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ABSTRACT 

 

 

Roadway safety is a multifaceted issue affected by several variables including 

geometric design features of the roadway, weather conditions, sight distance issues, user 

behavior, and pavement surface condition. In recent years, transportation agencies have 

demonstrated a growing interest in utilizing Light Detecting and Ranging (LiDAR) and 

other remote sensing technologies to enhance data collection productivity, safety, and 

facilitate the development of strategies to maintain and improve existing roadway 

infrastructure. Studies have shown that three-dimensional (3D) point clouds acquired using 

mobile LiDAR systems are highly accurate, dense, and have numerous applications in 

transportation. Point cloud data applications include extraction of roadway geometry 

features, asset management, as-built documentation, and maintenance operations. Another 

source of highly accurate 3D data in the form of point clouds is close-range aerial 

photogrammetry using unmanned aerial vehicle (UAV) systems. One of the main 

advantages of these systems over conventional surveying methods is the ability to obtain 

accurate continuous data in a timely manner. Traditional surveying techniques allow for 

the collection of road surface data only at specified intervals. Point clouds from LiDAR 

and imagery-based data can be imported into modeling and design software to create a 

virtual representation of constructed roadways using 3D models. 

From a roadway safety assessment standpoint, mobile LiDAR scanning (MLS) 

systems and UAV close-range photogrammetry (UAV-CRP) can be used as effective 

methods to produce accurate digital representations of existing roadways for various safety 

evaluations. This research used LiDAR data collected by five vendors and UAV imagery 
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data collected by the research team to achieve the following objectives: a) evaluate the 

accuracy of point clouds from MLS and UAV imagery data for collection roadway cross 

slopes for system-wide cross slope verification; b) evaluate the accuracy of as-built 

geometry features extracted from MLS and UAV imagery-based point clouds for 

estimating design speeds on horizontal and vertical curves of existing roadways; c) 

Determine whether MLS and UAV imagery-based point clouds can be used to produce 

accurate road surface models for material volume estimation purposes. Ground truth data 

collected using manual field survey measurements were used to validate the results of this 

research.    

Cross slope measurements were extracted from ten randomly selected stations 

along a 4-lane roadway. This resulted in a total of 42 cross slope measurements per data 

set including measurements from left turn lanes. The roadway is an urban parkway 

classified as an urban principal arterial located in Anderson, South Carolina. A comparison 

of measurements from point clouds and measurements from field survey data using t-test 

statical analysis showed that deviations between field survey data and MLS and UAV 

imagery-based point clouds were within the acceptable range of ±0.2% specified by 

SHRP2 and the South Carolina Department of Transportation (SCDOT). 

A surface-to-surface method was used to compute and compare material volumes 

between terrain models from MLS and UAV imagery-based point clouds and a terrain 

model from field survey data. The field survey data consisted of 424 points collected 

manually at sixty-nine 100-ft stations over the 1.3-mile study area. The average difference 

in height for all MLS data was less than 1 inch except for one of the vendors which 
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appeared to be due to a systematic error. The average height difference for the UAV 

imagery-based data was approximately 1.02 inches. The relatively small errors indicated 

that these data sets can be used to obtain reliable material volume estimates. 

Lastly, MLS and UAV imagery-based point clouds were used to obtain horizontal 

curve radii and superelevation data to estimate design speeds on horizontal curves. Results 

from paired t-test statistical analyses using a 95% confidence level showed that geometry 

data extracted from point clouds can be used to obtain realistic estimates of design speeds 

on horizontal curves. Similarly, road grade and sight distance were obtained from point 

clouds for design speed estimation on crest and sag vertical curves. A similar approach 

using a paired t-test statistical analysis at a 95% confidence level showed that point clouds 

can be used to obtain reliable design speed information on crest and sag vertical curves. 

The proposed approach offers advantages over extracting information from design 

drawings which may provide an inaccurate representation of the as-built roadway. 

 

Keywords: Roadway Safety, Roadway Design, Mobile LiDAR, Unmanned Aerial Vehicle, 

Close-Range Photogrammetry, Roadway Geometry, As-Built Data, SHRP2. 
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CHAPTER ONE 

 

INTRODUCTION 

 

 

Light Detection and Ranging (LiDAR) is an emerging technology that can be used 

to obtain accurate three-dimensional (3D) information in the form of point clouds that has 

the potential to transform the way in which transportation agencies and service providers 

plan, design, build and maintain highway systems (1). Point clouds can be imported into 

3D modeling software to help visualize and build a virtual representation of finished 

construction projects (2). The technology to support data collection using LiDAR surveys 

is well established and continues to evolve to integrate new advances in hardware and 

software (3). A review of the literature shows that much work has been done to calibrate 

LiDAR systems for accurate surveying (4–11). LiDAR datasets can be obtained in a variety 

of ways using static, mobile, and aerial systems. Many state transportation agencies are  

using some form of LiDAR technology because of its many benefits including data 

collection productivity, enhanced safety, cost-effectiveness, and technological 

improvement (12). 

 

Though effective, LiDAR systems tend to be expensive and require a certain level 

of expertise and training to be deployed efficiently. Close-range photogrammetry (CRP) is 

a cost-effective and easy-to-use technology that could potentially serve as an alternative to 

LiDAR systems (13). Unmanned aerial systems (UAS)-based close range photogrammetry 

can be used to acquire and process 2D imagery data using Structure from Motion (SfM) 

software to generate accurate 3D point clouds. Based on principles similar to those of 
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traditional photogrammetry, SfM is a technique that uses advanced digital image-matching 

algorithms to generate high-resolution 3D point clouds, 3D reality meshes, orthophotos 

and digital surface models (14). 

Problem Statement 

Mobile LiDAR scanning (MLS) technology and close-range photogrammetry 

(CRP) can provide highly accurate 3D point clouds that have numerous applications in 

transportation. These systems can be used to overcome limitations presented by 

conventional surveying techniques and static LiDAR systems, particularly in terms of 

personnel safety, data collection efficiency, accuracy, and cost-effectiveness (13, 15). 

To comply with pragmatic performance measures and performance-based funding, 

state transportation agencies have been using innovative and practical methods and 

technologies to manage roadway assets (3). MLS (1)  and CRP (13) point clouds can be 

used to obtain common roadway geometry and asset information including grades, slopes, 

lane widths, and signs inventory for visibility and other safety analyses. Up-to-date and 

reliable information is crucial for evaluating and prioritizing new or improvement roadway 

projects (16). LiDAR technology has been implemented in the transportation field for 

safety and mobility analyses to identify sight distance obstructions and assess traffic 

operations while minimizing lane closures, traffic disruptions, and safety hazards (12). 

Lidar-based and image-based point clouds offer opportunities to develop advanced 

geospatial datasets to support asset management in a safe and efficient manner (17). 

Advances in computer vision algorithms to extract key features from unmanned 

aerial vehicle (UAV)-based videos and images have prompted investigations to assess the 



 

3 

 

applications of UAVs in roadway safety, traffic engineering, and highway infrastructure 

management (18, 19). Similar to LiDAR, UAV-CRP technology, typically accomplished 

by using an optical camera mounted on a UAV platform and supported by a global 

navigation satellite system (GNSS) device to collect quality data, can be used for 

monitoring transportation infrastructure assets (20). Additionally, research studies have 

attempted to use CRP as an alternative and less-expensive technology for 3D pavement 

distress surveying (21), and to measure pavement texture characteristics and predict 

pavement friction with promising results (22).  

This dissertation research provides a basis for evaluating the feasibility and 

effectiveness of using Light Detection and Ranging (LiDAR) technology and Unmanned 

Aerial Vehicle (UAV) photogrammetry to extract accurate as-built horizontal and vertical 

roadway geometry and cross-sectional geometric parameters for roadway safety 

evaluations, and to obtain accurate pavement material volume estimates for resurfacing and 

rehabilitation purposes. Accurate pavement cross-section information is essential to 

ensuring that roadways have adequate cross-slopes to enhance driver safety, thus 

minimizing the potential for hydroplaning. Having accurate details of critical as-built 

geometric elements and pavement surface data will ensure that appropriate warnings are 

properly used, design standards are met, and timely and adequate maintenance and 

rehabilitation operations are performed. Lastly, this research is intended to investigate 

whether UAV photogrammetry can be used as an efficient and accurate alternative to 

mobile LiDAR systems. 
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Research Objectives 

The overall goal of this research was to conduct a technical evaluation of multiple 

mobile LiDAR scanning (MLS) systems and close-range photogrammetry (CRP) to 

determine if accurate three-dimensional (3D) surface models and as-built horizontal and 

vertical alignment information can be extracted using LiDAR and Imagery-based point 

clouds for specific safety and pavement material volume estimation applications. A 

detailed description of each research objective is presented below.  

 

Description of Research Objectives: 

▪ Evaluate if accurate cross-slope measurements can be extracted from point-cloud-

based 3D surface models, and whether MLS and CRP data can be used for system-

wide verification of highway cross slopes. 

▪ Compare curve design speeds estimated using horizontal alignment parameters 

extracted from point clouds, and whether MLS and UAV photogrammetry data can 

be used for system-wide verification of design speeds on horizontal curves. 

▪ Determine whether LiDAR and Imagery-based point clouds can be used to estimate 

sight distance and design speeds on vertical curves. 

▪ In comparison with traditional surveying, investigate whether MLS and imagery-

based point clouds can be used to produce accurate road surfaces to estimate 

pavement material volumes for pavement resurfacing and rehabilitation. 
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To achieve these research objectives, mobile LiDAR and UAV imagery data sets 

were collected on a roadway test section located in Anderson, South Carolina. 

Conventional survey measurements collected using high accuracy GPS units, total stations, 

and leveling were used as ground truth data for comparison purposes. 

 

Content and Organization of Dissertation 

This dissertation document consists of three research papers on roadway cross slope 

measurement, extraction of horizontal and vertical roadway geometry for design speed 

evaluations, and pavement material volume estimation for resurfacing and rehabilitation 

purposes using LiDAR and UAV photogrammetry data sets. Each research paper 

represents one chapter of the dissertation. The data sets used in the three studies were 

collected using the same data collection systems and methods. 

 

PAPER I: A COMPARISON OF MOBILE LIDAR AND LOW-ALTITUDE 

UNMANNED AERIAL VEHICLE PHOTOGRAMMETRY FOR COLLECTING 

HIGHWAY CROSS SLOPE MEASUREMENTS 

OBJECTIVES 

 

▪ Develop and implement a practical semi-automated workflow using modeling 

software to extract cross-slope information from LiDAR and close-range 

photogrammetry data. 

▪ Conduct a technical evaluation of the accuracy of Mobile LiDAR and UVA 

photogrammetry for system-wide verification of highway cross slopes. 
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▪ Identify and highlight benefits and recommendations based on technical 

evaluations. 

 

 

PAPER II: ROADWAY PAVEMENT MATERIAL VOLUME ESTIMATION FOR 

RESURFACING AND REHABILITATION USING MOBILE LIDAR AND IMAGERY-

BASED POINT CLOUDS 

 

OBJECTIVES 

 

▪ Evaluate the accuracy of surfaces terrain models created using mobile LiDAR and 

UAV imagery-based point clouds.  

▪ Determine if accurate pavement material volume estimates can be made for 

resurfacing and rehabilitation purposes and compare results to manual survey 

methods. 

 

PAPER III: SAFETY ASSESSMENT OF DESIGN SPEED ON HORIZONTAL AND 

VERTICAL CURVES USING MOBILE LIDAR AND UNMANNED AERIAL 

VEHICLE PHOTOGRAMMETRY  

 

OBJECTIVES 
 

▪ Develop a feasible approach to extract horizontal curve geometry features including 

tangent length, curve radius, point of curvature, point of intersection, point of 

tangency, curve length, and middle ordinate distance. 

▪ Develop a feasible approach to extract vertical alignment features including 

longitudinal grades, vertical point of curvature, vertical point of intersection, 

vertical point of tangency, and curve length. 
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▪ Evaluate grade measurement deviations based on recommended accuracy values 

specified by SHRP2. 

▪ Calculate design speeds on horizontal and vertical curves using geometry features 

extracted from point clouds. 
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CHAPTER TWO  

 

PAPER I: A COMPARISON OF MOBILE LIDAR AND LOW-ALTITUDE 

UNMANNED AERIAL VEHICLE PHOTOGRAMMETRY FOR COLLECTING 

HIGHWAY CROSS SLOPE MEASUREMENTS 

 

Abstract 

 

The purpose of sloping roadway cross sections is to ensure adequate drainage of 

water. The accumulation of water can lead to hydroplaning or other problems, which can 

increase crashes.  The most common methods for identifying inadequate cross slope are 

through visual inspection of poor drainage and crash occurrence. Ideally, a proactive 

approach of identifying roadway sections of inadequate cross slope to reduce crash 
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potential is preferred over reacting to problem locations where crashes may occur. Some 

states use traditional field surveying techniques and other manual measurement methods 

to collect cross slope data on a limited basis. These methods do not provide continuous 

data, are labor intensive, and expose personnel to traffic hazards. This study conducted a 

technical evaluation of Unmanned Aerial Vehicle (UAV) Photogrammetry, and Mobile 

LiDAR Scanning (MLS) systems for effectiveness in measuring pavement cross slopes. 

Four MLS vendors were invited to participate in a demonstration rodeo where LiDAR data 

were collected along a 1.4-mile section of a 4-lane, 3-mile parkway located in Anderson 

County, South Carolina. Additionally, the research team collected UAV stereo imagery 

along the same roadway section. Cross-slope data were extracted from LiDAR point clouds 

using a semi-automated workflow in OpenRoads Designer (ORD). The observed means of 

absolute measurement errors were 0.146% for mobile LiDAR, and 0.148% for UAV 

photogrammetry. Results indicated that MLS and UAV photogrammetry performed 

comparably and provided reliable results for cross slope determination.  

 

Keywords: Mobile LiDAR, Cross-Slope, Hydroplaning, UAV Photogrammetry 

 

Introduction  

 

Proper surface drainage is an important consideration in the design of highways. 

Improper roadway drainage may interrupt traffic, reduce skid resistance, and increase the 

potential for hydroplaning (1). Water drainage from the pavement surface is dependent on 

longitudinal grade, cross slope, pavement width, surface texture, and rainfall intensity (2). 

Although longitudinal grade may have a considerable effect on flow path length, it does 

not appreciably affect pavement water depth (2, 3). Cross slope has a substantial impact on 
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pavement water depth because it helps to drain water laterally and minimizes ponding (4). 

Well-designed cross-slopes can provide sufficient drainage while minimizing the risk of 

vehicles drifting or skidding laterally when braking (5). Paved roads are commonly 

designed and constructed with careful consideration given to the correct shape of the 

finished cross section (6). 

 Through crash history and field surveys, the South Carolina Department of 

Transportation (SCDOT) has identified isolated sections of interstate freeway that have 

substandard cross slopes for proper drainage. This observational approach suggests that 

there is a likelihood that significant mileage of South Carolina highways may not have 

sufficient cross slope to ensure proper drainage. South Carolina currently does not have a 

program to conduct large-scale inspections of cross slopes. This type of limitation is not 

unusual. A survey of state highway agencies across the U.S. determined that while 70% 

collected some cross slope data, none did so on a system-wide basis. Most of the states 

surveyed performed cross slope verification only on Interstate and primary routes, and only 

at locations with apparent drainage problems or at locations that experience a high number 

of weather-related crashes (4, 7). Survey responses indicated distinct interest in identifying 

technology that can be used to efficiently collect pavement cross slope data on a wide scale 

basis.   

Currently, conventional surveying techniques or other manual methods are used to 

collect cross slope data in most states at selected locations. Conventional surveying and 

other manual methods are labor-intensive, expose personnel to traffic, and cause delays to 

the traveling public (8). Furthermore, conventional surveying for cross slope verification 
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purposes can only be conducted at sample locations and may not be representative of 

segments between the samples (4). SCDOT's emphasis on ensuring that adequate pavement 

cross slopes are maintained through verification is predicated upon two principles: 1) 

deployment of a safe and efficient method for collecting cross slope data; and 2) adoption 

occurs system-wide so an accurate and comprehensive network-based cross slope database 

can be maintained (7).  

Aerial photogrammetry has been used for topographic ground surveying for 

highway projects for more than 50 years (9). Elevations derived from photogrammetry are 

dependent on flying height and camera quality and are less accurate than conventional 

ground surveys. Estimating cross slopes from photogrammetry-based contour maps has not 

been viable because of accuracy issues related to the minimum altitudes that planes can fly 

at. Close-range Unmanned Aerial Vehicle (UAV) photogrammetry can potentially produce 

cross slope data at sufficient accuracy for verification purposes because of low flying 

heights and use of high-resolution cameras. 

Light Detection and Ranging (LiDAR) systems can provide highly accurate 

georeferenced three-dimensional data that have numerous applications in transportation. 

The adoption of mobile LiDAR technology by transportation agencies has significantly 

increased over the past decade. Mobile LiDAR Scanning (MLS) systems provide 

significant safety and efficiency advantages over conventional surveying techniques and 

static LiDAR scanning systems when collecting data. The data processing workflow of 

MLS requires the processing of positional data alongside LiDAR data (10). 
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The researchers previously studied MLS and Aerial (airplane mounted) LiDAR 

approaches to collect cross slope data with promising results (11). This paper evaluates 

close-range unmanned aerial vehicle (UAV) photogrammetry collection of highway cross 

slopes. A comparison with conventional surveying and MLS is provided. 

 

 

Literature Review 

 

Photogrammetry Applications 

Aerial photogrammetry is the science of locating three-dimensional points from 

two or more images.  Aerial photogrammetry plays an important part in highway location 

and design, especially in preparing existing ground contour maps. A review of the literature 

indicates that cross slope measurements from aerial photographs are not currently 

practiced. This is due to the scale of aerial photographs, which is a function of flying height. 

The highest accuracy standards for aerial photogrammetry data are in the 0.25 ft horizontal 

and vertical accuracy classes (12).  These accuracy classes are associated with an RMSE 

of 0.25 ft.  While this error tolerance is suitable for highway alignment design and 

earthwork calculations, the associated relative accuracy is not accurate enough for 

collecting reliable highway cross-slope data.  One type of aerial photogrammetry that can 

potentially provide the needed accuracy for collecting cross slope data is close-range 

photogrammetry (CRP).  Traditional photogrammetry requires flying heights of greater 

than 1000 ft, equating to the minimum safe flying height above populated areas, as required 

by the FAA. Small UAVs are able to fly significantly lower than 1000 ft and collect much 

higher resolution images. 
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UAV Photogrammetry 

 

Burgett et al. investigated whether the use of commercially available UAVs and 

software could create surveys to be used for preconstruction surveys. Their study acquired 

data at three altitudes and three separate times using two common commercial UAVs. 

Results of their study indicated that survey points could be within 0.68 cm (0.022 ft) 

horizontally, 0.09 cm (0.003 ft) in elevation, and 1.46 cm (0.048 ft) in three dimensions 

(3D) of the true location (13). 

 

Similarly, Aguera-Vega et al. studied the accuracy of drone-based surveys. The 

authors evaluated the influence of flight altitude, terrain morphology, and the number of 

ground control points (GCPs) on the digital surface model (DSM) and orthoimage 

accuracies obtained from UAV photogrammetry (14). The authors compared 60 

photogrammetric models based on five terrain morphologies, four flight altitudes, and three 

different numbers of GCPs. The study used a rotary wing platform UAV with eight motors 

and a nonmetric mirrorless reflex camera. Results of their study indicated the following: 

the number of GCPs influenced the horizontal accuracy; as GCPs increased, accuracy 

improved; vertical accuracy was not influenced by terrain morphology; vertical accuracy 

decreased as flight altitude increased. Accuracies of 0.053 m (0.17 ft) horizontally and 

0.079 m (0.26 ft) vertically were obtained using a flight altitude of 50 m (164 ft) and 10 

GCPs. 

Road condition assessment is an important task in road maintenance (15). (Zhang 

and Elaksher, 2012) evaluated the use a UAV-based digital imaging system to collect 
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surface condition data over rural roads. The authors used aerial imagery data to derive a 

three-dimensional surface model for road distress measurement. Results of their 

investigation showed that the difference between 3D information measurements and onsite 

manual measurements of road distresses was around half a centimeter (0.0164 ft). 

 

LiDAR Technology 

Research studies have identified several benefits associated with the 

implementation of LiDAR technology and how transportation agencies can potentially use 

LiDAR systems to plan, design, inspect, and maintain transportation infrastructure. In 

recent years, state transportation agencies have shown an increased interest in LiDAR 

technology due to its practical uses in transportation; and for being potentially more cost-

effective than traditional surveying technologies (16). Additionally, recent studies have 

discussed the potential benefits of using LiDAR to extract lane markings (17, 18), evaluate 

pavement friction (19), and extract and assess road geometry (20, 21).  

A study by Shams et al. provided an evaluation of MLS systems in terms of the 

accuracy and precision of collected cross-slope data, including documentation of 

procedures necessary to calibrate, collect, and process LiDAR data (4). MLS data were 

collected by five different vendors on three roadway sections. The sample data obtained 

allowed estimation of 95% confidence intervals for true mean absolute deviations of cross 

slopes from manual survey measurements to be 0.10% to 0.19% which is within SHRP2 

specifications of acceptable margin of error (22).   
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Gargoum et al. attempted to extract road cross sections from LiDAR data. Their 

study proposed an algorithm that involved estimating vectors intersecting the road’s axis 

whereby points within proximity to the vectors were retained and extracted (23). Slope 

information was measured based on the retained points. The authors used multivariate 

adaptive regression splines (MARS) to identify points of inflection or change in slope. 

Linear regression was used to estimate the slopes between points of inflection which 

represented cross slopes and side slopes of the extracted cross section. Cross slopes 

estimated using the proposed procedure were compared to slope data collected in GPS 

surveys. Percent differences ranged from 0.0001% to 0.4% for the 38 cross slopes 

estimated. 

Gurganusa et al. proposed a method to evaluate hydroplaning potential based on 

the actual road surface and geometric properties measured using MLS (24). The authors 

used a single mobile LiDAR system to measure surface geometry, and a Monte Carlo 

simulation to produce a traveling speed at which hydroplaning could occur. Their 

investigation showed that MLS could provide distance data within 0.15% of the ground 

truth distance. An in-service roadway with historical wet weather crashes was used in their 

investigation. The authors concluded that the traveling speed at which hydroplaning could 

occur was lower than the posted speed limit. 

Ai and Tsai proposed an automated sidewalk assessment method using three-

dimensional mobile LiDAR and image processing. Features regulated by the Americans 

with Disabilities Act (ADA), including sidewalk width, cross slope, grade, and curb ramp 

slope were automatically measured and compared with manual ground truth data from a 
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field survey (25). The proposed mobile system consisted of video cameras, two mobile 

LiDAR systems, and a global navigation system. Sidewalks were extracted from the 

LiDAR point cloud using a roadway segmentation method. Results of their investigation 

showed that measurements derived from the proposed method were close to ground truth 

measurements. The absolute error in the sidewalk width measurements was less than 0.15 

m (0.5 ft), and less than 0.2% slope measurement errors were observed at 20 randomly 

selected locations. 

Luo and Li used a mobile mapping system consisting of an inertial measurement 

unit (IMU), GPS, a distance measuring indicator (DMI), and a 3D LiDAR system to 

automatically measure highway ramp geometry (26). Pavement slopes were calibrated 

using an inertial measurement unit (IMU) and transverse profile data. Additionally, a 

validation test was conducted using field measurements. The average errors for curve 

detection and curve radius measurements were 5.89 and 1.99%, respectively. P-values for 

longitudinal and cross-slope measurements were 0.621 and 0.989, respectively. The 

authors suggested the proposed method could be used for roadway surveys. 

The quantitative assessment of LiDAR elevation data is usually conducted by 

comparing high-accuracy control points with elevations estimated from LiDAR ground 

data (27). Liu argued that the vertical accuracy with respect to a specified datum is critical 

in determining the accuracy of LiDAR data. In addition to exploring the performance of 

various methods for deriving elevations from LiDAR, the authors used survey markers to 

assess the vertical accuracy of LiDAR data for different land covers. Results of their study 
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indicated the suitability of using survey markers as checkpoints to assess the vertical 

accuracy of LiDAR data (24).  

Tsai et al. discussed the need for transportation agencies to identify and measure 

road sections that have noneffective cross slopes so that timely corrective maintenance 

could be performed. Their investigation proposed a mobile cross-slope measurement 

method using LiDAR technology to conduct network-level cross slope measurement at 

highway speeds (28). Components of their method included a mobile LiDAR system, high-

resolution video cameras, a GPS unit, an inertial measurement unit, and a distance 

measurement instrument. Results from a controlled test showed that their method achieved 

desirable accuracy with an average measurement difference of less than 0.13% cross-slope 

from the digital level measurements with standard deviations within 0.05% in three runs at 

all benchmarked locations. 

All of the LiDAR studies cited in this section focusing on slope measurements are 

MLS based.  No previous studies were identified that evaluated UAV photogrammetry to 

collect cross slope data. 

 

Study Area and Data Collection 

 

This research evaluated the use of UAV photogrammetry compared to mobile 

LiDAR to collect cross slope data along a 1.4-mile section of four-lane parkway located in 

Anderson, South Carolina. East West Parkway begins at US-76 (Clemson Boulevard) and 

ends at SC-81. Ten stations from locations with distinct roadway slope characteristics 

(normal crown and superelevated) and different lane geometry were randomly selected 

along the corridor for cross slope evaluation test sections. A ground control survey was 
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performed to identify ground control points (GCPs), shown in Figure 2-1. The study area 

was surveyed to locate 100 ft stations along the white edge lines. Stations were marked 

with PK surveying nails including the yellow centerline markings. Reflective pavement 

marking tape was placed at the PK nails located on the white edge lines to ensure that PK 

nail locations could be identified in the LiDAR point clouds using the intensity or RGB 

color attributes within point clouds. Lane markings were identified based on intensity and 

RGB attributes. A ground control survey was performed to establish primary and secondary 

GCPs throughout the study area. Primary and secondary GCPs served as a means of tying 

down data sets for consistent comparison.  

 

 
Figure 2-1 GCPs and station locations along the 1.4-mile study area. 

 

 

Mobile LiDAR Data Collection 

MLS data were collected in the summer of 2016. Four different MLS vendors used 

a minimum of two primary GCPs as base station locations for GPS differential correction 

of the MLS data. Additional GCPs were used for post-processing least-squares adjustment 

of the LiDAR point clouds. Vendors were asked to collect MLS data in two directions from 
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the right (outer) lane while driving at the posted speed limit. Most mobile LiDAR systems 

can collect accurate point cloud data for multiple travel lanes with a single pass from either 

travel lane along a corridor. Vendors provided their respective equipment specifications, 

which are provided in Table 2-1. Decisions regarding equipment calibration were made by 

vendors individually. That is, equipment calibrations were performed both before and after 

data collection runs. Traffic control was provided for the MLS data collection by two 

trailing SCDOT vehicles without obstructing the opposing travel direction. 

 

Photogrammetry Data Collection  

UAV photogrammetry data were collected on March 19, 2021. The UAV 

photogrammetry data collection process was considerably less labor intensive compared to 

MLS data collection. The research team used a commercially available UAV, with a 20mp 

imager with a retail value of $2,500. The specifications of the UAV system are provided 

in Table 2-1. Data were collected at two elevations (117 ft and 288 ft AGL) to improve 

scene coverage and provide two vertical planes to triangulate elevations. A total of 358 

images were collected at 117 ft, and 380 images were collected at 288 ft. Bentley’s 

ContextCapture is a structure-from-motion photogrammetry package commonly used by 

practitioners and some state DOTs. In this study, ContextCapture was used to process the 

2D georeferenced images into a 3D point cloud.  The 3D point cloud was exported and 

compared with MSL data in OpenRoads Designer. The accuracy of the points was 

improved using four geolocated GCPs. The GCPs reduce the RMS error in the point cloud 

and improve accuracy with precise scaling. The average ground resolution of the collected 
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imagery data was 22.2679 mm/pixel. Figure 2-2 provides a graphical representation of the 

scene coverage of overlapping images. On average, 24 images were used to compute the 

location of each point in the point cloud. However, because the lane lines were in the center 

of the scene, those points were calculated using approximately 35 images per point. 

 
Table 2-1. Overview of Equipment Specifications 

Data Type Source  Brand Model  Type 
Measurement 

Rate 

  

 

 

Mobile LiDAR 

Vendor A Riegl VMX 450 Dual laser 1100 KHz 

Vendor B 
Teledyne 

Optech 
MI Dual laser 

500 KHz/Sensor 

Vendor C 
Teledyne 

Optech 
SGI Dual laser 

600 KHz/Sensor 

Vendor D Z+F Profiler 9012 
Single 

laser 

1000 KHz 

Photogrammetry 

UAV 

Phantom 4 

Pro  

DJI 
Phantom 4 

Pro 

Sensor: 

 1" 

CMOS 

Mechanical Shutter 

Speed 8 - 1/2000s 

Electronic Shutter 

Speed 8 - 1/8000s 

 

 

 
Figure 2-2 Photo density: Top view (XY plane) display of the scene with colors indicating the 

number of photos that potentially see each area. 

 

 

 

Cross Slope Extraction from Point Cloud Data 

 

Data collected at two altitudes were combined before cross slope measurements 

were extracted. A multistep semi-automated method was used to extract cross slope 
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information from the LiDAR and photogrammetry-based point clouds. Edge of pavement, 

lane lines, and centerlines were identifiable in the MLS and UAV photogrammetry point 

cloud data using intensity and RGB color attributes, respectively. Bentley Systems’ 

OpenRoads Designer (ORD) clip tools were used to remove points beyond the white edge 

lines, and non-ground points that were not automatically classified within point clouds. To 

define the cross-section line at selected test sections, a 4-in cross-sectional buffer of points 

was defined and semi-automatically clipped based on the width of the reflective pavement 

marking tape that points to the PK surveying nails on the white edge lines. Next, a reference 

line was drawn through the clipped buffer of points between the two PK nail locations 

identified in ORD as shown in Figure 2-3. The clipped points were used to create a surface 

terrain model (STM) using ORD terrain modeling tools. Specifically, an ORD tiling 

algorithm, which is a divide and conquer recursive algorithm that divides the data into tiles, 

was used to filter the data and fit a plane through each tile within the point cloud using a Z 

tolerance value of 0.012-in. The variation in the Z coordinate that the surface can move 

during the filtering process is controlled by the specified Z tolerance value. The reference 

line projected along the buffered surface is used to extract cross slope data in a semi-

automated fashion based on the rise and run between pavement markings, shown in Figure 

2-4. This process was repeated for all test locations (n=42) across each of the ten randomly 

selected stations. 
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Figure 2-4 Identification of pavement markings and cross-section reference line. 

Figure 2-3 Example of cross slope extraction from point cloud data using a surface terrain 

model based on a cross-sectional buffer of points. 
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Evaluation of Results 

 

Results of this investigation are presented in Table 2-2 and Table 2-3. Travel lanes 

were labeled as follows: EBO = Eastbound Outer, EBI= Eastbound Inner, WBI = 

Westbound Inner, WBO = Westbound Outer, and LTL = Left Turn Lane. Cross-slope 

measurements collected using conventional surveying techniques and the difference 

between field survey data and measurements extracted from point cloud data are shown in 

Table 2-2. That is, the values shown under vendors and UAV photogrammetry represent 

deviations in percent from the manually surveyed measurements which served as ground 

truth data.  

 

Table 2-2 Comparison between Cross Slope Measurements Derived from Manual Survey, Mobile 

LiDAR, and UAV Photogrammetry data. 

        
Difference between measurements (absolute value) 

Field survey cross slope - Extracted measurement 

    Vendors 

UAV 

Photogrammetry  Station Lane  

Lane 

Width 

(HD) 

Field Survey 

cross slope 

(Ground truth) 
 A B C D 

 

170+00 EBO  11.57 3.83% 0.16% 0.02% 0.03% 0.02% 0.01%  

 EBI 12.09 3.89% 0.02% 0.03% 0.05% 0.12% 0.36%  

 WBI  11.89 2.99% 0.14% 0.23% 0.14% 0.27% 0.17%  

 WBO  11.61 3.73% 0.02% 0.11% 0.03% 0.30% 0.09%  

173+00 EBO  11.69 3.49% 0.16% 0.18% 0.09% 0.19% 0.26%  

 EBI  12.15 3.04% 0.00% 0.12% 0.01% 0.00% 0.08%  

 WBI  11.88 3.32% 0.25% 0.05% 0.07% 0.50% 0.29%  

 WBO  11.43 3.88% 0.02% 0.12% 0.06% 0.24% 0.10%  

175+00 EBO  11.40 3.88% 0.02% 0.28% 0.14% 0.24% 0.18%  

 EBI  12.24 3.11% 0.16% 0.20% 0.17% 0.35% 0.28%  

 WBI  11.34 3.33% 0.03% 0.11% 0.02% 0.64% 0.60%  

 WBO  11.59 4.29% 0.21% 0.22% 0.15% 0.50% 0.01%  
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190+00 EBO  12.02 3.00% 0.00% 0.13% 0.07% 0.03% 0.30%  

 EBI 11.60 2.32% 0.30% 0.07% 0.27% 0.27% 0.21%  

 WBI  11.66 2.86% 0.10% 0.11% 0.10% 0.21% 0.03%  

 WBO  12.30 2.92% 0.24% 0.41% 0.13% 0.04% 0.59%  

198+00 EBO  11.63 1.91% 0.23% 0.05% 0.01% 0.05% 0.21%  

 EBI 11.57 3.04% 0.10% 0.00% 0.04% 0.01% 0.07%  

 WBI  11.37 0.80% 0.40% 0.06% 0.07% 0.12% 0.08%  

 WBO  11.45 0.18% 0.16% 0.08% 0.02% 0.13% 0.12%  

203+00 EBO  11.94 3.81% 0.09% 0.22% 0.02% 0.37% 0.03%  

 EBI 11.83 4.65% 0.08% 0.02% 0.04% 0.40% 0.06%  

 WBI  11.57 3.59% 0.07% 0.50% 0.09% 0.06% 0.06%  

 WBO  11.86 4.60% 0.06% 0.46% 0.00% 0.10% 0.12%  

208+00 EBO  11.62 2.32% 0.28% 0.08% 0.07% 0.15% 0.09%  

 EBI 11.88 2.48% 0.17% 0.06% 0.06% 0.31% 0.16%  

 LTL 12 2.01% 0.30% 0.01% 0.06% 0.20% 0.00%  

 WBI  11.90 1.09% 0.06% 0.34% 0.15% 0.14% 0.12%  

 WBO  11.42 0.00% 0.24% 0.12% 0.00% 0.03% 0.18%  

212+00 EBO  11.56 1.08% 0.13% 0.07% 0.12% 0.19% 0.08%  

 EBI  11.69 1.75% 0.13% 0.35% 0.04% 0.38% 0.06%  

 LTL 10.27 2.26% 0.04% 0.36% 0.11% 0.02% 0.19%  

 WBI  12.34 2.86% 0.13% 0.11% 0.14% 0.22% 0.01%  

 WBO  11.48 1.31% 0.34% 0.01% 0.18% 0.01% 0.00%  

220+00 EBO  11.73 3.42% 0.13% 0.09% 0.06% 0.00% 0.30%  

 EBI 11.58 2.54% 0.02% 0.01% 0.05% 0.03% 0.20%  

 WBI  11.43 4.43% 0.02% 0.17% 0.16% 0.34% 0.00%  

 WBO  11.68 3.61% 0.13% 0.11% 0.10% 0.29% 0.01%  

227+00 EBO  11.73 2.39% 0.00% 0.29% 0.03% 0.03% 0.02%  

 EBI 12.13 2.14% 0.03% 0.37% 0.00% 0.06% 0.25%  

 WBI  11.81 1.91% 0.98% * * 0.32% 0.21%  

  WBO  11.95 1.88% 0.04% 0.32% 0.01% 0.38% 0.01%  

*Missing data; HD = Horizontal distance (ft) 

 

 

Comparison of UAV Photogrammetry and MLS survey data 

 

The methodology used to extract pavement cross-slope information from MLS and 

UAV photogrammetry point clouds was designed to mimic the traditional surveying 

approach for comparison purposes. To evaluate the dispersion of observed values with 
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respect to ground truth measurements, mean absolute errors (MAE) were calculated. This 

was performed as the first step in the comparative analysis. The observed MAEs for 

measurements obtained from MLS and photogrammetry data sets were 0.146%, and 

0.148%, respectively. Mean absolute errors were calculated using the following equation:  

 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑑𝑎𝑖 − 𝑑𝑜𝑖| =

1

𝑛
∑ |𝑒𝑖|𝑛

𝑖=1

𝑛

𝑖=1
       (2-1) 

 

Where: 

𝑛= Number of observations 

dai= Manually surveyed measurement 

doi= Observed value (extracted measurement) 

|ei|= Absolute difference between surveyed and observed measurements 

 

Standard deviations (SD) were calculated to evaluate the spread of estimated 

measurements with respect to the mean. SD values for MLS and photogrammetry data sets 

were 0.14% and 0.14%, respectively. Standard deviations were calculated using the 

following equation:  

𝑆𝐷 = √∑ |𝑑𝑜𝑖−𝑑𝑎̅̅ ̅̅ |2𝑛

𝑖=1

𝑛−1
          (2-2) 

 

Where: 

doi
= Observed value (extracted measurement)   

da
̅̅ ̅ =  Expected value (Manually surveyed measurement )   

𝑛 = Number of observations 
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A summary of cross slope measurement comparisons is shown in table 2-3.  

 
Table 2-3 Summary of Cross-Slope Measurement Comparisons 

    
EB Outer 

Lane 

EB 

Inner 

Lane 

Turning 

Lane 

WB Inner 

Lane 

WB Outer 

Lane 

Mobile  

LiDAR  

Min 0.00% 0.00% 0.00% 0.02% 0.00% 

Max  0.37% 0.40% 0.69% 0.98% 0.50% 

Mean  0.11% 0.12% 0.21% 0.20% 0.15% 

Median  0.09% 0.06% 0.15% 0.14% 0.12% 

One sided t-test 𝑡𝑜𝑏𝑠 df p-value Significant  

𝐻𝑎: 𝜇 < 0.2 -4.83 165 <0.01 Yes   

       

U
A

V
 

P
h
o
to

g
ra

m
m

et
ry

 Min 0.01% 0.06% 0.00% 0.00% 0.00% 

Max  0.30% 0.36% 0.19% 0.60% 0.59% 

Mean  0.15% 0.17% 0.09% 0.16% 0.12% 

Median  0.14% 0.18% 0.09% 0.10% 0.09% 

One sided t-test 𝑡𝑜𝑏𝑠 df p-value Significant  

𝐻𝑎: 𝜇 < 0.2 -2.38 41 =0.02 Yes   

 

 

Discussion 

 

The means of the errors of measurements extracted from MLS data sets were 

between 0.11% and 0.21% with a mean absolute error (MAE) of 0.146%, and standard 

deviation of 0.14%. The means of the errors of measurements extracted from 

photogrammetry point clouds were between 0.09% and 0.17% with a mean absolute error 

of 0.148% and standard deviation of 0.14%. Overall, MLS and photogrammetry results 

were within the acceptable range of ±0.2% specified by SHRP 2 and SCDOT. In fact, both 

the means and variances for the MLS and UAV samples tested to be equal with 𝑡𝑜𝑏𝑠 =

 −.05 𝑜𝑛 𝑑𝑓 = 206, 𝑝 = .95, and 𝐹𝑜𝑏𝑠 = 1.01 𝑜𝑛 𝑑𝑓1 = 165 𝑎𝑛𝑑 𝑑𝑓2 = 41, 𝑝 =  .97, 

respectively. Based on these findings we conclude that UAV photogrammetry performs at 

least as well, on average as the MLS systems.  
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 It is noteworthy that MAE for each MLS vendor varied by vendor.  Table 

2-4 summarizes the MAE values for each of the MLS vendors.  The photogrammetry 

values are included for comparison purposes.  The average MAE for all lanes ranged from 

0.075% for vendor C to 0.197% for vendor D. All of the vendor LiDAR systems had similar 

sampling rates and similar published accuracy specifications. Some of the vendors 

collected their data on different days which can affect GPS positions depending on PDOP 

value at the time of data collection.  Other factors that can influence MLS accuracy are the 

inertial measurement unit and equipment calibration. The evaluated values for all roadway 

lanes within the study area meet the SHRP 2 specification (±0.2%), with the exception of 

a few of the individual lane MAE values that are greater than 0.2%.    

Another observation of note is that MLS data is better for outer lanes compared to 

inner lanes in most cases.  This is to be expected because the MLS vendors were asked to 

drive in the outer lane during the data collection, thus the data in the outer lane is collected 

at a closer range at an angle nearly perpendicular to the LiDAR sensor.   

 
Table 2-4 MAE Values by Lane from MLS and UAV Photogrammetry Data 

Lane  
Vendors  UAV  

Photogrammetry A B C D 

EBO 0.120% 0.141% 0.064% 0.127% 0.148% 

EBI 0.101% 0.123% 0.073% 0.193% 0.173% 

WBI 0.218% 0.187% 0.104% 0.282% 0.157% 

WBO 0.146% 0.196% 0.068% 0.202% 0.123% 

All lanes 0.147% 0.162% 0.077% 0.197% 0.148% 
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Conclusion 

 

This study conducted a technical evaluation of close-range UAV photogrammetry 

and multiple MLS systems. The use of MLS and UAV photogrammetry for cross slope 

measurements were evaluated at ten stations along a designated test section of East West 

Parkway in Anderson, South Carolina. The results of this study showed that both MLS and 

UAV photogrammetry derived cross slopes are comparable to conventional manual survey 

measurements. The observed MAEs for MLS ranged from 0.077% to 0.197% with an 

overall average of 0.15% and 0.15% for UAV photogrammetry. Results indicated that MLS 

and UAV photogrammetry provided accurate results for cross slope determination.   

Conventional surveying methods are time consuming and require a survey crew to 

collect data within the roadway limits, which presents safety issues and may interfere with 

traffic. LiDAR scanning and photogrammetry platforms can be used to capture cross 

slopes, grades, and a variety of other geometric design characteristics efficiently. These 

applications can increase productivity, minimize road crew exposure, and create reliable 

continuous data sets of roadway information that can serve multiple uses beyond cross 

slope measurement, such as highway asset management.  
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CHAPTER THREE  

 

PAPER II: ROADWAY PAVEMENT MATERIAL VOLUME ESTIMATION FOR 

RESURFACING AND REHABILITATION USING MOBILE LIDAR AND IMAGERY-

BASED POINT CLOUDS 

 

 

Abstract  

 

Innovative data acquisition technologies allow state transportation agencies and 

industry practitioners more flexibility to develop efficient and cost-effective workflows for 

roadway maintenance, design, and asset management. Transportation agencies perform 

resurfacing, rehabilitation, and maintenance tasks on an ongoing basis. Hence, road 

construction, rehabilitation, and resurfacing project costs incurred by transportation 

agencies result in thousands of dollars per mile each year. Accurate methods for estimating 

material quantities are crucial in providing reliable estimates and minimizing costs. Light 

Detection and Ranging (LiDAR) and Unmanned Aerial Vehicle (UVA) photogrammetry 

systems can be used to obtain large datasets of accurate, high-density three-dimensional 

point clouds. Point cloud data can be used to obtain detailed information representing the 

existing ground as well as design and as-built surfaces for earthwork and surface material 
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volume calculation purposes. In this study, pavement material volume quantities were 

calculated using terrain models created from LiDAR point clouds collected by five 

vendors, and terrain models created from UAV photogrammetry and manual survey data 

collected by the research team. Volume differences were due to variations in the surfaces 

obtained using each point cloud data set. Additionally, terrain models generated using 

mobile LiDAR scanning (MLS), and UAV photogrammetry-based point clouds were 

compared based on calculated earthwork volume quantities between terrain models. 

Volume quantities were calculated using a surface-to-surface method in OpenRoads 

Designer. A 1.3-mile section along an urban parkway located in Anderson County, South 

Carolina was used as the testbed to investigate the differences between road surface terrain 

models generated using mobile LiDAR and imagery-based point clouds. The average 

difference in height between surfaces ranged from 0.17 inches between two MLS vendor 

surfaces to 1.67 inches between UAV photogrammetry and one of the MLS vendors. 

 

Keywords: Earthwork, Mobile LiDAR, UAV Photogrammetry, Pavement 

rehabilitation and resurfacing, Surface Modeling.  

 

 

Introduction 

 

Emerging technologies such as mobile LiDAR scanning (MLS) and unmanned 

aerial vehicle (UVA) photogrammetry can be used to collect large data sets of the 

characteristics of roadway surfaces along corridors in the form of a point cloud. These 

datasets facilitate the creation of workflows to extract accurate three-dimensional (3D) 
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models of roadways in a timely manner. The use of 3D models has the potential to 

accelerate construction operations, reduce costs, improve accuracy, and enhance safety 

during construction operations (1). Hence, various phases of the road construction process 

can benefit from these technologies including data collection, data processing, cost 

estimating, and design phases. Modeling software can be used to process LiDAR and UVA 

photogrammetry data sets to create accurate 3D terrain models representing existing 

ground, design, and as-built surfaces that can be used to estimate material volumes. 

Earthwork is commonly defined as the process of excavating, hauling, and placing soil and 

other earthen materials during construction projects (2, 3). Efficient management of 

earthwork operations requires, among other things, accurate estimating of volume 

quantities (3). Earthwork volume quantities represent the total amount of soil or other 

pavement material to be transported to and from a construction site. Cut and fill volumes 

are known as the amount of material to be removed (cut) or placed (fill) to reach a desired 

elevation or grade. Methods typically used to calculate earthwork volume quantities for 

road construction projects include the traditional average-end-area calculations based on 

cross sections, and surface to surface computations to determine cut and fill volumes. 

Average-end-area volumes are based on the sum of volumes of the prismoids formed by 

adjacent cross sections (4). Surface to surface computations, enabled by modeling 

software, can be used to determine volumes between two terrain models based on the union 

of the terrain models (see Fig. 3-1). 
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Traditional surveying techniques allow for the collection of surface data only at 

specified intervals. While this approach is accurate enough for most applications including 

repaving, pavement maintenance, and quantity estimating; dense and continuous data sets 

such as point clouds from survey-grade systems provide a more accurate representation of 

the topography of the surface to be modeled. Having an accurate representation of the 

surface topography is critical to obtaining accurate volume quantities. Inaccurate pavement 

material estimates may lead to undesirable consequences during construction including 

costly contractor change orders. MLS, and UAV photogrammetry data sets consist of 

highly accurate three-dimensional point clouds that provide high-density continuous data. 

Continuous data sets provide more detailed three-dimensional information than 

conventional surveying methods that rely on data collected at specified cross-sectional 

intervals. This study evaluated the use of mobile LiDAR and UVA photogrammetry point 

cloud data to compute pavement material volume quantities. Comparisons were made with 

survey data collected manually by the research team.  MLS data sets were collected by four 

vendors invited to participate in the study. Because the exact same section of road was used 

Figure 3-1 Example of earthwork volume computation based on 

the union of two terrain models (surface-to-surface method). 
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for data collection, a perfect surface in all cases should result in zero cut, zero fill, and zero 

net volume when doing the comparisons. Comparisons in close agreement with low 

material quantity estimates between surfaces indicates the point clouds used in the 

comparison accurately reflect the actual surface and can be used for performing volume 

estimates. This study aims to facilitate the decision-making process regarding technologies 

and surveying approaches that may be used for specific projects.  

 

Literature Review 

 

Many studies have explored the feasibility of using LiDAR and UAV 

photogrammetry data for road surface modeling purposes. These modern technologies can 

be deployed in small study areas as well as in wide multilane corridors. The literature shows 

various approaches investigating the accuracy of LiDAR and UVA photogrammetry terrain 

models.  

 

LiDAR Technology Applications  

Modern laser scanning data collection technologies are becoming increasingly 

popular for being potentially more cost-effective than conventional surveying techniques. 

Mobile Terrestrial LiDAR and aerial LiDAR systems are at the forefront of this trend. 

Recent studies have investigated advantages associated with the implementation of LiDAR 

technology by transportation agencies (5). Data collection productivity, enhanced safety, 

cost-effectiveness, and improved accuracy are among the primary benefits associated with 

the increasing adoption of LiDAR technology (6).  
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LiDAR surveys enable practitioners to perform rapid and accurate data collection 

and facilitate the consolidation of resources and maximization of available funding (7). 

Due to its applicability in the transportation industry, a growing number of transportation 

agencies have acquired some form of LiDAR technology in recent years. Besides providing 

the ability to generate terrain models with a high degree of accuracy, LiDAR data sets can 

be used to perform a variety of road safety analyses including assessment of road pavement 

condition. De Blasiis et al. (8) took advantage of the dense point clouds acquired using 

mobile laser systems (MLS) to identify pavement degradations that affect safety, namely 

potholes and shoving in the pavement surface. Ravi et al. (9) proposed an automated 

approach for pavement surface inspection based on an algorithm capable of analyzing 

pavement surface models generated from mobile mapping system (MMS) point clouds 

acquired at highway speeds of approximately 60 mph. The authors suggested that their 

approach could detect anomalies as small as 2 cm in the form of cracking, potholes, and 

surface debris. Li et al. (10) attempted to use unmanned aerial vehicle (UAV) LiDAR to  

rapidly and accurately extract different types of pavement distress due to natural and human 

factors. Efficient pavement management systems depend on accurate, reliable, and 

complete data on pavement conditions (11), which can be accomplished with LiDAR 

technology. 

 

Unmanned Aerial Vehicle (UAV) Photogrammetry Applications 

Unmanned Aerial Vehicle (UVA) photogrammetry can provide benefits similar to 

those obtained with LiDAR systems including cost-effectiveness, data collection 
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efficiency, and enhanced safety. Previous studies have identified UVAs as a valuable 

source of image data for 3D reconstruction of man-made structures (12–14).  

Uysal et al. (15) described UAV photogrammetry as a low-cost, less time-

consuming, and sufficiently accurate alternative to traditional surveying approaches. 

Similarly, Tan and Li (16) argued that unmanned aerial vehicles (UAVs) represent an 

excellent option for road condition monitoring. The authors used road images from UAV 

oblique photogrammetry for image reconstruction to generate 3D models from which 

pavement distresses were automatically detected and extracted.  

Farhadmanesh et al. (17) investigated the feasibility of using LiDAR and 

photogrammetry systems to monitor highway assets and pavement condition. Al-Assi et 

al. (18) explored the suitability of using close-range photogrammetry (CRP) to generate 

3D models to measure pavement macro texture and micro texture. Their approach involved 

processing stereo images using digital photogrammetric software to generate 3D surface 

models.  

A study by Khanal et al. (19) investigated the accuracy of mobile terrestrial LiDAR, 

aerial LiDAR, and UAV photogrammetry data sets collected over different terrain types 

by comparing elevations obtained from each data source with conventionally surveyed 

data. The researchers concluded that data collected using either technology can be used for 

road design as well as reconstruction and rehabilitation of existing roadways. These 

approaches indicated that UAV photogrammetry can potentially be used to ensure timely 

and proper resurfacing and rehabilitation of damaged roadways. 
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Calibration of LiDAR and UAV Photogrammetry systems  

A critical aspect regarding the implementation of LiDAR and UVA 

photogrammetry technology in transportation for accurate surveying is that systems be 

properly calibrated. Commercial software packages can be used to post-process Global 

Navigation Satellate System (GNSS) and Inertial Measurement Unit (IMU) data along with 

ground-based LiDAR scans to obtain accurate point clouds (20). A review of the literature 

shows various efforts and methodologies to calibrate LiDAR and UVA photogrammetry 

systems with and without ground control points (21–24).  

Barber et al. (25) evaluated the precision and accuracy of a ground-based mobile 

mapping system using conventionally surveyed check points. The authors performed an 

estimate of the system’s precision using repeated data collection passes. Results of their 

investigation indicated a measurement precision between 0.029 m and 0.031 m in 

elevation, planimetric accuracy of approximately 0.10 m, and RMS errors in elevation in 

the order of 0.03 m. 

Ravi et al. (26) proposed a calibration procedure for both airborne and terrestrial 

mobile mapping systems that estimates the mounting parameters for several spinning 

multibeam laser scanners and cameras on board a LiDAR platform. Their results indicated 

that for the UAV-based laser scanning unit used in the study, the processing accuracy in 

position was between 2 cm and 5 cm. The car-mounted mobile laser scanning system 

provided an accurary of approximately 3 cm for the derived point cloud coordinates at a 

range of 30 m. 
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Glennie (27) investigated the overall 3D expected error accuracy of LiDAR systems 

using a rigorous first order error analysis of the LiDAR georeferencing equations. The 

authors evaluated common error parameters as well as the expected horizontal and vertical 

system accuracies for different LiDAR systems.  

Furthermore, studies have identified close-range photogrammetry as a potential 

alternative to LiDAR scanning devices and manual data collection approaches (28). 

Luhman et al. (29) presented a review of aspects of sensor modeling and camera calibration 

for close-range photogrammetry with a focus on techniques of automated self-calibration. 

Similarly, Gabrlik at al. (30) proposed a multi-sensor system for direct georeferencing of 

UAV-based aerial imagery and validated results using a high number of test points.  

 

Earthwork Estimation Approaches  

The two most common methods used to compute earthwork quantities in 

transportation applications are 1) the average-end-area (AEA) method and 2) the surface-

to-surface method. The ability to obtain accurate earthwork quantities has been 

significantly enhanced by modern data collection and processing technologies that can be 

used to generate, overlay, and compare 3D surfaces models to obtain earthwork volumes. 

In recent years, state transportation agencies have increasingly used three-dimensional 

(3D) models to plan and design roadways due to benefits such as improved productivity, 

accuracy, and worker safety during construction operations (31).  

The conventional way of determining earthwork quantities is to use the average-

end-area method. The AEA method involves establishing survey cross-sections along the 
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roadway at regular intervals from which cut and fill volume quantities are estimated (32). 

Research studies have suggested that many state transportation agencies and practitioners 

still use or specify the average-end-area method for calculating earthwork volume 

quantities for road construction projects (2). Because volume quantities are calculated 

between cross-sections, the average end-area method is labor intensive and difficult to 

apply when the construction consists of nonlinear sections (33). The average-end-area 

method calculates earthwork volumes between consecutives cross sections by multiplying 

the average of the two cross sectional end areas (A1 and A2) by the perpendicular distance 

between the cross sections (L). The AEA method is given by the following equation:  

 

𝑉 =
1

2
(𝐴1 + 𝐴2) ∗ 𝐿     (3-1) 

 

Schexnayder and Mayo (34) argued that the AEA method gives volume results that 

are slightly in excess of the actual volume, with a precision of about ±1%. Additionally, 

the authors suggested that although 100-ft stations are typically used when the project is 

linear in extent and the ground surface is regular, measurements should be taken at closer 

intervals (less than 100 ft), when the surface irregular, particularly at points of change. The 

accuracy of earthwork computations is directly affected by the extent and accuracy of field 

measurements. 

Hintz and Vonderohe (2) compared volumes computed using the average-end-area 

method with surface-to-surface volume quantities calculations using modeling software. 

Their investigation showed that end-area volumes approached those computed by surface-
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to-surface calculations when the cross-section interval was reduced. Additionally, the 

authors argued that variations could be due to random variability of the terrain.  

Similarly, Slattery and Slattery (35) argued that the AEA method is unreliable in 

sections that change from cut and fill and where the construction consists of non-linear 

sections. The authors evaluated the feasibility of using terrestrial laser scans on roadway 

construction projects as an efficient approach to measure earthwork quantities. Their study 

indicated that results could be improved using measurement methods that provide more 

dense data such as 3D mobile terrestrial laser scanning.  

 

Study Area and Data Collection 

 

The study area is a 1.3-mile section of a relatively recently built 4-lane urban 

roadway (East West Parkway) located in Anderson County, SC, shown in Figure 3-2. 

Geometric features of the study area include linear sections, four horizontal curves, five 

vertical curves, and two lanes in each direction.  

 

 

Figure 3-2 Stations and GCP locations along the study area: Anderson, SC (East 

West Parkway) 
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Data were collected in three phases. The research team performed a ground control 

survey to identify ground control points (GCPs) throughout the study area (see Fig. 3-3). 

Existing geodetic survey marks were used as primary ground control points. Primary and 

secondary GCPs provided a means for tying down data sets for consistent comparison. 

Similarly, the research team performed a survey to establish 100-ft stations along the edges 

of the travel lanes (see Fig 3-4).  

 

Equipment used during the traditional data collection process include total stations, 

smart levels, and high-accuracy GPS units. To facilitate the identification of stations and 

GCPs using point cloud intensity and RGB color attributes, reflective pavement marking 

tape was placed at station markers along the white pavement edge lines on both sides of 

the roadway. 

 

Mobile LiDAR datasets were collected by industry vendor using their own LiDAR 

systems and survey crews. Vendors were provided with traffic control support consisting 

of two trailing SCDOT vehicles and were instructed to collected data using the right (outer) 

Figure 3-3 Sample primary and secondary 

control points used to adjust LiDAR and 

photogrammetry data sets. 

Figure 3-4 Reflective pavement marking 

tape used to identify survey stations along 

the white pavement edge lines. 
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lane while traveling at the posted speed limit (see Fig. 3-5). Vehicles in the opposing travel 

direction were allowed to move without obstruction. All LiDAR datasets were collected 

using one pass in each direction because most mobile LiDAR systems can collect accurate 

data for multiple lanes from either lane along a roadway as shown in Figure 3-6. LiDAR 

equipment were calibrated by vendors before and after each data collection pass. Vendors 

were responsible for ensuring that LiDAR systems were calibrated throughout the data 

collection process.  

 

 

 

 

 

Figure 3-5 Mobile Lidar data collection. (SCDOT traffic control trucks and sample LiDAR system 

and vehicle used by vendors). 

Figure 3-6 Sample Mobile LiDAR scan from the outer (right) lane. 
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The research team collected aerial imagery data using a commercially available 

UAV with a retail value of approximately $2,500, (see Fig 3-7). The detailed specifications 

of the systems are presented in Table 3-1. The UAV photogrammetry data acquisition 

process was conducted as follows: a) Identification of GCP locations within the study area, 

b) Placement of aerial survey targets, c) Flight planning, d) Equipment calibration and 

image data acquisition, e) Data processing for 3D information extraction. Data were 

collected using two elevations to enhance scene coverage. That is, imagery data were 

collected in two directions, eastbound (EB) and westbound (WB), at 117 ft and 288 ft AGL 

relative to the point of takeoff. The two elevations provided two vertical planes to 

triangulate elevations. In total, 358 and 380 images were collected at altitudes of 117 ft and 

288 ft, respectively. Images were georeferenced using control points. Three-dimensional 

point clouds were generated using images collected at both altitudes. The unmanned aerial 

system used to collect imagery data is shown in figure 3-7. Figure 3-8 shows a point cloud 

generated using UAV imagery data. 

 

Figure 3-7 Unmanned aerial system used to collect imagery data. 
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Equipment specifications provided by vendors, as well as equipment used by the 

research team are summarized in Table 3-1.  

 
Table 3-1 Mobile Lidar and UAV Photogrammetry Equipment Specifications 

Data Collection  

Method 

Source of 

Data   

Brand 

Name 
Model  Type 

Measurement 

Rate 

 

MLS 

Vendor A Riegl 
VMX 

450 

Dual 

laser 
1100 KHz 

Vendor B 
Teledyne 

Optech 
MI 

Dual 

laser 

500 

KHz/Sensor 

Vendor C 
Teledyne 

Optech 
SGI 

Dual 

laser 

600 

KHz/Sensor 

Vendor D 
Z+F 

Profiler 
9012 

Single 

laser 
1000 KHz 

Vendor E 
Teledyne 

Optech 
MI 

Dual 

laser 

500 

KHz/Sensor 

UAV 

Photogrammetry 

Commercially  

Available  

UAV 

DJI 
Phantom 

4 Pro 

Sensor: 

 1" 

CMOS 

Mechanical 

Shutter Speed 8 

- 1/2000s 

Electronic 

Shutter Speed 8 

- 1/8000s 

 

 

Analysis Methodology 

 

Primary and secondary ground control points (GCPs) were used to georeference 

data sets using a common coordinate system. MLS point clouds were adjusted through 

Figure 3-8 Three-dimensional point cloud from collected UAV imagery data. 
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post-processing with ground control points. The research team used four GCPs to adjust 

the UVA photogrammetry data. ContextCapture, a Bentley’s structure-from-motion 

software package commonly used by practitioners and some state DOTs, was used to 

process the 2D georeferenced images into a 3D point cloud. Four geolocated ground 

control points (GCPs) were used for tying down point cloud data for consistent comparison. 

The location of each point within the point cloud was computed using between 24 and 35 

images, on average. The average ground resolution of the images collected was 22.2679 

mm/pixel. 

Prior to the creation of terrain models, LiDAR and UAV photogrammetry point 

clouds were processed in OpenRoads Designer to remove noises from the data; that is, non-

ground points created by power lines, vegetation, and other small obstacles located in the 

median and shoulders were removed. Point clouds were clipped directionally between the 

white pavement edge lines before the data were filtered so that accurate terrain models 

could be generated. Typically, point clouds should be filtered to remove existing scatter 

points from the surface generated due to random measurement errors (35). Two lanes in 

each direction were kept and dedicated left turn lanes were removed from the analysis. 

Since material quantities are typically determined by actual surface area (i.e., length x 

width) made in the field prior to removal (36), terrain models were clipped using a 

predefined boundary that included both travel lanes in each direction. That is, a common 

boundary was used to ensure that volume quantity comparisons were not affected by 

variations in the planar area of terrain models created from each data set.  



 

51 

 

The conventional survey surface was generated using points manually surveyed 

along the white pavement edge lines and across each established station. On average, 6 

points were surveyed across each station to include both travel lanes in each direction and 

the double yellow lines. Overall, 424 points were manually surveyed at sixty-nine 100-ft 

stations over the 1.3-mile study area. 

 

Results and Discussion 

 

Pavement Material Volume Calculations 

Material volumes were calculated using a surface-to-surface method in OpenRoads 

Designer by setting one of the surfaces as existing and the other as the design surface. The 

total volume difference between the two surfaces is the same regardless of which terrain 

model is set as the design or existing surface. Table 3-2 shows the total volume difference 

(cut plus fill) in cubic yards between surface pairs including eastbound and westbound 

lanes. The ideal volume is zero. The table indicates that the closest comparison from a total 

volume standpoint is between Vendor B and Vendor C.   

 
Table 3-2 Total Volume Difference between Surface Pairs Including Eastbound and Westbound 

Lanes. Units = yd3 

Terrain  
Model  

Conventional 
Survey 

Vendors  

A B C D E 

Conventional 
Survey             

Vendor A 745           

Vendor B 355 823         

Vendor C 366 872 102       

Vendor D 610 652 413 429     

Vendor E 486 1060 249 197 488   

UAV 
Photogrammetry 532 1287 486 448 714 291 
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Average perpendicular height variation between surfaces  

To better understand the magnitude of the volume differences in Table 3-2, the 

volume differences were converted into inches in terms of perpendicular height between 

the surfaces.  To estimate the average perpendicular height difference between two 

surfaces, the total volume between the surfaces was divided by the average of the planar 

areas. Planer areas included approximately two lanes in each direction. Thus, two lanes in 

each direction (24 ft) x 1.3-mile segment (6864 ft). Table 3-3, Table 3-4, and Table 3-5 

show results of average perpendicular height difference calculations in inches.  The ideal 

height difference is zero for reasons stated previously.  Again, Vendor’s B and C compares 

most favorably having the lowest average height difference in both travel directions 

individually and combined.  The table shows that this difference is less than ¼”.  The 

average difference in heights for all of the MLS vendors is less than 1 inch except for 

Vendor A. The average height difference for Vendor A’s results are greater than 1” 

difference in every comparison.  Most of these differences are because of a very large cut 

volume compared to fill which indicates a systematic error.  Because different systems and 

calibration methods yield different vertical and horizontal accuracies, terrain model heights 

may vary slightly between surface models however systematic errors should be eliminated 

through careful calibration and post-process least squares adjustment using ground control 

points.  Nevertheless, even an inch of error is relatively small when considering that many 

contour maps used for highway purposes are created from airplane based aerial 

photogrammetry with flying heights greater than 1000 feet.  The smallest contour interval 

will typically be 1 foot and error standards are that contours should be within half a contour 
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interval of actual which indicates acceptable differences of up to 6” in this case (37).  Thus, 

even a 1” difference is relatively small.  UAV photogrammetry average height differences 

range from 0.775” to 1.398”. It is noteworthy that conventional survey data in this case is 

not ground truth because of the 100’ interval between survey points. Thus, everything 

between the 100’ interval is interpolated.  

 
Table 3-3 Eastbound Lanes: Average Height Difference between Surface Terrain Models.  

Units = inches. 

Data Source Conventional 

Survey 

Vendors 

A B C D E  

Conventional Survey             

M
o

b
il

e 
L

iD
A

R
 Vendor A 1.22           

Vendor B 0.51 1.33         

Vendor C  0.60 1.41 0.16       

Vendor D 0.86 1.15 0.62 0.63     

Vendor E 0.70 1.41 0.43 0.36 0.79   

UAV Photogrammetry 0.79 1.39 1.03 0.99 1.35 0.78 

 

 
Table 3-4 Westbound Lanes: Average Height Difference between Surface Terrain Models.  

Units = inches. 

Data Source Conventional 

Survey 

Vendors 

A B C D E  

Conventional Survey             

M
o

b
il

e 
L

iD
A

R
 Vendor A 1.26           

Vendor B 0.67 1.39         

Vendor C  0.62 1.49 0.18       

Vendor D 1.16 1.01 0.75 0.79     

Vendor E 0.65 1.79 0.42 0.33 0.93   

UAV Photogrammetry 0.72 1.95 0.68 0.62 1.19 0.57 
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Table 3-5 Both Directions (EB and WB): Average Height Difference between Surface Terrain 

Models. Units = inches. 

Data Source Conventional 

Survey 

Vendors 

A B C D E  

Conventional Survey             

M
o

b
il

e 
L

iD
A

R
 Vendor A 1.24           

Vendor B 0.59 1.36         

Vendor C  0.61 1.45 0.17       

Vendor D 1.01 1.08 0.68 0.71     

Vendor E 0.68 1.60 0.42 0.34 0.86   

UAV Photogrammetry 0.76 1.67 0.85 0.81 1.27 0.67 

 

 

Conclusions 

 

In this study, differences between surface terrain models produced by MLS, UAV 

photogrammetry, and traditional survey data were compared. The established testbed 

location, East-West Parkway in Anderson, South Carolina, provided a study area of a 

typical rolling terrain multilane roadway along an urban alignment extending along a 1.3-

mile parkway length. The use of MLS and UAV photogrammetry data collection methods 

produced similar surfaces. For both eastbound and westbound lanes of the 1.3-mile test bed 

study location, the average elevation differences between the MLS, UAV photogrammetry, 

and the traditional surveying surfaces ranges from 0.17 inches to 1.27 inches when vendor 

A is excluded from the comparison. These results indicate that surfaces generated from all 

three methods could be interchangeably used for pavement material volume estimation 

purposes. Thus, terrain models from MLS and imagery-based point clouds could help 

improve leveling course quantity estimates. However, acquiring higher spatial resolution 

UAV photogrammetry data and collecting additional ground control points may improve 
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the accuracy of pavement surface elevations. Similarly, additional noise removal may help 

improve the accuracy of surface terrain models generated from point clouds. The use of 

digital surface models to obtain accurate material volumes and project quantities would be 

highly beneficial to state departments of transportation in scoping, planning, designing, 

and administering a wide variety of roadway improvement, safety, capacity, and 

maintenance related projects. Accurate material volume estimates would be very helpful 

in providing third-party private highway contractors with accurate quantities, resulting in 

fewer project change orders and reduced scheduling delays.  
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CHAPTER FOUR 

 

 

PAPER III SAFETY ASSESSMENT OF DESIGN SPEED ON HORIZONTAL AND 

VERTICAL CURVES USING MOBILE LIDAR AND UNMANNED AERIAL 

VEHICLE PHOTOGRAMMETRY 

 

Abstract 

 

The process of evaluating roadway geometry for potential safety problems requires 

precise measurement of various geometric parameters. This study evaluated the use of 

mobile LiDAR scanning (MLS) point clouds and unmanned aerial vehicle (UAV) imagery-

based point clouds to estimate design speeds on horizontal curves and sight distance and 

design speeds on vertical curves of constructed roadways. Results from paired t-test 
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statistical analyses at a 95% confidence level indicated that LiDAR and UAV 

photogrammetry systems provide horizontal curvature data at sufficient accuracy to 

estimate curve design speeds. The proposed methodology can be used to identify locations 

where the posted speed limit/advisory speed is higher than the design speed along 

horizontal curves so that corrective measures can be implemented on existing roadway 

networks. Similarly, vertical alignment data were extracted from terrain models generated 

from point clouds for sight distance and design speed estimation on crest and sag vertical 

curves. Extracted longitudinal grades were compared based on a minimum acceptable 

accuracy value of ± 0.5% specified by SHRP2. The statistical analysis indicated that the 

average deviations between field survey measurements and longitudinal grade 

measurements extracted from LiDAR and imagery-based point clouds were less than the 

acceptable accuracy value of ± 0.5% at a 95% confidence level. Additionally, the results 

showed that sight distances calculated using terrain models from point clouds could be 

used to obtain accurate estimates of design speed on vertical curves based on the results 

from a paired t-test statistical analysis using a 95% confidence level. Geometric 

characteristics of the study area, located in Anderson, South Carolina, include 4 horizontal 

curves and 5 vertical curves. The proposed approach offers advantages over extracting 

information from design drawings which may be unavailable, outdated, or inconsistent 

with the as-built roadway. 

 

Keywords: Roadway Safety, Mobile LiDAR, Close-Range Photogrammetry, 

Roadway Geometry, as-built data, SHRP2. 
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Introduction 

 

Yearly, state transportation agencies and industry practitioners strive to develop 

and implement proactive approaches to collect roadway data critical to enhancing 

maintenance efforts and address potential road safety issues to reduce the likelihood of 

vehicle crash occurrences. Motor vehicle crashes contribute to a significant number of 

injuries and fatalities in the United States and globally. Inefficient data collection methods, 

data availability issues, and data incompleteness complicate efforts to develop accurate 

road feature inventories for road maintenance and safety evaluations. Recent studies have 

indicated that remote sensing technologies can enhance roadway feature data acquisition 

and maintenance strategies (1, 2).  Automated surveying practices require less field time, 

reduced crew sizes, and minimize human error (3). 

Emerging technologies such as Light Detection and Ranging (LiDAR) and Close-

Range Photogrammetry (CRP) allow for rapid and accurate collection of georeferenced 

three-dimensional (3D) data facilitating efforts to develop efficient data collection 

workflows. To date, research studies have shown that mobile LiDAR scanning (MLS) 

systems and CRP data collected using unmanned aerial vehicles (UAVs) have numerous 

applications in transportation (4). For instance, to comply with pragmatic performance 

measures and performance-based funding, state transportation agencies have been using 

innovative and practical methods and technologies to manage roadway assets (5). MLS 

point clouds have the potential to enhance the ability to design and maintain roadway 

networks by providing highly accurate, dense, and georeferenced data sets. UAV imagery-
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based point clouds provide similar advantages including the ability to generate highly 

accurate 3D models. 

Additionally, the use of innovative surveying technologies and 3D models to create 

virtual representations of existing roadway infrastructure provides numerous advantages 

including the ability to develop fast and efficient inspection protocols such as verification 

of compliance with design standards; and enhanced accuracy, cost-efficiency, and safety 

during construction and data collection activities (6). The ability to rapidly collect accurate, 

georeferenced, high-resolution three-dimensional data provides significant benefits over 

conventional surveying methods. Most conventional data collection approaches are labor 

intensive, time-consuming, and may expose field crews and the public to unsafe conditions. 

Conventional survey data are collected at sample locations and are not continuous. Thus, 

locations between surveyed points are interpolated which may compromise overall 

accuracy. Additionally, design drawing data of existing roadways may be inconsistent with 

the as-built roadway. That is, as-built measurements are often not available and design 

drawing data may not be accurate because the as-built roadway may not correspond with 

preconstruction design drawings (7). This issue is particularly prevalent when older 

roadways are considered. 

From a safety standpoint, identifying locations where vehicles may exceed design 

speeds is critical in preventing future crashes.  A proactive approach that identifies 

potential design deficiencies is favorable to analyzing crash data. 

This study evaluates the feasibility of MLS and imagery-based point clouds 

collected by CRP UAVs to extract horizontal and vertical roadway geometry features for 
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design speed and sight distance assessment on constructed roadways. Comparisons were 

made using geometric elements extracted from MLS data collected by five vendors, and 

aerial imagery and manual survey data collected by the research team. 

 

 

LITERATURE REVIEW 

 

Applications of MLS in transportation 

 

LiDAR systems can be used to acquire large data sets of high-accuracy three-

dimensional (3D) point clouds in a timely manner. Additional benefits include less 

personnel exposure to potentially hazardous conditions during data collection activities and 

fewer unnecessary delays for the traveling public when compared to some conventional 

survey methods (1). The Federal Highway Administration (FHWA) has identified LiDAR 

as a technology that could help consolidate resources, maximize funding, and enhance the 

accuracy and integration of information (2). LiDAR data sets can be obtained in a variety 

of ways using static, mobile, and aerial systems. These systems are ideal for rapid and safe 

data collection; thus, enhancing the ability to complete tasks more efficiently and in a safer 

environment. Moreover, mobile LiDAR systems have become an effective solution for 

rapid data collection given developments in scanning speed and accuracy, global 

positioning systems (GPS), and inertial measurement units (IMU) (3). Attempts to extract 

roadway features are discussed in the following paragraphs. 

A review of literature shows numerous fully automated and semi-automated 2D 

and 3D approaches to extract lane markings from LiDAR point clouds. For example, 
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(Ogawa and Takagi, 2006) attempted to extract lane markings using two-dimensional (2D) 

scanning LiDAR. In their study, lane curvature was calculated using Hough 

transformation, and lane widths were calculated using a statistical procedure. Their 

algorithm offered promising results and was based solely on LiDAR range data (4).  

The importance of lane markings as a pre-requisite for many driver assistance 

systems and autonomous vehicles was highlighted in a study by Kammel and Pitzer (5) 

who proposed an algorithm to not only detect lane markings but also enable the creation of 

topological maps of the traversed street sections. Similarly, Lindner et al. (6) proposed a 

method to extract lane markings from LiDAR data based on reflectivity and distance 

information. Cheng et al. suggested two approaches for lane marking extraction from 

LiDAR point clouds based on intensity thresholds and deep learning (7). Several other 

studies have used mobile LiDAR data to detect and extract road pavement markings (8–

11), and to estimate and evaluate pavement marking reflectivity (12). 

Lin and Hyyppa (13) proposed a multistep automated approach to detect culverts 

in MLS point clouds. The authors reported measurement errors between 9% and 16%. A 

study by Landa and Prochazka (14) compared road information that can be obtained from 

RGB images and LiDAR measurements. Their study focused on road signs, road markings, 

and pole-shaped objects including light poles and trees. 

A framework for extracting road and roadside information using remote sensing 

data obtained from multiple sources was proposed by Ural et al. (15) The study showed 

that 90.25% of a total of 23.6 miles of road networks, and 90.6% of 107 existing buildings 

were correctly identified and extracted using orthophotos and airborne LiDAR point 
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clouds. Additionally, the authors estimated average grades, cross-section lines, and cross-

slopes based on identified road centerlines and roadside areas.  

Guan at al., (16) conducted a review of the literature to identify advancements in 

mobile LiDAR technology and their applications in road information inventory. The study 

reviewed aspects related to system components, direct georeferencing, data error analysis, 

geometrical accuracy validation, and extraction of road surfaces and pole-like objects. In 

their review, the authors pointed out the importance of accuracy verification, primarily 

because mobile LiDAR systems have certain limitations and perform differently based on 

factors such as range, incidence angle of laser pulse to the reflective object, and accuracy 

of GPS and IMU.  

Gouda et al. (17) attempted to map and assess roadside clearance parameters using 

mobile LiDAR on rural highways. The authors employed a voxel-based ray-casting 

approach for collecting inventories of roadside assets and for mapping and assessing 

roadside clearance parameters. The study mentions that the proposed method was tested 

on four highway segments with edge detection accuracies ranging from 97% to 98.5%.  

An earlier study by Findley et al. (18) compared roadway data collected using 

manual methods to data collected by manned data collection vehicles moving with traffic. 

The authors compared various roadway elements including curbs, guardrails, signs, 

pavement markings, and roadway geometry.  

Gargoum et al, (19) attempted to used LiDAR data to automatically evaluate sight 

distance along a two-lane undivided rural highway. The authors defined observer and target 

points along travel lanes based on a surface terrain model. Their methodology was based 
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on a two-step process that uses ArcGIS tools for distance assessment and a Microsoft VB 

algorithm for processing and analyzing the outputs attained from GIS. The authors 

constructed lines of sight based on pairs of points identified as target and observer and used 

a VB code to estimate the sight distance available to each observer. Their results showed 

that minimum stopping sight distance (SSD) requirements were violated on a portion of 

the analyzed highways. Specifying the number of observer points at which testing is 

required and the trade-off between the number of points and processing time were 

identified as limitations associated with their methodology. The authors verified the results 

by comparing obstructed sight lines using images from the field at obstructed locations. 

Another study by Gargoum and El-Basyouny (20) performed a review of studies that 

proposed approaches to extract information from LiDAR data for transportation 

applications. The authors argued that few studies have attempted to extract roadway design 

elements from LiDAR data sets and highlighted areas where research might be needed. 

(Ma et al., (21) proposed a procedure for visualizing sight distance along an existing 

roadway in real-time using MATLAB and LiDAR data. The method uses LiDAR data for 

3D sight distance estimation in highway environments with complex roadside obstacles. 

The authors compared their results with sight distance data obtained using digital terrain 

models and ArcGIS tools. 

In a recent study, Salkamy et al., (22) proposed a fully automated algorithm for 

large-scale assessment of available sight distance in a three-dimensional space using 

LiDAR. The authors looked at historical collision data along sections identified has having 

insufficient sight distance and concluded that sight distance limitations could have 
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contributed to collision occurrences. Similarly, Agina et al., (23) proposed a procedure to 

assess passing sight distance on two-lane highways using mobile lidar. Their method 

involved extracting centerline lane markings, defining passing-allowed and passing-

prohibited regions, followed by computations of sight distance. Their study found roadway 

sections where passing was not allowed but there was adequate sight distance for passing 

maneuvers and sections with insufficient sight distance where passing was allowed. 

 

Photogrammetry Applications in Transportation 

 

Although LiDAR technology and its applications in transportation have gained 

increasing popularity in recent years, researchers and practitioners have attempted to 

accomplish similar results using reliable and cost-effective alternatives to LiDAR such 

CRP. Photogrammetric approaches offer a less expensive, user-friendly alternative to 

LiDAR technologies (24). Cross et al. suggests that LiDAR creates more uniform and 

accurate point clouds, but photogrammetry generates similar high-quality point clouds that 

are also highly accurate. Their study suggests that photogrammetry is a cost-effective 

technology that can be used to achieve similar results to LiDAR. 

Bassani et al. (25) attempted to use a point cloud from images collected along a 

roadway segment to perform sight distance analysis using ArcGIS tools. The authors 

created a terrain model from the point cloud which was analyzed in the ArcGIS 

environment. 

A study by Farhadmanesh et al. explored the possibility of using photogrammetry 

as an alternative to LiDAR for highway asset and pavement condition assessment. The 
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authors identified instances where some of their models generated using photogrammetry 

were denser than models generated using LiDAR; though typically LiDAR point cloud 

models tend to be denser than those created using photogrammetry (26). 

Three-dimensional (3D) models based on 2D images reconstructed from UAV 

photogrammetry were used in a study by Nappo et al. (27) to develop an objective and less 

laborious alternative to traditional field surveys for semi-automatic damage assessment of 

asphalt-paved roads in landslide affected areas. Their study used 3D models and 2D images 

reconstructed from UAV-based photogrammetry to detect longitudinal and transverse 

cracks on the road pavement and assess their severity in landslide areas. 

 

Summary of Previous Studies 

 

While the literature identified a number of studies that extracted horizontal and 

vertical road geometry, and sight distance information from LiDAR point clouds, few 

studies compared results from data collected using multiple data collection systems. In 

addition, it is worth noting that to our knowledge, many studies did not validate their results 

using ground truth data from field surveyed measurements. This research expands on 

previous studies by comparing geometry data extracted from multiple mobile LiDAR 

sources and evaluates the MLS accuracy by comparing the results from manual survey 

measurements. Additionally, this research evaluates the extraction of highway alignment 

data from CRP imagery-based point clouds from high-resolution UAV images and directly 

compares the results to the MLS and manual survey measurements. No other study could 

be identified in the literature that performed a similar comparison. 
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OVERVIEW OF STUDY AREA 

 

The study was conducted along a 1.3-mile section of a 4-lane mostly divided 

parkway located in Anderson, South Carolina. This roadway is classified as an urban 

principal arterial with a factored Annual Average Daily Traffic (AADT) of approximately 

13700 vehicles per day. Geometric characteristics of the roadway section include four 

vertical curves, five vertical curves and two lanes in each direction. Figure 4-1. shows a 

panoramic photograph of a short section and an aerial image of the entire study area. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-1 Stations and GCP locations along the study area. 
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DATA COLLECTION AND PROCESSING 

 

Manual Data Collection 

The research team, which included a professional land surveying crew, manually 

surveyed the entire 1.3-mile roadway segment to locate 100-foot stations along the 

pavement edge lines. 424 points were manually collected on the edge lines of the roadway 

and across each station where lane markings were present. In total, the study area consisted 

of sixty-nine 100-foot survey stations established on both sides of the roadway along the 

edge lines. In addition, a ground control survey was conducted to locate primary ground 

control points (GCPs) consisting of existing geodetic survey markers, and secondary GCPs 

established by the research team throughout the study area (see Fig. 4-2). Equipment used 

during the conventional data collection process include total stations, automatic levels, and 

high-accuracy GPS. 

Figure 4-2 Sample primary and secondary GCPs established using high accuracy GPS. 
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Mobile LiDAR Data Collection 

 

Mobile LiDAR data were collected by five participating vendors using their own 

equipment. Components of the MLS systems used by vendors include vehicle mounted 

GPS units, LiDAR sensors, IMUs, and a distance measuring instruments (DMIs). Vendors 

used a minimum of two primary GCPs as base station locations for GPS differential 

correction. All primary and secondary GCPs were used for post-processing adjustment of 

the LiDAR point clouds.  Vendors were responsible for calibrating their respective LiDAR 

systems before and during the data collection process. Table 4-1 provides a summary of 

the MLS equipment used by vendors. Vendors collected point cloud data from the right 

(outer) lane using one pass in each direction. Studies have shown that accurate mobile 

LiDAR data can be collected using one pass from either lane on multilane highways (28). 

A LiDAR point cloud collected by a vendor is shown in Figure 4-3. Survey stations were 

marked with PK surveying nails. In addition, the research team used reflective pavement 

marking tape to ensure that PK nail locations could be easily identified in LiDAR and UAV 

photogrammetry-based point clouds using the intensity and RGB color attributes, 

respectively (See Fig 4-3).  

 
Table 4-1 Mobile LiDAR Equipment Specifications 

Equipment 
 Specifications 

Mobile LiDAR systems 

Vendor A  Vendor B  Vendor C vendor D Vendor E  

Li
D

A
R

  

Brand Name  Riegl  
Teledyne 
Optech 

Optech Z+F Profiler Optech 

Model  VMX450 SG1 M1 9012 M1 

Laser  Dual Dual  Dual Single Dual 

Measurement rate  1100 KHz 
600 

KHz/sensor  
500 

KHz/sensor  
1000 KHz 

500 
KHz/sensor  
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D
M

I Brand APPLANIX Applanix Applanix N/A Applanix 

Model BEI HH5 HS35F LV N/A LV 
IM

U
 

Brand APPLANIX N/A 
Northrop  
Grumman 

NovAtel 
Northrop  
Grumman 

Model ap50 FMU P301 LN 200 
SPAN IMU-

FSAS 
LN 200 

Roll/pitch accuracy 0.005° 0.005° 0.25° 0.008° 0.25° 

Heading Accuracy 0.015° 0.015° 0.50° 0.013° 0.50° 

C
am

er
a 

 

Type  NIKON/RIEGL 
Point Grey 

360° 
Optech Leica  Optech 

Number of 
cameras  

2Front/2Rear 
4 TOTAL 

6 total 
spherical array 

2Front/2Rear 
4 TOTAL 

7 total   
spherical array 

2Front/2Rear 
4 TOTAL 

Frame rate 15 fps 3 fps 2 fps  8 fps 3 fps 

Resolution  5 MP 5 MP 5 MP 4 MP 5 MP 

G
P

S/
G

N
SS

  Brand TRIMBLE Trimble Trimble NovAtel N/A 

Model 
Zepher  

model 2  
AT1675-540TS 

Zephyr  
model 2 

GPS-702-GG N/A 

Accuracy 10 mm 0.02’ H; 0.04’ V  Survey Grade N/A N/A 

N/A: Not available (Specification not provided by vendor) 

 

 

 

 

 

Unmanned Aerial Vehicle (UAV) Imagery Data Collection 

 

Low-altitude UAV photogrammetry data were collected using a commercially 

available UAV (Phantom 4 Pro) with a 20MP imager (See Figure 4a). Two altitudes were 

Figure 4-3 Sample LiDAR point cloud and reflective marking tape used to identify stations 

established along the edge of pavement (EOP) lines. 
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used to collected UAV imagery data: 117 ft above ground level (AGL), and 288 ft AGL 

from point of takeoff, respectively. Aerial targets were used to facilitate the identification 

of primary and secondary GCPs (see Figure 4b). In this study, the imagery-based point 

cloud was adjusted using four GCPs.  

 

 

 

DATA ANALYSIS AND RESULTS 

 

Comparison of Horizontal Curvature Data 

 

Ground truth horizontal alignment data were manually collected relative to the 

centerline of the roadway using state-of-the-art surveying equipment. Comparisons were 

made using horizontal alignment data extracted from point clouds relative to the centerline 

of the roadway (See figure 4-5). Reference survey stations located along the edge lines and 

lane markings identifiable using the intensity attribute of LiDAR point clouds, and RGB 

color attributes of the imagery-based point cloud were used to extract tangent lines and 

Figure 4-4 Unmanned aerial vehicle (UAV) system and targets used during 

low-altitude imagery data collection. 
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horizontal curvature data in a semi-automated fashion using OpenRoads Designer design 

software. 

 

 

 

 

 

A comparison of ground truth horizontal alignment data collected using traditional 

surveying methods, and horizontal alignment data derived from LiDAR and UAV imagery-

based point clouds is presented below (See Table 4-2). The data included in this 

comparison represent the most common horizontal curve parameters used in roadway 

design. 

  
Table 4-2 Comparison of Manually Surveyed Data and Horizontal Alignment Data Extracted from 

Point Clouds.  

Horizontal 
Curve #  

Horizontal  
Curve 

Parameter 

Field Survey  
Data (ft) 

(Ground Truth) 

Deviations of extracted values from field survey data (ft) 

Mobile LiDAR point clouds (Vendors) 
Imagery-based  

point cloud  A B C  D E 

Curve 1 

PC 153+61.78 +12.21 +7.09 -2.85 -8.48 +1.39 +11.89 

PI 166+51.26 -0.04 -1.36 -3.80 -6.96 -2.74 +3.53 

PT 177+10.88 -7.52 -6.44 -4.35 -5.63 -4.98 -1.46 

R 2291.83 -6.51 -3.99 -0.37 +3.18 -0.51 -3.74 

L 2349.10 -19.74 -13.53 -1.50 +2.84 -6.37 -13.35 

T 1289.47 -12.25 -8.45 -0.95 +1.52 -4.13 -8.36 

M 294.45 -4.03 -1.90 -0.32 +0.31 -1.65 -2.81 

      

Curve 2 
PC 182+37.69 +6.97 +10.59 +12.32 +14.74 +13.73 -1.16 

PI 187+69.77 +9.07 +9.14 +7.71 +8.51 +7.16 -6.76 

Figure 4-5 Extraction of road centerline from point cloud data. 



 

76 

 

PT 192+89.87 +11.11 +7.79 +3.30 +2.54 +0.84 -11.96 

R 2864.79 +9.19 +1.20 -13.19 -19.24 -21.84 +5.10 

L 1052.17 +4.14 -2.80 -9.01 -12.20 -12.90 -10.80 

T 532.08 +2.10 -1.46 -4.60 -6.23 -6.58 -5.61 

M 48.17 +0.23 -0.27 -0.60 -0.79 -0.81 -1.07 

      

Curve 3 

PC 199+96.63 -4.12 -0.57 -3.48 -5.01 -4.62 +25.84 

PI 203+49.89 -24.32 -1.24 -0.72 -1.59 -0.87 +17.09 

PT 206+95.28 -43.86 -1.93 +1.96 +1.72 +2.77 +8.60 

R 1909.86 -81.02 -7.14 +12.09 +14.11 +17.02 -40.04 

L 698.65 -39.75 -1.36 +5.44 +6.74 +7.40 -17.25 

T 353.27 -20.21 -0.67 +2.76 +3.43 +3.75 -8.75 

M 31.86 -2.26 -0.00 +0.29 +0.38 +0.39 -0.90 

      

Curve 4 

PC 212+39.79 +20.46 -1.12 -1.17 -2.55 -2.83 -12.26 

PI 218+24.45 +5.34 +3.31 +3.63 +2.28 +3.47 +5.04 

PT 223+84.68 -8.32 +7.49 +8.09 +6.77 +9.31 +20.82 

R 2291.83 -17.92 +14.81 +12.00 +12.51 +15.37 +29.62 

L 1144.89 -28.77 +8.61 +9.27 +9.32 +12.14 +33.08 

T 584.65 -15.11 +4.42 +4.80 +4.83 +6.30 +17.30 

M 71.12 -2.99 -0.21 +0.78 +0.77 +0.84 +3.20 

 

 

Mean percentage absolute errors (MAPE) and the expected accuracy (100-MAPE) 

of extracted measurements were calculated using equation (4-1). Results for all the 

measurements are shown in table 4-3.  

𝑀𝐴𝑃𝐸 =
1

𝑛
∑ |

 𝐴𝑡−𝐹𝑡

𝐴𝑡
|

𝑛

𝑡=1
        (4-1) 

 

Where n is the number of data points (n=20 data points per parameter from LiDAR 

point clouds; n=4 data points per parameter from the imagery-based point cloud), 𝐴𝑡 is the 

actual value represented by the surveyed ground truth data, and 𝐹𝑡 is the extracted value 

from the MLS data.  
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Table 4-3 Summary of Horizontal Alignment Measurement Comparisons 

Summary PC PI PT R L T M 

Mobile LiDAR  
Point Clouds 

MAPE (%) 0.037 0.027 1.675 0.647 1.020 1.042 1.335 

100-MAPE (%) 99.96 99.97 98.32 99.35 98.98 98.96 98.66 

Imagery-based 
Point Cloud 

MAPE (%) 0.068 0.041 0.051 0.933 1.738 1.785 2.624 

100-MAPE (%) 99.93 99.96 99.95 99.07 98.26 98.22 97.38 

 

Overall, the research team was able to extract desired data elements with reliable 

levels of accuracy that were within or below the target accuracies specified by SHRP2 (see 

table 4-2). For instance, SHRP2 recommends a point of curvature (PC) accuracy of ±3 ft.  

However, the best achieved accuracy by SHRP2 was -154.97 ft. In this study, the best 

achieved PC accuracy from LiDAR data was -0.567 and the worst PC accuracy was 

+20.456 ft. This indicates that the best accuracy achieved in this study using LiDAR data 

was less than the maximum acceptable deviation recommended by SHRP2. Additionally, 

SHRP2 recommends a horizontal curve length accuracy of ±2 ft and a curve radius 

accuracy of ± 25 ft. In this study, the best achieved accuracies for curves length and curve 

radius extracted from LiDAR data were -1.360 ft and -0.367 ft, respectively. The worst 

achieved accuracies for curve length and curve radius extracted from LiDAR data were -

39.745 ft and -81.0.25 ft respectively.  

Similarly, the best achieved accuracy for PC data extracted from the imagery-based 

point cloud was -1.156 ft and the worst PC accuracy was +25.844 ft. The best achieved 

accuracies for horizontal curve length and curve radius extracted from the imagery-based 

point cloud — best (worst) — were as follows: curve length -10.804 ft (+33.082), and 

curve radius -3.739 ft (-40.041 ft). Therefore, most of the horizontal curve parameters 

extracted from the imagery-based point cloud were within the recommended accuracy 
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values specified by SHRP2 except for the curve length data which were all above the 

recommended accuracy value, and the curve radii data which varied the most. Overall, 

these results indicate that LiDAR point clouds are a relatively more reliable source of 

accurate horizontal curvature data compared to UAV imagery-based point clouds.     

Extraction of Maximum Superelevation Rate (emax) from Point Clouds 

 

Superelevation is commonly defined as the banking of a roadway along horizontal 

curves to assist drivers in resisting the effect of centrifugal force, allowing them to navigate 

horizontal curves safely at reasonable speeds. While the selection of a maximum rate of 

superelevation depends on several factors, the SCDOT specifies a maximum 

superelevation rate of 8% for all facilities with design speeds between 50 mph and 75 mph 

(29). Table 4-4 shows potential adverse impacts to safety if as-built superelevation deviates 

from specified design criteria.  

 
Table 4-4 Potential Adverse Safety Impacts of Deviation from Design Criteria (30). 

Safety & Operational Issues Freeway Expressway Rural 
Two-
Lane 

Urban 
Arterial 

Run-off-road crashes X X X 
 

Cross-median crashes X X 
  

Cross-centerline crashes 
  

X 
 

Skidding X X X X 

Large vehicle rollover 
crashes 

X X X 
 

Note: Freeway: high-speed, multi-lane divided highway with interchange access only (rural or urban); 

Expressway:  high-speed, multi-lane divided arterial with interchange and at-grade access (rural or urban); 

Rural 2-Lane:  high-speed, undivided rural highway (arterial, collector, or local); Urban Arterial:  urban 

arterials with speeds 45 mi/h (70 km/h) or less. 
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A multistep approach was used to extract maximum superelevation rate values on 

horizontal curves using point cloud data as follows: a) Identification of mid-point of curve 

using extracted horizontal curvature parameters. b) Delineation of perpendicular buffer 

area relative to the mid-point of the curve, c) Extract elevations and calculated distances of 

LiDAR points along the superelevated cross section using a surface model, d) perform 

linear regression on the extracted LiDAR points to determine the cross slope which 

represents the maximum superelevation rate. Figure 4-6 and Figure 4-7 illustrate the 

process of extracting maximum superelevation data from point clouds. 

 
Figure 4-6 LiDAR point cloud of a horizontal curve: Vendor C (curve 1) 
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Design Speed Estimation on Horizontal Curves 

 

In accordance with AASHTO recommendations, the radius used to estimate the 

design speed on horizontal curves was measured to the inside edge of the innermost travel 

lane. This is done to consider the motorist operating within the innermost travel lane, 

particularly for multilane roadways with sharp horizontal curves (31). Per the AASHTO 

green book, horizontal curve equations do not consider the width of the roadway. Equation 

(4-2) describes the relationship between curve radius and design speed. Design speed can 

be solved for by substituting values for R, e, and f. 

 

𝑅 =
𝑣2

15 (𝑒+𝑓)
                 (4-2) 

 

Where:  

R = Radius of curve  

y = 0.0369x + 762.43
R² = 0.9972
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Figure 4-7 Extraction of maximum superelevation rate from point cloud: Vendor C (curve 1)  
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V= Design speed  

𝑒 = Design superelevation rate  

𝑓 = Design friction coefficient 

 

 

Horizontal curve geometry parameters can be estimated using existing maps, high 

resolution Google Earth images, UAV images, point clouds, and GPS trajectories. 

However, superelevation data cannot be obtained from 2D data sets. Design speed 

estimates from 2D data require the use of an assumed design superelevation rate or field 

measurements using specialized devices (ball-bank indicator, inertial device, etc.). High-

accuracy 3D point clouds provide both 2D and 3D data that can be used to collect both 

radii and superelevation data. Therefore, this study used 3D point clouds to estimate design 

speeds on horizontal curves. 

 An alternative method not requiring site visits was also used to extract 

horizontal geometry data for comparison purposes. This was done using Google Earth 

images. To manually estimate design speed from radii data extracted from Google Earth 

Pro images, chord length (C) and middle ordinate distance (M) were measured in Google 

Earth relative to the inside edge of the innermost travel lane in the direction of travel (see 

figure 4-8). Using equation (4-3, 4-4) the radius can be estimated; however, superelevation 

must be assumed. The actual long chord from the PC to the PT of a curve is not needed to 

estimate the radius.  This is important because it is difficult to identify the exact locations 

of the PC and PT just from imagery data. Only a chord that is clearly on the curve is needed. 

The design speeds for curve radius data extracted manually from google earth images are 

shown in table 4-5.  The calculated design speeds used superelevation rates from manual 

field measurements for consistent comparison.  
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𝑅2 = (𝑅 − 𝑀)2 + (
𝐶

2
)2        (4-3) 

𝑅 =
1

2
𝑀 +

𝐶2

8𝑀
         (4-4) 

 

 

Radii data from all sources extracted relative to the inside edge of the innermost 

travel lane are shown in Table 4-5. In addition, Table 4-5 shows extracted maximum 

superelevation rate data as well as estimated design speeds based on equation (2).  

 
Table 4-5 Horizontal Curve Design Speed Estimation based on Extracted Horizontal Curvature 

and Superelevation Data 

Parameter 
Source of 

Data 

Eastbound (EB) Travel Lanes Westbound (WB) Travel Lanes 

HC 1 HC 2  HC 3 HC 4 HC 1 HC 2  HC 3 HC 4 

Radius (ft) 
Edge of 

Innermost 
Travel 
Lane  

Manual 
Survey  

2260.8 2871.9 1878.6 2322.9 2298.9 2833.5 1917.4 2260.6 

M
o

b
ile

 L
iD

A
R

 

V
en

d
o

rs
 

 A 2254.2 2881.6 1797.8 2281.7 2293.2 2842.9 1836.6 2242.7 

 B 2256.5 2873.7 1871.6 2314.5 2295.5 2834.9 1910.3 2275.4 

 C 2275.4 2859.3 1890.9 2311.7 2299.3 2820.6 1929.8 2272.6 

 D 2263.7 2853.3 1892.9 2312.2 2302.8 2814.5 1931.7 2273.1 

 E 2260.2 2850.6 1895.9 2315.1 2299.2 2811.9 1934.7 2275.9 

UAV-CRP 2256.9 2877.6 1838.9 2329.3 2295.9 2838.8 1877.5 2290.2 

Google Earth 
 Imagery 

2255.8 2808.6 1848.2 2291.5 2287.6 2804.5 1908.4 2238.4 

  

Manual 
Survey  

3.74% 2.79% 3.96% 2.42% 3.61% 2.86% 3.91% 3.76% 

Figure 4-8 Middle ordinate distance (M) and Chord length (C) measured relative to 

the inside edge of the innermost travel lane in Google Earth Pro. 
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Extracted 
e max (%) 

M
o

b
ile

 L
iD

A
R

 

V
en

d
o

rs
 

 A 3.61% 3.06% 4.00% 2.72% 3.61% 2.89% 3.80% 3.90% 

 B 3.67% 3.10% 4.05% 2.68% 3.67% 2.80% 3.97% 3.85% 

 C 3.69% 3.04% 3.98% 2.70% 3.67% 2.83% 4.02% 3.85% 

 D 3.65% 3.07% 4.03% 2.66% 3.60% 2.85% 3.96% 3.84% 

 E 3.85% 2.88% 4.11% 2.47% 3.68% 2.78% 3.85% 3.87% 

UAV-CRP 3.39% 3.32% 4.07% 2.68% 3.51% 3.08% 3.83% 3.85% 

Google Earth 
 Imagery 

n/a n/a n/a n/a n/a n/a n/a n/a 

  

Estimated 
Design 
Speed 
(mph) 

Manual 
Survey  

67.1 69.2 63.7 64.1 67.1 69.2 64.0 67.1 

M
o

b
ile

 L
iD

A
R

 

V
en

d
o

rs
 

 A 66.7 70.1 62.8 64.6 67.0 69.3 62.8 67.3 

 B 66.8 70.3 63.8 65.0 67.2 69.0 64.0 67.5 

 C 67.1 69.9 63.8 64.8 67.2 69.0 64.4 67.4 

 D 66.9 69.9 64.0 64.7 67.1 69.0 64.2 67.4 

 E 67.3 69.3 64.2 64.2 67.3 68.8 64.0 67.5 

UAV-CRP 66.1 70.9 63.5 64.9 66.8 69.9 63.4 67.6 

Google Earth 
 Imagery 

65.1 69.4 61.2 65.4 65.4 69.4 61.8 65.0 

HC: Horizontal Curve; n/a: Not available.  

 

 

Summary statistics of the superelevation rate and design speed data extracted from 

LiDAR point clouds provided by all vendors is shown in Table 4-6. The minimum and 

maximum observed standard deviations for extracted maximum superelevation rates were 

0.02 and 0.1, respectively. Similarly, the minimum and maximum standard deviations for 

calculated design speeds were 0.09 and 0.61, respectively. 

To compare the differences between the means of design speed data calculated 

using geometric features from manual survey data to design speed data calculated using 

geometric features extracted from point clouds, a statistical analysis was performed using 
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paired sample t-tests. The results of the statistical analysis shown in Table 4-6 indicate that 

the magnitude of the difference between the means of measurements from manual survey 

data and point clouds are not statistically different at a 95% confidence level. This indicates 

that there is a non-significant, very small difference between the means of measurements 

from manual survey data and measurements extracted using point clouds. Further, these 

results show that point cloud data can be used to obtain reliable design speed and maximum 

superelevation data. 

 

Table 4-6 Summary of Superelevation and Design Speed Data Extracted from MLS Point Clouds 

 

Data 
Eastbound Westbound 

HC 1 HC 2 HC 3 HC 4 HC 1 HC 2 HC 3 HC 4 

 Manual 
Survey 

3.74% 2.79% 3.96% 2.42% 3.61% 2.86% 3.91% 3.76% 

Su
p

er
el

e
va

ti
o

n
 

(L
iD

A
R

 p
o

in
t 

cl
o

u
d

s)
  

Min 3.61% 2.88% 3.98% 2.47% 3.60% 2.78% 3.80% 3.84% 

Max  3.85% 3.10% 4.11% 2.72% 3.68% 2.89% 4.02% 3.90% 

Mean  3.69% 3.03% 4.03% 2.65% 3.65% 2.83% 3.92% 3.86% 

Median  3.67% 3.06% 4.03% 2.68% 3.67% 2.83% 3.96% 3.85% 

SD 0.09% 0.09% 0.05% 0.10% 0.04% 0.04% 0.09% 0.02% 

 
Paired t-test 
𝐻𝑎: 𝜇𝑑 ≠ 0 

P-value = 0.17 

tobs = 1.82    df = 3 
Paired t-test 
𝐻𝑎: 𝜇𝑑 ≠ 0 

   P-value = 0.37 

tobs = 1.06    df = 3 

  

 Manual 
Survey 

67.1 69.2 63.7 64.1 67.1 69.2 64.0 67.1 

D
es

ig
n

 S
p

ee
d

 

(L
iD

A
R

 p
o

in
t 

cl
o

u
d

s)
 

Min 66.7 69.3 62.8 64.2 67.0 68.8 62.8 67.3 

Max  67.3 70.3 64.2 65.0 67.3 69.3 64.4 67.5 

Mean  67.0 69.9 63.7 64.7 67.2 69.0 63.9 67.4 

Median  66.9 69.9 63.8 64.7 67.2 69.0 64.0 67.4 

SD 0.25 0.36 0.53 0.28 0.10 0.19 0.61 0.09 

   

Paired t-test 
𝐻𝑎: 𝜇𝑑 ≠ 0 

P-value = 0.24  

tobs = 1.47    df = 3 
Paired t-test 
𝐻𝑎: 𝜇𝑑 ≠ 0 

  P-value = 0.84  

  tobs = 0.23    df = 3 

HC: Horizontal curve; SD: Standard deviation 
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Measurements extracted from Google Earth images were used to perform a 

sensitivity analysis based on different superelevation rate values (see figure 4-9 and figure 

4-10). Thus, in the eastbound direction, design speed differences for superelevation rates 

between 2% and 8% range from about 2.5 mph to 14.6 mph for a curve radius of 2255.8 

ft; 2.9 mph to 16.9 mph for a curve radius of 2808.6 ft; 2.2 mph to 12.7 mph for a curve 

radius of 1848.19 ft; and 2.48 mph to 14.7 mph for a curve radius of 2291.46 ft. Likewise, 

in the westbound direction, design speed differences for superelevation rates between 2% 

and 8% range from about 2.5 mph to 14.7 mph for a curve radius of 2287.6 ft; 2.9 mph to 

16.9 mph for a curve radius of 2804.5 ft; 2.2 mph to 13 mph for a curve radius of 1908.39; 

and 2.4 mph to 14.5 mph for a curve radius of 2238.35 ft.  The variation in design speed 

due to different superelevation rates indicates the importance of using accurate 

superelevation data to accurately estimate design speed. 

 
 

Figure 4-9 Design speed sensitivity analysis based on superelevation rate (EB) 
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Figure 4-10 Design speed sensitivity analysis based on superelevation rate (WB) 

 

 

Road Grade Estimation Using Point Clouds 

Manual approaches for direct on-road measurement of road grades using equipment 

such as smart digital levels are time consuming and may interfere with traffic and exposes 

surveying crews to potentially hazardous conditions. Previous studies have shown that 

LiDAR data can be used to accurately estimate road grades using regression techniques  

(32, 33). In this study, road grades were estimated from point cloud data using linear 

regression on points extracted along the centerline of the roadway. Thus, grades were 

estimated directionally using points along the centerline of the roadway in the direction of 

travel (see figure 4-11). The steps can be summarized as follows: a) Select LiDAR data 

within a defined buffer zone. For this four-lane, mostly divided roadway, two lanes in each 

direction were included in the buffer zone of LiDAR points. b) Define the centerline of the 

roadway based on identifiable lane markings and manually surveyed reference stations; c) 
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segment the roadway using 100-foot segments along tangent sections based on a defined 

origin such that segments adequately capture changes in the road grade for consistent 

comparison, d) extract points along the centerline using a LiDAR surface model, e) perform 

linear regression on extracted LiDAR points to estimate the road grade (see figure 4-12). 

  
 

 

 

Statistical analyses using one-sided t-tests were performed to determine if 

measurements extracted from point clouds were less than the minimum recommended 
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Figure 4-11 Selection of segment of lidar points for analysis. 

Figure 4-12 Sample grade estimation from extracted LiDAR points: Vendor C (EB). 
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accuracy value on average (± 0.5% specified by SHRP2) at a 95% confidence level. Results 

of the one-sided t-tests, shown in Table 4-7, indicate that the average deviation between 

mobile LiDAR point cloud, imagery-based point cloud, and field survey measurements 

was less than the minimum recommended accuracy value of ± 0.5% over the same length. 

 
       Table 4-7 Summary of Grade Deviations from Manual Survey Data   

  Eastbound Westbound 

  G1 (%) G2 (%) G1 (%) G2 (%) 

LiDAR 

Min 0.01% 0.01% 0.0% 0.0% 

Max 0.16% 0.16% 0.11% 0.11% 

Mean 0.048% 0.046% 0.047% 0.04% 

Median 0.032% 0.03% 0.04% 0.03% 

One-sided t-test 
𝐻𝑎: 𝜇 < 0.5 

𝑡𝑜𝑏𝑠 
-119.66 df = 99 

P-value 
<0.0001 

Significant 
Yes 

      

UAV-CRP 

Min 0.002% 0.02% 0.02% 0.01% 

Max 0.13% 0.13% 0.08% 0.08% 

Mean 0.046% 0.049% 0.058% 0.046% 

Median 0.03% 0.03% 0.07% 0.06% 

One-sided t-test 
𝐻𝑎: 𝜇 < 0.5 

𝑡𝑜𝑏𝑠 
-56.49 df = 19 

P-value 
<0.0001 

Significant 
Yes 

 

 

Comparison of Vertical Alignment and Sight Distance Data from Point Clouds 

High-resolution surface models obtained from point clouds can be used to achieve 

realistic sight distance results (34). Point cloud data collected in this research were used to 

create 3D surface models representing the existing roadway surface using terrain modeling 

tools in OpenRoads Designer. As stated in the AASHTO green book, topography affects 

horizonal alignment, but it has an even bigger effect on vertical alignment. Vertical 

alignments were automatically created using extracted grade lines and best fit parabolas 

based on the road surface curvature obtained from the point cloud terrain models. Thus, a 
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semi-automated workflow was used to extract vertical alignment data along the centerline 

of the roadway in the eastbound and westbound travel directions. 

 Stopping sight distance is the distance required for a driver to perceive and react 

to an object in the roadway and come to a complete stop before a collision occurs (35, 36). 

Stopping sight distance may be computed using equation (4-5). Drivers must have a sight 

distance that is at least equivalent to the total stopping sight distance required at the design 

speed (37). 

 

𝑆𝑆𝐷 = 1.47 𝑉𝑡 +
𝑉2

30(𝐹±0.01𝐺)
       (4-5) 

  

Where:  

SSD = Stopping sight distance 

V = Speed (mph) 

t = Perception-reaction time (s) (2.5s assume based on AASHTO standards)  

G = grade (%) 

F = Coefficient of forward rolling or skidding friction. 

 

A deterministic approach was used to compute sight distance on crest vertical 

curves using equation 4-6 and equation 4-7 based on an assumed eye height of 3.5 ft and 

an object height of 2.0 ft (AASHTO standards): 

  

𝐿 =
𝐴𝑆2

2158
 S<L (4-6)  𝐿 = 2𝑆 −

2158

𝐴
  S>L (4-7) 

 

Where:  

L = Length of vertical curve (ft)  

S = Sight distance (ft) 

A = Algebraic difference in grades (%)  
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Sight distance and design speeds estimated on crest vertical curves using manual 

survey and point cloud data are shown in table 4-8. Using Equation (4-5), design speeds 

were calculated based on sight distances obtained from extracted vertical alignment data.  

 
Table 4-8 Vertical Alignment, Sight Distance, and Design Speed Estimates from Manual Survey 

and Point Cloud Data (Crest vertical curves).  

Curve  
Type Data  

  
Travel 

Direction VPC VPT Length G1 % G2 % 

Sight  
Distance 

(ft)  

Design  
Speed 
(mph) 

C
u

rv
e 

2
 (

C
re

st
) 

 

Manual 
Survey  

EB 184+74.66 199+35.91 1461.3 4.79% -1.08% 733.25 74 

Vendor A EB 184+82.19 199+40.94 1458.8 4.80% -1.12% 728.97 73.8 

Vendor B  EB 184+82.39 199+56.01 1473.6 4.81% -1.20% 727.41 73.7 

Vendor C EB 184+78.86 199+64.01 1485.2 4.80% -1.20% 730.86 73.9 

Vendor D EB 184+79.64 199+62.94 1483.3 4.80% -1.21% 729.80 73.8 

Vendor E EB 184+77.49 199+64.76 1487.3 4.79% -1.20% 731.99 73.9 

UAV-CRP EB 184+73.59 199+63.88 1490.3 4.81% -1.21% 730.91 73.9 
         

Manual 
Survey  

WB 184+86.41 199+96.34 1509.9 4.83% -0.81% 755.09 75.4 

Vendor A WB 184+74.11 200+22.09 1547.9 4.89% -0.91% 758.92 75.7 

Vendor B  WB 184+73.89 200+15.29 1541.4 4.89% -0.89% 758.61 75.6 

Vendor C WB 184+68.05 200+22.41 1554.4 4.90% -0.90% 760.48 75.8 

Vendor D WB 184+72.49 200+16.58 1544.1 4.89% -0.89% 759.27 75.7 

Vendor E WB 184+75.31 200+28.39 1553.1 4.87% -0.92% 760.82 75.8 

UAV-CRP WB 184+65.18 200+17.29 1552.1 4.90% -0.89% 760.91 75.8 

          

C
u

rv
e 

4
 (

C
re

st
) 

Manual 
Survey  

EB 206+10.82 212+54.3 643.5 1.51% -1.81% 647.62 66.3 

Vendor A EB 205+73.63 212+70.97 697.3 1.66% -1.84% 655.43 66.9 

Vendor B  EB 206+13.90 212+62.04 648.1 1.49% -1.80% 652.03 66.6 

Vendor C EB 206+16.94 212+78.13 661.2 1.47% -1.85% 655.57 66.8 

Vendor D EB 206+07.56 212+75.70 668.1 1.50% -1.85% 656.05 66.9 

Vendor E EB 206+14.89 212+76.87 661.9 1.48% -1.86% 653.99 66.7 

UAV-CRP EB 206+14.01 212+74.88 660.9 1.48% -1.85% 654.43 66.7 
         

Manual 
Survey  

WB 205+88.03 212+43.88 655.9 1.37% -1.93% 654.79 66.7 

Vendor A WB 205+97.29 212+36.41 639.1 1.39% -1.93% 644.56 66 

Vendor B  WB 205+87.88 212+43.08 655.2 1.40% -1.93% 651.61 66.5 
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Vendor C WB 205+91.86 212+46.25 654.4 1.39% -1.94% 651.21 66.5 

Vendor D WB 205+86.34 212+51.19 664.9 1.40% -1.95% 654.44 66.7 

Vendor E WB 205+82.85 212+53.33 670.5 1.42% -1.97% 653.31 66.6 

UAV-CRP WB 205+77.43 212+51.45 674 1.43% -1.95% 656 66.8 

 

 

Similarly, sight distance and design speeds estimated on sag vertical curves using 

manual survey and point cloud data are shown in Table 4-9. Equation 4-8 and equation 4-

9 were used to calculate sight distance on sag vertical curves based on AASHTO standards: 

 

𝐿 =
𝐴𝑆2

400+3.5𝑆
 S<L (4-8)  𝐿 = 2𝑆 − (

400+3.5𝑆

𝐴
) S>L (4-9) 

 

Where:  

L = Length of vertical curve (ft)  

S = Sight distance (ft) 

A = Algebraic difference in grades (%)  

  
Table 4-9 Vertical Alignment, Sight Distance, and Design Speed Estimates from Manual Survey 

and Point Cloud Data (Sag vertical curves). 

Curve  
Type Data  

  
Travel 

Direction VPC VPT Length G1 % G2 % 

Headlight  
Distance 

(ft) 

Design  
Speed 
(mph) 

C
u

rv
e 

1
 (

Sa
g)

 

Manual 
Survey  

EB 172+38.57 182+16.69 978.1 -2.33% 4.79% 576.40 59.2 

Vendor A EB 172+31.55 182+19.91 988.4 -2.40% 4.80% 575.74 59.1 

Vendor B  EB 172+50.78 182+21.14 970.4 -2.31% 4.81% 572.27 58.9 

Vendor C EB 172+47.89 182+21.14 973.2 -2.31% 4.80% 574.41 59 

Vendor D EB 172+48.39 182+19.09 970.7 -2.31% 4.80% 573.13 58.9 

Vendor E EB 172+49.02 182+17.82 968.8 -2.30% 4.79% 573.55 58.9 

UA CRP EB 172+44.66 182+19.66 975 -2.33% 4.81% 573.23 58.9 
         

Manual 
Survey  

WB 172+87.01 183+28.94 1042 -2.28% 4.83% 608.84 59.3 

Vendor A WB 172+74.67 183+39.08 1064.4 -2.34% 4.89% 611.57 59.4 

Vendor B  WB 172+82.38 183+37.79 1055.4 -2.31% 4.89% 609.28 59.3 

Vendor C WB 172+79.01 183+41.12 1062.1 -2.32% 4.90% 611.15 59.4 
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Vendor D WB 172+77.51 183+40.69 1063.2 -2.32% 4.89% 612.42 59.5 

Vendor E WB 172+74.11 183+37.91 1063.8 -2.33% 4.87% 613.46 59.5 

UA CRP WB 172+70.52 183+39.42 1068.9 -2.35% 4.90% 612.33 59.4 

                    

C
u

rv
e 

3
 (

Sa
g)

 

Manual 
Survey  

EB 200+99.39 204+99.49 400.1 -1.08% 1.51% 858.06 76.4 

Vendor A EB 201+01.09 205+26.95 425.9 -1.12% 1.66% 766.72 71.4 

Vendor B  EB 200+70.59 204+99.15 428.6 -1.20% 1.49% 825.96 74.6 

Vendor C EB 200+75.62 204+93.21 417.6 -1.20% 1.47% 823.36 74.4 

Vendor D EB 200+69.2 204+98.56 429.4 -1.21% 1.50% 814.35 73.9 

Vendor E EB 200+72.42 204+95.44 423 -1.20% 1.48% 824.56 74.5 

UA CRP EB 200+72.03 204+88.02 415.9 -1.21% 1.48% 807.99 73.6 
         

Manual 
Survey  

WB 201+72.59 205+12.83 340.2 -0.81% 1.37% 1324.88 98.3 

Vendor A WB 201+72.6 205+13.78 341.2 -0.91% 1.39% 1077.01 87.1 

Vendor B  WB 201+70.19 205+07.39 337.2 -0.89% 1.40% 1085.35 87.5 

Vendor C WB 201+72.52 205+03.82 331.3 -0.90% 1.39% 1072.84 86.9 

Vendor D WB 201+72.64 205+04.73 332.1 -0.89% 1.40% 1074.51 86.9 

Vendor E WB 201+68.9 205+07.86 338.9 -0.92% 1.42% 1011.15 83.9 

UA CRP WB 201+70.88 205+05.65 334.8 -0.89% 1.43% 1039.81 85.3 

                    

C
u

rv
e 

5
 (

Sa
g)

 

Manual 
Survey  

EB 214+55.51 219+49.94 494.4 -1.81% 1.15% 772.21 71.1 

Vendor A EB 214+55.88 219+36.81 480.9 -1.84% 1.11% 756.08 70.2 

Vendor B  EB 214+66.88 219+52.09 485.2 -1.80% 1.17% 754.54 70.1 

Vendor C EB 214+51.54 219+58.46 506.9 -1.85% 1.18% 756.24 70.2 

Vendor D EB 214+54.49 219+47.93 493.4 -1.85% 1.16% 748.10 69.7 

Vendor E EB 214+48.68 219+57.09 508.4 -1.86% 1.18% 754.09 70.1 

UA CRP EB 214+51.94 219+54.74 502.8 -1.85% 1.17% 755.30 70.1 
         

Manual 
Survey  

WB 214+72.61 219+81.09 508.5 -1.93% 1.16% 735.16 69.6 

Vendor A WB 214+69.99 219+82.26 512.3 -1.93% 1.16% 739.88 69.8 

Vendor B  WB 214+76.93 219+75.99 499.1 -1.93% 1.16% 724.66 68.9 

Vendor C WB 214+79.78 219+67.88 488.1 -1.94% 1.14% 715.54 68.5 

Vendor D WB 214+77.47 219+73.75 496.3 -1.95% 1.16% 714.50 68.4 

Vendor E WB 214+71.75 219+65.84 494.1 -1.97% 1.14% 711.99 68.2 

UA CRP WB 214+75.394 219+73.18 497.8 -1.95% 1.15% 719.67 68.7 
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To validate design speed data obtained from geometric features exacted from point 

clouds, a comparison was made with design speeds calculated using manual field survey 

data. Results of a paired t-test based on the means of speeds calculated from MLS data and 

speeds calculated from field survey data are shown in Table 4-10 and Table 4-11.  

Table 4-10 Summary Statistics of Design Speeds Calculated Using Vertical Alignment Features 

Extracted from MLS Data (Eastbound).  

EB 
Data 

Curve 1  
(Sag)  

Curve 2 
(Crest) 

Curve 3  
(sag) 

Curve 4 
(Crest) 

Curve 5 
(Sag) 

Min 58.9 73.7 71.4 66.6 69.7 

Max 59.1 73.9 74.6 66.9 70.2 

Mean 59.0 73.8 73.8 66.8 70.1 

Median  59.0 73.8 74.4 66.8 70.1 

SD 0.06 0.10 1.36 0.13 0.19 

  

 Paired t-test 
𝐻𝑎: 𝜇𝑑 ≠ 0 

 

tobs =-1.34 

P-value = 0.25 
df = 4 

 

Table 4-11 Summary Statistics of Design Speeds Calculated Using Vertical Alignment Features 

Extracted from MLS Data (Westbound).  

WB 
Data 

Curve 1  
(Sag)  

Curve 2 
(Crest) 

Curve 3  
(sag) 

Curve 4 
(Crest) 

Curve 5 
(Sag) 

Min 59.3 75.6 83.9 66.0 68.2 

Max 59.5 75.8 87.5 66.7 69.8 

Mean 59.4 75.7 86.5 66.5 68.8 

Median  59.4 75.7 87.0 66.5 68.4 

SD 0.10 0.06 1.46 0.25 0.65 

  

 Paired t-test 
𝐻𝑎: 𝜇𝑑 ≠ 0 tobs =-1.06 

P-value = 0.35 
df = 4 

 

These results indicate that there is a non-significant difference between the means 

of design speeds extracted from MLS point clouds and design speeds from manual survey 

data at a 95% confidence level. Thus, these results indicated that MLS data provide 

geometry features with enough accuracy to obtain reliable estimates of design speeds on 

crest and sag vertical curves of roadways. 
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Conclusions and Future Research 

 

In recent years, several state transportation agencies have introduced programs to 

update highway feature inventories using emerging technologies such as MLS systems. 

Traditional data collection approaches can be costly, time-consuming, and less efficient. 

The objective of this study was to evaluate the accuracy of roadway geometry features 

including horizontal curve parameters, grades, and sight distance obtained using MLS and 

low-altitude UAV photogrammetry data for design speed estimation on horizontal and 

vertical curves of constructed roadways. MLS data were collected by LiDAR vendors who 

volunteered to participate in the study. Vendors were asked to provide the research team 

with adjusted and unadjusted data in the format requested. Participants who provided 

incomplete data were removed from the study. The study used MLS data collected by five 

vendors who provided data in the correct format. The results presented in this study are 

based on roadway geometry features extracted from adjusted point cloud data. Horizontal 

alignment comparisons indicated that the accuracy of geometry features extracted from 

MLS point clouds were within acceptable deviations recommended by SHRP2. 

Furthermore, results of statistical analyses indicate that MLS point clouds are a relatively 

more reliable source of accurate horizontal and vertical geometry data compared to UAV 

imagery-based point clouds based on acceptable deviations recommended by SHRP2. 

Results of statistical analysis on estimated design speeds on horizontal curves showed that 

the means of calculated design speeds from MLS and manual survey data are not 

statistically different at a 95% confidence level. Likewise, design speeds from UAV-

imagery point clouds were similar to those obtained using manual survey data on average. 
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Lastly, the study showed that vertical alignment and sight distance estimates from MLS 

and UAV imagery-based point clouds were accurate enough to obtain reliable design speed 

estimates on vertical curves of constructed roadways based on statistical analysis results 

using a 95% confidence level. The effects of unadjusted point clouds on extracted 

horizontal and vertical alignment parameters for design speed estimation present an 

opportunity for future research.  
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CHAPTER FIVE 

 

CONCLUSION 

Advanced geospatial data collection technologies are becoming more readily 

available for various highway design, construction, and maintenance applications. These 

technologies include unmanned aerial systems (UAS), LiDAR systems, structure-from-

motion, and close-range aerial photogrammetry. As shown in the studies included in this 

dissertation, benefits of these modern data collection technologies included enhanced 

efficiency, highly accurate and reliable data, and the ability to develop efficient and cost-

effective data collection and processing workflows. The literature shows that state highway 

agencies continue to explore and introduce programs to update highway feature inventories 

using emerging technologies such as LiDAR systems. The primary goal behind such efforts 

is to improve the way in which roadway infrastructure systems are designed, built, and 

maintained. Another important benefit afforded by these technologies is the ability to 

identify and address constructability issues ahead of time using highly accurate three-

dimensional data. 

The primary objective of this research was to investigate if mobile LiDAR systems 

can be used as an effective means for collecting accurate system-wide data on existing 

roadways for various roadway safety evaluations. In addition, this research investigated 

whether close-range aerial photogrammetry could serve as a potentially inexpensive and 

effective alternative to LiDAR systems. The three studies included in this dissertation were 

designed and performed to help achieve the following four main objectives: 
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1. Evaluate if accurate cross-slope measurements can be extracted from point 

cloud-based 3D surface models and whether MLS and UAV-CRP data can 

be used for system-wide verification of highway cross slopes. 

2. Compare curve design speeds estimated using horizontal alignment 

parameters extracted from point clouds, and whether MLS and UAV 

photogrammetry data can be used for system-wide verification of design 

speeds on horizontal curves. 

3. Determine whether LiDAR and imagery-based point clouds can be used to 

estimate sight distance and design speeds on vertical curves. 

4. In comparison with traditional surveying, investigate whether MLS and 

imagery-based point clouds can be used to produce accurate road surface 

models to estimate pavement material volumes for pavement resurfacing 

and rehabilitation purposes. 

 

Paper I (Chapter 2) found that mobile LiDAR data could serve as an effective and 

reliable means for extracting cross slope data on existing roadways for system-wide 

verification (Objective 1). Additionally, the study showed that close-range aerial 

photogrammetry could potentially serve as a cost-effective alternative to LiDAR systems 

for collecting pavement surface information for cross slope verification. The use of mobile 

LiDAR and UAV imagery-based point clouds to extract cross slope measurements was 

evaluated on 10 test sections including 166 total measurements across four travel lanes in 

two directions along secondary road 1164, known as East West Parkway, located in 



 

103 

 

Anderson, SC. All data sets were calibrated using established control points for accurate 

comparison. Results of statistical analysis indicated that the achieved cross slope 

measurement accuracies were similar for measurements extracted from LiDAR and UAV-

CRP data sets. The cross-slope data extracted from point clouds produced from LiDAR 

and UAV-CRP data met the minimum acceptable accuracy specified by SCDOT and 

SHPR2 of ±0.2%. Thus, the results of t-test statical analysis indicated that the average 

deviation between measurements extracted from point clouds and field survey 

measurements was less than the recommended acceptable accuracy of ±0.2% at a 95% 

confidence level. These findings help to identify existing roadway sections with inadequate 

cross slopes and enhance strategies to improve safety and minimize the potential for 

hydroplaning.  

Paper II (Chapter 3) investigated the feasibility of using point clouds to obtain 

accurate road surface terrain models for pavement material volume estimation for 

resurfacing and rehabilitation purposes. The study focused on whether terrain models from 

MLS and UAV imagery-based point clouds could provide an effective and reliable means 

of estimating pavement material volumes in a cost-effective manner. Accurate methods for 

estimating material quantities are crucial in providing reliable estimates and minimizing 

costs. Terrain models from adjusted MLS data provided by five vendors, a terrain model 

from a UAV imagery-based point cloud, and a terrain model from manual survey data were 

compared based on calculated material volumes between surfaces using a surface-to-

surface volume comparison method. The average difference in height between terrain 

models from MLS data ranged from 0.16 inches to 0.71 inches. The average difference 
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between terrain models from MLS and UAV imagery-based point clouds and a terrain 

model from field survey data ranged from 0.59 inches to 1.24 inches. This indicated that 

surfaces generated from either method could be used for material volume estimation 

purposes (Objective 4). However, the study found that using higher resolution UAV images 

and collecting additional ground control points could potentially improve the accuracy of 

pavement surface elevations. Thus, the use of surface models from point clouds to develop 

accurate material volume estimates would be highly beneficial to transportation agencies 

because the cost of traditional field surveying is typically higher than the overall cost of 

MLS and UAV photogrammetry surveys if used on a large scale. The proposed approach 

could make estimating pavement material quantities for resurfacing and rehabilitation more 

affordable for transportation agencies. However, the need for control surveys would not be 

eliminated since these surveys are important to enhance the positional accuracy of 3D point 

clouds. 

Paper III (Chapter 4) evaluated the use of MLS and UAV imagery-based point 

clouds to estimate as-built horizontal and vertical geometry of roadways for design speed 

estimation on horizontal and vertical curves. The study found that point clouds from MLS 

and UAV photogrammetry data can be used to extract horizontal and vertical geometry 

data at sufficient accuracy to estimate design speeds on horizontal and vertical curves of 

constructed roadways (objective 2 and objective 3). The proposed approach offers 

advantages over extracting information from design drawings that may be unavailable, 

outdated, or inconsistent with the as-built roadway. Additionally, the proposed method can 

be used to identify locations where the posted speed limit/advisory speed is higher than the 
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design speed along horizontal curves so that corrective measures can be implemented on 

existing roadway networks. Identifying locations where vehicles may exceed design speeds 

is critical in preventing future crashes. Therefore, a proactive approach that identifies 

potential design deficiencies is favorable for analyzing crash data. Results were validated 

by analyzing deviations between geometry data and design speed calculations from point 

clouds and data calculated from manual field survey measurements using t-test statistical 

analysis at a 95% confidence level. 

The use of remote sensing technologies such as MLS can improve data collection 

safety and efficiency by considerably reducing the time surveyors and other personnel are 

exposed to various safety risks associated with working in the field. As previously 

mentioned, studies have shown that automated surveying practices require less field time, 

enhance productivity, reduce crew sizes, and minimize human exposure. This research 

evaluated novel applications of MLS and UAV-CRP, further expanding on the many 

advantages of implementing MLS and UAV photogrammetry systems over conventional 

surveying techniques for certain applications. 
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