17,723 research outputs found

    NASA SBIR abstracts of 1991 phase 1 projects

    Get PDF
    The objectives of 301 projects placed under contract by the Small Business Innovation Research (SBIR) program of the National Aeronautics and Space Administration (NASA) are described. These projects were selected competitively from among proposals submitted to NASA in response to the 1991 SBIR Program Solicitation. The basic document consists of edited, non-proprietary abstracts of the winning proposals submitted by small businesses. The abstracts are presented under the 15 technical topics within which Phase 1 proposals were solicited. Each project was assigned a sequential identifying number from 001 to 301, in order of its appearance in the body of the report. Appendixes to provide additional information about the SBIR program and permit cross-reference of the 1991 Phase 1 projects by company name, location by state, principal investigator, NASA Field Center responsible for management of each project, and NASA contract number are included

    Multiobjective railway alignment optimization using ballastless track and reduced cross-section in tunnel

    Get PDF
    The increasing need for railway planning and design to connect growing cities in inland mountainous areas has pushed engineering efforts toward the research of railway tracks that must comply with more restrictive constraints. In this study, a multiobjective alignment optimization (HAO), commonly used for highway projects, was carried out to identify a better solution for constructing a high-speed railway track considering technical and economic feasibilities. Then, two different and innovative scenarios were investigated: an unconventional ballastless superstructure, which is more environment-friendly than a gravel superstructure, and a reduced cross-section in a tunnel, which enables a slower design speed and then, less restrictive geometric constraints and earthmoving. The results showed that the first solution obtained a better performance with a slight increase in cost. Moreover, both scenarios improved the preliminary alignment optimization, reducing the overall cost by 11% for the first scenario and 20% for the second one

    Optimization of an urban railway bypass. A case study in A Coruña-Lugo line, Northwest of Spain

    Get PDF
    This paper deals with a new mathematical model for designing railway bypasses. The model was developed with applications to urban areas in mind, and presents useful tools to avoid forbidden areas, buildings, and level crossings with secondary paths and other linear infrastructures. It takes into account technical constraints (minimum radii, minimum length of tangents and transition curves, maximum slopes, and also maximum azimuth changes), and ensure a suitable connection with the current layout, for both horizontal and vertical alignment. In addition, the model searches for the best bypass from an economical point of view, taking into account expropriation costs, cleaning and terrain preparation, earthwork (considering different type of materials), and railroad construction costs. This model is applied in a case study located at the Northwest of Spain, in a section of A Coruña-Lugo line, which is currently under consideration for its redesign. By using this model, a railway bypass without level crossings is obtained, avoiding the urban area of Parga and any buildings in the surrounding area, and which is optimal from an economical point of view2024-01-31S

    Measurement and Evaluation of Roadway Geometry for Safety Analyses and Pavement Material Volume Estimation for Resurfacing and Rehabilitation Using Mobile LiDAR and Imagery-based Point Clouds

    Get PDF
    Roadway safety is a multifaceted issue affected by several variables including geometric design features of the roadway, weather conditions, sight distance issues, user behavior, and pavement surface condition. In recent years, transportation agencies have demonstrated a growing interest in utilizing Light Detecting and Ranging (LiDAR) and other remote sensing technologies to enhance data collection productivity, safety, and facilitate the development of strategies to maintain and improve existing roadway infrastructure. Studies have shown that three-dimensional (3D) point clouds acquired using mobile LiDAR systems are highly accurate, dense, and have numerous applications in transportation. Point cloud data applications include extraction of roadway geometry features, asset management, as-built documentation, and maintenance operations. Another source of highly accurate 3D data in the form of point clouds is close-range aerial photogrammetry using unmanned aerial vehicle (UAV) systems. One of the main advantages of these systems over conventional surveying methods is the ability to obtain accurate continuous data in a timely manner. Traditional surveying techniques allow for the collection of road surface data only at specified intervals. Point clouds from LiDAR and imagery-based data can be imported into modeling and design software to create a virtual representation of constructed roadways using 3D models. From a roadway safety assessment standpoint, mobile LiDAR scanning (MLS) systems and UAV close-range photogrammetry (UAV-CRP) can be used as effective methods to produce accurate digital representations of existing roadways for various safety evaluations. This research used LiDAR data collected by five vendors and UAV imagery data collected by the research team to achieve the following objectives: a) evaluate the accuracy of point clouds from MLS and UAV imagery data for collection roadway cross slopes for system-wide cross slope verification; b) evaluate the accuracy of as-built geometry features extracted from MLS and UAV imagery-based point clouds for estimating design speeds on horizontal and vertical curves of existing roadways; c) Determine whether MLS and UAV imagery-based point clouds can be used to produce accurate road surface models for material volume estimation purposes. Ground truth data collected using manual field survey measurements were used to validate the results of this research. Cross slope measurements were extracted from ten randomly selected stations along a 4-lane roadway. This resulted in a total of 42 cross slope measurements per data set including measurements from left turn lanes. The roadway is an urban parkway classified as an urban principal arterial located in Anderson, South Carolina. A comparison of measurements from point clouds and measurements from field survey data using t-test statical analysis showed that deviations between field survey data and MLS and UAV imagery-based point clouds were within the acceptable range of ±0.2% specified by SHRP2 and the South Carolina Department of Transportation (SCDOT). A surface-to-surface method was used to compute and compare material volumes between terrain models from MLS and UAV imagery-based point clouds and a terrain model from field survey data. The field survey data consisted of 424 points collected manually at sixty-nine 100-ft stations over the 1.3-mile study area. The average difference in height for all MLS data was less than 1 inch except for one of the vendors which appeared to be due to a systematic error. The average height difference for the UAV imagery-based data was approximately 1.02 inches. The relatively small errors indicated that these data sets can be used to obtain reliable material volume estimates. Lastly, MLS and UAV imagery-based point clouds were used to obtain horizontal curve radii and superelevation data to estimate design speeds on horizontal curves. Results from paired t-test statistical analyses using a 95% confidence level showed that geometry data extracted from point clouds can be used to obtain realistic estimates of design speeds on horizontal curves. Similarly, road grade and sight distance were obtained from point clouds for design speed estimation on crest and sag vertical curves. A similar approach using a paired t-test statistical analysis at a 95% confidence level showed that point clouds can be used to obtain reliable design speed information on crest and sag vertical curves. The proposed approach offers advantages over extracting information from design drawings which may provide an inaccurate representation of the as-built roadway

    Small business innovation research. Abstracts of 1988 phase 1 awards

    Get PDF
    Non-proprietary proposal abstracts of Phase 1 Small Business Innovation Research (SBIR) projects supported by NASA are presented. Projects in the fields of aeronautical propulsion, aerodynamics, acoustics, aircraft systems, materials and structures, teleoperators and robots, computer sciences, information systems, data processing, spacecraft propulsion, bioastronautics, satellite communication, and space processing are covered

    An automatic method for generating multiple alignment alternatives for a railway bypass

    Get PDF
    This paper deals with the problem of designing a bypass on a railway line. Based on a geometrical model capable of determining automatically the need of major structures (bridges, tunnels, overpasses and underpasses), the optimal design of a railway bypass is formulated in the framework of Mixed Integer Non Linear Programming (MINLP), and it is solved with a numerical algorithm which provides different layout alternatives that are optimal solutions (local minima) from the economic point of view. The proposed method is tested on a case study with the aim of showing its practical usefulness as a support tool for engineers in order to accomplish the complex and time-consuming task to generate a set of initial alternatives for the design of a railway bypassThis research was funded by Ministerio de Ciencia e Innovación (Spain) grant number TED2021-129324B-I00, and by the collaboration agreement between Xunta de Galicia (Spain) and Universidade de Santiago de Compostela (Spain) which regulates the Specialization Campus “Campus Terra”. Additionally, the authors are grateful to Concello de Guitiriz (Spain) for financial support through the contract Optimal design of multiple alignment alternatives for a bypass on the railway line A Coruña-Palencia passing through Parga-Guitiriz (Lugo), ref. 2021-CP138 . Finally, third and fourth authors thank the support given by Xunta de Galicia (Spain) under research projects ref. ED341D R2016/023 and GI-1563ED431C2021/15, respectivelyS

    Technical Proposal for FASER: ForwArd Search ExpeRiment at the LHC

    Full text link
    FASER is a proposed small and inexpensive experiment designed to search for light, weakly-interacting particles during Run 3 of the LHC from 2021-23. Such particles may be produced in large numbers along the beam collision axis, travel for hundreds of meters without interacting, and then decay to standard model particles. To search for such events, FASER will be located 480 m downstream of the ATLAS IP in the unused service tunnel TI12 and be sensitive to particles that decay in a cylindrical volume with radius R=10 cm and length L=1.5 m. FASER will complement the LHC's existing physics program, extending its discovery potential to a host of new, light particles, with potentially far-reaching implications for particle physics and cosmology. This document describes the technical details of the FASER detector components: the magnets, the tracker, the scintillator system, and the calorimeter, as well as the trigger and readout system. The preparatory work that is needed to install and operate the detector, including civil engineering, transport, and integration with various services is also presented. The information presented includes preliminary cost estimates for the detector components and the infrastructure work, as well as a timeline for the design, construction, and installation of the experiment.Comment: 82 pages, 62 figures; submitted to the CERN LHCC on 7 November 201
    • …
    corecore