. In simulations of parameter estimation using 

(6), if initial parameter values are chosen too far away from the actual parameter values, 

they will converge to non-physical, i.e. negative, values. Initial parameter guesses need 

to be selected close enough to the actual parameter values to ensure convergence to 

correct values. Thermal material parameters vary significantly between metals, as is seen 
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in steel, aluminum, or copper piping. Even between pipes of the same nominal material, 

wide manufacturing tolerances result in considerable differences in thermal parameters.  

The unique temperature profile in this problem is leveraged in order to find the 

initial parameter estimates online during data collection.  The temperature profile has a 

distinct inflection point, resulting in a global maximum in the derivative of the 

temperature profile. This inflection point in the temperature profile and maximum point 

in its derivative are shown in Figure 29.  

 
Figure 27. Example of the temperature profile and its derivative. 

3.1.3.5.1 Complete Second Derivative of the Temperature Solution 

The inflection point occurs when the time derivative of the temperature reaches a 

maximum value or when the second time derivative of the temperature profile crosses 
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zero. The first time derivative of the profile is shown in Equation (35), and the second 

time derivative is given by Equation (44).  
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Substitution of all the appropriate partial derivatives results in Equation (45).  
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This equation can be simplified to its final form in Equation (46).  
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When looking for a zero crossing, the exponential term and scaling term do not 

affect the zero-crossing location. The zero-crossing location is determined exclusively 

by the last term in the equation. This term is set to zero, as seen in Equation (47).  
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Rewriting this equation in terms of the parameters of interest (α, b, and Qc) and 

simplifying the equation, the time of the inflection point is given by Equation (48).  

 
 

(48)    t =
1

4b
(−1 + √1 +

4bx2

α
) 

 
 
 

The time location of the peak in the temperature derivative is independent of heat 

added, and is dependent on the thermal diffusivity, lumped convection term, and the 

location of the temperature measurement. The QC term only appears in w, which is a 

scaling factor and does not affect the peak time location. This equation can be re-written 

in matrix form in order to solve for α and 𝑏 in the relation as shown in Equation (49). 

The peak locations from two temperature profiles are required to determine the 

parameters α and b. Once these initial parameter guesses are estimated during data 

collection, the initial value of Qc is estimated by scaling the temperature derivative 

equation so that the analytical peak value matches the measured peak value. Although 

stable across a wide range of values, the starting x0 value is determined by stepping 

through a small (10 points) vector of possible x0 values. The matrix given in Equation 

(49) is solved for each iteration and the value of x0 that results in the lowest total profile 

error is selected at the initial parameter value.  
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3.1.4 Simulation Results 

A numeric model was developed to validate the dynamic parameter estimation 

methodology as described in previous sections. The model setup is displayed in Fig. 7. 

This two-dimensional model allows for both axial and radial conduction with heat 

transfer on the inner surface of the pipe. The model was transformed into a state space 

representation. Multiple inputs and outputs are allowed in the model, but only a single 

input was used with multiple outputs in the simulation. The input to the model is the 

signal given to the heater, while the outputs are temperatures on the outer surface on the 

pipe. 

The simulation was set up for the properties of a 3” Schedule 40 black steel pipe 

with air flowing in the pipe. The input was a constant heat flux for six minutes. Four 

locations on the exterior surface of the pipe were set up as outputs, and the location of 

the outputs matched similar locations to the experimental setup discussed in the 

following section. Simulations were run for flow rates between 30 SCFM and 300 

SCFM, which represents realistic flow rates seen in industrial compressed air systems 

for 3-Inch Schedule 40 pipe. For each simulation, the four temperature outputs were 

used with the parameter estimation to determine the convection term b, the thermal 

diffusivity, and the heat flux term. The methodology in the previous section was used for 

the initial parameter guesses. The results of the final estimated parameter values from 

the gradient descent method are displayed in Figure 28. for the simulations at the 

different flow rates. As seen in the figure, the estimated final values correspond closely 

to the actual parameter values specified in the simulation. This result represents an 
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idealization of an actual system as it does not include disturbances of sensor noise or 

unmodeled dynamics as found in actual systems. The simulation results demonstrate the 

possibility of using parameter estimation for flow measurement and provide motivation 

for performing experiments on a physical system.  

 
Figure 28. Simulation results showing estimated parameters including the flow 

term. 

3.1.5 Experimental Results 

An experimental setup was created to validate the simulation results and evaluate 

the effect of noise on the estimation of flow. Figure 29 shows the experimental setup. 

One heater band was wrapped around the pipe with the test thermocouples spaced along 

the pipe. Although only two thermocouples are necessary for the flow estimation, 
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additional thermocouples were attached to improve overall robustness by examining the 

error in estimation for all four thermocouples. An insulation blanket, seen in the figure 

behind the thermocouples and heaters, was wrapped around the pipe surface. The test 

thermocouples and the heater were connected to a control box. The control box was 

equipped with relays, a microcontroller, and a fuse. All of the thermocouples were 

attached to a data acquisition module for data collection. As the correlation between 

flow rate and heat transfer is independent of pressure, a fan with a variable transformer 

was employed to generate flow through the pipe with a handheld anemometer at the end 

of the pipe to measure actual flow.  

 
Figure 29. Experimental setup for parameter estimation. 

A total of 18 tests were run. Nine of these tests were performed on a 2-inch 

Schedule 40 black iron pipe, and the other 9 tests were performed on a 3-inch line. The 

outer diameter of the pipe was measured at the test section, and the inner diameter of the 

pipe was measured at both open ends of the pipe. During each test, the fan was operated 

for a minimum of 20 minutes prior to activating the heater in order for the temperature 

of the pipe to equilibrate with the increased air temperature due to the fan. The heater 
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maintained constant power for six minutes during data collection. Following the six 

minutes, the heater was turned off and data were collected from the thermocouples as the 

pipe cooled for future data analysis. During processing, a simple low pass filter was 

applied to the temperature profile and its time derivative to improve the estimation on 

the actual peak in the derivative profile.  

Figure 30 shows the parameter estimation results from four tests. The flow rates 

ranged between 60 SCFM and 270 SCFM on the 3-inch Schedule 40 black steel pipe. 

The figure shows the final estimated values from the parameter estimation algorithm 

along with the initial starting guesses for each of these tests. For the parameter b, the 

initial parameter values are visibly not accurate enough to predict potential flow rates, as 

there is no correlation to flow from the initial estimates. However, the values of initial 

estimates for all three parameters are sensible and close to the final parameter values.   
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Figure 30. The initial estimated parameters and final estimated parameters for the 

three experiments. This figure shows the correlation for Qc, b, and alpha for the 

four experiments. 

The temperature profiles and their derivatives for all four thermocouples for one 

of the experimental runs is shown in Figure 31. Also shown in the figure is the estimated 

analytical profile for each of the temperature profiles after performing the parameter 

estimation for the experimental test. The estimated profile is closely correlated to the 

experimental profile for all thermocouples as seen in the figure.  
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Figure 31. The final estimated temperature profile and derivative curve for all 

thermocouples on one experiment. 

The final experimental results for the 2-inch line are shown in Figure 32. The 

results from the 3-inch line are shown in Figure 33. In both sets of tests, each 

experimental predicts a relatively constant value for x0, α, and Qc. Additionally, there is 

a clear increasing trend of the parameter, b, with increasing flow rate. The final 

estimated values for the thermal diffusivity fall within the range of expected values for 

black steel pipe, and the other values are on the same order of magnitude as the values 

used in simulation. Note that the predicted values, although similar to the values seen in 

Figure 28, are not expected to match each other. The values taken for simulation were 

reasonable values that could be expected for black steel pipe, but they do not attempt to 

estimate the actual values of the thermal diffusivity, heat input into the pipe, or heat 
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capacity. Overall, the preliminary experimental results confirm results from simulation 

and show promise in the future ability to separate flow measurement from other pipe 

material parameters. 

 
Figure 32. Experimental results for the 2-inch pipe. 
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Figure 33. Experimental Results for the 3-inch pipe. 

While the values for the thermal diffusivity and x-offset are relatively constant 

over the tests for each pipe, there is a slight decreasing trend with flow for both the 2-

inch and 3-inch line. As both of these parameters are only affected by material 

parameters or dimensions of the pipe, there should be no discernible trend correlated to 

flow. These correlations point to either unaccounted phenomena in the model that affect 

the estimation or insufficient estimation. This topic is discussed in further detail below 

with an exhaustive parameter estimation algorithm and the discussion of the test case.  

3.1.5.1 Exhaustive Search Comparison 

To gauge the effectiveness of the parameter estimation using the gradient descent 

method, an exhaustive search over the parameter space was explored. The length of 
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computation using an exhaustive search method is prohibitive for a real-time field test, 

but it is useful as a one-time comparison to the estimated parameters using the gradient 

descent method.  

Due to the computational cost in searching the entire parameter space, an 

exhaustive search was modified so that the entire parameter space was not searched in 

detail. This method was used because, when looking at the error profile of a sparse grid 

of parameter points, the error profile was smooth with no likely candidates of local 

minima. The minimum error obtained will likewise be the global minimum.  

The stacked searching method is illustrated in Figure 34. An initial sparse grid of 

parameter values over the entire parameter space is searched exhaustively. The 

minimum error of this grid is identified as the center of the new searching grid, from 

which a new finer search grid is developed that extends slightly beyond the neighboring 

parameter values in the original grid. The process is iterated of a user-identified number 

of iterations.  
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Figure 34. Illustration of stacked exhaustive search method. 

Table 7 shows the initial range of parameters searched in the sparse grid. 

Included in the table are the observed final values from the gradient descent method to 

illustrate the wide parameter space that was searched. This value incorporates the entire 

space of feasible parameter values due to physical constraints.  

Table 7. Searched Parameter Space in the Exhaustive Search Method 

Parameter Units Min Value Max Value Range of Observed Values in 

Gradient Descent 

Qc K/m 100 5000 2,010 to 2,930 
b 1/s 1e-5 0.02 0.001 to 0.005 
α m2/s 1e-7 1e-4 9.0e-6 to 1.8e-5  
x0 m 0 0.5 0.03 to 0.06 

 
 
 

Figure 35 compares esimated parameters from the gradient descent and 

exhaustive search parameter estimation method. This figure shows the tests for the 3-
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inch pipe. The tests for the 2-inch pipe showed similar results. There is close agreement 

between the two methods, indicating that the gradient descent method of estimation 

converges on the minimum error in the parameter space.  

The slight correlation of α and x0 with flow appear in the exhuastive search 

method. This inidicates that the same correlation observed in the gradient descent 

method does not result from limiations in the parameter estimation method. Instead, the 

correlation likely results from limitaitons in the chosen model. Likely, unmodelled or 

unconsidered dynamics affect the experimental profile that the analytical model doesn’t 

capture.  
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Figure 35. Comparison of parameters values between the exhaustive search and 

gradient descent parameter estimation methods. 

Figure 36 shows the average profile error between the estimation and measured 

profiles for each of the tests. The exhaustive search shows a slightly improvement of 

error over the gradient descent method for all tests. 
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Figure 36. Comparison of error between the exhaustive search and gradient 

descent parameter estimation methods. 

3.1.6 First Field Test 

Similar to the steady state method presented in the previous chapter, a field test 

was conducted for the dynamic parameter estimation. The same compressed air system 

from the previous chapter was used to perform the test. The heater and thermocouples 

were attached to the 2” copper header line, and the system is serviced by a 15 hp 

reciprocating compressor. The flowmeter was installed in the same section of line, with a 

straight run extending 6 feet prior to and 30 feet after the test section. Figure 37 shows 

the installed flowmeter prior to testing.  
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Figure 37. Picture of setup for the first field test. 

In performing the test, the pipe was heated continuously at a constant rate for 5 

minutes. Temperature data were recorded as the pipe cooled, but only the time with 

heating is used in the analysis. Figure 38 shows the temperature response of the 4 

thermocouples installed on the pipe. The temperature trends are similar to those seen in 

Figure 27 for previous experimental tests.  
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Figure 38. Temperature profile of the first field test. 

Since the pipe parameters were slightly different for the copper pipe compared to 

the black iron pipe used in other experimental tests, these differences were corrected for 

by using the definition of the lumped parameter, b. The correct parameter b is given by 

Equation (50).  

 
 

(50)       b =
(ρ∗c∗Di)copper

(ρ∗c∗Di)black iron
bmeasured 

 
 
 

The same values used in Table 3 in the previous chapter were used in this 

analysis. Due to the material properties, the scale factor for correction of the parameter, 

b, was calculated as 0.97. This results in only nominal correction of the b parameter. The 

other material parameters, Qc and α, were left uncorrected due to uncertainty in the 

thermal conductivity. While the thermal conductivity of the copper can be readily 
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obtained, the thermal conductivity of black iron varies over a considerable range, 

introducing significant uncertainty on the appropriate scale factor. As knowledge of 

these parameters is not necessary for flow estimation, this correction was omitted for the 

field test.  

Figure 39 shows the estimated and measured temperature values for each of the 

four thermocouples from the test case. The results are notably worse than those obtained 

from the experimental tests on black iron. In the gradient descent method, a limitation is 

placed on the maximum axial offset, x0, that can be achieved through the estimation. 

This ensures consistency with the experimental tests, where the value of the offset 

accounts for the difference between the physical edge of the heater and the location at 

which heat is effectively added. Left unrestrained, the gradient descent algorithm 

provides a much better fit, but the offset value exceeds a reasonable value. This likely 

results from unmodeled heater dynamics, which is discussed in detail below.  
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Figure 39. Comparison of measured and estimated temperature profiles for the 

first field test. 

The estimated parameters based on the parameter estimation are displayed in 

Figure 40. They are also shown in Table 4. As seen from the results, the estimated flow 

rate is lower than the lowest calibration flow rate, similar to what was seen during the 

steady state field test. While the thermal diffusivity, α, is lower than the actual value for 

copper, the estimated value is higher than the diffusivity for the tests on black iron. This 

higher diffusivity value is expected due to the higher thermal conductivity of copper. 

Similarly, the high conductivity of copper results in a lower value of the parameter, Qc, 

compared to the tests on black iron.  
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Figure 40. Parameter estimation comparison for the first field test. 

Table 8. Parameter Estimation Test Case Results 

Parameter Symbol Units Value 

Measured Lumped Convection Term bmeasured s-1 0.00139 
Scaled Lumped Convection Term b s-1 0.00135 
Measured Thermal Diffusivity α m2/s 3.85e-5 
Measured Heat Flux Boundary Condition Qc K/m 1,330 
Measured Axial Offset x0 m 0.00483 
Estimated Flow Rate - SCFM 28.6 

 
 
 

The flow rate was estimated from the parameter, b, based on a power law 

relationship for the initial experimental tests for black iron. While the overall estimated 

value for the flow rate is low, this value of 28.6 SCFM is slightly higher than the 
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estimated flow rates for both the drop-down and duty factor methods of flow estimation. 

The estimated flow values using these two methods are displayed in Table 5 and Table 6 

for reference.  

This discrepancy, along with the error in the estimated value of α, likely come 

from unmodeled dynamics in the test setup. Earlier in the experimental tests for black 

iron, there was a slightly trend of estimated values of α relative to the flow rate. The 

thermal diffusivity, α, is a material parameter and independent of flow. As all tests were 

performed on the same pipe, this trend results from a discrepancy between the modelled 

and actual temperature profile.  

The most likely unmodeled dynamic is that of the heater. As electricity is applied 

to the heater, the temperature of the heater rises, causes a heat addition into the pipe. The 

model assumes a uniform heat addition at the ‘edge’ of the pipe. The physical heater has 

finite width, spreading the heat over an area on the exterior surface of the pipe. 

Additionally, although uniform heat is assumed, the heater’s thermal inertia will result in 

delayed and non-uniform heat into the pipe. The dynamics of the heater potentially have 

a smaller effect when the thermal conductivity of the pipe material is lower, such as was 

seen in the black iron pipe used for calibration. With the much higher thermal 

conductivity of the copper pipe, the thermal dynamics of the heater are potentially 

exacerbated.   

There are several future approaches that can be used in future work to address 

this issue. For example, a first approach is to use the thermocouple closest to the heater 

as the input to the model. The other thermocouples on the pipe record the response to 
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pipe, where the model input is the temperate at the first thermocouple. An analytical 

solution to this model would likely be infeasible, as the input to the model would be 

complex, and would therefore require estimation of a state space model. A model 

suitable for estimation of temperature was presented earlier in Chapter 2.  Model 

reduction could potentially be achieved in a way to still estimate the thermal diffusivity 

and the lumped flow term. A second approach would be to incorporate the dynamics of 

the heater into the model. As the heater’s dynamics will be consistent across different 

pipe materials, the effect from the heater will be consistent across different tests.  

3.1.7 Second Field Test 

A second field tests was performed in another industrial environment. The main 

header lines were only 1-inch black iron pipes. The available heaters for this field test 

could only tightly wrap around lines at least 2 inches in diameter. The heaters were 

secured as tightly as possible, but only about half of the circumference was in physical 

contact with the heater. Two tests were run; one test had near zero flow and the flow rate 

of the other tests was around 30 SCFM. The load/unload cycles of the reciprocating 

compressor along with nameplate information was used to estimate these flow rates.  

Due to the different pipe sizes from earlier experimental tests and limited 

physical contact with the pipe and heater, this section will present two illustrative 

considerations for future reference and study. The pipe consisted of the same material as 

previous experimental tests on the 2-inch and 3-inch pipes.  

The flowmeter was located on a line close to the compressor immediately after a 

receiver tank. During the first test with very low flow, the compressor remained off for 
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the duration of the test and the resulting temperature profile looks very similar to Figure 

38. On the second test, with the higher flow rate, the compressor cycled on and off 

multiple times during the experiment. Figure 41 shows the temperature profiles of the 

four thermocouples over the duration of the test. The figure also highlights times when 

the compressor cycled on and off. The temperature profiles are clearly dependent on the 

compressor cycling.  

 

Figure 41. Temperature profile of second field test with compressor cycling. 

The first observation from this field test is that the position of the flowmeter is a 

consideration due to compressor cycling. While the exact cause of the profile shape is 

uncertain, the likely reason comes from heated air at the outlet of the compressor. The 

air experiences a meaningful temperature increase through the compressor, and this 

higher temperature will inhibit heat transfer at the flowmeter. This theory is consistent 

with the observed profile, where the temperature rises faster in the heated section of the 

test. The inhibited heat transfer will result in lower heat losses, causing a greater rise in 

temperature. Likewise, the pipe cools more slowly when the compressor is cycled on.  
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The second observation from the field test comes from observing the estimated 

parameters from the gradient descent method. Figure 42 shows the estimated parameters 

for both field tests along with all the experimental tests for both the 2-inch and 3-inch 

lines. The tests on the different lines are not differentiated as the field test was performed 

on a 1-inch line, and this figure illustrates the overall results of the parameter estimation. 

As seen in the figure, the parameter estimates are overall consistent with the results seen 

in previous tests. While the accuracy values of these field tests are unknown, the limited 

contact of the heater with the pipe appears to have a limited effect on the parameter 

estimation.  
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Figure 42. Comparison of estimation parameter from second field test. 

3.1.8 Future Directions of Research 

There are several open challenges and directions for future research on this topic. 

One of the primary topics to address is improvement of the estimation. By removing the 

observed correlation of α and x0 with flow, the estimated parameter b will be updated 

and reflect a more accurate estimate of the flow. Another possible direction of research 

is the potential measurement of pipe thickness using an approach similar to the approach 

used in this chapter. Thickness estimation is an open field of research for corrosion 

detection and health monitoring of pipes. Several possible directions of research are 
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presented in this section. A preliminary analysis has been performed for some of these 

methods, and this analysis is included in the section.  

3.1.8.1 Use of First Thermocouple as System Input 

This method, which was mentioned briefly previously in the chapter, alters the 

boundary condition of the model. The constant heat input assumption is dropped, and the 

pipe is given defined temperature profile as the boundary condition. The temperature 

profile is the recorded temperature profile of the thermocouple closest to the heater. As 

there are no other heat sources downstream of this thermocouple and the pipe starts at 

uniform temperature, the resulting temperature profiles of the other thermocouples will 

be exclusively dependent on the temperature at the boundary. By using the approach, the 

dynamics and contact resistance of the heater are removed. This approach will likely 

improve the estimation of the parameter estimation as the dynamics are only dependent 

on the pipe material, dimensions, and flow inside the pipe. 

There are two challenges with this approach. As mentioned previously in the 

chapter, the temperature profile has sufficient complexity to limit the ability to use an 

analytical solution in the estimation. A state space approach with appropriate model 

reduction will likely enable estimation from the more complex model input. The second 

limitation is the reduced number of parameters to estimate. The x0 offset is no longer a 

parameter to estimate, and the equivalent Qc parameter can no longer be estimated. For 

the work presented in this chapter, there are no immediate drawbacks. However, 

physical parameters, such as the thermal conductivity, total heat capacity, and the 

convection coefficient, can currently be estimated with knowledge of the power input to 
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the heater. By removing the parameter, Qc, only the thermal diffusivity and lumped flow 

term can be measured without the ability to estimate the physical parameters.  

3.1.8.2 Dynamic Input Signals for Improved Estimation 

Some methods in the literature suggest that periodic or other non-steady-state 

signals may be used to estimate the heat flux in the determination of heat capacity or 

thermal conductivity. This section explores the addition of a sinusoidal input signal to 

determine the parameters. The analytical model for a sinusoidal input is derived in this 

section, as well as the practicality of using this to determine the parameters. Potential 

improved sensitivity is achieved by using a dynamic signal instead of a constant input.  

The initial model is derived similar to the constant heat input, with the governing 

equation given by Equation (22). The first boundary condition is formed similar to the 

earlier model by recognizing that as x→ ∞, the temperature must remain bounded. The 

initial condition is a uniform temperature throughout the pipe. The second boundary 

condition is a sinusoidal input, given by Equation (51).  

 
 

(51)         
∂u(0,t)

∂x
 =  −

qin

k
sin (ωt) = −Qcsin (ωt) 

 
 
 

The solution is given by Equation (27), and the equation simplifies to Equation (52).  
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As before, a substitution variable, 𝑦 =  √𝑡 −  𝜏, is introduced, and the resulting integral 

is given by Equation (53).  

 
 

(53)            u(x, t)  = −2Qc√
α

π
∫ sin(ωt − ωy2) e

−by2−
x2

4αy2dy
0

√t
 

 
 
 

The integral is solvable. The result of the integral, as computed by an online integral 

solver, is shown in Equation (54) [65]. 

(54)                                         ∫ sin (w(t − x2)) e
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While no attempts are made in this preliminary analysis to reduce this integral to 

a manageable form, the limits of integration can be applied. In solving the solution in 

Equation (29), many terms were grouped together and the solution simplified 

considerably. This likely will also occur for the sinusoidal heat input, especially 

considering the output will include a sinusoidal term. Preliminary further analysis 

suggests the solution is an infinite solution, but later terms can be dropped with 

negligible error. Equation (55) demonstrates that a solution exists, and future research 

can reduce the solution and apply it to the parameter estimation.  

If future work includes parameter estimation in the state space domain, 

sinusoidal or other periodic signal can be utilized over a constant heat input. This would 

reduce complexity in solving the analytical solution, at the expense of more difficult 

parameter estimation. Use of periodic inputs would be appropriate when using the first 

thermocouple measurement as the model boundary condition.  

3.1.8.3 Asymmetric Temperature Profiles for Improved Flow or Thickness 

Estimation 

When performing tests on the method presented in Chapter 2, thermocouples 

were placed upstream and downstream of the heaters for additional measurements. 

While these measurements were not used in the estimation of flow, patterns observed 

from these temperature profiles can potentially improve flow estimation or enable 

measurement of pipe thickness.  

When tests were performed with no flow inside the pipe, the upstream and 

downstream temperature profiles were symmetric. However, even with low flow rates, 
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there was a notable difference in the upstream and downstream temperature profiles. As 

the air passes through the pipe, the air heats up, inhibiting heat transfer with the smaller 

difference between the pipe and air temperatures. While only a small increase in air 

temperature, it produced measurable differences in the temperature response of the pipe.  

Preliminary analysis of the upstream of the analytical and numerical models indicate that 

this temperature difference is a function of the airflow inside the pipe and the thickness 

of the pipe. Currently, which parameter produces the dominant effect on the temperature 

difference is unknown. But both parameters are of interest, and using this temperature 

difference can result in either improved flow estimation or measurement of pipe 

thickness.  

3.1.8.4 Other Smaller Improvements on Analysis to Improve Flow Estimation 

• Instead of a wrap-around heat, a heat impulse could be sent to the pipe, and the 

temperature response circumferentially around the pipe could be measurement. 

With the assumption of a sufficiently thin pipe, the problem could be framed as a 

flat plate with appropriate boundary conditions at the interface. There are similar 

examples using thin circular rings in partial differential equations references [66].  

• Current models presented in this chapter only consider the heating portion of the 

temperature response. Including additional analysis on the cooling portion of the 

temperature profile could potentially improve flow estimation.  

• In the method presented in Chapter 2, there was an expected temperature profile 

axially along the pipe at the end of the constant temperature section. This 
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temperature profile is likely to be dependent on the thermal diffusivity and flow 

term.  

• When heat is added to the pipe, there is a time delay between the initial heater 

input and the observed temperature response. There is a distinct upturn in 

temperature after this delay period. Analysis in both simulation and experiment 

show that the time of this term is independent of the flow term. As such, it can 

potentially be used to determine the thermal diffusivity in the estimation.  

• The steady state value when applying constant heat is independent on the 

volumetric heat capacity (ρ*c) of the pipe. The volumetric heat capacity only 

affects the rate at which the steady state value is reached. As such the steady state 

value can be approximated and used in the estimate of α and b.  

3.2 Summary 

Advancements on the non-intrusive flowmeter presented in Chapter 2 enabled 

on-line parameter estimation for improved flow measurement. An analytical model was 

derived, and a gradient descent method was used to derive multiple parameters. 

Simulations and experimental tests were performed to validate the method, and the 

results showed a clear relationship between the estimated flow term and the measured 

flow. A field test demonstrated the viability of the method on a different pipe material, 

but it also revealed the potential advantage in incorporate the heater dynamics into the 

model. A second field tests revealed a potential limitation in using the flowmeter close to 

the operating compressor. Future work includes various methods to improve the flow 



 

119 

 

meter either through improved parameter estimation or incorporating observed 

phenomena during experimental tests.  
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CHAPTER 4 

AUTONOMOUS DATA ANALYSIS* 

 

One challenge to energy efficiency in industrial facilities is the cost to identify 

and analyze potential retrofit opportunities. For both the external energy auditor and 

internal energy manager, the cost to evaluate potential energy-saving opportunities 

reduces the economic viability of such opportunities. In general, the increasing amount 

of data that are available in many fields requires additional and automated data analysis 

techniques. This chapter presents s case study on automated data analysis can be used to 

identifying and evaluate energy-saving opportunities in industrial facilities.  

Specifically, this chapter presents a demonstration of a method to automatically 

assess buildings for energy retrofit opportunities, with a focus on the data collection and 

analysis of lighting systems. The generalized procedure for analyzing these systems is 

presented. The method of data collection and analysis to identify opportunities and 

quantify potential savings is then detailed. The lighting analysis is improved through 

spatial information during navigation and exploration. The potential for additional 

analysis beyond traditional lighting assessments through simulation is then discussed. 

The navigation strategies and exploration algorithms, which are interconnected with the 

                                                 

* Parts of the content in this chapter are reprinted with permission from “Autonomous lighting assessments 
in buildings; part 2 – light identification and energy analysis” by Trevor Terrill, Christopher Bay, and 
Bryan Rasmussen PhD, 2017, Advances in Building Energy Research, 11:2, pg 1-18.  
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lighting analysis, are not the focus of this work and are discussed in other published 

papers [67-69].   

4.1 Case Study: Autonomous Robotic Assessments of Energy (AuRAE) 

Reducing building energy consumption in both commercial and industrial 

facilities has been a recent area of focus due to their large percentage of total U.S. 

energy consumption [70]. Codes and standards are in place to ensure energy efficient 

construction of new buildings. With long operating lifespans of buildings, a large focus 

is also placed on improving energy use in existing buildings. However, a limited number 

of energy assessments have been performed on industrial and commercial buildings, 

primarily due to the expense of the assessment. With additional data available through 

advanced sensing, the labor expense to analyze these data climb. Autonomous robotic 

assessments of energy (AuRAE) are proposed as a method to reduce the cost of 

performing retro-commissioning on buildings, thereby expanding implementation and 

realizing greater energy reductions in buildings. More extensive and faster data 

collection over a human assessor is possible with the AuRAE, thereby enabling 

additional extended opportunities for analysis and visualization. This automated analysis 

is applicable to many energy systems in industrial buildings, but the following sections 

concentrate on the viability of automated analysis in building lighting systems. 

4.1.1 Energy Use in Buildings 

In addressing the task of reducing carbon emissions, buildings present a large 

opportunity for savings. Buildings constitute approximately 40% of all United States 

energy use [70]. Despite the relatively stagnant appearance, buildings are dynamic 
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systems that change over the course of days, seasons, and years. Additionally, efficiency 

of components in energy systems degrades over time while new technology offers 

performance improvements. New buildings are constructed with energy efficiency 

measures in insulation, lighting, and air conditioning systems [71]. However, significant 

cost savings can be realized by analyzing energy efficiency opportunities in existing 

buildings and upgrading building systems. This process, termed retro-conditioning, has 

significant documented energy and cost savings for participants [72].  

Retro-commissioning has the potential to make a significant impact on reducing 

energy use and carbon emissions. One of the primary challenges of retro-commissioning 

is the expertise required of the energy auditor [73]. The extensive required training, 

paired with the labor intensive process of an assessment, results in high cost of 

commissioning. Additionally, the quality of the auditing is highly dependent on the 

experience of the auditor.  

In an effort to improve the implementation rate and efficacy of the audits, 

AuRAE have been proposed. A team of ground and aerial robots will navigate a 

building, performing measurements and analyzing energy efficiency opportunities. 

Initially, these teams of robots will augment the energy auditing process, eliminating 

simple, time-consuming tasks and providing additional depth of analysis not possible 

with a human auditor. In the future, entirely automated visits are envisioned with these 

robots.  

The vehicles will navigate buildings and perform energy audits in reduced time 

with lower capital costs than current expert energy auditors. These audits, which have 
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shown measurable benefits in cost and energy savings, have the potential to be 

performed on a much larger scale through use of autonomous vehicles. They can 

produce significant and sustainable energy efficiency improvements, promoting a 

sustainable energy portfolio. These AuRAE offer several advantages over a traditional 

audit. They provide consistent, repeatable results, independent of the expertise of the 

auditor. They can take multiple measurements at a time, and they can store information 

at a faster rate than humans, taking necessary measurements in reduced time. Finally, the 

extended measurement capabilities enable increased depth of analysis. For example, 

spatially dependent measurements such as temperature can be taken throughout a room 

instead of a representative sample somewhere near the middle of the room. These data 

offer additional opportunities for savings, simulation, and visualization.  

4.1.2 Lighting in Buildings 

Energy usage in commercial and industrial buildings constitutes a dominant 

portion of the energy usage both inside and outside of the United States [70]. Over 30% 

usage in these buildings is derived from lighting and heating, ventilation, and air 

conditioning (HVAC) systems. Lighting in the United States accounted for roughly 275 

billion kWh or 21% of electrical consumption in 2011 [72]. In global energy usage, 

lighting composed 19% of the total electricity consumption in 2005 [74]. Consequently, 

industrial lighting presents one of the greatest opportunities for energy efficiency 

improvements. With such widespread use, technology continually evolves to provide 

more energy efficient alternatives while maintaining appropriate lighting. Some of the 

biggest contributing factors to energy inefficiency are excess heat generation due to 
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inefficient types of lighting, incorrect level of lighting for a given task, ineffective use of 

available daylight, and lights being left on when a space is unoccupied. 

New buildings are often equipped with the most cost effective lighting 

technology that is available. However, with rapidly changing technology in lighting and 

lighting controls, cost effective lighting retrofits become available multiple times over 

the operating lifetime of the building. Although there is an upfront capital cost with 

installation of the various lighting upgrades, the reduced operating cost from the lower 

energy consumption generates savings for the building operator. 

The rapid evolution of lighting technology causes energy auditors to commonly 

look at lighting retrofits and upgrades first among energy assessment tasks. A history of 

lighting upgrades can be evaluated in industrial facilities through the Industrial 

Assessment Center (IAC) database [19]. The IAC program is targeted at performing 

energy assessments at manufacturing facilities across the United States. The program, 

run by the U.S. Department of Energy, has operated for over 40 years and recorded over 

16,000 assessments. Anonymous assessment data are recorded from each visit and made 

publicly available for analysis.  This database includes information on all 

recommendations made since the beginning of the program. Of the over 120,000 

recommendations, over 20% of these recommendations pertain to lighting. This 

extensive use of building energy for lighting, coupled with consistent analysis of lighting 

by human assessors, makes lighting a logical first step in developing AuRAE.  

An overview of common lighting recommendations from the IAC database is 

given in Table 9. These statistics include over 25,000 recommendations for lighting. 
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Many different types of recommendations are available to decrease energy consumption 

in lighting, with lighting upgrades being the most common recommendation. 
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Table 9. Statistics on Common Lighting Recommendations  

Potential Measure 
Percent of Visits 
Recommended 

Percent of Clients 
Implementing 

Average Cost 
Savings (US $) 
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Lighting Upgrade 93% 54% 6,269 1.4 ✓   
Occupancy Sensors 23% 35% 2,365 0.8   ✓ 
Reduce Light Level 16% 49% 4,821 0.2  ✓  
Turn Off Lights 6% 65% 3,868 0.1   ✓ 
Install Photocells 5% 41% 3,664 0.5 ✓   
Use Available Daylight 3% 43% 3,829 0.4  ✓  
Install Skylights 2% 21% 6,243 1.5 ✓   
Area Lighting Switches 1% 42% 5,939 0.8   ✓ 
Lower light fixtures 1% 41% 17,564 0.7  ✓  
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The main objective of the lighting audit is to calculate current energy costs and to 

give recommendations for energy and cost savings. Once the quantification and 

classification of lighting is complete, sufficient data are present to make 

recommendations on lighting retrofits. These recommendations include potential energy 

consumption and demand savings, cost savings, and implementation costs.  

4.1.3 Automated Analysis Approach 

In analyzing lighting, an energy auditor will discriminate between types of 

lighting and count the number of lights of each type of lighting. With knowledge of 

current lighting used and usage patterns in the facility, total energy usage and associated 

monetary costs can be calculated. Recommendations can be given to save costs with 

lighting while still meeting desired light levels, such as updating outdated lamps with 

newer, higher-efficiency lamps. These energy and costs savings can be calculated along 

with appropriate implementation costs and payback period, providing sufficient 

information for a building manager to make informed decisions on lighting upgrades.  

The energy efficiency analysis of the robots includes identifying the possible 

recommendations listed in Table 9 and quantifying the possible cost and energy savings 

from implementing the recommendation. The goal of the proposed AuRAE will be to 

analyze as many of these opportunities as possible. To accomplish this, the AuRAE will 

perform a lighting assessment by navigating and gathering sufficient data to make 

specific lighting recommendations. Once information is gathered, it is used to make 

recommendations that estimate energy savings, cost savings, cost to implement, and 

payback. With the sensor package presented in this paper, coupled with the autonomous 
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navigation and exploration algorithms presented in other work, the number and type of 

lights can be determined to recommend several recommendations. Additionally, these 

values can be used with lighting locations to simulate lighting levels, enabling additional 

recommendations in Table 9. If additional occupancy information can be acquired, all of 

the common recommendations listed in the table are possible.  

4.1.3.1 Overview of Proposed System 

In development of the sensor payload, the auditing process is divided into two 

main areas of focus: enumeration of lighting in a facility and classification of lighting 

type. In accomplishing these areas of focus, the following four sensors were selected and 

used: a spectrometer, an optical camera, a distance sensor, and an accelerometer. The 

sensors collect and record data as the aerial vehicle navigates through a facility. The 

automated process is summarized in Figure 43. An unmanned vehicle navigates in an 

unknown environment, avoiding obstacles and exploring the space. As the camera 

mounted on the vehicle captures images, the images are analyzed to determine the 

relative locations of the lights in the image. Individual images are merged to a global 

image with the aid of a laser range finder to find the global position of the lights. These 

locations are fed to the navigation program as target objects. In addition to exploring the 

space and mapping the space, the navigation system also targets each identified light to 

take a spectrometer reading. The spectrometer reading is then analyzed to classify the 

lighting type, which is used in conjunction with the locations of the lights to simulate the 

lighting in the space.  
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The autonomous vehicle navigates and explores the buildings using a 

Simultaneous Location and Mapping (SLAM) algorithm and a rapidly-exploring random 

tree (RRT) algorithm, respectively. The full details of the exploration and navigation are 

found in other work. 

 
Figure 43. Overview of data collection and analysis system. The lighting 

identification and analysis, shown on the left half, is discussed in this paper. 

Each of the following data collection and analysis steps are demonstrated 

experimentally in a three-room section of a commercial building. The layout of this wing 

of the building is shown in Figure 44.  This building is equipped with 3-lamp T8 fixtures 

with a ceiling height of 2.7 m. In this wing of the building, the lower room is an office 

space with desks and computers. The middle area is a hallway, and the upper area is a 

laboratory space with an accompanying closet. This physical space and associated 

lighting will be used for demonstration of the identification and quantification of 
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lighting, image stitching, individual image processing, assessment recommendation 

calculations, and lighting simulation.   

 
Figure 44. Example space used for simulation for the lighting simulation. This is the 

same layout used for the example report recommendation, navigation, exploration, 

and light simulation. 

4.1.4 Lighting Quantification 

4.1.4.1 Identification of Lights 

As the vehicle navigates through the space, images are taken from an optical 

camera that is oriented towards the ceiling. Each individual image is analyzed to 

determine the presence of lighting. Camera parameters are fixed during data collection to 

provide consistent lighting conditions for analysis and improve robustness of lighting 

identification. Specifically, two different images are taken with different camera 

parameters. The first image is captured with a longer exposure setting to identify the 
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presence of lighting for use as targets in the navigation program. An example of the 

differences in exposure times is shown in Figure 45 on the left. With the longer exposure 

times, lights that are included in the image will saturate the camera and enable robust 

identification of lighting. An additional image with reduced exposure time is captured 

that is used to process each individual image by identifying the number of lamps in each 

light fixture and determining the shape of each lamp.  An example of a ceiling image 

with the reduced exposure time is shown in Figure 45 on the right. 

 
Figure 45. Example of optical images for two different camera parameters. 

Images were taken in different locations, including the entire office area (lower 

area) of the space shown in Figure 44.  In total, over 70 images were tested 

experimentally using the differences in exposure time to investigate the robustness of 

identifying lights. In these experimental tests, including the images used in the 

experimental test presented later in the chapter, the program successfully identified the 

presence of lights in every image with no false positives. Due to the high exposure time 

of the camera, the presence of a light consistently saturated the camera and allowed 

robust identification of the lighting. A threshold value of 220 out of 255 was used to 
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define saturation of the camera on the grayscale image. As an example of the robustness 

of the method in experimental tests, Figure 46 shows the outcome of two images. One 

had multiple lights on the edge of the perimeter and the other had no lights in the image. 

The stark contrast in brightness allows the successful differentiation between areas with 

and without lighting. 

 
Figure 46. The light identification program successfully determines the presence of 

multiple lights (left) as well as the absence of lights (right). 

4.1.4.2 Individual image processing 

Individual images are processed by analysing grayscale images of lighting 

intensity. The images with longer exposure times (left side of Figure 45) are thresholded 

based on saturation of the camera. The purpose of this threshold is to quickly identify the 

presence of lights so that targets can be dynamically added to the navigation program 

real-time. After thresholding the image into a binary image, the center of each identified 

light and its accompanying bounding box are recorded and transformed according to 

vehicle location coordinates to compare with existing known locations of lights. 

When processing images to determine the number of lamps per fixture, images 

with lower exposure times (right side of Figure 45) are first converted to grayscale 
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images. The bounding box from the images with longer exposure times for light 

identification is used to reduce the image size of the analyzed image. This reduced image 

is thresholded based on Otsu’s autonomous thresholding method [75]. In thresholding 

the image into a binary image, Otsu’s method calculates the optimal threshold to 

minimize the inter-class variance of the pixels. Morphological operations are then 

performed on the binary image to eliminate gaps or errant pixels, following which a 

connected component algorithm is used to count the number of lamps in the image.  

An experimental example for the lights in the office area (lower area of Figure 

44) is shown in Figure 47. This figure summarizes the process through each of the 

individual steps. The initial image with a longer exposure time is thresholded based on 

saturation and a bounding box is applied as seen in (b). This same bounding box is 

applied to the image with shorter exposure times, as seen in (d). This reduced image is 

thresholded using Otsu’s method in (e), and morphological operations are performed on 

the image in (f). The total number of lamps in the fixture is then counted based on the 

number of unique objects. 
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Figure 47. Step-by-step overview of individual image processing. The original 

image is thresholded based on saturation of the camera to find a bounding box for 

the darker image. This darker image is analyzed through thresholding and 

morphological operations to identify the number of fixtures and lamps in an image. 

4.1.4.3 Image Stitching 

As images are taken, they are stitched together into a composite image of the 

ceiling. The composite image of all lighting is used for two reasons. First, the composite 

image is used to prevent double counting of lights. As lights are identified in images and 

consequently stitched to the composite image, the locations of identified lights are 

merged with previously identified lights. Only newly identified lights are sent to the 

navigation program to be added as targets to avoid inefficiencies in visiting a single 

location multiple times. Second, the composite image is used to avoid errors in 

classification of lighting dimension or shape. The composite image is used to identify 

images that contain only partial segments of lights to avoid using only the partial 

segment when analysing the light. 
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4.1.4.3.1 Image Stitching using Keypoints: Methodology 

Images can be stitched to form a composite image using a well-defined method 

from the literature [76]. In this method, keypoints in each individual image are 

identified. These keypoints are then matched with similar keypoints in other images, 

relating how the two images correlate to each other. A filter is applied to remove false 

matches, following which a homography matrix is calculated. An image transformation 

is used to warp one image, which aligns the keypoints from the two images. The images 

are then merged, and blending or feathering is used on the overlapping region of the 

images. Figure 48 summarizes the process used to merge images. 

 
Figure 48. Overview of the image stitching process used to form a combined image 

map using image keypoints.  

In merging images using this method, several constraints need to be met. One of 

the main constraints published in literature is that the origin of the camera is rigidly fixed 

with only one or two degrees of motion (rotation about its own axes) [77]. In this 

particular project, the vehicle is constantly moving; hence, the origin of the camera will 

move along with the vehicle. This issue is shown below in Figure 49. If the camera 

remains in position A, the read sphere will never be revealed for any orientation. But as 
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the camera moves position, the image camera will see different sides of some objects 

and some new objects entirely. If one attempts to merge two images and one object, 

(such as the red sphere) is only apparent in one of the images, the merged image will 

appear distorted. This problem is worse for objects in the foreground of images. In this 

project, ceilings and most objects suspended from them typically remain in the 

background, alleviating the distortion from moving the camera center. Additionally, 

Brown has noted that current methods are robust to small amounts of movement of the 

camera origin [77]. Therefore, in order to mitigate this distortion, images should be 

captured with large overlap and small distances between the camera’s locations. In the 

current setup, images are taken as rapidly as reasonable with hardware constraints to 

allow for the best image merging possible.  

The initial step to stitching images is the determination of keypoints in each 

image. In this project, keypoints were identified using a Scale Invariant Feature 

Transform (SIFT) [78]. These features are invariant to rotation, scaling and affine 

geometric transformations. The invariant nature of these points allows for similar 

keypoints to be matched between images despite differences in zoom, orientation, or 

camera center.  
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Figure 49. When the camera origin changes, additional features of some objects 

appear and some new objects appear. This creates distortion problems when 

merged two images such as seen in views A and B. 

As images are taken during the flight of the UAV, overlap occurs between 

subsequent images. The overlapping portion of images can be used to map keypoint 

matches by looking at the Euclidean distances between the SIFT feature vectors. Once 

all matches have been determined, a Random Sample Consensus (RANSAC) algorithm 

is applied to eliminate false matches [79]. This algorithm takes a random set of matches 

and establishes a correlation between to the matches in the two images. Each additional 

set of matches is compared to this correlation, and if these matches fit the correlation 

within a defined threshold, they are considered inliers to the set. This method is 

completed for many iterations, with a new random set of matches forming the initial 

correlation in each iteration. The solution set with the most inliers is considered the best 

correlation between the images. This method has proven robust even when the number 

of inliers is not the majority of keypoint matches [79]. 
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Using this correlation, an affine transformation is made to align the matching 

points in the two images. An affine transformation allows for scaling, rotation, shearing 

and squeezing of the image, similar to what is seen in Figure 50. After performing the 

affine transformation and merging the images, the amount of overlap is determined and 

excess overlap is trimmed from each image. The small amount of remaining overlap is 

linearly blended between the two images.  The combined image forms the initial 

composite image and additional images are joined with this composite image until all 

captured images have been added. The final composite image can be used with the 

previously-developed program to quantify the bulbs in an image. 

  
Figure 50. An affine transform. This transform allows for translation, rotation, 

shearing, and squeezing an image. 

4.1.4.3.2 Image Stitching using Keypoints: Experimental Demonstration 

An example of the complete image stitching process using the keypoint method 

is demonstrated for the images displayed in Figure 51. Although the automatic exposure 

adjustment of the camera altered the brightness of neighboring images, the chosen SIFT 

algorithm for identifying keypoints is invariant to these biases of brightness. Stepping 
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through each image individually, neighboring images were matched and merged onto the 

composite image.  

  
Figure 51. Images of a ceiling prior to merging. The intensity of the backgrounds 

varies depending on the automatic exposure settings of the camera. The images 

proceed from left to right, top to bottom. 

After identifying keypoints in each image, the keypoints were matching for 

neighboring images, as seen in Figure 52. This figure depicts the two images to be 

merged placed side by side with lines connecting matching keypoints between the 

images. Prior to applying the RANSAC algorithm, there are a few false matches as seen 

on the image on top. After removing these false matches through the RANSAC 

algorithm, the final set of matches used to establish a homography is shown on the 

bottom image of Figure 52.   



 

140 

 

  
Figure 52. Matched keypoints between two images in the image set. The top set of 

images show the original images (with false matches emphasized), and the bottom 

set show the new set of images after the RANSAC filter is applied.  

Once the homography matrix was established for each set of images, the images 

were transformed and then merged. Initially the areas of overlap were linearly blended 

so that each image contributed equally to the final merged image. The majority of 

overlap was then removed from each image, and the remaining overlapping region was 

linearly blended. The full overlap and subsequent reduced overlap is displayed on the 

images in Figure 53. Future work could include more advanced methods of feathering 

and blending to give a more seamless resultant image.  
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Figure 53. The merged images of the original 3rd and 4th images from the image 

set. The one on the left shows the images with all of its overlap and linear blending. 

The merged image on the right has much of the overlap removed. 

These image merging steps were continued for each subsequent image until the 

entire image set was merged. Figure 54 shows the final merged image from the original 

7 images. The differences in background intensity are very noticeable, but applying gain 

compensation and multi-band blending have been shown to effectively remove these 

discrepancies in other work [77].  

  
Figure 54. Final composite image of all 7 original images. 

Since the purpose of combining the images is to assist the navigation system on 

the location of lights, real-time merging of images is important. Merging the images is 

computationally expensive. Since the image keypoints are the characteristic feature of -1
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the images used to determine the necessary transformation to merge the images, only the 

keypoints and location of lights need to be retained in the program. By removing actual 

image merging, the global position of the identified lights in each image is determined 

by applying the image transformation.  Retaining only the keypoints allows the images 

to be processed real-time. The composite image is only useful for visualization and 

validation purposes. Therefore, additional advanced methods of blending are not 

necessary for functionality in this paper.  

4.1.4.3.3 Using Navigation Information 

In the preceding section, images stitching was demonstrated by using the 

established keypoint method to identify matching keypoints between images. The 

demonstration of the image stitching method was performed on a ceiling with texture 

and sufficient detail. One of the primary challenges associated with this method is the 

potential lack of necessary keypoints. Keypoints are typically identified in areas with 

detail and contrast in light intensity [78]. For ceilings with smooth surfaces and little 

detail, the image stitching program breaks down as insufficient keypoints are available.  

As the purpose of generating a composite image is to prevent double counting of 

lights and prevent errors in the analysis, the accuracy available through conventional 

image stitching isn’t necessary. Wider errors are tolerable as individual images are used 

for individual light processing. Therefore, image stitching can be accomplished through 

the spatial information available through the navigation program. As navigation indoors 

relies on SLAM, the localization information is readily available and can be used to 

determine the necessary transformation to align the images. By using navigation 
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information, the robustness of the image merging algorithm is improved as the 

effectiveness of the algorithm no longer depends on the ceiling features of the building. 

The accuracy of the image merging algorithm then depends on the localization and 

orientation information from the navigation system.  Although the image blur from 

stitching is increased because of uncertainty on the vehicle’s location in the SLAM 

algorithm, the increased blur is acceptable as long as it achieves its purpose in 

preventing double counting of lights. 

As each image is recorded, the global location of the vehicle is recorded by the 

image stitching algorithm. The images are transformed with an affine transformation 

using the recorded orientation of the vehicle and scaled using information from the laser 

range finder. There will still be potential perspective issues when merging images due to 

the center of focus moving, but these problems will be minimal because most of the 

images only contain objects in the background. New images are added to the composite 

image until the space has been completely explored. In each individual image, the local 

location of the lights relative to the vehicle is determined with the laser range finder, 

camera parameters, and image analysis. The positions of the lights are transformed 

according to the image transformation and compared to the existed list of light locations 

to determine if the light has previously been observed. Locations of newly discovered 

lights are sent to the navigation program as target locations. 

This method was tested experimentally for the office area of the space described 

by Figure 44. Figure 55 shows the image stitching of the office area using the known 

location and orientation to transform the image. As seen in the figure, there are small 
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issues of misalignment in the lights, specifically the two lights in the upper left corner. 

However, these misregistration errors don’t prevent the composite image from 

successfully identifying all of the lights in the explored area. In comparison to the office 

space presented in Figure 44, the composite image matches closely to the lower area that 

correlates to the office area. For purposes of navigation, there is no need for an actual 

composite image as only the coordinates of the lights need to be tracked. The composite 

image serves as a visual aid to evaluate the effectiveness of determining duplicate light 

locations.  

 
Figure 55. Demonstration of image stitching using known locations. In the proposed 

system, the known locations come from navigation and exploration information. 

4.1.5 Lighting Classification 

Reliably determining the light type is necessary to make accurate estimations on 

potential savings for different lighting recommendations. In determining lighting type, a 

spectrometer is used to analyze the incoming light spectrum. A spectrometer specifically 

measures the intensity of incoming light over a spectrum of frequencies. This spectrum 
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is often called the spectral power curve. Different types of lighting exhibit unique 

spectral power curves and allow for differentiation of lighting type [80]. In the sensor 

package, the spectrometer is mounted onto the frame with a 400 micron optical fiber 

protruding out the top of the structure as the data collection point. Light entering the 

aperture of the optical fiber is collected and guided to a photodetector. Photons striking 

the photodetector are used to produce the spectral power curve. These curves are 

typically different in both relative magnitudes across various frequencies and location of 

intensity peaks. The spectral power curve for three different lighting types are displayed 

in Figure 56 and summarized in Table 10. Although similar, the spectral curves for 

incandescent and halogen bulbs have a peak value at different wavelengths and other 

subtle, distinguishing differences. 
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Figure 56. Spectral power curves for fluorescent, incandescent, and LED lighting, 

respectively. The spectral power curves are used to classify lighting.  

Table 10. Description of Spectral Characteristics for Different Lighting Types 

Light Type Spectral Curve Descriptor 
 Wavelength Peaks [nm] Curve Type 

Incandescent 650-670 Smooth 
Halogen 640-660 Smooth 
Fluorescent 436, 546, 612 Spectrum Spikes 
Metal Halide 819, 671 Spectrum Spikes 
High Pressure Sodium 819,569 Spectrum Spikes 

LED 456, 548-565 Smooth, Dual 
Peak 
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There are multiple ways to compare the peaks in determining the lighting type, 

and in this work a root-mean-squared (RMS) error approach is used. The incoming light 

spectrum is normalized to one according to the peak value among all frequencies. The 

whole light spectrum is then compared to the reference spectra for different lighting 

types by looking at the Euclidean distance between the measured and reference spectra. 

Specifically, Equation (55) shows the RMSE equation used when comparing each curve. 

If the incoming light spectrum matches any curve with a RMSE of less than 0.15 

(average error of 15%), the light is classified according to the closest match.  

 
 

(55)                                        RMSE =
∑ (y(fi)−r(fi))

2
 n

i=1

n
 

 
 
 
where 

                                                n = number of frequencies 
                                                     fi = frequency 
                                                     y = measured spectrum 
                                                     r = reference spectrum 
 
 
 

This method for classifying lights was experimentally tested under a variety of 

conditions to gauge the robustness of the method. Measurements were taken from 

distances ranging from 1.5 meters to 5 meters, which encompasses the range of expected 

distances in the field. The spectrometer was not shielded from ambient artificial and 

natural lighting, thereby creating a realistic field environment. A total of twenty tests for 
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each of the lighting types were tested, and from those tests, the algorithm correctly 

classified the lighting in 97% of the instances. The results of the tests are summarized in 

Table 11. In the instances of misclassification, the program incorrectly identified the 

incandescent bulbs as halogen lighting. This work compared the RMS error of the entire 

spectrum to the reference spectra. The classification accuracy could potentially be 

increased by using the specific peaks locations of different lighting types. These 

additional descriptors, as seen in Table 10, will be explored in future work to improve 

classification of lighting type in the facility.   

Table 11. Light Identification with the Spectrometer at Varying Distances 

Light Type 
Number of 

Correct 

Classifications 

Number of 

Tests 

Incandescent 18 20 

Compact 
Flourescent 

20 20 

LED 20 20 

Halogen 20 20 

Since the spectrometer can only measure the incoming spectrum over a small 

viewing angle, the vehicle must navigate directly under the light to obtain an accurate 

reading. For this reason, when a light is identified, the navigation algorithm incorporates 

these lighting locations as target locations. When the vehicle navigates to each target 

location, the spectrometer may obtain a reliable reading to accurately classify lighting 
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type. The incorporation of lighting targets into the navigation strategy is presented in 

other work and not the focus of this chapter.  

4.1.6 Lighting Simulation 

Correct lighting levels are an important part of creating a safe and productive 

workplace. Detailed tasks can require a much higher lighting level than general lighting 

to prevent stress on occupants. The illuminance, given in lux or footcandles, is a measure 

of the amount of light flux striking a surface per unit area. This is the measure used to 

determine the lighting level at a specific location [81]. The recommended light levels for 

different tasks vary greatly, from lower levels of approximately 150 lux for warehouses 

to over 5,000 lux for visual tasks of smaller size and prolonged periods of time. These 

recommendations are published by the Illumination Engineering Society (IES) in the IES 

Lighting Handbook [82]. The recommendations for various tasks and areas are only 

guidelines for recommended levels; consequently, these levels aren’t always achieved 

during initial construction of a building or during remodelling. Under lit spaces can 

create an unsafe or taxing environment on occupants, while over lit areas present 

opportunities for cost savings by reducing light levels to recommended levels.  

The light level in a space is heavily dependent on the location and direction of 

measurement. The light level from the same location but different orientations can vary 

by orders of magnitude. Additionally, the light level in different locations can vary 

significantly. Often, a representative light measurement will be taken to estimate overall 

lighting conditions, but with such a small sample size, accurate lighting conditions are 

difficult to ascertain. Estimation of lighting levels through simulation can provide 
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guidance on how lighting levels vary throughout a space, providing a means to quickly 

and accurately analyze potential energy-saving recommendations.  

Light level measurements are taken in the working plane of the desired 

measurement. For specific task lighting measurements, the working plane is the table or 

other surface that is used for the task. The light meter is directed towards this working 

plane. For general lighting levels in non-specific tasks, such as in a warehouse or 

hallway, the working plane is defined horizontally. Light measurements are taken with 

the meter directed horizontally at eye level. Several measurements are typically taken in 

different directions to obtain an average light level.  

Once the lighting simulation is created, several recommendations can be made 

using the additional information available from the simulation. First, in cases of over 

lighting, the correct number of lamps or fixtures to remove can be readily determined in 

achieving the proper light level. Second, in cases of industrial lighting, often the light 

fixtures are placed near the ceiling. With high ceilings, the light fixtures can be lowered, 

which creates delamping opportunities while still maintaining similar light levels. 

Lowering light fixtures typically will increase the light level at the working plane at the 

expense of decreased uniformity of light. The trade off and optimal distance to lower the 

fixtures can be determined in simulation. Finally, future work could explore adding 

natural lighting to the simulation. Use of available daylight instead of artificial light can 

be estimated with knowledge of window placement and area.  

 
 
 
 



 

151 

 

4.1.6.1 Point-by-Point Method 

In general, simulation of vertical illumination is useful to evaluate task lighting 

by multiplying the vertical illumination with the reflectivity of the desired task surface. 

The horizontal illumination is useful for determining the general lighting characteristics 

in a space. Several methods are available to estimate both the vertical and horizontal 

illuminance in a space. The two generally accepted methods are the zone area method 

and the point-by-point method. The zone area method calculates the total amount of 

lighting in an area needed to provide adequate average illumination of a space based on 

the number of lighting fixtures, room cavity ratio, and other parameters. However, this 

method does not provide information on how light levels vary throughout the space. The 

point-by-point method finds the illuminance at specific locations in an area with a given 

set of luminaires and can be used to look at variation in lighting levels throughout a 

space.  

The point-by-point method looks at the light level at every point of interest by 

summing the total light contribution of each light fixture at that point. The illuminance 

over an entire area or room can be determined by dividing the room into a grid of points. 

Although computationally expensive, this method gives high resolution of lighting levels 

throughout an area. The light level is a function of distance between the light fixture and 

the point of interest, the angle between the two points, and the light intensity of the 

fixture [81]. The governing equation guiding the point-by-point method is given by 

Equation (56): 
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(56)                                                     EA = 
Iθ cos(θ)

d2                                                 

 
 
 

where EA is the measurement illuminance at the point A, Iθ is the intensity of 

light from the light source for that specific angle, d is the distance between the light 

source and the point A, and θ is the angle between the two points, relative to the normal 

of the plane at A. Figure 57 illustrates these parameters. The intensity from the light 

source for the specific angle, Iθ, is a value that is documented by the manufacturer of the 

luminaire.  

  
Figure 57. Parameters used in the point-by-point method of determining 

illuminance. 

This method can be accurately used as long as the distance ‘d’ is at least five 

times the longest dimension of the light source [81]. For example, in a T8, 4-foot 

fluorescent tube, the longest dimension would be the length of the tube. This method 

could only be used if the distance to the point of measurement was at least 20 feet away. 

If such distances aren’t possible, the lighting source can be segmented into sections with 
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the appropriately-scaled intensity values in order to satisfy these constraints. At any 

given point in the lighted area, the illuminance at that point of interest can be calculated 

by adding the individual contributions from each light source, or if the light source has 

been segmented, every segment of each light source. 

In addition to these light sources, light reflected from the walls will also 

contribute to the measured illuminance. However, the computation burden drastically 

increases with reflection calculations; additionally, the dimensions of all the walls must 

be known relative to the positions of the luminaires in the space. In a large facility with 

many light fixtures, measurement of the distance from light sources to the walls can be 

difficult to obtain. When the primary objective of the lighting map is to identify areas of 

overlighting and find correct lighting levels based on the simulations, forgoing 

reflections will underestimate the true lighting level, thus providing a conservative 

estimate for delamping opportunities.   

4.1.6.2 Light Intensity Variation 

The intensity of a light source is given in candelas and is a measure of amount of 

light flux given in a specific solid angle [81]. The intensity of a light source is 

documented by the manufacturer of the light source and given in a special file type. 

These file types are regulated by IES and follow a specific format [82]. These files 

document the variation of intensity of light from all angles from the specific lamp and 

light fixture. They account for the reflected light off the fixture, allowing easier 

implementation of realistic lighting levels without increased complexity. Manufacturers 

provide these light intensity files not only for lamps, but also for entire fixtures. The 
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variation in lighting intensity can be significant for different angles and is important to 

accurately estimate light levels. An example of this significant variation is shown for a 

lighting intensity file for a metal halide fixture in Figure 58.  

 
Figure 58. Example of a lighting intensity diagram for a metal halide fixture. 

The cross section of the light intensity graph changes varies as rotated around the 

graph. Figure 59 displays a 3D version of the light intensity data provided for the metal 

halide fixture. As the fixture is rotated, the cross-sectional shape of the light intensity 

diagram changes considerably. In simulating the light levels, these values for light 

intensity are incorporated into the calculations to improve lighting level estimation.  
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Figure 59: 3D visualization of light intensity data of a metal halide fixture. 

4.1.6.3 Simulation Results 

The layout of the room used for simulation is the same layout used for the 

exploration algorithm, example lighting calculations, and image stitching demonstration 

(Figure 44). This room consists of four different spaces, each equipped with fluorescent 

tube lighting fixtures. Each lighting fixture contains three, T8 fluorescent lamps. In the 

simulation, the light levels were simulated using Equation (56) and the appropriate light 

intensity diagrams from manufacturers of the different light types. Reflections off the 

walls are not accounted for in the simulations, and this will result in an underestimation 

of the actual light levels in the space.  
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The results for simulating the lighting for three different lighting types are given 

in Figure 60. In this figure, the results are displayed for the current T8 fluorescent lamps, 

as well as two other possible configurations of incandescent recessed lighting and LED 

replacement tube lamps for the T8 fixtures. Each simulation file used the actual light 

intensity data from manufacturers of the specific lighting type. The vertical illuminance 

shows the light intensity if a light meter was directed towards the ceiling. In order to 

determine general lighting characteristics in a space, the horizontal illuminance is also 

shown. Since walking or other activities are not necessarily performed in a single 

direction, the averaged light level from multiple directions is advantageous to better 

understand the representative light level. At each location, several readings can be 

recorded and averaged in multiple directions in order to evaluate the average light level. 

For the horizontal illuminance, the average horizontal illuminance was determined for 

four different directions, two in each direction of each axis. The average value from 

these four light levels was used for the average horizontal illuminance.  
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Figure 60. Simulation results for potential lighting types in the space. Both vertical 

and average horizontal illuminance is displayed. 

As can be seen in the figure, the average light level for vertical illuminance for 

the fluorescent lighting is lower than LED and higher than incandescent. In average 

horizontal lighting, the light level is still higher than incandescent and comparable to 

LED. The light distribution is very similar for both fluorescent and LED lighting, and 

the average horizontal illuminance is fairly uniform over the space. Due to light 

reflection off walls, the predicted values from the simulation will tend to under predict 

light levels, particularly near the walls. The actual light level will be fairly uniform 

throughout the space as the edges will have higher light levels from reflection. There is 
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one instance in the bottom room where the space is potentially over lit, presenting an 

opportunity for energy savings for delamping while still maintaining adequate light 

levels. 

4.1.6.3 Future Advances in Lighting Simulation 

In future work, once the light topology map is generated, the map can be 

calibrated with several actual light readings taken during data collection on the vehicle to 

improve accuracy of the simulation. Additionally, the lighting plots can potentially be 

used in aiding the navigation to find additional lights with the addition of a light sensor 

on the vehicle. The computation burden of the simulation is low enough that the program 

can approach real-time in predicting light levels. As lights are identified and added to the 

simulation, measured lighting levels can be compared to predicted simulated values. 

Underpredicted values on the simulation program indicate the presence of undiscovered 

lights that will add to the lighting level at that point. Gradients on the difference between 

simulated and measured lighting level can predict the location of undiscovered lighting, 

providing feedback to the navigation program on where to search for additional lighting. 

This can be integrated into the program for more efficient searching. 

4.1.7 Automated Report Generation 

Once the type and quantity of lights are determined, the electrical energy and 

demand can be calculated to perform an energy efficiency analysis of lighting. The 

potential energy and cost savings are predicted for the different recommendations listed 

in Table 9. To estimate the energy savings from the different lighting recommendations, 

the energy use from different lighting types and operational conditions is quantified. 
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This reduction in usage is multiplied by the avoided cost of electrical energy to estimate 

the cost savings from the retrofit. If applicable, the reduction in costs for electrical 

demand is then calculated. Other potential savings are also calculated, including 

reduction in maintenance costs, personnel costs, and reduction in equipment replacement 

costs.   

Also included in the recommendation report is a basic analysis on estimated 

implementation costs of the retrofit, which, coupled with the cost savings, provides a 

method to estimate simple payback periods. These implementation costs include the 

estimated costs for capital equipment and costs associated with installation. In the Texas 

A&M IAC, projects are typically recommended only if they yield a simple payback 

period under approximately two years.  

The energy use is determined from Equation (57). Note that the variables used in 

the equation are summarized in Table 12. In this equation, the total lighting energy is the 

product of the lamp power, number of total lamps, the ballast factor and operational 

hours. The ballast factor accounts for the energy consumption of the ballast necessary to 

regulate the lamp, and this factor adjusts the lamp base output. For lighting without 

ballasts, the default value for the ballast factor is 1. 
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Table 12. Parameters to Calculate Energy and Demand from Lighting 

Symbol Parameter 

x Number of fixtures 
L Number of lamps per fixture 
P Lamp power (kW) 
B Ballast factor 
TO Operational time 
K Annual billing cycles 

Different lighting retrofit options will alter different parameters in the energy 

equation. For example, upgrading to a more efficient light type will alter the number of 

lamps per fixture and power per lamp. Likewise, installing occupancy sensors and 

photocells will reduce the operational hours of the lights. For each retrofit, the energy 

savings are calculated using the difference in energy prior to and following the retrofit as 

calculated in Equation (57).  

 
 
(57)                                                 EC = (x)(L)(P)(B)(TO)                                             
 
 
 

The calculation for annual electrical demand is similar to the calculation for 

consumption, but the operating hours are replaced by the number of billing cycles in one 

year as seen in Equation (58). The demand in a facility is a charge based on the peak rate 

of power in a facility over the course of each billing cycle. Only some of the possible 

lighting recommendations will consistently generate electrical demand savings. For 

example, occupancy sensors will only reduce lighting power when a space is 

unoccupied, which may not coincide with periods of peak demand. If the power 
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consumed by lighting is consistently reduced, the peak power draw over the month will 

decrease, generating demand savings. The cost associated with demand is the product of 

the annual demand and the avoided cost of demand. 

 
 
(58)                                                        ED = (x)(L)(P)(B)(K)                 
 
 
 

Once sufficient information has been gathered to determine current and potential 

electrical energy and demand use, the potential savings from different recommendations 

can be calculated and included in a report. The most common recommendation for 

lighting, as seen in Table 9, is lighting upgrades. More efficient lighting reduces both the 

electrical consumption and demand while maintaining similar illumination and quality of 

light. Additional savings are also possible through reduced maintenance if the 

recommended lamps have a longer lifetime than existing lamps. The following 

paragraphs demonstrate the general recommendation procedure that would be included 

in a report for a lighting upgrade with an example calculation. In this demonstration of 

the energy efficiency analysis, the actual lighting from the space (shown in Figure 44) is 

used.  

In the calculations, recommendations are made for upgrading the lighting type 

from incandescent recessed lighting and T8 fluorescent lighting. Although the physical 

space is equipped with T8 fluorescent lighting, the calculations for a lighting upgrade 

from incandescent recessed lighting will be used to illustrate a recommendation within a 

simple two-year payback period. Table 13 shows the common operating parameters 
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found in an industrial or commercial setting that will be used in the calculations to 

determine the energy savings. These parameters are independent of lighting type and are 

consistent across all the types of recommendations found in Table 9. Usually the values 

are obtained from a building manager prior to collecting and analyzing recommendation 

data.  

Table 13. Operating Parameters for Example Facility 

Parameter Units Value 
Annual Operating Hours          (hr/yr) 3,744 
Avoided Cost of Consumption   (US $/kWh) 0.06 
Avoided Cost of Demand       (US $/kW·mo) 5.2 
Labor Cost                 (US $/hr) 25 
Number of Billing Cycles Annually (mo/yr) 12 

The parameters specific to each lighting type are listed in Table 14. The number 

of lamps and fixtures for the three different lighting types listed in the table were 

determined to ensure similar lumen output. The parameters for the T8 lighting are the 

actual parameters found in the space. The costs for lamps and fixtures were averaged 

from several manufacturers. The energy consumption before and after a lighting retrofit 

is used to determine the energy consumption savings. The initial energy consumption is 

calculated using Equation (57). The total cost of the current energy use is the product of 

the electrical energy consumption and the avoided cost of electrical consumption. The 

demand cost is also calculated in a similar manner, according to Equation (58). 

 



 

163 

 

Table 14. Lighting Type Specific Parameters 

Parameter Recessed Lighting 
(Incandescent) 

T8 LED 

Number of fixtures 140 20 20 
Lamps per Fixture 1 3 3 
Lamp Power (kW) 0.071 0.032 0.021 
Ballast factor 1 0.87 1 
Annual Energy Use (kWh) 37,215 6,254 4,717 
Annual Consumption Cost (US $) 2,233 375 283 
Annual Demand (kW*mo) 119 20 15 
Annual Demand Cost (US $)  596 100 76 
Cost per Lamp (US $) N/A 3 24 
Cost per Fixture (US $) N/A 75 75 

Once the base consumption and demand are calculated, energy and cost savings 

are determined and the simple payback period of the project is calculated using the 

updated number of lamps per fixture and power per lamp. The annual energy and 

demand savings from switching lighting types is the difference of energy consumption 

and demand, respectively. The capital cost is the cost associated with buying new lamps 

and fixtures. The installation cost is the product of the number of fixtures, the 

installation time per fixture, and the labor cost. The sum of the capital and installation 

costs results in the total cost of the project. The simple payback period of the project is 

then determined as the quotient of the total cost of the project and the annual cost 

savings. 

The results for three potential retrofit options are summarized in Table 15. As 

seen in the table, there are significant cost savings from replacing recessed incandescent 

lighting with either T8 fluorescent lamps or LED tube lamps. Both produce sufficient 

savings to yield a simple payback of less than two years. Upgrading the currently 
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existing T8 lamps to LED lamps falls outside a typical payback period for industrial and 

commercial facilities. Although local rebates may be available to help defray initial 

costs, a large payback will typically result in low implementation rates.  

In an energy assessment, similar calculations are performed for every potential 

lighting recommendation. As seen in this example calculation, the calculations are 

generally straightforward, and the necessary parameters to assess energy and cost 

savings are established beforehand and can be collected from the AuRAE.  

Table 15. Calculated Savings for Three Upgrade Options 

Current Lighting Type  Incandescent Incandescent T8 Fluor 
Recommended Lighting  Units T8 Fluor LED LED 
Annual Energy Savings (kWh/yr) 30,961 32,498 1,537 
Annual Demand Savings (kW·mo/yr) 99 104 5 
Annual Cost Savings  (US $) 2,354 2,471 117 
Capital Cost  (US $) 180 1,500 1,500 
Installation Time (hr/fixture) 1.75 1.75 0.25 
Implementation Cost (US $) 875 875 125 
Total Cost (US $) 1,055 2,375 1,625 
Simple Payback (yr) 0.45 0.96 14 

 
 
 

4.1.8 System Integration 

Each individual subsystem for both lighting analysis and navigation has been 

demonstrated in this chapter with experimental work on actual lighting conditions in 

buildings. Other ongoing work by undergraduate research teams has focused on the 

integration of individual components into a single lighting assessment package.  

The teams have integrated the sensors into an operator-driven package that 

autonomously identifies and analyzing lighting fixtures according to the algorithms 
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presented in this chapter. The robot requires manual navigation, but mapping of the 

facility and analysis of lighting are performed autonomously. Figure 61shows the 

manually-driven robot that contains the sensor package. In creating the integrated 

package, the researchers built additional visualization capability by marking the 

identified light locations on the map created by the SLAM mapping algorithms. Several 

experimental tests have been run, including on a large section on the campus library. 

Figure 62 shows the identified lights in the library positioned on the autonomously-

created map. Current undergraduate research teams are creating a handheld lighting 

sensor package that can be used by human energy auditors as they walk through a 

facility. An initial prototype has been designed and built based on the lighting analysis 

tools presented in this chapter.  
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Figure 61. Prototype system that is manually driven but autonomously collects and 

analyzes lighting data. 
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Figure 62. Identified lights in the campus library using the methods described in 

this chapter. 

4.2 Summary 

Energy assessments have demonstrated energy and cost savings by identifying 

opportunities for reduction in energy use with quick payback periods. However, the high 

cost and extensive time required for analysis inhibits the number of assessments 

performed. Automated data analysis for parts of or even entire assessments can decrease 

overall costs while improving assessment quality. Some of the most common 

recommendations in industrial energy assessments pertain to lighting. This chapter 

demonstrated a system that is capable of analyzing building lighting for identification 

and analysis of potential reductions in energy. The number of lights and their location 

were found in conjunction with exploration and navigation through image analysis and 

image stitching. The lighting type was determined through spectral power curves 

available through a spectrometer. Once the lighting type and location was determined, 

this information was used to predict lighting levels for both horizontal and vertical 



 

168 

 

illuminance in a space. Experimental evaluations have been performed for each 

component of the lighting analysis, and current work is focused on the integration of all 

these components.  
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CHAPTER 5 

INTELLIGENT ACTUATION 

 

Advanced sensors enable additional monitoring opportunities with the end goal 

of more intelligent control of equipment. The full potential of IIoT can be realized in 

achieving enhanced production, safety, or energy efficiency of the production facility. 

This chapter demonstrates how intelligent control can decrease energy usage with a case 

study on compressed air systems. Specifically, this chapter explores the use of a novel k-

means algorithm to determine the production schedule of the compressed air system. 

Times with idle compressor load are identified, and the compressor is automatically 

turned off and then restarted prior to the next production period. This chapter explains 

the unique adaptations to the k-means algorithm and demonstrates its capabilities on 

both simulated and experimental data. A simulation of a typical industrial compressed 

air system is created for initial testing of the algorithm. The algorithm is then tested on 

twelve datasets of 15-minute demand data with profiles similar to expected profiles in 

compressed air systems. Finally, data are collected and tested from an actual industrial 

facility to compare the performance of the k-means algorithm to the performance of 

human actuation. The chapter concludes by exploring future avenues of research in this 

field.  
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5.1 Case Study: Improved Intelligent Compressor Operation using Machine 

Learning 

5.1.1 Background and Introduction 

While IAC assessments have demonstrated meaningful savings for participants, 

the overall percentage of total candidate facilities that receive a visit are minimal. 

Facilities that fall under the scope of the IAC program have to be small enough to not 

employ a devoted energy manager in the facility. Outside the IAC program, few small- 

to medium-sized manufacturing facilities receive energy assessments. With no allocated 

focus on energy efficiency, and with prohibitively high initial costs for energy 

assessments, common efficiency problems continue in these plants indefinitely. 

One way to improve the realized energy savings in smaller manufacturers and 

achieve larger market penetration of energy efficiency best practices is through turn-key 

autonomous solutions. In the residential market, smart thermostats are one embodiment 

of this concept to deliver energy savings with minimal expertise and time required of the 

user [83]. There are many energy subsystems with potential autonomous solutions in 

manufacturing plants. The most visible and simple energy subsystem in plants is 

lighting, where occupancy-based actuation is a common energy efficiency upgrade. 

Similar opportunities exist in other energy subsystems such as boilers, motors, product 

heating, space conditioning, and compressed air.   

5.1.1.1 IIoT and Compressed Air Systems 

This chapter explores autonomous solutions in compressed air systems. 

Compressed air has widespread use throughout industry and is recognized for its 
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reliability. These systems can still meet necessary production requirements while being 

continuously undermaintained. This reliability ironically causes reduced system 

maintenance, resulting in energy efficiency penalties from compressed air leaks, high 

pressure, and unnecessary pressure drops in the system. Compressed air systems are 

widely considered a prime application for IIoT due to their high operating costs and 

maintenance issues [84-86] 

The IIoT for compressed air systems is still in the early stages. As such, there is 

still uncertainty on the scope of possible compressed air solutions. Some have identified 

the IIoT for compressed air as an enhanced data stream for help operators make 

improved operation decisions [84, 85]. Other have envisioned entire automated control 

systems [87]. Since the field is still in its infancy, one current challenge is to identify 

actionably ways to improve system efficiency [88]. Researchers recognize that there is 

potential for improvement in overall compressed air system performance, but often they 

only provide a framework of how future solutions may work while providing no specific 

solutions [87]. Examples of potential actionable items to improve compressed air system 

efficiency include fixing air leaks, reducing system pressure, turning down or off the 

system during low production periods, fixing large pressure drops such as clogged 

filters, and performing compressor maintenance to ensure optimal compressor 

efficiency. The current scope of available market solution in the IIoT field fall primarily 

in two categories: intelligent monitoring of air systems and enhanced sequencing of 

compressors.  
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5.1.1.1.1 Intelligent Monitoring 

Many market solutions have emerged that enhance monitoring capabilities of 

compressed air systems [85, 88-93]. Historically, individual sensors measured 

fragmented elements of the system, but emerging market solutions integrate multiple 

sensors to monitor overall system performance [84, 87]. These sensors can be integrated 

into plant-level monitoring and control systems, providing additional diagnostics for 

improved decision making by plant managers. Some of the sensors available for 

compressed air monitoring include pressure transducers, differential pressure 

transducers, power meters, dewpoint, thermocouples, and air flow meters [94, 95]. 

Newer compressors are being built with these sensors integrated into the compressor and 

require no additional third party add-on sensors [85].  Use of these built-in sensors can 

potentially reduce the cost of implementation of autonomous actuation algorithms.  

In addition to data collection, many of the market solutions analyze and provide 

visualization of the data, enabling additional diagnostic capabilities. Some of the 

capabilities include efficiency monitoring of individual compressors in the context of the 

total system, identification of idle operating states in a system, and trend identification of 

overall air usage in the system [94]. Additional sensors also allow the detection of 

anomalous system operation or usage, such as unmet pressure setpoints or compressor 

short cycling [84, 87, 95]. A final common capability within current market solutions is 

in predictive maintenance for both compressors and other elements in the air system [85, 

91]. Predictive maintenance prevents overall waste of materials and labor by only 

performing maintenance when necessary instead of on a predetermined schedule. 
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Current market solutions identify when maintenance is required and automatically notify 

plant personnel. 

5.1.1.1.2 Intelligent Sequencing 

The other current market solution in the IIoT field for air compressors regards 

intelligent compressor selection and loading [94, 96-98]. Often termed intelligent 

control, this strategy uses current plant conditions to select the optimal combination of 

compressors to both meet facility demand and optimize energy use. In systems with 

multiple compressors, individual compressors can operate inefficiently without a 

centralized control strategy for the compressors. As compressor efficiency is a function 

of compressor loading, correct sequencing of compressors can operate compressors near 

their optimal loading point to optimize overall system efficiency. This IIoT solution 

requires multiple compressors to implement, and multiple market solutions are available 

that calculate and implement this optimization.  

5.1.1.2 Autonomous Solutions 

The current market solutions enable improved decision making by leveraging the 

additional sensing capabilities and data analytics. However, these solutions require 

manual actuation to achieve the desired improved operation. These compressors are 

often equipped with remote start-stop and pressure setpoint capabilities. Plant managers 

can use the remote function to set timers on when the system should turn off and turn on 

to prefill the system [96]. Production schedule uncertainty limits the windows of time 

plant managers can confidently times to turn off the system. The methods proposed in 
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this chapter extend the timer operation by autonomously determining the appropriate 

times to schedule the system to turn off or reduce the pressure setpoints. 

When there is no production on the plant floor, the compressed air systems can 

be turned off to conserve energy. Turning off equipment when not in use is a common 

recommendation on IAC assessments. Often compressors are left on during weekday 

nights and over weekends. The large leakage rates typical in plants result in significant 

cost penalties when not turning off compressors. Additionally, turning off compressors 

have maintenance benefits in reduced wear of components and decreased risk of 

catastrophic loss of the equipment if failure occurs when no one is present.  

There are several primary barriers that block a universal adoption of turning off 

compressors when not in use. First, turning off compressors requires consistent effort 

from plant or other personnel. Although compressed air lines are located in convenient 

locations in a typical plant, often the compressors themselves are found in a separate 

building, outside, or on the far edges of the building. These locations are chosen 

specifically away from most plant personnel for noise reduction and compressor heat 

rejection. The last facility personnel to leave the building have little incentive to commit 

the time and effort to ensure all air usage has stopped and turn off the compressors, 

especially since there is no economic incentive to the particular employee. Second, the 

cost to run idle compressors is unexpectedly high, resulting in plant managers 

underestimating the operating cost. Furthermore, the cost of running individual 

equipment is hidden in the total facility electricity bills, which often is considered an 

unavoidable accounting expense to production. Therefore, the lost money due to 
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unnecessary operation is not fully realized.  Finally, the variability of production and 

personnel schedules creates uncertainty on when turning off the compressor is 

appropriate. Without detailed monitoring of the system, the personnel in charge of 

compressor operating will unlikely know when extra production hours occur or even 

who will be the last employee to leave the facility. This uncertainty, together with the 

considerable consequences of turning off equipment during production, discourages 

manually turning off equipment at the end of production.   

This case study specifically looks at autonomous actuation of compressed air 

systems when production is not running. The compressed air system loading is 

monitored throughout the day. The compressor automatically turns off after production 

has ceased and turns back on prior to the start of production. Most larger compressors 

are equipped with remote start-stop capabilities that can be used for actuation. These 

capabilities are unlocked and require no special equipment or propriety software to 

access. This case study specifically targets plants that operate on a 1 or 2 shift operation. 

A facility that operates on a 24-hour operation will have fewer time periods in which the 

compressors can be in the off state, lowering the cost effectiveness of the technology.  

The cost to implement the technology is primarily in the cost of monitoring the 

compressor power and the cost of communication equipment. As these components are 

readily available and relatively low cost, the total implementation cost is expected to be 

modest. Additionally, newer compressors are being built with  sensors integrated into the 

system, which could reduce the cost of implementation further. In general, the 
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anticipated energy savings, coupled with the modest implementation cost, would result 

in a manageable payback for implementation of this technology.  

5.1.1.3 Machine Learning Algorithms for Load Forecasting 

The proposed system in this case study will work by monitoring the load on the 

compressed air system. A novel k-means algorithm will be used to learned the operating 

schedules of the production plant. Once the algorithm has monitored the system for the 

prescribed training period, the compressor will be autonomously turned off during times 

when production is off and the compressor is idling. The algorithm will use the training 

data to determine the necessary start time of the compressor and restart the compressed 

air system prior to future production use.  

5.1.1.3.1 K-means Clustering 

K-means clustering is a data mining technique that identifies structure in 

unlabelled data. K-means is a pattern recognition algorithm in the general field of 

artificial intelligence. The basic algorithm finds a set of K clusters, where each data 

point belongs to the cluster with the shortest distance. It is an unsupervised learning 

technique, where no prior knowledge is available to specify how the data should be 

grouped. Initially, K data points are chosen at random to represent the K cluster centers, 

and each data point is assigned to its closest cluster center. The center of each cluster is 

updated to account for added data points to the cluster, and the algorithm continues to 

iterate and reassign profiles until a steady state has been reached.  

There are many application fields for forecasting and clustering algorithms 

across many disciplines. Example application fields of k-means algorithms include 
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image classification, web text searching, and image denoising [99-104]. Within the 

energy field, the use of clustering algorithms varies from determining household 

electrical breakdown to comparison of electrical use between different cities [105-107]. 

Each field of clustering has unique clustering needs, and adaptations on the base k-

means algorithm have often been proposed and implemented. Generally speaking, 

adjustment of the number of clusters and strategic selection of initial clusters provide a 

notable improvement over the base clustering algorithm, as these present the most 

common challenges in the k-means algorithm.  

One common application for use for k-means that has many parallels to the work 

presented in this chapter is in load forecasting of electric demand by utilities. Load 

forecasting is used to by utilities to ensure sufficient electrical supply in the most cost-

effective manner. Electrical load forecasts are broken into short-, medium-, and long-

term time horizons [108] The work presented in this chapter aligns most closely with 

short-term load forecasting, so referenced papers to load forecasting focus primarily on 

this time horizon [108]. 

Another common use for clustering algorithms in the electrical utility industry is 

for grouping different customers [109-113]. This clustering is done to identify potential 

candidates for energy programs provided by the utilities. With large datasets of many 

customers, often a single representative load profile is used for each customer in the 

clustering algorithm. The algorithm divides the customers into different groupings based 

on these representative load profiles. This application domain is particularly well suited 
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for a k-means algorithm because of strengths is differentiating between distinctly 

different profiles.  

5.1.1.3.2 Other Forecasting Algorithms 

Other types of load forecasting algorithms have been explored in the literature. 

Most methods focus specifically on the time and value of the peak usage in order to 

guide utility providers in projected electrical demand requirements [108].  Lavin et. al. 

provide an overview of many of these methods in the literature [114]. The most common 

other methods are Artificial Neural Networks (ANN) and time-series methods. 

Regression models have also been proposed and can accurately characterize 

relationships within facility demand, but these methods require large computations and 

complicated modelling techniques [115]. Independent component analysis has also been 

explored for load forecasting [116].  

Time series models are popular and still used today by many utilities, especially 

because they are capable of incorporating weather into the model. Time series 

approaches require a mathematical model to map the inputs to outputs, but they allow 

the ability to account for weather or other seasonal effects. One challenge in time series 

models is the large amount of required data to estimate the coefficients of the model. 

Sufficient training data are required to estimate dozens of coefficients without overfitting 

the data [117]. 

Neural networks, a common approach to load forecasting, are modelled after the 

working principle of the human brain with several layers of neurons [108]. There have 

been many papers on the topic published in the literature and some acceptance in 
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industry using this method [118]. These models can have multiple hidden layers and 

incorporate weather effects [119]. When setting up ANN models, the available data are 

divided into training and validation data. The hidden layers and network connections in 

the ANN is modelled after how the human brain learns new data, but the modelling of 

electrical load values provides no clear physical meaning for each of the nodes. As such, 

the available data is divided into the two datasets to ensure that the correct number of 

hidden nodes are used and that the data are not overfit [120]. 

ANN methods have shown success in load forecasting, but there are several 

limitations with this method that directly affect its applicability to the work presented in 

this chapter. This method, as opposed to other algorithms, the electrical demand data is 

not broken into profiles of individual days, but rather the method continuously forecasts 

the next look ahead period from the previous periods [118]. As one key element of the 

compressor actuation is in predicting when the compressor can be turned off and on, the 

knowledge of how production compares to previous days is desirable for this prediction. 

A second challenge in neural networks comes from load profiles that considerably differ 

from day to day [118]. Since the neural network continuously updates in the look ahead 

period, the algorithm has difficulty distinguishing different operating days. For example, 

in projecting the load forecast for a Friday or Saturday, the prior data used for the 

forecast will be similar. However, the anticipated forecast is expected to be different. To 

account for these differences, some research only forecasts based on weekdays [115, 

120]. Other research clusters the daily profiles in a pre-processing step using a k-means 

algorithm. The ANN network is then applied only to the cluster with the most member 
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profiles [119]. Other challenges to ANN models include the large amount of required 

training data, the optimal amount of layers and inputs, and the possibility of over-

training from the training dataset [118, 120]. 

5.1.1.3.3 Adaptations to K-means Clustering 

The work presented in this chapter draws many parallels to the electric load 

forecasting and is well suited for a k-means algorithm. The k-means algorithm is simple 

in execution and allows for modification to incorporate physical constraints or 

phenomena [112]. The algorithm is capable of gracefully accounting for outlier profiles 

without affecting the overall estimation or forecasting. One day of compressor data is 

used for a single profile in the clustering algorithm, similar to what is done in electrical 

load forecasting.  

However, the base k-means algorithm has several challenges that have been 

addressed in the literature with various approaches. Variations on the base k-means 

algorithm fall into three general categories. The first is in the autonomous selection of 

the number of final clusters. The second category is in the adaptive selection of the 

cluster centers used in the clustering. The final set of modifications come in extracting 

features to cluster instead of clustering the load profiles directly.  

5.1.1.3.3.1 Autonomous Selection of the Final Number of Clusters 

The selection on the number of clusters is a non-trivial problem. Use of the 

classical k-means with a pre-determined number of clusters and no change in the number 

of clusters gives non-optimal clustering results [113]. Some approaches use cluster 

validity indices to automatically check if the selected number of clusters is optimal [110, 
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121]. However, even using multiple cluster validation indices to evaluate the cluster, 

some work still relied on expert opinion to determine the final number of clusters [110].  

Others have addressed this challenge by automatically adjusting the number of 

clusters during the algorithm. Sahu et. al. independently tested the adaptive k-means 

algorithm, and they found that the adaptive nature of finding the number of clusters 

improved the results over a standard k-means algorithm [122]. Kwac et. all use a 

threshold condition to determine when additional clusters are necessary, and then a 

trimming stage is done to merge clusters that are close to each other [112]. Both of these 

parameters for growth and trimming are user defined, so manual tuning is required to 

achieve an acceptable number of clusters.  

Mutanen et. al. propose a clustering algorithm that automatically determines the 

number of clusters. The algorithm first removes outlying usage based on monthly 

average usage as well as intraday load variation. With the user-specified desired number 

of clusters and minimum samples in a cluster, the algorithm merges and divides the 

clusters iteratively under the number of final clusters is close to the desired number of 

clusters [109]. However, this merging and splitting process permanently removes 

profiles that, at any time, belong to clusters with fewer than the minimum samples in a 

cluster. To prevent the excessive removal of clusters as outliers, the addition and 

removal of clusters take place prior to removal of outliers. The authors note the 

challenges of clustering profiles that are distinctly different from each other [109].  
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5.1.1.3.3.2 Adaptive Selection of Cluster Centers 

Another challenge in the classic k-means algorithm is in the initial selection 

clusters, as using random selection of initial clusters rarely provides the optimal solution. 

Tsekouras proposes a k-means algorithm for electric load profiling that examines many 

possible starting combinations for both number of clusters and initial cluster centers. 

Although computationally expensive, this exhaustive k-means algorithm demonstrated 

marked improvement over classical k-means algorithms [113].  

Kwac proposes an adaptive k-means algorithm that adds clusters whenever a load 

shape violates a user-specified threshold condition. The user then specifies the number 

of target clusters, and then algorithm will hierarchically merge the closest clusters until 

the number of target  clusters is reached [111]. Nikulen proposes a version of k-means 

clustering that involves both a threshold-based growth and merging stage [123]. Both 

stages require the user to pre-specify the thresholds for splitting and merging, values 

which are not known beforehand. This algorithm was tested against other network 

intrusion detection methods, and when threshold values were properly selected, this 

method outperformed other published methods.   

Another approach to eliminate the dependency on the initial cluster centers is to 

use a hierarchal trimming procedure. Starting with the entire dataset, nearby datasets are 

grouped at different levels until the desired number of clusters is satisfied [124, 125]. 

One challenge to this method is the selection of the stopping criteria, similar to the 

challenge of selecting the number of clusters in the classical k-means algorithm.  
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5.1.1.3.3.3 Clustering on Features Extracted from the Load Profiles 

Some approaches extract features from the dataset and cluster on these extracted 

features to improve the overall clustering or increase the algorithm speed. For example, 

Khan et. al. pre-process their 15-minute data in order to extract density distributions of 

the load profiles from the datasets [126]. Other pre-processing steps include using 

Markov models and wavelet transforms to identify load profile shapes that are then 

clustered [127, 128].  

5.1.2 Intelligent Actuation Algorithm 

The intelligent actuation algorithm builds on prior work in load forecasting for 

electrical demand. Key differences between peak load forecasting and this work require 

adaptations to algorithms found in the literature. The algorithm is broken into the 

following four segments:  

1. Load Factor Estimation 

2. Load State Information 

3. K-means Estimation Algorithm 

4. Compressor Actuation 

The first segment of estimating the load factor is only necessary if pressure is the 

only available sensor and a load/unload cycle is utilized on the compressed air system. 

The timing of the load/unload cycles are determined based on the rise and fall of the 

pressure, and compressor loading is estimated from these cycles. Once the loading 

information is estimate or power information is recorded, the algorithm translates the 

load information into estimated load states. This second step is a key difference from 
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standard algorithms from the literature as the peak load during each profile is of minimal 

interest compared to knowledge of relative load states throughout each profile. After 

translating each profile to the estimated load states, a novel approach to a k-means 

algorithm is implemented for the training dataset. Standard approaches use a fixed 

number of clusters to classify each profile or adaptively determine this fixed number of 

clusters based on user-defined criteria. The approach described in this chapter allows an 

adaptive number of clusters that is autonomously determined through a growth and 

trimming stage. After identification of the training set, the algorithm steps through each 

day and determines periods of time the compressor can be shut down. The compressor is 

actuated for the identified idle time and autonomously turned back on prior to the next 

operating period.  The following subsections detail how each of the algorithm segments 

are accomplished. In the algorithm, the user-defined parameters are the nominal buffer 

time (detailed in Compressor Actuation), the number of training and test days, and the 

cutoff threshold for outliers (detailed in K-means Estimation Algorithm). 

5.1.2.1 Load Factor Estimation 

The proposed algorithm in this chapter leverages the relative load on the 

compressor to estimate periods where the only energy usage comes from compressor 

idling power and air system leaks. To determine these times with low operating load, the 

relative compressor load must be known. If compressor power is measured, the average 

compressor loading is estimated by the mean power over a loading cycle or a defined 

period of time. Measuring the power of the compressor is the most direct way of 

monitoring the relative compressor loading, but pressure monitoring can also be utilized 
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if the compressor operates under a load/unload or on/off operating scheme. Use of 

pressure monitoring provides simultaneous monitoring of system pressure along with 

estimation of compressor loading.  

The relative compressor loading can be estimated by observing each pressure 

cycle during operation. The estimated compressor load is the fraction of time the 

compressor is loaded over one compressor cycle. By autonomously determining the 

points at which the compressor cycles on and off, the loading can be determined as a 

pre-processing step to the intelligent actuation algorithm.  

Figure 63 compares the compressor loading estimation for both pressure and 

power monitoring for one day. These data come from the industrial plant that is 

evaluated later in the chapter. In this figure, the compressor power is scaled to match the 

peak value in the day to provide clarity in the comparison. The compressor loading 

estimation from pressure compares favorably to the power monitoring of the system.  

 
Figure 63. Evaluation of using pressure to estimate compressor loading for a 

load/unload operating scheme on a compressor in an industrial plant. 
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5.1.2.2 Load State Information  

One of the primary purposes of the electrical load forecasting is to estimate the 

magnitude and time of the peak load to ensure adequate supply to meet electrical 

demand. The work presented in this chapter differs from electrical load forecasting as 

the peak load during a production day is of secondary interest. The primary objective is 

to determine periods of time in which production is idle and the compressor air system 

may be switched off. As such, the exact peak loading is not required, but rather the 

relative compressor loading throughout the day is of interest. One challenge in k-means 

load profiling of industrial data is that the relatively noisy profiles cause many profiles to 

be identified as outlier profiles. Many clustering algorithms give preference to these 

noisy data by assigning the outliers to unique clusters. The remaining production clusters 

are then grouped into a small number or even a single cluster. Once the load states are 

identified, the clustering algorithm is performed on profiles of these load states. The 

clustering algorithm becomes less sensitive to minor variations in daily usage and more 

dependent on general trends seen for each daily profile.  

The number of necessary load states are determined from calculating the 

histogram of all points in the training dataset between zero and the maximum loading 

conditions. From this histogram, the local maxima indicate groups of similar loading 

conditions. These loading conditions regularly occur and indicate candidate load state 

locations. Peaks that include at least 5% of the total number of points are marked for 

potential candidate load state locations. Nearby peaks are combined into a single 

candidate load state location. If fewer than three load states are identified, additional 
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load state locations are added equidistant from the identified states so that at least three 

load states are identified.  

Once the load state loading values are identified, each point in the training 

dataset is assigned to the nearest load state. After this initial assignment of load states, a 

low-pass filter is applied to the time-series dataset of load states to smooth the transitions 

between states.  

5.1.2.3 K-means Estimation Algorithm 

A novel k-means algorithm is used to classify the load profile and autonomously 

actuate the compressor. The training dataset is broken into days, where each profile is 

one day of operation. The k-means algorithm classifies each load profile in the training 

set into different clusters, which identifies different types of operating days. Once these 

clusters are identified, the test days are identified according to the clusters in order to 

identify times in which the compressor may be turned off. 

As discussed in the literature review, many k-means clustering algorithms rely on 

a set number of identified clusters to assign profiles, and an incorrect number of clusters 

can result in large classification errors. If too many clusters are assigned, some clusters 

will contain nearly identical profiles. If too few cluster are used, either a significant 

number of clusters will be assigned as outliers, or a single cluster will contain profiles of 

distinctly difference shapes. In this work, the optimal number of clusters is not known a 

priori. Some work has been done on adaptively determining the number of clusters by 

allowing the number of clusters to grow or performing hierarchal trimming, but each of 

these algorithms require manual specification of parameters in each dataset.   
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The algorithm proposed in this work dynamically adds and removes clusters in 

two distinct phases during cluster assignment. The first phase allows the number of 

clusters to grow to accurately incorporate all profiles into unique clusters. A second 

trimming stage combines similar clusters and removes outlier profiles from the assigned 

clusters.  

5.1.2.3.1 Growth stage:  

After the load profiles are converted into profiles with defined load states, the 

algorithm starts with a user-defined number of clusters. This number is a starting point 

for the algorithm and does not constrain the number of clusters in the growth or 

trimming phase. In this work, four initial clusters are selected for all tests in simulation 

and real data sets. These initial clusters are selected by looking at the average load factor 

of each profile in the training set, similar to what is done in other work. The initial 

clusters are chosen such that the average loading is spaced equally among all the starting 

clusters. This does not guarantee that the starting profiles are unique or the final cluster 

centers, but rather serves as a simple metric to space out the starting clusters.  

The growth stage is based on adaptive k-means clustering proposed by Bhatia 

[129]. In the referenced algorithm, the distance of the current profile to all the cluster 

centers is computer. Whenever this distance is further than the distance between the two 

closest cluster centers, the two closest clusters are merged and the profile becomes the 

center of a new cluster. However, this algorithm is sensitive to outlier profiles as an 

outlier profile will result in a new cluster formed specifically for the profile. Two 

existing cluster centers will be collapsed when creating this outlier cluster, thereby 
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creating non-optimal clusters. Ad-hoc measures are recommended in the paper to 

remove or account for these profiles. 

In the growth stage, each profile is examined in the training set and the Euclidean 

distance to all cluster centers is computed. If the distance of the current profile to the 

nearest cluster center is closer than the minimum distance between cluster centers, then 

the current profile is assigned to that nearest cluster center. If the distance is further than 

the closest cluster centers, a new cluster is created with the current profile as the cluster 

center. Instead of collapsing two clusters to create this new cluster, an additional 

temporary cluster is created [129]. In this novel work, all clusters are retained and the 

number of clusters is allowed to grow. Note that the number of clusters after growth is 

largely dependent on the initial selection of cluster centers. If two of the initial clusters 

have a really small distance, then many new clusters will be created in this stage. 

Multiple iterations on the training set profiles are done until a steady state is reached and 

all of the profile have been assigned to their closest cluster center.  

5.1.2.3.2 Trimming stage:  

After all the cluster centers have been created, the clusters are trimmed. A 

merging factor, which is detailed in the following paragraph, is calculated for trimming. 

Once the merging factor is determined, the trimming stage operates as using a greedy 

algorithm that iterates through all the cluster centers in descending order according to 

current number of member profiles. The cluster with the largest number of member 

profiles first assigns all profiles within the merging factor to itself. The cluster with the 

largest number of remaining profiles after this first classification then assigns all 
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remaining profiles within the merging factor to itself. This continues until all the profiles 

have been assigned.   

The merging factor can be user-specified or determined from characteristics of 

the training set profiles. In this work, the merging factor is determined by calculating the 

standard deviation of all training set profiles away from each cluster center. The 

minimum of these calculated standard deviation values determines the cluster center that 

is closest to all profiles if only a single cluster center was retained. This acts as a 

measure of the overall spread of the profiles from each other. The initial merging factor 

is calculated as half the minimum standard deviation of the profiles from the cluster 

centers. The final merging factor is determined as the minimum of the calculated 

merging factor and the minimum distance between cluster centers. 

At the conclusion of the trimming phase, some clusters will have few or no 

remaining profiles remaining. Any cluster with less than a user-specified percentage of 

profiles is removed. In this work, the cutoff threshold is set at 4%. Any cluster with 

fewer than 4% of the total training set profiles is removed, as this corresponds to 

operating schedules which occur less frequently than approximately once a month. All of 

the member profiles in these removed clusters are labeled as outliers.  

Once the clusters have been trimmed, the profiles are reassigned used a basic k-

means cluster algorithm. This reassignment is done to ensure each profile is closest to its 

respective cluster center. The greedy nature of the trimming phase potentially assigns 

profiles to the largest cluster, even though a surviving cluster center may be closer to a 

particular profile. 
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5.1.2.4 Compressor Actuation  

Once the training set is classified into respective clusters, each test day is 

evaluated to identify appropriate times when the compressor may be turned off. In 

turning off the compressor, the user specifies a buffer time window, which provides a 

buffer to ensure the compressor does not turn off immediately when reaching the idle 

state. Each test day is evaluated with the most recent 90 days as the specified training 

window. In other words, a rolling training window is used for the algorithm.  

To determine periods of time to shut off the compressor, the load is observed 

until the idle load state is reached. Once the system has remained in the idle load state 

for the user-specified buffer time, the current profile up to that point in the day is 

compared to the cluster centers. Specifically, for each cluster, the distance of all member 

profiles at that instance from the cluster center is calculated. The maximum distance is 

recorded, as this represents the member profile that is furthest from the cluster center. 

The distance of the current day to each of the cluster centers is also calculated. For each 

cluster center in which the distance is less than the maximum observed distance for 

member profiles, the current profile is marked as a candidate fit. If all the candidate 

cluster centers are in the idle load state, the compressor is turned off. The compressor is 

turned back on at the earliest start time of the candidate cluster centers minus the user-

specified buffer time.  

If all the candidate clusters remain off for the remainder of the day, then the 

compressor is shut off for the rest of the day. The entire day profile is then classified 

according to the closest cluster center. If the error on the entire cluster is less than the 
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maximum error of all the respective member profiles, the current day is classified as a 

member of the cluster. If the current profile error exceeds the maximum error of member 

profiles, the current day is marked as an outlier, despite the cluster center being the 

closest match of all cluster centers. In this instance, the compressor is started at the end 

of the current day in anticipation of the next day.  

If the profile is classified to one of the clusters, the next-day start time is 

estimated using both the day of week and the cluster type. The next-day start times of all 

member profiles are evaluated, and the initial minimum start time is set as the 

preliminary next -day start time based on member clusters. Additionally, as industrial 

schedules are typically heavily dependent on the day of week, the next-day start times of 

all profiles from the appropriate day of the week are determined. The start time is the 

minimum of the start time based on cluster assignment and the day of the week. The 

compressor is turned on at this evaluated start time minus the user-specified buffer time.   

5.1.3 Compressed Air System Simulation 

A physics-based dynamic simulation of a compressed air system was created in 

the Matlab/Simulink operating environment to test the intelligent actuation algorithm. 

This model was created using governing thermodynamic and fluid dynamic equations. 

The key elements created in the simulation include the compressor, receiver tanks, and 

pipelines. The goal of the simulation was to create realistic estimations of pressure drop, 

flow rates, and power usage for a specific plant layout.  
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5.1.3.1 Setup of Simulation 

5.1.3.1.1 Plant Setup 

Figure 64 shows the simulated plant that is modelled in Matlab/Simulink. This 

plant was based on a plant with a similar layout encountered during an IAC assessment. 

The compressed air system initially serviced two production lines, the main production 

line on Line 1 and the customs area. The main production line is serviced by a large, 3-

inch compressed air line. The customs area is serviced by a smaller, 2-inch line due to 

the lower initial demand. As the plant expanded, an additional production line was added 

of the same line as the customs area. The smaller line creates an undersized line with a 

measurable pressure drop from the outlet of the receiver tank to the production lines.  

 
Figure 64. Plant layout used in the compressed air simulation. 

5.1.3.1.2 Plant Schedule 

The schedules for the different operating lines were created based on the 

maximum operating flow for each line. The approximate operating schedule of the actual 
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plant from Figure 64 was used as a basis for the operating schedules of the simulation. 

The two production lines exhibit relatively constant usage, and the customs line has 

more variation in usage.  

Specifically, the plant nominally operates 5 days a week and on some Saturdays, 

with some reduced usage on Saturday. The second production line operates on a reduced 

schedule of approximately three or four days each week. There are eight holidays when 

production is shut down, and there is slow overall growth in energy over the course of 

the year. The different lines have different start and stop times, and there is random 

variation added to these times that account for variation in actual production schedules. 

In addition to the relatively constant usage in the production line, there is highly variable 

usage added to the production line schedules to account for air tool usage. An example 

of a one-week schedule for each of the operating lines is shown in Figure 65.  
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Figure 65. Typical weekly air usage for each of the three operating lines in the 

simulation. 

5.1.3.1.3 Physics Models 

5.1.3.1.3.1 Compressor Model 

The modelled compressor was based heavily on a thesis from Chappell [130]. 

The purpose of the work of the thesis was to create a sound physics and thermodynamic 

model to accurately model a compressor for use in energy assessments. The modelling 

of the compressor is heavily influenced by the operating scheme and type of compressor 
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(reciprocator, scroll, etc.). A load-unload, oil-flooded screw compressor was chosen to 

model for the simulation. A load-unload operating scheme of the compressor was chosen 

in order to test the ability to convert pressure load-unload data to approximate load 

factors, and a rotary screw compressor was chosen because of their common use in 

manufacturing plants.  

The basic governing equations for the simulation are derived based on theoretical 

equation with empirical correlations to account for observed phenomena. The theoretical 

rated volumetric flow through a compressor is a function of the compressor motor 

power, compressor motor efficiency, and the specific motor efficiency as seen in 

Equation (59).  

 
 

(59)     V̇rated =
(Wmotor)(0.746

kW

hp
)

(ηmotor)(ηcomp)
 

 
 
 

This rated flow is given in standard cubic feet per minute, where the mass flow 

can be determined by multiplying the density of air at standard conditions. The actual 

volumetric flow is the product of the rated flow and an empirically-derived volumetric 

efficiency. This volumetric efficiency is defined in Equation (60).  As the pressure 

increases, the mass output of the compressor will decrease slightly from the nominal 

rated value.  

 
 
(60)     nov = −0.0452Pcomp + 91.932 
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The work required of the compressor to compress the air is a function of both the 

isentropic work with its associated isentropic efficiency and the additional work to 

overcome frictional forces on the compressor. The isentropic work scales with operating 

pressure as shown in Equation (61).  

 
 

(61)                Ẇcompression =
V̇actualρatmcpTatm

ηis
[(

P

Patm
)

kc−1

kc − 1]  

 
 
 

The frictional work is assumed to be constant, and it is estimated in the thesis to 

consume approximately 10 percent of the rated power of the compressor as seen in 

Equation (62).  

 
 

(62 )             Ẇfriction = (0.10)
(Wmotor)(0.746

kW

hp
)

(ηmotor)
  

 
 
 

The values used in the compressed air simulation are summarized in Table 16. 

The values for air are all taken at standard conditions. The pressure load and unload 

setpoints were set at 105 and 115 psi, respectively. These pressure setpoints were 

defined to meet minimal operating pressures at each of the lines with an additional small 

pressure buffer.  
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5.1.3.1.3.2 Receiver Tank 

The receiver tank is assumed to be at uniform pressure by assuming that sudden 

pressure changes in the upstream and downstream systems quickly equilibrate within the 

tank. Additionally, the temperature of the air inside the tank is assumed to be constant 

with time. The pressure in the tank is a function of the mass flows into and out of the 

tank as seen in Equation (63). The mass flow rates into and out of the tank are 

determined based on compressor output and downstream uses of the compressed air. The 

size of receiver tank used in the simulation is shown in Table 16. 

 
 

(63)     
dP

dt
=

RT

V
(∑ ṁinlet − ∑ṁoutlet)  

 
 
 

5.1.3.1.3.3 Pipelines 

The pipelines are assumed to contain negligible volume, so the outlet pressure of 

the pipe is determined from the inlet pressure and the pressure drop in the pipe. The 

pressure loss of the pipelines is calculated based on the Darcy-Weisbach equation [131]. 

Additionally, the pressure loss through pipe bends and other obstructions is also 

calculated for a user-defined equivalent number of 90° bends.  The pressure loss is given 

as a function of the pipe dimensions, friction factor, speed of the air in the pipe, and the 

density of the air. As mass flow is calculated for the compressor and used in the 

simulation, the velocity term in the equation is substituted with the mass flow rate. 

Additionally, the density of air is substituted using the ideal gas equation, which consists 



 

199 

 

of the temperature, pressure, and specific gas constant. When these terms are introduced 

and simplified, the pressure loss in the pipeline is given in Equation (64).  

 
 

(64)   Pdownstream = (Pupstream −
ṁ2

PupstreamDi
4 ( 7.340 ∗ 10−8 LfD

Di
+ 3.670 ∗ 10−8))        

 
 
 

The friction factor for rough cast iron pipes was used in the simulation, and the 

length and diameter of the pipes were sized based on actual industrial plants. The mass 

flow rate is a dependent parameter that depends on conditions upstream and downstream 

of the pipe.   

 

5.1.3.1.3.4 End Uses 

To determine the mass flow rate of end uses, the end uses are approximated as 

orifices of equivalent diameter. This captures the reduced flow rate at lower pressure as 

seen in typical end uses of compressed air. The input parameter is the flow rate at 100 

psig, and the orifice is sized to meet the flow rate. The orifice has a default coefficient of 

flow of 1.0. Using these assumptions, the mass flow for the end uses are calculated using 

Equation (65) with the equivalent orifice size [131].  

 
 

(65)      ṁ =
12.22DorificeP

√T
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Table 16. Summary of Parameter Values for the Compressed Air Simulation 

Parameter Units Value 

𝑊𝑚𝑜𝑡𝑜𝑟 ℎ𝑝 125 
𝜂𝑚𝑜𝑡𝑜𝑟 − 0.95 
𝜂𝑐𝑜𝑚𝑝  𝑘𝑊

𝑆𝐶𝐹𝑀
 0.171 

𝜂𝑖𝑠 − 0.90 
𝜂𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑟 m3 11.36 

𝑇𝑎𝑡𝑚 K 311 
 
 
 
5.1.3.1.4 Connection of Subsystems 

Figure 66 shows the Simulink diagram for the system depicted in Figure 64. 

Each of the major subsystems on the diagram has a colored background and is labelled 

on the figure. One challenge with creating Simulink diagrams is the limitation that each 

subsystem may contain a single output. As such, the subsystems must be connected in a 

specific way to ensure each subsystem has exactly one output. In order to accomplish 

this, the defined outputs and inputs for each system is shown in Table 17. Future 

expanded simulations using these connection types will ensure that the simulation is 

linked properly.   
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Figure 66. Simulink diagram to create compressed air simulation. 

Table 17. Defined Inputs and Outputs for Simulation Subsystems 

Subsystem Defined Output Defined Input 

Compressor Mass Flow System Pressure 
Receiver Tank Tank Pressure Input and Output Mass Flow 
Pipelines Downstream Pressure Upstream pressure, Mass Flow 
End Uses Mass Flow Inlet Pressure 

  
 
 
5.1.3.2 Simulation Outputs 

The simulation was run with time steps of one second for a period of one year. 

The simulation provides information on the pressure at every point in the system, the 

compressor power, and the mass flow rates for all subsystems. As full state information 

is not available in actual industrial plants, only the pressure at the outlet of the receiver 

tank and the power of the compressor were measured for use in the algorithm to learn 

the schedules. Figure 67 shows the total system mass flow for one operational day. 
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Figure 67. Compressed air usage in the simulated facility over the course of one 

day. 

Figure 68 shows selected times of pressure and flow data. The figure on the left 

highlights how the undersized line creates a measurable pressure drop downstream of the 

compressor. The compressor setpoints must be raised to compensate and ensure the 

production line receives the correct system pressure. The figure on the right shows the 

facility compressed air usage as it ramps down during a production cycle. The pressure 

at the receiver tank is shown as well, with noticeable changes in the load-unload cycles 

of the compressor. At low loading conditions, the pressure ramps up quickly and decays 

slowly, while the reverse is true during periods of heavy loading. Both of these 

conditions result in extended cycle times, while periods with moderate loading have 

shorter compressor cycles.  
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Figure 68. Pressure data at selected points from the simulation. The left figure 

shows the noticeable pressure drop from the undersized line, and the right figure 

shows the differences in load-unload cycles as the flow rate changes in the facility. 

5.1.3.3 Simulation Results for the Intelligent Actuation Algorithm 

The clustering algorithm was tested on the simulation dataset prior to testing on 

experimental data. The simulation described above was tested using the algorithm 

presented earlier in the chapter. A total of 360 days of operation were simulated. An 

initial training set of 90 days was used, and the remaining 270 days were used as the test 

days. A rolling training window of the most recent 90 days was used for the training set 

for each individual test day.  

5.1.3.3.1 Load State Information 

The histogram of the loading states is shown in Figure 69 for the first 90 training 

days. There are three distinct peaks in the different loading conditions. The highest peak 

with a load factor around 0.2 is the idle load state when no production occurs. The other 

two peaks, while lower in maximum intensity, have a wider tail that reflects the greater 

variability of usage during production. The main production line has a wider range of 

hours, and times when the main production line is the dominant usage is seen in the 
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second peak. The third peak comes from when both main production lines are operating 

near full capacity. The loading states between the peaks do not go completely to zero as 

there are transitional states or periods of time when the sporadic usage in the Customs 

Area is larger. The three identified load states are marked on the figure for reference.  

 
Figure 69. Histogram of loading conditions for the simulated compressed air 

system. 

Figure 70 shows the daily load profiles for 30 days of the training dataset. The 

top plot shows the original compressor loading values. The bottom plot shows the 

loading values translated into load states with the lowpass filter applied. Translating the 

loading conditions into load states maintains the trends and general structure of the daily 

profiles, but it reduces the noise in the signal used for clustering.  
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Figure 70. Original simulation compressor loading is seen in (a) for 30 training 

days. The load states of the same profiles are shown in (b). 

5.1.3.3.2 K-means Estimation Algorithm 

Figure 71 displays the initial clusters used on one day of the clustering algorithm. 

These clusters were chosen based on equidistant average loading conditions for all the 

training days. They are intended only as starting points in the algorithm. This is evident 

in the third and fourth clusters, which are similar in shape and total loading.  
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Figure 71. Initial clusters in the k-means clustering algorithm for the simulation 

data. 

All of the clusters after the growth stage are shown in Figure 72 for this 

particular test day. In this instance, there were nine clusters after growth. Throughout the 

270 test days in the simulation, the number of clusters after growth varied from 5 to 54. 

As mentioned previously, this number is highly dependent on the initial choice of 

clusters. Several of these clusters are very similar in shape and overall loading.  
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Figure 72. All of the clusters and the associated profiles after the growth stage for 

the simulation data. 

The final identified clusters after the trimming stage are displayed in Figure 73. 

Four distinctly different profile types are identified, and all of the profiles in the training 

set are associated with one of the clusters. When contrasting these final clusters to the 

initial clusters, the third and fourth initial clusters were collapsed into the same clusters 

and Cluster 4 in the final clusters was a newly identified cluster type. For each of the 270 

test days, there were either 3 or 4 identified clusters after the trimming stage. While the 

number of clusters after the growth stage is largely dependent on the initial selection of 

clusters, the final number of clusters is much more consistent between test days. These 
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clusters and associated member profiles are notably clean and well defined in the 

simulation, in large part due to the limited noise and uncertainty of simulation data. 

 
Figure 73. Final clusters after trimming stage for the simulation data. 

5.1.3.3.3 Compressor Actuation 

The original loading profile of the compressor and actuated load profile are 

compared in Figure 74. In the simulation, the actuation of the compressor always 

occurred within times when production was off, in part because of the conservative 

nature of the algorithm. The algorithm achieved an 8.3% reduction in energy usage of 

the compressor. If the compressor was turned off always when in the idle state, a 27.3% 
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reduction in energy would be possible. The algorithm achieved approximately one third 

of potential energy savings. 

 
Figure 74. Comparison of original and actuated compressor load profile for 

approximately 3 weeks in the simulation data. 

5.1.4 Experimental Verification using 15-Minute Demand Data Sets 

As data collection for the evaluation of research algorithms is expensive, the k-

means algorithm presented in this chapter was tested initially on several datasets of 15-

minute demand data. These datasets record the average demand of a facility over each 

15-minute period over the course of data collection. A total of 12 datasets were tested, 

each with operating characteristics similar to a manufacturing plant with either a one- or 

two-shift operation. While the data for the entire facility from these datasets will be 
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notably different that then compressor loading, they provide similar overall usage 

patterns along with realistic noise and process variation from a physical facility.   

One year of data were available for 10 of the sets, and the other two had 

approximately 120 days of data. The time series data of each of the complete datasets are 

shown in Figure 75. While all show periods of idle and production usage, there is 

variability between overall patterns of usage in the datasets to test the robustness of the 

k-means algorithm. Figure 76 shows the same 12 datasets, but this figure illustrates the 

data over a 30-day window. This figure highlights the differences in daily use and 

operating pattern between datasets. The algorithm was tested on all of the datasets, but 

the figures shown in the following sections are representative from a single test day from 

one of the datasets.  

For each dataset, a 90-day rolling window was used for the training set, and the 

remaining days in each dataset were used as test days with the actuated compressor. The 

results are summarized in Table 18 below. Note that since there is a 90-day training 

window with a dataset of an entire year, later test days will have completely different 

training sets than earlier test days. As can be seen in Figure 75, there is considerable 

variation in usage throughout the year which can result in considerable variation in the 

identified clusters and times for actuation.   

  



 

211 

 

 

 

Figure 75. Complete time-series data for the 12 datasets of 15-minute demand data 

used to test the k-means algorithm. 
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Figure 76. A selected 30-day window for each of the 12 datasets to show the 

variation in production usage for each of the 15-minute demand datasets.  
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5.1.4.1 Load State Information  

As the available data provides facility demand instead of relative compressor 

loading, the load states were determined based on the facility demand. An example of 

the identified load states for one test day in one of the datasets is shown in Figure 77. As 

expected, the identified load states are much less distinct than in simulation. The most 

distinct peak occurs in the idle load state, and the remaining usage is much more 

dispersed. Although nuanced, there are three small peaks in the three highest load states. 

Table 18 shows the range of identified load states for each of the tested datasets. 

 
Figure 77. Example load state identified for one of the 15-minute demand datasets. 

Figure 78 shows the translated load states from Figure 77 for 30 daily profiles. 

Similar to simulation, translating the initial data to load states maintains overall usage 

patterns while reducing noise in the signal. 
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Figure 78. Power data translated to load states for 30 days in one of the 15-minute 

demand datasets. 

5.1.4.2 K-means Estimation Algorithm  

The initial clusters are shown in Figure 79 based on equidistant spacing of 

average daily loading. All five load states are found in the initial cluster profiles, but the 

third and fourth profiles are similar in overall shape.  
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Figure 79. Initial clusters for one of the 15-minute demand datasets. 

After growth for this particular test day, a total of 12 clusters were created and 

are shown in Figure 80. The clusters after the trimming phase are shown in Figure 81. 

With the increased variability and noise in the dataset, some profiles fall outside the 

limits for every cluster and are classified as outliers. On this particular test day, four final 

clusters were identified with distinct operating profiles. Of note is the difference in final 

cluster centers from the initially identified cluster centers. Table 18 shows the minimum 

and maximum number of clusters after both the growth and trimming stage. As noted 

earlier, initial selection of clusters that are close together causes an explosion in the 

number of total clusters after growth, but the number of clusters is greatly reduced 

through the trimming phase.  



 

216 

 

 
Figure 80. Clusters after growth for one of the 15-minute demand datasets. 
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Figure 81. Final clusters after growth for one of the 15-minute demand datasets. 

5.1.4.3 Compressor Actuation  

The actuated profile for one of the datasets is displayed in Figure 82, and a 

summary of all the actuated datasets is shown in Table 18. This table shows the actual 

percent savings that were achieved in each of the datasets, which ranges from 1% to 

14% of the total energy use of the facility. This metric partially depends on the facility 

operating characteristics because not all energy may be reduced in the facility. The 

distinctly different overall usage patterns between datasets causes differences in the total 

possible reduction in usage based on both the load during idle periods and the time spent 

in idle periods. As such, the maximum possible reduction in energy usage for each 

dataset is also shown in the table. The maximum reduction was calculated by reducing 
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the demand to zero at all times in the idle load state. Also shown in the table is the ratio 

of the actual achieved savings to the maximum possible savings. This ratio ranges from 

11% to 36% and indicate potential improvements to the k-means algorithm.  

 
Figure 82. Comparison of the original and actuated profile for one of the 15-minute 

demand datasets. 
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Table 18. Summary of Results for the 15-minute Demand Datasets 

Dataset 
Number 

Number 
of Test 
Days 

Annual 
Savings 

Maximum 
Possible 
Savings 

Second 
Law 
Savings 

Min 
Identified 
Load 
States 

Max 
Identified 
Load States 

Min Clusters 
After Growth 

Max 
Clusters 
After 
Growth 

Min 
Clusters 
After 
Trimming 

Max 
Clusters 
After 
Trimming 

Number of 
Type 1 
Error 
Instances 

Number of 
Type 2 Error 
Instances 

1 20 13% 53% 25% 3 3 8 59 3 5 0 0 
2 20 14% 58% 23% 3 3 30 55 3 4 0 0 
3 270 2% 11% 17% 3 5 4 64 3 7 9 0 
4 270 5% 17% 29% 3 5 4 78 2 8 7 0 
5 270 6% 22% 25% 3 5 4 48 2 9 2 0 
6 270 4% 19% 23% 3 5 5 60 2 6 1 0 
7 270 13% 36% 36% 3 5 4 75 2 8 4 0 
8 270 3% 15% 21% 3 5 4 65 2 6 2 0 
9 270 1% 12% 11% 3 5 4 74 3 8 3 0 

10 270 4% 20% 21% 3 4 9 73 3 7 7 0 
11 270 6% 20% 30% 3 5 4 58 2 6 1 0 
12 270 3% 12% 23% 3 5 4 63 3 7 3 0 
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5.1.4.4 Errors in Actuation  

In evaluating the effectiveness of the k-means algorithm, errors in actuation were 

evaluated for each dataset. The errors are broken into Type 1 and Type 2 errors. Type 2 

errors are errors in which the system is turned off in the non-idle operating state. Due to 

the conservative nature of the algorithm and the ability to use measured system data to 

determine when to turn off the system, no Type 2 errors were observed in any dataset. 

Type 1 errors are errors in which the system is not turned prior to the start of production. 

This is the more likely error as it requires prediction using past performance data, which 

is subject to additional uncertainty. This error typically is not catastrophic to production, 

but instead is inconvenient in requiring plant personnel to manually turn on equipment. 

The maximum number of observed Type 1 errors in a dataset was 9 errors, which 

corresponds to approximately 3% of the test days. Overall, there are minimal 

occurrences of this type of error.  

Several examples of this error are illustrated in Figure 83. The two plots on top 

show errors from potential misclassification of load states. This nominally higher 

increased use could potentially still be in a non-production state and have minimal 

negligible impact from the error. In general, this misclassification of idle load states as 

operating load states adds an additional conservative layer to the algorithm. The bottom 

two plots show errors when the start of production was incorrectly estimated. As 

mentioned previously, typically the consequence of this incorrect estimation is 

inconvenience to facility workers in manually actuating the system.  
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Figure 83. Illustrative examples of Type 1 actuation errors. The periods of time 

when the system was actuated off the but actual load state was in a production load 

state are highlighted in gray.  

5.1.4.5 Variation in User-Specified Buffer Time  

The number of Type 1 errors in the dataset is correlated to the user-specified 

buffer time in the k-means algorithm. The system will turn on earlier with increased 

buffer time. While this will reduce the number of Type 1 errors, the total energy savings 

will be decreased. Figure 84 shows the effect of changing the buffer time on both the 

number of Type 1 error instances and the system energy savings. Each dataset is one of 

the lines on the graph. For reference, all of the figures for the 15-minute demand datasets 

and results in Table 18 were done with a buffer time of 1.5 hours. The number of errors 

steeply drops off with increased buffer time, but the realized energy savings drops off 

more gradually.    
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Figure 84. Effect of the use-specified buffer time on Type 1 error occurrences and 

energy savings for the 15-minute demand datasets. 

5.1.5 Experimental Verification using Sensed Data 

Data were collected on an industrial compressed air system in a facility that 

fabricates steel. The facility manufactures customs assemblies and relies on compressed 

air for several steps in the production process. The facility operates between one and two 

shifts for five days each week. The only constant usage during production comes from 

air leaks in the lines, and all other usage in the production process is sporadic due to the 

custom nature of the manufactured product.  

The compressed air system was manually turned off at the end of each 

production day by production personnel. The energy savings achieved from the k-means 

algorithm is compared to the energy savings from manual actuation. As mentioned 

earlier in the chapter, there are several reasons that inhibit manually turning off the 

compressor in most plants, but this comparison highlights the current performance of the 

algorithm and future possible improvements.  
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Figure 85 shows the compress air usage over the entire time window of data 

collection on the left and a shortened window on the right. As expected, the usage goes 

to zero at nights and non-production day. The usage is relatively constant from leaks 

throughout each production day with visible spikes during periods of air usage.  

 
Figure 85. Current from the industrial compressed air system over the course of 

data collection. 

When evaluating the autonomous actuation algorithm, there will be periods of 

time in which the compressor should still be on according to the algorithm but the actual 

compressor was off. In these instances, the idle compressor power is estimated to 

account for the compressor power. The average power of the compressor is computed 

over all times in which the compressor is in the idle load state, and this average value is 

used in all instances with zero measured power usage.  

Data were collected for a total of 134 days at the facility. Similar to simulation 

and the 15-minute demand datasets, 90 training days were used for the initial training 

set. The remaining 44 days were used for test days. The results of the k-means algorithm 
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are presented in Table 19. These results are discussed in the following sections for the 

different stages of the k-means algorithm.  

Table 19. Test Results of the k-mean Algorithm on the Measured Data from an 

Industrial Manufacturer. 

Parameter Value 

Number of Test Days 44 
Savings: Autonomous Control 19% 
Savings: Human Control 70% 
Maximum Savings 94% 
Ratio of Savings: Autonomous Control 20% 
Ratio of Savings: Human Control 74% 
Min Identified Load States 3 
Max Identified Load States 3 
Min Clusters After Growth 17 
Max Clusters After Growth 36 
Min Clusters After Trimming 1 
Max Clusters After Trimming 1 
Number of Type 1 Error Instances 1 
Number of Type 2 Error Instances 0 

 
 
 
5.1.5.1 Load Factor Estimation 

Both power and pressure data were monitored for the dataset. The facility 

changed the operating conditions of the compressor from load/unload operating scheme 

to a VFD configuration midway through the data collection period. The period of time 

with the load/unload operating scheme was used to evaluate the use of pressure data to 

estimated compressor loading. The methodology of this estimation was discussed 

previously, and this dataset is used in the creation in Figure 63.  
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5.1.5.2 Load State Information 

The load states are calculated in the same manner as previous datasets for all 

periods of time when the compressor was on. At times when the compressor was 

manually turned off, the load state of those times is set to the first load state, which 

corresponds to the idle operating state. In every test day, as seen in Table 19, three load 

states were identified and used. Figure 86 shows the comparison of the compressor 

current and translated load states for 30 of the training days. When production is 

running, the compressor remains in the idle operating state for large periods of time. The 

relatively sporadic usage of the compressed air system is captured in the load states, and 

the pattern of usage is much more irregular that was seen in both simulation and the 15-

minute demand datasets.  
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Figure 86. Comparison of daily load profiles based on compressor current and 

translated compressor load states. 

5.1.5.3 K-means Estimation Algorithm  

The results of the k-means algorithm are summarized in Table 19. Due to the 

sporadic nature of the load profile, there are many days with unique time periods of 

heavy air use. As such, there are many identified clusters after the growth stage for each 

of the test days. However, the algorithm always consolidated to a single cluster after the 

trimming phase due to the lack of uniformity in periods of high use. A single cluster 

after trimming results in more conservative actuation, as the uncertainty from all the 

profiles is captured and accounted for in the actuation. Each cluster defines the start and 

stop times of the cluster center as the earliest and latest times of the member profiles.   
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5.1.5.4 Compressor Actuation 

Figure 87 shows the human actuation and the autonomous actuation compared to 

the estimated unactuated profile. In the estimated unactuated profile, periods with zero 

measured usage were replaced with the average idle usage as discussed previously. As 

seen in the figure, the human actuation performs better than the autonomous actuation 

due to the conservative approach of the autonomous actuation. This is verified in Table 

19, where the savings from human control is markedly improved over the autonomous 

control. This difference in savings highlights the potential improvements to the 

autonomous actuation algorithm. The ratio of the achieved savings to the maximum 

possible savings is also displayed in the table for reference. Only one instance of error in 

actuation occurred, during which the compressor failed to autonomously turn on prior to 

the start of production usage.  
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Figure 87. Comparison of human and autonomous actuation to the unactuated 

compressor loading for 20 days in the industrial manufacturing dataset.  

5.1.6 Future Avenues of Research 

While several future directions of research are envisioned, including 

implementation of the presented k-means algorithm on actual industrial compressed air 

systems, the following section presents future improvements to the k-means algorithm 

along with two specific directions of future research. The first direction is in using 

intelligent storage to reduce compressor energy while production is off. The second is an 

extension of the presented work in this chapter to autonomously adjust the pressure 

setpoint of the compressor during production periods to optimize energy usage while 

maintaining necessary pressure setpoints.  
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5.1.6.1 Improvements to the K-means Algorithm 

There are several possible improvements that could be explored to improve the 

k-means algorithm. First, the standard deviation away from the cluster centers was used 

as the metric in this work as the factor to merge clusters in the trimming phase. Other 

potential metrics that compare the uniformity of clusters [109] can be evaluated in future 

work in merging the clusters. Additionally, future work can pair compressor data with 

occupancy data, other equipment data, or even entire facility demand data. These 

additional data could provide better estimates of plant production in order to improve 

actuation. Finally, reinforcement learning concepts can be used to improve the 

estimation. When the compressors fail to turn on at the start of production, this 

information can be incorporated into future predictions.  

5.1.6.2 Intelligent Compressed Air Storage 

Another avenue of potential research is in intelligent storage of compressed air. 

The algorithm presented in this chapter actuate the compressor based on production. 

Turning off the compressor is based on the analysis of observed data to determine when 

the compressor may be turned off. Because turning off the compressor is reactive instead 

of predictive, the compressor is consistently turned off when no production is running. In 

all of the tests with the algorithm, not a single instance was observed when the 

compressor was turned off prematurely. Turning the compressor back on, however, 

involves prediction on when production will resume. The inherent uncertainty of 

prediction results in either an overly conservative algorithm or instances when the 

compressor fails to turn on in time for production.  
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To avoid the uncertainty of prediction, the potential future research would use 

intelligent air storage. The system would be monitored for production, similar to what 

was done in this chapter. When production is stopped, the compressor setpoint is 

reduced to a lower pressure instead of completely shut down. A second, smaller air tank 

remains at high pressure. When air use is detected, the second air tank supplies the 

necessary high pressure until the main air system can reach the operating pressure 

setpoint.  

A diagram of the proposed system is shown in Figure 88. The installation of the 

system is done at the location of the main receiver tank. The system is installed by 

tapping into the header lines on both the input and output of the receiver tank. The 

proposed system consists of two solenoid valves, a one-way value, a three-way valve, 

and a secondary air tank. Both solenoid valves and the three-way valve are connected 

and actuated by the central controller. During production, air flows through the receiver 

tank with the nominally open solenoid valve and three-way valve allowing air through 

the main header. The one-way check valve ensures the secondary air tank remains 

pressurized to the system pressure. Once production is off, the system will remain in the 

configuration, and the secondary tank will remain at operating pressure.  

Once air use is detected while in the reduced pressure state, the three-way valve 

switches and releases the air from the secondary tank for production. Simultaneously, 

the nominally-open solenoid valve closes, redirecting all air from the compressor 

through the smaller, pressurized air tank.  
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While the compressor is running, the nominally-closed solenoid valves oscillates to 

slowly fill the receiver tank while maintaining pressure in the system through the smaller 

air tank.  

 
Figure 88. Schematic of potential intelligent air storage concept. 

The future research would focus on detection methods to determine the initial air 

use when production starts. One potential challenge is in achieving sufficient 

measurement sensitivity to correctly identify when the compressed air system should be 

turned on. Other work has used the rate of pressure change to identify when compressor 

sequencing, providing initial evidence on the feasibility of using pressure changes to 

detect air usage [94].  
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Another potential research effort in this project is in correct sizing of the air tank. 

The tank should be large enough to meet the initial inrush of demand but small enough 

for economic purposes. Once the system is installed, the algorithm can experimentally 

determine the appropriate reduced pressure setpoint. This setpoint would be based on the 

compressor power, production air usage, and air storage capacity and can be estimated 

based on the system response.  

Finally, the feasibility of slowly filling the main tank while maintaining pressure 

in the secondary tank will be explored. Solenoid valves can nominally switch very 

quickly, allowing the compressor to remain in the loaded pressure band while redirecting 

some of the airflow into the main tank. Potential implementation challenges will be 

explored, including potential control issues, air flow capacity limitations, pressure 

waves, etc.  

5.1.6.3 Pressure Setpoint Adjustment using Flow on Multiple Lines 

The algorithm presented in this chapter provides system level operation based on 

the pressure and power of the total compressed air system. Many industrial plants have 

several compressed air lines with major equipment and significant use. Often, the 

various uses of compressed air have different operating pressure requirements. 

Additionally, incorrectly sized headers create measurable pressure drop between the 

compressor and end use of equipment. This occurrence typically results from plant 

expansion of equipment without commensurate upgrades to compressed air headers. 

This pressure drop creates a virtual increase of the pressure setpoint at the compressor in 

order to maintain the necessary setpoint after the pressure drop. This is done due to the 
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lower initial cost of running the compressor at a higher pressure rather than upgrading 

the entire network of compressed air lines. Figure 89 shows an example of the pressure 

drop in third operating line from the simulation in Figure 64. The top plot shows the 

pressure at the outlet of the compressor to verify that the pressure drop results from 

pressure loss in the line.  This pressure drop resulted from an undersized header due to 

the addition of the third production line using the existing air system.  

 
Figure 89. Example of a significant pressure drop due to an insufficiently-sized 

compressed air line. 

 The plant compressed air pressure setpoint is determined by the end use with the 

highest pressure requirement. When equipment with this high pressure requirement is 

not running, the compressor setpoint may be reduced to meet the highest setpoint among 
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equipment that is in production. This strategy requires additional knowledge on how the 

system is operating. With knowledge on compressed air use on major lines along with 

necessary setpoints, the compressor may be turned down during production hours.  

As mass flow meters are expensive and at times have reliability issues, 

differential pressure between the compressor and the end use of air can be used to 

approximate the flow. Figure 90 shows the difference in pressure along with flow 

information for the second operating line in the simulation. While exact flow 

measurements would be difficult using pressure, the difference in pressure can identify 

periods of air use on the production line. This approach would require pressure gauges 

on major operating lines in order to determine when the production line is running. 

 
Figure 90. Use of pressure differences to estimate the overall production use of 

compressed air. 
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With a user-defined setpoint for each line, the k-means algorithm presented in 

this chapter can be used to identify times when each line is not being used. The current 

pressure setpoint is determined by the maximum pressure requirement of all lines that 

are currently in production. Figure 91 shows an example where the compressor can be 

turned down during production prior to automatically shutting off at the end of 

production. The compressor is still turned off at the end of all production, but the 

pressure is reduced during periods of time with some production still in the plant.  

 

Figure 91. Example of how intelligent compressor actuation can decrease 

compressor energy usage further by monitoring individual lines. 

5.2 Summary 

This chapter demonstrated the potential improvement in energy efficiency 

through autonomous actuation with a test case on improved actuation of compressed air 

systems. Compressed air systems use relatively large amounts of electricity when the 

system is idle, and autonomously turning off equipment can generate energy savings 

with no effect on production.  
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A novel adaptation of a k-means algorithm was presented in this chapter to 

identify periods of time to turn off the compressor. The algorithm converted the 

measured power into discrete load states. These load states were used in the clustering 

algorithm, which included distinct growth and trimming phases to adaptively determine 

the number of necessary clusters. The effectiveness of the algorithm was evaluated with 

a simulation of a compressed air system. The algorithm was then tested on a set of 15-

miniute demand datasets. Finally, the algorithm was tested on measured data from an 

industrial manufacturer. The effectiveness of the autonomous actuation was compared to 

human actuation, where production personnel manually turned off the compressor at the 

end of production periods. Overall, the algorithm effectively actuated the compressor to 

reduce energy usage. The only types of observed error occurred when the compressor 

did not turn on prior to the start of the following production period, an error that is 

primarily an inconvenience instead of production critical.  
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CHAPTER 6 

CONCLUSIONS 

 

This dissertation discusses how greater energy efficiency can be achieved within 

the Industrial Internet of Things. While multiple frameworks have been proposed in the 

literature, very few applications have emerged in the marketplace specific to the 

Industrial Internet of Things. This slow development in IIoT solutions is directly related 

to the slow adoption of new technologies in industry. This hesitation in technology 

adoption will likely slow the development of IIoT solutions in the field. While complete 

networking of all plant equipment with automated plant improvements is the end vision 

of IIoT, the realization of this vision will require extended effort and time. Focusing on 

targeted solutions for energy support systems, as proposed in the dissertation, will 

expediate IIoT solutions in plants. Specifically, by combining energy, maintenance, and 

safety solutions in common energy systems, faster technology development and 

implementation can be achieved.  

This dissertation provided examples of how IIoT solutions can improve the 

energy efficiency of industrial energy systems either through improved diagnostics or 

intelligent actuation. These demonstrated examples target common energy systems that 

are typically found in industrial plants. By identifying improvements in common energy 

systems, the implementation of identified solutions can be greatly enhanced.  

The first demonstrated example in the dissertation is a non-intrusive flow meter 

for compressed air systems. In both simulation and experimental validation, the 
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proposed method of using thermal responses to measured compressed air flow shows 

promise. The experimental results closely follow the expected trend seen in simulation 

with limited scatter in the data away from the correlation. These experimental results 

justify additional exploration and experimentation to improve the method. Since the 

proposed method is inexpensive, requires minimal setup, and is insensitive to changes of 

pressure in the pipe, the method can be economically developed for flow measurement 

in energy assessments. Additionally, the method of using the thermal response to 

measure flow can be applied to other fields of fault detection and diagnosis. 

Nonintrusive, inexpensive flow measurement with minimal calibration and setup is 

difficult in many fields. Some of these fields include BTU meters in industrial support 

systems, HVAC refrigerant flow in fault detection and diagnosis, and state monitoring of 

water and gas pipelines. This method can potentially provide flow solutions to these 

other application areas.   

This method was advanced further by dynamically determining multiple 

parameters when measuring the temperature profile. While this advanced method shows 

promise in the ability to measure flow, accounting for heater dynamics is the most 

prominent research task going forward. The effects of the heater dynamics are seen both 

in the experimental tests on the black iron pipe and in the test case with the copper pipe. 

Accounting for these dynamics will ensure that differences in the temperature response 

are primarily caused by flow differences in the pipe, thereby improving the robustness of 

the method. In addition to accounting for heater dynamics, extensive testing needs to be 

performed on multiple materials to identify any other potential limitations that were not 
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manifest in the original experiments. If no further limitations are identified, the low cost 

of materials and minimal assembly will enable a market solution that is economical and 

can meet all the requirements for a non-intrusive flow meter for compressed air and 

other fluid systems.  

The second presented example shows the automated analysis of building lighting 

systems to identify appropriate energy efficiency measures. This work lays the 

groundwork for more extensive capabilities in the automated analysis of building retrofit 

opportunities. Current building energy assessments are time-consuming and expensive, 

and automation of many repetitive tasks can reduce cost while improving overall 

assessment results. Additionally, this automation allows professional building auditors to 

focus their effort on unique challenges. Improving overall assessment efficacy will lead 

to greater participation rates among facilities, accelerating realized energy savings.  

In IIoT, improved decision making and actuation is a necessary step to achieve 

improved energy or production savings. Specifically in IIoT for energy efficiency, 

autonomous actuation is important due to the relatively modest achievable savings. The 

final case study evaluated using intelligent actuation to achieve energy savings in 

compressed air systems. The presented method demonstrated the ability to provide 

energy savings for compressed air systems. However, the algorithm was shown to be 

conservative, and there exists potential improvements to increase the realized energy 

savings from the actuation. Approaches to increase the effectiveness of the algorithm 

decrease the amount of time when the system is running with no production air use. 

Potential future research avenues to achieve this decrease in idle time include 
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improvement of the k-means algorithm, adaptively adjusting pressure setpoints to 

optimize compressor use during production, and implementing intelligent storage to 

autonomously start the compressed air system when use is detected. Each of these 

methods can increase the realized savings with minimal additional cost. Additionally, 

other approaches can integrate other sensors in IIoT to provide contextual information 

on production. Total system power, electrical signals from equipment, and occupancy 

monitoring of the facility can all potentially improve the identification of idle periods 

and thereby increase the potential energy savings.  
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NOMENCLATURE 

 

Parameter Description Units/Definition 

Ac Cross sectional area 𝑚2  

α =
k

ρc
 Thermal diffusivity 𝑚2

𝑠
  

k Thermal conductivity 𝑊

𝑚·𝐾
  

ρ Density 𝑘𝑔

𝑚3  

c Specific heat 
𝑘𝐽

𝑘𝑔·𝐾
  

E Energy in material 𝐽 

T Temperature 𝐾 

h Convection coefficient 𝑊

𝑚2·𝐾
  

T∞ Ambient temperature 𝐾 

Pi Interior perimeter of pipe 𝑚 

q Heat flux 𝑊

𝑚2  

erf(x) Error Function  

u = T − T∞ Adjusted Temperature 𝐾 

w =
Qcx

4
 Estimated Parameter 𝐾 

f=√x2/4αt 
Non-dimensional 
Estimated Parameter   

g= √bt 
Non-dimensional 
Estimated Parameter  

x Axial location of pipe 𝑚 

t Time 𝑠 

x0 x offset 𝑚 

Q Thermal energy transfer 𝐽 
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Re Reynolds number  

Pr Prandtl number  

D Diameter 𝑚 

v Velocity 𝑚

𝑠
  

µ Dynamic viscosity 𝑘𝑔·𝑚

𝑠
  

V̇ Volumetric flow rate 𝑚3

𝑠
  

r Radius 𝑚 

V Volume 𝑚3 

Wmotor Motor power rating hp 

ηmotor Motor Efficiency − 

ηcomp Compressor Specific 
Efficiency 

kW

𝑆𝐶𝐹𝑀
  

ηis Isentropic Efficiency − 

P Pressure psi 

kc Heat Capacity Ratio − 

R Specific Gas Constant kJ

kg K
  

ṁ Mass Flow kg

s
  

V Volume m3 

L Length of Pipeline m 

fD Friction Factor − 

n Number of 90° Turns − 

atm Atmospheric − 

comp Compressor  − 
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APPENDIX A 

DERIVATION OF INDIVIDUAL NODE EQUATIONS FOR NUMERIC MODEL 

 

The individual state equations can be quite involved when considering the heat 

transfer effects from each neighboring element. As such, the main dissertation presents 

the heat transfer equation for a state on the inside surface of the pipe. Equations for 

internal states, states on the exterior of the pipe, and states for the corners of the pipes 

are all found in this appendix.  

The model also captures the dynamics of air heating up in the pipe and the 

resulting asymmetric temperature profile around the heater. As the equations for the 

states that include air are significantly different from the states of the pipe, these 

equations are also derived in this section   
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Figure 92. Outline of the model used for analyzing the dynamic response of the 

pipe. 

A.1 Derivation of Control Volume Equations 

A.1.1 Interior Nodes 

The interior nodes are interior nodes in the pipe material in which no boundary 

conditions exist. Thermal conduction is the only mode of heat transfer in these nodes, 

and so the energy balance equation for these nodes is given by the following equation. 
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For i = 2:n-1, j = 2:m-2 

ρc(2πrjΔrΔx)
∂T(j−1)n+i

∂t

= k2πrjΔr
(T(j−1)n+i−1 − T(j−1)n+i)

Δx
+ k2π(rj

+
Δr

2
)Δx 

(T(j−2)n+i − T(j−1)n+i)

Δr
+ k2πrjΔr

(T(j−1)n+i+1 − T(j−1)n+i)

Δx

+ k2π(rj −
Δr

2
)Δx 

(Tjn+i − T(j−1)n+i)

Δr
 

This equation can be simplified to the following form. 

∂T(j−1)n+i

∂t
= α [

1

(Δx)2
(T(j−1)n+i−1 − T(j−1)n+i) +

(rj +
Δr
2 )

rj(Δr)2
 (T(j−2)n+i − T(j−1)n+i)

+
1

(Δx)2
(T(j−1)n+i+1 − T(j−1)n+i) +

(rj −
Δr
2 )

rj(Δr)2
 (Tjn+i − T(j−1)n+i)] 

Finally, the temperature terms at the node of interest can be grouped together.  

∂T(j−1)n+i

∂t
= −2α [

1

(Δx)2
+

1

(Δr)2
] T(j−1)n+i

+ [
α

(Δx)2
(T(j−1)n+i−1 + T(j−1)n+i+1) +

α (rj +
Δr
2 )

rj(Δr)2
 (T(j−2)n+i)

+
α (rj −

Δr
2 )

rj(Δr)2
 (Tjn+i)] 

 

 



 

263 

 

A.1.2 Outer Pipe Surface 

The outer pipe surface has similar equations to the interior nodes. Since the outer 

surface is insulated, no heat transfer occurs off the outer edge.  

For i =2:n-1, j = 1 

ρc (πroΔrΔx (1 −
Δr

4ro
))

∂Ti

∂t

= kπroΔr (1 −
1

4ro
)
(Ti−1 − Ti)

Δx
+ kπroΔr (1 −

1

4ro
)
(Ti+1 − Ti)

Δx

+ k2π (ro −
Δr

2
)Δx 

(Tn+i − Ti)

Δr
 

The simplified equation is the following.  

∂Ti

∂t
=

α

1 −
Δr
4ro

[(1 −
Δr

4ro
)
(Ti−1 − Ti)

(Δx)2
+ (1 −

Δr

4ro
)
(Ti+1 − Ti)

(Δx)2

+
2(ro −

Δr
2 )

ro(Δr)2
 (Ti − Tn+i)] 

Grouping the temperature terms at the node results in the final equation as shown 

below. 

∂Ti

∂t
= −α [

2

(Δx)2
+

2(ro −
Δr
2 )

(ro −
Δr
4 ) (Δr)2

] Ti

+ [
α

(Δx)2
(Ti+1 + Ti−1) +

2α (ro −
Δr
2 )

(ro −
Δr
4 ) (Δr)2

 (Tn+i)] 
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A.1.3 Inner Pipe Surface 

The inner pipe surface nodes have similar equations as before, except the surface 

that interfaces with the fluid has a convection term. The following equation describes 

these nodes.  

For i =2:n-1, j = m-1 

ρc (πrIΔrΔx (1 +
Δr

4rI
))

∂T(m−2)n+i

∂t

= kπrIΔr (1 +
1

4rI
)
(T(m−2)n+i−1 − T(m−2)n+i)

Δx

+ kπrIΔr (1 +
1

4rI
)
(T(m−2)n+i+1 − T(m−2)n+i)

Δx

+ k2π (rI +
Δr

2
)Δx 

(T(m−3)n+i − T(m−2)n+i)

Δr

+ h2πrIΔx(T(m−1)n+i − T(m−2)n+i) 

The simplified equation is the following.  

∂T(m−2)n+i

∂t
= [

α

(Δx)2
(T(m−2)n+i−1 − T(m−2)n+i) +

α

(Δx)2
(T(m−2)n+i+1 − T(m−2)n+i) +

2α

(Δr)2

(rI+
Δr

2
)

(rI+
Δr

4
)
(T(m−3)n+i − T(m−2)n+i) +

2h

(1+
Δr

4rI
)ρcΔr

(T(m−1)n+i − T(m−2)n+i)]  

The temperature terms at the node of interest can be grouped together.  

∂T(m−2)n+i

∂t
= − [

2α

(Δx)2
+

2α

(Δr)2

(rI+
Δr

2
)

(rI+
Δr

4
)
+

2h

(1+
Δr

4rI
)ρcΔr

] T(m−2)n+i + [
α

(Δx)2
(T(m−2)n+i+1 +

T(m−2)n+i−1) +
2α

(Δr)2

(rI+
Δr

2
)

(rI+
Δr

4
)
T(m−3)n+i +

2h

(1+
Δr

4rI
)ρcΔr

T(m−1)n+i]  
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A.1.4 Pipe Edges 

The modeled pipe is assumed to be infinitely long in considering thermal effects. 

Therefore, the location of the pipe edges along the x-coordinate is chosen such that the 

boundaries do not affect the temperatures at points of interest. Although any boundary 

condition could theoretically be chosen, as there will be no effects from the boundary, a 

boundary condition is chosen that will approximate the temperature conduction through 

the boundary. The true response will deviate most from this approximated response 

when a frequency input is given to the system. The approximate response is developed 

by assuming a temperature in the boundary node. The temperature is approximated by 

assuming a proportionality term with the difference between the node temperature and 

the ambient temperature. Essentially, this acts as if convection takes place on the edges 

of the pipe.  

For i=1, j = 2:m-2 

2ρc (πrjΔr
Δx

2
)
∂T(j−1)n+1

∂t

= hr2πrjΔr(T∞ − T(j−1)n+1) + k2π (rj +
Δr

2
)
Δx

2
 
(T(j−2)n+1 − T(j−1)n+1)

Δr

+ k2πrjΔr
(T(j−1)n+2 − T(j−1)n+1)

Δx

+ k2π (rj −
Δr

2
)
Δx

2
 
(Tjn+1 − T(j−1)n+1)

Δr
 

The equation is simplified to the following form. 
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∂T(j−1)n+1

∂t
= [ 

2hr

ρcΔx
(T∞ − T(j−1)n+1) + α

(rj +
Δr
2 )

rj(Δr)2
 (T(j−2)n+1 − T(j−1)n+1)

+
2α

(Δx)2
(T(j−1)n+2 − T(j−1)n+1) + α

(rj −
Δr
2 )

rj(Δr)2
 (Tjn+1 − T(j−1)n+1)]  

The temperature terms at the node of interest can be grouped together.  

∂T(j−1)n+1

∂t
= − [ 

2α

(Δx)2
+

2α

(Δr)2
+

2hr

ρcΔx
] (T(j−1)n+1)

+ [ 
2α

(Δx)2
(T(j−1)n+2) +

α (rj +
Δr
2 )

rj(Δr)2
 (T(j−2)n+1) +

α (rj −
Δr
2 )

rj(Δr)2
 (Tjn+1)

+
2hr

ρcΔx
T∞] 

For i=n, j = 2:m-2 

2ρc (πrjΔr
Δx

2
)
∂Tjn

∂t

= hr2πrjΔr(T∞ − Tjn) + k2π (rj +
Δr

2
)
Δx

2
 
(T(j−1)n − Tjn)

Δr

+ k2πrjΔr
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Δx
+ k2π (rj −

Δr

2
)
Δx

2
 
(T(j+1)n − Tjn)

Δr
 

The equation is simplified to the following form. 
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∂Tjn

∂t
= [ 

2hr

ρcΔx
(T∞ − Tjn) + α

(rj +
Δr
2 )

rj(Δr)2
 (T(j−1)n − Tjn) +

2α

(Δx)2
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+ α
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Δr
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rj(Δr)2
 (T(j+1)n − Tjn)]  

The temperature terms at the node of interest can be grouped together.  

∂Tjn

∂t
= − [ 

2α

(Δx)2
+

2α

(Δr)2
+

2hr

ρcΔx
] (Tjn)
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2α
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(Tjn−1) +
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2 )
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+
2hr
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T∞] 

A.1.5 Corner Nodes 

The equations for the corner nodes are given below. These are derived in the 

same method as below, but they are included here for completeness.  

For i=1, j = 1; 

2ρc (πro (1 −
Δr

4ro
)
Δr

2

Δx

2
)
∂T1

∂t

= hr2πro (1 −
Δr

4ro
)
Δr

2
(T∞ − T1) + k2πro (1 −

Δr

4ro
)
Δr

2

(T2 − T1)

Δx

+ k2π (ro −
Δr

2
)
Δx

2
 
(Tn+1 − T1)

Δr
 

The equation is simplified to the following form. 
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∂t
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2hr

ρcΔx
(T∞ − T1) +

2α

(Δx)2
(T2 − T1) +

2α

(Δr)2
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Δr
2ro
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Δr
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The temperature terms at the node of interest can be grouped together.  

∂T1

∂t
= −[

2hr

ρcΔx
+

2α

(Δx)2
+ 

2α
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For i = n, j = 1; 
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2
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The equation is simplified to the following form. 

∂Tn

∂t
=

2hr
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2α

(Δx)2
(Tn−1 − Tn) +

2α
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4ro

)
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The temperature terms at the node of interest can be grouped together.  
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Δr

+ h2πrI

Δx

2
(T(m−1)n+1 − T(m−2)n+1) 
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The equation is simplified to the following form. 

∂T(m−2)n+1

∂t
=

2hr

ρcΔx
(T∞ − T(m−2)n+1) +

2α

(Δx)2
(T(m−2)n+2 − T(m−2)n+1)

+
2α

(Δr)2

(1 +
Δr
2rI

)

(1 +
Δr
4rI

)
 (T(m−3)n+1 − T(m−2)n+1)

+
2h

ρcΔr (1 +
Δr
4rI

)
(T(m−1)n+1 − T(m−2)n+1) 

The temperature terms at the node of interest can be grouped together.  

∂T(m−2)n+1

∂t
= − [

2hr

ρcΔx
+

2α

(Δx)2
+ 

2α

(Δr)2

(1 +
Δr
2rI

)

(1 +
Δr
4rI

)
+

2h

ρcΔr (1 +
Δr
4rI

)
 ] (T(m−2)n+1)

+
2hr

ρcΔx
T∞ +

2α

(Δx)2
(T(m−2)n+2) +

2α

(Δr)2

(1 +
Δr
2rI

)

(1 +
Δr
4rI

)
 (T(m−3)n+1)

+
2h

ρcΔr (1 +
Δr
4rI

)
 (T(m−1)n+1) 

For i = n, j = m-1 

ρc (2πrI (1 +
Δr

4rI
)
Δr

2

Δx

2
)
∂T(m−1)n

∂t

= hr2πrI (1 +
Δr

4rI
)
Δr

2
(T∞ − T(m−1)n)

+ k2πrI (1 +
Δr

4rI
)
Δr

2

(T(m−1)n−1 − T(m−1)n)

Δx

+ k2π (rI +
Δr

2
)
Δx

2
 
(T(m−2)n − T(m−1)n)

Δr
+ h2πrI

Δx

2
(Tmn − T(m−1)n) 
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The equation is simplified to the following form. 

∂T(m−1)n

∂t
=

2hr

ρcΔx
(T∞ − T(m−1)n) +

2α

(Δx)2
(T(m−1)n+1 − T(m−1)n)

+
2α

(Δr)2

(1 +
Δr
2rI

)

(1 +
Δr
4rI

)
 (T(m−2)n − T(m−1)n)

+
2h

ρcΔr (1 +
Δr
4rI

)
(Tmn − T(m−1)n) 

The temperature terms at the node of interest can be grouped together.  

∂T(m−1)n

∂t
= − [

2hr

ρcΔx
+

2α

(Δx)2
+ 

2α

(Δr)2

(1 +
Δr
2rI

)

(1 +
Δr
4rI

)
+

2h

ρcΔr (1 +
Δr
4rI

)
 ] (T(m−1)n)

+
2hr

ρcΔx
T∞ +

2α

(Δx)2
(T(m−1)n−1) +

2α

(Δr)2

(1 +
Δr
2rI

)

(1 +
Δr
4rI

)
 (T(m−2)n)

+
2h

ρcΔr (1 +
Δr
4rI

)
 (Tmn) 

 

A.2 Node Equations for a Temperature Boundary Condition 

For setting a temperature boundary condition at one end of the pipe, the 

equations are the same except for the pipe edge when 𝑖 = 𝑛. At these edges, the only 

parts of the equations that change are when the ℎ𝑟 and 𝑇∞ terms are present. In these 

instances, the following substitutions are made:   
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hr =
k

(
Δx
2 )

=
2k

Δx
 

 

T∞ = TB 

 

where 𝑇𝐵 is the boundary temperature. In this relation, the nodes at 𝑖 = 𝑛 are located at 

=
𝛥𝑥

2
 . In this instance, the 𝑩 term in the state space model will be populated by the 

relations that include a 𝑇𝐵 term. The input vector, 𝑢, will contain the values of the 

temperature. For example,  

For i=n, j = 2:m-2 

Bjn = 
4α

(Δx)2
 

ujn(t) = TB(t) 

A.3 Incorporating Air into the Model 

In adding the effects of air heating up inside the test section of the pipe, the 

following assumptions were made: 

- Between time steps, the temperature of the air at each node remains constant. 

- The effects of conduction of the air between nodes upstream and downstream are 

negligible.  

- At each node, air is well mixed.  

For each time step, the temperature of control volume 𝑘 at time 𝑡 + Δ𝑡 is equal to 

the temperature of the control volume that is 𝑛𝑠 control volumes earlier plus the 
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temperature increases as the volume of air passes through the pipe. Visually, this is 

displayed in Figure 93. Between time steps, the control volume travels 𝑛𝑠 time steps and 

heats up during that section. For the final ending node, the volume of air may start 

between two nodes, and this is accounted for in the derivation of the equations.  

 

CVk,t+Δt

ns = (u)(Δt)/(Δx)

CVk,t

 

Figure 93. Illustration of how the control volumes are selected for the air nodes in 

the pipe model. 

 

Note that although the previous equations are derived in continuous state space, 

the actual implementation and simulation occurs in discrete time, so the method here can 

be applied. For the control volume (CV) 𝑘 of air, the number of nodes the CV travels in 

one time step is equal to: 

ns =
u Δt

Δx
 

The amount of time that the CV k spends at each node is equal to: 

ts =
ns

Δt
=

u

Δx
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Let 𝑓𝑠 be the fractional part of 𝑛𝑠, 𝑓𝑙(𝑛𝑠) be the integer part of 𝑛𝑠, and 𝑐𝑙(𝑛𝑠) be 

the ceiling of 𝑛𝑠. Also, let 𝑐 = 𝑡𝑠
ℎ𝐴𝑖

𝑝𝑎𝑐𝑝,𝑎𝑉
. Then the temperature of the CV 𝑘 which is 

located at node 𝑛(𝑚 − 1) + 𝑖 at the time 𝑡 + 𝛥𝑡 is given by: 

 

Tn(m−1)+i,t+Δt = (1 − c)fl(ns)(1 − c fr(ns))Tn(m−1)+i−ns,t

+ (1 − c)fl(ns)fr(ns)c Tn(m−2)+i−cl(ns),t

+ ∑ (1 − c)fl(ns)−qc Tn(m−2)+i−fl(ns)+q−1,t

fl(ns)

q=1

 

Note that the summation is only used when fl(ns) ≥ 1. In this equation, the temperature 

at the starting location of the control volume is given by the following. 

Tn(m−1)+i−ns,t = (fs)(Tn(m−1)+i−cl(ns),t) + (1 − fs)(Tn(m−1)+i−fl(ns),t) 

Since the state space form is set up in terms of the temperature derivative at the 

specific location, the temperature relation is rearranged. 
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Tn(m−1)+i,t+Δt − Tn(m−1)+i,t

Δt

= −
1

Δt
Tn(m−1)+i,t +

1

Δt
(1 − c)fl(ns)(1 − c fr(ns))(fs)(Tn(m−1)+i−cl(ns),t)

+
1

Δt
(1 − c)fl(ns)(1 − c fr(ns))(1 − fs)(Tn(m−1)+i−fl(ns),t)

+
1

Δt
(1 − c)fl(ns)fr(ns)c Tn(m−2)+i−cl(ns),t

+
1

Δt
∑ (1 − c)fl(ns)−qc Tn(m−2)+i−fl(ns)+q−1,t

fl(ns)

q=1
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APPENDIX B 

MODEL DERIVATION OF TEMPERATURE PROFILE WITH NO CONVECTION 

 

In the equation, the time and space terms both appear in the error function terms. 

As the convection term approaches zero, the term on the left side of the equation 

approaches infinity while the error function initially starts at zero. But as time increases, 

the absolute value term of the function increases but remains finite. Therefore, this 

model is only valid for b>0. A separate model must be used when comparing the 

temperature profile for a no-convection case. Appendix B shows the model derivation 

and solution for the no-convection case.  

This model determines the temperature profile for a constant heat flux if the 

inside surface of the pipe was insulated. This model is still influenced by heat capacity 

and thermal conduction, but the difference in the profile can be used to determine the 

effect of convection on the temperature profile. 

The setup and evaluation of the analytical model for this case is similar to the 

analytical model developed in Chapter 3. In the development of this model, all of the 

assumptions are the same as the previous model. In this instance, the setup of the model 

matches Equation 6 without the convection term.  The boundary and initial conditions 

are the same as the previous model. 

 𝛛𝐮(𝐱, 𝐭) 

𝛛𝐭
= 𝛂 ·

𝛛𝟐𝐮(𝐱, 𝐭)

𝛛𝐱𝟐
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The boundary and initial conditions, listed below, are the same as was seen in the 

previous model.  

Boundary Conditions: 

 

1.  
∂u(0, t)

∂t
 =  g(t) = −Qc 

2. u(x → ∞, t) <  ∞ 

Initial Condition 

u(x, 0) = f(x) = 0 

 

B.1 Analytical Derivation with No Convection 

When solving the differential equation, the resulting temperature profile is defined by 

the following [62]. 

 

u(x, t)  = ∫
1

2√παt
{e

−(x−σ)2

4αt + e
−(x+σ)2

4αt } · f(σ) dσ
∞

0

+ Qc√
α

π
∫

g(τ)

√t − τ

t

0

· e
−x2

4α(t−τ) dτ 

 

With the initial temperature distribution at the ambient temperature and using a 

substitution variable, the resulting temperature distribution is the following (found 

reference in the partial diff for engineers book) [132]. 
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u(x, t)  = Qc [−√
4αt

π
e
−x2

4αt + x(1 − erf (√
x2

4αt
))]  

 

This simplified model still has similar terms to those found in the model with 

conduction, but this analytical modeler is overall simpler with the fewer terms. 

 

 

 


