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Abstract 
 

Variational level set methods, which have been proposed with various energy functionals, mostly use the 

ordinary 
2

L  type gradient in gradient descent algorithm to minimize the energy functional. The gradient flow is 
influenced by both the energy to be minimized and the norms, which are induced from inner products, used to 
measure the cost of perturbation of the curve. However, there are many undesired properties related to the 

gradient flows due to the 
2

L  type inner products. For example, there is not any regularity term in the definition 
of this inner product that causes non-smooth flows and inaccurate results. Therefore, in this work, Sobolev 

gradient has been used that is more efficient than the 
2

L  type gradient for image segmentation and has 
powerful properties such as regular gradient flows, independency to parameterization of curves, less sensitive to 
local features and noise in the image and also faster convergence rate than the standard gradient. In addition, 
Haralick edge detector has been used instead of the edge indicator function in this study. Because, the 
traditional edge indicator function, which is the absolute of the gradient of the convolved image with the 
Gaussian function, is sensitive to noise in level set methods. Experimental results on real images, which are 
abdominal magnetic resonance images, have been obtained for spleen and kidney segmentation. Quantitative 
analyses have been performed by using different measurements to evaluate the performance of the proposed 
approach, which can ignore topological noises and detect boundaries successfully. 
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1. Introduction 

Level Set Methods (LSMs) have been popular in the last fifteen years. Since, it is very flexible for 
adaptation to different problems and has the guarantee for solutions that are exist in Partial 
Differential Equations (PDEs). Also, numerical methods have been developed extensively by using 
Hamilton-Jacobi equations to obtain stable numerical schemes and to handle shocks. However, there 
are two important difficulties for level set based image segmentation methods. One of them is that 
the evolution of the curve has to be stopped efficiently (without leakage or under segmentation) 
when it reaches to the desired boundaries. The other difficulty is due to the contradiction between the 
implementation and the theory of the LSM associated to the representation of Level Set Functions 
(LSFs) by signed distance functions. Since LSMs do not implicitly preserve LSFs as signed distance 
functions in practice. The general solution for this problem is re-distancing (re-initialization), which is 
still a serious problem since it is not known how to re-initialize the LSF and when it should be applied 
to maintain the stability of the evolution [5]. 

Variational Level Set Methods (VLSMs) [12], [2], [1], [23], [13] have been proposed  to regularize the 
LSF as a signed distance function and hence to avoid re-initialization of the LSF. Main advantages of 
these methods are easier implementation and higher computational efficiency. For instance, the 
VLSMs in [3], [1], combine the Chan-Vese model [4] or the piecewise smoothing algorithm [4] with 
variational model to avoid re-initialization. Another proposed VLSM [12] uses a penalty term which 
penalizes deviations of LSFs from signed distance functions. The function of the penalty term has been 
improved and the diffusion rate became a bounded constant in the Distance Regularized Level Set 
Evolution (DRLSE) method [13] to maintain the signed distance property. However, the methods in [3], 
[1] can only be used for LSFs which have a specific form. The penalty term in [12] leads the diffusion 
rate to be tend to infinity and causes undesirable effects, numerical errors in some circumstances. The 
DRLSE method in [13] uses Gaussian filter to remove the effect of noise. This filter causes blurred 
edges while reducing the image noise. Also, the steepest gradient descent process in VLSMs affects 
the accuracy of segmentation results. 

Steepest gradient descent [18] is a widely used line search technique for finding a relative minimum 
or maximum of a function. Usually, the gradient descent algorithm is used to minimize a proposed 
energy functional for VLSMs in practice. The most standard way is to use 2

L  type gradient in the 
gradient descent process.  However, to use the ordinary 2

L  gradient requires strong conditions such as 
having second order derivative of the unknown functions when the chosen energy function is first 
order. Also there are several undesired properties associated to the 2

L  gradient [22]. J.W.Neuberger 
proposed to use Sobolev gradient in gradient descent algorithms [19]. Since the Sobolev gradient is 
imposed by the function space of the unknown and it is a right choice if the minimization is well-
posed. Also, Sobolev gradient is satisfied by the weak solution while the 2

L  gradient needs strong 
solution.  

Recently, different works showed that Sobolev gradient is more efficient than 2
L  gradient especially 

for image segmentation [22], [8], [24]. Sobolev gradient flows are not local that means a point of the 
curve depends on all other points on the curve. Deformation of the Sobolev gradient flow is local after 
global motions can no longer optimize the energy. Sobolev gradient based curve evolution, which 
avoids many local minima, is more global due to the different deformation of gradient flows to reach 
steady state [22]. 

In this study, the energy functional proposed in [13] has been chosen as a model and it has been 
reformulated by using the Sobolev gradient instead of the 2

L  gradient and also Haralick edge detector 
has been implemented instead of the traditional edge indicator function, which is based on Gaussian 
kernel. Since, the Gaussian filter causes blurred image edges and determination of the optimal 
standard deviation is a dilemma for image segmentation in case of unclear boundaries and noise. 
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2. Sobolev gradient in active contours 

To use Sobolev gradient flows in active contours has been firstly proposed in [22], which shows that 
the gradient flows during a contour evolution is affected by both the energy, which will be minimized, 
and the way how the norm of the perturbation of the curve is measured. A short overview about the 
Sobolev gradient with the terms from [22] is presented in this section.  

Let assume that M is a differentiable manifold and denotes a space of immersed curves in 2R . Let 

cT M be the tangent space of the manifold M at a curve c for c M . The tangent space shows valid 
smooth perturbations of curves by the function 1 2:h S R , where 1 2S R  is the circle. Also, assume 
an energy functional is given by :E M R . For a curve c M  and ch T M , the variation (or 
differentiation at c) of the energy function E in the direction h is given by  

 

0

( ) ( )
t

d
E c h E c th

dt 

   

                                                               (1)

 

Here, ( )( ) : ( ) ( )c th c th      and 1S  . Let ,
c

  is an inner product on the tangent space 
cT M  at 

c. The gradient of the energy function E is a vector field ( ) cE c T M  which satisfies that 
 
  

( ) , ( )
c

E c h h E c   
                                                                   (2)

 

for all .ch T M  The proposed inner products in [22] are 

i) 0
0

1
, : ( ) ( )

L

H
h k h s k s ds

L
   

ii) 0 0

2 ( ) ( ), : , ,n

n n n

H H H
h k h k L h k   

iii) 
0

2 ( ) ( ), : ( ). ( ) ,n

n n n

H H
h k avg h avg k L h k   

where , ck h T M , 0   and L is the length of curve c. The term ( )avg h  is defined as 
  

0

1
( ) : ( )

L

avg h h s ds
L

                                                                      (3)
 

and all the derivatives are computed with respect to arclength parameter. The proposed inner 
products use scaling factors which depend on the length. Therefore, rescaling of the curve does not 
affect the inner products and their corresponding norms does not change, which is a desired property. 

Definition of inner products on the tangent space cT M  is important due to the reduced distance 
between any two points on M. Since, the commonly used 2L  type inner product is pathological that 
means the distance between any two points is equal to zero [14]. 

To show the relation between the Sobolev inner product and the 2L  type inner product, let define a 
differential operator that consists of two elements;   and two partial derivatives of   as 

  

D





 
  

                                                                                (4) 

where 1,2 2 3: ( ) ( )D H L   . The inner product on 1,2 ( )H   with 1,2, ( )k h H   is written as 
 

                        
1,2 2 2 2 3

( ) ( ) ( )
, , ,

H L L
h k hk h k Dh Dk

  
    

                         (5) 
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3. Comparison of Sobolev steepest descent and Euclidean steepest descent 

Gradients are based on Sobolev space instead of Euclidean space in Sobolev steepest descent 
technique. Descent based on different spaces causes the required number of iterations and also 
computation time to be different. Table 1 [15] presents the difference between Sobolev gradient and 
Euclidean gradient based steepest descent process for a simple linear differential equation that is 
u u  on the interval [1]. Accuracy is computed by 1k ku u    . The value of Maximum Absolute 
Error (MAE) is computed by 

 

 max : 1,2,3.... 1true approaximate

k kMAE u u k n                                            (6) 
 

The value of Average Absolute Error (AAE) is computed by 
 

1

1

1

1

n
true approaximate

k k

i

AAE u u
n





 

                                                                  (7) 

 Table 1. Comparison of Sobolev and Euclidean Gradients [15]. 

Gradient 
Type 

  
Number of 

division 
Number of 
iterations 

Required 
Time(second) 

MAE AAE 

Euclidean 0,01 100 1845 3 0,92 0,59 
Sobolev 0,01 100 4 1 0,0074 0,0056 

Euclidean 0,0001 1000 1477 27 0,092 0,066 
Sobolev 0,0001 1000 6 1 0,00001 0,000087 

 

The solution can be found by minimizing the function 
2

0u cE  for Euclidean Steepest descent 

and the function 
2

0 s
u cE  for Sobolev steepest descent. Since all solutions are at the form c*E 

where ( ) tE t e  on [0,1].  

Sobolev gradient based descent requires less computation time than Euclidean gradient based 
descent according to the values in Table1. Also, Euclidean gradient based descent requires more 
iteration for convergence than Sobolev gradient based descent when the number of division is 
increased from 100 to 1000. When we look at the computed error values, it is observed that Sobolev 
gradient yields error than Euclidean gradient. Therefore, Sobolev gradient based steepest descent is 
more efficient and it gives more accurate results in shorter time than Euclidean gradient based 
steepest descent method. 

 

4. The traditional edge indicator function and Haralick edge detection 

The traditional edge indicator that allows the level set evolution to stop at the boundaries in LSMs 
is a positive, regular and decreasing edge stopping function [20], [16], [2], [21], [12], [13] which is 
written as 

 

                                             2

1

1 *
g I

G I

 
 

                                                                     (8) 

where G is a Gaussian kernel with the standard deviation σ. The LSF stops when the value of the 
edge indicator function approaches to zero. In other words, the contour will be halt where the 
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gradient of the image is big enough for making 0g  . However, to use the traditional edge indicator 
function g  

is not appropriate for many images. Since, the Gaussian filter can not preserve edge 
information while removing the noise effect. Therefore, it causes blurred image edges. To choose a 
small value of standard deviation may lead to sensitivity to noise. In this case, the curve evolution will 
not be stable. To choose a big value of standard deviation may cause boundary leakage problem, 
which results inaccurately segmented image. Therefore, determination of the optimal standard 
deviation is a dilemma for image segmentation in case of unclear boundaries and noise. This problem 
can be solved by using a different function instead of the traditional edge stopping function. 

Many alternative solutions have been used in the literature instead of the traditional edge stopping 
function. For instance, the stopping term in C-V model [4] is based on a result which is obtained from a 
segmentation method proposed by Mumford-Shah algorithm [17]. This segmentation method uses 
intensity values from different region for energy minimization. Liu et al [13] proposed a method which 
uses the differences between estimated and actual probability densities of intensity values from 
different regions. However, these methods are not successful for images with low contrast and 
unclear boundaries. Some edge based level set methods have been proposed to use a balloon force to 
expand or shrink the active contour. However, to design the balloon force is not easy. Because, the 
contour passes over weak edges if the force is large. The active contour might not pass through the 
narrow region of the object, if the force is not large enough. Therefore, Haralick edge detection has 
been proposed in this work. 

Haralick edge detection [6] is a well known edge detection approach which describes the edge as a 
location where the value of the gradient magnitude of the image is maximized along the image 
gradient direction. In other word, Haralick edge detector detects the positions in the image where 
| |I  has a local maximum value along the gradient orientation. The gradient direction vector field for 
a gray level image I(x,y) is identified as 

                                               

{ , }
( , )

| | | |

x yI II
x y

I I


  

                                                            (9)
 

and the orthogonal vector field is written as 

 ,
( , )

y xI I
x y

I





                                                                    (10) 

Since 0   . The Haralick edge detector, I , detects edges where I is greater than a threshold 

and 0I   , which is the second derivative of the image along the gradient direction and defined as  

2 0I I I   
                                                                      (11) 

Here, the first term 2I  is the Laplacian form of the image,  I
I

I I div I 


     and   is the 

curvature [9]. The Haralick edge detector might be thought as optimal edge contour whose normal 
best align with the image gradient field. Also it satisfies a topological uniformity measure inside a 
closed contour [10-11]. 
 
5. The proposed VLSM 

In this paper, image segmentation by using a VLSM that is based on both Sobolev gradient and 
Haralick edge detector has been proposed. For this purpose, the DRLSE [13], which has been recently 
published and mostly known method, has been chosen as a model in this work. The Haralick operator 
has been implemented to avoid blurring effects of the Gaussian filter in the DRLSE. The level set 
evolution in the DRLSE method was formulated with 

2
L  type inner product for the gradient definition 
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by the authors. In this work, the Sobolev gradient has been used instead of the standard 
2

L  type 
gradient for both the regularization term and the external energy to obtain better convergence rate 
for the problem of minimizing energy functional.  

 5.1. Obtaining the Sobolev gradient of the energy functional used in the DRLSE method 

The Gateaux derivative of a given energy functional ( )E  is written by 
 

0

( ) ( )
( ) lim

E h E
E h



  




  
    

 
  for 1

0( )h H 
                                     (12) 

The energy functional in the DRLSE method (Li et al 2010) is 
 

( ) ( ) ( ) ( )p g gE R L A                                                             (13) 

where  ,   and  are constant coefficients and g  is the traditional edge indicator function. ( )pR   

is a regularization term defined as  ( )
p

R p dx 


   with a potential function  : 0,p   . The 

term ( )gL   is the length of the active contour and expressed as ( ) ( )
g

L g dx   


   by using the 

dirac delta function ( )  . The term ( )gA   is the area inside the contour computed with the Heaviside 

function ( )H   as ( ) ( )
g

A gH dx 


  . 

 
The Gateaux derivative of the energy functional given in (13) at  is written as  
 

  ( )
, ,( ) ( ) ( )

p g
h hE h g h vg h



 

 

 


        



  

 

                            (14) 

Integration by parts has been applied to the above equation (14) and it has been obtained that 
 

     ( ) ( ) ( )
p g

E h div div g vg h   

  
         

  

 

         
                  (15) 

with 0   on the boundary of  . Therefore, the gradient of the energy has been obtained as 
 

     ( ) ( ) ( )
p g

E div div g vg   

  
         

  

 
                                      (16) 

    ( ) ( ) ( )
p gE div div vg

 

  
      

  

 
                                                (17) 

( )E  is a bounded linear functional on 
2( )L   for 

2,2( )H  . Therefore, there is a unique 

gradient 
2( ) ( )E L    according to the Reisz representation theorem, such that 

 

                                                    
2 ( )

( ) ( ),
L

E h E h 


  
                                                                  

 (18) 
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Also, ( )E   is a bounded linear functional on 1,2 ( )H   for 
1,2( )H  . Therefore, there is a unique 

gradient 1,2( ) ( )sE H   , which is called as Sobolev gradient, according to the Reisz 

representation theorem, such that 
 

1,2 ( )
( ) ( ),s H

E h E h 


                                                                    (19) 

The following equations can be written by using (18) and (19) as 

 

 

1,2 2

22 3

( ) ( )

( )( )

( ), ( ),

( ) , ( ),

s H L

s LL

E h E h

D E Dh E h

 

 

 



  

  
 

                                                    22 ( )( )
* ( ) , ( ),s LL

D D E h E h 


                                               (20) 

Here,  * ( ) ( )sD D E E     or  
1

( ) * ( )sE D D E 


    for all 
1,2( )h H  , where 

 * , .
I

D D I I   


 
 
                                                             (21)

 

Since,  ,D I    is the adjoint of D.

 

The result can be extended to 
1,2( )H   by continuity 

since 
2,2( )H   is a dense space of 

1,2( )H  . Therefore, the Sobolev gradient of the energy functional 

is, 

                                                     
1

( ) ( )sE I E 


    
                                                           (22) 

with the boundary condition 
 

0
n

  






 
 on    and the initial condition 0(0, , ) ( , )x y x y  . 

5.2. Obtaining the level set evolution equation 

The Sobolev gradient has been used in the variational level set model for both regularization term 
and the external energy. The level set evolution equation used in this study is written as 

 
 1

1 ( ) ( )
p g

div div vg
t

 

 
     

 


      

                
                         (23) 

which is computed by using a fast Poisson solver [7]. Here, g  is the image that is obtained after the 
Haralick edge detection. Finite difference scheme has been used to obtain numerically an approximate 
solution of the equation [23].   
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6. Results 

Experimental results (Figure 1.d,h) have been obtained from real images (Figure 1.a,e), which have 
been chosen as T2 weighted abdominal magnetic resonance images. Since, spleen and kidney 
segmentation from these images is difficult due to in-homogen intensity values, unclear boundaries, 
noise and partial volume effects. 

 

    
 

    

Figure 1. Original image (a, e); Initial closed curves (b, f); Results of the proposed method (c, g);  
Segmented images (d, h) 

 
Results of the original DRLSE method (see Figure 2) have been obtained by using the same images 

(Figure 1.a, e) and the initial closed curves (Figure 1.b, f) for comparative evaluation. The standard 
deviation of the Gaussian filter has been chosen as 3, which has been observed as the most optimal 
value for the experimental abdominal data set. All other weight values in the DRLSE model, which are 
the coefficient for the length, area and the distance regularization term, have been chosen as the 
same with the coefficients that have been used for the proposed approach. 

 

         

Figure 2. The results of the DRLSE method (a, b) 
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7. Conclusion 

A variational level set based image segmentation approach by using both the Sobolev gradient and 
Haralick edge detection has been proposed in this work. Experimental results have been obtained 
from abdominal magnetic resonance images for spleen and kidney segmentation. These results have 
been evaluated and quantitative analyses have been performed by using the reference images shown 
in Figure 3.  

 

       

Figure 3. Reference images (a,b) 
 
Table 2 presents numeric values of performance evaluations for the results obtained by the 

proposed approach and the original DRLSE method in terms of accuracy, sensitivity, specificity and 
also required processing time.  

Table 2. Quantitative analyses for the proposed approach and the original DRLSE method 

Method Results 
In percentage 

Required time  
(in second) Sensitivity Specificity Accuracy 

Proposed 
Method 

Spleen Image 
(Figure 1.d) 

94.5719 99.8863 99.7803 7.460 

Kidney Image 
(Figure 1.e) 

81.0139 99.9535 99.6628 10.048 

DRLSE 

Spleen Image 
(Figure 2.a) 

95.3670 99.7624 99.6747 264.800 

Kidney Image 
(Figure 2.b) 

72.8231 99.8866 99.4711 116.919 

 

Preliminary results, the quantitative values can be seen in Table 2, show that the proposed 
segmentation approach gives successful results for spleen and kidney segmentation from magnetic 
resonance images in shorter time than the DRLSE method. Furthermore, one of the advantages of the 
method proposed, is that is not necessary to try to find an optimal standard deviation value.  
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