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ABSTRACT

Roadway safety is a multifaceted issue affected by several variables including
geometric design features of the roadway, weather conditions, sight distance issues, user
behavior, and pavement surface condition. In recent years, transportation agencies have
demonstrated a growing interest in utilizing Light Detecting and Ranging (LiDAR) and
other remote sensing technologies to enhance data collection productivity, safety, and
facilitate the development of strategies to maintain and improve existing roadway
infrastructure. Studies have shown that three-dimensional (3D) point clouds acquired using
mobile LIDAR systems are highly accurate, dense, and have numerous applications in
transportation. Point cloud data applications include extraction of roadway geometry
features, asset management, as-built documentation, and maintenance operations. Another
source of highly accurate 3D data in the form of point clouds is close-range aerial
photogrammetry using unmanned aerial vehicle (UAV) systems. One of the main
advantages of these systems over conventional surveying methods is the ability to obtain
accurate continuous data in a timely manner. Traditional surveying techniques allow for
the collection of road surface data only at specified intervals. Point clouds from LiDAR
and imagery-based data can be imported into modeling and design software to create a
virtual representation of constructed roadways using 3D models.

From a roadway safety assessment standpoint, mobile LiDAR scanning (MLYS)
systems and UAV close-range photogrammetry (UAV-CRP) can be used as effective
methods to produce accurate digital representations of existing roadways for various safety

evaluations. This research used LiDAR data collected by five vendors and UAV imagery



data collected by the research team to achieve the following objectives: a) evaluate the
accuracy of point clouds from MLS and UAV imagery data for collection roadway cross
slopes for system-wide cross slope verification; b) evaluate the accuracy of as-built
geometry features extracted from MLS and UAV imagery-based point clouds for
estimating design speeds on horizontal and vertical curves of existing roadways; c)
Determine whether MLS and UAV imagery-based point clouds can be used to produce
accurate road surface models for material volume estimation purposes. Ground truth data
collected using manual field survey measurements were used to validate the results of this
research.

Cross slope measurements were extracted from ten randomly selected stations
along a 4-lane roadway. This resulted in a total of 42 cross slope measurements per data
set including measurements from left turn lanes. The roadway is an urban parkway
classified as an urban principal arterial located in Anderson, South Carolina. A comparison
of measurements from point clouds and measurements from field survey data using t-test
statical analysis showed that deviations between field survey data and MLS and UAV
imagery-based point clouds were within the acceptable range of +0.2% specified by
SHRP2 and the South Carolina Department of Transportation (SCDOT).

A surface-to-surface method was used to compute and compare material volumes
between terrain models from MLS and UAV imagery-based point clouds and a terrain
model from field survey data. The field survey data consisted of 424 points collected
manually at sixty-nine 100-ft stations over the 1.3-mile study area. The average difference

in height for all MLS data was less than 1 inch except for one of the vendors which



appeared to be due to a systematic error. The average height difference for the UAV
imagery-based data was approximately 1.02 inches. The relatively small errors indicated
that these data sets can be used to obtain reliable material volume estimates.

Lastly, MLS and UAV imagery-based point clouds were used to obtain horizontal
curve radii and superelevation data to estimate design speeds on horizontal curves. Results
from paired t-test statistical analyses using a 95% confidence level showed that geometry
data extracted from point clouds can be used to obtain realistic estimates of design speeds
on horizontal curves. Similarly, road grade and sight distance were obtained from point
clouds for design speed estimation on crest and sag vertical curves. A similar approach
using a paired t-test statistical analysis at a 95% confidence level showed that point clouds
can be used to obtain reliable design speed information on crest and sag vertical curves.
The proposed approach offers advantages over extracting information from design
drawings which may provide an inaccurate representation of the as-built roadway.

Keywords: Roadway Safety, Roadway Design, Mobile LIDAR, Unmanned Aerial Vehicle,
Close-Range Photogrammetry, Roadway Geometry, As-Built Data, SHRP2.
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CHAPTER ONE

INTRODUCTION

Light Detection and Ranging (LIDAR) is an emerging technology that can be used
to obtain accurate three-dimensional (3D) information in the form of point clouds that has
the potential to transform the way in which transportation agencies and service providers
plan, design, build and maintain highway systems (1). Point clouds can be imported into
3D modeling software to help visualize and build a virtual representation of finished
construction projects (2). The technology to support data collection using LiDAR surveys
is well established and continues to evolve to integrate new advances in hardware and
software (3). A review of the literature shows that much work has been done to calibrate
LiDAR systems for accurate surveying (4—11). LIDAR datasets can be obtained in a variety
of ways using static, mobile, and aerial systems. Many state transportation agencies are
using some form of LiDAR technology because of its many benefits including data
collection productivity, enhanced safety, cost-effectiveness, and technological

improvement (12).

Though effective, LIDAR systems tend to be expensive and require a certain level
of expertise and training to be deployed efficiently. Close-range photogrammetry (CRP) is
a cost-effective and easy-to-use technology that could potentially serve as an alternative to
LiDAR systems (13). Unmanned aerial systems (UAS)-based close range photogrammetry
can be used to acquire and process 2D imagery data using Structure from Motion (SfM)

software to generate accurate 3D point clouds. Based on principles similar to those of



traditional photogrammetry, SfM is a technique that uses advanced digital image-matching
algorithms to generate high-resolution 3D point clouds, 3D reality meshes, orthophotos

and digital surface models (14).

Problem Statement

Mobile LiDAR scanning (MLS) technology and close-range photogrammetry
(CRP) can provide highly accurate 3D point clouds that have numerous applications in
transportation. These systems can be used to overcome limitations presented by
conventional surveying techniques and static LIDAR systems, particularly in terms of
personnel safety, data collection efficiency, accuracy, and cost-effectiveness (13, 15).

To comply with pragmatic performance measures and performance-based funding,
state transportation agencies have been using innovative and practical methods and
technologies to manage roadway assets (3). MLS (1) and CRP (13) point clouds can be
used to obtain common roadway geometry and asset information including grades, slopes,
lane widths, and signs inventory for visibility and other safety analyses. Up-to-date and
reliable information is crucial for evaluating and prioritizing new or improvement roadway
projects (16). LiDAR technology has been implemented in the transportation field for
safety and mobility analyses to identify sight distance obstructions and assess traffic
operations while minimizing lane closures, traffic disruptions, and safety hazards (12).
Lidar-based and image-based point clouds offer opportunities to develop advanced
geospatial datasets to support asset management in a safe and efficient manner (17).

Advances in computer vision algorithms to extract key features from unmanned

aerial vehicle (UAV)-based videos and images have prompted investigations to assess the



applications of UAVs in roadway safety, traffic engineering, and highway infrastructure
management (18, 19). Similar to LiDAR, UAV-CRP technology, typically accomplished
by using an optical camera mounted on a UAV platform and supported by a global
navigation satellite system (GNSS) device to collect quality data, can be used for
monitoring transportation infrastructure assets (20). Additionally, research studies have
attempted to use CRP as an alternative and less-expensive technology for 3D pavement
distress surveying (21), and to measure pavement texture characteristics and predict
pavement friction with promising results (22).

This dissertation research provides a basis for evaluating the feasibility and
effectiveness of using Light Detection and Ranging (LiDAR) technology and Unmanned
Aerial Vehicle (UAV) photogrammetry to extract accurate as-built horizontal and vertical
roadway geometry and cross-sectional geometric parameters for roadway safety
evaluations, and to obtain accurate pavement material volume estimates for resurfacing and
rehabilitation purposes. Accurate pavement cross-section information is essential to
ensuring that roadways have adequate cross-slopes to enhance driver safety, thus
minimizing the potential for hydroplaning. Having accurate details of critical as-built
geometric elements and pavement surface data will ensure that appropriate warnings are
properly used, design standards are met, and timely and adequate maintenance and
rehabilitation operations are performed. Lastly, this research is intended to investigate
whether UAV photogrammetry can be used as an efficient and accurate alternative to

mobile LiDAR systems.



Research Objectives

The overall goal of this research was to conduct a technical evaluation of multiple
mobile LiDAR scanning (MLS) systems and close-range photogrammetry (CRP) to
determine if accurate three-dimensional (3D) surface models and as-built horizontal and
vertical alignment information can be extracted using LIiDAR and Imagery-based point
clouds for specific safety and pavement material volume estimation applications. A

detailed description of each research objective is presented below.

Description of Research Objectives:

= Evaluate if accurate cross-slope measurements can be extracted from point-cloud-
based 3D surface models, and whether MLS and CRP data can be used for system-
wide verification of highway cross slopes.

= Compare curve design speeds estimated using horizontal alignment parameters
extracted from point clouds, and whether MLS and UAV photogrammetry data can
be used for system-wide verification of design speeds on horizontal curves.

= Determine whether LIDAR and Imagery-based point clouds can be used to estimate
sight distance and design speeds on vertical curves.

= |n comparison with traditional surveying, investigate whether MLS and imagery-
based point clouds can be used to produce accurate road surfaces to estimate

pavement material volumes for pavement resurfacing and rehabilitation.



To achieve these research objectives, mobile LIDAR and UAV imagery data sets
were collected on a roadway test section located in Anderson, South Carolina.
Conventional survey measurements collected using high accuracy GPS units, total stations,

and leveling were used as ground truth data for comparison purposes.

Content and Organization of Dissertation

This dissertation document consists of three research papers on roadway cross slope
measurement, extraction of horizontal and vertical roadway geometry for design speed
evaluations, and pavement material volume estimation for resurfacing and rehabilitation
purposes using LIDAR and UAV photogrammetry data sets. Each research paper
represents one chapter of the dissertation. The data sets used in the three studies were

collected using the same data collection systems and methods.

PAPER I: A COMPARISON OF MOBILE LIDAR AND LOW-ALTITUDE
UNMANNED AERIAL VEHICLE PHOTOGRAMMETRY FOR COLLECTING
HIGHWAY CROSS SLOPE MEASUREMENTS

OBJECTIVES

= Develop and implement a practical semi-automated workflow using modeling
software to extract cross-slope information from LiDAR and close-range
photogrammetry data.

= Conduct a technical evaluation of the accuracy of Mobile LIDAR and UVA

photogrammetry for system-wide verification of highway cross slopes.



= |dentify and highlight benefits and recommendations based on technical

evaluations.

PAPER II: ROADWAY PAVEMENT MATERIAL VOLUME ESTIMATION FOR
RESURFACING AND REHABILITATION USING MOBILE LIDAR AND IMAGERY -
BASED POINT CLOUDS
OBJECTIVES
= Evaluate the accuracy of surfaces terrain models created using mobile LiDAR and
UAYV imagery-based point clouds.
= Determine if accurate pavement material volume estimates can be made for

resurfacing and rehabilitation purposes and compare results to manual survey

methods.

PAPER III: SAFETY ASSESSMENT OF DESIGN SPEED ON HORIZONTAL AND
VERTICAL CURVES USING MOBILE LIDAR AND UNMANNED AERIAL
VEHICLE PHOTOGRAMMETRY

OBJECTIVES
= Develop afeasible approach to extract horizontal curve geometry features including
tangent length, curve radius, point of curvature, point of intersection, point of
tangency, curve length, and middle ordinate distance.
= Develop a feasible approach to extract vertical alignment features including
longitudinal grades, vertical point of curvature, vertical point of intersection,

vertical point of tangency, and curve length.



Evaluate grade measurement deviations based on recommended accuracy values
specified by SHRP2.
Calculate design speeds on horizontal and vertical curves using geometry features

extracted from point clouds.
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CHAPTER TWO
PAPER |: A COMPARISON OF MOBILE LIDAR AND LOW-ALTITUDE
UNMANNED AERIAL VEHICLE PHOTOGRAMMETRY FOR COLLECTING
HIGHWAY CROSS SLOPE MEASUREMENTS
Abstract
The purpose of sloping roadway cross sections is to ensure adequate drainage of
water. The accumulation of water can lead to hydroplaning or other problems, which can
increase crashes. The most common methods for identifying inadequate cross slope are

through visual inspection of poor drainage and crash occurrence. Ideally, a proactive

approach of identifying roadway sections of inadequate cross slope to reduce crash
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potential is preferred over reacting to problem locations where crashes may occur. Some
states use traditional field surveying techniques and other manual measurement methods
to collect cross slope data on a limited basis. These methods do not provide continuous
data, are labor intensive, and expose personnel to traffic hazards. This study conducted a
technical evaluation of Unmanned Aerial Vehicle (UAV) Photogrammetry, and Mobile
LIiDAR Scanning (MLS) systems for effectiveness in measuring pavement cross slopes.
Four MLS vendors were invited to participate in a demonstration rodeo where LIDAR data
were collected along a 1.4-mile section of a 4-lane, 3-mile parkway located in Anderson
County, South Carolina. Additionally, the research team collected UAV stereo imagery
along the same roadway section. Cross-slope data were extracted from LiDAR point clouds
using a semi-automated workflow in OpenRoads Designer (ORD). The observed means of
absolute measurement errors were 0.146% for mobile LiDAR, and 0.148% for UAV
photogrammetry. Results indicated that MLS and UAV photogrammetry performed

comparably and provided reliable results for cross slope determination.

Keywords: Mobile LiDAR, Cross-Slope, Hydroplaning, UAV Photogrammetry
Introduction
Proper surface drainage is an important consideration in the design of highways.
Improper roadway drainage may interrupt traffic, reduce skid resistance, and increase the
potential for hydroplaning (1). Water drainage from the pavement surface is dependent on
longitudinal grade, cross slope, pavement width, surface texture, and rainfall intensity (2).
Although longitudinal grade may have a considerable effect on flow path length, it does

not appreciably affect pavement water depth (2, 3). Cross slope has a substantial impact on
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pavement water depth because it helps to drain water laterally and minimizes ponding (4).
Well-designed cross-slopes can provide sufficient drainage while minimizing the risk of
vehicles drifting or skidding laterally when braking (5). Paved roads are commonly
designed and constructed with careful consideration given to the correct shape of the
finished cross section (6).

Through crash history and field surveys, the South Carolina Department of
Transportation (SCDOT) has identified isolated sections of interstate freeway that have
substandard cross slopes for proper drainage. This observational approach suggests that
there is a likelihood that significant mileage of South Carolina highways may not have
sufficient cross slope to ensure proper drainage. South Carolina currently does not have a
program to conduct large-scale inspections of cross slopes. This type of limitation is not
unusual. A survey of state highway agencies across the U.S. determined that while 70%
collected some cross slope data, none did so on a system-wide basis. Most of the states
surveyed performed cross slope verification only on Interstate and primary routes, and only
at locations with apparent drainage problems or at locations that experience a high number
of weather-related crashes (4, 7). Survey responses indicated distinct interest in identifying
technology that can be used to efficiently collect pavement cross slope data on a wide scale
basis.

Currently, conventional surveying techniques or other manual methods are used to
collect cross slope data in most states at selected locations. Conventional surveying and
other manual methods are labor-intensive, expose personnel to traffic, and cause delays to

the traveling public (8). Furthermore, conventional surveying for cross slope verification
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purposes can only be conducted at sample locations and may not be representative of
segments between the samples (4). SCDOT's emphasis on ensuring that adequate pavement
cross slopes are maintained through verification is predicated upon two principles: 1)
deployment of a safe and efficient method for collecting cross slope data; and 2) adoption
occurs system-wide so an accurate and comprehensive network-based cross slope database
can be maintained (7).

Aerial photogrammetry has been used for topographic ground surveying for
highway projects for more than 50 years (9). Elevations derived from photogrammetry are
dependent on flying height and camera quality and are less accurate than conventional
ground surveys. Estimating cross slopes from photogrammetry-based contour maps has not
been viable because of accuracy issues related to the minimum altitudes that planes can fly
at. Close-range Unmanned Aerial Vehicle (UAV) photogrammetry can potentially produce
cross slope data at sufficient accuracy for verification purposes because of low flying
heights and use of high-resolution cameras.

Light Detection and Ranging (LiDAR) systems can provide highly accurate
georeferenced three-dimensional data that have numerous applications in transportation.
The adoption of mobile LiDAR technology by transportation agencies has significantly
increased over the past decade. Mobile LIiDAR Scanning (MLS) systems provide
significant safety and efficiency advantages over conventional surveying techniques and
static LIDAR scanning systems when collecting data. The data processing workflow of

MLS requires the processing of positional data alongside LIDAR data (10).
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The researchers previously studied MLS and Aerial (airplane mounted) LiDAR
approaches to collect cross slope data with promising results (11). This paper evaluates
close-range unmanned aerial vehicle (UAV) photogrammetry collection of highway cross

slopes. A comparison with conventional surveying and MLS is provided.

Literature Review

Photogrammetry Applications

Aerial photogrammetry is the science of locating three-dimensional points from
two or more images. Aerial photogrammetry plays an important part in highway location
and design, especially in preparing existing ground contour maps. A review of the literature
indicates that cross slope measurements from aerial photographs are not currently
practiced. This is due to the scale of aerial photographs, which is a function of flying height.
The highest accuracy standards for aerial photogrammetry data are in the 0.25 ft horizontal
and vertical accuracy classes (12). These accuracy classes are associated with an RMSE
of 0.25 ft. While this error tolerance is suitable for highway alignment design and
earthwork calculations, the associated relative accuracy is not accurate enough for
collecting reliable highway cross-slope data. One type of aerial photogrammetry that can
potentially provide the needed accuracy for collecting cross slope data is close-range
photogrammetry (CRP). Traditional photogrammetry requires flying heights of greater
than 1000 ft, equating to the minimum safe flying height above populated areas, as required
by the FAA. Small UAVs are able to fly significantly lower than 1000 ft and collect much

higher resolution images.
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UAYV Photogrammetry

Burgett et al. investigated whether the use of commercially available UAVs and
software could create surveys to be used for preconstruction surveys. Their study acquired
data at three altitudes and three separate times using two common commercial UAVS.
Results of their study indicated that survey points could be within 0.68 cm (0.022 ft)
horizontally, 0.09 cm (0.003 ft) in elevation, and 1.46 cm (0.048 ft) in three dimensions

(3D) of the true location (13).

Similarly, Aguera-Vega et al. studied the accuracy of drone-based surveys. The
authors evaluated the influence of flight altitude, terrain morphology, and the number of
ground control points (GCPs) on the digital surface model (DSM) and orthoimage
accuracies obtained from UAV photogrammetry (14). The authors compared 60
photogrammetric models based on five terrain morphologies, four flight altitudes, and three
different numbers of GCPs. The study used a rotary wing platform UAV with eight motors
and a nonmetric mirrorless reflex camera. Results of their study indicated the following:
the number of GCPs influenced the horizontal accuracy; as GCPs increased, accuracy
improved; vertical accuracy was not influenced by terrain morphology; vertical accuracy
decreased as flight altitude increased. Accuracies of 0.053 m (0.17 ft) horizontally and
0.079 m (0.26 ft) vertically were obtained using a flight altitude of 50 m (164 ft) and 10
GCPs.

Road condition assessment is an important task in road maintenance (15). (Zhang

and Elaksher, 2012) evaluated the use a UAV-based digital imaging system to collect
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surface condition data over rural roads. The authors used aerial imagery data to derive a
three-dimensional surface model for road distress measurement. Results of their
investigation showed that the difference between 3D information measurements and onsite

manual measurements of road distresses was around half a centimeter (0.0164 ft).

LiDAR Technology

Research studies have identified several benefits associated with the
implementation of LIDAR technology and how transportation agencies can potentially use
LiDAR systems to plan, design, inspect, and maintain transportation infrastructure. In
recent years, state transportation agencies have shown an increased interest in LiDAR
technology due to its practical uses in transportation; and for being potentially more cost-
effective than traditional surveying technologies (16). Additionally, recent studies have
discussed the potential benefits of using LIDAR to extract lane markings (17, 18), evaluate
pavement friction (19), and extract and assess road geometry (20, 21).

A study by Shams et al. provided an evaluation of MLS systems in terms of the
accuracy and precision of collected cross-slope data, including documentation of
procedures necessary to calibrate, collect, and process LIDAR data (4). MLS data were
collected by five different vendors on three roadway sections. The sample data obtained
allowed estimation of 95% confidence intervals for true mean absolute deviations of cross
slopes from manual survey measurements to be 0.10% to 0.19% which is within SHRP2

specifications of acceptable margin of error (22).
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Gargoum et al. attempted to extract road cross sections from LIiDAR data. Their
study proposed an algorithm that involved estimating vectors intersecting the road’s axis
whereby points within proximity to the vectors were retained and extracted (23). Slope
information was measured based on the retained points. The authors used multivariate
adaptive regression splines (MARS) to identify points of inflection or change in slope.
Linear regression was used to estimate the slopes between points of inflection which
represented cross slopes and side slopes of the extracted cross section. Cross slopes
estimated using the proposed procedure were compared to slope data collected in GPS
surveys. Percent differences ranged from 0.0001% to 0.4% for the 38 cross slopes
estimated.

Gurganusa et al. proposed a method to evaluate hydroplaning potential based on
the actual road surface and geometric properties measured using MLS (24). The authors
used a single mobile LiDAR system to measure surface geometry, and a Monte Carlo
simulation to produce a traveling speed at which hydroplaning could occur. Their
investigation showed that MLS could provide distance data within 0.15% of the ground
truth distance. An in-service roadway with historical wet weather crashes was used in their
investigation. The authors concluded that the traveling speed at which hydroplaning could
occur was lower than the posted speed limit.

Ai and Tsai proposed an automated sidewalk assessment method using three-
dimensional mobile LiDAR and image processing. Features regulated by the Americans
with Disabilities Act (ADA), including sidewalk width, cross slope, grade, and curb ramp

slope were automatically measured and compared with manual ground truth data from a
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field survey (25). The proposed mobile system consisted of video cameras, two mobile
LiDAR systems, and a global navigation system. Sidewalks were extracted from the
LiDAR point cloud using a roadway segmentation method. Results of their investigation
showed that measurements derived from the proposed method were close to ground truth
measurements. The absolute error in the sidewalk width measurements was less than 0.15
m (0.5 ft), and less than 0.2% slope measurement errors were observed at 20 randomly
selected locations.

Luo and Li used a mobile mapping system consisting of an inertial measurement
unit (IMU), GPS, a distance measuring indicator (DMI), and a 3D LiDAR system to
automatically measure highway ramp geometry (26). Pavement slopes were calibrated
using an inertial measurement unit (IMU) and transverse profile data. Additionally, a
validation test was conducted using field measurements. The average errors for curve
detection and curve radius measurements were 5.89 and 1.99%, respectively. P-values for
longitudinal and cross-slope measurements were 0.621 and 0.989, respectively. The
authors suggested the proposed method could be used for roadway surveys.

The quantitative assessment of LIDAR elevation data is usually conducted by
comparing high-accuracy control points with elevations estimated from LiDAR ground
data (27). Liu argued that the vertical accuracy with respect to a specified datum is critical
in determining the accuracy of LIiDAR data. In addition to exploring the performance of
various methods for deriving elevations from LiDAR, the authors used survey markers to

assess the vertical accuracy of LIDAR data for different land covers. Results of their study
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indicated the suitability of using survey markers as checkpoints to assess the vertical
accuracy of LIDAR data (24).

Tsai et al. discussed the need for transportation agencies to identify and measure
road sections that have noneffective cross slopes so that timely corrective maintenance
could be performed. Their investigation proposed a mobile cross-slope measurement
method using LIiDAR technology to conduct network-level cross slope measurement at
highway speeds (28). Components of their method included a mobile LiDAR system, high-
resolution video cameras, a GPS unit, an inertial measurement unit, and a distance
measurement instrument. Results from a controlled test showed that their method achieved
desirable accuracy with an average measurement difference of less than 0.13% cross-slope
from the digital level measurements with standard deviations within 0.05% in three runs at
all benchmarked locations.

All of the LiDAR studies cited in this section focusing on slope measurements are
MLS based. No previous studies were identified that evaluated UAV photogrammetry to

collect cross slope data.

Study Area and Data Collection

This research evaluated the use of UAV photogrammetry compared to mobile
LiDAR to collect cross slope data along a 1.4-mile section of four-lane parkway located in
Anderson, South Carolina. East West Parkway begins at US-76 (Clemson Boulevard) and
ends at SC-81. Ten stations from locations with distinct roadway slope characteristics
(normal crown and superelevated) and different lane geometry were randomly selected

along the corridor for cross slope evaluation test sections. A ground control survey was
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performed to identify ground control points (GCPs), shown in Figure 2-1. The study area
was surveyed to locate 100 ft stations along the white edge lines. Stations were marked
with PK surveying nails including the yellow centerline markings. Reflective pavement
marking tape was placed at the PK nails located on the white edge lines to ensure that PK
nail locations could be identified in the LIDAR point clouds using the intensity or RGB
color attributes within point clouds. Lane markings were identified based on intensity and
RGB attributes. A ground control survey was performed to establish primary and secondary
GCPs throughout the study area. Primary and secondary GCPs served as a means of tying

down data sets for consistent comparison.

East West Parkway /
Anderson, SC /

Figure 2-1 GCPs and station locations along the 1.4-mile study area.

Mobile LiDAR Data Collection

MLS data were collected in the summer of 2016. Four different MLS vendors used
a minimum of two primary GCPs as base station locations for GPS differential correction
of the MLS data. Additional GCPs were used for post-processing least-squares adjustment

of the LiIDAR point clouds. Vendors were asked to collect MLS data in two directions from
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the right (outer) lane while driving at the posted speed limit. Most mobile LIDAR systems
can collect accurate point cloud data for multiple travel lanes with a single pass from either
travel lane along a corridor. Vendors provided their respective equipment specifications,
which are provided in Table 2-1. Decisions regarding equipment calibration were made by
vendors individually. That is, equipment calibrations were performed both before and after
data collection runs. Traffic control was provided for the MLS data collection by two

trailing SCDOT vehicles without obstructing the opposing travel direction.

Photogrammetry Data Collection

UAV photogrammetry data were collected on March 19, 2021. The UAV
photogrammetry data collection process was considerably less labor intensive compared to
MLS data collection. The research team used a commercially available UAV, with a 20mp
imager with a retail value of $2,500. The specifications of the UAV system are provided
in Table 2-1. Data were collected at two elevations (117 ft and 288 ft AGL) to improve
scene coverage and provide two vertical planes to triangulate elevations. A total of 358
images were collected at 117 ft, and 380 images were collected at 288 ft. Bentley’s
ContextCapture is a structure-from-motion photogrammetry package commonly used by
practitioners and some state DOTS. In this study, ContextCapture was used to process the
2D georeferenced images into a 3D point cloud. The 3D point cloud was exported and
compared with MSL data in OpenRoads Designer. The accuracy of the points was
improved using four geolocated GCPs. The GCPs reduce the RMS error in the point cloud

and improve accuracy with precise scaling. The average ground resolution of the collected
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imagery data was 22.2679 mm/pixel. Figure 2-2 provides a graphical representation of the

scene coverage of overlapping images. On average, 24 images were used to compute the

location of each point in the point cloud. However, because the lane lines were in the center

of the scene, those points were calculated using approximately 35 images per point.

Table 2-1. Overview of Equipment Specifications

Data Type Source Brand Model Type Mea;u Z;teement

Vendor A Rieg| VMX 450  Dual laser 1100 KHz

Vendor B Tg';gme MI Dual laser 200 KH2/Sensor
Mobile LiDAR
Vendor C Teledyne SGI Dual laser 600 KHz/Sensor
Optech

Vendor D Z+F Profiler 9012 S‘I:;%'re 1000 KHz

. Mechanical Shutter
UAV Sensor:

Pro CMOS  speed 8 - 1/8000s

1 12,5 24

Figure 2-2 Photo density: Top view (XY plane) display of the scene with colors indicating the

number of photos that potentially see each area.

Cross Slope Extraction from Point Cloud Data

Data collected at two altitudes were combined before cross slope measurements

were extracted. A multistep semi-automated method was used to extract cross slope
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information from the LiDAR and photogrammetry-based point clouds. Edge of pavement,
lane lines, and centerlines were identifiable in the MLS and UAV photogrammetry point
cloud data using intensity and RGB color attributes, respectively. Bentley Systems’
OpenRoads Designer (ORD) clip tools were used to remove points beyond the white edge
lines, and non-ground points that were not automatically classified within point clouds. To
define the cross-section line at selected test sections, a 4-in cross-sectional buffer of points
was defined and semi-automatically clipped based on the width of the reflective pavement
marking tape that points to the PK surveying nails on the white edge lines. Next, a reference
line was drawn through the clipped buffer of points between the two PK nail locations
identified in ORD as shown in Figure 2-3. The clipped points were used to create a surface
terrain model (STM) using ORD terrain modeling tools. Specifically, an ORD tiling
algorithm, which is a divide and conquer recursive algorithm that divides the data into tiles,
was used to filter the data and fit a plane through each tile within the point cloud using a Z
tolerance value of 0.012-in. The variation in the Z coordinate that the surface can move
during the filtering process is controlled by the specified Z tolerance value. The reference
line projected along the buffered surface is used to extract cross slope data in a semi-
automated fashion based on the rise and run between pavement markings, shown in Figure
2-4. This process was repeated for all test locations (n=42) across each of the ten randomly

selected stations.
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Pavement marking tape
(PK nail location)

PK nail location

3 PK nail location
Pavement marking tape

(PX nail location)

t

Centerline

Centerline

|

Edge of pavement

Edge of pavement

Reference line used for buffer creation

Figure 2-4 Identification of pavement markings and cross-section reference line.
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805.50 "" Edge of Pavement
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Figure 2-3 Example of cross slope extraction from point cloud data using a surface terrain
model based on a cross-sectional buffer of points.
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Evaluation of Results

Results of this investigation are presented in Table 2-2 and Table 2-3. Travel lanes
were labeled as follows: EBO = Eastbound Outer, EBI= Eastbound Inner, WBI =
Westbound Inner, WBO = Westbound Outer, and LTL = Left Turn Lane. Cross-slope
measurements collected using conventional surveying techniques and the difference
between field survey data and measurements extracted from point cloud data are shown in
Table 2-2. That is, the values shown under vendors and UAV photogrammetry represent
deviations in percent from the manually surveyed measurements which served as ground

truth data.

Table 2-2 Comparison between Cross Slope Measurements Derived from Manual Survey, Mobile
LiDAR, and UAV Photogrammetry data.

Difference between measurements (absolute value)
Field survey cross slope - Extracted measurement
Vendors
Lane Field Survey UAV
Station Lane  Width  cross slope A B C D | Photogrammetry
(HD)  (Ground truth)
170+00 EBO  11.57 3.83% 0.16% 0.02% 0.03% 0.02% 0.01%
EBI 12.09 3.89% 0.02% 0.03% 0.05% 0.12% 0.36%
WBI 11.89 2.99% 0.14% 0.23% 0.14% 0.27% 0.17%
WBO 11.61 3.73% 0.02% 0.11% 0.03% 0.30% 0.09%
173+00 EBO  11.69 3.49% 0.16% 0.18% 0.09% 0.19% 0.26%
EBI 12.15 3.04% 0.00% 0.12% 0.01% 0.00% 0.08%
WBI 11.88 3.32% 0.25% 0.05% 0.07% 0.50% 0.29%
WBO 1143 3.88% 0.02% 0.12% 0.06% 0.24% 0.10%
175+00 EBO  11.40 3.88% 0.02% 0.28% 0.14% 0.24% 0.18%
EBI 12.24 3.11% 0.16% 0.20% 0.17% 0.35% 0.28%
WBI 11.34 3.33% 0.03% 0.11% 0.02% 0.64% 0.60%
WBO  11.59 4.29% 0.21% 0.22% 0.15% 0.50% 0.01%

25



190+00 EBO 12.02 3.00% 0.00% 0.13% 0.07% 0.03% 0.30%
EBI 11.60 2.32% 0.30% 0.07% 0.27% 0.27% 0.21%
WBI 11.66 2.86% 0.10% 0.11% 0.10% 0.21% 0.03%
WBO  12.30 2.92% 0.24% 0.41% 0.13% 0.04% 0.59%
198+00 EBO 11.63 1.91% 0.23% 0.05% 0.01% 0.05% 0.21%
EBI 11.57 3.04% 0.10% 0.00% 0.04% 0.01% 0.07%
WBI 11.37 0.80% 0.40% 0.06% 0.07% 0.12% 0.08%
WBO 11.45 0.18% 0.16% 0.08% 0.02% 0.13% 0.12%
203+00 EBO 11.94 3.81% 0.09% 0.22% 0.02% 0.37% 0.03%
EBI 11.83 4.65% 0.08% 0.02% 0.04% 0.40% 0.06%
WBI 11.57 3.59% 0.07% 0.50% 0.09% 0.06% 0.06%
WBO 11.86 4.60% 0.06% 0.46% 0.00% 0.10% 0.12%
208+00 EBO 11.62 2.32% 0.28% 0.08% 0.07% 0.15% 0.09%
EBI 11.88 2.48% 0.17% 0.06% 0.06% 0.31% 0.16%
LTL 12 2.01% 0.30% 0.01% 0.06% 0.20% 0.00%
WBI 11.90 1.09% 0.06% 0.34% 0.15% 0.14% 0.12%
WBO 11.42 0.00% 0.24% 0.12% 0.00% 0.03% 0.18%
212+00 EBO 11.56 1.08% 0.13% 0.07% 0.12% 0.19% 0.08%
EBI 11.69 1.75% 0.13% 0.35% 0.04% 0.38% 0.06%
LTL 10.27 2.26% 0.04% 0.36% 0.11% 0.02% 0.19%
WBI 12.34 2.86% 0.13% 0.11% 0.14% 0.22% 0.01%
WBO  11.48 1.31% 0.34% 0.01% 0.18% 0.01% 0.00%
220+00 EBO 11.73 3.42% 0.13% 0.09% 0.06% 0.00% 0.30%
EBI 11.58 2.54% 0.02% 0.01% 0.05% 0.03% 0.20%
WBI 11.43 4.43% 0.02% 0.17% 0.16% 0.34% 0.00%
WBO 11.68 3.61% 0.13% 0.11% 0.10% 0.29% 0.01%
227+00 EBO 11.73 2.39% 0.00% 0.29% 0.03% 0.03% 0.02%
EBI 12.13 2.14% 0.03% 0.37% 0.00% 0.06% 0.25%
WBI 11.81 1.91% 0.98% * * 0.32% 0.21%
WBO 11.95 1.88% 0.04% 0.32% 0.01% 0.38% 0.01%

*Missing data; HD = Horizontal distance (ft)

Comparison of UAV Photogrammetry and MLS survey data

The methodology used to extract pavement cross-slope information from MLS and
UAV photogrammetry point clouds was designed to mimic the traditional surveying

approach for comparison purposes. To evaluate the dispersion of observed values with
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respect to ground truth measurements, mean absolute errors (MAE) were calculated. This
was performed as the first step in the comparative analysis. The observed MAEs for
measurements obtained from MLS and photogrammetry data sets were 0.146%, and

0.148%, respectively. Mean absolute errors were calculated using the following equation:

1" 1
MAE =23 |dg—doil =2
i=1

i=1lel (2-1)
Where:

n= Number of observations

d,;= Manually surveyed measurement

d,i= Observed value (extracted measurement)

|e;|= Absolute difference between surveyed and observed measurements

Standard deviations (SD) were calculated to evaluate the spread of estimated
measurements with respect to the mean. SD values for MLS and photogrammetry data sets
were 0.14% and 0.14%, respectively. Standard deviations were calculated using the

following equation:

T —
Zi:1|doi_da|2
n—1

SD = (2-2)

Where:

do; = Observed value (extracted measurement)

d, = Expected value (Manually surveyed measurement )

n = Number of observations
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A summary of cross slope measurement comparisons is shown in table 2-3.

Table 2-3 Summary of Cross-Slope Measurement Comparisons

EB

EB Outer Turning WB Inner ~ WB Outer
Lane Inner Lane Lane Lane
Lane
Min 0.00% 0.00% 0.00% 0.02% 0.00%
Max 0.37% 0.40% 0.69% 0.98% 0.50%
Mobile Mean 0.11% 0.12% 0.21% 0.20% 0.15%
LiDAR Median 0.09% 0.06% 0.15% 0.14% 0.12%
One sided t-test tobs df p-value  Significant
Hy:u <0.2 -4.83 165 <0.01 Yes
> Min 0.01% 0.06% 0.00% 0.00% 0.00%
E Max 0.30% 0.36% 0.19% 0.60% 0.59%
<>E = Mean 0.15% 0.17% 0.09% 0.16% 0.12%
) E” Median 0.14% 0.18% 0.09% 0.10% 0.09%
S | One sided t-test tobs df p-value  Significant
o Hy:u<0.2 -2.38 41 =0.02 Yes
Discussion

The means of the errors of measurements extracted from MLS data sets were

between 0.11% and 0.21% with a mean absolute error (MAE) of 0.146%, and standard

deviation of 0.14%.

The means of the errors of measurements extracted from

photogrammetry point clouds were between 0.09% and 0.17% with a mean absolute error

of 0.148% and standard deviation of 0.14%. Overall, MLS and photogrammetry results

were within the acceptable range of £0.2% specified by SHRP 2 and SCDOT. In fact, both

the means and variances for the MLS and UAV samples tested to be equal with t,,s =

—.050ondf = 206,p = .95,

and F,,s =1.01ondf; = 165and df, = 41,p = .97,

respectively. Based on these findings we conclude that UAV photogrammetry performs at

least as well, on average as the MLS systems.
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It is noteworthy that MAE for each MLS vendor varied by vendor. Table
2-4 summarizes the MAE values for each of the MLS vendors. The photogrammetry
values are included for comparison purposes. The average MAE for all lanes ranged from
0.075% for vendor C to 0.197% for vendor D. All of the vendor LiDAR systems had similar
sampling rates and similar published accuracy specifications. Some of the vendors
collected their data on different days which can affect GPS positions depending on PDOP
value at the time of data collection. Other factors that can influence MLS accuracy are the
inertial measurement unit and equipment calibration. The evaluated values for all roadway
lanes within the study area meet the SHRP 2 specification (£0.2%), with the exception of
a few of the individual lane MAE values that are greater than 0.2%.
Another observation of note is that MLS data is better for outer lanes compared to
inner lanes in most cases. This is to be expected because the MLS vendors were asked to
drive in the outer lane during the data collection, thus the data in the outer lane is collected

at a closer range at an angle nearly perpendicular to the LiDAR sensor.

Table 2-4 MAE Values by Lane from MLS and UAV Photogrammetry Data

Lane Vendors UAV
A B C D Photogrammetry

EBO 0.120% | 0.141% | 0.064% | 0.127% 0.148%

EBI 0.101% | 0.123% | 0.073% | 0.193% 0.173%
WBI 0.218% | 0.187% | 0.104% | 0.282% 0.157%
WBO 0.146% | 0.196% | 0.068% | 0.202% 0.123%

All lanes | 0.147% | 0.162% | 0.077% | 0.197% 0.148%
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Conclusion

This study conducted a technical evaluation of close-range UAV photogrammetry
and multiple MLS systems. The use of MLS and UAV photogrammetry for cross slope
measurements were evaluated at ten stations along a designated test section of East West
Parkway in Anderson, South Carolina. The results of this study showed that both MLS and
UAYV photogrammetry derived cross slopes are comparable to conventional manual survey
measurements. The observed MAEs for MLS ranged from 0.077% to 0.197% with an
overall average of 0.15% and 0.15% for UAV photogrammetry. Results indicated that MLS
and UAV photogrammetry provided accurate results for cross slope determination.

Conventional surveying methods are time consuming and require a survey crew to
collect data within the roadway limits, which presents safety issues and may interfere with
traffic. LIDAR scanning and photogrammetry platforms can be used to capture cross
slopes, grades, and a variety of other geometric design characteristics efficiently. These
applications can increase productivity, minimize road crew exposure, and create reliable
continuous data sets of roadway information that can serve multiple uses beyond cross

slope measurement, such as highway asset management.
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CHAPTER THREE
PAPER II: ROADWAY PAVEMENT MATERIAL VOLUME ESTIMATION FOR
RESURFACING AND REHABILITATION USING MOBILE LIDAR AND IMAGERY -
BASED POINT CLOUDS
Abstract

Innovative data acquisition technologies allow state transportation agencies and
industry practitioners more flexibility to develop efficient and cost-effective workflows for
roadway maintenance, design, and asset management. Transportation agencies perform
resurfacing, rehabilitation, and maintenance tasks on an ongoing basis. Hence, road
construction, rehabilitation, and resurfacing project costs incurred by transportation
agencies result in thousands of dollars per mile each year. Accurate methods for estimating
material quantities are crucial in providing reliable estimates and minimizing costs. Light
Detection and Ranging (LiDAR) and Unmanned Aerial Vehicle (UVA) photogrammetry
systems can be used to obtain large datasets of accurate, high-density three-dimensional
point clouds. Point cloud data can be used to obtain detailed information representing the

existing ground as well as design and as-built surfaces for earthwork and surface material
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volume calculation purposes. In this study, pavement material volume quantities were
calculated using terrain models created from LiDAR point clouds collected by five
vendors, and terrain models created from UAV photogrammetry and manual survey data
collected by the research team. Volume differences were due to variations in the surfaces
obtained using each point cloud data set. Additionally, terrain models generated using
mobile LIiDAR scanning (MLS), and UAV photogrammetry-based point clouds were
compared based on calculated earthwork volume quantities between terrain models.
Volume quantities were calculated using a surface-to-surface method in OpenRoads
Designer. A 1.3-mile section along an urban parkway located in Anderson County, South
Carolina was used as the testbed to investigate the differences between road surface terrain
models generated using mobile LIDAR and imagery-based point clouds. The average
difference in height between surfaces ranged from 0.17 inches between two MLS vendor

surfaces to 1.67 inches between UAV photogrammetry and one of the MLS vendors.

Keywords: Earthwork, Mobile LIiDAR, UAV Photogrammetry, Pavement

rehabilitation and resurfacing, Surface Modeling.

Introduction
Emerging technologies such as mobile LiDAR scanning (MLS) and unmanned
aerial vehicle (UVA) photogrammetry can be used to collect large data sets of the
characteristics of roadway surfaces along corridors in the form of a point cloud. These

datasets facilitate the creation of workflows to extract accurate three-dimensional (3D)
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models of roadways in a timely manner. The use of 3D models has the potential to
accelerate construction operations, reduce costs, improve accuracy, and enhance safety
during construction operations (1). Hence, various phases of the road construction process
can benefit from these technologies including data collection, data processing, cost
estimating, and design phases. Modeling software can be used to process LiDAR and UVA
photogrammetry data sets to create accurate 3D terrain models representing existing
ground, design, and as-built surfaces that can be used to estimate material volumes.
Earthwork is commonly defined as the process of excavating, hauling, and placing soil and
other earthen materials during construction projects (2, 3). Efficient management of
earthwork operations requires, among other things, accurate estimating of volume
quantities (3). Earthwork volume quantities represent the total amount of soil or other
pavement material to be transported to and from a construction site. Cut and fill volumes
are known as the amount of material to be removed (cut) or placed (fill) to reach a desired
elevation or grade. Methods typically used to calculate earthwork volume quantities for
road construction projects include the traditional average-end-area calculations based on
cross sections, and surface to surface computations to determine cut and fill volumes.
Average-end-area volumes are based on the sum of volumes of the prismoids formed by
adjacent cross sections (4). Surface to surface computations, enabled by modeling
software, can be used to determine volumes between two terrain models based on the union

of the terrain models (see Fig. 3-1).
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Figure 3-1 Example of earthwork volume computation based on
the union of two terrain models (surface-to-surface method).

Traditional surveying techniques allow for the collection of surface data only at
specified intervals. While this approach is accurate enough for most applications including
repaving, pavement maintenance, and quantity estimating; dense and continuous data sets
such as point clouds from survey-grade systems provide a more accurate representation of
the topography of the surface to be modeled. Having an accurate representation of the
surface topography is critical to obtaining accurate volume quantities. Inaccurate pavement
material estimates may lead to undesirable consequences during construction including
costly contractor change orders. MLS, and UAV photogrammetry data sets consist of
highly accurate three-dimensional point clouds that provide high-density continuous data.
Continuous data sets provide more detailed three-dimensional information than
conventional surveying methods that rely on data collected at specified cross-sectional
intervals. This study evaluated the use of mobile LIDAR and UV A photogrammetry point
cloud data to compute pavement material volume quantities. Comparisons were made with
survey data collected manually by the research team. MLS data sets were collected by four

vendors invited to participate in the study. Because the exact same section of road was used
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for data collection, a perfect surface in all cases should result in zero cut, zero fill, and zero
net volume when doing the comparisons. Comparisons in close agreement with low
material quantity estimates between surfaces indicates the point clouds used in the
comparison accurately reflect the actual surface and can be used for performing volume
estimates. This study aims to facilitate the decision-making process regarding technologies

and surveying approaches that may be used for specific projects.

Literature Review

Many studies have explored the feasibility of using LIDAR and UAV
photogrammetry data for road surface modeling purposes. These modern technologies can
be deployed in small study areas as well as in wide multilane corridors. The literature shows
various approaches investigating the accuracy of LIDAR and UVA photogrammetry terrain

models.

LiDAR Technology Applications

Modern laser scanning data collection technologies are becoming increasingly
popular for being potentially more cost-effective than conventional surveying techniques.
Mobile Terrestrial LIDAR and aerial LIDAR systems are at the forefront of this trend.
Recent studies have investigated advantages associated with the implementation of LIDAR
technology by transportation agencies (5). Data collection productivity, enhanced safety,
cost-effectiveness, and improved accuracy are among the primary benefits associated with

the increasing adoption of LIiDAR technology (6).
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LiDAR surveys enable practitioners to perform rapid and accurate data collection
and facilitate the consolidation of resources and maximization of available funding (7).
Due to its applicability in the transportation industry, a growing number of transportation
agencies have acquired some form of LiDAR technology in recent years. Besides providing
the ability to generate terrain models with a high degree of accuracy, LIDAR data sets can
be used to perform a variety of road safety analyses including assessment of road pavement
condition. De Blasiis et al. (8) took advantage of the dense point clouds acquired using
mobile laser systems (MLS) to identify pavement degradations that affect safety, namely
potholes and shoving in the pavement surface. Ravi et al. (9) proposed an automated
approach for pavement surface inspection based on an algorithm capable of analyzing
pavement surface models generated from mobile mapping system (MMS) point clouds
acquired at highway speeds of approximately 60 mph. The authors suggested that their
approach could detect anomalies as small as 2 cm in the form of cracking, potholes, and
surface debris. Li et al. (10) attempted to use unmanned aerial vehicle (UAV) LiDAR to
rapidly and accurately extract different types of pavement distress due to natural and human
factors. Efficient pavement management systems depend on accurate, reliable, and
complete data on pavement conditions (11), which can be accomplished with LiDAR

technology.

Unmanned Aerial Vehicle (UAV) Photogrammetry Applications

Unmanned Aerial Vehicle (UVA) photogrammetry can provide benefits similar to

those obtained with LIiDAR systems including cost-effectiveness, data collection
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efficiency, and enhanced safety. Previous studies have identified UVAs as a valuable
source of image data for 3D reconstruction of man-made structures (12-14).

Uysal et al. (15) described UAV photogrammetry as a low-cost, less time-
consuming, and sufficiently accurate alternative to traditional surveying approaches.
Similarly, Tan and Li (16) argued that unmanned aerial vehicles (UAVS) represent an
excellent option for road condition monitoring. The authors used road images from UAV
oblique photogrammetry for image reconstruction to generate 3D models from which
pavement distresses were automatically detected and extracted.

Farhadmanesh et al. (17) investigated the feasibility of using LIiDAR and
photogrammetry systems to monitor highway assets and pavement condition. Al-Assi et
al. (18) explored the suitability of using close-range photogrammetry (CRP) to generate
3D models to measure pavement macro texture and micro texture. Their approach involved
processing stereo images using digital photogrammetric software to generate 3D surface
models.

A study by Khanal et al. (19) investigated the accuracy of mobile terrestrial LIDAR,
aerial LIDAR, and UAV photogrammetry data sets collected over different terrain types
by comparing elevations obtained from each data source with conventionally surveyed
data. The researchers concluded that data collected using either technology can be used for
road design as well as reconstruction and rehabilitation of existing roadways. These
approaches indicated that UAV photogrammetry can potentially be used to ensure timely

and proper resurfacing and rehabilitation of damaged roadways.
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Calibration of LiDAR and UAV Photogrammetry systems

A critical aspect regarding the implementation of LIiDAR and UVA
photogrammetry technology in transportation for accurate surveying is that systems be
properly calibrated. Commercial software packages can be used to post-process Global
Navigation Satellate System (GNSS) and Inertial Measurement Unit (IMU) data along with
ground-based LiDAR scans to obtain accurate point clouds (20). A review of the literature
shows various efforts and methodologies to calibrate LIDAR and UVA photogrammetry
systems with and without ground control points (21-24).

Barber et al. (25) evaluated the precision and accuracy of a ground-based mobile
mapping system using conventionally surveyed check points. The authors performed an
estimate of the system’s precision using repeated data collection passes. Results of their
investigation indicated a measurement precision between 0.029 m and 0.031 m in
elevation, planimetric accuracy of approximately 0.10 m, and RMS errors in elevation in
the order of 0.03 m.

Ravi et al. (26) proposed a calibration procedure for both airborne and terrestrial
mobile mapping systems that estimates the mounting parameters for several spinning
multibeam laser scanners and cameras on board a LiDAR platform. Their results indicated
that for the UAV-based laser scanning unit used in the study, the processing accuracy in
position was between 2 cm and 5 cm. The car-mounted mobile laser scanning system
provided an accurary of approximately 3 cm for the derived point cloud coordinates at a

range of 30 m.
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Glennie (27) investigated the overall 3D expected error accuracy of LIDAR systems
using a rigorous first order error analysis of the LIDAR georeferencing equations. The
authors evaluated common error parameters as well as the expected horizontal and vertical
system accuracies for different LIDAR systems.

Furthermore, studies have identified close-range photogrammetry as a potential
alternative to LIDAR scanning devices and manual data collection approaches (28).
Luhman et al. (29) presented a review of aspects of sensor modeling and camera calibration
for close-range photogrammetry with a focus on techniques of automated self-calibration.
Similarly, Gabrlik at al. (30) proposed a multi-sensor system for direct georeferencing of

UAV-based aerial imagery and validated results using a high number of test points.

Earthwork Estimation Approaches

The two most common methods used to compute earthwork quantities in
transportation applications are 1) the average-end-area (AEA) method and 2) the surface-
to-surface method. The ability to obtain accurate earthwork quantities has been
significantly enhanced by modern data collection and processing technologies that can be
used to generate, overlay, and compare 3D surfaces models to obtain earthwork volumes.
In recent years, state transportation agencies have increasingly used three-dimensional
(3D) models to plan and design roadways due to benefits such as improved productivity,
accuracy, and worker safety during construction operations (31).

The conventional way of determining earthwork quantities is to use the average-

end-area method. The AEA method involves establishing survey cross-sections along the
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roadway at regular intervals from which cut and fill volume quantities are estimated (32).
Research studies have suggested that many state transportation agencies and practitioners
still use or specify the average-end-area method for calculating earthwork volume
quantities for road construction projects (2). Because volume quantities are calculated
between cross-sections, the average end-area method is labor intensive and difficult to
apply when the construction consists of nonlinear sections (33). The average-end-area
method calculates earthwork volumes between consecutives cross sections by multiplying
the average of the two cross sectional end areas (Al and A2) by the perpendicular distance

between the cross sections (L). The AEA method is given by the following equation:

V=-(A +A4) 1L (3-1)

Schexnayder and Mayo (34) argued that the AEA method gives volume results that
are slightly in excess of the actual volume, with a precision of about £1%. Additionally,
the authors suggested that although 100-ft stations are typically used when the project is
linear in extent and the ground surface is regular, measurements should be taken at closer
intervals (less than 100 ft), when the surface irregular, particularly at points of change. The
accuracy of earthwork computations is directly affected by the extent and accuracy of field
measurements.

Hintz and VVonderohe (2) compared volumes computed using the average-end-area
method with surface-to-surface volume quantities calculations using modeling software.

Their investigation showed that end-area volumes approached those computed by surface-
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to-surface calculations when the cross-section interval was reduced. Additionally, the
authors argued that variations could be due to random variability of the terrain.

Similarly, Slattery and Slattery (35) argued that the AEA method is unreliable in
sections that change from cut and fill and where the construction consists of non-linear
sections. The authors evaluated the feasibility of using terrestrial laser scans on roadway
construction projects as an efficient approach to measure earthwork quantities. Their study
indicated that results could be improved using measurement methods that provide more

dense data such as 3D mobile terrestrial laser scanning.

Study Area and Data Collection

The study area is a 1.3-mile section of a relatively recently built 4-lane urban
roadway (East West Parkway) located in Anderson County, SC, shown in Figure 3-2.
Geometric features of the study area include linear sections, four horizontal curves, five

vertical curves, and two lanes in each direction.

Figure 3-2 Stations and GCP locations along the study area: Anderson, SC (East
West Parkway)
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Data were collected in three phases. The research team performed a ground control
survey to identify ground control points (GCPs) throughout the study area (see Fig. 3-3).
Existing geodetic survey marks were used as primary ground control points. Primary and
secondary GCPs provided a means for tying down data sets for consistent comparison.

Similarly, the research team performed a survey to establish 100-ft stations along the edges

of the travel lanes (see Fig 3-4).

Figure 3-3 Sample primary and secondary Figure 3-4 Reflective pavement marking
control points used to adjust LiDAR and tape used to identify survey stations along
photogrammetry data sets. the white pavement edge lines.

Equipment used during the traditional data collection process include total stations,
smart levels, and high-accuracy GPS units. To facilitate the identification of stations and
GCPs using point cloud intensity and RGB color attributes, reflective pavement marking
tape was placed at station markers along the white pavement edge lines on both sides of

the roadway.

Mobile LIDAR datasets were collected by industry vendor using their own LiDAR
systems and survey crews. Vendors were provided with traffic control support consisting

of two trailing SCDOT vehicles and were instructed to collected data using the right (outer)
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lane while traveling at the posted speed limit (see Fig. 3-5). Vehicles in the opposing travel
direction were allowed to move without obstruction. All LIDAR datasets were collected
using one pass in each direction because most mobile LIDAR systems can collect accurate
data for multiple lanes from either lane along a roadway as shown in Figure 3-6. LIDAR
equipment were calibrated by vendors before and after each data collection pass. Vendors
were responsible for ensuring that LIDAR systems were calibrated throughout the data

collection process.

Figure 3-5 Mobile Lidar data collection. (SCDOT traffic control trucks and sample LiDAR system
and vehicle used by vendors).

Figure 3-6 Sample Mobile LiDAR scan from the outer (right) lane.
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The research team collected aerial imagery data using a commercially available
UAV with a retail value of approximately $2,500, (see Fig 3-7). The detailed specifications
of the systems are presented in Table 3-1. The UAV photogrammetry data acquisition
process was conducted as follows: a) Identification of GCP locations within the study area,
b) Placement of aerial survey targets, c) Flight planning, d) Equipment calibration and
image data acquisition, e) Data processing for 3D information extraction. Data were
collected using two elevations to enhance scene coverage. That is, imagery data were
collected in two directions, eastbound (EB) and westbound (WB), at 117 ft and 288 ft AGL
relative to the point of takeoff. The two elevations provided two vertical planes to
triangulate elevations. In total, 358 and 380 images were collected at altitudes of 117 ft and
288 ft, respectively. Images were georeferenced using control points. Three-dimensional
point clouds were generated using images collected at both altitudes. The unmanned aerial
system used to collect imagery data is shown in figure 3-7. Figure 3-8 shows a point cloud

generated using UAV imagery data.

Figure 3-7 Unmanned aerial system used to collect imagery data.
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Figure 3-8 Three-dimensional point cloud from collected UAV imagery data.

Equipment specifications provided by vendors, as well as equipment used by the

research team are summarized in Table 3-1.

Table 3-1 Mobile Lidar and UAV Photogrammetry Equipment Specifications

Data Collection Source of Brand Model Tvoe Measurement
Method Data Name yp Rate
. VMX Dual
Vendor A Riegl 450 laser 1100 KHz
Teledyne Dual 500
Vendor B Optech M laser KHz/Sensor
Teledyne Dual 600
MLS Vendor C Optech SGl laser KHz/Sensor
Vendor D Z+F o012 oMYl 4600 KHz
Profiler laser
Teledyne Dual 500
Vendor E Optech MI laser KHz/Sensor
Mechanical
Commerciall Sensor: Shutter Speed 8
UAV . y Phantom . - 1/2000s
Available DJI 1 .
Photogrammetry UAV 4 Pro CMOS Electronic
Shutter Speed 8
- 1/8000s

Analysis Methodology

Primary and secondary ground control points (GCPs) were used to georeference

data sets using a common coordinate system. MLS point clouds were adjusted through
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post-processing with ground control points. The research team used four GCPs to adjust
the UVA photogrammetry data. ContextCapture, a Bentley’s structure-from-motion
software package commonly used by practitioners and some state DOTSs, was used to
process the 2D georeferenced images into a 3D point cloud. Four geolocated ground
control points (GCPs) were used for tying down point cloud data for consistent comparison.
The location of each point within the point cloud was computed using between 24 and 35
images, on average. The average ground resolution of the images collected was 22.2679
mm/pixel.

Prior to the creation of terrain models, LIDAR and UAV photogrammetry point
clouds were processed in OpenRoads Designer to remove noises from the data; that is, non-
ground points created by power lines, vegetation, and other small obstacles located in the
median and shoulders were removed. Point clouds were clipped directionally between the
white pavement edge lines before the data were filtered so that accurate terrain models
could be generated. Typically, point clouds should be filtered to remove existing scatter
points from the surface generated due to random measurement errors (35). Two lanes in
each direction were kept and dedicated left turn lanes were removed from the analysis.
Since material quantities are typically determined by actual surface area (i.e., length x
width) made in the field prior to removal (36), terrain models were clipped using a
predefined boundary that included both travel lanes in each direction. That is, a common
boundary was used to ensure that volume quantity comparisons were not affected by

variations in the planar area of terrain models created from each data set.
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The conventional survey surface was generated using points manually surveyed
along the white pavement edge lines and across each established station. On average, 6
points were surveyed across each station to include both travel lanes in each direction and
the double yellow lines. Overall, 424 points were manually surveyed at sixty-nine 100-ft

stations over the 1.3-mile study area.

Results and Discussion

Pavement Material Volume Calculations

Material volumes were calculated using a surface-to-surface method in OpenRoads
Designer by setting one of the surfaces as existing and the other as the design surface. The
total volume difference between the two surfaces is the same regardless of which terrain
model is set as the design or existing surface. Table 3-2 shows the total volume difference
(cut plus fill) in cubic yards between surface pairs including eastbound and westbound
lanes. The ideal volume is zero. The table indicates that the closest comparison from a total

volume standpoint is between Vendor B and Vendor C.

Table 3-2 Total Volume Difference between Surface Pairs Including Eastbound and Westbound
Lanes. Units = yd®

Terrain Conventional Vendors
Model Survey A B C D E
Conventional
Survey
Vendor A 745
Vendor B 355 823
Vendor C 366 872 102
Vendor D 610 652 413 429
Vendor E 486 1060 249 197 488
UAV
Photogrammetry 532 1287 486 448 714 291
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Average perpendicular height variation between surfaces

To better understand the magnitude of the volume differences in Table 3-2, the
volume differences were converted into inches in terms of perpendicular height between
the surfaces. To estimate the average perpendicular height difference between two
surfaces, the total volume between the surfaces was divided by the average of the planar
areas. Planer areas included approximately two lanes in each direction. Thus, two lanes in
each direction (24 ft) x 1.3-mile segment (6864 ft). Table 3-3, Table 3-4, and Table 3-5
show results of average perpendicular height difference calculations in inches. The ideal
height difference is zero for reasons stated previously. Again, Vendor’s B and C compares
most favorably having the lowest average height difference in both travel directions
individually and combined. The table shows that this difference is less than '4”. The
average difference in heights for all of the MLS vendors is less than 1 inch except for
Vendor A. The average height difference for Vendor A’s results are greater than 17
difference in every comparison. Most of these differences are because of a very large cut
volume compared to fill which indicates a systematic error. Because different systems and
calibration methods yield different vertical and horizontal accuracies, terrain model heights
may vary slightly between surface models however systematic errors should be eliminated
through careful calibration and post-process least squares adjustment using ground control
points. Nevertheless, even an inch of error is relatively small when considering that many
contour maps used for highway purposes are created from airplane based aerial
photogrammetry with flying heights greater than 1000 feet. The smallest contour interval

will typically be 1 foot and error standards are that contours should be within half a contour
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interval of actual which indicates acceptable differences of up to 6” in this case (37). Thus,
even a 1” difference is relatively small. UAV photogrammetry average height differences
range from 0.775” to 1.398”. It is noteworthy that conventional survey data in this case is
not ground truth because of the 100’ interval between survey points. Thus, everything

between the 100’ interval is interpolated.

Table 3-3 Eastbound Lanes: Average Height Difference between Surface Terrain Models.
Units = inches.

Data Source Conventional Vendors
Survey A B C D E
Conventional Survey
o Vendor A 1.22
_<of Vendor B 0.51 1.33
EI) Vendor C 0.60 141 | 0.16
é Vendor D 0.86 1.15 | 0.62 | 0.63
Vendor E 0.70 141 | 043 | 0.36 | 0.79
UAV Photogrammetry 0.79 139 | 103 | 099 | 135 | 0.78

Table 3-4 Westbound Lanes: Average Height Difference between Surface Terrain Models.
Units = inches.

Data Source Conventional Vendors
Survey A B C D E
Conventional Survey
@ Vendor A 1.26
_<of Vendor B 0.67 1.39
e Vendor C 0.62 149 | 0.18
é Vendor D 1.16 1.01 | 0.75 | 0.79
Vendor E 0.65 179 | 042 | 0.33 | 0.93
UAYV Photogrammetry 0.72 195 | 0.68 | 0.62 | 1.19 | 0.57
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Table 3-5 Both Directions (EB and WB): Average Height Difference between Surface Terrain
Models. Units = inches.

Data Source Conventional Vendors
Survey A B C D E

Conventional Survey
o Vendor A 1.24
_<of Vendor B 0.59 1.36
; Vendor C 0.61 1.45 0.17
g Vendor D 1.01 1.08 | 068 | 0.71

Vendor E 0.68 160 | 042 | 034 | 0.86
UAYV Photogrammetry 0.76 1.67 0.85 0.81 1.27 0.67
Conclusions

In this study, differences between surface terrain models produced by MLS, UAV
photogrammetry, and traditional survey data were compared. The established testbed
location, East-West Parkway in Anderson, South Carolina, provided a study area of a
typical rolling terrain multilane roadway along an urban alignment extending along a 1.3-
mile parkway length. The use of MLS and UAV photogrammetry data collection methods
produced similar surfaces. For both eastbound and westbound lanes of the 1.3-mile test bed
study location, the average elevation differences between the MLS, UAV photogrammetry,
and the traditional surveying surfaces ranges from 0.17 inches to 1.27 inches when vendor
A is excluded from the comparison. These results indicate that surfaces generated from all
three methods could be interchangeably used for pavement material volume estimation
purposes. Thus, terrain models from MLS and imagery-based point clouds could help
improve leveling course quantity estimates. However, acquiring higher spatial resolution

UAV photogrammetry data and collecting additional ground control points may improve
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the accuracy of pavement surface elevations. Similarly, additional noise removal may help
improve the accuracy of surface terrain models generated from point clouds. The use of
digital surface models to obtain accurate material volumes and project quantities would be
highly beneficial to state departments of transportation in scoping, planning, designing,
and administering a wide variety of roadway improvement, safety, capacity, and
maintenance related projects. Accurate material volume estimates would be very helpful
in providing third-party private highway contractors with accurate quantities, resulting in

fewer project change orders and reduced scheduling delays.
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CHAPTER FOUR

PAPER Il SAFETY ASSESSMENT OF DESIGN SPEED ON HORIZONTAL AND
VERTICAL CURVES USING MOBILE LIDAR AND UNMANNED AERIAL
VEHICLE PHOTOGRAMMETRY

Abstract

The process of evaluating roadway geometry for potential safety problems requires

precise measurement of various geometric parameters. This study evaluated the use of

mobile LIDAR scanning (MLS) point clouds and unmanned aerial vehicle (UAV) imagery-

based point clouds to estimate design speeds on horizontal curves and sight distance and

design speeds on vertical curves of constructed roadways. Results from paired t-test
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statistical analyses at a 95% confidence level indicated that LIDAR and UAV
photogrammetry systems provide horizontal curvature data at sufficient accuracy to
estimate curve design speeds. The proposed methodology can be used to identify locations
where the posted speed limit/advisory speed is higher than the design speed along
horizontal curves so that corrective measures can be implemented on existing roadway
networks. Similarly, vertical alignment data were extracted from terrain models generated
from point clouds for sight distance and design speed estimation on crest and sag vertical
curves. Extracted longitudinal grades were compared based on a minimum acceptable
accuracy value of + 0.5% specified by SHRP2. The statistical analysis indicated that the
average deviations between field survey measurements and longitudinal grade
measurements extracted from LIDAR and imagery-based point clouds were less than the
acceptable accuracy value of + 0.5% at a 95% confidence level. Additionally, the results
showed that sight distances calculated using terrain models from point clouds could be
used to obtain accurate estimates of design speed on vertical curves based on the results
from a paired t-test statistical analysis using a 95% confidence level. Geometric
characteristics of the study area, located in Anderson, South Carolina, include 4 horizontal
curves and 5 vertical curves. The proposed approach offers advantages over extracting
information from design drawings which may be unavailable, outdated, or inconsistent

with the as-built roadway.

Keywords: Roadway Safety, Mobile LIiDAR, Close-Range Photogrammetry,

Roadway Geometry, as-built data, SHRP2.
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Introduction

Yearly, state transportation agencies and industry practitioners strive to develop
and implement proactive approaches to collect roadway data critical to enhancing
maintenance efforts and address potential road safety issues to reduce the likelihood of
vehicle crash occurrences. Motor vehicle crashes contribute to a significant number of
injuries and fatalities in the United States and globally. Inefficient data collection methods,
data availability issues, and data incompleteness complicate efforts to develop accurate
road feature inventories for road maintenance and safety evaluations. Recent studies have
indicated that remote sensing technologies can enhance roadway feature data acquisition
and maintenance strategies (1, 2). Automated surveying practices require less field time,
reduced crew sizes, and minimize human error (3).

Emerging technologies such as Light Detection and Ranging (LiDAR) and Close-
Range Photogrammetry (CRP) allow for rapid and accurate collection of georeferenced
three-dimensional (3D) data facilitating efforts to develop efficient data collection
workflows. To date, research studies have shown that mobile LiDAR scanning (MLYS)
systems and CRP data collected using unmanned aerial vehicles (UAVS) have numerous
applications in transportation (4). For instance, to comply with pragmatic performance
measures and performance-based funding, state transportation agencies have been using
innovative and practical methods and technologies to manage roadway assets (5). MLS
point clouds have the potential to enhance the ability to design and maintain roadway

networks by providing highly accurate, dense, and georeferenced data sets. UAV imagery-
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based point clouds provide similar advantages including the ability to generate highly
accurate 3D models.

Additionally, the use of innovative surveying technologies and 3D models to create
virtual representations of existing roadway infrastructure provides numerous advantages
including the ability to develop fast and efficient inspection protocols such as verification
of compliance with design standards; and enhanced accuracy, cost-efficiency, and safety
during construction and data collection activities (6). The ability to rapidly collect accurate,
georeferenced, high-resolution three-dimensional data provides significant benefits over
conventional surveying methods. Most conventional data collection approaches are labor
intensive, time-consuming, and may expose field crews and the public to unsafe conditions.
Conventional survey data are collected at sample locations and are not continuous. Thus,
locations between surveyed points are interpolated which may compromise overall
accuracy. Additionally, design drawing data of existing roadways may be inconsistent with
the as-built roadway. That is, as-built measurements are often not available and design
drawing data may not be accurate because the as-built roadway may not correspond with
preconstruction design drawings (7). This issue is particularly prevalent when older
roadways are considered.

From a safety standpoint, identifying locations where vehicles may exceed design
speeds is critical in preventing future crashes. A proactive approach that identifies
potential design deficiencies is favorable to analyzing crash data.

This study evaluates the feasibility of MLS and imagery-based point clouds

collected by CRP UAVs to extract horizontal and vertical roadway geometry features for
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design speed and sight distance assessment on constructed roadways. Comparisons were
made using geometric elements extracted from MLS data collected by five vendors, and

aerial imagery and manual survey data collected by the research team.

LITERATURE REVIEW

Applications of MLS in transportation

LiDAR systems can be used to acquire large data sets of high-accuracy three-
dimensional (3D) point clouds in a timely manner. Additional benefits include less
personnel exposure to potentially hazardous conditions during data collection activities and
fewer unnecessary delays for the traveling public when compared to some conventional
survey methods (1). The Federal Highway Administration (FHWA) has identified LIDAR
as a technology that could help consolidate resources, maximize funding, and enhance the
accuracy and integration of information (2). LIDAR data sets can be obtained in a variety
of ways using static, mobile, and aerial systems. These systems are ideal for rapid and safe
data collection; thus, enhancing the ability to complete tasks more efficiently and in a safer
environment. Moreover, mobile LIDAR systems have become an effective solution for
rapid data collection given developments in scanning speed and accuracy, global
positioning systems (GPS), and inertial measurement units (IMU) (3). Attempts to extract
roadway features are discussed in the following paragraphs.

A review of literature shows numerous fully automated and semi-automated 2D

and 3D approaches to extract lane markings from LIDAR point clouds. For example,
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(Ogawa and Takagi, 2006) attempted to extract lane markings using two-dimensional (2D)
scanning LIDAR. In their study, lane curvature was calculated using Hough
transformation, and lane widths were calculated using a statistical procedure. Their
algorithm offered promising results and was based solely on LiDAR range data (4).

The importance of lane markings as a pre-requisite for many driver assistance
systems and autonomous vehicles was highlighted in a study by Kammel and Pitzer (5)
who proposed an algorithm to not only detect lane markings but also enable the creation of
topological maps of the traversed street sections. Similarly, Lindner et al. (6) proposed a
method to extract lane markings from LIiDAR data based on reflectivity and distance
information. Cheng et al. suggested two approaches for lane marking extraction from
LiDAR point clouds based on intensity thresholds and deep learning (7). Several other
studies have used mobile LiDAR data to detect and extract road pavement markings (8-
11), and to estimate and evaluate pavement marking reflectivity (12).

Lin and Hyyppa (13) proposed a multistep automated approach to detect culverts
in MLS point clouds. The authors reported measurement errors between 9% and 16%. A
study by Landa and Prochazka (14) compared road information that can be obtained from
RGB images and LiDAR measurements. Their study focused on road signs, road markings,
and pole-shaped objects including light poles and trees.

A framework for extracting road and roadside information using remote sensing
data obtained from multiple sources was proposed by Ural et al. (15) The study showed
that 90.25% of a total of 23.6 miles of road networks, and 90.6% of 107 existing buildings

were correctly identified and extracted using orthophotos and airborne LiDAR point
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clouds. Additionally, the authors estimated average grades, cross-section lines, and cross-
slopes based on identified road centerlines and roadside areas.

Guan at al., (16) conducted a review of the literature to identify advancements in
mobile LiDAR technology and their applications in road information inventory. The study
reviewed aspects related to system components, direct georeferencing, data error analysis,
geometrical accuracy validation, and extraction of road surfaces and pole-like objects. In
their review, the authors pointed out the importance of accuracy verification, primarily
because mobile LIiDAR systems have certain limitations and perform differently based on
factors such as range, incidence angle of laser pulse to the reflective object, and accuracy
of GPS and IMU.

Gouda et al. (17) attempted to map and assess roadside clearance parameters using
mobile LiDAR on rural highways. The authors employed a voxel-based ray-casting
approach for collecting inventories of roadside assets and for mapping and assessing
roadside clearance parameters. The study mentions that the proposed method was tested
on four highway segments with edge detection accuracies ranging from 97% to 98.5%.

An earlier study by Findley et al. (18) compared roadway data collected using
manual methods to data collected by manned data collection vehicles moving with traffic.
The authors compared various roadway elements including curbs, guardrails, signs,
pavement markings, and roadway geometry.

Gargoum et al, (19) attempted to used LIiDAR data to automatically evaluate sight
distance along a two-lane undivided rural highway. The authors defined observer and target

points along travel lanes based on a surface terrain model. Their methodology was based
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on a two-step process that uses ArcGIS tools for distance assessment and a Microsoft VB
algorithm for processing and analyzing the outputs attained from GIS. The authors
constructed lines of sight based on pairs of points identified as target and observer and used
a VB code to estimate the sight distance available to each observer. Their results showed
that minimum stopping sight distance (SSD) requirements were violated on a portion of
the analyzed highways. Specifying the number of observer points at which testing is
required and the trade-off between the number of points and processing time were
identified as limitations associated with their methodology. The authors verified the results
by comparing obstructed sight lines using images from the field at obstructed locations.
Another study by Gargoum and El-Basyouny (20) performed a review of studies that
proposed approaches to extract information from LIDAR data for transportation
applications. The authors argued that few studies have attempted to extract roadway design
elements from LiDAR data sets and highlighted areas where research might be needed.

(Maetal., (21) proposed a procedure for visualizing sight distance along an existing
roadway in real-time using MATLAB and LiDAR data. The method uses LIiDAR data for
3D sight distance estimation in highway environments with complex roadside obstacles.
The authors compared their results with sight distance data obtained using digital terrain
models and ArcGIS tools.

In a recent study, Salkamy et al., (22) proposed a fully automated algorithm for
large-scale assessment of available sight distance in a three-dimensional space using
LiDAR. The authors looked at historical collision data along sections identified has having

insufficient sight distance and concluded that sight distance limitations could have
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contributed to collision occurrences. Similarly, Agina et al., (23) proposed a procedure to
assess passing sight distance on two-lane highways using mobile lidar. Their method
involved extracting centerline lane markings, defining passing-allowed and passing-
prohibited regions, followed by computations of sight distance. Their study found roadway
sections where passing was not allowed but there was adequate sight distance for passing

maneuvers and sections with insufficient sight distance where passing was allowed.

Photogrammetry Applications in Transportation

Although LiDAR technology and its applications in transportation have gained
increasing popularity in recent years, researchers and practitioners have attempted to
accomplish similar results using reliable and cost-effective alternatives to LiDAR such
CRP. Photogrammetric approaches offer a less expensive, user-friendly alternative to
LIiDAR technologies (24). Cross et al. suggests that LIDAR creates more uniform and
accurate point clouds, but photogrammetry generates similar high-quality point clouds that
are also highly accurate. Their study suggests that photogrammetry is a cost-effective
technology that can be used to achieve similar results to LiDAR.

Bassani et al. (25) attempted to use a point cloud from images collected along a
roadway segment to perform sight distance analysis using ArcGIS tools. The authors
created a terrain model from the point cloud which was analyzed in the ArcGIS
environment.

A study by Farhadmanesh et al. explored the possibility of using photogrammetry

as an alternative to LIDAR for highway asset and pavement condition assessment. The
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authors identified instances where some of their models generated using photogrammetry
were denser than models generated using LiDAR; though typically LiDAR point cloud
models tend to be denser than those created using photogrammetry (26).
Three-dimensional (3D) models based on 2D images reconstructed from UAV
photogrammetry were used in a study by Nappo et al. (27) to develop an objective and less
laborious alternative to traditional field surveys for semi-automatic damage assessment of
asphalt-paved roads in landslide affected areas. Their study used 3D models and 2D images
reconstructed from UAV-based photogrammetry to detect longitudinal and transverse

cracks on the road pavement and assess their severity in landslide areas.

Summary of Previous Studies

While the literature identified a number of studies that extracted horizontal and
vertical road geometry, and sight distance information from LiDAR point clouds, few
studies compared results from data collected using multiple data collection systems. In
addition, it is worth noting that to our knowledge, many studies did not validate their results
using ground truth data from field surveyed measurements. This research expands on
previous studies by comparing geometry data extracted from multiple mobile LiDAR
sources and evaluates the MLS accuracy by comparing the results from manual survey
measurements. Additionally, this research evaluates the extraction of highway alignment
data from CRP imagery-based point clouds from high-resolution UAV images and directly
compares the results to the MLS and manual survey measurements. No other study could

be identified in the literature that performed a similar comparison.
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OVERVIEW OF STUDY AREA
The study was conducted along a 1.3-mile section of a 4-lane mostly divided
parkway located in Anderson, South Carolina. This roadway is classified as an urban
principal arterial with a factored Annual Average Daily Traffic (AADT) of approximately
13700 vehicles per day. Geometric characteristics of the roadway section include four
vertical curves, five vertical curves and two lanes in each direction. Figure 4-1. shows a

panoramic photograph of a short section and an aerial image of the entire study area.

East West Parkway

Figure 4-1 Stations and GCP locations along the study area.
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DATA COLLECTION AND PROCESSING

Manual Data Collection

The research team, which included a professional land surveying crew, manually
surveyed the entire 1.3-mile roadway segment to locate 100-foot stations along the
pavement edge lines. 424 points were manually collected on the edge lines of the roadway
and across each station where lane markings were present. In total, the study area consisted
of sixty-nine 100-foot survey stations established on both sides of the roadway along the
edge lines. In addition, a ground control survey was conducted to locate primary ground
control points (GCPs) consisting of existing geodetic survey markers, and secondary GCPs
established by the research team throughout the study area (see Fig. 4-2). Equipment used
during the conventional data collection process include total stations, automatic levels, and

high-accuracy GPS.

Primary control point

Secondary control point

Figure 4-2 Sample primary and secondary GCPs established using high accuracy GPS.
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Mobile LiDAR Data Collection

Mobile LIDAR data were collected by five participating vendors using their own
equipment. Components of the MLS systems used by vendors include vehicle mounted
GPS units, LIDAR sensors, IMUs, and a distance measuring instruments (DMIs). Vendors
used a minimum of two primary GCPs as base station locations for GPS differential
correction. All primary and secondary GCPs were used for post-processing adjustment of
the LIDAR point clouds. Vendors were responsible for calibrating their respective LIDAR
systems before and during the data collection process. Table 4-1 provides a summary of
the MLS equipment used by vendors. Vendors collected point cloud data from the right
(outer) lane using one pass in each direction. Studies have shown that accurate mobile
LiDAR data can be collected using one pass from either lane on multilane highways (28).
A LiDAR point cloud collected by a vendor is shown in Figure 4-3. Survey stations were
marked with PK surveying nails. In addition, the research team used reflective pavement
marking tape to ensure that PK nail locations could be easily identified in LIDAR and UAV
photogrammetry-based point clouds using the intensity and RGB color attributes,

respectively (See Fig 4-3).

Table 4-1 Mobile LiDAR Equipment Specifications

Equipment Mobile LiDAR SyStemS
Specifications Vendor A Vendor B Vendor C vendor D Vendor E
. Teledyne )
Brand Name Riegl Optech Optech Z+F Profiler Optech
x Model VMX450 SG1 M1 9012 M1
3
- Laser Dual Dual Dual Single Dual
600 500 500
Measurement rate 1100 KHz KHz/sensor KHz/sensor 1000 KHz KHz/sensor
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s Brand APPLANIX Applanix Applanix N/A Applanix
o Model BEI HH5 HS35F LV N/A LV
Brand APPLANIX N/A Northrop NovAtel Northrop
Grumman Grumman
SPAN IMU-
o
S Model ap50 FMU P301 LN 200 FSAS LN 200
Roll/pitch accuracy 0.005° 0.005° 0.25° 0.008° 0.25°
Heading Accuracy 0.015° 0.015° 0.50° 0.013° 0.50°
Type NIKON/RIEGL Pm;;éirey Optech Leica Optech
g Number of 2Front/2Rear 6 total 2Front/2Rear 7 total 2Front/2Rear
g cameras 4 TOTAL spherical array 4 TOTAL spherical array 4 TOTAL
© Frame rate 15 fps 3 fps 2 fps 8 fps 3 fps
Resolution 5 MP 5 MP 5 MP 4 MP 5 MP
g Brand TRIMBLE Trimble Trimble NovAtel N/A
z Zepher Zephyr
(G] - -702-
E Model model 2 AT1675-540TS model 2 GPS-702-GG N/A
© Accuracy 10 mm 0.02' H; 0.04’ V | Survey Grade N/A N/A
N/A: Not available (Specification not provided by vendor)

Station marker

PX nail location

Figure 4-3 Sample LiDAR point cloud and reflective marking tape used to identify stations
established along the edge of pavement (EOP) lines.

Unmanned Aerial Vehicle (UAV) Imagery Data Collection

Low-altitude UAV photogrammetry data were collected using a commercially

available UAV (Phantom 4 Pro) with a 20MP imager (See Figure 4a). Two altitudes were
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used to collected UAV imagery data: 117 ft above ground level (AGL), and 288 ft AGL
from point of takeoff, respectively. Aerial targets were used to facilitate the identification
of primary and secondary GCPs (see Figure 4b). In this study, the imagery-based point

cloud was adjusted using four GCPs.

{a) UAV system (b) Aerial targets

Figure 4-4 Unmanned aerial vehicle (UAV) system and targets used during
low-altitude imagery data collection.

DATA ANALYSIS AND RESULTS

Comparison of Horizontal Curvature Data

Ground truth horizontal alignment data were manually collected relative to the
centerline of the roadway using state-of-the-art surveying equipment. Comparisons were
made using horizontal alignment data extracted from point clouds relative to the centerline
of the roadway (See figure 4-5). Reference survey stations located along the edge lines and
lane markings identifiable using the intensity attribute of LIDAR point clouds, and RGB

color attributes of the imagery-based point cloud were used to extract tangent lines and
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horizontal curvature data in a semi-automated fashion using OpenRoads Designer design

software.

..“\

Figure 4-5 Extraction of road centerline from point cloud data.

A comparison of ground truth horizontal alignment data collected using traditional
surveying methods, and horizontal alignment data derived from LiDAR and UAV imagery-
based point clouds is presented below (See Table 4-2). The data included in this
comparison represent the most common horizontal curve parameters used in roadway

design.

Table 4-2 Comparison of Manually Surveyed Data and Horizontal Alignment Data Extracted from
Point Clouds.

Horizontal Field S Deviations of extracted values from field survey data (ft)
Horizontal OCFLZrC\’/f; ) I‘-:I.Datau(;jcl)ey Mobile LIDAR point clouds (Vendors) Imagery-based
Curve # Parameter (Ground Truth) A B C D E point cloud
PC 153+61.78 +12.21  +7.09 -2.85 -8.48 +1.39 +11.89
PI 166+51.26 -0.04 -1.36 -3.80 -6.96 -2.74 +3.53
PT 177+10.88 -7.52 -6.44 -4.35 -5.63 -4.98 -1.46
Curve 1 R 2291.83 -6.51  -3.99 -037 +3.18 -0.51 -3.74
L 2349.10 -19.74  -13.53 -1.50 +2.84 -6.37 -13.35
T 1289.47 -12.25 -8.45 -0.95 +1.52 -4.13 -8.36
M 294.45 -4.03 -1.90 -0.32 +0.31 -1.65 -2.81
Curve 2 PC 182+37.69 +6.97 +10.59 +12.32 +14.74 +13.73 -1.16
PI 187+69.77 +9.07 +9.14 +7.71 +8.51 +7.16 -6.76
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PT 192+89.87 +11.11  +7.79 +3.30 +2.54 +0.84 -11.96
R 2864.79 +9.19  +1.20 -13.19 -19.24 -21.84 +5.10
L 1052.17 +4.14  -2.80 -9.01 -12.20 -12.90 -10.80
T 532.08 +2.10 -1.46 -4.60 -6.23  -6.58 -5.61
M 48.17 +0.23  -027 060 -079 -0.81 -1.07
PC 199+96.63 -412  -057 -348 501 -4.62 +25.84
PI 203+49.89 2432 -124 -072 -159  -0.87 +17.09
PT 206+95.28 4386 -193  +1.96 +1.72  +2.77 +8.60
Curve 3 R 1909.86 -81.02  -7.14  +12.09 +14.11 +17.02 -40.04
L 698.65 -39.75  -136  +5.44  +6.74  +7.40 -17.25
T 353.27 2021 067 4276 +3.43  +3.75 -8.75
M 31.86 226  -0.00 +0.29 +0.38  +0.39 -0.90
PC 212+39.79 +20.46 -112  -1.17  -255  -2.83 -12.26
PI 218+24.45 +5.34  +3.31  +3.63  +2.28  +3.47 +5.04
PT 223+84.68 832  +7.49 +8.09 +6.77  +9.31 +20.82
Curve 4 R 2291.83 -17.92  +14.81 +12.00 +12.51 +15.37 +29.62
L 1144.89 -28.77 +861 4927 +9.32 +12.14 +33.08
T 584.65 21511 +4.42  +4.80 +4.83  +6.30 +17.30
M 71.12 299  -021 +0.78 +0.77 +0.84 +3.20

Mean percentage absolute errors (MAPE) and the expected accuracy (100-MAPE)
of extracted measurements were calculated using equation (4-1). Results for all the

measurements are shown in table 4-3.

n
MAPE=1 E |ﬂ| (4-1)
t=1 At

n

Where n is the number of data points (n=20 data points per parameter from LIDAR
point clouds; n=4 data points per parameter from the imagery-based point cloud), A; is the
actual value represented by the surveyed ground truth data, and F; is the extracted value

from the MLS data.

76



Table 4-3 Summary of Horizontal Alignment Measurement Comparisons

Summary PC Pl PT R L T M
Mobile LIDAR | MAPE (%) 0.037 0.027 1675 0.647 1.020 1.042 1.335
Point Clouds | 100_MAPE (%) 99.96 99.97 9832 9935 9898 98.96 98.66
Imagery-based | MAPE (%) 0.068 0.041 0.051 0933 1.738 1.785 2.624
Point Cloud | 100-MAPE (%) 99.93 99.96 99.95 99.07 98.26  98.22 97.38

Overall, the research team was able to extract desired data elements with reliable
levels of accuracy that were within or below the target accuracies specified by SHRP2 (see
table 4-2). For instance, SHRP2 recommends a point of curvature (PC) accuracy of £3 ft.
However, the best achieved accuracy by SHRP2 was -154.97 ft. In this study, the best
achieved PC accuracy from LiDAR data was -0.567 and the worst PC accuracy was
+20.456 ft. This indicates that the best accuracy achieved in this study using LIiDAR data
was less than the maximum acceptable deviation recommended by SHRP2. Additionally,
SHRP2 recommends a horizontal curve length accuracy of +2 ft and a curve radius
accuracy of 25 ft. In this study, the best achieved accuracies for curves length and curve
radius extracted from LiDAR data were -1.360 ft and -0.367 ft, respectively. The worst
achieved accuracies for curve length and curve radius extracted from LIiDAR data were -
39.745 ft and -81.0.25 ft respectively.

Similarly, the best achieved accuracy for PC data extracted from the imagery-based
point cloud was -1.156 ft and the worst PC accuracy was +25.844 ft. The best achieved
accuracies for horizontal curve length and curve radius extracted from the imagery-based
point cloud — best (worst) — were as follows: curve length -10.804 ft (+33.082), and
curve radius -3.739 ft (-40.041 ft). Therefore, most of the horizontal curve parameters

extracted from the imagery-based point cloud were within the recommended accuracy
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values specified by SHRP2 except for the curve length data which were all above the
recommended accuracy value, and the curve radii data which varied the most. Overall,
these results indicate that LIDAR point clouds are a relatively more reliable source of

accurate horizontal curvature data compared to UAV imagery-based point clouds.

Extraction of Maximum Superelevation Rate (Emax) from Point Clouds

Superelevation is commonly defined as the banking of a roadway along horizontal
curves to assist drivers in resisting the effect of centrifugal force, allowing them to navigate
horizontal curves safely at reasonable speeds. While the selection of a maximum rate of
superelevation depends on several factors, the SCDOT specifies a maximum
superelevation rate of 8% for all facilities with design speeds between 50 mph and 75 mph
(29). Table 4-4 shows potential adverse impacts to safety if as-built superelevation deviates

from specified design criteria.

Table 4-4 Potential Adverse Safety Impacts of Deviation from Design Criteria (30).

Safety & Operational Issues Freeway Expressway Rural Urban
Two- Arterial
Lane
Run-off-road crashes X X X
Cross-median crashes X X
Cross-centerline crashes X
Skidding X X X X
Large vehicle rollover X X X
crashes

Note: Freeway: high-speed, multi-lane divided highway with interchange access only (rural or urban);
Expressway: high-speed, multi-lane divided arterial with interchange and at-grade access (rural or urban);
Rural 2-Lane: high-speed, undivided rural highway (arterial, collector, or local); Urban Arterial: urban
arterials with speeds 45 mi/h (70 km/h) or less.

78



A multistep approach was used to extract maximum superelevation rate values on
horizontal curves using point cloud data as follows: a) Identification of mid-point of curve
using extracted horizontal curvature parameters. b) Delineation of perpendicular buffer
area relative to the mid-point of the curve, c) Extract elevations and calculated distances of
LiDAR points along the superelevated cross section using a surface model, d) perform
linear regression on the extracted LIiDAR points to determine the cross slope which
represents the maximum superelevation rate. Figure 4-6 and Figure 4-7 illustrate the

process of extracting maximum superelevation data from point clouds.

Figure 4-6 LIiDAR point cloud of a horizontal curve: Vendor C (curve 1)
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Linear Regression on Extracted LiDAR Points
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Figure 4-7 Extraction of maximum superelevation rate from point cloud: Vendor C (curve 1)

Design Speed Estimation on Horizontal Curves

In accordance with AASHTO recommendations, the radius used to estimate the
design speed on horizontal curves was measured to the inside edge of the innermost travel
lane. This is done to consider the motorist operating within the innermost travel lane,
particularly for multilane roadways with sharp horizontal curves (31). Per the AASHTO
green book, horizontal curve equations do not consider the width of the roadway. Equation
(4-2) describes the relationship between curve radius and design speed. Design speed can

be solved for by substituting values for R, e, and f.

'UZ

=T 42

Where:
R = Radius of curve
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V= Design speed

e = Design superelevation rate

f = Design friction coefficient

Horizontal curve geometry parameters can be estimated using existing maps, high
resolution Google Earth images, UAV images, point clouds, and GPS trajectories.
However, superelevation data cannot be obtained from 2D data sets. Design speed
estimates from 2D data require the use of an assumed design superelevation rate or field
measurements using specialized devices (ball-bank indicator, inertial device, etc.). High-
accuracy 3D point clouds provide both 2D and 3D data that can be used to collect both
radii and superelevation data. Therefore, this study used 3D point clouds to estimate design
speeds on horizontal curves.

An alternative method not requiring site visits was also used to extract
horizontal geometry data for comparison purposes. This was done using Google Earth
images. To manually estimate design speed from radii data extracted from Google Earth
Pro images, chord length (C) and middle ordinate distance (M) were measured in Google
Earth relative to the inside edge of the innermost travel lane in the direction of travel (see
figure 4-8). Using equation (4-3, 4-4) the radius can be estimated; however, superelevation
must be assumed. The actual long chord from the PC to the PT of a curve is not needed to
estimate the radius. This is important because it is difficult to identify the exact locations
of the PC and PT just from imagery data. Only a chord that is clearly on the curve is needed.
The design speeds for curve radius data extracted manually from google earth images are
shown in table 4-5. The calculated design speeds used superelevation rates from manual

field measurements for consistent comparison.
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R? = (R — M)? + (5)? (4-3)
R = %M + % (4-4)

Figure 4-8 Middle ordinate distance (M) and Chord length (C) measured relative to
the inside edge of the innermost travel lane in Google Earth Pro.

Radii data from all sources extracted relative to the inside edge of the innermost
travel lane are shown in Table 4-5. In addition, Table 4-5 shows extracted maximum

superelevation rate data as well as estimated design speeds based on equation (2).

Table 4-5 Horizontal Curve Design Speed Estimation based on Extracted Horizontal Curvature
and Superelevation Data

Parameter Source of Eastbound (EB) Travel Lanes Westbound (WB) Travel Lanes
Data HC1 HC2 HC3 HC4 HC1 HC 2 HC3 HC4
I\s/lj:/gl 2260.8 28719 18786 23229 | 2298.9 2833.5 1917.4 2260.6
A 2254.2 2881.6 1797.8 2281.7 | 2293.2 28429 1836.6 2242.7
2,:: B 2256.5 2873.7 1871.6 2314.5 | 2295.5 28349 1910.3 22754
Radius (ft) | g
-
Edge of o 2 C 2275.4 2859.3 1890.9 2311.7 | 2299.3 2820.6 1929.8 2272.6
Innermost | & 2
Travel S D 2263.7 2853.3 1892.9 2312.2 | 2302.8 2814.5 1931.7 2273.1
Lane
E 2260.2 2850.6 18959 2315.1 | 2299.2 28119 1934.7 22759

2256.9 2877.6 1838.9 2329.3 | 22959 2838.8 1877.5 2290.2

UAV-CRP
Google Earth | ,0c o 58086 1848.2 22915 | 2287.6 28045 1908.4 2238.4
Imagery

'\5"3:\‘1‘;3' 3.74% 2.79% 3.96% 2.42% | 3.61% 2.86% 3.91% 3.76%
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A 3.61% 3.06% 4.00% 2.72% | 3.61% 2.89% 3.80% 3.90%
g " B 3.67% 3.10% 4.05% 2.68% | 3.67% 2.80% 3.97% 3.85%
5 6
Z) 2 C 3.69% 3.04% 398% 2.70% | 3.67% 2.83% 4.02% 3.85%
5 ()]
>
Extracted | S D | 3.65% 3.07% 4.03% 2.66% | 3.60% 2.85% 3.96%  3.84%
e max (%)
E 3.85% 2.88% 4.11% 247% | 3.68% 2.78%  3.85% 3.87%
UAV-CRP 3.39% 3.32% 4.07% 2.68% | 3.51% 3.08% 3.83% 3.85%
Google Earth
Imagery n/a n/a n/a n/a n/a n/a n/a n/a
Manual
67.1 69.2 63.7 64.1 67.1 69.2 64.0 67.1
Survey
A 66.7 70.1 62.8 64.6 67.0 69.3 62.8 67.3
g " B 66.8 70.3 63.8 65.0 67.2 69.0 64.0 67.5
Estimated | = _g
Design % c C 67.1 69.9 63.8 64.8 67.2 69.0 64.4 67.4
Speed o =
S D 66.9 69.9 64.0 64.7 67.1 69.0 64.2 67.4
(mph)
E 67.3 69.3 64.2 64.2 67.3 68.8 64.0 67.5
UAV-CRP 66.1 70.9 63.5 64.9 66.8 69.9 63.4 67.6
le Earth
GoogleEarth | oo 694 612 654 | 654 694 618 650
Imagery

HC: Horizontal Curve; n/a; Not available.

Summary statistics of the superelevation rate and design speed data extracted from

LiDAR point clouds provided by all vendors is shown in Table 4-6. The minimum and

maximum observed standard deviations for extracted maximum superelevation rates were

0.02 and 0.1, respectively. Similarly, the minimum and maximum standard deviations for

calculated design speeds were 0.09 and 0.61, respectively.

To compare the differences between the means of design speed data calculated

using geometric features from manual survey data to design speed data calculated using

geometric features extracted from point clouds, a statistical analysis was performed using
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paired sample t-tests. The results of the statistical analysis shown in Table 4-6 indicate that
the magnitude of the difference between the means of measurements from manual survey
data and point clouds are not statistically different at a 95% confidence level. This indicates
that there is a non-significant, very small difference between the means of measurements
from manual survey data and measurements extracted using point clouds. Further, these
results show that point cloud data can be used to obtain reliable design speed and maximum

superelevation data.

Table 4-6 Summary of Superelevation and Design Speed Data Extracted from MLS Point Clouds

Data Eastbound Westbound
HC1 HC 2 HC3 HC4 HC1 HC 2 HC3 HC4
M |
anual 3 74%  2.79%  3.96%  2.42% | 3.61% 2.86%  3.91%  3.76%
Survey
c %‘ Min 3.61% 2.88% 3.98% 2.47% 3.60% 2.78% 3.80% 3.84%
>
o o
‘§ E Max 3.85% 3.10% 4.11% 2.72% 3.68% 2.89% 4.02% 3.90%
o £
g 3 Mean 3.69% 3.03% 4.03% 2.65% 3.65% 2.83% 3.92% 3.86%
o
<
a g Median 3.67% 3.06% 4.03% 2.68% 3.67% 2.83% 3.96% 3.85%
~ sD 0.09% 0.09% 0.05% 0.10% 0.04% 0.04% 0.09% 0.02%
Paired t-test P-value =0.17 Paired t-test P-value = 0.37
Hy:ipig #0 tobs=1.82 df=3 Hy:ipg #0 tobs=1.06 df=3
Manual
67.1 69.2 63.7 64.1 67.1 69.2 64.0 67.1
Survey
%‘ Min 66.7 69.3 62.8 64.2 67.0 68.8 62.8 67.3
ko} >
o
§ E Max 67.3 70.3 64.2 65.0 67.3 69.3 64.4 67.5
wn €
® 8  Mean 67.0 69.9 63.7 64.7 67.2  69.0 63.9 67.4
o x
e <Df Median 66.9 69.9 63.8 64.7 67.2 69.0 64.0 67.4
-
— SD 0.25 0.36 0.53 0.28 0.10 0.19 0.61 0.09
Paired t-test P-value = 0.24 Paired t-test P-value = 0.84
Hy:ipig #0 tobs=1.47 df=3 Hyipg #0 tobs=0.23 df=3

HC: Horizontal curve; SD: Standard deviation
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Measurements extracted from Google Earth images were used to perform a
sensitivity analysis based on different superelevation rate values (see figure 4-9 and figure
4-10). Thus, in the eastbound direction, design speed differences for superelevation rates
between 2% and 8% range from about 2.5 mph to 14.6 mph for a curve radius of 2255.8
ft; 2.9 mph to 16.9 mph for a curve radius of 2808.6 ft; 2.2 mph to 12.7 mph for a curve
radius of 1848.19 ft; and 2.48 mph to 14.7 mph for a curve radius of 2291.46 ft. Likewise,
in the westbound direction, design speed differences for superelevation rates between 2%
and 8% range from about 2.5 mph to 14.7 mph for a curve radius of 2287.6 ft; 2.9 mph to
16.9 mph for a curve radius of 2804.5 ft; 2.2 mph to 13 mph for a curve radius of 1908.39;
and 2.4 mph to 14.5 mph for a curve radius of 2238.35 ft. The variation in design speed
due to different superelevation rates indicates the importance of using accurate

superelevation data to accurately estimate design speed.

Sensitivity Analysis
Google Earth Curve Radii Data (Eastbound Travel Direction)
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Figure 4-9 Design speed sensitivity analysis based on superelevation rate (EB)
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Sensitivity Analysis
Google Earth Curve Radii Data (Wesbound Travel Direction)
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Figure 4-10 Design speed sensitivity analysis based on superelevation rate (WB)

Road Grade Estimation Using Point Clouds

Manual approaches for direct on-road measurement of road grades using equipment
such as smart digital levels are time consuming and may interfere with traffic and exposes
surveying crews to potentially hazardous conditions. Previous studies have shown that
LiDAR data can be used to accurately estimate road grades using regression techniques
(32, 33). In this study, road grades were estimated from point cloud data using linear
regression on points extracted along the centerline of the roadway. Thus, grades were
estimated directionally using points along the centerline of the roadway in the direction of
travel (see figure 4-11). The steps can be summarized as follows: a) Select LIDAR data
within a defined buffer zone. For this four-lane, mostly divided roadway, two lanes in each
direction were included in the buffer zone of LiDAR points. b) Define the centerline of the

roadway based on identifiable lane markings and manually surveyed reference stations; c)
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segment the roadway using 100-foot segments along tangent sections based on a defined
origin such that segments adequately capture changes in the road grade for consistent
comparison, d) extract points along the centerline using a LiDAR surface model, e) perform

linear regression on extracted LiDAR points to estimate the road grade (see figure 4-12).

LiDAR peint Cloud
Road Centerline

Buffer zone

Figure 4-11 Selection of segment of lidar points for analysis.

Grade Estimation from Point Cloud
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Figure 4-12 Sample grade estimation from extracted LiDAR points: Vendor C (EB).

Statistical analyses using one-sided t-tests were performed to determine if

measurements extracted from point clouds were less than the minimum recommended
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accuracy value on average (z 0.5% specified by SHRP2) at a 95% confidence level. Results

of the one-sided t-tests, shown in Table 4-7, indicate that the average deviation between

mobile LIDAR point cloud, imagery-based point cloud, and field survey measurements

was less than the minimum recommended accuracy value of £ 0.5% over the same length.

Table 4-7 Summary of Grade Deviations from Manual Survey Data

Eastbound Westbound
G1 (%) G2 (%) G1 (%) G2 (%)
Min 0.01% 0.01% 0.0% 0.0%
Max 0.16% 0.16% 0.11% 0.11%
LIDAR Mean 0.048% 0.046% 0.047% 0.04%
Median 0.032%  0.03% 0.04% 0.03%
One-sided t-test tobs P-value  Significant
H,:nu <05 -119.66 df=99 <0.0001 Yes
Min 0.002%  0.02% 0.02% 0.01%
Max 0.13% 0.13% 0.08% 0.08%
UAV-CRP Mean 0.046% 0.049% 0.058% 0.046%
Median 0.03% 0.03% 0.07% 0.06%
One-sided t-test tobs P-value  Significant
Hy:p <05 -56.49 df=19 <0.0001 Yes

Comparison of Vertical Alignment and Sight Distance Data from Point Clouds

High-resolution surface models obtained from point clouds can be used to achieve

realistic sight distance results (34). Point cloud data collected in this research were used to

create 3D surface models representing the existing roadway surface using terrain modeling

tools in OpenRoads Designer. As stated in the AASHTO green book, topography affects

horizonal alignment, but it has an even bigger effect on vertical alignment. Vertical

alignments were automatically created using extracted grade lines and best fit parabolas

based on the road surface curvature obtained from the point cloud terrain models. Thus, a
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semi-automated workflow was used to extract vertical alignment data along the centerline
of the roadway in the eastbound and westbound travel directions.

Stopping sight distance is the distance required for a driver to perceive and react
to an object in the roadway and come to a complete stop before a collision occurs (35, 36).
Stopping sight distance may be computed using equation (4-5). Drivers must have a sight

distance that is at least equivalent to the total stopping sight distance required at the design

speed (37).
V2
SSD =147 Vt + 3o (4-5)
Where:

SSD = Stopping sight distance

V = Speed (mph)

t = Perception-reaction time (s) (2.5s assume based on AASHTO standards)
G = grade (%)

F = Coefficient of forward rolling or skidding friction.

A deterministic approach was used to compute sight distance on crest vertical
curves using equation 4-6 and equation 4-7 based on an assumed eye height of 3.5 ft and

an object height of 2.0 ft (AASHTO standards):

2
=45 S<L  (4-6) L =258 SSL (4-7)
2158 A
Where:

L = Length of vertical curve (ft)
S = Sight distance (ft)
A = Algebraic difference in grades (%)
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Sight distance and design speeds estimated on crest vertical curves using manual

survey and point cloud data are shown in table 4-8. Using Equation (4-5), design speeds

were calculated based on sight distances obtained from extracted vertical alignment data.

Table 4-8 Vertical Alignment, Sight Distance, and Design Speed Estimates from Manual Survey
and Point Cloud Data (Crest vertical curves).

Sight Design
Curve Travel Distance Speed
Type Data Direction VPC VPT Length G1% G2% (ft) (mph)
'\S/'jrr:/‘;' EB 184+74.66  199+3591 14613 4.79% -1.08% 733.25 74
Vendor A EB 184+82.19  199+40.94  1458.8 4.80% -1.12% 72897  73.8
Vendor B EB 184+82.39  199+56.01 1473.6 4.81% -120% 727.41  73.7
Vendor C EB 184+78.86  199+64.01 14852 4.80% -1.20% 730.86  73.9
Vendor D EB 184+79.64 199+62.94 14833 4.80% -1.21% 729.80  73.8
2 VendorE EB 184+477.49  199+64.76 14873 4.79% -120% 73199  73.9
;ji UAV-CRP EB 184+73.59 199+63.88  1490.3 4.81% -1.21% 73091  73.9
(@]
2 Manual WB 184+86.41 199+96.34 15099 4.83% -0.81% 755.09  75.4
3 Survey
VendorA  WB 18447411  200+22.09 1547.9 4.89% -0.91% 75892  75.7
VendorB  WB 184+473.89  200+15.29 15414 4.89% -0.89% 758.61  75.6
VendorC  WB 184+68.05 200+22.41  1554.4 4.90% -0.90% 760.48  75.8
VendorD  WB 184+472.49  200+16.58  1544.1 4.89% -0.89% 75927  75.7
VendorE  WB 18447531  200+28.39  1553.1 4.87% -0.92% 760.82  75.8
UAV-CRP  WB 184+65.18  200+17.29 15521 4.90% -0.89% 76091  75.8
'\S"jr'\’/‘;' EB 206+10.82  212+54.3 6435 151% -1.81% 647.62  66.3
Vendor A EB 205+73.63  212+70.97  697.3  1.66% -1.84% 65543  66.9
Vendor B EB 206+13.90 212+62.04  648.1  1.49% -1.80% 652.03  66.6
T VendorC EB 206+16.94  212+78.13 6612 147% -1.85% 65557  66.8
;3: Vendor D EB 206+07.56  212+75.70  668.1 1.50% -1.85% 656.05  66.9
S VendorE EB 206+14.89 212+76.87 6619 1.48% -1.86% 653.99  66.7
S UAV-CRP EB 206+14.01  212+74.88 6609 1.48% -1.85% 654.43  66.7
(@]
Manual
Survey WB 205+88.03 212+43.88 6559 1.37% -1.93% 65479  66.7
VendorA  WB 205+97.29  212+36.41  639.1 1.39% -1.93% 644.56 66
VendorB  WB 205+87.88  212+43.08 6552  1.40% -1.93% 651.61  66.5
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Vendor C
Vendor D
Vendor E
UAV-CRP

WB
WB
WB
WB

205+91.86
205+86.34
205+82.85
205+77.43

212+46.25
212+51.19
212+53.33
212+51.45

654.4

664.9

670.5
674

1.39%
1.40%
1.42%
1.43%

-1.94%
-1.95%
-1.97%
-1.95%

651.21

654.44

653.31
656

66.5
66.7
66.6
66.8

Similarly, sight distance and design speeds estimated on sag vertical curves using

manual survey and point cloud data are shown in Table 4-9. Equation 4-8 and equation 4-

9 were used to calculate sight distance on sag vertical curves based on AASHTO standards:

AS?

T 400+3.5S

Where:

S<L

(4-8)

I =

L = Length of vertical curve (ft)
S = Sight distance (ft)
A = Algebraic difference in grades (%)

25 — (

A

400+3.55
— )

S>L

(4-9)

Table 4-9 Vertical Alignment, Sight Distance, and Design Speed Estimates from Manual Survey
and Point Cloud Data (Sag vertical curves).

Headlight Design
Curve Travel Distance  Speed
Type Data Direction VPC VPT Length Gl % G2 % (ft) (mph)
'\S/'jr'\’/‘;?/' EB 17243857 182+16.69 978.1 -2.33% 4.79% 57640  59.2
Vendor A EB 172+31.55 182+19.91 988.4 -2.40% 4.80% 575.74 59.1
Vendor B EB 172+50.78 182+21.14 970.4 -2.31% 4.81% 572.27 58.9
. Vendor C EB 172+47.89 182+21.14 973.2 -2.31% 4.80% 574.41 59
%’ Vendor D EB 172+48.39 182+19.09 970.7 -2.31% 4.80% 573.13 58.9
= Vendor E EB 172+49.02 182+17.82 968.8 -2.30% 4.79% 573.55 58.9
(]
g UA CRP EB 172+44.66 182+19.66 975 -2.33% 4.81% 573.23 58.9
(@]
Manual
Survey WB 172+87.01 183+28.94 1042 -2.28% 4.83% 608.84 59.3
Vendor A WB 172+74.67 183+39.08 1064.4 -2.34% 4.89% 611.57 59.4
Vendor B WB 172+82.38 183+37.79 1055.4 -2.31% 4.89% 609.28 59.3
Vendor C WB 172+79.01 183+41.12 1062.1 -2.32% 4.90% 611.15 59.4
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VendorD  WB 172477.51 183+40.69 1063.2 -2.32% 4.89% 61242 595
VendorE  WB 17247411 183+37.91 1063.8 -2.33% 4.87% 61346 595
UA CRP wB 172+470.52  183+39.42 1068.9 -2.35% 4.90% 612.33  59.4
Manual
Survey EB 200+99.39  204+99.49 400.1 -1.08% 1.51%  858.06  76.4
Vendor A EB 201+01.09 205+26.95 4259 -1.12% 1.66% 76672  71.4
Vendor B EB 200+70.59 204+99.15 428.6 -1.20% 1.49% 82596  74.6
Vendor C EB 200+75.62 204+93.21 417.6 -1.20% 1.47% 82336  74.4
Vendor D EB 200+69.2  204+98.56 429.4 -1.21% 1.50% 81435  73.9
=  VendorE EB 200+72.42 204+95.44 423  -1.20% 1.48% 82456  74.5
& UACRP EB 200+72.03 204+88.02 4159 -121% 1.48% 807.99  73.6
o
g Manual
E Survey WB 201+72.59 205+12.83 3402 -0.81% 1.37% 1324.88  98.3
VendorA  WB 201+72.6  205+13.78 3412 -0.91% 1.39% 1077.01  87.1
VendorB  WB 201+70.19 205+07.39 337.2 -0.89% 1.40% 108535  87.5
VendorC  WB 201+72.52 205+03.82 331.3 -0.90% 1.39% 1072.84  86.9
VendorD  WB 201+72.64 205+04.73 332.1 -0.89% 1.40% 107451  86.9
VendorE  WB 201+68.9  205+07.86 3389 -0.92% 1.42% 1011.15  83.9
UA CRP wB 201+70.88 205+05.65 334.8 -0.89% 1.43% 1039.81  85.3
'Z'jr':/:?/' EB 214+55.51 219+49.94 4944 -1.81% 1.15% 77221 711
Vendor A EB 214+55.88 219+36.81 4809 -1.84% 1.11%  756.08  70.2
Vendor B EB 214+66.88 219+52.09 4852 -1.80% 1.17%  754.54  70.1
Vendor C EB 214+51.54 219+58.46 5069 -1.85% 1.18% 75624  70.2
Vendor D EB 214+54.49 219+47.93 493.4 -1.85% 1.16%  748.10  69.7
=  VendorE EB 214+48.68 219+57.09 508.4 -1.86% 1.18%  754.09  70.1
% UA CRP EB 214+51.94 219+54.74 502.8 -1.85% 1.17% 75530  70.1
g Manual
E Survey wB 214+72.61 219+81.09 5085 -1.93% 1.16% 73516  69.6
VendorA  WB 214+69.99 219+82.26 512.3 -1.93% 1.16% 739.88  69.8
VendorB  WB 214+76.93 21947599 499.1 -1.93% 1.16% 72466 689
VendorC  WB 214+79.78 219+67.88 488.1 -1.94% 1.14% 71554 685
VendorD  WB 214+77.47 21947375 4963 -1.95% 1.16% 71450  68.4
VendorE ~ WB 214+71.75 219+65.84 4941 -1.97% 1.14%  711.99  68.2
UA CRP WB 214475394 219+73.18 497.8 -1.95% 1.15% 719.67 687
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To validate design speed data obtained from geometric features exacted from point
clouds, a comparison was made with design speeds calculated using manual field survey
data. Results of a paired t-test based on the means of speeds calculated from MLS data and
speeds calculated from field survey data are shown in Table 4-10 and Table 4-11.

Table 4-10 Summary Statistics of Design Speeds Calculated Using Vertical Alignment Features
Extracted from MLS Data (Eastbound).

EB Curve 1 Curve 2 Curve 3 Curve 4 Curve 5
Data (Sag) (Crest) (sag) (Crest) (Sag)
Min 58.9 73.7 71.4 66.6 69.7
Max 59.1 73.9 74.6 66.9 70.2

Mean 59.0 73.8 73.8 66.8 70.1
Median 59.0 73.8 74.4 66.8 70.1
SD 0.06 0.10 1.36 0.13 0.19
Paired t-test P-value = 0.25
Hy:pg #0 tobs =-1.34 df =4

Table 4-11 Summary Statistics of Design Speeds Calculated Using Vertical Alignment Features
Extracted from MLS Data (Westbound).

WB Curve 1 Curve 2 Curve 3 Curve 4 Curve 5
Data (Sag) (Crest) (sag) (Crest) (Sag)
Min 59.3 75.6 83.9 66.0 68.2
Max 59.5 75.8 87.5 66.7 69.8
Mean 59.4 75.7 86.5 66.5 68.8
Median 59.4 75.7 87.0 66.5 68.4
SD 0.10 0.06 1.46 0.25 0.65
Paired t-test P-value =0.35
Hal Ug F 0 tops =-1.06 df=4

These results indicate that there is a non-significant difference between the means
of design speeds extracted from MLS point clouds and design speeds from manual survey
data at a 95% confidence level. Thus, these results indicated that MLS data provide
geometry features with enough accuracy to obtain reliable estimates of design speeds on

crest and sag vertical curves of roadways.
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Conclusions and Future Research

In recent years, several state transportation agencies have introduced programs to
update highway feature inventories using emerging technologies such as MLS systems.
Traditional data collection approaches can be costly, time-consuming, and less efficient.
The objective of this study was to evaluate the accuracy of roadway geometry features
including horizontal curve parameters, grades, and sight distance obtained using MLS and
low-altitude UAV photogrammetry data for design speed estimation on horizontal and
vertical curves of constructed roadways. MLS data were collected by LiDAR vendors who
volunteered to participate in the study. Vendors were asked to provide the research team
with adjusted and unadjusted data in the format requested. Participants who provided
incomplete data were removed from the study. The study used MLS data collected by five
vendors who provided data in the correct format. The results presented in this study are
based on roadway geometry features extracted from adjusted point cloud data. Horizontal
alignment comparisons indicated that the accuracy of geometry features extracted from
MLS point clouds were within acceptable deviations recommended by SHRP2.
Furthermore, results of statistical analyses indicate that MLS point clouds are a relatively
more reliable source of accurate horizontal and vertical geometry data compared to UAV
imagery-based point clouds based on acceptable deviations recommended by SHRP2.
Results of statistical analysis on estimated design speeds on horizontal curves showed that
the means of calculated design speeds from MLS and manual survey data are not
statistically different at a 95% confidence level. Likewise, design speeds from UAV-

imagery point clouds were similar to those obtained using manual survey data on average.
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Lastly, the study showed that vertical alignment and sight distance estimates from MLS
and UAV imagery-based point clouds were accurate enough to obtain reliable design speed
estimates on vertical curves of constructed roadways based on statistical analysis results
using a 95% confidence level. The effects of unadjusted point clouds on extracted
horizontal and vertical alignment parameters for design speed estimation present an

opportunity for future research.
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CHAPTER FIVE

CONCLUSION

Advanced geospatial data collection technologies are becoming more readily
available for various highway design, construction, and maintenance applications. These
technologies include unmanned aerial systems (UAS), LIiDAR systems, structure-from-
motion, and close-range aerial photogrammetry. As shown in the studies included in this
dissertation, benefits of these modern data collection technologies included enhanced
efficiency, highly accurate and reliable data, and the ability to develop efficient and cost-
effective data collection and processing workflows. The literature shows that state highway
agencies continue to explore and introduce programs to update highway feature inventories
using emerging technologies such as LIDAR systems. The primary goal behind such efforts
is to improve the way in which roadway infrastructure systems are designed, built, and
maintained. Another important benefit afforded by these technologies is the ability to
identify and address constructability issues ahead of time using highly accurate three-
dimensional data.

The primary objective of this research was to investigate if mobile LIDAR systems
can be used as an effective means for collecting accurate system-wide data on existing
roadways for various roadway safety evaluations. In addition, this research investigated
whether close-range aerial photogrammetry could serve as a potentially inexpensive and
effective alternative to LIDAR systems. The three studies included in this dissertation were

designed and performed to help achieve the following four main objectives:
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Evaluate if accurate cross-slope measurements can be extracted from point
cloud-based 3D surface models and whether MLS and UAV-CRP data can
be used for system-wide verification of highway cross slopes.

Compare curve design speeds estimated using horizontal alignment
parameters extracted from point clouds, and whether MLS and UAV
photogrammetry data can be used for system-wide verification of design
speeds on horizontal curves.

Determine whether LIDAR and imagery-based point clouds can be used to
estimate sight distance and design speeds on vertical curves.

In comparison with traditional surveying, investigate whether MLS and
imagery-based point clouds can be used to produce accurate road surface
models to estimate pavement material volumes for pavement resurfacing

and rehabilitation purposes.

Paper | (Chapter 2) found that mobile LiDAR data could serve as an effective and

reliable means for extracting cross slope data on existing roadways for system-wide

verification (Objective 1). Additionally, the study showed that close-range aerial

photogrammetry could potentially serve as a cost-effective alternative to LIDAR systems

for collecting pavement surface information for cross slope verification. The use of mobile

LIiDAR and UAV imagery-based point clouds to extract cross slope measurements was

evaluated on 10 test sections including 166 total measurements across four travel lanes in

two directions along secondary road 1164, known as East West Parkway, located in
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Anderson, SC. All data sets were calibrated using established control points for accurate
comparison. Results of statistical analysis indicated that the achieved cross slope
measurement accuracies were similar for measurements extracted from LiDAR and UAV-
CRP data sets. The cross-slope data extracted from point clouds produced from LiDAR
and UAV-CRP data met the minimum acceptable accuracy specified by SCDOT and
SHPR2 of £0.2%. Thus, the results of t-test statical analysis indicated that the average
deviation between measurements extracted from point clouds and field survey
measurements was less than the recommended acceptable accuracy of £0.2% at a 95%
confidence level. These findings help to identify existing roadway sections with inadequate
cross slopes and enhance strategies to improve safety and minimize the potential for
hydroplaning.

Paper Il (Chapter 3) investigated the feasibility of using point clouds to obtain
accurate road surface terrain models for pavement material volume estimation for
resurfacing and rehabilitation purposes. The study focused on whether terrain models from
MLS and UAYV imagery-based point clouds could provide an effective and reliable means
of estimating pavement material volumes in a cost-effective manner. Accurate methods for
estimating material quantities are crucial in providing reliable estimates and minimizing
costs. Terrain models from adjusted MLS data provided by five vendors, a terrain model
from a UAV imagery-based point cloud, and a terrain model from manual survey data were
compared based on calculated material volumes between surfaces using a surface-to-
surface volume comparison method. The average difference in height between terrain

models from MLS data ranged from 0.16 inches to 0.71 inches. The average difference
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between terrain models from MLS and UAV imagery-based point clouds and a terrain
model from field survey data ranged from 0.59 inches to 1.24 inches. This indicated that
surfaces generated from either method could be used for material volume estimation
purposes (Objective 4). However, the study found that using higher resolution UAV images
and collecting additional ground control points could potentially improve the accuracy of
pavement surface elevations. Thus, the use of surface models from point clouds to develop
accurate material volume estimates would be highly beneficial to transportation agencies
because the cost of traditional field surveying is typically higher than the overall cost of
MLS and UAV photogrammetry surveys if used on a large scale. The proposed approach
could make estimating pavement material quantities for resurfacing and rehabilitation more
affordable for transportation agencies. However, the need for control surveys would not be
eliminated since these surveys are important to enhance the positional accuracy of 3D point
clouds.

Paper 11l (Chapter 4) evaluated the use of MLS and UAV imagery-based point
clouds to estimate as-built horizontal and vertical geometry of roadways for design speed
estimation on horizontal and vertical curves. The study found that point clouds from MLS
and UAV photogrammetry data can be used to extract horizontal and vertical geometry
data at sufficient accuracy to estimate design speeds on horizontal and vertical curves of
constructed roadways (objective 2 and objective 3). The proposed approach offers
advantages over extracting information from design drawings that may be unavailable,
outdated, or inconsistent with the as-built roadway. Additionally, the proposed method can

be used to identify locations where the posted speed limit/advisory speed is higher than the
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design speed along horizontal curves so that corrective measures can be implemented on
existing roadway networks. Identifying locations where vehicles may exceed design speeds
is critical in preventing future crashes. Therefore, a proactive approach that identifies
potential design deficiencies is favorable for analyzing crash data. Results were validated
by analyzing deviations between geometry data and design speed calculations from point
clouds and data calculated from manual field survey measurements using t-test statistical
analysis at a 95% confidence level.

The use of remote sensing technologies such as MLS can improve data collection
safety and efficiency by considerably reducing the time surveyors and other personnel are
exposed to various safety risks associated with working in the field. As previously
mentioned, studies have shown that automated surveying practices require less field time,
enhance productivity, reduce crew sizes, and minimize human exposure. This research
evaluated novel applications of MLS and UAV-CRP, further expanding on the many
advantages of implementing MLS and UAV photogrammetry systems over conventional

surveying techniques for certain applications.
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