5,929 research outputs found

    Ultrafast supercontinuum spectroscopy of carrier multiplication and biexcitonic effects in excited states of PbS quantum dots

    Full text link
    We examine the multiple exciton population dynamics in PbS quantum dots by ultrafast spectrally-resolved supercontinuum transient absorption (SC-TA). We simultaneously probe the first three excitonic transitions over a broad spectral range. Transient spectra show the presence of first order bleach of absorption for the 1S_h-1S_e transition and second order bleach along with photoinduced absorption band for 1P_h-1P_e transition. We also report evidence of the one-photon forbidden 1S_{h,e}-1P_{h,e} transition. We examine signatures of carrier multiplication (multiexcitons for the single absorbed photon) from analysis of the first and second order bleaches, in the limit of low absorbed photon numbers (~ 10^-2), at pump energies from two to four times the semiconductor band gap. The multiexciton generation efficiency is discussed both in terms of a broadband global fit and the ratio between early- to long-time transient absorption signals.. Analysis of population dynamics shows that the bleach peak due to the biexciton population is red-shifted respect the single exciton one, indicating a positive binding energy.Comment: 16 pages, 5 figure

    Analysis of Dynamic Brain Imaging Data

    Get PDF
    Modern imaging techniques for probing brain function, including functional Magnetic Resonance Imaging, intrinsic and extrinsic contrast optical imaging, and magnetoencephalography, generate large data sets with complex content. In this paper we develop appropriate techniques of analysis and visualization of such imaging data, in order to separate the signal from the noise, as well as to characterize the signal. The techniques developed fall into the general category of multivariate time series analysis, and in particular we extensively use the multitaper framework of spectral analysis. We develop specific protocols for the analysis of fMRI, optical imaging and MEG data, and illustrate the techniques by applications to real data sets generated by these imaging modalities. In general, the analysis protocols involve two distinct stages: `noise' characterization and suppression, and `signal' characterization and visualization. An important general conclusion of our study is the utility of a frequency-based representation, with short, moving analysis windows to account for non-stationarity in the data. Of particular note are (a) the development of a decomposition technique (`space-frequency singular value decomposition') that is shown to be a useful means of characterizing the image data, and (b) the development of an algorithm, based on multitaper methods, for the removal of approximately periodic physiological artifacts arising from cardiac and respiratory sources.Comment: 40 pages; 26 figures with subparts including 3 figures as .gif files. Originally submitted to the neuro-sys archive which was never publicly announced (was 9804003

    Cathodoluminescence Applied to the Microcharacterization of Mineral Materials: A Present Status in Experimentation and Interpretation

    Get PDF
    Experimentation and interpretation of cathodoluminescence (CL) microscopy and spectroscopy applied to the microcharacterization of material minerals are reviewed. The origins of the intrinsic (host lattice) and extrinsic (impurities) luminescence emissions in crystals are briefly discussed. Merits and limitations of the available techniques are illustrated. CL emission changes as a function of the incident electron dose are illustrated for the case of natural quartz and sphalerite (ZnS) crystals. These effects are discussed in terms of the development of bulk charging, production of heat, diffusion of impurities, and creation of lattice defects induced by the incident ionizing particles. Although CL emission is mostly extrinsic in origin there is no general rule for identifying the nature of impurities from the CL emission spectra of minerals. However there is potential for using CL spectroscopy for trace element analysis as presented for the case of minerals containing rare-earth luminescent ions. The CL emission is a signature of the crystal-chemistry properties of minerals and hence contains potential genetic information. Some of the applications of CL emissions in the geosciences are summarized

    Optical Tomography in Combustion

    Get PDF

    Scanning for oscillations

    Get PDF
    Objective. Oscillations are an important aspect of brain activity, but they often have a low signal- to-noise ratio (SNR) due to source-to-electrode mixing with competing brain activity and noise. Filtering can improve the SNR of narrowband signals, but it introduces ringing effects that may masquerade as genuine oscillations, leading to uncertainty as to the true oscillatory nature of the phenomena. Likewise, time–frequency analysis kernels have a temporal extent that blurs the time course of narrowband activity, introducing uncertainty as to timing and causal relations between events and/or frequency bands. Approach. Here, we propose a methodology that reveals narrowband activity within multichannel data such as electroencephalography, magnetoencephalography, electrocorticography or local field potential. The method exploits the between-channel correlation structure of the data to suppress competing sources by joint diagonalization of the covariance matrices of narrowband filtered and unfiltered data. Main results. Applied to synthetic and real data, the method effectively extracts narrowband components at unfavorable SNR. Significance. Oscillatory components of brain activity, including weak sources that are hard or impossible to observe using standard methods, can be detected and their time course plotted accurately. The method avoids the temporal artifacts of standard filtering and time–frequency analysis methods with which it remains complementary

    Characterizing Exoplanets in the Visible and Infrared: A Spectrometer Concept for the EChO Space Mission

    Get PDF
    Transit-spectroscopy of exoplanets is one of the key observational techniques to characterize the extrasolar planet and its atmosphere. The observational challenges of these measurements require dedicated instrumentation and only the space environment allows an undisturbed access to earth-like atmospheric features such as water or carbon-dioxide. Therefore, several exoplanet-specific space missions are currently being studied. One of them is EChO, the Exoplanet Characterization Observatory, which is part of ESA's Cosmic Vision 2015-2025 program, and which is one of four candidates for the M3 launch slot in 2024. In this paper we present the results of our assessment study of the EChO spectrometer, the only science instrument onboard this spacecraft. The instrument is a multi-channel all-reflective dispersive spectrometer, covering the wavelength range from 400 nm to 16 microns simultaneously with a moderately low spectral resolution. We illustrate how the key technical challenge of the EChO mission - the high photometric stability - influences the choice of spectrometer concept and drives fundamentally the instrument design. First performance evaluations underline the fitness of the elaborated design solution for the needs of the EChO mission.Comment: 20 pages, 8 figures, accepted for publication in the Journal of Astronomical Instrumentatio

    Development of microwave NDT inspection techniques for large solid propellant rocket motors Final report

    Get PDF
    Microwave nondestructive testing techniques for large solid propellant rocket engine

    Workshop on Advanced Technologies for Planetary Instruments, part 1

    Get PDF
    This meeting was conceived in response to new challenges facing NASA's robotic solar system exploration program. This volume contains papers presented at the Workshop on Advanced Technologies for Planetary Instruments on 28-30 Apr. 1993. This meeting was conceived in response to new challenges facing NASA's robotic solar system exploration program. Over the past several years, SDIO has sponsored a significant technology development program aimed, in part, at the production of instruments with these characteristics. This workshop provided an opportunity for specialists from the planetary science and DoD communities to establish contacts, to explore common technical ground in an open forum, and more specifically, to discuss the applicability of SDIO's technology base to planetary science instruments
    • …
    corecore