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Abstract. Segmentation is a fundamental task for extracting semantically meaningful regions
from an image. The goal of segmentation algorithms is to accurately assign object labels to each
image location. However, image-noise, shortcomings of algorithms, and image ambiguities cause un-
certainty in label assignment. Estimating the uncertainty in label assignment is important in multiple
application domains, such as segmenting tumors from medical images for radiation treatment plan-
ning. One way to estimate these uncertainties is through the computation of posteriors of Bayesian
models, which is computationally prohibitive for many practical applications. On the other hand,
most computationally efficient methods fail to estimate label uncertainty. We therefore propose in
this paper the Active Mean Fields (AMF) approach, a technique based on Bayesian modeling that
uses a mean-field approximation to efficiently compute a segmentation and its corresponding uncer-
tainty. Based on a variational formulation, the resulting convex model combines any label-likelihood
measure with a prior on the length of the segmentation boundary. A specific implementation of
that model is the Chan–Vese segmentation model (CV), in which the binary segmentation task is
defined by a Gaussian likelihood and a prior regularizing the length of the segmentation boundary.
Furthermore, the Euler–Lagrange equations derived from the AMF model are equivalent to those of
the popular Rudin-Osher-Fatemi (ROF) model for image denoising. Solutions to the AMF model
can thus be implemented by directly utilizing highly-efficient ROF solvers on log-likelihood ratio
fields. We qualitatively asses the approach on synthetic data as well as on real natural and medical
images. For a quantitative evaluation, we apply our approach to the icgbench dataset.

Key words. Segmentation, mean-field approximation, Rudin-Osher-Fatemi model, Chan-Vese
model

AMS subject classifications.

1. Introduction. Image segmentation approaches rarely provide measures of
segmentation label uncertainty. In fact, most existing and probabilistically-motivated
segmentation approaches only compute the maximum a posteriori (MAP) solution [34,
35, 8, 20, 44]. Using these models to segment ambiguous boundaries is troublesome
especially for applications where confidence in object boundaries impacts analysis.
For example, many radiation treatment plans base dose distribution on the bound-
aries of tumors segmented from medical images with low contrast [37]. This can be
problematic, as segmentation variability can have a substantial effect on radiation
treatment; Martin et al. [37] report that such variability caused mean observer tumor
control probability (i.e., the probability to control or eradicate a tumor at a given
dose) to range from (22.6 ±11.9)% to (33.7 ± 0.6)% between six participating physi-
cians in a study of intensity-modulated radiation therapy (IMRT) of 4D-CT-based
non-small cell lung cancer radiotherapy. The precision of the planning could be im-
proved around highly-confident tumor boundaries [37, 30] thereby reducing the risk of
damaging healthy tissue in those areas. As significant information about label uncer-
tainty is contained in the posterior distribution, it is natural to go beyond determining
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a MAP solution and instead to either compute the posterior distribution itself or a
computationally efficient approximation.

This paper develops such a method for an efficient approximation of the posterior
distribution on labels. Furthermore, it connects this method to the Rudin-Osher-
Fatemi (ROF) model for image-denoising [51, 57, 3] and previously existing level-set
segmentation approaches [42], in particular the Chan-Vese segmentation model [15].
Due to these connections we can (i) make use of the efficient solvers for the ROF model
to approximate the posterior distribution on labels and (ii) compute the solution to the
Chan-Vese model through the MAP realization of our approximation to the posterior
distribution, i.e., our model is more general and subsumes the Chan-Vese model. In
contrast to the implicit style of active-contour methods that represent labels by way
of zero level-sets, such as the classical formulation of the Chan-Vese model, we use
a dense logit (“log odds”), representation of label probabilities. This is akin to the
convex approaches for active contours [2], but in a probabilistic formulation.

1.1. Motivations. Beyond optimal labelings, posterior distributions on label-
ings offer some advantages. For example, in many instances, one wishes to obtain
information about segmentation confidence; or in change detection, distributions can
help to determine whether an observed apparent change may be due to chance. Fur-
thermore, probabilistic models on latent label fields can be useful for constructing
more ambitious systems that, e.g., perform simultaneous segmentation and atlas reg-
istration [49]. However, the computation of posterior distributions is typically costly.
Conversely, the computation of deterministic segmentation results, as for example by
the popular active-contour approaches, is inexpensive and has shown to be an effective
approach. Hence, we were motivated to merge both technologies, to obtain an active-
contour inspired segmentation approach capable of estimating posterior distributions
efficiently.

In previous work [50], we described an Active Mean Fields (AMF) approach to im-
age segmentation that used a variational mean field method (VMF) approach along
with a logit representation to construct a segmentation system similar to the one
described here. This method empirically generated accurate segmentations and con-
verged well, but used a different, and more awkward, approximation of the expected
value of the length functional. In this present work, we use a linearization approach
via the Plefka approximation. Using this approximation has profound consequences
as it allows to make connections to the Chan-Vese [15] segmentation model and the
ROF denoising model [51] in the continuous space. This connection in turn makes
possible the efficient implementation of the AMF model through approaches used for
ROF denoising. Hence, the overall model is convex, easy to implement and fast.
Furthermore, we show good approximation properties in comparison to the “exact”
distribution.

1.2. Contributions. The main contributions of this article are:
• It derives an AMF approach that allows a computationally efficient estima-

tion of the posterior distribution of the segmentation label map based on the
VMF approximation for binary image segmentation regularized via a bound-
ary length prior.

• It establishes strong connections between the proposed AMF model, active-
contour models and total-variation (TV) denoising. In particular, the model
retains the global optimality of convex active-contours while estimating a
level-set function that has a direct interpretation as an approximate posterior
on the segmentation. This is in contrast to level-set techniques which use the
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zero level-set only as a means for representing the object boundary with no
(probabilistic) interpretation of the non-zero level-sets.

• It demonstrates how the Rudin-Osher-Fatemi (ROF) TV denoising model can
be used to efficiently compute solutions of the AMF model. Hence, given the
widespread availability of high-performance ROF-solvers, the AMF model is
very simple to implement and will be immediately usable by the community
with little effort.

1.3. Background. The earliest and simplest probabilistic image segmentation
approaches frequently used pixel-wise independent Maximum Likelihood (ML) or
MAP classifiers [56], that could be as simple as image thresholding. Better per-
formance, in the face of noise, motivated the use of regularization, or prior proba-
bility models on the label fields that discouraged fragmentation [4], leading to the
wide-spread application of Markov Random Field (MRF) models [28, 59]. Image seg-
mentation with MRF models was initially thought to be computationally complex,
which motivated approximations, including the mean field approach from statistical
physics [31, 17]. Moreover, recently, fast solvers have appeared using graph-cuts, belief
propagation or linear programming techniques that yield globally optimal solutions
for certain energy functions [54].

Typically, the segmentation problem is posed as the minimization of an energy
or negative log-likelihood that incorporates an image likelihood and a regularization
term on the boundaries of segmented objects. This regularization may be specified
either: (i) directly on the boundary (explicitly as a parametric curve or surface, or
implicitly through the use of level-set functions); or (ii) by representing objects via
indicator functions, where discontinuities in those functions identify boundaries. The
direct boundary representation is attractive because it reduces complexity as only
objects of co-dimension one need to be dealt with (i.e., a curve in 2D, a surface in 3D,
etc.). The price for this reduction in complexity is that, usually, minimization becomes
non-convex, and hence can get trapped in poor local minima in the absence of good
initializations. In the snakes approach [32], a popular example of explicit boundary
representation, the boundary curve represented by control points is evolved such that
it captures the object of interest (for example, by getting attracted to edges) while
assuring regularity of the boundary by penalizing rapid boundary changes through
elasticity and rigidity terms. Although computationally efficient, explicit parametric
representations cannot easily deal with topological changes and have numerical issues
due to their fixed object parameterization (e.g. when an initial curve grows or shrinks
drastically). Furthermore, though not an intrinsic problem of explicit parameteri-
zations, such methods are typically not geometric, making evolutions dependent on
curve parameterizations.

In contrast, level-set representations [42, 36] of active-contour methods [10, 33]
do not suffer from these topological and parameterization issues. These methods use
implicit representations of the label-field, where an object’s boundary is, for example
represented through the zero level-set of a function. A parametric boundary repre-
sentation is evolved directly, for example by moving its associated control points. For
a level-set representation the level-set function is evolved, which indirectly implies an
evolution of the segmentation boundary. Specifically, an evolution equation is imposed
on the level-set function such that its zero level-set moves as desired. As the level-set
function is (by construction) either strictly positive or negative (depending on con-
vention used) inside the object and strictly negative or positive on the outside of the
object, a labeling can be obtained by simple thresholding. Level-set approaches for
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image segmentation make use of advanced numerical methods to solve the associated
partial differential equations [42, 53]. To assure boundary regularity, segmentation
energies typically penalize boundary length or surface area.

While initial curve and surface evolution methods focused on energy minimiza-
tion based on boundary regularity and boundary misfit, later approaches such as the
Chan-Vese model [15], added terms that encoded statistics about the regions inside
and outside the segmentation boundary. Such region-based models can be as simple as
homoscedastic (i.e., same variance) Gaussian likelihoods with specified (but distinct)
means for foreground and background respectively, as in the Chan-Vese case. They
can also be much more complex such as trying to maximally separate intensity or fea-
ture distributions inside and outside an object [26]. Overall, a large variety of region-
based approaches exist, providing great modeling freedom [20]. While region-based
models are less sensitive to initialization, they are still non-convex when combined
with weighted curve-length terms for regularization. Hence, a global optimum cannot
be guaranteed by numerical optimization for such formulations. The dependency on
curve and surface initializations popularized the formulation of energy minimization
methods which can find a global energy optimum. One such approach is to refor-
mulate an energy minimization problem as a problem defined over an appropriately
chosen graph.

In the context of image segmentation, the idea is to create a graph with added
source and sink nodes in such a way that a minimum cut of the graph implies a variable
configuration which minimizes the original image segmentation energy [7]. For a
large class of binary segmentation problems, these graph-cut approaches allow for the
efficient computation of globally optimal solutions through max-flow algorithms [34].
In particular, discrete versions of the active-contour and Chan-Vese models (with fixed
means) can be formulated. To avoid computing trivial solutions for the boundary-only
active contours, graph-cut formulations add seed-points, specifying fixed background
and foreground pixels or voxels (in 3D). While conceptually attractive, graph-cut
approaches suffer from the need to build the graphs and the necessity to specify
discrete neighborhood structures which may negatively affect the regularity of the
obtained solution by creating so-called metrication artifacts.

Recently, the focus has shifted away from level-set and graph representations to
formulations of active contours and related models by means of indicator functions [2,
8] defined in the continuum and allowing for convex formulations. These methods are
closely related to segmentation via graph-cuts, but avoid the construction of graphs
and can alleviate metrication artifacts. A key insight here is that the boundary-length
or area term can formulated through the total variation of an indicator function.
This regularization formulation becomes convex when followed by relaxation of the
indicator function to the interval [0, 1]. Hence these approaches strike an attractive
balance between Partial Differential Equation (PDE)-based level-set formulations and
the global properties of graph-cut methods. As they are specified via PDEs, highly
accurate and fast implementations for these solvers are available [47]. As these convex
formulations make use of TV terms, they are conceptually related to TV image-
denoising. The use of TV regularization for denoising was pioneered by Rudin, Osher
and Fatemi (the ROF model [51]). The ROF model uses quadratic (i.e., `2) coupling to
the image intensities and TV for edge-preserving noise-removal [9]. Approaches with
`1 coupling yielding a form of geometric scale-space have also been proposed [13].
As we will see, our proposed approach will be closely related to these modern TV
regularization and denoising approaches.
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Segmentation approaches based on energy-optimization as discussed above typ-
ically either have a probabilistic interpretation (as negative log-likelihoods) or have
been explicitly derived from probabilistic considerations. The reader is referred to
Cremers et al. [20] for a review of recent developments in probabilistic level-set seg-
mentation. All these techniques, while probabilistic in nature, seek optimal labels and
do not directly provide information about the posterior distribution or uncertainty in
their solutions. In contrast, our proposed AMF approach will approximate posterior
distributions from which one can infer a segmentation and corresponding uncertainty.

1.4. AMF Segmentation Approach. AMF segmentation is a Bayesian ap-
proach, which results in a posterior distribution on the label map. The AMF ap-
proach combines explicit representations of label likelihoods with a boundary length
prior. As we will show, our approach makes strong connections to ROF-denoising,
and convex active-contour as well as probabilistic active-contour formulations.

In prior work, Monte-Carlo approaches have been used to characterize posterior
distributions on segmentations, which require sampling [24, 18, 45]. In addition, the
Monte-Carlo approach is quite general about statistical modeling assumptions so that
it could be applied to the likelihood and regularity terms of our segmentation tasks.
Approximations are then only caused by the sampling. A potential drawback of such
a Monte-Carlo approach is that an accurate estimation might require the generation
of a large number of samples, which can be time consuming.

In contrast to the Monte-Carlo approach, our mean-field approximation is based
on a factorized distribution that is quick to compute, but which is a relatively severe
approximation. A potential drawback of our method is that samples drawn from the
approximated posterior can have an un-natural fragmented appearance. However,
our experimental results reveal that the approximation is surprisingly accurate (in
terms of correlation of the posterior probabilities and the segmentation area), when
compared to the exact model using much slower Gibbs sampling.

In summary, the primary advantages of our approach are speed, simplicity, and
leverage of existing convex solver technology. We show in Section 3.2 that using
ROF-denoising on the logit field of label probabilities results in a “denoised” logit
transform from which a label probability function can easily be obtained through
a sigmoid transformation. Given an ROF solver, the AMF model can thus be
implemented in one line of source-code. Furthermore, the AMF model provides
a good approximation of the posterior of the segmentation under a curve-length
prior as we experimentally show in Section 5.3.

1.5. Structure of the Article. In Section 2, we specify a discrete-space proba-
bilistic formulation of segmentation with the goal of finding the posterior distribution
of labels, given an input image. We use the VMF approach, along with a linearization
approximation that simplifies the problem. This results in an optimization problem
for determining the parameters of an approximation to the posterior distribution on
pixel labels. In the style of Chan and Vese [15] and many others, we shift from discrete
to continuous space facilitating use of the calculus of variations for the optimization
problem, yielding the Euler-Lagrange equations for the AMF model.

In Section 3, we show that the AMF Euler-Lagrange equations for the zero level-
set correspond to those of a special case of the Chan-Vese model [15], and that the
AMF “approximate posterior” has the same mode, or MAP realization, as the exact
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posterior distribution. Subsequently we show that the AMF Euler-Lagrange equations
have the same form as those of the ROF model of image denoising, and we discuss
methods that may be used for solving AMF.

Section 4 describes other important properties of AMF. We show that for a one-
parameter family of realizations, the approximated and exact posteriors agree ratio-
metrically, and we explore their agreement for more general realizations. In addition,
we show that the AMF problem is convex, and is unbiased in a particular sense.

Section 5 shows the experimental results on examples that include intensity am-
biguities. It also demonstrates the quality of the AMF in approximating the true
posterior via Gibbs sampling. Furthermore, Section 5 discusses AMF results for real
ultrasound images of the heart, the prostate, a common test image in computer vision,
and on a large collection of images from the icgbench segmentation dataset [52].

Finally, Section 6 concludes with a summary and an outlook on future work.
Detailed derivations of the approximation properties can be found in the appendix.

2. Active Mean Fields (AMF). This section introduces the basic discrete-
space probabilistic model (Section 2.1), that includes a conventional conditionally
independent likelihood term and a prior that penalizes the boundary length of the
labeling. The VMF approach is used (Section 2.2), along with a Plefka approximation
(Section 2.3), to construct a factorized distribution that, given image data, approx-
imates the posterior distribution on labelings. The resulting optimization problem
for determining the parameters of the variational distribution has a KL-divergence
data attachment term and a TV regularizer. The objective function is converted to
continuous space (Section 2.4), yielding the Euler-Lagrange equations of the AMF
model (Section 2.5), that involve logit label probabilities and likelihoods along with
a curvature term.

In the following sections, we use upper-case P and Q to represent probability
mass functions and lower-case p and q to represent probability density functions.

2.1. Original Probability Model. Define the space of images as a compact
domain 1 X ⊂ R2 indexed by x ∈ R2 and let IX , {i : xi ∈ X} denote the indices
of the lattice of image pixels. Furthermore, Z denotes a binary random field defined
on the pixel lattice whose realizations z are the binary labelings of a real-valued
image y on the pixel lattice; given the image pixel index i ∈ IX , zi and yi are the
corresponding quantities specific to pixel xi ∈ X . For convenience, we write p(yi|h) ,
p(yi|zi = h) with h ∈ {0, 1}, where the definition of p(yi|zi) is problem specific and
is assumed to be given (for example, specified parametrically or obtained through
kernel density estimation on a given feature space; we will not address this issue here).
Now, if we make the usual assumption that the likelihood term, i.e., the probability
density of observing intensities conditioned on labels, is conditionally independent
and identically distributed (iid), i.e.

p(y|z) =
∏
i∈IX

p (yi | zi) ,(2.1)

1Our theory also holds for higher dimensions, i.e., X ⊂ Rn. We discuss our approach in R2 for
simplicity and hence talk about pixels. In 3D for example, we would deal with voxel grids and we
would need to compute a 3D variant of total variation, but the overall results will hold unchanged.
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then the corresponding log-likelihood, defined with respect to the logit transform of
the pixel-specific image likelihood

ψi , ln
p(yi|1)

p(yi|0)
,(2.2)

is

ln p(y|z) =
∑
i∈IX

ln p (yi | zi) =
∑
i∈IX

ziψi + ln p(yi|0).(2.3)

Next, we apply a prior that penalizes the length L(z) of the boundaries of the
label map,

P (z) ∝ exp(−λL(z)).(2.4)

Here, λ ∈ R+ is a constant. The larger λ the more irregular segmentation boundaries
are penalized and therefore discouraged. We defer discussion of the length functional
L(·) to Section 2.4.

By Bayes’ rule the posterior probability of the label map given the image is

P (z|y) ∝ p(y|z)P (z)(2.5)

so that

lnP (z|y) =
∑
i∈X

ziψi + ln p(yi|0) − λL(z) + const .(2.6)

Here the constant is equal to the log-partition function of the prior distribution. This
constant is not easily computed, as it requires a sum over all of the configurations of
z.

2.2. Variational Mean-Field Approximation. As mentioned above, the par-
tition function cannot easily be computed. In the variational mean-field (VMF) ap-
proach [58], we approximate the posterior distribution P via a simpler variational
distribution Q by minimizing the distance between P and Q (here, in a Kullback-
Leibler sense – see details below). The explicit computation of the integrals involved
in the partition function (for continuous variables) can thereby be avoided. Specifi-
cally, the mean-field method approximates the joint distribution of a countable family
of random-variables as a product of univariate distributions. The VMF approximation
is widely used in machine learning and other fields [58].

For the binary segmentation problem, we define the mean-field approximation
Q(z; θ) of the posterior distribution P (z|y) as a field of independent Bernoulli random
variables zi defined on the lattice i ∈ IX with probability θi, which constitute the
random field Z:

Q(z; θ) ,
∏
i∈IX

θzii (1− θi)1−zi(2.7)

= exp

{∑
i∈IX

[ziφi + ln (1− θi)]

}
,(2.8)
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where φi , ln θi
1−θi . Next, Q(z; ·) is parameterized so that it minimizes the KL-

divergence with respect to the original probability model, i.e.,

θ̂∗, arg min
θ
KL[Q(z; θ)||P (z|y)](2.9)

= arg min
θ
EQ [lnQ(z; θ)− lnP (z|y)](2.10)

= arg min
θ
EQ [lnQ(z; θ)− ln p(y|z) + λL(z)] .(2.11)

With minor abuse of KL-divergence notation:

(2.12) θ̂∗ = arg min
θ
KL[Q(z; θ)||p(y|z)] + EQ [λL(z)] .

In other words, the VMF approximation selects the parameters of the factorized vari-
ational distribution Q(Z; θ) such that (i) local image likelihood information, p(y|z),
is captured while at the same time (ii) considering the expected value of the segmen-
tation boundary length (which is a global property that regularizes the solution).

2.3. Plefka’s Approximation. Although minimizing the KL-divergence term
in Eqn. (2.12) with respect to θ is relatively straightforward, minimizing EQ [L(z)]
is generally not as it entails a sum over all configurations of z. In the mean-field
literature, difficult expectations of functions of random-fields have been approximated
using Plefka’s method [46].

Noting that EQ [z] = θ according to Eqn. (2.7) and that the first order Taylor ex-
pansion of the curve length function with respect to z∗ is L(z) ≈ L(z∗) + (z− z∗) · ∇L(z∗),
then Plefka’s approximation states that

(2.13) EQ [L(z)] ≈ L(z∗) + (EQ [z]− z∗)∇L(z∗) ≈ L(EQ [z]) = L(θ)

so that an approximation of Eqn. (2.12) is

θ̂, arg min
θ
KL[Q(z; θ)||p(y|z)] + λL(θ),(2.14)

where θ̂∗ ≈ θ̂.
Assuming L(·) is convex, then the Plefka approximation of Eqn. (2.14) is a lower

bound to the original objective function of Eqn. (2.12) as Jensen’s inequality states
EQ [L(z)] ≥ L(EQ [z]) = L(θ). While this is not directly useful for our purposes, there
has been some work on “converse Jensen inequalities” [23] that may provide useful
bound relationships. In the end, approximations are justified by the quality of their
results, such as the favorable properties highlighted in Section 4.

2.4. Continuous Variant of Variational Problem. In the previous section,
we showed how the problem of computing the posterior distribution of a label-field un-
der an (unspecified) boundary-length prior results in solving the optimization problem
of Eqn. (2.14). To solve this problem using computationally efficient PDE optimiza-
tion techniques, we first replace the random-field defined on a discrete lattice by one
defined on continuous space.

Expanding Eqn. (2.14) by using the definition of the log likelihood (Eqn. (2.3))
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and of Q(·, ·) (Eqn. (2.8)) we get:

θ̂ = argmin
θ

EQ

[∑
i∈IX

ziφi + ln (1− θi)− ziψi − ln p(yi|0)

]
(2.15)

+ λL(θ)(2.16)

= argmin
θ

∑
i∈IX

[θiφi + ln (1− θi)− θiψi − ln p(yi|0)] + λL(θ).(2.17)

= argmin
θ

∑
i∈IX

[θiφi + ln (1− θi)− θiψi] + λL(θ).(2.18)

To solve the above equation by extending θ to the continuum, the logit transform
of the likelihood is now defined as

(2.19) ψ(x) , ln
p(y(x)|z(x) = 1)

p(y(x)|z(x) = 0)
,

where x denotes the location (i.e., the continuous equivalent of the index i ∈ IX ),
and y(x), z(x), and θ(x) are the corresponding values of y, z, and θ at location x.
Similarly, the continuous variant of the logit transform of the variational probability
function, θ(x), is defined as

(2.20) φ(x) , ln
θ(x)

1− θ(x)
.

Now, if we denote with v the area of a lattice element and replace the summation
over the lattice with integration over X , then Eqn. (2.18) becomes in the continuous
space,

θ̂ = argmin
θ

v−1 ·
(∫
X
θ(x)(φ(x)− ψ(x)) + ln (1− θ(x)) dx

)
+ λL(θ) .(2.21)

By the co-area formula [5], the length of the boundaries of a binary image defined
on the continuum is equal to its total-variation:

L(z) = TV[z(x)] =

∫
X
||∇z(x)||2 dx(2.22)

where || · ||2 is the 2-norm and ∇z is the (weak) gradient of z.2

Therefore putting it all together, the continuous variant of the variational problem
is:

(2.23) θ̂ = argmin
θ

∫
X
θ(x)(φ(x)− ψ(x)) + ln (1− θ(x)) + vλ||∇θ(x)||2 dx,

which we call the Active Mean Field approximation. Note, that φ(x) depends on θ(x)
according to Eqn. (2.20).

2∇(z) is defined as
∫
X 〈∇z, η〉dx = −

∫
X 〈z,∇·η〉 dx for any test function η : X → R2; in the case

of z(x) being an element of a convex set, L(z) is convex.
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2.5. Euler-Lagrange (EL) Equations. Defining the curvature operator,

κ(θ(x)) , ∇ ·
(
∇θ(x)

‖∇θ(x)‖2

)
,(2.24)

the Euler-Lagrange equation describing the stationary points of Eqn. (2.23) is given
by:

φ(x)− ψ(x)− vλκ(θ(x)) = 0 .(2.25)

This can be derived as follows: Expanding φ(x) according to Eqn. (2.20), we obtain
the objective function

(2.26) E(θ) =

∫
X
−θ(x)ψ(x)+θ(x) ln(θ(x))+(1−θ(x)) ln(1−θ(x))+vλ‖∇θ(x)‖2 dx.

The variation of E(θ) is [55]

(2.27) δE(θ; δθ) ,
∂E(θ + εδθ)

∂ε
|ε=0 ,

where ε ∈ R, δθ denotes an admissible perturbation of E(θ), and ∂
∂ε denotes the

partial derivative with respect to ε. The variation becomes
(2.28)

δE(θ; δθ) =

∫
X
−ψ(x)δθ(x) + ln

θ(x)

1− θ(x)
δθ(x) + vλ

1

‖∇θ(x)‖2
∇θ(x) · ∇δθ(x) dx.

Integration by parts assuming Neumann boundary conditions and using Eqn. (2.20)
results in

(2.29) δE(θ; δθ) =

∫
X

(
φ(x)− ψ(x)− vλ∇ ·

(
∇θ(x)

‖∇θ(x)‖2

))
δθ(x) dx .

As the variation needs to vanish for all admissible perturbations δθ(x) at optimality,
we obtain the Euler-Lagrange equation

(2.30) φ(x)− ψ(x)− vλκ(θ(x)) = 0 .

According to Eqn. (2.20), φ(x) is obtained from θ(x) through a logit transform.
Consequentially, we can obtain θ(x) from φ(x) via the sigmoid function

(2.31) σ(x) , (1 + exp(−x))−1

as θ(x) = σ(φ(x)). The sigmoid function, σ(·), is monotonic (i.e., σ′(x) > 0) so that

(2.32) ∇θ(x) = σ′(φ(x))∇φ(x)

and

(2.33)
∇θ(x)

‖∇θ(x)‖2
=

σ′(φ(x))∇φ(x)

‖σ′(φ(x))∇φ(x)‖2
=
∇φ(x)

‖∇φ(x)‖2
.

Hence, the Euler-Lagrange equation can be rewritten as

(2.34) φ(x)− ψ(x)− vλκ(φ(x)) = 0 .

In summary, the distribution Q(z; θ) approximates the “exact” distribution, P (z|y),
in the KL-divergence sense when φ (the logit transform of the parameter θ) satisfies
the Euler-Lagrange equation of the AMF model; we will refer to Eqn. (2.34) as the
“AMF Equation.” As the objective function is strictly convex (see Section 4.2) in θ,
the stationary point is the unique global optimum.
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3. Connections to Chan-Vese and ROF. In this section we establish the
connection between the AMF model and the Chan-Vese segmentation model (Sec-
tion 3.1) as well as the ROF denoising model (Section 3.2). In particular, we show
that the Chan Vese Euler-Lagrange equations correspond to those of the zero level-
set of the AMF model, so a Chan-Vese segmentation can be obtained as the zero
level-set of the AMF solution. We also show that the AMF Euler-Lagrange equations
(Eqn. (2.34)) have the same form as those of the ROF model. Therefore, the solver
technologies that have been developed for the ROF model may be deployed for AMF.

3.1. Connection to Chan-Vese. To derive the connection between the AMF
and the Chan-Vese approach, we introduce the energy Ecv(·) for the generalized Chan-
Vese model based on a relaxed indicator function (i.e., θ ∈ [0, 1]), which, according
to [8], can be written as

(3.1) Ecv(θ) =

∫
X
−θ(x)ψ(x) + vλ‖∇θ(x)‖2 dx,

with the first part of the function being the data term and the second term reg-
ularizing the boundary length. Such a length prior is essential to encourage large,
contiguous segmentation areas. The importance of the length-prior becomes espe-
cially clear in the context of the Mumford-Shah model [39], of which the Chan-Vese
model is a special case. In the absence of a length prior, the Mumford-Shah approach
will assign each pixel in regions with constant image intensity to its own (separate)
parcel. The standard Chan-Vese model [16] (without the area prior of this model) can
be recovered from Eqn. (3.1) for the special case that the class conditional intensity
model is Gaussian, i.e., yi|zi = 1 ∼ N(µ1, σ

2
1) and yi|zi = 0 ∼ N(µ0, σ

2
0). In this case:

(3.2) ψ(x) , ln
σ0
σ1
− 1

2σ2
0

(y(x)− µ0)2 +
1

2σ2
1

(y(x)− µ1)2,

and the corresponding Chan-Vese energy becomes:
(3.3)

Egausscv (θ) =

∫
X
−θ(x)

(
ln
σ0
σ1
− 1

2σ2
0

(y(x)− µ0)2 +
1

2σ2
1

(y(x)− µ1)2
)

+vλ‖∇θ(x)‖2 dx.

The means of the Gaussians (µ1, µ2) are estimated jointly in the standard Chan-
Vese model [15] and the standard deviations are assumed to be fixed and identical.
In contrast, in the generalized Chan-Vese model (Eqn. (3.1)), parameters of ψ(x)
are typically assumed to be fixed and are not jointly estimated. This assures the
convexity of the overall model. However, if desired, these parameters can also be
estimated. A simple approach would be an alternating optimization strategy. Note
that the Chan-Vese segmentation model of Eqn. (3.3) becomes Otsu-thresholding [43]
if the length prior is disregarded (λ = 0). Hence, unlike Chan-Vese segmentation,
Otsu-thresholding cannot suppress image fragmentation and irregularity.

The Euler-Lagrange equations of the generalized Chan-Vese energy (Eqn. (3.1))
are:

(3.4) −ψ(x)− vλκ(θ(x)) = 0.

This is identical to the AMF Euler-Lagrange equation (Eqn. (2.30)) at the zero level-
set φ(x) = 0. By construction, the zero level-set of a level-set implementation for the
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generalized Chan-Vese model has to agree with the solution obtained from the Euler-
Lagrange equations of the generalized Chan-Vese model using indicator functions as
both minimize the same energy function just using different parameterizations. Con-
sequentially, also, the zero level-sets of both the AMF model and the level-set imple-
mentation of Chan-Vese need to agree.

In contrast to the generalized Chan-Vese model described above, the original
Chan-Vese model of [15], formulated as a curve evolution approach, is characterized
by an energy function (penalizing segmentations with large, continuous areas) with
an additional term of the form

(3.5) Earea(C) = νArea(inside(C)),

where C denotes the curve defining the boundary of the segmentation, ν ∈ R0
+ is a non-

negative constant to weight the area influence, and Area(inside(C)) simply denotes
the area enclosed by C. For implementation purposes C is implicitly represented by
the zero level-set of a level set function φ. The corresponding Euler-Lagrange equation
is, on the zero level-set [15],

(3.6) −ψ(x)− vλκ(φ(x)) + ν = 0 .

Examining the ν level-set of the AMF model (Eqn. (2.34)), so that φ(x) = ν, we
notice that this level-set satisfies the same Euler-Lagrange equation as the zero level-
set of the Chan-Vese model with a specified non-zero value of ν. In other words, the
level-sets of the dense AMF solution provide a family of solutions for the Chan-Vese
problem for a continuum of values of the area penalty.

Note that such area penalties cannot effectively be added in the indicator-function
based approaches to the Chan-Vese active-contour models proposed by Appleton et
al. [2] and Bresson et al. [8]. The goal of these models is to capture a binary segmenta-
tion result through a relaxed indicator function, (i.e., θ ∈ [0, 1] instead of θ ∈ {0, 1}).
However, it can be shown [41] that in certain instances this relaxation produces un-
desirable segmentation results when combined with an area penalty.

3.2. Connection between AMF and ROF Models. In their seminal paper,
Rudin, Osher and Fatemi [51] proposed a denoising method for, e.g., intensity images
u0(x),

(3.7) u∗(x) = arg min
u

∫
X
‖∇u(x)‖2 dx s.t.

∫
X

(u(x)− u0(x))2 dx = σ2 ,

where σ > 0. As discussed by Vogel and Oman [57], this is equivalent to the following
unconstrained problem,

(3.8) u∗(x) = arg min
u

[∫
X

(u(x)− u0(x))2dx +
α

2

∫
X
‖∇u(x)‖2dx

]
,

for a suitable choice of α > 0. They refer to this formulation as “TV penalized least
squares.”

The corresponding Euler-Lagrange equation is

(3.9) u(x)− u0(x)− ακ(u(x)) = 0 .
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For α = vλ, this equation has the same form as the Euler-Lagrange equations of
the AMF model of Eqn. (2.34), which is

(3.10) φ(x)− ψ(x)− vλκ(φ(x)) = 0 .

In this equivalence, the denoised intensity image of the ROF model, u, corresponds to
the logit parameter field of the AMF distribution, φ, while the noisy input intensity
image of the ROF model, u0, corresponds to the logit-transformed label probabili-
ties in the AMF problem, ψ. Furthermore, if the class conditional intensity model
is homoscedastic Gaussian, then (from Eqn. (3.2)) ψ(x) is linear in the observed
intensity. Furthermore, the AMF solution is equivalent to solving an ROF problem
that is effectively denoising the logit-transformed approximation of the posterior label
likelihoods.

Because of the equivalence of the Euler-Lagrange equations of the AMF and
the ROF models, the considerable technology developed for solving the ROF model
may be applied to the AMF model. In particular, a globally optimal solution (see
Section 4.2 for a proof of the convexity of this model) of the AMF model can be
computed by the ROF denoising approach. In other words, given an ROF solver
(ROFsolve) that minimizes

(3.11) EROF (u;u0, α) =

∫
X

(u(x)− u0(x))2 +
α

2
‖∇u‖2 dx

such that

(3.12) u∗,arg min
u

EROF (u;u0, α) = ROFsolve(u0, α),

solving the AMF problem for a given ψ and λ then simply becomes

(3.13) θ∗ = σ(ROFsolve(ψ, vλ)).

Eqn. (3.13) is the central result concerning the implementation of our method as it
connects the optimal AMF solution to a straightforward ROF denoising problem.

4. Additional Properties of AMF. We now summarize some approximation
properties of AMF (Section 4.1), show the objective function to be convex (Sec-
tion 4.2), and show that AMF is unbiased in a specific sense (Section 4.3).

4.1. Approximation Properties. Our goal is an efficient yet accurate approx-
imation, Q(z; θ), to the exact posterior distribution P (z|y) for general realizations
of z. To show that Q(z; θ) is in fact a good approximation, we study its properties
here. For convenience, we only summarize the results of some of the approximation
properties of the AMF model and refer to the appendix for mathematical details. In
particular, the appendix shows that

a) The zero level-set of φ is the boundary of the most probable realization z0 of
Q(z; θ) and is the MAP realization under P (z|y). This is not generally the
case for mean field approximations.

b) Because the log partition function of the prior is not easily computed we

compare ln Q(z;θ)
Q(z0;θ)

with ln P (z|y)
P (z0|y) , where z0 is the most probable realization

under both distributions according to a). These probability ratios are not
only in agreement for the zero level-set, but also for realizations that are
bounded by any level-set of φ.
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c) The probability ratios approximately agree for realization whose boundary
normals are close in direction to ∇φ.

d) If neither a) nor b) hold, the probability ratio for Q(z, θ) will be larger than
that for P (z|y), i.e., it underestimates the length penalty associated with the
prior.

4.2. Convexity. A nice property of the AMF model is that its energy is strictly
convex and therefore we can find a unique global minimizer. This is in contrast to
the TV based segmentation models [2, 8] which are generally convex (but not strictly
so) and therefore may have multiple non-unique optima.

To show convexity, we consider the continuum formulation of AMF which can be
rewritten as a function of θ(x) ∈ [0, 1], as:

(4.1) Eamf(θ) =

∫
X
−θψ + vλ‖∇θ‖2 + (1− θ)ln(1− θ) + θlnθ dx

where dependencies on space are dropped only for notational convenience (i.e., θ =
θ(x) and ψ = ψ(x)) and we expressed φ in terms of θ. The term

(4.2)

∫
X
−θψ + λ‖∇θ‖2 dx

is convex in θ as the first summand is linear in θ, the 2-norm is convex, ∇ is a linear
operator and both terms are summed with a positive weight λ. To see that the rest
of the integrand is also convex, consider a function of the form

f(θ) =(1− θ)ln(1− θ) + θln(θ).(4.3)

which implies that

f ′′(θ) =
1

θ(1− θ)
> 0 for θ ∈ (0, 1).(4.4)

Therefore,
∫
X (1− θ)ln(1− θ) + θln(θ) dx is strictly convex. Because the sum of con-

vex and strictly convex functions is strictly convex, the overall AMF energy is strictly
convex in θ and therefore has a unique global minimizer (see [6] for details on con-
vexity preserving operations). In particular, we note that for a non-informative data
term, i.e., pixels are locally equally likely to be foreground or background (ψ = 0),
θ(x) = 1

2 is the globally optimal solution. For the related standard TV segmentation
model [2], which would only minimize Eqn. (4.2), any constant solution would be a
global minimizer.

4.3. Unbiased in Homogeneous Regions. In this section we analyze the
behavior of the AMF estimator over homogeneous (i.e., constant intensity) patches
of an image. The AMF objective function, Eqn. (2.23), can be written:

(4.5) θ̂ = arg min
θ

∫
X
KL[Q(z(x); θ(x))||p(y(x)|z(x))]dx+ vλTV[z] .

Now, for a patch X of constant intensity, i.e., ψ(x) = ψ0, the optimum will be attained
at ln(θ(x)/(1− θ(x))) = φ(x) = ψ0 as both the KL and TV terms vanish. This in
turn implies that the regularizer does not interact in homogeneous regions and an
unbiased probability estimate is obtained.
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In contrast, other probabilistic segmentation approaches, e.g. the Ising model [29],
lack this “unbiased in homogeneous regions” property and because of this interaction
with the regularizer, setting the regularization parameter λ in such cases can be tricky.
To illustrate this point, consider a VMF treatment of the Ising model that parallels
the approach and notation used for AMF. Defining an Ising model where N(i) are
the neighbors of xi and the neighborhood potential term is

U(z) , λ
∑
i∈IX

∑
j∈N(i)

zi(1− zj) + (1− zi)zj ,(4.6)

then

P (z|y) ∝ p(y|z)P (z) where P (z) ∝ e−U(z) .(4.7)

Using the VMF approximation, we obtain:

θ̂ = arg min
θ

{
KL[Q(Z; θ)||p(y|z)] + λEQ(Z;θ) [U(Z)]

}
(4.8)

= arg min
θ

{
KL[Q(Z; θ)||p(y|z)] + λ

∑
i

∑
j∈N(i)

θi(1− θj) + (1− θi)θj

}
,(4.9)

which yields the following stationary-point equation:

φi − ψi − 4nλ
∑

j∈N(i)

[
θj −

1

2

]
= 0, n , |{j ∈ N(i)}|.(4.10)

This consistency equation characterizes the solution of the VMF approximation to
the Ising model. It is clear from Eqn. (4.10) that the regularization term will only be
zero when the neighborhood average of θi equals 1

2 , while in other cases the unbiased
property will not apply.

5. Experiments. This section illustrates the behavior of the proposed AMF
model. Section 5.1 describes our numerical solution approach for the ROF model.
Section 5.2 compares the AMF model to the standard Chan-Vese approach when
dealing with ambiguous boundaries. Section 5.3 investigates how well the AMF model
agrees with the original probability model without approximations. Section 5.4.1
qualitatively assesses the AMF model on real ultrasound data of the heart and the
prostate, as well as on the Fabio image often used for testing in computer vision.
Section 5.4.2 quantitatively analyzes AMF by applying it to the images from the
icgbench segmentation benchmark dataset.

5.1. Numerical Solution. We indirectly solve the AMF model by relating it to
the ROF problem as discussed in Section 3.2. The ROF model was initially solved [51]
using a gradient descent method, and this may still be a reasonable option if AMF
solving is embedded in an outer iteration, e.g. expectation-maximization [22]. The
difficulty in computing the optimum of the ROF energy is due to the TV term that is
not differentiable everywhere. The very first solver changed the optimization problem
by replacing the TV term with

√
|∇u|2 + β2 [14], which made the energy function

differentiable everywhere. To allow for better discretization of the TV term, primal-
dual [14], and fully dual methods [11] have been explored. More recently, methods
based on accelerated proximal gradient descent (FISTA) [3] and split Bregman itera-
tions [27] have been applied to solve the ROF model. See [12] for a comprehensive
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overview of recent continuous optimization strategies for the ROF model. We use
FISTA for all our following experiments on synthetic and real data. To avoid compu-
tational issues in our experiments, probabilities were clamped to be in [10−5, 1−10−5].
We used the Matlab FISTA implementation by Amir Beck and Marc Teboulle [3]. Con-
vergence for FISTA was left at the default value of 10−4. The maximum number of
iteration steps was set to 10,000 but was never reached.

5.2. Segmentation with Ambiguity. A goal of AMF is to provide label prob-
abilities from which the MAP solution for the segmentation can be obtained, but
which also allow the assessment of segmentation uncertainty. To test this behav-
ior, we generated a highly ambiguous segmentation scenario, depicted in Fig. 1. We
start by assuming class conditional intensity distributions for the foreground and the
background classes (Fig. 1 right). Specifically, the class conditional intensity distribu-
tions were obtained as a mixture of Gaussians. We use three Gaussians with means
µ = {30, 50, 70} and corresponding standard deviations σ = {5, 10, 5} and mix the
first two (µ = {30, 50}; σ = {5, 10}) to obtain the background conditional intensity
distribution and the last two (µ = {50, 70}; σ = {10, 5}) to obtain the foreground
conditional intensity distribution. In both cases, the mixing coefficients are 0.5. The
intensity distribution of the circle in the center of the image was chosen such that
half of the circle has intensities that lie exactly in the middle between the foreground
and background. In particular, the intensity of the region outside the circle is µ = 30,
the intensity of the upper part of the circle is µ = 50, and the intensity of the lower
part of the circle is µ = 70. Gaussian noise with mean zero and standard deviation
of σ = 5 was added to the background, σ = 10 to the upper part of the circle, and
σ = 5 to the lower part of the circle. The results were obtained by assuming we know
the conditional distributions for the foreground and background classes; likelihoods
were computed based on the noisy data. The regularization term was weighted with
λ = 5.

Fig. 2 (left two images) shows the local label probabilities for the noisy input
image and for the noise-free image (that will not be available in practice). Fig. 2
(right two images) shows the label probabilities after running the AMF model (left)
and after thresholding (binarization) at P = 0.5 (right) that also corresponds to the
MAP solution. Note that neither the foreground probability is one nor the foreground
probability is zero due to the chosen class conditional intensity distributions: both
the means of the background (µ = 30) and the foreground (µ = 70) have non-zero
likelihood for background and foreground. As desired, the AMF model captures the
segmentation uncertainty by estimating the upper part of the circle at a probability
close to P = 0.5. At the same time, due to spatial regularization, the AMF model
removes noise effects. The MAP solution captures the most likely foreground area,
but completely loses the ambiguous area.

Fig. 3 shows the estimated label probabilities and their true local counterparts
along with a subtraction. The AMF method has effectively estimated the true label
probabilities. Note that the true local label probabilities do not incorporate the
effect of regularization. Hence, these two probabilities will slightly disagree at the
segmentation boundaries.

5.3. Agreement with the Original Probability Model. In order to evaluate
agreement between the original probability model, Eqn. (2.6), i.e.

(5.1) lnP (z|y) = v−1
∑
i∈X

[ziψi + ln p(yi|0) ]− λL(z) + const .
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Fig. 1. Ambiguous segmentation scenario. Left: original image, middle: noisy image, right:
class conditional distributions. Distributions clearly overlap which should result in a segmentation
ambiguity for the upper part of the circle which was deliberately chosen to have intensities in be-
tween the background and the foreground (bottom part of the circle). Background class conditional
distribution displayed as a solid black line, foreground class conditional distribution displayed as a
dash-dotted black line.

(a) (b) (c) (d)

Fig. 2. (a) Noise-free foreground label probabilities based on the noise-free image of Fig. 1
(which is not available in practice). (b) Noisy label probabilities based on the noisy image of Fig. 1.
The upper part of the circle is clearly ambiguous with foreground label probability of P = 0.5.
(c) Estimated label probabilities using the AMF model. (d) Estimated MAP solution (binarization
at P = 0.5) from the AMF-estimated label probabilities. Clearly, the AMF model captures more
information – the MAP solution completely loses the ambiguity of the upper part of the circle.

Fig. 3. Left: estimated label probabilities by the AMF model. Middle: noise-free label proba-
bilities. Right: difference between the probabilities. Differences exist primarily at the segmentation
boundaries, which is expected since the AMF model includes spatial regularization effects while the
noise-free label probabilities are computed strictly locally. Overall, there is a good agreement between
the probabilities.

and the AMF approximation, we conducted the following set of experiments on syn-
thetic images. A binary random field was generated by sampling on a 100×100 grid
from a Gaussian process with Matérn covariance function [21] with order parameter
p and scale parameter l, that provides fine-grained control over the smoothness of the
field. This continuous valued image was then thresholded at a quantile value selected
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uniformly at random to create the ground truth binary label map ẑ to which Gaussian
noise is added to create a noisy image y. For our experiments, we set the order param-
eter p = 1 while varying the length scale parameter l = 1, 3, 5 and the noise standard
deviation σ between 0.25 and 0.4. Increasing l produces label maps with smoother
boundaries and larger contiguous regions. Single realizations of ẑ for l = 1, 3, 5 are
shown in Fig. 4(a–c). Corresponding noisy images for σ = 0.4 are shown Fig. 4(d–f).

(a) True Label Map : l = 1 (b) True Label Map : l = 3 (c) True Label Map : l = 5

(d) Noisy Image: l = 1, σ = 0.4 (e) Noisy Image: l = 3, σ = 0.4 (f) Noisy Image: l = 5, σ = 0.4

Fig. 4. Single realizations of ground truth label maps and corresponding noisy images generated
from Matérn processes with length-scale parameter varied between 1, 3 and 5.

For each setting of Matérn length scale l we generated 40 ground-truth binary
label maps, and for each binary map we generated 5 noisy images at each noise
level σ. Next, for every realized pair of binary and noisy images (z, y), the AMF
approximating distribution Q was computed by solving the ROF equations on the
logit maps of y. The original probability model P of Eqn. (5.1) was also explored
using Gibbs sampling with 5 chains of N = 105 particles each, temperature T = 1
and thinning factor=0.1. The temperature parameter, which controls the scale of the
sampling distribution, is needed because the probability distribution P is known only
up to to a scale factor (i.e. the partition function). Therefore, the Gibbs probability of
zi = 1 is exp(−e1/T )/(exp(−e1/T ) + exp(−e0/T )), where e1 and e0 are the energies
corresponding to zi = 1 and zi = 0 respectively. Convergence was tested using
the Gelman and Rubin diagnostic [25] resulting in approximately 2 × 104 particles
being retained. Based on these Monte-Carlo particles, the following statistics were
calculated for each realized image pair (z, y):

• The correlation coefficient between the probability masses of each particle ac-
cording to P and Q. Note that although both P and Q are known only up to
scales, it does not affect the correlation coefficient computation. As shown in
Fig. 5 we see a strong correlation between the label map probabilities as esti-
mated by AMF and the original model. This implies that the AMF model is
a good approximation to the original probability model. However the correla-
tion seems to reduce with increase in l and σ, implying that smoother images
are harder to approximate - probably because of an increase of non-local in-
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teractions that cannot be well approximated by the mean-field distribution
and that increasing noise causes greater mis-approximation.

• The mean area of the label map estimated for P from the Gibbs samples and
for Q by closed-form evaluation. As shown in Fig. 6 the AMF model appears
to underestimate the foreground’s mean-area when it is less than 50% of
the full image, but this underestimation improves as the foreground fraction
increases. Nevertheless there is good agreement, in terms of trend, between
the mean area as estimated by the AMF model (in closed form) and the
original probability model (via Gibbs sampling).

• The variance in the area of the label map, again estimated for P from the
Gibbs samples and for Q by closed-form evaluation. As seen in Fig. 7, the
second order statistics are not captured well by the AMF when compared
to the second order statistics of the original model (as assessed by Gibbs
sampling); especially for images with larger levels of smoothness. This is not
surprising given that the mean-field approximation does not capture higher
order interactions of the random field.

In summary, the posterior distribution of the AMF model correlates well with
the posterior distribution obtained by Gibbs sampling. The obtained segmentation
areas for the AMF model have the same trend as for Gibbs sampling, but tend to
underestimate the segmentation area. As expected, higher-order statistics are not
captured well due to the simplicity of the factorized variational distribution Q of the
AMF model.

5.4. Assessment of AMF on Real Data. We illustrate the behavior of the
AMF approach on real images qualitatively in Section 5.4.1 and quantitatively in Sec-
tion 5.4.2. Our goal in this section is not to beat state-of-the art segmentation methods
for our example segmentation applications (which may for example, use shape models
or more sophisticated machine learning approaches to improve segmentation results),
but to illustrate the AMF approach in the context of challenging datasets. Note,
however, that the AMF model can be based on any foreground and background like-
lihood map. Therefore, it is able to augment other more sophisticated pre-processing
to obtain foreground and background probabilities.

5.4.1. Qualitative Assessment of AMF on Real Data. We use ultrasound
images of the prostate and the heart as well as an image of Fabio [40] to demonstrate
the behavior of AMF under different levels of regularization. We limit ourselves to
simple intensity distributions for the Fabio and the heart ultrasound image. We use a
classifier supporting probabilistic outputs based on image intensities for the prostate
example. Image size for the prostate example is 257 by 521 pixels, for the heart
example 314 by 350 pixels, and for the Fabio image 253 by 254 pixels.

Fig. 8 shows an ultrasound image of the heart (left), an expert segmentation
into blood pool, myocardium, and valves (middle) and the intensity distribution for
the blood pool and outside the heart (right). These intensity distributions clearly
overlap. We initialized the AMF model with this user-defined intensity distribution by
sampling from the image followed by kernel-density estimation of the intensities. We
re-estimated the intensity-distributions during the optimization. Specifically, given
an intensity distribution, we compute the AMF solution, from that we obtain the
binarized MAP solution that we use to re-estimate the intensity distributions using
kernel-density estimation. We alternate AMF solution and density estimation to
convergence. Fig. 9 shows the results of the AMF model for the estimation of label
probabilities. The intensity ambiguity is captured in the estimated label probabilities
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Fig. 5. Histograms of the correlation coefficient between the posterior probability of the Gibbs
samples as measured by P and Q. Each histogram is across the realizations of the synthetic binary
maps and noisy images, i.e., one correlation coefficient per pair, for the various settings of Matérn
length scale parameter l and image noise σ.
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Fig. 6. Scatter plots of the mean foreground area (as a fraction of total area) as measured
under P (via Gibbs sampling) and Q (in closed form). Each point is one realization of the synthetic
binary maps and noisy images for the various settings of Matérn length scale parameter l and image
noise σ.
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Fig. 7. Scatter plots of the variance of the fractional foreground area as measured under P (via
Gibbs sampling) and Q (in closed form). Each point is one realization of the synthetic binary maps
and noisy images for the various settings of Matérn length scale parameter l and image noise σ.

of the AMF model. Regularization behaves as expected: low regularization results in
noisy label probability maps. Moderate to high regularization allows capturing of the
blood pool (for the MAP solution) while declaring other regions ambiguous or low-
probability. Very large regularization declares the full image ambiguous, as expected,
because the model will, in this case, prefer overly large segmentation regions.

Fig. 10 shows an ultrasound image of the prostate (left) and the corresponding
results of an experimental prostate segmentation system (right). The prototype sys-
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Fig. 8. Left: ultrasound image of the heart. Middle: ultrasound image of the heart with
overlaid expert segmentations of blood pool (red), myocardium (blue) and valves (yellow). Right:
intensity distributions for the blood pool (red) and the areas outside of the heart (black) for the
intensity-normalized image (I ∈ [0, 1]). Intensity distributions clearly overlap making an intensity-
only segmentation challenging.

λ = 2 λ = 4 λ = 6 λ = 8 λ = 10

λ = 12 λ = 14 λ = 16 λ = 18 λ = 20

Fig. 9. Intensity-based segmentation results of the heart from an ultrasound image for the
AMF model. Increased regularization captures increasingly consistent regions. Moderate to high
regularization retains high probabilities of the blood pool while estimating low probabilities for the
surroundings. Very large regularization yields ambiguous label probabilities throughout the complete
image. Magenta contour indicates expert segmentation of the blood-pool, blue contour indicates the
0.5 probability isocontour of the AMF solution.

tem analyzed Radio Frequency (RF) ultrasound data using deep learning and random
forest classification to generate label probabilities. Alternating optimization, as in the
heart example, was not used. Fig. 11 shows the results of the AMF model. The same
conclusions as for the heart example apply. More regularity yields cleaner looking
probability images as the AMF smooths the probability field as expected because of
the connection to the ROF model. Changes are not as drastic as for the heart example
as the initial probability map is already substantially more regular.

Fig. 12 show the original Fabio image including its segmentations based on a
modified version of Otsu thresholding (where foreground and background classes can
have distinct means and standard deviations) and the corresponding intensity his-
togram. This image can be separated reasonably well using intensity information
alone. Fig. 13 shows the corresponding AMF results. We obtained these results by
initializing AMF using the modified Otsu-thresholding procedure and then followed
the same alternating optimization approach as for the heart ultrasound segmentation.
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Fig. 10. Left: ultrasound image of the prostate. Right: prostate probability map obtained by a
machine-learning approach.

λ = 1 λ = 50 λ = 100

λ = 150 λ = 200 λ = 250

Fig. 11. Probability-map-based segmentation results of the prostate from an ultrasound image
for the AMF model. Input to the AMF is the prostate probability map of Fig. 10(right). Increased
regularization captures increasingly consistent regions. Moderate to high regularization retain high
probabilities of the prostate while estimating low probabilities for the surroundings. Very large regu-
larizations yield ambiguous label probabilities throughout the complete image. Blue contour indicates
the 0.5 probability isocontour of the AMF solution.

Clearly, larger values for the regularization parameter λ put the emphasis on larger
image structures.

These experiments show that the AMF model (i) results in label probabilities
which are spatially smooth (as expected due to the connection to the ROF model),
(ii) exhibits a balancing effect between local label likelihood and spatial regularization,
and (iii) tends to more uncertain label assignments for strong spatial regularization.

5.4.2. Quantitative Assessment of AMF on Real Data. For quantitative
analysis, we applied AMF to the segmentation benchmark data (icgbench) of Santner
et al. [52]. This benchmark dataset consists of 158 natural color images (391 by 625
pixels). For each image a manual segmentation is available. Furthermore, each image
contains seed regions for the objects to be segmented. In total there are 262 seed
regions and 887 objects. As proposed by Santner et al. [52], we train a random forest
(using Matlab’s TreeBagger function) for each image given pixel color information in
image areas defined by user-provided seed locations dilated by a disk structural ele-
ment of radius of 9 pixels. Each random forest consists of 100 trees, λ was set to 10 for
all the experiments, and was trained on local CIElab color features. Once trained on
the seeds, the resulting random forest classifier is applied to the full images generating
noisy label probabilities. The mean computation time for an AMF segmentation was
22.1s for the RGB color images of the icgbench dataset using a Matlab CPU imple-
mentation on a 2GHz Intel Xeon, E5405. The computer had 8 cores, but the code
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Fig. 12. Left: Fabio image. Middle: Otsu-thresholded Fabio image. Right: intensity dis-
tributions for the intensity-normalized image (I ∈ [0, 1]) based on the classes determined by Otsu
thresholding.
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Fig. 13. Intensity-based segmentation results for the Fabio image for the AMF model.

was not explicitly multi-threaded (beyond what Matlab multi-threads automatically).
As icgbench is a dataset for multi-label segmentation but our current AMF model
only supports binary segmentation tasks3, we investigate two different segmentation
approaches:

• Individual Binary Segmentations: For a given image we create binary seg-
mentations by considering one class as the foreground and all other classes as
the background.

• Quasi-Multi-Label Segmentation: Individual binary segmentations do not guar-
antee that local label probabilities over all classes sum up to one. Hence, we
project the local label probabilities obtained from the individual binary seg-
mentations onto the probability simplex. We used the standard Euclidean
projection [19, 38] onto the simplex though other approaches could be used
as well [48, 1].

Fig. 14(left) compares the obtained Dice scores over all 887 individual object
segmentations based on the random forest and based on AMF applied to the random

3A multi-label extension is likely possible, but it remains to be investigated if connections to the
ROF and the CV models can still be made.
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Fig. 14. Left: Scatter plot for Dice segmentation scores for all the objects of the icgbench

database. Comparison between obtained Dice scores through the random forest (RF) and after ap-
plying the AMF model (AMF). Values are logit transformed before plotting for better visualization:
logit(p) = ln(p/(1− p)). In the vast majority of the cases, AMF improves the Dice score. Line indi-
cates equal values for RF and AMF model, i.e., values above the line indicate a better performance
of the AMF model compared to the RF. Right: Scatter plot between Dice segmentation score and
area-normalized posterior approximation Q of the AMF. Values are also logit transformed for better
visualization. High Dice scores are generally related to high Q values. A clear linear trend is visible
for the logit-transformed variables. Line is a least-squares fit to the logit transformed Q/Dice value
pairs. Sample (p, logit(p)) pairs are as follows: (0.01,−4.60), (0.25,−1.10), (0.5, 0), (0.75, 1.10),
(0.9, 2.20), (0.99, 4.60).

forest label probabilities. The Dice score between two sets S1 and S2 is defined as

(5.2) Dice(S1, S2) ,
2|S1 ∩ S2|
|S1|+ |S2|

.

To evaluate image segmentations, S1 and S2 correspond to sets of object pixels which
are the most likely for a given object class label (i.e., foreground and background).
AMF clearly improves the segmentations generated by the random forest. The mean
Dice score (with standard deviation in parentheses) for the individual segmentations
over all images is 0.82(0.18) for the random forest, which are significantly worse
(p < 10−10) according to a one-sided paired t-test) than individual binary AMF
segmentations, whose mean Dice score is 0.88(0.15). The quasi-multi label AMF ap-
proach further improves the mean Dice score to 0.89(0.14). Computing multi-label
Dice-scores4 for all the images results in a mean Dice score of 0.84(0.11) for the
random forest and 0.90(0.09) for the quasi-multi-label AMF segmentation, which is
significantly better (p < 1e− 10 according to a one-sided paired t-test) and matches
the Dice score obtained by Santner et al. [52] when using the same features.

Not only is our method simpler than the approach by Santner et al. [52], which
uses a sophisticated random forest implementation coupled with a true multi-label
segmentation approach (i.e., all labels are jointly considered during the segmentation
and not in a one-versus-all-other classes fashion as in our approach), but our method

4We compute the multi-label Dice score as the mean over the individual Dice scores for the
individual binary segmentations for an image. Hence, we obtain one multi-label Dice score per
image, but as many individual Dice scores as there are objects in an image.
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also complements the MAP solution with posterior label probabilities, which can be
used to quantitatively assess the confidence in the segmentation. A possible confidence
measure is to compute an area-normalized approximation of the posterior

Q(z; θ) ,
∏
i∈IX

θzii (1− θi)1−zi(5.3)

= exp

 ∑
i∈{i:zi=1}

ln(θi) +
∑

i∈{i:zi=0}

ln(1− θi)

 .(5.4)

Area-normalization is useful as object sizes in the icgbench dataset vary greatly.
Specifically, we define the area-normalized form of Q(·; ·) as
(5.5)

Qarea(z; θ) , exp

 1

|{i : zi = 1}|
∑

i∈{i:zi=1}

ln(θi) +
1

|{i : zi = 0}|
∑

i∈{i:zi=0}

ln(1− θi)

 .

We use the MAP solution of the AMF, zmap, to evaluate Qarea. For a binary θ, i.e.,
no uncertainty in the inferred binary segmentation, Qarea(zmap; θ) = 1. The value
of Qarea(zmap; θ) decreases if θ is not binary indicating uncertainty in the inferred
segmentation. In comparison to the approximate posterior Q, this area-normalized
measure allows us to assess uncertainty of objects independent of their size. For
Qarea(zmap; θ) to be a useful measure of segmentation quality, it should be high for
high Dice scores and conversely low for low Dice scores. The scatter plot between
Dice scores and Qarea(zmap; θ) in Fig. 14(right) shows that this is indeed frequently
the case. Hence Qarea(zmap; θ) can serve as a measure of segmentation confidence in
the absence of manual segmentations.

To gain a deeper understanding of the Qarea measure, it is instructive to review
cases where Qarea seems unrelated to the Dice score. Fig. 15 shows a case with very
high Qarea, but low Dice score, caused by a very confident, but incorrect output of the
random forest from which the AMF cannot recover. Fig. 16 shows a case with very
low Qarea but high Dice score. Here, the segmentation is good, but our approach is
not confident as other regions have similar color. Fig. 17 and Fig. 18 show examples
where segmentations receive both high Dice and Qarea scores, indicating high quality
segmentations which also have high segmentation confidence according to Qarea.

In summary, the AMF model shows good segmentation performance across a large
set of natural images. Furthermore, the posterior distribution on labels carries useful
information as it can provide a proxy for likely segmentation quality.

6. Conclusions. We described a method for binary image segmentation which
allows efficient estimation of approximate label probabilities through a VMF approx-
imation. We carefully analyzed the theoretical properties of the model and tested its
behavior on synthetic and real datasets. A particularly useful feature of our model
is that it has strong connections to the Chan-Vese segmentation model and the ROF
image-denoising model. Our method can therefore be implemented using off-the-shelf
solvers of the ROF model. This simple and efficient way to compute solutions makes
AMF an attractive alternative to Chan-Vese-like approaches, which, unlike AMF, do
not compute posterior distributions on labels. A current drawback of our method is its
binary formulation. Nevertheless, our approach can be used for multi-label segmen-
tation by converting multi-label problems to multiple binary segmentations. A truly
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 15. Unusual case: Segmentation with high confidence, but low Dice score indicating a
segmentation of low quality. (a) Original Image; (b) Seeds to train the random forest; (c) Expert
segmentation; (d) AMF segmentation; (e) label probabilities for plane object computed by random
forest ; (f) AMF-computed label probabilities for the plane object; (g) masked AMF-computed label
probabilities, only showing areas where the plane object is most probable ; (h) AMF-computed label
probabilities for the correct expert labels at each location (white image, θ = 1 would be a perfect
result). As the color values for the plane seeds (dark blue) are similar to regions in the sky, the
random forest classifier (e) is overly confident from which the AMF (f) cannot recover. Hence, there
is poor overlap between the resulting segmentation (d and h) and the expert labeling (c). At the same
time, the overall confidence for this example is high due to the high certainty of the random forest
approach. The Dice score for the quasi-multi-label AMF and for the binary AMF is 0.49. The mean
Qarea score for both approaches is 0.94.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 16. Unusual case: Segmentation with low confidence, but high Dice score indicating a
segmentation of high quality. (a) Original Image; (b) Seeds to train the random forest; (c) Expert
segmentation; (d) AMF segmentation; (e) random forest label probabilities for cobble-stone object
on the top-right; (f) corresponding label probabilities computed by AMF; (g) masked AMF-computed
label probabilities, only showing areas where the cobble-stone object is the most probable; (h) AMF-
computed label probabilities for the correct expert labels at each location (white image, θ = 1 would
be a perfect result). In this example, the seed points for the cobble-stone object (b; cyan) essentially
fully segment the object of interest. However as the color values are ambiguous with respect to the
other classes (in particular the red seed label) the overall segmentation result is not highly confident
(f and g) resulting in a lower Qarea score. However, the most probable labelings also agree with the
experts’ opinion (d and h). The Dice score for the quasi-multi-label AMF is 0.97 and for the binary
AMF 0.93. The mean Qarea scores are 0.71 and 0.67 respectively.
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Dice = 0.95/0.95 Dice = 0.93/0.93 Dice = 0.97/0.97 Dice = 0.93/0.92
Qarea = 0.94/0.94 Qarea = 0.98/0.98 Qarea = 0.98/0.97 Qarea = 0.97/0.96

(a) (b) (c) (d)

Fig. 17. Sample segmentation results for highly confident high quality segmentations. Top row:
original images; 2nd row: seeds used for training the random forest; 3rd row: expert segmentations;
4th row: AMF segmentation result; last row: label probabilities computed by AMF with respect to
the object segmented by the expert (i.e., given an expert label the corresponding probability for that
label as computed by the AMF is displayed; a perfect result would be a totally white image). Dice
scores for the quasi-multi label approach applied to the AMF segmentation, majority voting (first
value), and the mean for all binary segmentations for a given image respectively. Qarea scores are
the means over all the segmented objects for the quasi-multi-label approach (first value) and the
binary segmentation approach (second value).

multi-label formulation of AMF is outside the scope of this paper, but should be in-
vestigated in future work. It will be interesting to see if connections to the Chan-Vese
and the ROF model can also be established in a multi-label VMF approach.
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Dice = 0.90/0.90 Dice = 0.98/0.98 Dice = 0.93/0.95 Dice = 0.94/0.93
Qarea = 0.95/0.95 Qarea = 0.97/0.96 Qarea = 0.86/0.85 Qarea = 0.86/0.81

(a) (b) (c) (d)

Fig. 18. Sample segmentation results for highly confident high quality segmentations. Top
row: original images; 2nd row: seeds used for training the random forest only; 3rd row: expert
segmentation; 4th row: AMF segmentation result; last row: label probabilities of AMF with respect
to the object segmented by the expert (i.e., given an expert label the corresponding probability for
that label as computed by the AMF is displayed; a perfect result would be a totally white image).
Dice scores for the quasi-multi label approach applied to AMF segmentation, majority voting (first
value) and the mean for all binary segmentations for a given image respectively. Qarea scores are the
means over all the segmented objects for the quasi-multi-label approach (first value) and the binary
segmentation approach (second value).

We compare the approximated and exact distributions, Q(z; θ) and P (z|y), re-
spectively, for general realizations of z. Because the normalizer for P (z|y) is not

available, and for convenience, we will compare ln P (z|y)
P (z0|y) and ln Q(z;θ)

Q(z0;θ)
, where z0 is

the most probable realization under Q.

For calculating the log probability ratio of P , we return to the original probability
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model. From Eqn. (2.3) - Eqn. (2.5),

lnP (z|y) =
∑
i∈IX

ziψi − λL(z) + const(A.1)

≈ v−1
∫
X

z(x)ψ(x)dx− λL(z) + const .(A.2)

Then the log probability ratio for the exact posterior, P , is

ln
P (z|y)

P (z0|y)
≈ v−1

∫
X

(z(x)− z0(x))ψ(x)dx− λL(z) + λL(z0) .

Working towards the probability ratio for the AMF approximate posterior, Q,
using Eqn. (2.7) and using a similar technique,

lnQ(z; θ) ≈ v−1
∫
X

z(x)φ(x)dx+ const .

Here it is easy to see that the most probable realization under Q is bounded by the
zero level-set of φ.

We may now write the log probability ratio for Q,

ln
Q(z; θ)

Q(z0; θ)
≈ v−1

∫
X

(z(x)− z0(x))φ(x)dx .

Subtracting the two probability ratios,

(A.3) ln
P (z|y)

P (z0|y)
− ln

Q(z; θ)

Q(z0; θ)

= v−1
∫
X

(z(x)− z0(x))(ψ(x)− φ(x))dx− λL(z) + λL(z0) .

We now make use of the AMF equation, φ(x) − ψ(x) − vλκ(φ(x)) = 0, to establish
relationships among the log probability ratios of p and q. We obtain

ln
P (z|y)

P (z0|y)
− ln

Q(z; θ)

Q(z0; θ)
(A.4)

= λ

[
−
∫
X

(z(x)− z0(x))κ(φ(x))dx− L(z) + L(z0)

]
(A.5)

= λ
[
−
∫
X :z(x)=1

∇ ·
(
∇φ(x)

|∇φ(x)|

)
dx(A.6)

+

∫
X :z0(x)=1

∇ ·
(
∇φ(x)

|∇φ(x)|

)
dx− L(z) + L(z0)

]
(A.7)

= λ
[
−
∫
c(s)

N(x) ·
(
∇φ(x)

|∇φ(x)|

)
ds(A.8)

+

∫
c0(s)

N(x) ·
(
∇φ(x)

|∇φ(x)|

)
ds− L(z) + L(z0)

]
.(A.9)

The last two lines use the divergence theorem; c(s) is the boundary of z(x) oriented
so that the outward normal points from z(x) = 1 towards z(x) = 0, and similarly
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Fig. 19. Level sets and normals.

for c0(x) and z0(x). N(x) is the outward normal vector to the curve in question (see
Fig. 19).

Then

(A.10) ln
P (z|y)

P (z0|y)
− ln

Q(z; θ)

Q(z0; θ)
= λ

[∫
c(s)

β(x)ds−
∫
c0(s)

β(x)ds− L(z) + L(z0)

]
,

where

β(x)
.
= N(x) ·

(
−∇φ(x)

|∇φ(x)|

)
is the dot product of two unit vectors, the outward normal to the curve and the
negative of the direction of the gradient of φ.

On the curve c0, β(x) = 1, because the boundary of z0 is a level-set of φ(x). In
that case the second and fourth terms cancel. Re-writing the third term as an integral
over c,

(A.11) ln
P (z|y)

P (z0|y)
− ln

Q(z; θ)

Q(z0; θ)
= λ

[∫
c(s)

β(x)ds−
∫
c(s)

1ds

]
= λ

∫
c(s)

(β(x)−1)ds .

Because β(x) is the dot product of two unit vectors, we may write β(x) = cos(α(x)),
where α is the angle between the normal to the curve and the negative of the gradient
direction of φ(x) (see Fig. 19). Then, using cos(α)− 1 = −2 sin2(α2 ),

ln
P (z|y)

P (z0|y)
− ln

Q(z; θ)

Q(z0; θ)
= −2λ

∫
c(s)

sin2

(
α(x)

2

)
ds .

Summarizing the comparison of the probability ratios of the exact and approxi-
mate distributions, P and Q, respectively we see the following:
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• For realizations that are bounded by level-sets of φ, α is zero, so the proba-
bility ratios agree.

• For realizations whose boundaries are in direction “close” to level-sets of φ,
the probability ratios approximately agree (the disagreement is quadratic in
α).

• For curves where α is not small, the probability ratio for Q will be larger than
for P , i.e., Q underestimates the length penalty of P .

We saw above that the zero level-set of φ is the boundary of the most probable
realization under the approximate distribution, Q(z; θ) (and it is unique). Since the
probability ratios agree for z0 (a level set of φ), and the Q ratio upper-bounds the P
ratio, we conclude that it is also the boundary of the MAP realization under P (z|y).
In summary, z0, whose boundary is the zero level-set of φ, satisfies

z0
.
= H(φ(x)) = arg max

z
Q(z; θ) = arg max

z
P (z|y) .
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