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1.0 INTRODUCTION 

The purpose of this investigation was to establish specific per

formance requirements and goals for a model deflection sensor to be 

installed in the National Transonic Facility (NTF) presently under con

struction at NASA's Langley Research Center. The system as envisioned 

will be nonintrusive, and have the capability of mapping or contouring 

the surface of a 1 x 1 meter model with a resolution of 50 to 100 points. 

It is anticipated that the surface to be measured will be located within 

±0.5 meter of the centerline of the tunnel. The ultimate purpose of the 

model deflection sensor is to measure a maximum deformation of 7.62 cm 

(3 inches) with an accuracy of ± 64 ~m (±0.0025 inch). These requirements 

are summarized in Table 1. 

Three distinct concepts - moire contouring, scanning interferometry 

and holographic contouring - were examined in detail for their practical-

ity and potential to meet the above requirements. A review of the liter

ature was conducted and extended by theoretical analysis to determine the 

capabilities and limitations of each concept within the constraints set 

by the geometry of the NTF test section. Because of the contractor's 

extensive practical experience with both holography and moire systems, 

it was determined that experimentation in those areas at this time would 

unnecessarily dilute the effort. Hence, laboratory work was limited to the 

scanning interferometry approach where it was felt that the additional insight 

gained would be advantageous. 

Of major importance throughout this program were practical consid

erations of the test section geometry and environment. Figure 1 is a 

simplified cross-sectional illustration of the NTF test section and plenum. 
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TABLE 1 

Measurement Area 1 x 1 meter 

Transverse Resolution 50 - 100 points 

Measurement Range 1 meter 

Maximum Deflection 7.62 cm (3 inches) 

Measurement Accuracy ± 64 ~m (0.0025 inch) 
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The tunnel itself is approximately 2.13 m (7 ft.) wide by 2.44 m (8 ft.) 

high. The ceiling and floor of the tunnel are supported by hollow "wall 

beam assemblies" within which room is available for installation of equip

ment. For a model deflection sensor, optical access is provided between 

the inside of a "wall beam assembly" and the tunnel interior by a series 

of 12.7 cm (5 inch) fused silica windows. Figure 2 illustrates the win

dow pattern that will exist in both the floor and ceiling of the tunnel. 

The space available behind each window within the "wall beam 

assembly" is approximately 61 cm (24 in.) x 79 cm (31 in.) x 14 cm (5~ in). 

Additionally, there is an as yet partially undefined area at the bottom 

of the plenum where it may be possible to install peripheral equipment. 

Any equipment installed within the plenum, however, will have to operate 

properly over a temperature range of -196 0 C to +71 0 C, and in pressures 

as high as 8.8 atmospheres. Obviously, if this necessitates the use of 

heavily insulated, thermally controlled packaging, space constraints 

become even more critical. 

The results of this program provide a solid understanding of the 

limitations of each of the three techrtiques as they apply within the 

geometry of the NTF. Specifically, moire contouring, while workable, is 

limited in its accuracy by the large depth of focus required (1 meter). 

On the other hand, scanning interferometry has the potential of enormous 

versatility, but again, without advancing the state of the art, cannot 

provide sufficient measurement accuracy. Holographic contouring, how

ever, would be relatively simple to apply, and would, at the same time, 

yield a full field of data with readily defined contours. 
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2.0 GENERAL OPTICAL CONSIDERATIONS 

There are certain phenomena which must be considered in a system 

of this nature that are inherent to the use of optical radiation. The 

effect of such phenomena upon model deflection measurements, be it dele

terious or not, will be, to a large extent, characteristic of the radia

tion and independent of the technique employed. 

This chapter examines the most important of these phenomena and 

the extent to which they will affect model deflection measurements. 

Also considered, though specific solutions to these difficulties are not 

within the scope of this contract, are methods that may be employed to 

minimize, correct, or nullify any adverse effects that arise. 

2.1 Model Surface Characteristics 

For optical sensing, the ideal model surface would be a diffuse 

Lambertian scatterer with a high surface reflectivity and low abqorption. 

As a practical rule, the reflection characteristics of a surface are 

highly specular if the surface has an RMS roughness of A/4 or less, where 

A is the wavelength of the radiation employed (A ~ 0.5 ~m). Commonly, to 

achieve a properly diffuse characteristic, the surface is roughened con

siderably beyond thisl. This is at odds, however, with the extreme sur

face smoothness (0.25 ~m) required to minimize the conditions that trigger 

aerodynamic boundary layer separation at transonic velocities. 

One possible solution to, this dilemma is to go ahead and roughen 

the surface to achieve the desired optically diffuse characteristic. The 

surface would then be treated by coating it with a thin, hard, and as yet 

-6-



undefined substance that is both mechanically smooth and optically trans

parent. The result would be an outer surface that is sufficiently smooth 

to minimize boundary layer separation, yet is transparent and will pass 

the optical radiation to the diffusely scattering surface below. Of 

course, the surface that is optically sensed will be different from the 

surface of aerodynamic effect. And if the thickness of the coating is 

such that this difference is significant, it will have to be accounted 

for. 

Ultimately, if a solution to this dilemma cannot be found, it will 

either place an upper limit on the flow conditions in which the model 

deflection sensor may be employed, or it will necessitate a system capable 

of detecting optical radiation over an extremely wide dynamic range. Note 

that since the required surface finish is on the order of A/2, it can be 

expected to exhibit some diffuse scattering, though the effect will be 

minimal. It may, however, be sufficient to make a wide dynamic range 

system viable if care is taken to insure that the surface is not over

polished. Of course, the requirement for a wide optical dynamic range 

strongly limits the choice of methods for sensing the optical radiation, 

and precludes the use of such devices as video monitors. 

2.2 Ambient Refractive Index Variations 

As the temperature, pressure, and composition of the gas flowing 

within the tunnel is altered, so too will be its refractive index, and 

hence, its optical path length (Lo) , which is the parameter that any 

optical system actually measures. The optical path length is 

Lo = nL (10) 

-7-



where n is the refractive index of the medium through which the light 

passes, and L is the true path length. 

The index of refraction of a gas varies according to the rela-

tionship 

n l+Kp (2) 
3 

where K is the Gladstone-Dale constant (for air K=2.25x10-4~g) and p is 

the density of the gas. Ignoring changes in composition and using this 

relationship, and the ideal gas law 

p 
p =RT 

where P is the pressure, T is the temperature, and R is a constant of 

(3) 

proportionality, Table 2 lists the extreme variations in refractive index 

that may be encountered within the NTF test section. 

TABLE 2 

n 

5.02x10 4 344 1.06 1.000239 

4.44x10 5 77 42.0 1.009450 

Note that the variation in index of refraction is 0.92%. If ambi-

ent index variations are ignored this would result in an absolute measure-
\ 

ment error of 9.2 mm over a path length of 1 meter, or a differential 

measurement error of 0.7 mm at the specified maximum deflection of 7.6 cm. 

Hence, to achieve the desired accuracy of ±64 ~m, the ambient (free stream) 

index of refraction will have to be monitored and recorded ,for proper data 

reduction. 
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2.3 Local Refractive Index Variations 

It is well known that the aerodynamic forces in the immediate 

vicinity of the model produce density, and hence, refractive index 

gradients on or about the model surface. This fact is used to advan-

tage in many flow field studies where light is employed to probe the 

test section. Such an optical probe yields data on the index field, 

which can then be related to the density field through Equation 2. 

However, for model deflection measurements, such index variations are 

decidedly disadvantageous since they perturb the measurement in a possi-

bly unpredictable fashion. 

Consider Figure 3, which is a photograph of the reconstruction 

of a holographic interferogram recorded by the contractor in an earlier 

study2 in the NASA/knes 2' x 2' Transonic tunnel. During these tests 

the tunnel conditions were maintained at a free stream Mach number of 

0.8 and a chord Reynolds number of 2 x 10 6
• The model was an instru-

mented NACA 64A010 airfoil w~th a 2.36 cm (6 inch) chord. It was sup-

ported at both ends by transparent fused silica windows, and a collimated 

beam of laser radiation was passed through the flow field parallel to its 

span. 

The flow field is essentially two dimensional and visible as a 

series of fringes, each of which corresponds to a shift in the optical 

path length of A. Choosing the span as the 2 axis, the general form of 

,Equation 1 is 

z 

Lo(x,y) = )tn(X,Y)d2 

21 

(4) 
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And since in Figure 3 the flow field is two dimensional, 

Ln(x,y) (5) 

where in this case L is the span of the wing. Next, by counting fringes 

from a relatively undisturbed point in the flow field, and assigning the 

number N to each fringe, the local index of refraction of any fringe can 

be related to the free stream index of refraction (noo) by the following 

equation: 

or 

L[n(x,y)-Ooo] = AN(x,y) 

A 
n(x,y) = 000 + L N(x,y) 

where N(x,y) is the two dimensional fringe number field, and N 

sponds to the free stream (000) condition. 

(6) 

(7) 

o corre-

Using this procedure, the two dimensional index distribution of 

Figure 3 can be obtained. Next, to determine its effect on a model deflec-

tion sensor which would probe from above, the optical path length along the 

x axis is determined by the relationship 

(8) 

(9) 

Now the purpose of the probe is to measure the true path length (H) which 

is (x2-x0in Equation 9. The quantity that is actually measured is Ho' 

the optical path length. If the assumption is made that there are no 
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local index variations, and H is computed from the simple relationship 

(10) 

to account for the ambient index of refraction, the error that results is 

6H noo 

A =--
Lnoo 

x 2 .r N(x,y)dx 

xl 

(11) 

Using this procedure and the data of Figure 3, 6H was computed at several 

points along the chord of the wing and the results are presented in 

Figure 4. 

Note that the maximum extent of the measurement error (-2.5 ~m) 

would be far less than the required measurement accuracy listed in 

Table 1 (±64 ~m), and could therefore be ignored without significant 

effect. This is a result of the fact that the optical probe for deflec-

tion measurement samples from above, traversing the flow field in a 

direction that is, for the most part, perpendicular to isoindex surfaces, 

minimizing its path length through index extremes. 

For the case of vertically oriented surfaces, however, it is likely 

that portions of the optical probe will traverse parallel to, and within 

index extremes. But this merely corresponds to the original situation of 

Figure 3) where the data was recorded by a collimated beam of light tra-

versing the flow field parallel to the span of the wing. Here, the maxi-

mum error that would occur as a result of assuming no local index varia-

tions is +32.6 ~m, which is still within the required measurement accuracy. 

Furthermore, this is an extreme example in which a single ray of light 
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propagates parallel to the model surface for a distance of 61 cm (2 feet), 

an unlikely circumstance. 

As stated earlier these computations were based on data taken in the 

Ames 2' x 2' Transonic tunnel. Obviously, the environmental extremes anti

cipated within the NTF test section will influence these results. But since 

the conditions in the two tunnels are similar (transonic), and the geometry 

is of the same order, it is felt that these results are a good indication 

of how local index perturbations will affect model deflection measurements. 
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3.0 MOIR~ CONTOUR ANALYSIS 

The phenomenon of moire fringes was first described by Lord 

Rayleigh in 1874 3
• He noted that when two matched line gratings were 

placed in contact " .•• in such a manner that the lines are nearly paral

lel ••. " an additional series of wide parallel bars developed with char

acteristics that were a function of the line spacing and inclination. 

The moire phenomenon was little used until recently because of the diffi

culties encountered in the manufacture and reproduction of satisfactory 

gratings. However, in the early 1950's a novel technique was developed 4 

whereby diffraction gratings could be reliably reproduced from a turned 

master grating, and the field has since blossomed into a powerful metro

logical technique. 

This chapter describes the basic moire technique and its extension 

to the geometry of the NTF test section. The important relationships and 

parameters are derived for projection moire, which is an extension of the 

basic principle for application to remote, noncontact, noninvasive sensing. 

Also considered is the technique of differential moire, in which the differ

ential motion of the object surface may be isolated from surface shape data. 

3.1 Basic Moire Contouring 

The application of basic moire contouring was first reported in 

1970 by Meadows, Johnson and AlIens. Their technique was a near-contact 

method in which the shadow of a grid was cast directly onto the object sur

face, as illustrated in Figure 5. The source of illumination was a colli

mated beam of incoherent radiation. The grating spacing was large enough, 
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and its distance from the object small enough, so that diffraction effects 

in the projected shadow were negligible. The object was viewed through the 

same grating used to cast the shadow fringe pattern, and the observer was 

located far enough from the grid so that the lines of sight from the observer 

to the grid were essentially parallel for all points on the grid. 

The result of such a configuration is that the object appears to have 

not only the grid shadows, but a series of additional shadows (moire 

fringes) which represent the intersection of equally spaced contour planes 

with the surface of the object. The contour planes are literally a sepa-

rate spatial frequency generated by beating the spatial frequency of the 

illumination grid with that of the observation grid. In this case both 

grids are one and the same, and the contours are planes that are parallel 

to the plane of the grid (the x-y plane) and have a spacing of 

6z p 
(12) tanG + tan¢ 

where d is the grid spacing, and G and ¢ are the illumination and observa-

tion angles as illustrated in Figure 5. If the contour spacing (6z) is 

much greater than the grid spacing (p), then the moire contours are easily 

separable from the grid shadows. 

This form of basic moire contouring is extremely powerful under the 

right circumstances. However, it has certain drawbacks which make it 

impractical in the NTF. Namely, the grid must be located relatively close 

to the object to prevent deleterious diffraction effects. Obviously, 

placing a grid close to the model in a transonic wind tunnel is impossible. 

And while the grid spacing can be widened, which will allow it to be 

removed from the immed~ate vicinity of the model, this necessitates an 

increase in the contour spacing and, therefore, a reduction in measurement 
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accuracy. Even then, the grid, as well as the window through which its 

shadow is cast, must be as large as the model if full coverage is desired. 

It is these difficulties that necessitate a modification of the basic 

moire technique. 

3.2 Projection Moire for Remote Sensing 

The optical configuration of a projection moire system is illustrated 

in Figure 6. It consists mainly of a projection and an observation arm 

which respectively project and view moire shadow fringes on the model. The 

model is centered on the origin of an x,y,z Cartesian coordinate system. 

Note that the x axis is perpendicular to the plane of the figure. Both the 

projection and observation arms have optic axes that lie in the y,z plane; 

intersect the origin; and are removed from one another by an angle 28. Note 

that the z axis bisects this angle, and that there is no loss of generality 

here since unequal projection and observation angles can be represented by 

a simple rotational transformation of the model coordinate space. The 

system operates in the following fashion: 

An incoherent, white light source illuminates the grating in the 

projection arm, which is in turn imaged onto the model surface. 

Now while the grating itself is two dimensional, and has no signi

ficant longitudinal depth, its image has a longitudinal depth 

that is equal the depth of focus of the imaging optics, which is 

chosen to be equal to the maximum depth of the model. Hence, the 

image of the projection grating in the vicinity of the model con

sists of dark and light planes which can be, but are not necessarily, 

parallel to one·another. These planes are illustrated by the shaded 
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bands in the model space of Figure 6. Note that for clarity of the 

illustration, only some of the grating lines have been shaded in 

this fashion. 

If the transmission function of the projection grating is defined as 

Tp(a,b,c), where a,b,c is the Cartesian coordinate space of the projection 

grating, and if it is illuminated by the uniform intensity Is' then the 

intensity seen by the imaging lens is 

(13) 

The intensity distribution projected into the model coordinate space is 

Ip(x,y,z) = IsTp(x,y,z) 

where Ip(a,b,c) t Ip(x,y,z) 

(14) 

(15) 

represents the imaging transformation from the projection grating to the 

model coordinate space. At the model, the intensity of the light scattered 

to the observer is 

R(x,y,z) = S(x,y,z)Ip(x,y,z) (16) 

where S(x,y,z) is the localized point scattering function of the surface 

of the model, assumed to be diffuse and Lambertain. 

Now the imaging lens of the observation arm collects and images this 

scattered light onto the observation grating. The intensity distribution 

of this image before passing through the observation grating is R(a,B,y) 

where a,B,y is the Cartesian coordinate space of the observation grating, 

and 

R(x,y,z) t R(a,B,y) (17) 

represents the imaging transformation from the model to the grating coor-

dinate space. If the intensity transmission function of the observation 

grating is defined as T (a,B,Y), then the intensity distribution seen by 
o 
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the observer is 

(18) 

And since the imaging transformation of a properly corrected imaging lens 

is linear, the transformation of Equation 16 is merely, 

R(a,B,y) = S(a,B,y) Ip(a,B,y) (19) 

Therefore, it follows from Equations 14, 15, 18 and 19 that 

(20) 

To interpret Equation 20, which represents the observed image, 

note that Is S(a,B,y) is merely the image that would be recorded if both 

gratings were removed so that 

T = T = 1 o p (21) 

However, with the gratings in the system, the intensity distribution of 

the model image is modulated by the combined transmission function 

T(a,B,Y) (22) 

The moire fringes are beat spatial frequencies that arise as a result of 

the multiplication on the right hand side of Equation 22. 

To understand fully the manner in which this occurs, it will be 

necessary to consider some specific grating transmission functions. 

However, when doing so, it will be more instructive if the observed 

intensity distribution in Equation 20 is referred to the coordinate 

space of the model. This merely requires the reverse of the imaging 

transformation in Equation 17, which is itself an imaging transformation 

from the observation grating to the model coordinate space. And again, 

since such a transformation is linear, 

Io(x,y,z) = Is S(x,y,z) T(x,y,z) (23) 

where T(x,y,z) = T (x,y,z) Tp(x,y,z) 
o ' 
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Note that because of the simple transformations involved, the moire 

phenomenon is equivalent to projecting the shadows of both gratings 

onto the surface of the model in such a way that the resultant intensity 

is the product of the two projection intensities, rather the sum, as 

would be the actual case. This is perhaps the simplest way of under-

standing and analyzing the moire phenomenon, and it is the method used 

throughout this program. 

3.2.1 Fringe Projection 

The optical configuration for projecting the shadow of a grating 

onto the model surface is illustrated in Figure 7. For clarity, the 

illumination source and condensing optics have not been included, and the 

projection lens is modeled as a simple lens with a remote aperture, which 

is accurate for a well corrected system. 

The illumination is incident from the left. It strikes the grating, 

which acts as a transmission filter, then passes through the aperture to 

the lens. The aperture is included to limit the cone of rays accepted by 

the lens from any point on the grating, and hence, it is the system STOP. 

The lens takes the cone of rays from a point on the grating, and redirects 

it to a point in the image. The object and image positions (L and L') are 

related to one another through 

1 
= -

F 
(24) 

where F is the focal length of the lens. The magnification of the system 

(m) is defined as the ratio of the image to the object height which is 

L' 
m =1: 
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Therefore, if the grating has a line spacing of p, then its image has a 

line spacing of p', where 

p' = mp (26) 

Now the cone of rays that forms any point on the image appears to come 

from an aperture that is the virtual image of the aperture stop, and is 

referred to as the exit pupil. The position of the aperture stop and 

exit pupil are related through 

1 
L ap 

1 1 
L = F 

ex 

which is a modified form of the imaging relationship in Equation 24. 

(27) 

Equations 24 through 27 are a result of the classic imaging rela-

tionships that are derived and discussed in any number of references, 

a few of which are given here 6 ,7,8. 

Now consider a sinusoidal transmission grating with a transmission 

function 

1 b 
Tp(a,b,c) = 2 [1+cos(2TIp)] (28) 

where p is the line spacing of the grating, and a,b,c is its Cartesian 

coordinate space as defined in Figure 7. The image of this grating is a 

fan of planar shadows in the a' ,b' ,c' coordinate space (also defined in 

Figure 7) that intersect at the center of the exit pupil. The imaging 

transformation yields 

where 

Va' .b' .c') • I 11+cos[~1: Va' .b'11 
(1'+1 )b' ex 
1'+1 +a' ex 

(29) 

(30) 

and € is the depth of focus of the optical system, which determines the 

longitudinal depth of the planar shadows. 
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At this point it will be instructive to digress and discuss the 

diffraction effects encountered here. Figure 8 illustrates the diffrac-

tion phenomenon that occurs at a focused spot. Instead of focusing to 

an infinitesimal spot as geometric rays predict (the large dashed lines 

in Figure 8), the light diffracts outward to form a large central disc 

enclosed in a series of concentric rings 6 ,7. This pattern is named the 

Airy distribution after the man who first derived it, and the bright 

central disc is referred to as the Airy disc. 

The Airy disc contains 83.8% of the incident energy, and has a 

diameter of 

D 
s 

L' 
2.441- D 

L 
(31) 

where I- is the wavelength of light; L' and DL are defined in Figures 7 

and 8. Two such spots can just be distinguished from one another when 

their centers are separated by half the diameter of the Airy disc 

(Equation 31). Any closer, and it becomes difficult to resolve them 

as separate spots because they blur together and appear as one. Hence, 

D /2 is considered the resolution limit of an optical system. 
s 

The depth of focus is here defined as the longitudinal range over 

which the geometric ray spot is less than or equal to the Airy disc. 

Therefore, considering similar triangles in Figure 8, 

D 
s 

=-
E 

or, rearranging 
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±E is the range over which the grating shadows are in focus in the 

image space of Figure 7. Furthermore, to insure that two adjacent shadow 

planes in the grating image can be resolved one from the other, the condi-

tion 

p' ~ D 
s 

is imposed on the system. 

(34) 

Returning to the projected transmission function of Equations 29 

and 30, a rotational transformation is required to relate it to the 

x,y,z coordinate space of the model. Figure 9 illustrates the relation-

ship between the model coordinate space and the image coordinate spaces 

of the projection arm (a' ,b' ,c') and the observation arm (a' ,S' ,y'). To 

transform the transmission function of Equations 29 and 30, the following 

direct substitution is made: 

Hence, 

where 

a' = -zcos8 - ysin8 

b' +ycos8 zsin8 

T (x,y,z) p 

L (y,z) 
p 

= 1 !l-kOS~~ Vy,zl] I 
(L'+Le~ycos8 - zson8) 

L'+L - zcos8 - ysin8 ex 

(36) 

(37) 

As before, the above shadow distribution is in focus only within the depth 

of focus (E), and hence, subject to the condition 

la' I ~ c (38) 

The projected shadow planes of Equations 36-38 are illustrated in Figure 10. 
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3.2.2 Standard Projection Moire Contouring 

In standard projection moire contouring the object is to generate 

a contour map of the surface of the model. To do so, a straight line 

grating with a transmission function like that of Equation 28 is used in 

both the projection and observation arm of the system. Note that most 

practical gratings exhibit a square wave transmission function as opposed 

to the sinusoidal distribution considered here. The sinusoidal analysis 

is, however, simpler, and has been shown to yield the same result as to 

contour location and spacingS. 

The projected shadow distribution of the projection arm is taken to 

be 

where 

Vx,y ,z) ~ 4 {1+cos[~~ Lp (y ,z1) 
d (ycos8 - zsin8) 

1 (y z) = -,,-p ----,-----::-
p' d - zcos8 - ysin8 

p 

(39) 

(40) 

which is identical to Equations 36 and 37 but with the distance from the 

model to the exit pupil (1'+1 ) replaced by the variable d for simplicity. ex p 

As stated before,. the observation arm can be looked upon as also casting 

shadow planes in an identical fashion to that of Section 3.2.1. But the 

grating coordinate space of the observation arm corresponding to Figure 7 

is a, 6, y, rather than a, b, c, and the grating image space is a' ,6' ,y', 

rather than a' ,b' ,c'. The purpose for this distinction is illustrated in 

Figure 9, where the final rotational transformation from the a' ,6' ,y' 

space to the x,y,z space is carried out using Equation 35, but with 8 

replaced by -8. Hence, the projected shadow distribution of the observa-

tion arm is 
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where 

To(x,y,z) "~ \l-tcOSPo~ LO(Y'Z~j 
d (ycos8 + zsin8) 

o 
Lo(y,z) = d - zcos8 + ysin8 

o 

(41) 

(42) 

0' is the magnified line spacing of the shadow planes; and d is the dis
o 

tance from the model to the exit pupil of the observation arm. 

Inserting Equations 39 and 41 into Equation 23 yields 

(43) 

and carrying out the multiplication 

1 [ 2n 2n 2n· 2n ~ T(x,y,z) = -4 l+cos(--,L )+cos(--,L )+cos(--,L )cos(--,L ) pp 00 pp 00 
(44) 

The last term in Equation 44 can be expanded to yield 

T(x,y,z) = -41 11+COS(27L )+cos(27L ) +-21cos [2n(L~ + L~)l pp 00 p oJ 

1 r L LoJ I 
+ zeos en(f-O'~f . (45) 

Now, remembering that T(x,y,z) is the spatial modulation of the intensity 

distribution of the observed image, any term of the form 

cos[2nf(x,y,z)] (46) 

within T(x,y,z) describes a series of fringes whose location is determined 

by 

f(x,y,z) = N (47) 

where N is any integer, and is here called the fringe number. Therefore, 

the intensity modulation function of Equation 45 produces four sets of 

fringes determined by 

L 
~ 
p' 

L 
o 

0' 

N 

N 

(48) 

(49) 
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N (50) 

N (51) 

where Land L are defined in Equations 40 and 42. 
p 0 

Fringe Equation 48 represents the original shadow planes projected 

by the projection arm and illustrated in Figure 10. Fringe Equation 49 

represents another set of shadow planes that appear to be projected onto 

the model surface. but in actuality exist only behind the grating in the 

observation arm. They are illustrated in Figure 11. 

Fringe Equations 50 and 51 represent the sum and difference beat 

spatial frequencies of most interest here. To simplify their characteris-

tics. the following approximations are made 

d = d = d 
p 0 

0' p' 

and with some manipulation. Equations 50 and 51 take on the form 

ycos8 - zsin8 + ycos8 + zsin8 Np' 
d-zcos8 - zsin8 - d-zcos8 + ysin8 = d 

(52) 

(53) 

where the + term represents the sum spatial frequencies (Equation 50) and 

the - term represents the difference spatial frequencies (Equation 51). 

For contouring. the fringe shape is ideal if the aperture stop is 

located in the front focal plane of the projection lens in both arms of 

the system (L = F in Figure 7). This is the TELECENTRIC configuration. 
ap 

and its effect is to place the exit pupil at infinity, i.e., 

d = 00. (54) 

Equation 53 then simplifies to 

(ycos8 - zsin8) ± (ycos8 + zsin8) = Np' (55) 
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which describes two sets of planar fringes in addition to those of the 

projection fringes of Figures 10 and 11. As illustrated in Figure 12, 

the sum fringes are parallel to the X,z plane with a spacing of 

, 
6y - P 

- 2cose (56) 

and the difference fringes are parallel to the x,y plane with a spacing of 

6z 
p' 

(57) 2sine 

If e is small so that 

sine « case (58) 

then the sum fringes as well as the two sets of projection fringes all 

have a spacing of approximately p', while the spacing of the difference 

fringes is much greater. The difference fringes, therefore, appear as 

spatially separable contour planes parallel to the x,y plane of the 

model coordinate space. 

Unfortunately, the telecentric configuration requires lenses and 

tunnel windows as large or larger than the model, which make it, like 

basic moire, impractical within the NTF. For that reason, the more gen-

eral case of a finite exit pupil location is considered next by dealing 

with Equation 53 without further simplification. 

For the case of the sum fringes Equation 53, after further manipu-

lation, yields 

2y(dcos8-z) = N~' [(d-zcose)2-y2sin2e] (59) 

There is no simple or convenient form for Equation 59. However, by 

expanding to the general form, and comparing with known cases, it is 

found that it represents a complex series of hyperbolas. Their locations 

are best understood by referring them to a y' ,z' coordinate space that 
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has an origin located at yo,zo in the y,z model space, and has been 

rotated through an angle n, as illustrated in Figure 13. 

At N = 0, the two hyperbolas collapse to form two straight lines 

defined by the equations 

y 0 
(60) 

z = dcose 

At N = too the two hyperbolas again collapse to form two straight lines 

defined by the equations 

d 
z = -- + ytane cose 

d 
z = cose - ytan8 • 

Both of these situations are illustrated in Figure 14. 

For N finite, the hyperbolas are as illustrated in Figure 15. 

Note that 

(61) 

1) the asymptotes of the hyperbolas of a given fringe order (N) 

are not perpendicular, 

2) the locus of points of the origin of the y' ,z' system (x ,y ) 
o 0 

traces out an ellipse in the y,z plane. 

3) the y' ,z' coordinates rotate from -45 0 to +45 0 as N varies 

from _00 to +00. 

Of primary importance, though, is the spacing of the fringes near 

the origin of the model space (y,z). Expanding Equation 59, and ignoring 

all second order terms, yields 

_ Nn' d 
Y .::.:.L- ( - z) - d 2cos8 (62) 

The sum fringes described by Equation 62 are a fan of planes, again with a 

spacing of 
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pI 

6y = 2cos8 (63) 

but no longer parallel to the x,z plane. Rather, they appear to radiate 

from the coordinate 

y = 0 
(64) 

d z = -::--=--::-
Zcos8 

as in Figure 16. 

Next, for the case of the difference fringes, Equation 53, after 

rearranging, yields 

2 N I 2 2 
Zsin8[y cos8 - z(d-zcos8)] = ~ [(d-zcos8) -(ysin8) ] 

which, after further manipulation, becomes 

where 

z 
a 

d ~1-)lCot8 j 
2cos8 l-~ cote 

2 

d Z 
Z (zcose) 

A = --=-=-==-:---:::-
[1-1 cot8 ]2 

[1-1 cote] [1+1 tane) 

Figure 17 is a normalized graph of both AZ and BZ as functions of the 

fringe order parameter~. Both have singularities at 

)l = -2cote and +2tane 
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But while A2 is always positive, B2 changes sign at both singularities. 

Hence, Equation 66 takes the form of a series of ellipses for B2 positive, 

-2cot8 < ~ < 2tan8 (72) 

and a series of hyperbolas for B2 negative. Again, however, the fringes 

of most importance are those near the y,z origin where the model is 

located, which correspond to fringe order numbers near N = O. 

Figure 18 illustrates the location of the elliptical difference 

fringes for the range 

tan8 - cot8 < ~ < 2tan8 (73) 

The lower limit in Equation 73 was chosen to be the value at which B2 is 

a minimum. Note that as ~ increases from the lower limit the fringes 

form expanding ellipses until the upper limit is reached, at which point 

they open out into a parabola. Beyond this they are again hyperbolas. 

Also note that 

Therefore, near the origin the fringes are nearly circular, with a 

spacing of 

pI 
[,Z = -""---

2sin8 

The consequences, therefore, of a finite exit pupil location are: 

1) the fringes are distorted from the simple planar shape, 

yielding a complex series of hyperbolas and ellipses that, 

in the neighborhood of the model, approximate a fan of 

extraneous planes and concentric, spherical contours; 

2) the fringe spacing is variable with position, though in the 

limit as the origin is approached it is unchanged from the 

telecentric configuration. 
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3.2.3 Differential Projection Moire Contouring 

The objective of differential moire contouring is to isolate motion 

of the model surface from its shape. To do so the system of Figure 6 is 

used with a slight but significant modification. Namely, the simple line 

grating in the observation arm is replaced with a more complex grating 

that is representative of the model surface shape, and under the right 

circumstances the contour fringes that result are a function of model 

deflection alone. 

To fabricate the observation grating for differential moire, the 

simple observation grating for standard moire is removed and replaced with 

unexposed film. The simple line grating is retained in the projection arm 

so that the film records a transparency of the projection grating fringes 

as they appear cast upon the model surface, but perturbed by the surface 

shape, position, and the angle of view of the observation arm. After pro

cessing, this transparency replaces the old observation grating in the 

otherwise unchanged system of Figure 6. The projection grating, still 

unchanged, projects fringes onto the model surface, which are again per

turbed by the surface shape, position, and the angle of view of the obser

vation arm. If the model surface is unchanged since the differential obser

vation grating was recorded, then the observed perturbations match those in 

the differential observation grating through which they are viewed, and the 

difference spatial frequencies cancel. Hence, any difference frequencies 

present are a measure of change in the model surface shape and position. 

As before, Equations 39 and 40 describe the fringes projected onto 

the model surface by the projection arm. During recording of the differ

ential observation grating the model surface is described by the topographic 
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function z (x.y). and the optical intensity distribution at the film plane 
o 

is 

R (a.B;y) o I S (a.B.Y) T (a.B.Y) s 0 po (76) 

where R. Sand T are determined after the fashion of Equations 13-16. and 
p 

R(x.y.z ) t R (a.B.Y) o 0 
(77) 

represents the imaging transformation from the model coordinate space to 

that of the grating. Assuming an ideal film characteristic. the resultant 

transmission function of the developed film is 

T (a.B.y) = R (a.S.y) o 0 
(78) 

At a later time. with the developed film acting as the differential obser-

vation grating. the fringes cast by the projection arm are unchanged, but 

the model surface is assumed to have moved and/or warped to the new topo-

graphic function z(x.y). As before. the intensity distribution scattered 

by the model is R(x,y,z) which, after the imaging transformation becomes 

R(a,B.y). This intensity distribution is filtered by the transmission 

characteristic of Equations 76-78 to yield the observed distribution 

(79) 

As before. it will be more instructive to relate the observed intensity 

distribution to the coordinate space of the model by reversing the imaging 

transformation. The result is 

I (x.y.z) o 
2 

I S(x.y,z )S(x.y.z)T (x.y.z )T (x.y,z) sop 0 p (80) 

where z and zo are both x and y dependent topographic functions. In this 

case Equations 39 and 40 apply for both transmission functions in Equation 

80. And in a fashion similar to the derivation of Equation 45. the com-

bined transmission function is 
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T(x,y,z) = 1/4{1 + cos(2~L )+cos(2~L )+1/2 p p p 0 

+1/2 COS[~7(Lp-Lo1} 
where L (y,z) is defined in Equation 40 and 

p 

(81) 

L (y,z) == L (y,z ) 
o p 0 

(81a) 

Again, there are four sets of fringes determined by 

L 
P 

Np' 

L == Np' 
o 

L +L 
P 0 

L -L 
P 0 

Np' 

Np' 

(82) 

(83) 

(84) 

(85) 

and as before, Equations 82 and 83 represent the original fringes pro-

jected on the model, while Equations 84 and 85 represent the sum and 

difference fringes. Making use of Equations 40 and 81, Equations 84 and 

85 become 

ycos8-zsin8 
d-zcos8-ysin8 

ycos8-z sin8 
o Np' 

± d-z cos8-ysin8 == ~ 
o 

where d has been replaced by d. Of interest here are the difference 
p 

(86) 

spatial frequencies which, after manipulation of Equation 86, are deter-

mined by 

(z-z )(y-dsin8) = 
o 

NdP' [(d-ysin8)2_(d-ysin8) (z+z )cos8+zz cos28] 
o 0 

(87) 

The terms in Equation 87 have been grouped according to their z and z o 

dependence. Note that the left side is a pure function of the difference 

between the two topographic surfaces z(x,y) and z (x,y), whereas the right 
o 

side is a function of their sum as well as their product. The contour 
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fringes that result, therefore, are a complex function of both surface 

shape (z and z ) as well as deflection (z-z). Only in the telecentric 
o 0 

case (the limit as d approaches 00) is the shape dependence removed, in 

which case Equation 87 reduces to 

(z-z )sin8 = -Np' o (88) 

But it was shown in Section 3.2.2 that a telecentric system is not prac-

tical in the NTF, and for that reason it is felt that in this program 

differential moire offers no benefit in comparison to standard moire. 

3.2.4 Moire Within the NTF 

To design a standard moire system for use in the NTF one must begin 

with the required depth of focus of the system as determined by Equation 33. 

Assuming the model has a potential depth about the centerline of the tunnel 

of ± 1/2 meter, then 

0.5 m (89) 

If visible radiation is used, 

:\=0.5)1m (90) 

and inverting Equation 33 

L' _~ DL = \j 2.44:\ = 640 (91) 

Now the model is located at a distance of approximately 1.2 meter (4 ft.) 

from the tunnel windows. Hence, 

L' = 1.2 meter (92) 

and 
L' 

DL = 640 = 1.9 mm (93) 

Therefore, the 7.6 cm windows installed in the test section are more than 

adequate. Now, from Equation 31 the diffraction spot size of such a 
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system is 

(94) 

and the number of resolvable spots across the edge of a 1 meter square 

field of view is 

1 meter 
DS 

1281. (95) 

The transverse resolution is therefore more than sufficient. Now DS also 

determines the minimum possible size for the projected fringe spacing, and 

therefore the greatest contouring accuracy. For that reason a grating 

spacing and projection magnification is chosen such that 

(96) 

Finally, the locations of the windows place a limitation on the available 

choices for e (see Figure 6). If two adjacent windows are used then (see 

Figure 2) 

(97) 

and from Equations 63, 75, 94, and 96, the extraneous sum fringes are 

spaced at 

fly = 0.40 mm (98) 

with a contour spacing of 

6z = 2.4 mm (99) 

Higher accuracy (reduced contour spacing) can be obtained by placing the 

projection and observation arms in widely separated windows. In that 

case 

6y .47 mm (100) 

6z .69 rom 
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Unfortunately, the spacing of the projected fringes (.78 mm) does 

not scale with 8, and the contours are no longer spatially separable 

because of near identical spatial frequencies. Allen and Meadows 9 have 

demonstrated a grid translation technique that removes the unwanted fringes 

by spatially translating both the observation and projection grid during a 

single frame cycle. Unfortunately, the relatively short exposure times 

required within the NTF make such a system an unlikely candidate for model 

deflection measurements. 

It would also be possible to increase the accuracy by reducing the 

required depth of field in Equation 89. This would allow a wider aperture 

(D
L
), a reduced spot size (D

S
)' and hence, a reduced projected fringe spac

ing (pI). But the square law relationship of Equation 91 requires a 100:1 

reduction in the depth of field to obtain a 10:1 improvement in the contour 

spacing. That would mean that a system with a contour spacing of 0.24 mm 

would have a depth of field of 1 cm, an alternative that is not considered 

viable. 
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4.0 SCANNING HETERODYNE INTERFEROMETRY 

Scanning heterodyne interferometry (SHI) is, in the sense that it 

samples one pOint at a time, a form of optical radar. But rather than 

measuring the time of flight of a pulse of radiation, it senses the phase 

of a continuous wave probe, and is therefore more akin to interferometry. 

Unfortunately, standard interferometry offers too great a sensitivity 

(typically 1/3 ~m) to be applicable here. So to reduce the sensitivity 

to a more workable level, the probe in heterodyne interferometry consists 

of two optical signals at different frequencies that have been spatially 

superimposed, and it is the phase of the beat frequency of the returning 

signal that is sensed. 

4.1 The Basic SRI System 

Figure 19 illustrates a possible configuration for such a system. 

Two lasers operating at different frequencies are spatially mixed by the 

beamsplitter on the left. The resulting beam is split by a second beam-

splitter, which allows a portion of the probe to be sampled immediately, 

providing a reference signal (S). The rest of the probe passes through 
r 

a two-dimensional scanner where it is deflected to a point on the object. 

The scanner also samples a portion of the radiation scattered by the object 

and returns it via the original beam path to a second detector, yielding 

the probe signal (Sp). The radial distance from the scanner to the point 

on the object is obtained by a comparison of the relative phase of the two 

signals Sand S 
r p 
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4.1.1 Beam Alignment 

The first thing that must be considered in such a system is the 

quality of the superimposition of the two laser beams that form the probe, 

and the effect of a slight angular misalignment. The upper sketch in 

Figure 20 illustrates the geometry at the detector if the two beams are 

not perfectly colinear. Assuming they are plane waves, and normalizing 

their amplitudes for simplicity, the electric fields of the two beams are 

represented by 

(101) 

where n
1 

and n2 are the distance related phases; wI and w2 are the radian 

frequencies; Kl and K2 are the propagation constants defined by 

K 
n 

w n 2TI 
== -c- = An (102) 

and c is the velocity of light. The detector face is the plane z = 0 and, 

ignoring constants of proportionality, the intensity of the radiation 

striking it is 

(103) 

Using Equations 101 - 103 and simple trigonometric relationships, the 

intensity is 

(104) 
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Now optical detectors are square law devices which detect the power that 

strikes them. However, none are fast enough to detect optical frequencies. 

Hence, the last three terms in Equation (104) may be dropped without error. 

Assuming a square detector of dimension dxd, the power on the detector 

face is 

p 

+d/2 

If I dxdy 
-d/2 

Inserting Equation 104 and integrating, this becomes 

p = d2 
11 + ~Sin~] } -0,- cos[(w2 - w1)t - (n 2 - n1)] 

where a = (K2sinY2 - KlsinY1) % 

The amplitude of the detected signal is therefore 

(105) 

(106) 

(107) 

A = d2 [Siano'] (108) 

which is plotted as a function of a in Figure 20. Note that the signal is 

completely lost at integral multiples of TI, and considerably reduced at any 

value above TI. Therefore, 

TI 
a ~ 2 (109) 

is chosen as a maximum practical limit for o,. 

Assuming Y1 and Y2 are small enough to make the approximation that 

siny 2: Y , (110) 

then, after making the substitution 

(111) 

and using Equation 102, Equations 107 and 108 reduce to 

(112) 
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where v 1 and v 2 are the cyclic frequencies. Furthermore, assuming that 

v 2 - v 1 ~ 10 GHz (113) 

the second term on the right side in Equation 112 is negligible, and 

Equation 112 reduces to 

(114) 

Inserting some practical values: 

d = 0.5 mm 
} (115) 

Y2 = 0.5 ].lm 

an estimate is obtained of the maximum allowed misalignment: 

6y ~ .5 m rad = 0.029 0 (116) 

Milliradian alignment accuracies of this magnitude over macroscopic dis-

tances are probably possible within the vibratory environment of a tran-

sonic tunnel. To some degree, however, the vibration will appear as a 

low frequency modulation of the probe signal, contributing to the overall 

noise situation. For that reason it will be more advantageous to obtain 

the two optical frequencies via amplitude modulation of a single laser 

beam. Since the beam is never split, perfect alignment is inherent and a 

potential source of noise has been eliminated. Additionally, a single 

laser and modulator will be more compact than two lasers or a laser and 

dye laser combination. 

4.1.2 Signal Detection and Deflection Measurement 

Figure 21 is a revised SRI configuration that employs the modula-

tion scheme outlined in the previous section. The two separate lasers in 

Figure 19 have been replaced with a single laser and modulator. Furthermore, 
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the reference signal is generated internally and fed to the modulator as 

the modulation signal, so there is no need to detect it separately. 

The output of the laser is described by the electric field 

E (t) = cosw t o 0 
(117) 

and the reference signal by 

S (t) = cosw t 
r r 

(118) 

The reference signal modulates the laser radiation so that the output of 

the modulator is 

E (t) = (a + a cosw t)cosw t m 0 r r 0 
(119) 

which is merely a double sideband amplitude modulated signal with carrier. 

At the detector the electric field is 

E (t) = E (t_ L+2R ) 
d m c 

(120) 

where R is the variable radial distance from the scanner to the point on 

the object, L is the sum of the constant internal propagation distances 

within the system, including any temporal delays within the circuitry, and 

c is the velocity of light. Since 

w «w 
r 0 

(121) 

it is assumed that material dispersion will have a negligible effect on c 

and A over the range of optical frequencies considered. Again, ignoring 

constants of proportionality, the intensity at the detector is 

(122) 

Substituting from Equations 119 and 120, this becomes 

Id(t) 1/2 fao + VOS[Wrt - W;(L + 2R~12 
• \1 + COS [2wo t - 2

W

co(L + 2R)]1 
(123) 
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And again, since no detector's bandwidth is sufficient to detect optical 

frequencies, the second term in the second set of brackets is dropped, 

and the detected probe signal is 

Sp(t) " lao + ar cosht - ;(L + 2R8f (124) 

where constants of proportionality have been ignored. The received sig-

nal in Equation 124 consists of the desired fundamental with a second 

harmonic component that can be removed by filtering if w is large com
r 

pared to the signal bandwidth. 

The phase difference between the modulating signal in Equation 118, 

and the detected probe signal of Equation 124, is therefore 

w 
r 

ljJ = -(L + 2R) 
c 

and the distance to the sample point on the model surface (R) can be 

(125) 

determined through Equation 125 by measuring~. Furthermore, if R is 

the required deflection measurement accuracy, then 

wr 
l\ljJ = 2-11R (126) 

c 

is the accuracy required in the measurement of ljJ to achieve 6R. Note 

that there is a modulo 2n ambiguity in any phase measurement of this 

kind, and it can be associated with an ambiguity length (Aa) by adding 

the 2n equivalent to both sides of Equation 125, i.e., 

Manipulation of Equations 125 and 127 yields 

(128) 
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where 
w 

r 
~=~ (129) 

is the cyclic modulation frequency. Using Equations 126 and 128, Table 3 

illustrates the relations between vr ' 6~, and Aa for the required measure

ment accuracy listed in Table 1. 

TABLE 3 

v 6~ A r a 

6.6 MHz .001 0 23.0 m 

66.0 MHz .01 0 2.3 m 

660.0 ~z .10 23.0 cm 

6.6 GHz 1.00 2.3 cm 

Obviously, a long ambiguity length is desirable. But that in turn necessi-

tates phase measurement accuracies that may not be practical within the 

constraints of the NTF. 

The accuracy of such a measurement is further limited by point to 

point variations in the model surface reflectivity, which appear as addi-

tional amplitude modulation, albeit at relatively low frequency, of the 

returning probe signal. This source of noise cannot be eliminated by 

filtering since its spectral components appear within those of the desired 

signal, nor by proper surface preparation since even a perfect Lambertian 

scatterer exhibits a cosine falloff with surface tilt. However, since 

SHI is a phase sensitive technique, AM noise effects can be minimized by 

amplitude limiting in a fashion similar to that used in commercial FM 

systems. But because of the extreme accuracies required within the NTF, 

the residual effects of such a scheme will appear as phase jitter, and 

may be of sufficient degree to make other techniques more attractive. 
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4.1.3 Step Response and Bandwidth 

Assume that the probe is raster scanned across the surface of the 

model, and consider the worst topographic situation that might be encoun-

tered: a sharp step in the shape of the model. Now the surface character-

istic of the model is derived from the spherical coordinate R,e,~. which 

are all parametrically related through time via the raster scan. 80 the 

step in the model surface appears as a step in the temporal characteristic 

of R, which is repeated each raster cycle. It can be said, then, that all 

model surface characteristics appear as harmonic components of the raster 

fundamental. 

Consider the step function in Figure 22 as a model of this worst 

case behavior, where 6r is the depth of the step; r is the distance to 
o 

the model; and T is the full raster period. 
s 

The fundamental component of the received signal will be 

w 
2(ro + ~r)ll ts t r s co+ t - -[L + T < t < 

2 r c 
8 (t) (130) p 

cos{wrt - Wr[L + 2r lj t t s < t < T 
s 

c 0 2 s 2 

where 8 (t) was taken p from Equation 124 and R was taken from Figure 22. 

A Fourier harmonic analysis 10 of Equation 130 yields 

sin(W;-60 sin ~w t 
w 

+ ~{)]j 8 (t) 
r 

- -[L + 2(r p l r 
c 0 

00 
sin (nTI~:) 

-I) t s 
cos (nw t) -

T 

(nn::) 

s 
n=l s 

(131 ) 
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The term within the summation is a result of the phase modulation R(t), 

and appears as harmonics of w located in sidebands about the reference 
s 

frequency w • 
r 

If it is desired to sample the entire model surface with a band-

width of 100 Hz, then a raster frequency of 

v = 300 Hz 
s (132) 

is chosen so as to sample the surface at a rate conservatively beyond 

that required by the Nyquist sampling criteria11
• And when considered 

in conjunction with the reference frequencies of Table 3, the bandwidth 

required to pass 100 harmonics (60 KHz) is essentially narrow band FM. 

Obviously there will be some high frequency components present 

due to rapid variations in the model surface. But it is unlikely that 

such surface characteristics will have large amplitudes, and their effect 

on the probe (phase modulation) will result in minimal frequency devia-

tion11
• 

4.2 Optical Homodyne and Heterodyne Detection 

It is often possible to improve the signal to noise characteristics 

of a system of this kind by mixing a portion of the local oscillator (the 

laser) with the returning signal prior to detection. Consider heterodyne 

detection. and assume that a portion of the unmodulated laser beam (w in 
o 

Figure 21) is frequency shifted to w +6w, then mixed with the returning 
o 

beam prior to detection. Equation 120 then becomes 

Ed(t) = Em(t - L : 2R) + a.Q,cos[wo + 6w)t - n.Q,J (133) 

where Em(t) is still taken from Equation 119, and n.Q, Is a constant phase 

term included for generality. As before, squaring Equation 133 to obtain 
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the intensity, and dropping DC components and terms with frequency compon-

ents beyond the bandwidth of the detector, the detected probe signal in 

Equation 124 becomes 

2 

S (t) 
p 

a a o r 

a 
r 

cos(w t-¢ ) - --4-- cos[2(w t - ¢ )] r r r r 

where 
w 

r 
c 

(L + 2R) 

w 
o 

¢o = 7" (L + 2R) 

(134) 

(l35) 

(136) 

Figure 23 is a plot of the power spectral density of the signal of Equation 

134. Note that the first two terms appear as phase modulation sidebands 

about center frequencies wand 2w , which are the fundamental and second 
r r 

harmonic distortion signals of the original detection scheme. These are 

identical to the signals received in Equation 124. The third term in 

Equation 134 represents the received heterodyne signal which, if a£ > ar , 

is a stronger signal than the fundamental, and appears as a carrier at WI 

with sidebands that are replicas of the fundamental signal. 

The difficulty here is that WI is not merely 6w, as might be assumed 

at first glance. Rather, it is the instantaneous frequency of the last 

cosine term appearing in Equation 134, which is 

Substituting Equation 136 into Equation 137 yields 

WI 

w 
6w + 2 ~ dR 

c dt 
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And from Equation 102, 

w' w + 4n dR 
A dt 

o 
(139) 

where Ao is the laser wavelength (~.6~m). Now R's temporal variation may 

be relatively slow, but A is so small compared to potential values of dR, 
o 

that the second term in Equation 137 is likely to dominate, producing a 

rapidly and randomly varying carrier frequency (w'). 

A physical interpretation of this phenomenon is that the original 

sensitivity of standard interferometry (A /2), which was too great to 
o 

begin with, has been regained to the detriment of the system. For that 

reason, optical heterodyne and homodyne detection are not feasible in a 

system of this nature. 

4.3 Phase Locked Loop Detection 

Table 3 illustrates the most fundamental difficulty that will be 

encountered in an SHI system, and that is: even at high modulation fre-

quencies, extremely accurate phase measurements are required to obtain the 

desired deflection measurement accuracy. A typical vector voltmeter of 

high quality* can measure phase differences with an accuracy of ±1.S0 at 

frequencies between 1 MHz and 1 GHz. But this instrument is a narrow band 

device (1 KHz) and not capable of tracking a rapidly varying signal. It 

is unlikely, therefore, that such a straight forward approach will have 

both sufficient speed and accuracy to be applicable in this program. How-

ever, the advent of phase locked loop (PLL)12,13 technology in recent years 

offers an alternate approach with some potential. 

* Hewlett Packard Model 840SA 
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The PLL technique in this application converts the phase measure-

ment to a frequency measurement by nulling the phase error. This is done 

by altering the modulation frequency (wr ) so that the round trip path 

length (L + 2R) corresponds to one cycle of the modulation frequency, i.e. 

w 
r 

(1 + 2R) = 2n 
c 

(140) 

The resulting phase difference between the probe and reference signals has 

been removed, and R is obtained by measuring wand inverting Equation 140 
r 

to yield 

A differential measurement ~R can be obtained from 

~R 

~v c r -----2v v r r 

(141) 

(142) 

And if the second term on the right side of Equation 141 is negli-

gible, then 

~R 

R 

tw r 
v 

r 

Within the NTF, 

R ~ 1.2 meter 

~R = 64 11m 

And from Equations 141-143 

R 
~R = 18,750 

v = 125 MHz . 
r 

(143) 

} (144) 

} (145) 

v would have to be measured accurately to 1 part in 18,750, which 
r 

is not terribly restrictive, and would allow almost 7,000 samples per 
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second. A raster scan of 300 Hz sampling 100 spots per scan requires 

30,000 samples per second, so the above sample rate is not sufficient, 

although it is at least approaching that required. 

4.4 Laboratory Experiments 

To gain insight into the PLL approach, the contractor fabricated a 

laboratory experiment of the configuration illustrated in Figure 24. A 

Laser Diode Laboratories, Inc., IRE 160 high frequency optical communica-

tions light emitting diode was used as the radiative source because it was 

an affordable and convenient means of modulated optical power. The radiated 

energy was collected by a microscope objective and formed to an intermediate 

image at a short distance (16 em). It was then reimaged by a projection 

lens onto a scattering target at a distance of 11.1 meters. The scattered 

radiation was collected onto the cathode of a Hamamatsu R666 photomultiplier 

tube. The output of the PMT was amplified then fed into a TTL comparator 

for conversion to TTL levels. The Phase Detector was an edge triggered 

device which produced a voltage that was proportional to the phase differ-

ence between the comparator output and the voltage controlled oscillator. 

Included within the loop were an integrator for loop stability and a differ-

ential amplifier that made it possible for the loop to lock at a phase 

difference other than 2n. Therefore, for the purposes of this experiment, 

Equation 140 is modified in the following fashion, 

w 
~ (L + 2R) = K2n 
c 

where O:S K =:: 1 Using the relationship 

w 
r 

2nv 
r 
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equation 146 becomes 

v (L + 2R) = Kc r (148) 

Note that L is a constant length that includes circuit delays as well as 

optical path lengths not included in R. The purpose behind including the 

constant K in the loop was so that it would operate over reasonable labor-

atory distances «15 meters) yet remain within the modulation bandwidth of 

the LED (10 MHz). 

When the loop was operating, it exhibited the following baseline 

characteristics: 

at 

v = 4.100 MHz ro 

R = 11.1 meters 
o 

} (149) 

The short term (~0.1 sec) frequency stability was measured by observing 

the degree of flicker in the reading on the digital frequency counter. It 

was 

!:::.v ~ ±0.001 MHz 
s 

(150) 

The long term (~10 sec) frequency stability (drift) was observed to be 

better than 

!:::. v L ~ ±O. 02 MHz (151 ) 

The frequency (vr ) was measured at several points as R was decreased 

from the baseline value listed in Equation 149. The results are graphed 

in Figure 25, where ~R is the difference between Rand R. Inserting o 

the relationship 

R = R -!:::.R 
o 

into Equation 148 yields 

v 
r 

cK 
L + 2(R -~R) 

o 

(152) 

(153) 
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The solid line in Figure 25 is a plot of Equation 153 using the constant 

values 

L = 5.031 meters 
} (154) 

K = 0.372 

The fit is quite good, verifying the applicability of Equation 148. Any 

lack of fit appears to be due to long term frequency instability. 

Next, differentiating both sides of Equation 148, and manipulating 

the results yields 

l1R (155) 

Inserting values from Equations 149, 150, and 154, the short term measure-

ment accuracy is computed to have been 

l1R = ±3.3 mm (156) 

This is obviously not sufficient for deflection measurements within 

the NTF. But this experiment was not intended to provide that degree of 

sophistication. Higher baseline frequencies and shorter baseline distances 

should greatly improve both stability and accuracy. 
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5.0 CONTOUR HOLOGRAPHY 

One of the most dramatic phenomena to emerge from the field of 

holography is the ability to acquire interferometric data from diffusely 

scattering surfaces. Such a capability is, of necessity, impossible with 

standard interferometry. But the hologram, which by its very nature stores 

a fully coherent image of the diffuse object, is capable of recording two 

images in such a fashion that they reconstruct at the same location in 

space, and interfere on a point by point basis. This is one form of holo-

graphic interferometry14, and the fringes that result are a function of 

changes that have occurred in the object surface between the two recordings. 

Contour holography15 is another form of holographic interferometry where the 

two images are recorded simultaneously, or nearly so, but at different wave-

lengths. Upon reconstruction the two images are microscopically displaced 

because of the differences in recording wavelength, and fringes result that 

are a function of the wavelengths and the surface topography. 

5.1 Basic Holographic Recording and Reconstruction 

Figure 26 illustrates the basic geometry of holographic recording 

and reconstruction. U represents the object wave to be recorded, which 
o 

may have an extremely complex spatial nature, and U represents a repror 

ducibly pure reference wave. The two waves must be coherently related so 

that they produce a stationary interference pattern at points in space 

where they are coincident. A hologram is fabricated by recording this 

interference pattern in the emulsion of a photographic plate, producing a 

diffraction grating with a complexity that is entirely dependent upon the 

complexity of the two waves and how they interfere. 
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To reconstruct the hologram, the photographic emulsion is first 

developed to bring out the diffraction pattern, then reilluminated with 

the reproducible reference wave U. The filtering effect of this com
r 

plex grating is to diffract a significant amount of the reference wave 

into a reproduction of the object wave, with its original complexity 

maintained and reproduced in its entirety, as in Figure 26b. The holo-

gram appears to be a window through which the original object may be 

viewed in its full three-dimensional character. 

As stated earlier, the object and reference waves must be coherently 

related, hence, the use of a single laser from which both waves are acquired 

by beamsplitting. Keeping this in mind, Figures 27a and b illustrate two 

basic geometries for recording a hologram. In both, the output of a single 

laser is passed through a beamsplitter (BS) for division into object and 

reference waves, and the reference beam is passed unperturbed to the holo-

graphic plate. Also in both, the objects diffusely reflect (scatter) the 

light that is incident upon them. In the single pass configuration of 

Figure 27a the object wave, after scattering from the object, impinges 

directly upon the holographic plate. Whereas in the double pass configur-

ation of Figure 27b, the scattered object wave is recorded through the 

beamsplitter. 

A diffuse object may be considered an infinite number of infinites-

imal points, each of which scatters the incident radiation into a hemi-

sphere. At a point in the photographic emulsion of the holographic plate, 

the resultant electric field is the integral of the contributions from all 

points on the object surface. The situation may, however, be analyzed by 

considering a single point on the object surface and its recording and 
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reconstruction characteristics. Such a simplified analysis is valid if 

the recording medium is linear, which is most often the case in holog-

raphy since one effect of the reference wave is to bias the emulsion into 

the linear region of its operating characteristic. 

Goodman 16 provides an excellent point source analysis of the holo-

graphic process. With certain changes in notation his results are repeated 

here. Figure 28 illustrates the geometry of both recording and reconstruc-

tion. The emulsion of the holographic plate occupies the (x,y,O) plane. 

A point source of wavelength Ai located at (x ,y ,z ) illuminates the object 
s s s 

point (x ,y ,z ) which scatters radiation to the point (x,y,O) in the 
000 

photographic emulsion. With an insignificant loss of generality, the 

reference beam is assumed to be collimated with direction cosines (a Q y) r,l-'r' r 

and wavelength Ai' The reference beam and the scattered radiation from the 

object point mix at the photographic emulsion where their interference pat-

tern is recorded. 

After the plate is developed, it is reilluminated with a collimated 

reference beam, but this time with direction cosines (a ,S ,y ) and wave
c c c 

length A. The reconstructed image point is a virtual image that appears 
c 

at (x. ,yo ,z.) where 
111 

xil 

R. 1 10 

Yil 
Sc + \ Co 

R. 1 Ai R 
10 00 

1 
A 1 c 

R. 1 =~ R 
10 00 

Sri) 
(157) 
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Note that when the reference beam is unchanged from recording to 

reconstruction, i.e. 

} (158) 

and A = A -c rl' 

then the image is undistorted and unmagnified, i.e. 

(159) 

There is also a real image that appears during reconstruction in 

addition to the virtual image discussed above. Under the right circum-

stances, however, the two images are spatially separate and do not inter-

act. For that reason, and to maintain clarity and simplicity, the real 

image is not considered here, though the contouring relationships hold 

for both images, and the possibility always exists of using the real image 

to advantage. 

5.2 Multiple Wavelength Contour Holography 

To induce contour fringes on the surface of the image, the geometries 

of Figure 28 and the procedures involved remain relatively unchanged. The 

holographic plate is, however, exposed twice: once with the object illum-

ination and reference beam at wavelength Ai; and a second time with both 

changed to wavelength A
2

• In this way, two interference patterns are 

recorded in the photographic emulsion and two images result upon reconstruc-

tion. It should be noted here that the two exposures may be performed simul-

taneously since, by their very nature, the two wavelengths will not interact 
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to produce a third stationary interference pattern. In the event, however, 

that the exposures are performed separately, care must be taken to insure 

that 

1) the object is stationary between exposures, or 

2) the time that ellapses between exposures is short enough that 

object motion is insignificant «A/2). 

If significant object motion does occur between exposures, extraneous inter-

ferometric fringes will appear in addition to the desired contours. And 

since the interferometric sensitivity (A/2) is much less than the contour 

spacing, the undesired fringes will most likely dominate. 

To extend the analysis of the previous section to contour holography, 

but retain the necessary generality, three different reference beams are 

used for 1) the first recording (subscript 1), 2) the second recording 

(subscript 2), and 3) reconstruction (subscript c). Equation 157 remains 

valid for determining the location of the first image point (xi1 'Yil'Zil), 

and can be modified to determine the second image point (xi2 'Yi2,zi2) by 

merely replacing the subscript 1 with the subscript 2. Now, if the three 

reference beams are adjusted so that 

(160) 

then the image relationships reduce to 

(161) 
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0 
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fringes is described 

R 2 = (x -x )2 + (y _y )2 + (z -z )2 
s 0 s 0 s 0 s 

(161) 
con't. 

bylS 

(162) 

(163) 

The contour fringes in the object space (x,y z) described by 
o 0, 0 

Equations 162 and 163 are merely a series of concentric ellipsoids of 

revolution with foci located at the point of the illumination source 

(x ,y ,z ) and the viewing point (x,y,O), as illustrated in Figure 29. 
s s s 

The major axis (2a) and minor axis (2b) are determined by 

1 Al A2 
a :: 21 A -A 1 N 

1 2 

The contours are spaced by 

6b := ~ Ila 
b 

- z 
s 
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Note that as the viewing aperture (the pupil of the eye in Figure 29) 

observes different object points, its line of sight passes through differ-

ent points on the holographic plate. Hence, the position of one of the 

elliptical foci is a function of the object point viewed, and the overall 

elliptical contour pattern is distorted. This can be alleviated by locating 

the viewing aperture in the plane of the hologram so that the point through 

which the line of sight passes is constant for all object points. 

There are also certain limitations that must be adhered to if the 

contour fringes are to be at all visible, let alone with any reasonable 

contrast. Consider the situation depicted in Figure 30, where the viewing 

aperture is located in the plane of the hologram at the origin of the coor-

dinate system. The two image points observed by the viewing system inter-

fere and produce fringes only if they are both located within the resolution 

volume (Airy disc x depth of focus: see Section 3.2.1) of the viewing sys-

tem15 • Now along the line of sight to a particular object point, the two 

image points are observed as having a transverse displacement (ET) and a 

longitudinal displacement (E
L
). Therefore, from Equations 31 and 33 

2. 44 A (f5) 

Recggnizing that commonly 

1:: > 1 
D 

the first of the requirements in Equation 166 is obviously the most 

restrictive. It is for that reason that a telecentric viewing lens 

(166) 

(167) 

(see Section 3.2.1), if at all feasible, should be used to observe the 
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contour fringes during reconstruction. By locating the aperture stop 

in the back focal plane of the lens, the entrance pupil, rather than 

the exit pupil as in the earlier case, is located at infinity and the 

line of sight for all object points is parallel to the optic axis; ET 

is identically reduced to zero, removing the first restriction of Equation 

166; and EL is equal to the image point displacement (~z) where 

~z = !zil-zi2! • 

Therefore, from the second of Equation 166, 

and from Equation 161, if ~z « 

R 2 
~z _ 00 ~A. 

"f7" 
c 0 

z , 
o 

then 

(168) 

(169) 

(170) 

The telecentric configuration described above yields fringes that are 

parabaloids of revolution with a focus at (x ,y ,z ) and a directrix s s s 

that is the plane described by 

5.3 Contour Holography Within the NTF 

(171) 

Ideally, the contours generated on the image of the model surface 

should be planar. But to accomplish that the illumination source point 

must be located at infinity (a collimated beam), requiring, like moire, 

collimating optics and tunnel windows the size of the model (1 meter). 

Obviously, such a system is impractical, so more complex geometrical 
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contours must be accommodated. But where moire was hampered by the 

necessarily large depth of focus, which indirectly limited the contour 

spacing, the contours of a multiple wavelength holographic system are 

independent of the imaging optics, as evidenced by Equations 165. Further

more holographic contouring does not yield the extraneous fringes that can 

be so detrimental in a moire system. 

Consider the system depicted in Figure 31. It is only one of many 

possible configurations but it illustrates the technique. A telecentric 

imaging lens, with its aperture located in the front focal plane, which 

is immediately behind a tunnel window, forms an image of the model near 

the holographic plate during recording. Varner17 has shown that a properly 

corrected lens in the recording process does not influence the contour loca

tions as they relate to object space. 

Note the beamsplitter located between the imaging lens and the 

holographic plate. It serves two functions, both of which are illustrated 

in a separate partial figure so as not to clutter the complete system 

representation. Its first function is to allow the reference beam to be 

brought in from off axis so that it strikes the holographic plate at the 

proper angle for optimum recording (~300). Its second function is to 

allow a collimated illumination beam to be brought in from the other side 

and reflected into the tunnel. The imaging lens also serves a second pur

pose by focusing the illumination beam to a point in the aperture of the 

imaging lens. And keep in mind that these functions occur simultaneously 

with imaging during the recording process. 
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After both images have been recorded on the holographic plate, and 

it has been processed, a continuous wave reference beam is introduced, again 

via the beamsplitter, for reconstruction. The viewing lens transfers the 

reconstructed image to a video camera so that it can be monitored from an 

external location. Note that the aperture of the viewing system is the 

aperture of the camera lens. And since it is located in the rear focal 

plane of the viewing lens, the viewing system is telecentric. 

For automated remote operation the holographic plate will be a 

thermoplastic film like Rottenkolber's* HF85. It is characterized by a 

50 rom foremat with more than sufficient resolution and instant (10 sec) in-

situ processing for a total cycle time of approximately 25 sec. More than 

300 exposures can be stored in the device at any given time, and while the 

unit is overly large (approximately 10x15x60 cm), it has not been configured 

to save space and could be reduced in size. 

Since the depth of focus requirement (± 1/2 meter) is the same for 

both the holographic and moire systems, the treatment of Equations 89-95 

differs here only by the recording wavelength (A ~ 0.694 ~m). The slightly 

modified results are presented here 

E = 0.5 m 

L' = 
DL 

D 
s 

N 
s 

0.694 ~m 

540 

1.2 meter 

2.2 mm 

0.91 rom 

1100 spots 

* Munich, West Germany 
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The contour spacing, however, is considerably different, being fully 

independent of the imaging and reconstruction optics. Reversing the 

first of Equation 165, a contour spacing of 64 ~m requires a wavelength 

separation on the order of 10 to 40 angstroms (A) in the visible portion 

of the spectrum. The multiple wavelengths of argon, keypton, etc., lasers 

are too widely separated (6A ~ 250 A) and are not usable here. For this 

reason a tunable dye laser, pumped by a high power pulsed laser, was orig-

inally envisioned as the source. However, the conversion efficiency of 

dye lasers is rather poor, and without further optical amplification there 

would not be sufficient power to illuminate the large models (-1 meter) 

anticipated in the NTF. Furthermore, optical amplifiers are narrow band 

devices, so extraordinary techniques would have to be employed to provide 

gain at both wavelengths. Such a system (pump laser, dye laser, wide band 

optical amplifier) would not only be expensive, but prohibitively large. 

There is some doubt that it could be located in the space available. 

One alternative, though, is the ruby laser, which ordinarily oscil-

lates at the Rl gain peak (AI 694.3 nm) of the ruby crystal. There is 

another peak, however, at the R2 transition (A
2 

=692.9 nm) with sufficient 

gain for laser oscillation. Wuerker and Heflinger 18 have shown that by tuning 

the cavity with an etalon, the Rl transition can be suppressed and RZ lasing 

achieved. They used an unstabilized, manually tuned etalon and encountered 

severe drift that was ultimately the cause of a lack of R2 lasing repeatabil

ity. But consistency in the RZ transition can be obtained by using an oven 

stabilized, electronically tuned etalon for wavelength selection. Such a 

system would have the capability of firing two intense ruby pulses (one at 

each wavelength) within a few hundred microseconds. There would be more 
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than sufficient power - that of a Q-switched ruby laser - to fully illum-

inate the model and properly expose the holographic recording material. 

From the first of Equation 165, the contour spacing would be 

6a = 172 11m (173) 

and with quarter fringe extrapolation, contour resolution to 43 11m should 

be possible. 

Returning to Figure 31 to complete the design, an imaging magnifi-

cation of 

m = 20 (174) 

is required to image the 1 meter model onto the 50 mm thremoplastic film. 

Therefore, 

L L'/m 
(175) 

60 mm 

and from Equations 24, 172, and 175 

F = 57 mm (176) 

Finally, combining Equations 169 and 170 produces the restriction 

R 2 A 2 2 
~ < 4 88 _c_ (l:.-) 

Zo -' 6A DL 
(177) 

Now it is most probable that a Helium Neon laser (A = 0.6328 11m) will be c 

used for reconstruction. Using this and Equations 172 and 175 yields 

R 
00 

z 
o 

2 

~1.04meter. 

Combining this with the last of Equation 157, and recognizing that 
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where the term on the right is half of the diagonal of the film. yields a 

quadratic inequality that can be solved for the dual inequality 

34 mm < z < 1 meter o - (180) 

Now the image of the model in the hologram space is approximately 3 mm 

thick because of the nonlinear longitudinal magnification characteristic 

of imaging lenses. It will. therefore. be relatively easy to locate the 

entire image well within the limits set by Equation 180. 
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6.0 SUMMARY CONCLUSIONS AND RECOMMENDATIONS 

Moire contouring, scanning heterodyne interferometry, and holo

graphic contouring were examined for their applicability as nonintrusive 

model deflection sensors within the NTF at NASA's Langley Research Center. 

The available literature was surveyed, and computations and analysis were 

performed to establish specific performance requirements, as well as the 

capabilities and limitations of such a sensor within the geometry of the 

NTF test section. Also, to gain additional insight into the approach of 

scanning heterodyne interferometry, the contractor fabricated a limited 

scale laboratory mock-up of such a system with optical phase locked loop 

data acquisition. 

Based on the foregoing study the following conclusions were drawn: 

Moire Contouring 

1) The contour spacing, and hence, deflection accuracy, are indirectly, 

but ultimately, limited to a few millimeters by the required depth 

of focus of the model space (1 meter). 

2) Extrapolation to fractional contour accuracies is limited to approx

imately 1/2 mm by the presence of extraneous fringes which are not 

always spatially separable. 

3) Higher accuracies may be obtained by sacrificing depth of focus. 

But a square law relationship requires a large reduction in depth 

of focus to obtain a moderate improvement in contour spacing. 

4) Planar contours are not possible within the limitations set by the 

geometry of the NTF test section. In the neighborhood of the model 

the contours are elliptical in shape. 
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5) Techniques for removing the troublesome extraneous fringes, such 

as grid translation, are not applicable because of the vibrations 

anticipated within the NTF test section. 

6) Frame rate is limited only by available video speeds. 

Scanning Heterodyne Interferometry 

1) The required deflection measurement accuracy necessitates phase 

measurement accuracies that are near to, or beyond, the state of 

the art, even for narrow bandwidth laboratory instruments. 

2) High sample rates for moderate model coverage (100 samples per 

raster) aggravate the situation further by demanding even higher 

bandwidths in such instruments. 

3) Phase locked loop data acquisition offers some advantage over open 

loop phase measurement. But even when ignoring such factors as AM 

modulation of the returning signal, the requirements are still 

extreme for such an approach. 

4) The transverse resolution is limited by the sample rate, which 

requires high bandwidths even for moderate model coverage. 

Holographic Contouring 

1) The contour spacing is independent of any imaging optics used and 

a function only of the two recording wavelengths. With use of an 

R1-R
2 

ruby laser, 172 ~m contours are possible. 

2) There are no troublesome extraneous fringes to limit extrapolation 

to fractional contour accuracies (43 ~m). 

3) Planar contours are not possible within the limitations set by the 

geometry of the NTF test section. Choosing an optical configura

tion for optimum performance yields well defined parabolic contours. 
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4) The frame rate is limited to approximately 2 recordings per minute. 

However, the resultant data will have a resolution of 1100 spots 

across the field edge. 

Of the three techniques examined in this program, holographic con

touring appears to offer the most promise. Unlike moire, it is not hampered 

by limited contour spacing and extraneous fringes. Furthermore, its trans

verse resolution can far exceed the limited point sampling resolution of 

scanning heterodyne interferometry. And finally, the availability of the 

R
1
-R2 ruby laser as a high power, pulsed, multiple wavelength source makes 

such a system feasible within the NTF. 

To develop a fully operational R
1
-R

2 
ruby laser holographic contouring 

system will require an extensive program over a period of approximately three 

years. If such a program is pursued, the contractor recommends that it be 

carried out in three phases as follows: 

Phase I: Laboratory Breadboard 

The tunable ruby laser should be further developed by employing an 

oven stabilized electronically tuned etalon for dependable operation. A 

small scale optical system should be fabricated to evaluate the contouring 

characteristics of the laser. Contour holograms can be made on photographic 

plates in a stable environment by tuning the laser electronically between 

flashlamp pulses. 

Phase II: On-Site Evaluation 

The purpose of Phase II is to extend the development of the Phase 

I system so that it can be tested at NTF with the tunnel oper8ting at one 

atmosphere and room temperature. The optical package should be extended to 

a full scale mock-up and the laser further developed so that both the R1 
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and R2 pulses can be fired within a single flashlamp pulse. Much of the 

peripheral equipment (such as power supplies and controls) will have to be 

reshaped and repackaged to fit within the available space in the tunnel. 

On site, the contour holograms can be recorded on film, changed, developed, 

and reconstructed manually. Data can be reduced after the tests by the con-

tractor. 

Phase III: Prototype Fabrication and Installation 

During this final phase of the program, the system of Phase III can 

be extended to include thermoplastic recording and video monitor of the 

reconstruction. The entire system will have to be fully automated and 

repackaged to withstand the extreme environments encountered within the 

NTF. 
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