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A B S T R A C T

This paper deals with the problem of designing a bypass on a railway line. Based on a geometrical
model capable of determining automatically the need of major structures (bridges, tunnels, overpasses and
underpasses), the optimal design of a railway bypass is formulated in the framework of Mixed Integer Non
Linear Programming (MINLP), and it is solved with a numerical algorithm which provides different layout
alternatives that are optimal solutions (local minima) from the economic point of view. The proposed method
is tested on a case study with the aim of showing its practical usefulness as a support tool for engineers in
order to accomplish the complex and time-consuming task to generate a set of initial alternatives for the design
of a railway bypass.
1. Introduction

The design of a new layout for a road or a railway line is a very
complex process in which a great number of factors should be taken
into account by the engineers. In general, the final alignment is selected
among several potential alternatives by comparing them using multi-
criteria analysis techniques. These alternatives are usually defined by
the engineers from scratch as a result of applying their own expertise
to each particular case, trying to obtain the best possible solution
satisfying all the requirements previously established by all sorts of
regulations (technical, environmental, etc.). Numerical optimization
can be a very useful tool to support the engineers in order to help them
with this time-consuming task.

The problem of designing a linear transport infrastructure can be
considered as finding an optimal geometry for a given geographic
information (Akhmet et al., 2022). It is a hot topic in the field of civil
engineering, and due its complexity, it is usually performed in two
consecutive stages: (i) determining the 2D horizontal alignment (Lee
et al., 2009, Bosurgi and D’Andrea, 2012, Mondal et al., 2015, Bosurgi
et al., 2016, Casal et al., 2017, Sushma and Maji, 2020) and (ii) finding
the optimal vertical alignment for a 2D layout already given (Hare
et al., 2014, Monnet et al., 2020, Momo et al., 2022, and Sushma
et al., 2022). In practice, engineers address this task as an iterative
process by repeating these stages until a satisfactory 3D alignment is
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achieved. The 3D design, considering the two alignments simultane-
ously, has also been addressed in the literature, both for highways
(Jong and Schonfeld, 2003, Kim et al., 2007, Li et al., 2013, Hirpa
et al., 2016, Pushak et al., 2016, Vázquez-Méndez et al., 2018) and
railway lines (Li et al., 2016, Li et al., 2017, Ghoreishi et al., 2019, Pu
et al., 2019a,b, Zhang et al., 2020, Song et al., 2020, 2022a, Song
et al., 2022b). In addition to the previous classification on the type of
alignment, these papers can be also classified according to other many
criteria. For example, the recently work of Gao et al. (2022) contains a
table where many papers are characterized by the factors (economical,
environmental, geological...) included in the optimization process, and
by the algorithm(s) used for its numerical resolution. The hypotheses
assumed to simplify the problem are also another key aspect. For
example, almost all papers take into account transition curves in the
vertical alignment, but transition horizontal curves are used in fewer
works (Casal et al., 2017, Vázquez-Méndez et al., 2018, Ghoreishi
et al., 2019, Vázquez-Méndez et al., 2021a,b). Other differentiating
feature is how to deal with some important design variables, like the
number of curves and/or the number of slope changes, radii, and the
horizontal and/or vertical intersection points (IPs). Regarding to the
number of curves and slope changes, they are fixed in advance (Jong
and Schonfeld, 2003, Kim et al., 2007, Li et al., 2013, Hirpa et al.,
2016, Casal et al., 2017, Ghoreishi et al., 2019, Vázquez-Méndez et al.,
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2021a) or included in the optimization process (Li et al., 2016, Li et al.,
2017, Pu et al., 2019a,b, Sushma and Maji, 2020, Vázquez-Méndez
et al., 2021b, Song et al., 2022b, Gao et al., 2022). Additionally, fixed
radius for all the horizontal curves are considered in some papers
(Jong and Schonfeld, 2003, Gao et al., 2022). With respect to IPs,
some works do not make any additional hypotheses on their location
(Hirpa et al., 2016, Casal et al., 2017, Vázquez-Méndez et al., 2018,
2021a,b), but many others assume that they are located in orthogonal
sections or on nodes/centroids of a given grid (Jong and Schonfeld,
2003, Li et al., 2013, Li et al., 2016, Pushak et al., 2016, Li et al.,
2017, Ghoreishi et al., 2019, Pu et al., 2019a, Gao et al., 2022). Finally,
other very important aspect is how to determine promising corridors
where to look for the optimal solution. Mondal et al. (2015), Casal et al.
(2017) and Vázquez-Méndez et al. (2021a) directly assume a given
initial handmade layout. Other works determine the corridors from
geological information in a previous step, either with the adaptation
of several path-finding algorithms (Pushak et al., 2016), or with a
Distance Transform (DT) method (Li et al., 2016, Li et al., 2017, Pu
et al., 2019a,b, Song et al., 2020). In the latter, the optimal layout is
obtained by using a well-known optimization method (PSO, NOMAD,
GA...) to optimize costs along the corridor obtained in the previous step.
Additionally, recent works used multi-start methods (Vázquez-Méndez
et al., 2021b), motion planning algorithms Sushma and Maji (2020)
and deep learning methods (Gao et al., 2022) to directly search the
optimal layout without first selecting any corridor. According to all
previous aspects, the framework of the current paper is the study of hor-
izontal and vertical alignments simultaneously, considering transition
curves in both alignments, minimizing the main infrastructure costs,
guaranteeing the main technical (safety) and ecological constraints,
using gradient-type techniques, assuming that the number of curves and
the number of slope changes are only upper bounded, without making
pre-assumptions about radii and IPs, and searching the optimal layout
without first preselecting any corridor.

The design of railway bypasses has an important particularity: the
connection with the former layout is of great importance. In a previous
work, Vázquez-Méndez et al. (2021a) presented a mathematical model
for automatic design an urban railway bypass. This model turned out to
be a useful tool for engineers working in this field, but it has some flaws
which limit its practical application. Basically, the weakness are due to
the facts that no structures were considered, the number of curves and
slope changes must be fixed in advance, a handmade initial alignment
is necessary to run the algorithm, and the output is only one layout. In
this paper we present a new method that fixes all these flaws.

In order to define a set of possible alternatives for a specific layout
with an appropriate economical cost estimation it is very important
to include in the design the main types of structures. Some of these
structures (specifically, bridges and tunnels) are defined along the lon-
gitudinal axis of the horizontal alignment, and they have been already
considered in the literature (Kim et al., 2007, Li et al., 2013, Li et al.,
2016, Ghoreishi et al., 2019, Pu et al., 2019a, Zhang et al., 2020, Song
et al., 2022a, Song et al., 2022b). However, other necessary structures,
such as overpasses and underpasses, should be also taken into account
in the design. This fact is even more relevant in areas with complex
orography or zones in which there are significant number of linear
infrastructures that potentially may intersect with the new alignment.
The geometrical definition of both overpasses and underpasses depends
not only on the new horizontal alignment but also on the traversed
infrastructures. Assuming that no layout modification is considered for
the existing infrastructures, the aim is to keep clear the new railway of
level crossing and assure a minimum vertical distance between both,
making possible safely crossings. As far as we know, costs of overpasses
and underpasses were not yet included to date in any geometrical
model previously proposed for 3D layout optimization.

In this paper, an automatic method to support the engineers with
the complex task of generating a set of initial alternatives for a new
2

railway bypass is suggested. They are (sub)optimal from an economic
viewpoint and can be used as a starting point for a subsequent re-
finement process carried out by the engineers if any aspects of some
proposed options should be reviewed. The original or refined (if nec-
essary) layout alternatives will serve as basis for the selection process
in which additional decision factors can be considered for choosing the
final layout.

The method described in this paper is implemented for the specific
case of a railway bypass avoiding a forbidden area, but it could be easily
modified for more generic cases involving other linear infrastructures.
At the early stage of this new approach, some sections of the current
layout (tangents and/or circular curves) must be chosen on both sides
of the area to be circumvented. In the next section, we propose a
method for generating automatically some interesting alignments for a
bypass linking two given sections. Then, the set of initial alternatives is
obtained by applying this method to link all the possible combinations
of sections chosen at the early stage.

To develop the method, we start from the geometrical model pro-
posed in Vázquez-Méndez et al. (2021a) and improve it to include the
capability to automatically identify and compute the economic costs
of the four aforementioned structures: bridges, tunnels, overpasses and
underpasses. From this new model, taking into account main infras-
tructure costs, technical constraints and all restrictions on passage, the
optimal design of a railway bypass is formulated in the framework
of Mixed Integer Non Linear Programming (MINLP). The formulated
problem is non standard, in the sense that the dimension of the contin-
uous variable depends on the integer one. After carefully analyzing its
particularities, an algorithm is proposed for the numerical resolution of
the problem, which provides the different layout alternatives, being all
optimal solutions (local minima) from the economic point of view.

In order to assess its practical usefulness, the proposed method is
applied to a real case problem consisting on the design of a bypass
to the A Coruña-Lugo railway line surrounding the urban area of
Parga (Spain). This case study serves to show that the method may
represent a very helpful tool for engineers in order to define multiple
design alternatives through a more systematic method, reducing the
time needed to accomplish this task and assuring that all the potential
layouts proposed are (sub)optimal in terms of economical cost.

2. Materials and methods

2.1. Mathematical model

In this section we present the method for the automatic genera-
tion of multiple (sub)optimal alternatives of a bypass design properly
linking two given sections –tangents or circular curves– of an existing
railway line. First we recall the geometrical model (and notation)
proposed in Vázquez-Méndez et al. (2021a). Next, we detail a method
for the automatic identification of major structures and give a new
formulation for the optimal design of a railway bypass. Finally, we
propose a numerical algorithm to solve this new formulation that leads
to the advertised method.

2.1.1. Geometrical model
Any horizontal alignment (HA) with 𝑁 symmetric curves linking

two given sections is uniquely determined by a vector 𝐱𝑁 ∈ R𝑑𝑁

defining the horizontal intersection points (HIP) 𝐯𝑖 ∈ R2, and the radii
𝑅𝑖 ≥ 𝑅min > 0 and angles 𝑤𝑖 ≥ 0 of the circular curves (see Casal
et al., 2017). The dimension of this vector is 𝑑𝑁 = 4𝑁 − 2 if both
connection sections are tangent segments, 𝑑𝑁 = 4𝑁 if both are circular
curves, and 𝑑𝑁 = 4𝑁 − 1 if one is a tangent segment and the other
a circular curve. In a similar way, any vertical alignment (VA) with
𝑀 slope changes is determined by a vector 𝐲𝑀 ∈ R3𝑀−2 defining
the vertical intersection points (VIP) 𝑠𝑗 ∈ (0, 1), the gradients 𝑚𝑗 ∈
[−𝑚max, 𝑚max], and the parameters 𝐾𝑣𝑗 ≥ 𝐾𝑣min giving the vertical
transition (parabolic) curves. Therefore, any bypass with 𝑁 curves and

𝑀 slope changes linking two given sections is uniquely determined by
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Fig. 1. Shape of transition (cut and fill) cross section.

a vector 𝐮𝑁,𝑀 = (𝐱𝑁 , 𝐲𝑀 ) ∈ R𝑑𝑁+3𝑀−2 (hereafter decision vector), and
for each decision vector 𝐮𝑁,𝑀 a parametrization of the central axis of
the bypass can be computed (see Vázquez-Méndez et al., 2021a for
details)

𝜎𝐮𝑁,𝑀 ∶ [0, 𝐿(𝐱𝑁 )] ⟼ R3

𝑠 ⟼ 𝜎𝐮𝑁,𝑀 (𝑠) = (𝜎1(𝑠), 𝜎2(𝑠), 𝜎3(𝑠)),
(1)

where 𝐿(𝐱𝑁 ) represents the length of the HA.
Further, by defining the cross-section at each 𝑠 ∈ [0, 𝐿(𝐱𝑁 )], the left

𝑊𝑙(𝑠) and right 𝑊𝑟(𝑠) afar width from the central axis can be computed
by intersecting the cross-section with the ground elevation (see Fig. 1).
From these two functions, the parametrization of the central axis (1),
and the shape of the cross-section, it is straightforward to compute the
parametrization of the surface that defines the railway linking the two
sections to be connected (see Vázquez-Méndez et al., 2018)

𝜏𝐮𝑁,𝑀 ∶ [0, 𝐿(𝐱𝑁 )] × [−𝑊𝑙(𝑠),𝑊𝑟(𝑠)] ⟼ R3

(𝑠, 𝑡) ⟼ 𝜏𝐮𝑁,𝑀 (𝑠, 𝑡) = (𝜏1, 𝜏2, 𝜏3).

(2)

Finally, it should be noted that from the limits given by 𝑊𝑙(𝑠) and 𝑊𝑟(𝑠),
it is usual to acquire an additional 𝑤𝑎-meter strip on both sides of the
infrastructure.

2.1.2. Automatic definition of major structures
The previous geometrical model does not take into account the

possible need for major structures (tunnels, bridges, overpasses and
underpasses). To fix this flaw, we implement a method for automatic
identification of these structures and the computation of its corre-
sponding economic costs. In essence, we extend the method introduced
by Kim et al. (2007) for tunnels and bridges to overpasses and under-
passes, and give a rigorous mathematical formulation of economic costs
in terms of the decision vector. This non-discrete formulation is much
more suitable for using a gradient type-method in the later optimization
process (Section 2.1.4).

Tunnels. A tunnel is considered in cut sections where the vertical
alignment is ℎ𝑐 meters lower than the ground elevation and the cut area
is greater than a maximum value 𝐴𝑐

max (m2). For each 𝑠 ∈ [0, 𝐿(𝐱𝑁 )],
the cut area is given by

𝐴𝑐 (𝑠) = ∫

𝑊𝑟(𝑠)

−𝑊𝑙 (𝑠)
(𝐻(𝜏1(𝑠, 𝑡), 𝜏2(𝑠, 𝑡)) − 𝜏3(𝑠, 𝑡))+𝑑𝑡,

where 𝐻(𝑥, 𝑦) denotes the terrain height at point (𝑥, 𝑦), and (𝑥)+ =
max{𝑥, 0} is the positive part function. Then, once parameters ℎ𝑐 and
𝐴𝑐
max are set, the need for a tunnel is determined by the following flag

function

𝐼 𝑡(𝑠) =
{

1 if 𝜎3(𝑠) + ℎ𝑐 ≤ 𝐻(𝜎1(𝑠), 𝜎2(𝑠)) and 𝐴𝑐 (𝑠) ≥ 𝐴𝑐
max,

0 otherwise. (3)

This function is used for modifying the occupation and land acqui-
sition areas in tunnels: if 𝐼 𝑡(𝑠) = 1 (i.e. tunnel exists), then 𝑊 (𝑠) =
3

𝑙

𝑊𝑟(𝑠) = 0 and 𝑤𝑎(𝑠) = 0. Moreover, it is used for computing the cost of
the tunnels, which is given by

𝐽𝑇 (𝐮𝑁,𝑀 ) = 𝑝𝑡 ∫

𝐿(𝐱𝑁 )

0
𝐼 𝑡(𝑠)𝑑𝑠, (4)

where 𝑝𝑡 (e/m) is the linear tunnel price.

Bridges. A bridge is considered in two situations:

1. In fill sections where the vertical alignment is ℎ𝑓 meters higher
than the ground elevation and the fill area is greater than a
maximum value 𝐴𝑓

max (m2).
2. If the alignment is crossing a river or any special area (for

example, if the policy of the country is to place the rail line on
bridge sections, then the whole domain would be a special area).

We denote by 𝑅1 ⊂ R2 the set representing rivers and special areas
which must be crossed on bridge sections. Moreover, for each section
𝑠 ∈ [0, 𝐿(𝐱𝑁 )], we consider the fill area

𝐴𝑓 (𝑠) = ∫

𝑊𝑟(𝑠)

−𝑊𝑙 (𝑠)
(𝜏3(𝑠, 𝑡) −𝐻(𝜏1(𝑠, 𝑡), 𝜏2(𝑠, 𝑡)))+𝑑𝑡,

and define the following flag function for bridges

𝐼𝑏(𝑠) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1 if (𝜎3(𝑠) − ℎ𝑐 ≥ 𝐻(𝜎1(𝑠), 𝜎2(𝑠)) and 𝐴𝑓 (𝑠) ≥ 𝐴𝑓
max)

or
({(𝜏1(𝑠, 𝑡), 𝜏2(𝑠, 𝑡)), 𝑡 ∈ [−𝑊𝑙(𝑠),𝑊𝑟(𝑠)]} ∩ 𝑅1 ≠ ∅),

0 otherwise,

(5)

In the same way as in tunnels, the occupation area is modified along
the bridges: if 𝐼𝑏(𝑠) = 1, then 𝑊𝑙(𝑠) = 𝑊𝑟(𝑠) = 𝑊𝑏∕2, being 𝑊𝑏 the width
considered for a bridge. Additionally, in this case, the fill area must be
redefined, in the sense that, if 𝐼𝑏(𝑠) = 1, then 𝐴𝑓 (𝑠) = 0. Finally, the
cost of the bridges is given by

𝐽𝐵(𝐮𝑁,𝑀 ) = 𝑝𝑏 ∫

𝐿(𝐱𝑁 )

0
𝐼𝑏(𝑠)𝑑𝑠, (6)

where 𝑝𝑏 (e/m) is the linear bridge price.

Over and under passes. To avoid level crossings, where the new bypass
intersects an existing infrastructure, a minimum difference in height
must be fulfilled between them. In these cases, an overpass or under-
pass must be built. We denote by 𝑅2 ⊂ R2 the set representing the
existing infrastructures and compute the cost of overpasses (𝐽𝑂𝑃 ) and
underpasses (𝐽𝑈𝑃 ) by

𝐽𝑂𝑃 (𝐮𝑁,𝑀 ) = 𝑝𝑜𝑝 ∫

𝐿(𝐱𝑁 )

0
𝐼+(𝑠)

(

∫

𝑊𝑟(𝑠)

−𝑊𝑙 (𝑠)
𝜒𝑅2

(𝜏1(𝑠, 𝑡), 𝜏2(𝑠, 𝑡))𝑑𝑡

)

𝑑𝑠, (7)

𝐽𝑈𝑃 (𝐮𝑁,𝑀 ) = 𝑝𝑢𝑝 ∫

𝐿(𝐱𝑁 )

0
𝐼−(𝑠)

(

∫

𝑊𝑟(𝑠)

−𝑊𝑙 (𝑠)
𝜒𝑅2

(𝜏1(𝑠, 𝑡), 𝜏2(𝑠, 𝑡))𝑑𝑡

)

𝑑𝑠, (8)

where 𝑝𝑜𝑝 and 𝑝𝑢𝑝 (e/m2) are, respectively, prices of overpass and
underpass per square meter, 𝜒𝑅2

is the characteristic function of 𝑅2

𝜒𝑅2
(𝑥, 𝑦) =

{

1 if (𝑥, 𝑦) ∈ 𝑅2,
0 otherwise,

and 𝐼+ and 𝐼− are flag functions given by

𝐼+(𝑠) =
{

1 if 𝐻(𝜎1(𝑠), 𝜎2(𝑠)) > 𝜎3(𝑠),
0 otherwise,

𝐼−(𝑠) =
{

1 if 𝐻(𝜎1(𝑠), 𝜎2(𝑠)) < 𝜎3(𝑠),
0 otherwise.

2.1.3. Optimal design from an economic point of view
As it was previously mentioned, any bypass with 𝑁 curves and 𝑀

slope changes is uniquely determined by a vector 𝐮𝑁,𝑀 ∈ R𝑑𝑁+3𝑀−2.
For each of these vectors, acquisition costs (𝐽𝐴), cleaning and terrain
preparation (𝐽 ), railroad construction (𝐽 ), and earthwork (𝐽 ) can
𝐶 𝑆 𝐸𝑊
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be computed as detailed in Vázquez-Méndez et al. (2021a). Therefore,
the economic cost of the bypass determined by 𝐮𝑁,𝑀 is given by

𝐽𝐸 (𝐮𝑁,𝑀 ) = 𝐽𝐴(𝐮𝑁,𝑀 ) + 𝐽𝐶 (𝐮𝑁,𝑀 ) + 𝐽𝑆 (𝐮𝑁,𝑀 ) + 𝐽𝐸𝑊 (𝐮𝑁,𝑀 )

+ 𝐽𝑇 (𝐮𝑁,𝑀 ) + 𝐽𝐵(𝐮𝑁,𝑀 ) + 𝐽𝑂𝑃 (𝐮𝑁,𝑀 ) + 𝐽𝑈𝑃 (𝐮𝑁,𝑀 ). (9)

On the other hand, the bypass must avoid buildings and forbidden areas
(for example urban or special environmental protection areas), and
must cross rivers and infrastructures while complying with a minimum
difference in height. To deal with these restrictions on passage a penalty
technique is used: we consider a penalty function 𝐽𝑃 (𝐮𝑁,𝑀 ) measuring
the non fulfillment of these constraints (see Vázquez-Méndez et al.,
2021a for a detailed definition), and take the sum of the economic cost
(9) and this penalty function as the objective to be minimized

𝐽 (𝐮𝑁,𝑀 ) = 𝐽𝐸 (𝐮𝑁,𝑀 ) + 𝐽𝑃 (𝐮𝑁,𝑀 ).

Technical constraints are treated as bound (minimum radii, minimum
angles of circular curves, maximum gradients, etc.) linear (VIP must be
sorted in an increasing order) or nonlinear (minimum length of tangent
segments, circular curves and transition curves, etc.) constraints.

Finally, in the design of both roads and railways, the number of
curves (𝑁) and the number of slope changes (𝑀) are critical values
which determine not only the final result, but also the computational
time to obtain it. For horizontal alignment, Sushma and Maji (2020)
make a nice analysis of how 𝑁 is treated in the literature, concluding
that it must be chosen in the optimization process instead of being
fixed in advance. This conclusion can be also extended to the number
of slope changes, and it can be asserted that both 𝑁 and 𝑀 must be
determined automatically. Therefore, they must be included into the
decision variables of the problem, and hence, the optimal design of a
railway bypass from an economic point of view consists in solving the
following problem

min
𝑁,𝑀 ∈ Z
𝐮𝑁,𝑀 ∈ R𝑑𝑁+3𝑀−2

𝐽 (𝐮𝑁,𝑀 ) (10)

subject to 1 ≤ 𝑁 ≤ 𝑁max, 1 ≤ 𝑀 ≤ 𝑀max, (11)
𝐮min ≤ 𝐮𝑁,𝑀 ≤ 𝐮max, (12)
𝐀𝐮𝑁,𝑀 ≤ 𝐛, (13)
𝐠(𝐮𝑁,𝑀 ) ≤ 𝟎, (14)

here 𝑁max and 𝑀max are the maximum allowed number of curves and
lope changes respectively, 𝐮min,𝐮max ∈ R𝑑𝑁+3𝑀−2 collect, respectively,
ower and upper bounds for the continuous variable 𝐮𝑁,𝑀 , 𝐀 (square
atrix of dimension 𝑑𝑁 + 3𝑀 − 2) and 𝐛 ∈ R𝑑𝑁+3𝑀−2 define linear

onstraints, and 𝐠 is a vectorial function collecting all nonlinear con-
traints. Bound (12), linear (13) and non-linear (14) constraints are
oncerning to technical and safety standards, in order to guarantee, for
xample, that radii and the length of each alignment (tangent, circular
urve and transition curve) are larger than pre-fixed minimum values
see Vázquez-Méndez et al., 2021a for further details).

The problem (10)–(14) is not standard in mixed integer nonlinear
rogramming (MINLP), since the dimension of the continuous variable
𝑁,𝑀 depends on the integer variables 𝑁 and 𝑀 . Consequently, the
efinition of lower and upper bounds (𝐮min, 𝐮max), linear constraints
𝐀, 𝐛), and even nonlinear constraints (𝐠) and objective function (𝐽 )

depend implicitly on the value of those integer variables 𝑁 and 𝑀 .

2.1.4. Automatic generation of multiple (sub)optimal solutions
Before defining the numerical algorithm to solve problem (10)–(14),

the following aspects should be taken into account:

• The integer variables are bounded (1 ≤ 𝑁 ≤ 𝑁max, 1 ≤ 𝑀 ≤
𝑀max). In longer bypasses (particularly in mountainous terrain),
the upper bounds 𝑁max and 𝑀max may be large and motion-
planning based algorithms (Sushma and Maji, 2020) or deep
4

t

learning methods (Gao et al., 2022) can be useful. However, in
many other practical cases (like the present paper), 𝑁max and
𝑀max are low, and the number of possible combinations on 𝑁
and 𝑀 (𝑁max ×𝑀max) is also low.

• If the values of 𝑁 and 𝑀 are fixed in advance, gradient-type
techniques have been proved very useful for solving the cor-
responding NLP-problem in similar situations (Vázquez-Méndez
et al., 2018, 2021a). Even so, this NLP-problem is non-convex and
a gradient-type method can provide local minima.

• In this particular problem (design of a railway bypass), it is not
only interesting for obtaining the global minimum, but other
local minima can be also very useful. These local minima provide
different alternatives to the engineer, who can and must choose
among them, taking into account not only economic criteria, but
also other aspects (functional, environmental, social, etc.) that
have not been considered in the optimization process.

ccording to these aspects, we propose an algorithm to solve the
roblem (10)–(14) based on combining an exhaustive search on in-
eger variables with a random multi-start of the sequential quadratic
rogramming (SQP) method (see Nocedal and Wright, 2006). This
ombination has been already successfully tested on two academic
roblems in Vázquez-Méndez et al. (2021b). The number of random
ulti-starts 𝑀𝑆 must be increased with the value 𝑁max×𝑀max, and they

an be also completed with ad-hoc starting points if promising corridors
re known or can be obtained in a previous stage. The complete
umerical algorithm is schematized in Algorithm 1. The main difficulty
f this algorithm is the generation of the vector 𝐱𝑁inic determining an
dmissible horizontal alignment (AHA). If the AHA only has to join two
iven points (without worrying about azimuth and curvature at these
oints), this random generation has been studied in detail in Vázquez-
éndez et al. (2021b). The extension to the case where the AHA has

o link two given sections requires a previous step, where geometrical
roperties at both ends must be considered:

• Case A (one -or both- given section is a circular curve): we
generate a clothoid linking in one of its ends with the circular
curve. The other end of the clothoid defines a tangent which
is used as new section to be linked in Case B. The clothoid is
univocally determined by the angle 𝛼 ∈ [𝛼min, 𝛼max] defining
the link point and the clothoid angle 𝜇 ∈ (0, 𝜇max] (see, for
instance, Vázquez-Méndez et al., 2021a). Therefore, to generate
the clothoid we only take values 𝛼 and 𝜇 in a random way.

• Case B (both sections are tangents):

– Step 1: An AHA with two or three curves linking the two
tangents are randomly generated (see Appendix for techni-
cal aspects of this problem and a detailed description of the
algorithms to do it).

– Step 2: If the number of curves of the AHA computed in
Step 1 is lower than 𝑁 , then it is modified by including new
curves just as described in Vázquez-Méndez et al. (2021b).

.2. Case study

The proposed method has been applied for obtaining several op-
imal bypasses to the A Coruña-Lugo railway line at Parga (Spain).
he area selected for this study is presented in Fig. 2 which provides

nformation about the railway line crossing this area, topographic data
level curves) and the different elements to be taken into account as
assage restrictions: the urban area of Parga, buildings, main roads
nd Parga river (the river has the same name as the village). It can
e observed that the current horizontal alignment was divided into its
eometric elements: tangents, circular curves and their corresponding

ransitional curves (clothoids). This task was carried out by means of a
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Fig. 2. Case study area including topographic data (level curves), information about the horizontal alignment of the railway line, and the main elements considered as restrictions
on passage (roads, rivers, urban area and buildings).
Algorithm 1 Automatically generation of (sub)optimal designs of a
railway bypass
Input: Sections of current layout to be linked, prices (𝑝𝑡, 𝑝𝑏, ...), techni-

cal constraints (𝑅min, 𝑚max, ...), regions to define passage constraints
(𝑅1, 𝑅2, ...), ground elevation (𝐻(𝑥, 𝑦)), number of multi-starts (𝑀𝑆 ),
percentage of multi-starts desired with 𝑖-curves (𝑝𝑖 ∈ (0, 1), 𝑖 =
1,… , 𝑁max) and with 𝑗-slope changes (𝑞𝑗 ∈ (0, 1), 𝑗 = 1,… ,𝑀max),
maximum project budget (𝐽max)

Output: Multiple (sub)optimal designs of a railway bypass linking 𝐴
and 𝐵
for 𝑚 = 1 to 𝑀𝑆 do

- Generate 1 ≤ 𝑁 ≤ 𝑁max, 1 ≤ 𝑀 ≤ 𝑀max with probabilities {𝑝𝑖}
and {𝑞𝑗}

- Compute 𝐮min,𝐮max, 𝐀, 𝐛 and define 𝐽 and 𝐠 for the 𝑁 and 𝑀
chosen values

- Generate (randomly) 𝐮𝑁,𝑀
inic = (𝐱𝑁inic, 𝐲

𝑀
inic)

- Compute 𝐮𝑁,𝑀 by solving the NLP-problem associated to
(10)–(14) with the SQP method, starting from 𝐮𝑁,𝑀

inic
if 𝐽 (𝐮𝑁,𝑀 ) ≤ 𝐽max then

- Save 𝐮𝑁,𝑀

end if
end for

previous process in which an optimization model (Castro et al., 2023)
was used to recreate the original horizontal layout from information
about the coordinates of different points of its horizontal axis and
data available along the railway line regarding the current geometrical
parameters of the tangents, circular curves and clothoids.

This location has been previously considered in Vázquez-Méndez
et al. (2021a) as a case study but with a very different approach.
In that case, the main goal was finding the shorter optimal bypass,
using as much as possible the existing infrastructure. Therefore, the
connections of the bypass with the original horizontal alignment were
located as close as possible to the urban area of Parga. Taking this
fact into account, the main tangent crossing the urban area (𝐴𝐸1)
and the nearest sector of the circular curve (𝐴𝑊 10) were selected as
most suitable sections for those connections. Moreover, only the north
region was considered in order to obtain a bypass with a minimum
length, avoiding the difficulties presented on the south region. As a
consequence, the radii of the circular curves and the vertical slopes
were clearly restricted by the goal of obtaining the shortest bypass
avoiding the urban area.

In this new approach, the main goal is to show the capabilities of
the algorithm to automatically provide a set of initial alternatives for a
5

Table 1
Connection cases considered in this study and original length (𝐿0) of
the existing horizontal alignment between their sections.

Case East connection West connection 𝐿0 (km)

C1 𝐴𝐸5 𝐴𝑊 10 3.330
C2 𝐴𝐸5 𝐴𝑊 12 4.728
C3 𝐴𝐸1 𝐴𝑊 12 4.265
C4 𝐴𝐸5 𝐴𝑊 16 5.595
C5 𝐴𝐸9 𝐴𝑊 16 6.013

bypass avoiding the urban area of Parga. In order to do so, at an early
stage some sections of the current layout (tangents and circular curves)
must be chosen on both sides of Parga. After a visual analysis of the
current horizontal alignment, the following sections were considered as
candidates for connections: tangents 𝐴𝐸1, 𝐴𝐸5 and 𝐴𝐸9 on the east side,
and circular curve 𝐴𝑊 10 (𝑅 = 520 m) and tangents 𝐴𝑊 12 and 𝐴𝑊 16 on
the west (see Fig. 2). All possible combinations of these sections lead
to nine different cases. However, to simplify the subsequent analysis
of the solutions, only five of them (collected in Table 1) were selected.
Another important difference with the previous work is that, due to the
improvements of the new method, it is not necessary to set in advance
which region (north/south) is more suitable as passing zone for the
bypass. At first glance, the southern region seems a more difficult area,
leading to circumvent the urban area of Parga with lengthy alignments,
but it is preferable to let the method run freely, and later on analyze
all the solutions obtained.

Remark 1. The names 𝐴𝑊𝑖
and 𝐴𝐸𝑗

stands for all the elements of the
alignment placed west (𝑊 ) and east (𝐸) of the urban area of Parga. All
parts of the alignment were labeled. For example, between tangents 𝐴𝐸5
and 𝐴𝐸9

there exist two transition curves (𝐴𝐸6
and 𝐴𝐸8

) and a circular
curve (𝐴𝐸7

) in between not named in Fig. 2. For sake of simplicity Fig. 2
only displays the candidate sections where the new bypass will connect
with the current layout.

One of the main peculiarities of our approach is that we use a
continuous (non-discrete) formulation of the problem in such a way
that the solutions, for example the HIPs of the HA, can be located at
any point of the study area. The data of the case study area (ground
elevation, buildings, urban area, roads, rivers. . . ) was extracted from
the databases of the National Geographic Institute (IGN, by its Spanish
acronym), and the relevant information was implemented in a Geo-
graphic Information System (GIS). The data was obtained on the nodes
of a uniform rectangular grid with a resolution of 5 × 5 m2, covering a
surrounding area around Parga of 20.6 km2. Finally, the functions used
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Fig. 3. Ground elevation in the area of interest.
in our continuous formulation were built from this data by numerical
interpolation.

For better understanding of the topography of the case study, the
continuous function giving the ground elevation of the study area is
shown in Fig. 3. It can be observed that the horizontal alignment of
the current railway layout was designed along the river Parga basin
in order to obtain gentle slopes on its vertical alignment. It is worth
to highlight that if the railway horizontal layout moves away from
the river area, the ground elevation significantly increases. This effect
would be more accentuated on the north region where differences in
height are greater than 100 m.

2.2.1. Design criteria and prices
Geometrical constraints considered in this study were selected with

the objective of improving the functionality of the existing railway
line. Increasing the distance between the bypass connections allows
the model to provide solutions with better geometrical parameters.
Moreover, the new feature of the model intended to automatically
include tunnels and bridges, according to a previously defined design
criteria, makes it easier to adapt the new layouts to complex terrains
and appropriately crossing sensitive areas, such as the case of rivers.

Concerning technical constraints (inequalities (12)–(14)), they must
guarantee an operational speed of 120 km/h. Consequently, accord-
ing to the Spanish technical standards, the following constraints are
assumed: circular curve radii larger than 𝑅min = 720 m, transition
vertical curve radii larger than 𝐾𝑣min = 5100 m, clothoid length larger
than 𝐿𝐶

min = 140 m, tangent and circular curve length larger than
𝐿𝑇
min = 𝐿𝐶𝐶

min = 80 m, and grades (slopes) lower than 𝑚𝑚𝑎𝑥 = 2 %.
A single-track railway with an Iberian gauge (1668 mm) with a sim-

ilar cross section to the one used in Vázquez-Méndez et al. (2021a) was
also considered. However, some geometrical dimensions were modified
taking into account the modernization projects which are currently
under construction on nearby sections of the same railway line. The
cross section is 11.9 m wide if the profile is in a fill-fill scenario and it
has an extra 1.5 m on each side when it is a cut profile. In addition side
slopes of 1:1 (45 degrees with the horizontal line) and 2:1 (30 degrees)
were selected for cut and fill sides, respectively. Finally, in order to
determinate the total land occupation associated with the new layout
an expropriation strip 𝑤𝑎 = 8 m wide on both sides was considered.

The new model automatically determines the need for different
types of structures along the new alignment according to the criteria
previously defined in Section 2.1.2 based on flag functions. In order
to compute those functions the values of some thresholds should be
established. In the case of tunnels, a maximum cut area 𝐴𝑐

max =
698 m2 corresponding to a vertical distance of ℎ𝑐 = 20 m between
the new layout and the ground elevation was selected. Similarly, for
6

Table 2
Prices used to compute the economic cost given by the formula
(9).

Concept Price

Land acquisition 2.00 e/m2

Ground preparation 0.75 e/m2

Cutting 8.20 e/m3

Filling with re-used material 2.37 e/m3

Filling with borrowed material 6.92 e/m3

Ground waste management 1.00 e/m3

Tunnel 15000 e/m
Bridge 10000 e/m
Underpass 800 e/m2

Overpass 800 e/m2

Railway track 1370 e/m
Railway platform 8.05 e/m2

bridges a fill area threshold (𝐴𝑓
max = 403.5 m2) corresponding to a

vertical distance of ℎ𝑓 = 15 m was used (in addition, the presence
of a river also determines the need of a bridge). Moreover, additional
thresholds should be selected in order to assure a minimum vertical dis-
tance between the new layout and existing infrastructures. The values
adopted in this study were, respectively, 6.5 m and 10 m, for crossing
above (underpass) and under (overpass) an existing infrastructure,
respectively.

Finally, the prices used for computing the economic cost given by
the formula (9) are collected in Table 2. At this point, it is convenient
to highlight that the economic model include realistic acquisition costs,
where the land acquisition price is a known function 𝑝𝑎(𝑥, 𝑦) depending
on the current land purpose, which can be obtained from a geographic
information system. In this case study we assume the same purpose for
all the land in the study area and, consequently, we take a constant
function (𝑝𝑎(𝑥, 𝑦) = 2 e/m2).

3. Results and discussion

We have made many numerical experiments. Particularly, we have
been increasing the values for upper bounds 𝑁max and 𝑀max, and also
for the number of multi-stars 𝑀𝑆 , until the results stopped improving.
In this section we present and discuss some alignment alternatives
obtained for the connection cases included on Table 1, corresponding to
considering 𝑁max = 4, 𝑀max = 4 and 𝑀𝑆 = 100. Numerical results were
obtained with a MATLAB (version 9.4 (R2018a)) code of Algorithm 1,
which ran on a cluster with 8 PowerEdge R840 with Intel(R) Xeon(R)
Gold 6126 processors, 12 cores per processor and 384 GB of RAM.
MATLAB proprietary parallelization was used with a number of 24
threads. The computation (wall clock) times for the connection cases
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Table 3
Main characteristics of the solutions.

Solution S1 S2a S2b S3 S4 S5

Passing zone north north south south north north
Total cost (Me) 19.032 30.125 19.122 17.673 23.842 26.652
Total length (km) 3.322 4.734 5.557 5.504 4.157 4.624
Cost/Length (Me/km) 5.760 6.364 3.441 3.211 5.735 5.764
Length reduction (m) 36 5.3 −828.2 −1238.6 1438.4 1389.5
Tunnel length (km) 0.552 0.832 0.000 0.000 0.798 0.771
Bridge length (km) 0.067 0.744 0.654 0.193 0.145 0.305
Underpasses (#) 1 0 0 1 0 0
Overpasses (#) 1 1 1 2 1 1

Table 4
Economic costs (Me) of each solution disaggregated by concepts.

Solution S1 S2a S2b S3 S4 S5

Land acquisition 0.282 0.413 0.628 0.710 0.447 0.487
Ground preparation 0.070 0.103 0.157 0.177 0.112 0.122
Cutting 2.997 1.831 2.436 4.144 2.568 3.052
Filling 0.392 0.476 0.629 0.889 0.615 0.761
Waste management 0.240 0.040 0.053 0.156 0.064 0.067
Tunnels 8.286 12.483 0.000 0.000 11.963 11.562
Bridges 0.667 7.440 6.538 1.926 1.454 3.051
Underpasses 0.947 0.000 0.000 0.340 0.000 0.000
Overpasses 0.237 0.346 0.472 1.196 0.478 0.718
Railway track 4.551 6.486 7.613 7.541 5.695 6.335
Railway platform 0.362 0.508 0.595 0.593 0.446 0.497
TOTAL 19.032 30.125 19.122 17.673 23.842 26.652

Table 5
Geometrical characteristics of the solutions.

Solution S1 S2a S2b S3 S4 S5

𝑁 1 2 4 3 2 2
𝐿𝑇

total(km) 1,100 1.947 1.220 0.854 2.802 2.776
𝐿𝐶𝐶

total(km) 0,080 1.989 2.742 3.011 0.714 1.132
𝐿𝐶

total(km) 2.141 0.798 1.595 1.639 0.641 0.716
𝑅l(m) 1578 746 799 743 729 817
𝑅L(m) 1578 1150 996 1525 1767 870
𝑅av(m) 1578 853 894 1086 861 858

𝑀 3 3 4 4 4 4
𝑚L(%) 1.28 1.50 1.72 1.52 2.00 1.96
𝐿𝑚L (km) 0.048 1.082 1.085 0.441 1.707 1.017
𝑚av(%) 0.57 0.71 0.79 0.43 1.83 1.63
𝐾𝑣 l(km) 9.867 9.290 12.108 18.337 5.100 5.100

Horizontal alignment: number of circular curves (𝑁), total length of tangents (𝐿𝑇
total),

circular curves (𝐿𝐶𝐶
total) and clothoids (𝐿𝐶

total), and respect to the radius of circular curves,
lowest (𝑅l), largest (𝑅L) and weighted average (𝑅av). Vertical alignment: number of
slope changes (𝑀), largest slope (𝑚L), length with the largest slope (𝐿𝑚L ), weighted
average of the absolute values of slopes (𝑚av) and lowest value for parameter 𝐾𝑣 (𝐾𝑣 l).

included on Table 1 were the following: C1 = 3979 s, C2 = 2711 s, C3
= 2542 s, C4 = 2202 s, C5 = 2836 s.

For simplicity, we only present the global optimal solution for each
case, except for the C2, in which two different alternatives (north vs.
south) are analyzed to show the good performance of the model. A
summary of the main characteristics of these solutions is presented
in Table 3, where a number corresponding to the connection case
was assigned to each of them. It provides information about the total
cost, total length, cost/length ratio and length reduction associated to
each solution, including also relevant data about the structures defined
automatically by the algorithm (length of tunnels and bridges as well as
the number of underpasses and overpasses). In addition, the economic
costs disaggregated by the different concepts considered by the model
are shown in Table 4.

The horizontal and vertical alignments of each solution are pre-
sented in Figs. 4–9. Moreover, in order to assess the technical character-
istics of each solution the most relevant geometrical parameters related
to the horizontal and vertical alignments are included in Table 5.

All of these layouts are local optima in terms of economic cost but
each of them has its pros and cons depending on what the engineer
7

seeks. The results of Table 3 show that the most economic solution in
terms of total cost is S3 (17.673 Me) with also the best cost/length
ratio (3.211 Me/km) but this alternative will increase significantly
the initial length of the railway line needing 1238.6 m more. On the
other hand, despite the fact that the solution S4 is more expensive
than others (23.842 Me), it is also the best one considering the length
reduction obtained with respect to the original layout (1438.4 m) being
this solution of great interest if the travel time is the key factor under
consideration.

As expected, solution S1 is the shortest (3.322 km) due to the
proximity of its connection sections (Fig. 4). This horizontal alignment
is similar to the solution proposed in Vázquez-Méndez et al. (2021a)
but with a different starting point on the east side (𝐴𝐸1

in the reference
therein). Here connection section 𝐴𝐸5

is chosen which is located farther
from the urban zone of Parga. This fact allows to obtain a better value
of horizontal radius (only one circular curve with 𝑅 = 1578 m) and
a vertical alignment (Fig. 4) with lower slope values, thanks also to
the automatic consideration of a tunnel by the optimization algorithm.
It can be appreciated that the model performs well avoiding the urban
area of Parga and other buildings located on the surrounding region, as
well as the automatic definition of the appropriate structures (tunnel,
bridge, underpass and overpass) according to the criteria defined by the
designer.

The next solution (S2a) presents a different connection section
(𝐴𝑊 12) on the west side but the same connection section (𝐴𝐸5) on the
east side (Fig. 5). In this case we can appreciate how the algorithm
modifies the layout with respect to solution S1 in order to get an
appropriate geometrical connection taking into account the azimuth
of section (𝐴𝐸5). This solution is clearly worse in various technical
parameters with respect to S1, such as horizontal radii and slopes
(Fig. 5). In addition, it is the most expensive solution (30.125 Me) and
it will cause a highly significant environmental and landscape impact
due to the bridge crossing the river Parga.

As mentioned before, solution S2b (Fig. 6) was included in order
to show how the model provides alternatives not only passing through
the north region but also crossing the south region even when these
solutions could be considered in advance inappropriate due to the
current railway layout. It shows the capability of the algorithm to
provide solutions also in this southern area fulfilling all constraints
(including the proper structure if necessary). Despite its moderate
economic cost (19.122 Me) this solution increases the length of the
railway line with an additional unnecessary 828.2 m which can be
considered as a powerful reason to discard this solution.

Solution S3 (Fig. 7) is similar to S2b but starting closer to the urban
zone using the connection section 𝐴𝐸1 on the east side instead of 𝐴𝐸5.
In general, both solutions present the same advantage: low economic
cost, but a great disadvantage due to the fact that circumventing the
urban zone of Parga by the south region yields to a considerable longer
horizontal alignment.

Finally, solutions S4 and S5 are clearly the most interesting in terms
of travel time due to the fact of an important length reduction (1438.4
and 1389.5 m, respectively). Both solutions connect with the former
layout on the west side in section 𝐴𝑊 16 whose position (further to the
north than 𝐴𝑊 12) and its azimuth make easier the connection between
layouts. The horizontal alignments of these solutions (Figs. 8 and 9)
are similar on their west side (right hand circular curve for connecting
with the existing layout) and the center zone (a long tangent with a
tunnel of similar length in both cases) but differ on the east side due to
the connection section used in each case (𝐴𝐸5 for S4 and 𝐴𝐸9 for S5).
The solution S5 is more expensive (26.652 Me) vs. S4 (23.842 Me)
by reason of the difference in total length and the need of crossing the
river Parga twice instead of once. Taking this fact into account and the
obtained length reduction solution S4 seems preferable rather than S5.
In terms of technical parameters the main differences between these
solutions are the values of the maximum slope and its corresponding

length (Figs. 8 and 9). Both vertical alignments present values equal
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Fig. 4. Solution S1: horizontal (up) and vertical (down) alignments.

Fig. 5. Solution S2a: horizontal (up) and vertical (down) alignments.
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Fig. 6. Solution S2b: horizontal (up) and vertical (down) alignments.

Fig. 7. Solution S3: horizontal (up) and vertical (down) alignments.



Computers and Operations Research 154 (2023) 106217

10

M.E. Vázquez-Méndez et al.

Fig. 8. Solution S4: horizontal (up) and vertical (down) alignments.

Fig. 9. Solution S5: horizontal (up) and vertical (down) alignments.
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or very close to the maximum allowed slope (2.00% for S4 and 1.96%
for S5) but the length under maximum slope is significantly worse in
the case of S4 (1.707 km) in comparison to S5 with (1.017 km). As
regards to the horizontal alignment both solutions have similar values
of weighted average radius (861 and 858 m, respectively).

4. Conclusions

In this paper a mathematical model for designing railway bypasses,
previously introduced in Vázquez-Méndez et al. (2021a), has been
improved. These improvements have been tackled at four different
levels:

1. Geometrical model and economic costs: we extend the method
introduced by Kim et al. (2007) for tunnels and bridges to
overpasses and underpasses, in such a way that the current
model automatically identifies the need of major structures. The
infrastructure costs considered in Vázquez-Méndez et al. (2021a)
are modified to take into account their existence and, of course,
their corresponding economic costs.

2. Mathematical formulation of the optimization problem: just as
it is recommended in Sushma and Maji (2020), in this work we
considered that the number of curves (𝑁) and the number of
slope changes (𝑀) are design variables, and therefore the opti-
mization problem is formulated in a more general framework,
specifically as a non standard Mixed Integer Non Linear Problem
(MINLP).

3. Numerical resolution: just as announced in the previous work,
we propose a new numerical method for efficiently solving the
formulated MINLP if the upper bounds of the integer variables
are low. This method is capable of supplying some remarkable
solutions (local minima from an economic point of view).

4. Practical application: The proposed method is not just used
for obtaining only one solution for the railway bypass design
problem, but rather it is used to provide a set of alignment
alternatives (all of them sub-optimal in economic terms), which
can be subsequently analyzed by the engineers to choose the
most appropriate for each particular case, taking into account
other functional, social or environmental aspects.

According to the results obtained in this work, it is worth highlighting
the following aspects:

• The proposed method can be considered as a very interesting
support tool for engineers in order to accomplish the complex and
time-consuming task to generate a set of initial alternatives for the
design of a railway bypass.

• A thorough analysis of the whole set of solutions carried out by
the authors confirm that the method performs successfully accord-
ing to the expected behavior. All of the solutions provided by
the method avoid forbidden areas as well as buildings and cross
both the river Parga and other infrastructures assuring a mini-
mum difference in height. In addition, geometrical parameters of
both horizontal and vertical alignments satisfy all the technical
constraints considered. Finally, the model includes automatically
the structures needed along the bypass layout in accordance with
the established criteria for each of them.

• Some geometrical parameters of the solutions provided by the
method are clearly influenced by the optimization objective (min-
imizing the economic cost). For example, it can be observed
that solutions without or with short tunnels are preferred even
though the resulting slopes of the vertical alignment are steeper.
This effect could be modulated by considering functional aspects
and environmental impacts. Completing the model by including
these factors and others already studied in the scientific literature
(operating speed trajectories, user costs to passengers, accident
costs, noise, geological hazards...) is a pending task. This leads
to formulate the problem in the framework of multi-objective
optimization and it will be addressed in future works.
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Appendix. Randomly generation of an admissible horizontal align-
ment (AHA) with two (or three) curves linking two given tangent
segments

We consider two tangent segments, one starting at point 𝐚 ∈ R2 with
irection (and sense) given by unit vector 𝐮𝑎 ∈ R2, and one ending at
∈ R2 with direction (and sense) given by 𝐮𝑏 ∈ R2. We denote by

𝑎 and 𝛾𝑏 the oriented angles from 𝐛 − 𝐚 to 𝐮𝑎 and from 𝐛 − 𝐚 to 𝐮𝑏,
espectively (see Fig. 10).

Any horizontal alignment (HA) with symmetric curves joining 𝐚
ith 𝐛 is given by the horizontal intersection points (HIP) 𝐯𝑖 = (𝑥𝑖, 𝑦𝑖) ∈
2, and the radii 𝑅𝑖 > 0 and angles 𝑤𝑖 ≥ 0 of the circular curves

see Casal et al., 2017). Additionally, if the HA must link with both
egments, then 𝐯1 and 𝐯𝑁 must verify 𝐯1 = 𝐚 + 𝑑𝑎𝐮𝑎, 𝐯𝑁 = 𝐛 − 𝑑𝑏𝐮𝑏, for
alues 𝑑𝑎, 𝑑𝑏 > 0. Consequently, an HA with two curves linking both
egments (see Fig. 10) is univocally determined by the vector
2 = (𝑑𝑎, 𝑅1, 𝜔1, 𝑑𝑏, 𝑅2, 𝜔2) ∈ R6.

The problem is how to randomly generate this vector guaranteeing
hat the corresponding HA is admissible (it is an AHA), i.e., that the
ollowing constraints are satisfied (Vázquez-Méndez et al., 2021b):

𝑗 ≥ 𝑅min, 𝑗 = 1, 2, (15)
𝐿𝐶
min
𝑅𝑗

+ 𝜔𝑗 ≤ 𝜃𝑗 ≤ 𝜃max, 𝑗 = 1, 2, (16)

𝑑𝑎 ≥ 𝑑1(𝜃max) + 𝐿𝑇
min, (17)

‖𝑣2 − 𝑣1‖ ≥ 𝑑1(𝜃max) + 𝐿𝑇
min + 𝑑2(𝜃max), (18)

𝑏 ≥ 𝑑2(𝜃max) + 𝐿𝑇
min, (19)

here 𝑅min > 0 is the minimum allowable radius of the layout design,
𝑗 is the deflection angle at the 𝑗th curve (see Fig. 10), 𝜃max ∈ (0, 𝜋) is
he maximum allowable deflection angle, 𝐿𝐶

min > 0 and 𝐿𝑇
min > 0 are,

espectively, the minimum length of each clothoid arc and each tangent
ection, and 𝑑(𝜃) is the necessary distance to embed a curve of radius

and angle 𝑤 between two main tangents which deflection angle is 𝜃
𝑑𝑗 (𝜃) corresponds with radius 𝑅𝑗 and angle 𝑤𝑗).

Below we establish sufficient conditions to guarantee that there
xists an AHA with 𝑁 = 2 curves and detail how to generate it in a
andom way. First, for a given 𝑅 > 0 and 𝜔 ≥ 0, we denote

min =
𝐿𝐶
min
𝑅

+ 𝜔 (20)

and highlight that 𝑑(𝜃) is an increasing function, and the minimum
length to guarantee that the corresponding curve can be embed be-
tween two main tangents is 𝑑(𝜃max). Then, we define

= 𝑑(𝜃 ) + 𝐿𝑇 , (21)
min max min
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Fig. 10. Example of an HA (in blue) with two curves linking two given tangent segments: decision variables (black), given data (gray) and important elements determined from
the decision variables (orange).
Fig. 11. Diagram of the generation of an AHA in Case 1, with 𝛼1 > 𝛼2 > 0: main elements and notation.
Fig. 12. Diagram of the generation of an AHA in Case 2 (𝛼1𝛼2 < 0): main elements and notation.
𝐿min = 2𝑑(𝜃max) + 𝐿𝑇
min, (22)

consider 𝐯min
1 = 𝐚+𝑑min𝐮𝑎, 𝐯min

2 = 𝐛−𝑑min𝐮𝑏, 𝐯𝐸 = 𝐯min
2 −𝐯min

1 and take 𝛼1
and 𝛼2 the oriented angles from 𝐯𝐸 to 𝐮𝑎 and from 𝐯𝐸 to 𝐮𝑏, respectively
(see Fig. 11 or Fig. 12). We distinguish two cases:
12
• Case 1: 𝛼1𝛼2 ≥ 0, with 𝛼1 ≠ 0 or 𝛼2 ≠ 0
We assume without loss of generality that |𝛼1| ≥ |𝛼2| (if |𝛼1| < |𝛼2|
only subscripts must be exchanged). In this case (see Fig. 11), we
must assume the following hypotheses:
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Hypothesis 1. Deflection angles large enough must be allowed,
specifically,

𝜃max ≥ max{𝜃min, |𝛼2|} + 𝛥𝛾, (23)

where 𝛥𝛾 = |𝛾𝑏 − 𝛾𝑎|.

Hypothesis 2. Terminals 𝐚 and 𝐛 must be far enough apart,
specifically,

min{∥𝐯𝐸∥, ∥𝐯�̃�∥} ≥ 𝐿min, (24)

where vector 𝐯�̃� is the vector defined from 𝐯min
2 and 𝜃min as is

shown in Fig. 11.

Under these hypotheses we can prove the following result. Its
constructive proof leads to Algorithm 2, where the method for
the random generation of an AHA in this case is detailed.

Theorem 1. Let be 𝑅 ≥ 𝑅min and 𝜔 ≥ 0 such that Hypotheses 1 and
2 are verified. There exits 𝜃prov2 and 𝜃1 such that, taking

𝑑𝑎 = 𝑑min +
sin

(

𝜃prov2 − |

|

𝛼2||
)

sin
(

𝜃prov2 + 𝛥𝛾
)

‖

‖

𝐯𝐸‖‖ ,

𝐯1 = 𝐚 + 𝑑𝑎𝐮𝑎,

𝑑𝑏 = 𝑑min +
sin

(

𝜃1 − (𝜃prov2 + 𝛥𝛾)
)

sin
(

𝜃1 − 𝛥𝛾
)

‖

‖

‖

𝐯1 − 𝐯min
2

‖

‖

‖

,

the HA given by the vector 𝐱2 = (𝑑𝑎, 𝑅, 𝜔, 𝑑𝑏, 𝑅, 𝜔) is an AHA.

Proof. Taking 𝜃auxmin = max
{

𝜃min, ||𝛼2||
}

, Hypothesis 1 guarantees
that the set [𝜃auxmin, 𝜃max − 𝛥𝛾] is not empty. Taking 𝑑𝑏 = 𝑑min (that
is, 𝐯2 = 𝐯min

2 ), each angle 𝜃prov2 ∈ [𝜃auxmin, 𝜃max − 𝛥𝛾] defines (see
Fig. 11) a vertex 𝐯1 corresponding with a value 𝑑𝑎 ≥ 𝑑min, and a
deflection angle 𝜃1 = 𝜃prov2 + 𝛥𝛾. Consequently, the corresponding
HA verifies (15), (16), (17) and (19). Additionally, Hypothesis 2
guarantees that (18) is also verified if 𝜃prov2 = 𝜃auxmin, and the result
is already proven. In fact, if

sin(|
|

𝛼1||) ‖‖𝐯𝐸‖‖ ≥ 𝐿min, (25)

(18) is satisfied for any 𝜃prov2 ∈ [𝜃auxmin, 𝜃max − 𝛥𝛾], while if the
inequality (25) is not verified, constraint (18) is only satisfied if
𝜃prov2 ∈ [𝜃auxmin, 𝜃

aux
max − 𝛥𝛾], where

𝜃auxmax = min
{

arcsin
( sin(|

|

𝛼1||) ‖‖𝐯𝐸‖‖
𝐿min

)

, 𝜃max

}

.

Additionally, from each 𝜃prov2 defining the previous AHA, we can
achieve more AHAs, by modifying (increasing) the value of 𝑑𝑏.
Effectively, any angle 𝜃1 ∈

[

𝜃prov2 + 𝛥𝛾, 𝜃max
]

defines (see Fig. 11)
a vertex 𝐯2 corresponding with a value 𝑑𝑏 ≥ 𝑑min, and a deflection
angle 𝜃2 = 𝜃1 −𝛥𝛾, in such a way that constraints (15), (16), (17)
and (19) are satisfied. Constraint (18) is clearly verified if 𝜃1 =
𝜃prov2 +𝛥𝛾 (that is, 𝜃2 = 𝜃prov2 ) and also for any 𝜃1 ∈

[

𝜃prov2 + 𝛥𝛾, 𝜃max
]

if

sin(𝜃prov2 ) ‖‖
‖

𝐯1 − 𝐯min
2

‖

‖

‖

≥ 𝐿min.

If this inequality is not verified, constraint (18) is still satisfied for
any 𝜃1 ∈

[

𝜃prov2 + 𝛥𝛾, 𝜃auxmax
]

, with

𝜃auxmax = min

{

arcsin

(

sin(𝜃prov2 )∥𝐯1 − 𝐯min
2 |

𝐿min

)

+ 𝛥𝛾, 𝜃max

}

. □

Remark 2. Following Vázquez-Méndez et al. (2021b), the choice
taking place at step 1 of Algorithm 2 can be random (𝑅 ∈
[𝑅𝑚𝑖𝑛, 𝑅𝑚𝑎𝑥], 𝜔 ∈ [0, 𝜔𝑚𝑎𝑥], for 𝑅𝑚𝑎𝑥 and 𝜔𝑚𝑎𝑥 given values), but
can also be supervised to obtain values of 𝜃min and 𝐿min helping
to verify Hypotheses 1 and 2.
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Algorithm 2 Random generation of an AHA joining two given tangent
segments. Case 1: 𝛼1𝛼2 ≥ 0, with 𝛼1 ≠ 0 or 𝛼2 ≠ 0 and |𝛼1| ≥ |𝛼2|.
Input: Data of tangent sections to be linked (terminals 𝐚, 𝐛 and

directions 𝐮𝑎, 𝐮𝑏) and constraints (𝑅min, 𝐿𝐶
min, 𝐿

𝑇
min and 𝜃max).

utput: Vector 𝐱2 = (𝑑𝑎, 𝑅, 𝜔, 𝑑𝑏, 𝑅, 𝜔) determining the AHA.

- Choose 𝑅 ≥ 𝑅min, 𝜔 ≥ 0 such that (23) and (24) are verified
- Compute 𝜃min, 𝑑min and 𝐿min given by (20)–(22)
- Compute 𝐯min

1 , 𝐯min
2 , 𝐯𝐸 , 𝛼1, 𝛼2 and 𝛥𝛾

- Compute 𝜃auxmin = max
{

𝜃min, ||𝛼2||
}

, 𝜃auxmax = 𝜃max

if sin(|
|

𝛼1||) ‖‖𝐯𝐸‖‖ < 𝐿min then

- Compute 𝜃auxmax = min
{

arcsin
(

sin(|𝛼1|)‖𝐯𝐸‖
𝐿min

)

, 𝜃max

}

end if

- Randomly choose 𝜃prov2 ∈
[

𝜃auxmin, 𝜃
aux
max − 𝛥𝛾

]

- Compute 𝑑𝑎 = 𝑑min +
sin

(

𝜃prov2 −|𝛼2|
)

sin
(

𝜃prov2 +𝛥𝛾
)

‖

‖

𝐯𝐸‖‖

- Compute 𝐯1 = 𝐚 + 𝑑𝑎𝐮𝑎
- Compute 𝜃auxmax = 𝜃max

if sin(𝜃prov2 ) ‖‖
‖

𝐯1 − 𝐯min
2

‖

‖

‖

< 𝐿min then

- Compute 𝜃auxmax = min
{

arcsin
(

sin(𝜃prov2 )‖‖
‖

𝐯1−𝐯min
2

‖

‖

‖

𝐿min

)

+ 𝛥𝛾, 𝜃max

}

end if

- Randomly choose 𝜃1 ∈
[

𝜃prov2 + 𝛥𝛾, 𝜃auxmax
]

- Compute 𝑑𝑏 = 𝑑min +
sin

(

𝜃1−(𝜃
prov
2 +𝛥𝛾)

)

sin(𝜃1−𝛥𝛾)
‖

‖

‖

𝐯1 − 𝐯min
2

‖

‖

‖

• Case 2: 𝛼1𝛼2 < 0
Following the same method as in Case 1, under the new Hypothe-
ses 3 and 4 (see below), the existence of an AHA with two curves
linking the two given tangent sections can still be guaranteed.
In this case, using Fig. 12 and proceeding as in the proof of
Theorem 1, the method for random generation of AHAs detailed
in Algorithm 3 is obtained.

Hypothesis 3. Initial angles 𝛼1 and 𝛼2 must verify the established
bounds for deflection angles, that is,

𝜃min ≤ |𝛼1|, |𝛼2| ≤ 𝜃max.

Remark 3. In this case (𝛼1𝛼2 < 0), 𝛥𝛾 = |𝛾1| + |𝛾2| = |𝛼1| +
|𝛼2|. Then, Hypothesis 3 is equivalent to require the following
inequalities

𝜃max ≥
𝛥𝛾
2
, (26)

𝜃max ≥ 𝛥𝛾 − |𝛼1| (27)
|𝛼1| ≥ 𝜃min (28)
𝛥𝛾 ≥ 2𝜃min (29)

Hypothesis 4. Terminals 𝐚 and 𝐛 must be far enough apart.
Specifically, in this case it is only necessary to verify that

∥𝐯𝐸∥ ≥ 𝐿min. (30)

Finally, if we are not in any of the two previous cases (if 𝛼1 = 𝛼2 =
), or if Hypothesis 1 (Case 1) or Hypothesis 3 (Case 2) is not verified,
ut the terminals 𝐚 and 𝐛 are far enough apart, we cannot guarantee
he existence of an AHA with two curves, but one with three curves
an be obtained in almost all situations. It can be randomly computed
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Algorithm 3 Random generation of an AHA joining two given tangent
egments. Case 2: 𝛼1𝛼2 < 0, with |𝛼1| ≥ |𝛼2|.

Input: Data of tangent sections to be linked (terminals 𝐚, 𝐛 and
directions 𝐮𝑎, 𝐮𝑏) and constraints (𝑅min, 𝐿𝐶

min, 𝐿
𝑇
min and 𝜃max).

utput: Vector 𝐱2 = (𝑑𝑎, 𝑅, 𝜔, 𝑑𝑏, 𝑅, 𝜔) determining the AHA.

- Choose 𝑅 ≥ 𝑅min, 𝜔 ≥ 0 such that (27)–(30) are verified
- Compute 𝜃min, 𝑑min and 𝐿min given by (20)–(22)
- Compute 𝐯min

1 , 𝐯min
2 , 𝐯𝐸 , 𝛼1, 𝛼2, and 𝛥𝛾

- Compute 𝜃auxmin = max
{

𝜃min, 𝛥𝛾 − 𝜃max
}

- Compute 𝜃auxmax = min
{

𝜃max, ||𝛼1|| , 𝛥𝛾 − 𝜃min
}

if sin(|
|

𝛼2||) ‖‖𝐯𝐸‖‖ < 𝐿min then

- Compute 𝜃auxmin = max
{

𝛥𝛾 − arcsin
(

sin(|𝛼2|)‖𝐯𝐸‖
𝐿min

)

, 𝜃auxmin

}

end if

- Randomly choose 𝜃prov1 ∈
[

𝜃auxmin, 𝜃
aux
max

]

- Compute 𝑑𝑏 = 𝑑min +
sin

(

|𝛼1|−𝜃
prov
1

)

sin
(

𝛥𝛾−𝜃prov1

)

‖

‖

𝐯𝐸‖‖

- Compute 𝐯2 = 𝐛 − 𝑑𝑏𝐮𝑏

if sin(𝜃prov1 ) ‖‖
‖

𝐯2 − 𝐯min
1

‖

‖

‖

< 𝐿min then

- Compute 𝜃auxmin = max
{

𝛥𝛾 − arcsin
(

sin(𝜃prov1 )‖‖
‖

𝐯2−𝐯min
1

‖

‖

‖

𝐿min

)

, 𝜃auxmin

}

end if

- Randomly choose 𝜃2 ∈
[

𝜃min
aux , 𝛥𝛾 − 𝜃prov1

]

- Compute 𝑑𝑎 = 𝑑min +
sin

(

𝛥𝛾−𝜃prov1 −𝜃2
)

sin(𝛥𝛾−𝜃2)
‖

‖

‖

𝐯2 − 𝐯min
1

‖

‖

‖

by choosing 𝑅 ≥ 𝑅min, 𝑤 ≥ 0, considering 𝑑𝑎 = 𝑑𝑏 = 𝑑min (𝐯1 = 𝐯min
1 ,

𝐯3 = 𝐯min
2 ), and generating the vertex 𝐯2 (the intermediate curve) with

a slight modification of the method proposed in Vázquez-Méndez et al.
(2021b) to include a new curve between 𝐯1 and 𝐯3 (the modification is
only needed because the initial HA with 2 curves does not verify the
constraint (16)).

References

Akhmet, A., Hare, W., Lucet, Y., 2022. Bi-objective optimization for road vertical
alignment design. Comput. Oper. Res. 143, 105764. http://dx.doi.org/10.1016/j.
cor.2022.105764.

Bosurgi, G., D’Andrea, A., 2012. A polynomial parametric curve (PPC-curve) for the
design of horizontal geometry of highways. Comput.-Aided Civ. Infrastruct. Eng.
27 (4), 304–312. http://dx.doi.org/10.1111/j.1467-8667.2011.00750.x.

Bosurgi, G., Pellegrino, O., Sollazzo, G., 2016. Using genetic algorithms for optimizing
the PPC in the highway horizontal alignment design. J. Comput. Civil. Eng. 30 (1),
04014114. http://dx.doi.org/10.1061/(ASCE)CP.1943-5487.0000452.

Casal, G., Santamarina, D., Vázquez-Méndez, M.E., 2017. Optimization of horizontal
alignment geometry in road design and reconstruction. Transp. Res. Pt. C-Emerg.
Technol. 74, 261–274. http://dx.doi.org/10.1016/j.trc.2016.11.019.

Castro, A., Casal, G., Santamarina, D., Vázquez-Méndez, M.E., Recreation of horizontal
alignments with numerical optimization. In: 2023 10th International Conference
on Railway Operations Modelling and Analysis (ICROMA). Belgrade, Serbia, 25-28
April (in press).

Gao, T., Li, Z., Gao, Y., Schonfeld, P., Feng, X., Wang, Q., He, Q., 2022. A deep
reinforcement learning approach to mountain railway alignment optimization.
Comput.-Aided Civ. Infrastruct. Eng. 37, 73–92. http://dx.doi.org/10.1111/mice.
12694.

Ghoreishi, B., Shafahi, Y., Hashemian, S.E., 2019. A model for optimizing railway
alignment considering bridge costs, tunnel costs, and transition curves. Urban Rail
Transit. 5, 207–224. http://dx.doi.org/10.1007/s40864-019-00111-5.

Hare, W., Hossain, S., Lucet, Y., Rahman, F., 2014. Models and strategies for efficiently
determining an optimal vertical alignment of roads. Comput. Oper. Res. 44,
161–173. http://dx.doi.org/10.1016/j.cor.2013.11.005.
14
Hirpa, D., Hare, W., Lucet, Y., Pushak, Y., Tesfamariam, S., 2016. A bi-objective
optimization framework for three-dimensional road alignment design. Transp. Res.
Pt. C-Emerg. Technol. 65, 61–78. http://dx.doi.org/10.1016/j.trc.2016.01.016.

Jong, J.C., Schonfeld, P., 2003. An evolutionary model for simultaneously optimizing
three-dimensional highway alignments. Transp. Res. 37 (2), 107–128. http://dx.
doi.org/10.1016/S0191-2615(01)00047-9.

Kim, E., Jha, M.K., Schonfeld, P., Kim, H.S., 2007. Highway alignment optimization
incorporating bridges and tunnels. J. Transp. Eng. 133 (2), 71–81. http://dx.doi.
org/10.1061/(ASCE)0733-947X(2007)133:2(71).

Lee, Y., Tsou, Y.R., Liu, H.L., 2009. Optimization method for highway horizontal
alignment design. J. Transp. Eng. 135 (4), 217–224. http://dx.doi.org/10.1061/
(ASCE)0733-947X(2009)135:4(217).

Li, W., Pu, H., Schonfeld, P., Yang, J., Zhang, H., Wang, L., Xiong, J., 2017. Mountain
railway alignment optimization with bidirectional distance transform and genetic
algorithm. Comput.-Aided Civ. Infrastruct. Eng. 32, 691–709. http://dx.doi.org/10.
1111/mice.12280.

Li, W., Pu, H., Schonfeld, P., Zhang, H., Zheng, X., 2016. Methodology for optimizing
constrained 3-dimensional railway alignments in mountainous terrain. Transp. Res.
Pt. C-Emerg. Technol. 68, 549–565. http://dx.doi.org/10.1016/j.trc.2016.05.010.

Li, W., Pu, H., Zao, H., Liu, W., 2013. Approach for optimizing 3D highway alignments
based on two-stage dynamic programming. J. Softw. 8 (11), 2967–2973. http:
//dx.doi.org/10.4304/jsw.8.11.2967-2973.

Momo, N.S., Hare, W., Lucet, Y., 2022. Modeling side slopes in vertical alignment re-
source road construction using convex optimization. Comput.-Aided Civ. Infrastruct.
Eng http://dx.doi.org/10.1111/mice.12739.

Mondal, S., Lucet, Y., Hare, W., 2015. Optimizing horizontal alignment of roads in a
specified corridor. Comput. Oper. Res. 64, 130–138. http://dx.doi.org/10.1016/j.
cor.2015.05.018.

Monnet, D., Hare, W., Lucet, Y., 2020. Fast feasibility check of the multi-material
vertical alignment problem in road design. Comput. Optim. Appl. 75 (2), 515–536.
http://dx.doi.org/10.1007/s10589-019-00160-3.

Nocedal, J., Wright, S.J., 2006. Numerical Optimization. In: Springer Series in Opera-
tions Research and Financial Engineering, Springer Science+Business Media, New
York.

Pu, H., Song, T., Schonfeld, P., Li, W., Zhang, H., Wang, J., Peng, X., 2019a. A
three-dimensional distance transform for optimizing constrained mountain railway
alignments. Comput.-Aided Civ. Infrastruct. Eng. 34, 972–990. http://dx.doi.org/
10.1111/mice.12475.

Pu, H., Zhang, H., Li, J., Xiong, J., Hu, J., Wang, J., 2019b. Concurrent optimization
of mountain railway alignment and station locations using a distance transform
algorithm. Comput. Ind. Eng. 127, 1297–1314. http://dx.doi.org/10.1016/j.cie.
2018.01.004.

Pushak, Y., Hare, W., Lucet, Y., 2016. Multiple-path selection for new highway
alignments using discrete algorithms. European J. Oper. Res. 248 (2), 415–427.
http://dx.doi.org/10.1016/j.ejor.2015.07.039.

Song, T., Pu, H., Schonfeld, P., Li, W., Hu, J., 2022a. Simultaneous optimization of 3D
alignments and station locations for dedicated high-speed railways. Comput.-Aided
Civ. Infrastruct. Eng. 37 (4), 405–426. http://dx.doi.org/10.1111/mice.12739.

Song, T., Pu, H., Schonfeld, P., Li, W., Zhang, H., Ren, Y., Wang, J., Hu, J.,
Peng, X., 2020. Parallel three-dimensional distance transform for railway alignment
optimization using OpenMP. J. Transp. Eng. Part A Sist. 146 (5), 04020029.
http://dx.doi.org/10.1061/JTEPBS.0000344.

Song, T., Pu, H., Schonfeld, P., Liang, Z., Zhang, M., Hu, J., Zhou, Y., Xu, Z.,
2022b. Mountain railway alignment optimization integrating layouts of large-
scale auxiliary construction projects. Comput.-Aided Civ. Infrastruct. Eng. 1–21.
http://dx.doi.org/10.1111/mice.12839.

Sushma, M., Maji, A., 2020. A modified motion planning algorithm for horizontal
highway alignment development. Comput.-Aided Civ. Infrastruct. Eng. 35 (8),
818–831. http://dx.doi.org/10.1111/mice.12534.

Sushma, M.B., Roy, S., Maji, A., 2022. Exploring and exploiting ant colony optimiza-
tion algorithm for vertical highway alignment development. Comput.-Aided Civ.
Infrastruct. Eng http://dx.doi.org/10.1111/mice.12814.

Vázquez-Méndez, M.E., Casal, G., Castro, A., Santamarina, D., 2021a. Optimization of
an urban railway bypass. A case study in A Coruña-Lugo line, Northwest of Spain.
Comput. Ind. Eng. 151, 106935. http://dx.doi.org/10.1016/j.cie.2020.106935.

Vázquez-Méndez, M.E., Casal, G., Castro, A., Santamarina, D., 2021b. An algorithm
for random generation of admissible horizontal alignments for optimum layout
design. Comput.-Aided Civ. Infrastruct. Eng. 36 (8), 1056–1072. http://dx.doi.org/
10.1111/mice.12682.

Vázquez-Méndez, M.E., Casal, G., Santamarina, D., Castro, A., 2018. A 3D model for
optimizing infrastructure costs in road design. Comput.-Aided Civ. Infrastruct. Eng.
33, 423–439. http://dx.doi.org/10.1111/mice.12350.

Zhang, H., Pu, H., Schonfeld, P., Song, T., Li, W., Wang, J., Peng, X., Hu, J., 2020.
Multi-objective railway alignment optimization considering costs and environmental
impacts. Appl. Soft Comput. 89, 106105. http://dx.doi.org/10.1016/j.asoc.2020.
106105.

http://dx.doi.org/10.1016/j.cor.2022.105764
http://dx.doi.org/10.1016/j.cor.2022.105764
http://dx.doi.org/10.1016/j.cor.2022.105764
http://dx.doi.org/10.1111/j.1467-8667.2011.00750.x
http://dx.doi.org/10.1061/(ASCE)CP.1943-5487.0000452
http://dx.doi.org/10.1016/j.trc.2016.11.019
http://dx.doi.org/10.1111/mice.12694
http://dx.doi.org/10.1111/mice.12694
http://dx.doi.org/10.1111/mice.12694
http://dx.doi.org/10.1007/s40864-019-00111-5
http://dx.doi.org/10.1016/j.cor.2013.11.005
http://dx.doi.org/10.1016/j.trc.2016.01.016
http://dx.doi.org/10.1016/S0191-2615(01)00047-9
http://dx.doi.org/10.1016/S0191-2615(01)00047-9
http://dx.doi.org/10.1016/S0191-2615(01)00047-9
http://dx.doi.org/10.1061/(ASCE)0733-947X(2007)133:2(71)
http://dx.doi.org/10.1061/(ASCE)0733-947X(2007)133:2(71)
http://dx.doi.org/10.1061/(ASCE)0733-947X(2007)133:2(71)
http://dx.doi.org/10.1061/(ASCE)0733-947X(2009)135:4(217)
http://dx.doi.org/10.1061/(ASCE)0733-947X(2009)135:4(217)
http://dx.doi.org/10.1061/(ASCE)0733-947X(2009)135:4(217)
http://dx.doi.org/10.1111/mice.12280
http://dx.doi.org/10.1111/mice.12280
http://dx.doi.org/10.1111/mice.12280
http://dx.doi.org/10.1016/j.trc.2016.05.010
http://dx.doi.org/10.4304/jsw.8.11.2967-2973
http://dx.doi.org/10.4304/jsw.8.11.2967-2973
http://dx.doi.org/10.4304/jsw.8.11.2967-2973
http://dx.doi.org/10.1111/mice.12739
http://dx.doi.org/10.1016/j.cor.2015.05.018
http://dx.doi.org/10.1016/j.cor.2015.05.018
http://dx.doi.org/10.1016/j.cor.2015.05.018
http://dx.doi.org/10.1007/s10589-019-00160-3
http://refhub.elsevier.com/S0305-0548(23)00081-3/sb19
http://refhub.elsevier.com/S0305-0548(23)00081-3/sb19
http://refhub.elsevier.com/S0305-0548(23)00081-3/sb19
http://refhub.elsevier.com/S0305-0548(23)00081-3/sb19
http://refhub.elsevier.com/S0305-0548(23)00081-3/sb19
http://dx.doi.org/10.1111/mice.12475
http://dx.doi.org/10.1111/mice.12475
http://dx.doi.org/10.1111/mice.12475
http://dx.doi.org/10.1016/j.cie.2018.01.004
http://dx.doi.org/10.1016/j.cie.2018.01.004
http://dx.doi.org/10.1016/j.cie.2018.01.004
http://dx.doi.org/10.1016/j.ejor.2015.07.039
http://dx.doi.org/10.1111/mice.12739
http://dx.doi.org/10.1061/JTEPBS.0000344
http://dx.doi.org/10.1111/mice.12839
http://dx.doi.org/10.1111/mice.12534
http://dx.doi.org/10.1111/mice.12814
http://dx.doi.org/10.1016/j.cie.2020.106935
http://dx.doi.org/10.1111/mice.12682
http://dx.doi.org/10.1111/mice.12682
http://dx.doi.org/10.1111/mice.12682
http://dx.doi.org/10.1111/mice.12350
http://dx.doi.org/10.1016/j.asoc.2020.106105
http://dx.doi.org/10.1016/j.asoc.2020.106105
http://dx.doi.org/10.1016/j.asoc.2020.106105

	An automatic method for generating multiple alignment alternatives for a railway bypass
	Introduction
	Materials and methods
	Mathematical model
	Geometrical model
	Automatic definition of major structures
	Optimal design from an economic point of view
	Automatic generation of multiple (sub)optimal solutions

	Case study
	Design criteria and prices


	Results and discussion
	Conclusions
	Data availability
	Acknowledgments
	Appendix. Randomly generation of an admissible horizontal alignment (AHA) with two (or three) curves linking two given tangent segments
	References


