2,398 research outputs found

    A study of model deflection measurement techniques applicable within the national transonic facility

    Get PDF
    Moire contouring, scanning interferometry, and holographic contouring were examined to determine their practicality and potential to meet performance requirements for a model deflection sensor. The system envisioned is to be nonintrusive, and is to be capable of mapping or contouring the surface of a 1-meter by 1-meter model with a resolution of 50 to 100 points. The available literature was surveyed, and computations and analyses were performed to establish specific performance requirements, as well as the capabilities and limitations of such a sensor within the geometry of the NTF section test section. Of the three systems examined, holographic contouring offers the most promise. Unlike Moire, it is not hampered by limited contour spacing and extraneous fringes. Its transverse resolution can far exceed the limited point sampling resolution of scanning heterodyne interferometry. The availability of the ruby laser as a high power, pulsed, multiple wavelength source makes such a system feasible within the NTF

    Subsonic finite elements for wing body combinations

    Get PDF
    Capabilities, limitations, and applications of various theories for the prediction of wing-body aerodynamics are reviewed. The methods range from approximate planar representations applicable in preliminary design to surface singularity approaches applicable in the later stages of detail design. The available methods for three-dimensional configurations are limited as inviscid solutions with viscous effects included on an empirical or strip basis

    A low complexity algorithm for non-monotonically evolving fronts

    Full text link
    A new algorithm is proposed to describe the propagation of fronts advected in the normal direction with prescribed speed function F. The assumptions on F are that it does not depend on the front itself, but can depend on space and time. Moreover, it can vanish and change sign. To solve this problem the Level-Set Method [Osher, Sethian; 1988] is widely used, and the Generalized Fast Marching Method [Carlini et al.; 2008] has recently been introduced. The novelty of our method is that its overall computational complexity is predicted to be comparable to that of the Fast Marching Method [Sethian; 1996], [Vladimirsky; 2006] in most instances. This latter algorithm is O(N^n log N^n) if the computational domain comprises N^n points. Our strategy is to use it in regions where the speed is bounded away from zero -- and switch to a different formalism when F is approximately 0. To this end, a collection of so-called sideways partial differential equations is introduced. Their solutions locally describe the evolving front and depend on both space and time. The well-posedness of those equations, as well as their geometric properties are addressed. We then propose a convergent and stable discretization of those PDEs. Those alternative representations are used to augment the standard Fast Marching Method. The resulting algorithm is presented together with a thorough discussion of its features. The accuracy of the scheme is tested when F depends on both space and time. Each example yields an O(1/N) global truncation error. We conclude with a discussion of the advantages and limitations of our method.Comment: 30 pages, 12 figures, 1 tabl

    Techniques and software tool for 3D multimodality medical image segmentation

    Get PDF
    The era of noninvasive diagnostic radiology and image-guided radiotherapy has witnessed burgeoning interest in applying different imaging modalities to stage and localize complex diseases such as atherosclerosis or cancer. It has been observed that using complementary information from multimodality images often significantly improves the robustness and accuracy of target volume definitions in radiotherapy treatment of cancer. In this work, we present techniques and an interactive software tool to support this new framework for 3D multimodality medical image segmentation. To demonstrate this methodology, we have designed and developed a dedicated open source software tool for multimodality image analysis MIASYS. The software tool aims to provide a needed solution for 3D image segmentation by integrating automatic algorithms, manual contouring methods, image preprocessing filters, post-processing procedures, user interactive features and evaluation metrics. The presented methods and the accompanying software tool have been successfully evaluated for different radiation therapy and diagnostic radiology applications

    GIST: an interactive, GPU-based level set segmentation tool for 3D medical images

    Get PDF
    technical reportWhile level sets have demonstrated a great potential for 3D medical image segmentation, their usefulness has been limited by two problems. First, 3D level sets are relatively slow to compute. Second, their formulation usually entails several free parameters which can be very difficult to correctly tune for specific applications. The second problem is compounded by the first. This paper describes a new tool for 3D segmentation that addresses these problems by computing level-set surface models at interactive rates. This tool employs two important, novel technologies. First is the mapping of a 3D level-set solver onto a commodity graphics card (GPU). This mapping relies on a novel mechanism for GPU memory management. The interactive rates level-set PDE solver give the user immediate feedback on the parameter settings, and thus users can tune free parameters and control the shape of the model in real time. The second technology is the use of region-based speed functions, which allow a user to quickly and intuitively specify the behavior of the deformable model. We have found that the combination of these interactive tools enables users to produce good, reliable segmentations. To support this observation, this paper presents qualitative results from several different datasets as well as a quantitative evaluation from a study of brain tumor segmentations

    A level set method with Sobolev Gradient and Haralick Edge Detection

    Get PDF
    Variational level set methods, which have been proposed with various energy functionals, mostly use the ordinary L type gradient in gradient descent algorithm to minimize the energy functional. The gradient flow is influenced by both the energy to be minimized and the norms, which are induced from inner products, used to measure the cost of perturbation of the curve. However, there are many undesired properties related to the gradient flows due to the 2 L type inner products. For example, there is not any regularity term in the definition of this inner product that causes non-smooth flows and inaccurate results. Therefore, in this work, Sobolev gradient has been used that is more efficient than the 2 L type gradient for image segmentation and has powerful properties such as regular gradient flows, independency to parameterization of curves, less sensitive to local features and noise in the image and also faster convergence rate than the standard gradient. In addition, Haralick edge detector has been used instead of the edge indicator function in this study. Because, the traditional edge indicator function, which is the absolute of the gradient of the convolved image with the aussian function, is sensitive to noise in level set methods. Experimental results on real images , which are abdominal magnetic resonance images, have been obtained for spleen and kidney segmentation. Quantitative analyses have been performed by using different measurements to evaluate the performance of the proposed approach, which can ignore topological noises and detect boundaries successfully

    Interactive, GPU-based level sets for 3D brain tumor segmentation

    Get PDF
    technical reportWhile level sets have demonstrated a great potential for 3D medical image seg- mentation, their usefulness has been limited by two problems. First, 3D level sets are relatively slow to compute. Second, their formulation usually entails several free parameters which can be very difficult to correctly tune for specific applications. The second problem is compounded by the first. This paper presents a tool for 3D segmenta- tion that relies on level-set surface models computed at interactive rates on commodity graphics cards (GPUs). The mapping of a level-set solver to a GPU relies on a novel mechanism for GPU memory management. The interactive rates for solving the level- set PDE give the user immediate feedback on the parameter settings, and thus users can tune three separate parameters and control the shape of the model in real time. We have found that this interactivity enables users to produce good, reliable segmen- tations. To support this observation, this paper presents qualitative and quantitative results from a study of brain tumor segmentation

    A 3D Computer-assisted Treatment Planning System for Breast Cancer Brachytherapy Treatment

    Get PDF
    Purpose Brachytherapy is an option for treatment of breast cancer in some cases. This modality requires patient-specific dosimetry based on CT simulator scans. A 3D computerassisted breast brachytherapy treatment planning system called Vision was developed and tested. Methods The brachytherapy treatment planning system used volume estimation and dose analysis with advanced 3D visualization. The patient treatment volume reconstruction was designed to ensure high-volume accuracy requirement of radioactive seed implantation procedure for this treatment. The system enables interactive placement of radioactive seeds embedded in original patient CT images with 3D display. Results The system achieved 99.73% accuracy in volume estimation measured against the true volume and is statistically significantly more accurate than current existing commercial software at the p = 0.05 level. Conclusion A virtual 3D environment was developed to perform volume measurements, seed placements, and dose distribution planning and analysis based on 2D contours on patient CT images. This system was demonstrated to be feasible and accurate in a clinical setting

    Active Mean Fields for Probabilistic Image Segmentation: Connections with Chan-Vese and Rudin-Osher-Fatemi Models

    Get PDF
    Segmentation is a fundamental task for extracting semantically meaningful regions from an image. The goal of segmentation algorithms is to accurately assign object labels to each image location. However, image-noise, shortcomings of algorithms, and image ambiguities cause uncertainty in label assignment. Estimating the uncertainty in label assignment is important in multiple application domains, such as segmenting tumors from medical images for radiation treatment planning. One way to estimate these uncertainties is through the computation of posteriors of Bayesian models, which is computationally prohibitive for many practical applications. On the other hand, most computationally efficient methods fail to estimate label uncertainty. We therefore propose in this paper the Active Mean Fields (AMF) approach, a technique based on Bayesian modeling that uses a mean-field approximation to efficiently compute a segmentation and its corresponding uncertainty. Based on a variational formulation, the resulting convex model combines any label-likelihood measure with a prior on the length of the segmentation boundary. A specific implementation of that model is the Chan-Vese segmentation model (CV), in which the binary segmentation task is defined by a Gaussian likelihood and a prior regularizing the length of the segmentation boundary. Furthermore, the Euler-Lagrange equations derived from the AMF model are equivalent to those of the popular Rudin-Osher-Fatemi (ROF) model for image denoising. Solutions to the AMF model can thus be implemented by directly utilizing highly-efficient ROF solvers on log-likelihood ratio fields. We qualitatively assess the approach on synthetic data as well as on real natural and medical images. For a quantitative evaluation, we apply our approach to the icgbench dataset
    • …
    corecore