381 research outputs found

    Fast Motion Estimation Algorithms for Block-Based Video Coding Encoders

    Get PDF
    The objective of my research is reducing the complexity of video coding standards in real-time scalable and multi-view applications

    Efficient Motion Estimation and Mode Decision Algorithms for Advanced Video Coding

    Get PDF
    H.264/AVC video compression standard achieved significant improvements in coding efficiency, but the computational complexity of the H.264/AVC encoder is drastically high. The main complexity of encoder comes from variable block size motion estimation (ME) and rate-distortion optimized (RDO) mode decision methods. This dissertation proposes three different methods to reduce computation of motion estimation. Firstly, the computation of each distortion measure is reduced by proposing a novel two step edge based partial distortion search (TS-EPDS) algorithm. In this algorithm, the entire macroblock is divided into different sub-blocks and the calculation order of partial distortion is determined based on the edge strength of the sub-blocks. Secondly, we have developed an early termination algorithm that features an adaptive threshold based on the statistical characteristics of rate-distortion (RD) cost regarding current block and previously processed blocks and modes. Thirdly, this dissertation presents a novel adaptive search area selection method by utilizing the information of the previously computed motion vector differences (MVDs). In H.264/AVC intra coding, DC mode is used to predict regions with no unified direction and the predicted pixel values are same and thus smooth varying regions are not well de-correlated. This dissertation proposes an improved DC prediction (IDCP) mode based on the distance between the predicted and reference pixels. On the other hand, using the nine prediction modes in intra 4x4 and 8x8 block units needs a lot of overhead bits. In order to reduce the number of overhead bits, an intra mode bit rate reduction method is suggested. This dissertation also proposes an enhanced algorithm to estimate the most probable mode (MPM) of each block. The MPM is derived from the prediction mode direction of neighboring blocks which have different weights according to their positions. This dissertation also suggests a fast enhanced cost function for mode decision of intra encoder. The enhanced cost function uses sum of absolute Hadamard-transformed differences (SATD) and mean absolute deviation of the residual block to estimate distortion part of the cost function. A threshold based large coefficients count is also used for estimating the bit-rate part

    Maximum-Entropy-Model-Enabled Complexity Reduction Algorithm in Modern Video Coding Standards

    Get PDF
    Symmetry considerations play a key role in modern science, and any differentiable symmetry of the action of a physical system has a corresponding conservation law. Symmetry may be regarded as reduction of Entropy. This work focuses on reducing the computational complexity of modern video coding standards by using the maximum entropy principle. The high computational complexity of the coding unit (CU) size decision in modern video coding standards is a critical challenge for real-time applications. This problem is solved in a novel approach considering CU termination, skip, and normal decisions as three-class making problems. The maximum entropy model (MEM) is formulated to the CU size decision problem, which can optimize the conditional entropy; the improved iterative scaling (IIS) algorithm is used to solve this optimization problem. The classification features consist of the spatio-temporal information of the CU, including the rate–distortion (RD) cost, coded block flag (CBF), and depth. For the case analysis, the proposed method is based on High Efficiency Video Coding (H.265/HEVC) standards. The experimental results demonstrate that the proposed method can reduce the computational complexity of the H.265/HEVC encoder significantly. Compared with the H.265/HEVC reference model, the proposed method can reduce the average encoding time by 53.27% and 56.36% under low delay and random access configurations, while Bjontegaard Delta Bit Rates (BD-BRs) are 0.72% and 0.93% on average

    Mode Decision-Based Algorithm for Complexity Control in H.264/AVC

    Get PDF
    The latest H.264/AVC video coding standard achieves high compression rates in exchange for high computational complexity. Nowadays, however, many application scenarios require the encoder to meet some complexity constraints. This paper proposes a novel complexity control method that relies on a hypothesis testing that can handle time-variant content and target complexities. Specifically, it is based on a binary hypothesis testing that decides, on a macroblock basis, whether to use a low-or a high-complexity coding model. Gaussian statistics are assumed so that the probability density functions involved in the hypothesis testing can be easily adapted. The decision threshold is also adapted according to the deviation between the actual and the target complexities. The proposed method is implemented on the H.264/AVC reference software JM10.2 and compared with a state-of-the-art method. Our experimental results prove that the proposed method achieves a better trade-off between complexity control and coding efficiency. Furthermore, it leads to a lower deviation from the target complexity.This work has been partially supported by the National Grant TEC2011-26807 of the Spanish Ministry of Science and Innovation.Publicad

    HEVC ENCODER OPTIMISATIONS USING ADAPTIVE CODING UNIT VISITING ORDER

    Get PDF
    This research utilised Queen Mary’s MidPlus computational facilities, supported by QMUL Research-IT and funded by EPSRC grant EP/K000128/1

    Rate-distortion and complexity optimized motion estimation for H.264 video coding

    Get PDF
    11.264 video coding standard supports several inter-prediction coding modes that use macroblock (MB) partitions with variable block sizes. Rate-distortion (R-D) optimal selection of both the motion vectors (MVs) and the coding mode of each MB is essential for an H.264 encoder to achieve superior coding efficiency. Unfortunately, searching for optimal MVs of each possible subblock incurs a heavy computational cost. In this paper, in order to reduce the computational burden of integer-pel motion estimation (ME) without sacrificing from the coding performance, we propose a R-D and complexity joint optimization framework. Within this framework, we develop a simple method that determines for each MB which partitions are likely to be optimal. MV search is carried out for only the selected partitions, thus reducing the complexity of the ME step. The mode selection criteria is based on a measure of spatiotemporal activity within the MB. The procedure minimizes the coding loss at a given level of computational complexity either for the full video sequence or for each single frame. For the latter case, the algorithm provides a tight upper bound on the worst case complexity/execution time of the ME module. Simulation results show that the algorithm speeds up integer-pel ME by a factor of up to 40 with less than 0.2 dB loss in coding efficiency.Publisher's Versio

    Fast motion estimation algorithms for block-based video coding encoders

    Get PDF
    The objective of my research is reducing the complexity of video coding standards in real-time scalable and multi-view applications.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Efficient HEVC-based video adaptation using transcoding

    Get PDF
    In a video transmission system, it is important to take into account the great diversity of the network/end-user constraints. On the one hand, video content is typically streamed over a network that is characterized by different bandwidth capacities. In many cases, the bandwidth is insufficient to transfer the video at its original quality. On the other hand, a single video is often played by multiple devices like PCs, laptops, and cell phones. Obviously, a single video would not satisfy their different constraints. These diversities of the network and devices capacity lead to the need for video adaptation techniques, e.g., a reduction of the bit rate or spatial resolution. Video transcoding, which modifies a property of the video without the change of the coding format, has been well-known as an efficient adaptation solution. However, this approach comes along with a high computational complexity, resulting in huge energy consumption in the network and possibly network latency. This presentation provides several optimization strategies for the transcoding process of HEVC (the latest High Efficiency Video Coding standard) video streams. First, the computational complexity of a bit rate transcoder (transrater) is reduced. We proposed several techniques to speed-up the encoder of a transrater, notably a machine-learning-based approach and a novel coding-mode evaluation strategy have been proposed. Moreover, the motion estimation process of the encoder has been optimized with the use of decision theory and the proposed fast search patterns. Second, the issues and challenges of a spatial transcoder have been solved by using machine-learning algorithms. Thanks to their great performance, the proposed techniques are expected to significantly help HEVC gain popularity in a wide range of modern multimedia applications

    Alogorithms for fast implementation of high efficiency video coding

    Get PDF
    Recently, there is higher demand for video content in multimedia communication, which leads to increased requirements for storage and bandwidth posed to internet service providers. Due to this, it became necessary for the telecommunication standardization sector of the International Telecommunication Union (ITU-T) to launch a new video compression standard that would address the twin challenges of lowering both digital file sizes in storage media and transmission bandwidths in networks. The High Efficiency Video Compression (HEVC) also known as H.265 standard was launched in November 2013 to address these challenges. This new standard was able to cut down, by 50%, on existing media file sizes and bandwidths but its computational complexity leads to about 400% delay in HEVC video encoding. This study proposes a solution to the above problem based on three key areas of the HEVC. Firstly, two fast motion estimation algorithms are proposed based on triangle and pentagon structures to implement motion estimation and compensation in a shorter time. Secondly, an enhanced and optimized inter-prediction mode selection is proposed. Thirdly, an enhanced intra-prediction mode scheme with reduced latency is suggested. Based on the test model of the HEVC reference software, each individual algorithm manages to reduce the encoding time across all video classes by an average of 20-30%, with a best reduction of 70%, at a negligible loss in coding efficiency and video quality degradation. In practice, these algorithms would be able to enhance the performance of the HEVC compression standard, and enable higher resolution and higher frame rate video encoding as compared to the stateof- the-art technique
    corecore