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Rate-Distortion and Complexity Optimized Motion
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Abstract—H.264 video coding standard supports several inter- complexity to the ME module. The H.264 coding standard
prediction coding modes that use macroblock partitions wih  [3] allows MBs (16 x 16 pixel) to be divided into twol6 x 8
variable block sizes. Rate-distortion optimal selection b both or two 8 x 16 or four 8 x 8 subblocks. Eaclg x 8 block can

the motion vectors and the coding mode of each macroblock . .
is essential for an H.264 encoder to achieve superior coding be further partitioned int® x 4, 4 x 8 and 4 x 4 subblocks.

efficiency. Unfortunately, searching for optimal motion vestors 1 herefore, in H.264, a naive full-search method (FSM) will
of each possible subblock incurs a heavy computational cost require significantly higher number of computations thaa th

In this paper, in order to reduce the computational burden of single block type case.

integer-pel motion estimation without sacrificing from the coding In recent years, there have been many attempts at developing

performance, we propose a rate-distortion and complexity gint .
optimization framework. Within this framework, we develop fast ME algorithms for the H.264 encoder. Some of these work

a simple method that determines for each macroblock which adapt the ideas previously developed for other standards an
partitions are likely to be optimal. Motion vector search iscarried  for a single block size (i.el6x16) to the multiple block sizes

out for only the selected partitions, thus reducing the comfexity  of H.264 [4], [5], [6], [7]. Early termination techniques Ve

of the motion estimation step. The mode selection criteriasibased also been investigated to speed up the ME process for each

on a measure of spatio-temporal activity within the macrobbck. - . .
The procedure minimizes the coding loss at a given level of partition [8], [9], [10]. Different search patterns, suchraulti-

computational complexity either for the full video sequene or directional search pattern (MDRPS) [11], adaptive hexagon
for each single frame. For the latter case, the algorithm preides based search (AHBS) [5], modified diamond search pattern
a tight upper bound on the worst case complexity/executionime (DSP) [6], have been designed to increase the ME accuracy.
of the motion estimation module. SlmL.JIatlon.resths show tht In most cases, ME algorithms designed for H.264 tend to
the algorithm speeds up integer-pel motion estimation by azctor focus on each block size separately, and perform fast ME for
of up to 40 with less than 0.2 dB loss in coding efficiency. o !

each partition [4], [5], [12], [13]. For instance, EPZS [4as
special search patterns around block specific MV predistion
for estimating the optimal MVs of each MB patrtition. This
approach could provide satisfactory speed-up factors @ ea
. INTRODUCTION partition. However, since separate MV searches are emgloye

It has been shown that H.264 video coding standard achief@sdifferent block sizes, the overall computational costid
considerably higher coding efficiency over such previoaast Still be significant. .
dards as H.263 and MPEG-4 Visual [1]. One of the novelties Since the encoder eventually needs the optimal MVs of only
contributing to H.264’s superior performance is a rich et @N€ partition, i.e. the optimal partition, having to seaimtthe
coding modes to choose from for each macroblock (MB) [ZE‘VS of other partitions seems like a waste of encoder time.
These modes allow the encoder to try different MB partitionsiowever, it is difficult to determine which partition(s) &€)
multiple reference frames and inter/intra prediction rogithin  likely to be optimal without performing ME first. There exist
order to find a rate-distortion (R-D) optimal coding strateg Many methods that try to eliminate certain modes before or
Unfortunately, evaluating the coding performance of adisn during the ME phase [14], [15], [16], [17], [18], [19], [20].
modes incurs a substantial increase in the computatiof&)€ eliminated modes are excluded from the ME and/or MD
complexity of the encoder. steps. The mode selection is based on various measures, such

Motion estimation (ME) and mode decision (MD) are®S the MB variance [21], absolute frame difference [22], a
the most computationally demanding modules of an H.2é4€asure of_local motion content .and MV statistics [23], [24]
encoder. When a MB is partitioned into several smalléf>]: €dge information [14], partially completed ME result
subblocks, rate-distortion optimal mode decision requis- [261, [27], [28], [29], and so forth. In these methods, MBe ar
timating the optimal motion vectors (MVs) of each suclasically classified as high or low-detailed, and low-dethi

subblock. Hence, each separate MB partition brings additio MBS are assumed to have no gain from the use of small-sized
partitions. Despite some success, these ideas do not provid
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able to control the complexity of the encoder without affegt ~ The main contribution of our work is this “complexity adap-
the R-D performance too much. For instance, in case ttagion feature” of the proposed algorithm. The method tsrge
ME step is taking too much time, the encoder should haeptimal control of frame-level ME complexity by adapting
a robust mechanism to speed up ME without a significatite parameters of the mode decision process appropriately.
degradation in the video quality. Such a mechanism requiréBe joint optimization framework guarantees a robust and
a thorough understanding of how different parameters of thentrolled adaptation procedure without having to worrguh
ME module affect the R-D performance and the total executisadden and significant losses in R-D efficiency. As to our
time. In [30], the authors introduce an operational methard fknowledge, existing methods in literature are not suitable
optimizing ME with respect to the trade-off between R-D anfbr such complexity control, for a couple of reasons. One
complexity. However, the method is not very flexible, beeausreason is because these algorithms do not provide a robust
to adjust ME complexity, the encoder has to choose fromnaechanism to change the parameter settings “on the fly”
limited number of best average settings. and any misguided attempt to do so may cause significant
In this paper, we extend our work in [31] and develop eoding losses. More crucially, in most methods, such as, [17]
theoretical framework for joint optimization of R-D perfor [18], [19], [20], [25], [28], the mode decisions are based
mance and ME complexity. This framework is used to deriven some information about the MBs that is not available
an optimal method to speed up the ME module with minimum priori, such as the coding modes of neighboring MBs or
loss in coding efficiency. The method decides for each MBartial ME results. This makes it hard, if not impossible, to
which partitions are likely to be optimal and performs irdeg predict and control the overall frame-level ME complexitye
pel MV search for only the selected block sizes. The mod&ercome these two issues by adjusting our parametergwithi
decisions are based on a spatio-temporal gradient medmaire &n optimized framework, and by using a simple and effective
gives the amount of spatial and motion activity within thgradient measure that can be computed prior to coding a frame
MB. In simple terms, smaller partitions are preferred for MBIn the simulations section, we compare our algorithm to a
with significant spatial and temporal information, and &rg simpler heuristic approach to emphasize the importanceiof o
partitions are preferred for smoother MBs with little matio optimized decision framework.
When selecting partitions to search during ME, the algarith  Section Il describes the joint optimization framework. In
aims to minimize the overall R-D cost of mode estimatio8ection IIl, we derive the optimal mode selection critena a
error for the video sequence. Therefore, a partition ispgdb explain the details of the algorithm. Section IV mentionmso
only if the reduction in computations justifies the possiblpractical issues and the estimation procedure for the idhgor
reduction in coding efficiency. parameters. Section V describes the extension of the method
Compared to existing mode selection methods in literatufey adaptive control of the frame-level complexity/exécont
we propose a novel way to estimate and evaluate the codiilge of the ME module. In Section VI, we present the
cost of ME speed-up. Except for [30], [27], none of thaimulation results, analyze and discuss the optimalityhef t
existing work mentioned above analyze the R-D cost ajpproach, and compare the performance of the algorithm with
changing the heuristic parameter settings of the algosthmMHexagonS [12] and FSM. The results show that there is
Since the value of each parameter is determined througgdgligible loss in video quality, despite a major reduction
various simulations in many video sequences, all thess tesbmplexity. We conclude the paper in Section VII.
would probably have to be repeated for finding the “right” set
of parameters gt a different level of complexity. In this eap Il. RATE-DISTORTION AND COMPLEXITY JOINT
we address this problem and develop a general framework OPTIMIZATION
in which R-D costs could be minimized at any level of ME
complexity. Motion estimation (ME) constitutes a significant portion of
Consequently, our R-D and complexity joint optimizatioriotal complexity in H.264 encoding. Despite the existente o
framework provides the encoder with a flexible way to adjuseveral fast ME algorithms in literature, having to find the
the ME complexity while achieving a desired level of vide@ptimal motion vectors (MVs) for all possible MB partitions
quality. In case a time budget is set for the ME step in places a strict restriction on how much the ME complexity
single frame, the mode selection criteria is easily adaptedn be reduced. In this paper, we propose to estimate which
such that ME execution finishes within the maximum alloweplartitions/modes are most likely to be optimal before penfo
time budget. Most of the fast ME algorithms described abovteg any ME, and reduce the number of different partitions tha
ignore the worst-case complexity of the ME module anbave to be searched for optimal MVs.
try to minimize average complexity. However, to guarantee Figure 1 provides a high-level summary of our approach.
uninterrupted real-time operation, the encoder hardwaoald The control module collects some data, D, from the current
be designed to code frames at a specified rate even whieime, and uses this data to control the complexity of the ME
each frame consumes the maximum amount of time during tidule. Based on D and the desired level of ME complexity,
ME process. In other words, worst-case complexity is a mottee control module forms the optimized decision function,
critical design parameter for smooth real-time encodiranth Q(D), and passes this information to the ME module. ME
the average complexity. In this paper, we present an effectimodule processes each MB based@irthat is, Q tells the ME
method to limit the worst-case ME execution time with asodule which partitions to search for each MB. The control
little loss of coding efficiency as possible. module optimizes its decisions based on probabilistic rfsode



Complexity multiplier. In this paper, we will look at two separate but

D, Conltrol related problems:
I Q(D) « Unconstrained Optimization: Minimize 75 for a
4 given and fixed\g. This problem tries to figure out the
ME MD optimal trade-off between rate-distortion performance an
complexity for a given video sequence.

« Constrained Optimization: Minimize J»;g subject to
the constrainfy_Y | C; < CB, whereN is the number
of MBs in a frame. In this problem, we use a complexity
budget, CB, to place a worst-case limit on the total ME

Fig. 1: Algorithm block diagram.

of computational complexity and R-D costs of sub-optimal ) . i
mode decisions. In the following paragraphs, we defin&@D, complexity ‘?f each frame)-\E IS ghosen adgptwely for
and these probabilistic models. each frame in order to satisfy this constraint.

The data D is essential for accurate estimation of the optima £x5 and Cyp are composed of separate performance
modes. As for D, we propose to use the magnitude of t¥ms for each possible coding mode. Imagine that seven
spatio-temporal gradient of each MB as defined below:  different partitions are represented by the modes= 16x16,

m% = 16 x 8, m% = 8x16, mz = 8x3§, m}l = 8 x4,
D = 2D7 +0.5D; + 0.5Dy, (1) m2 = 4x8, ms = 4x4. For modesm} = 16 x8 and
where m3 = 8x 16, the gradient D does not help us discriminate

16.16 which of the two modes is more likely; in other words, given
_ 7 D, the probability of the two modes being optimal is almost
D - 2
T Z le(z,y) —r(z,y)], 2) equal. That is why we consider the two modes together as one,

m_léi;l i.e. my = (mb orm3). Likewise, my = (m} orm3). Note
D, = Z le(z, y) — e(z + 1,9)], 3) that, the directional cor_nponents of the gradlgn;, zﬁnd_ D,
ol a1 could have been considered separately to differentiatsethe
16,15 modes. However, it turns out that this would increase the
D, = Z le(z,y) — cla,y + 1). (4) pomplgxity of Fhe approach and provide only a marginal gain
‘ el g—1 in coding efficiency.

As for the smaller sized partitions, i.e= 3,4, 5, each8x8
bblock can have a different optimal partition. Howevie t
overall partition of the MB has to be of si&8 and below. To
'fgﬁresent this, we define an extra symbg] which indicates
that each8 x 8 subblock ism; for somej > 3:

Here ¢ and » are current and previous reference framegu
respectively. In the formula, the temporal gradienty,Os

simulations show that P is more informative when deciding
which modes could be optimal. F8x8 and smaller partitions,
we also compute the spatio-temporal gradients of &he8 m=my = mk= My, Ik >3, 1 <k <4, (6)

subblocks, say B 1 < k < 4. We claim that the spatio- herer ts th iimal codi de of the MB. and
temporal gradient, D, provides a reliable measure of thb-higvy kerem represents the optimal coding mode ot the » an
represent the optimal coding mode of thie 8 subblock

frequency details and varying motions in a block. In oth l<k<d.

words, MBs with a high value of D are more likely to contai Wi the th dients D and'®t luat h mod
multiple objects with different motions, hence could benefi ¢ use Ihe the gradients b and 910 evajualte each moce
and decide whether to perform integer-pel ME or skip this

from the use of smaller block sizes. This gradient measuf& : . - )
is chosen for its simplicity and effectiveness, although thstep. We define appropriate decision sets for each block size

following framework could just as well be applied to Othepteger-pel ME is performed Orle if the gradient is withinsth
criteria for selecting the MB coding mode. set. These sets are as follows:
Having computed D and Bs for each MB, we would like Q; = {D:T; <D< Tj*}, j=1,2. (7
to skip integer-pel ME for partitions with low likelihood of & ke & .
being optimal and reduce the overall execution time of the Q = DTy =Di< TJ’JF}’ j=345 (8
ME module in the H.264 encoder. For reducing computationdence, if D¢ Q;, then partitionm; is not included in integer-
complexity with as little loss of coding efficiency as possjb pel ME. If a block size is skipped, median MV prediction of
we propose an efficiency - complexity (E-C) optimizatiom.264, MV,,.q4, is assigned as the optimal MV for subblocks
method. The method decides, for each MB, which partitions that size and sub-pel ME and mode decision are performed
are worth the amount of computations required to perforas before. In general words, these sets define for eachiguartit
integer-pel ME. An optimal decision is made by minimizing connected interval of gradient values in which the partiti
the following average Lagrangian cost: has a high likelihood of being optimal.
Tun = Evn + ApC ) _For8><8 and smaller _partitions, the decision to perform ME
MB = BMB T AEZMB, will depend on the gradient of the corresponding subblock.
where Ey g and Cy g are measures for expected loss ofhis is meaningful since, within a MB, some subblocks could
coding efficiency and average amount of ME computatiofie detailed and some could be smooth or could belong to a
for a MB, respectively;\g is an appropriate Lagrangianstatic background. As a result, different partitions cobkl



more likely to be optimal for different subblocks. Howeverwhere p(D, ) is the joint pdf of MB gradient D and the
with the same reasoning, sometimes the MB might not requiptimal moder (i.e. 7o = m; means optimal mode is;),
small partitioning even though one of its 8x8 subblocks doulnd d; (D) is the R-D cost of mis-estimation for each mode
be high-detailed. For instance, if three of the subblocksrze as a function of D. Foy = 3,4, 5, we define:

to the static background and if the fourth subblock belongs t

a slow-moving objectin; or ms could just as well be optimal. T

In such cases, we should be able to skip ME for8adl8 and EIE)) = / / dj(Dk)p(Dk, D,mj)dD’“dD, (14)

smaller partitions. For that purpose, we define an extra set: - Déo,
0 J

_ DT +
o ={D:Ty =D =Ty} © For modem, we have separated the two sources of R-D loss:
This set will be used first to decide for the whole MB whethetoding loss when none of the smaller partitions are included
it is worth performing ME for any8x8 partitioning at all (i.e. the MV search£[E]; and coding loss when B Q, but ME
mode my). If the answer is yes, eacfix 8 subblock will is skipped for the optimal partition of songex 8 subblocks,
be separately handled to decide which of the three modé&s$E;], j = 3,4,5.

j =3,4,5, to look at. Assuming same pdfs and same cost functions again for all
Having defined the decision sets, we would like to compugaibblocks, we také; (D¥), j = 3,4, 5, as 4 times the R-D cost
the expected R-D loss and ME complexity based on thig§ mis-estimation in each subblock. As a result, the exmkcte
formulation. For the average computational cost, we defire tloss of R-D efficiency is given by:

expected complexity of each partition as follows. Fet 1, 2:

5
f Eyp =) E[E)]. (15)
£[Cy) = / ¢;(D)p(D)dD, (10) =0
7 Hence the overall expression becomes:

where&|[] is the expectation operatgf(D) is the probability 5 5
density function (pdf) of the MB gradient D, anrg(D) is the Jus =Y EE1+ g Y _E[C)]. (16)
integer-pel ME complexity of mode:; as a function of D. J=0 j=1

E%rej Q_’? 3+4t],e5ée?orpeartltlon 's searched if both B Q and In this formulation, the expected complexity and the ex-
7 ' pected R-D cost of a MB/subblock is calculated independent

T+ T of the (spatial and temporal) neighboring MBs/subblockd an

FoT X i i their optimal coding modes. It is possible to extend this

ElCy) = / /CJ'(D )p(D*, D)dD"dD, (11)  formulation and include both the neighboring MB/subblock

Ty T information and the gradient as multiple measures that will

be jointly used to better estimate the optimal mode of a

wherep(D*, D) is the joint pdf of D and subblock gradientMB/subblock. This requires a higher order modeling of the
D*. Without loss of generality, we can assume that8al8  pdfs defined above (e.g. as a Markov process), and it is @utsid
subblocks have the same pdf and same cost function (k§e scope of this paper. In Section VI, we discuss the effects

p(D*,D) and ¢;(D*) are the same for all kI < k < 4). of these and other simplifications on the performance of the
Therefore, the integral will be equal for all subblocks. Taigorithm.

simplify notation, we taker;(D*) as 4 times the cost of a
single subblock. As a result, for a given MB, the overall
average ME complexity becomes: 1. OPTIMAL THRESHOLD SELECTION

> Given the pdfs defined above, and the performance functions
Cup = ZE[CJ]' (12) dj, ¢;, we would like to find the optimal values of the
=1 thresholdsT’;" that are used to define the decision sets. So,
As for the loss of coding efficiency, we evaluate the cost &fe take the partial derivatives ofysp with respect to (w.r.t.)
mode estimation error for each mode. A mode incurs a R€®ch threshold and set to zero.
penalty only if it is excluded from ME and it turns out to be First, we take the derivative &f[C;] w.r.t Tji. forj=1,2:

the optimal mode. That is, fof =0, 1, 2,
o€[Cy]

T ) aTi = :tcj(Tji)p(Tji)v (17)
J
E[E;] Z/dj(D)p(Damj)dDJr /dj(D)p(Qmj)dD
s i Likewise, forj = 0, 1,2, the derivative of[E;] w.rt. T is
T J
’ equal to:
_ / d;(D)p(D, m)dD, (13) OEE] otz 8)
- AN g tah

D¢gQ; 8T7i



For j = 3,4,5, the formulation is similar, except for theAssumlng% 0 (see Section IV), we can show that

dependency orQo: this is true as long as:
j =+ + A= > 9
= o)) [ st oo o |
i . J J
o OP(m;|T}")
= £¢;(T)p(T|D € Qo)P(D € Qp), (19) o < 0. (30)
' J T =T}
and likewise, From Figures 3 and 4, we realize that these two conditions
0E[E;] i 4 are satisfied.
oTE Fdi (T77)p(T57 my|D € Q)P(D € Q). (20) | jewise, the optimal solutions fof = 3,4, 5, satisfy:
k k ok + ¢ (T;")
where p(D*ID € Qy) and p(D*,m*|ID € Q) are the P(m;|T;",D € Q) = A I, (31)
conditional pdf of subblock gradient’Dand the conditional d; (T} )

joint pdf of D* and optimal subpartition mod@”*, given that For To we denveaJMB and set it equal to zero:
D € Qy, respectively.
Finally, we also need the partial derivatives &iC;] and

E[E;] w.rt T5E, for j = 3,4, 5. Taking the partial derivatives 0 = Tdo(T5)p(Ty, mo) P(D* ¢ QF, T5F,my)

Mcn

of equations (11) and (14) w.rit, we arrive at, j=3
5
_ ~ it k k ot
T, ’ =3
9E[E;] 7 ot k 4 ok Notice thatyh* = m;,j > 3 = m = mo. Theref
= +d.(THP(D © T ; 22 T =mj, ] 2 o = M =M. erelfore, we can
8T0i i(T5")P(D" ¢ Qja 0 >My) (22) write,
where P( € Q¥ TF) is the probability that B € Q% and p(D*, T5) = p(O*|T3 )p(Ty), (33)
D= TO ’ and for] - 3 4 5 p(Dva(;tamJ) = p(Dkva|T6‘:7m0)p(T6‘:am0) (34)
T . Here,m; represents that* = m;, and likewisem, means
k 5 —
&(TE) = /CJ’(Dk)P(SIED ’;? )Ti)de’ (23 =0 Consequently, Eqn. (32) becomes,
€ 9F,
T gr=0 P(mo|Ty) = /\EJ (35)
0
= &l¢;(DY) | D* € QF, Ty (24)  where
and similarly, 5
) y o= &(T5)P(D* € QfITy") (36)
dj(Ty") = €[d;(D*) | D" ¢ QF, Ty", my) (25) 7=3 i
Now, we use these results to derive the optimality condition do = do(T5") — > _ d;(T5")P(D* & QF , m;|T", my). (37)
for the thresholdsTji For j = 1,2, setting the derivative of j=3
the Lagrangian cost to zero, we get: Herec, andd, can be interpreted as the average complexity
0T B N N N N and average cost of estimation error for modg, respec-
o7t — T (T;7)p(T;", m;) £ Apc; (T;7)p(T;7) = 0, (26) tively. d, represents the difference in coding loss between not
J searching any of the smaller partitions vs. making indiaidu
Therefore, decisions for eactk8 x 8 subblock. If we hadn't used the
N L gradient measures df x 8 subblocks; that is, if we had
(T, my) — P(m;|T*) = Ag ¢ (T5") 27) searched for all small partitions whenever ® Q,, then
p(T5) 7 d;(TF) simply ¢ = 3°7_5 &;(T5") anddy = do(T5").
where P(m7|Ti) is the conditional probability of optimal V. PARAMETER ESTIMATION

+
mode bemgm] given that D= T;". The solutions of this g tions of the equations (27), (31), (35) yield the optima
equation give the extremum Eglnts @?B_ thresholds that define the decision sets and minimize the
For the optimal thresholdg;™" to minimize 7 5, We alS0 | agrangian cost/y 5. In order to solve these equations, we
need to check the second order derivative and see that:  ,aa(d to know. for each partition, the complexitigs the R-
2 D costsd;, and the conditional distribution®(m;|T5"), for
9°Jus _ 4 _ I3
2 > 0. (28) j =0,1,2, and P(m;|T;",D € Qu), for j = 3,4,5. In the
T TE=TE above formulation, these parameters are defined as fusction
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TABLE I: Complexity Parameters for Different Sequences
i c1 [ e2 ez | ca]oes
carphone QP=24 | 10| 17| 12| 3.7 | 15
, QP=32 10| 17| 12| 41|15
foreman QP=24| 10| 17| 12| 40| 15
. QP=32| 10| 18| 14| 45| 15
mobile  QP=24 | 10| 18| 13| 40| 1.3
] QP=32 10| 19| 14| 42|13
tennis QP=24] 1.0] 1.8 1.2 37| 1.3
7 QP=32 10| 18| 14| 43| 14
stefan QP=24110| 18| 12|36 13

QP=32| 10| 18| 13|39 13

%0 2000 4000 6000 8000 10000 12000 14000 16000 18000 content is even more complicated. In simple terms, as

b the MB gets more detailed, its coding cost increases, and

Fig. 2: Agca, d2 andAgc2/d; as a function of D, focarphone so does the cost of mis-estimating its coding mode, that
(QP = 24). is d; (see Figure 2).

o The R-D loss of skipping ME of a given partition cannot
be evaluated independent of the other partitions. For

of the MB/subblock gradients D and*DMore generally¢;, instance, the average R-D cost of skipping both and
d; and the conditional probabilities can change according to mo is larger than the sum of average costs of skipping
the video content, the compression level and the quartizati only m; and onlyms,. This is expected, since, whemn;
parameter) P. Therefore, accurate modeling of the algorithm  is skipped,ms is usually the next best choice and vice
parameters require extensive simulations on a trainingket versa. This observation has to be taken into account while
video sequences coded at various compression levels. computing the parameters.

Note that, our early mode selection strategy could be usece The suboptimal decisions (i.e. suboptimal MVs and sub-
together with almost any fast ME algorithm in the literature ~ optimal mode decision) made for a MB affect the R-
(except for those algorithms in which there is a strong de- D performance while coding future MBs. This is also
pendence between the MV searches of different partitidns). expected, since MVs of a given MB is used to pre-
this paper, we have chosen to incorporate our method into dict the MVs of the next MB, causing propagation of
the fast ME algorithm provided in JM reference software, the suboptimality. This dependency impedes an exact
called UMHexagonS [12]. That is why UMHexagonS is also  calculation of the R-D cost of any mode estimation
used during the training phase when determining the negessa  error. However, on the average, we expect the R-D costs
parameters. We discuss below the implications of using this of these secondary effects to cancel out, justifying the
algorithm on the modeling of the parameters. assumption of independent MBs.

During training, video sequences are coded using constanbespite these issues, the behaviors of averggand av-
QP. This is required, because especiallys and the con- eraged; are well defined as functions of D. In other words,
ditional distributions heavily depend on the value @P. even though there exist many MB-dependent and algorithmic
However, once the optimal thresholds are determined fdn eggctors that affect the actual; and d;, the expected values
QP, the algorithm could be used in a coding scenario withf these parameters depend mainly on the gradient D. Figure
rate control, i.e. changin@P. 2 shows averag@yc,, for a suitable\r, and averagé, vs.

Simulations show that; andd; strongly depend on the MB D, for the MBs of carphone sequence. We observe similar
content (e.g. level of motion and high-frequency detail$)e  behavior for other partitionsn; and for other tested video
simple spatio-temporal gradient D is meant to represest tjequences.
content information. However, the relationship between®B M Figure 2 also shows\pc,/ds, (magnified by K = 200
and its actuat;, d; values is actually much more complicatedor better visualization). We see that this ratio is almost
than what the gradient D can single-handedly capture. In tbgnstant for all D (except for very small D in which case
following, we briefly mention these complications, and thep, is relatively small). This behavior is also common to all
provide our own reasoning and solution to these problemsipartitions and tested sequences. Simulations also irdibat

« Most fast ME algorithms, including UMHexagonS, emthe relative ME complexities for different partitions,.ig/c;,

ploy early termination techniques and MB adaptive decstay almost the same for all D. Table | lists for different
sions that make the ME execution time heavily dependeigsted sequences, relative to the value-of

on the MB content. While the actual ME time can change Based on these two observations, we propose to take the
drastically between MBs of similar gradient, we observéatiosc;/d;, c;/c;, andd;/d; to be constant, independent of
that, on average, the computational cost increases widhor D*. The parameters; andd; need only to be defined
increasing D (see Figure 2). relative to one another, irrespective of the actual values.

« A similar argument applies to R-D cosfs, although the  Note that, the specific shape of these plots is a function

actual relationship between the R-D costs and the M& the fast ME algorithm being used, i.e. UMHexagonS.
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For other ME algorithms, these plots could be somewhttese two different costs by, andd;, thend; > d . For
different. In general, assuming constantd; andc;/c; is other partitionsm;, the R-D costsd; also change based on
a crude approximation. In the simulations section, we shamhich modes are active. But these variations are comparably
that these approximations do not compromise the optimalgynaller or do not affect the optimal thresholds, and heneesth
of the approach in terms of the actual coding results. is no need to differentiate betwee and dj.

By averaging the actual execution times for different MB For the subpartitions, the thresholds exhibit a similar pat
gradients and through different test sequences, we artivetern:
the following set of relative ME complexities; = 1,¢c; = Ty <T; <Ti. (39)
1.8,03 = 1.3,04 = 4.1,05 = 1.4.

When computing the relative values df, we consider Hence, whenever b> T. , ms andmy (and possiblym;,
the fact that, in all cases, the optimal thresholds satiséy tms) are already active, implying a small on the average.
following inequalities: This leads to7, = oo and ms is skipped in all MBs.
Nonetheless, simulations show that skipping could be
costly for some video frames (e.g. for very detailed MBs
Hence, whenever D< T, , ME should be skipped for all that contain objects experiencing different motions) eesgly
partitions of the MB. This decision has typically a higlwhen@QP is low. Therefore, we sef; to a suitable level that
marginal cost, i.ed; is relatively large. On the other handwill allow MV search forms whenever necessary.
if D > T,", m; is skipped butm, and some of the smaller By carefully considering these interactions between diffe
partitions are typically active. Therefore, the marginastcof ent partitions and evaluating the R-D costs for the trairsaeg
skipping ME form; is much lower this time. If we representof video sequences, we have determined the following set of

TS <Ty <Ty <Tf, Ty <T5. (38)



TABLE II: Optimal thresholds for differen P and A For all QP and \p values, we always set,” = T3 =

e | T [0 [ 17 [ & [ 1, [ 1o Tt =T = cc. This does not have any significant effect on
QP=24 0.02 | 2230 © oo 725 | 610 | 1245 the performance, since there are only few MBs with very high
0.04 | 2980 | 80 oo | 1180 | 1195 | 2090 ; ;
006 | 3200 | 245 | 9120 | 1630 | 2725 | 4260 grad|_ents. A sample set of thresholds are tabulated in Table
0.08 | 3040 | 350 | 3090 | 2260 | oo | oo for differentQP and Ag.
QP=32 0.02 | 5110 | 65 oo | 1620 | 1680 | 3000
0.04 | 6590 | 260 | 20310 | 2580 | 2670 | oo V. FRAME- AND MB-LEVEL THRESHOLDADAPTATION
0.06 | 6285 | 440 | 11190 | 3615 | oo oo . . . .
0.08 | 7330 | 610 | 7435 | 5895 | oo I As explained in the previous section, whiep andQ@QP are

fixed, the same set of global thresholds are used throughout
the video sequence that is being coded. Provided that all the

relative d; parameters to yield the best efficiency-complexitgSSumptions of the model are satisfied, this leads to an R-
trade-off: dy = 1.0 dy = 1.0,df = 0.25,dy = 0.5,d3 = and complexity optimal performance. On the other hand,

1.0,dy = 1.0, ds = 1.0. different frames of a video sequence might have signifigantl
. ' different content, and this approach might lead to significa

As for the computation of conditional probability distribu ="~ ~ ) | o f
tions, we observe that the probabilities change with overjpriations in total execution time among frames.

video content, and even with the content of each frame. &mil . Large Ivarlatlr(])nsé n th.e elxecutlon. t'm(]f rllmptlade.alﬁr:n effi-
to ¢; andd;, the probability of a mode being optimal dependgIent real-time araware imp gmentatlon of the algoritikor
' gwoth and real-time encoding, the encoder needs to code

not only on the MB gradient but also on other factors, such _ )
rames at a rate that is equal to the frame display rate.

the local motion content. As mentioned before, this reguir h . h h f h
the use of a higher order statistical model, which is nop the worst case scenario when each frame consumes the

considered in this paper. Instead, we limit our analysisdes m.r;lle:num amount of tlmel dyrmg ME proc?_shs, trf]e en.coder
sequences that yield similar distributions, i.e. sequgmnah stil has t_o guarantee rea ?t|r_ne operation. ere ore_wtﬂ t

moderate-to-high motion content and spatial details. Hené\/_lE_algorlthms that have similar average execution time and
we determine a fixed set & priori distributions and use it similar dat_a flow and_ memory requweme_nts are compared,
in all of the tested sequences. In the simulations secti@n We one with less variations in the execution time will have

discuss the impact of this simplification on the performan@e more efficient hgrdware implementation. Consequ_ently, it
of the algorithm. IS important to achieve almost constant total executioretim

A metoned bfore, e quanizaon parameat sig. 70 21 1SS o & Seduence o 0 0 ot e aruer
nificantly affects the conditional probabilities of diféart 9 9

partitions. With higherQP, fewer MBs prefer8 x 8 and operation.

smaller partitions, and the probability of these modes dein In this section, we use the constrained optimization séenar
P ' P y to adapt the Lagrangian paramefes and the corresponding

optimal decreases at "’?".'V'B gradients (see Figure 3 aqd glgltjﬁ(rjesholds so that a given complexity budget is satisfied for
4). Therefore, the training sequences are coded using f'xtﬁe whole frame ieZN C. < OB
y - =1 Yt = .

values of@ P, and the resulting optimal statistics are used to h h lexity ofth . |
derive separate conditional distributions for correspogd P Note that, the ME complexity of™ MB is equal toCs,

values. where 5 4
Figure 3 and Figure 4 show the derived distributions for C; = Licy + Ihes + ZZ[?C’;, (40)
QP=32 andQP=24. In these figures, rational functions (hav- =3 k=1

ing second order numerators and denominators) are ﬁtteﬂerec’? — ¢;/4, and
through the empirical histograms. The fit is rather accura\{ve g

most of the time, and it simplifies the computation of the 1, ifD € Q;

: I, = : (41)
optimal thresholds. J 0, else

The optimal thresholds are computed through equations 1, ifD € Qy & D¥ € QF
(27), (31), (35) for different rate-distortion and comptgx Iy = { 0, else ’ (42)

trade-offs (i.e. for different values of the Lagrangiangraeter _ _ _

Ap). Note that, the equations (31) and (35) depend on Bgth ASsume that, for a 9'(‘{)6@]3' we d(%fme a s(leil())f Lagrangian

and T3, for j=3,4,5. Therefore we start with initial estimateParametersS = {\; hici<r ()‘J?t(l)< Ag' ), and the

of & anddy, iteratively update the valueg;” and 7+, and ~corresponding optimal threshold$;™""}1<;<... Then, before

converge to the optimal solutions after a couple of iteratio Starting to _code(l)a frame, we compute the gradients of all
Figure 3 and 4 illustrate the thresholds satisfying the-opfBs and find A" € S that satisfies the time budget, i.e.

mality equations. For instance, wheP=32, with A\ — 0.05 CB® < CB, whereCB®) = $°1 | o

¢;, d; as defined above, the optimal thresholds are computed o W pr o

as: Ty = 6915, T] = 350, T;" = 14430, T, = 3070, » Find /\E. € & such thatAy = .)\E , which is the

T," = 41850, T, = 2000 (The other thresholds are either O Lagranlg|an parameter of the previous frame.

or c0). Note thatT; = 0, Ty = oo; that is, we always search * If CBY < CB, thendl = 1,

8x8 partition as long as & Q. Also, T;” = T;" = oc implies — Increment! by 1 as long ag”B") < CB.

that integer-pel ME is not performed fdrx< 4 partition. « Else if CB® > CB, thendl = -1
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1 gx10° Av. ME Execution Time vs. Av. Gradient In addition to this frame-level update of the thresholds,
we also perform MB-level adaptation to further decrease the
fluctuations in the total ME execution time among frames. For
that purpose, we compare the actual ME execution times of
the MBs, X;, 1 < i < N, with the actual time budgéfB. In
order not to cause any extra computational burden, we apply
a simple strategy:

o For MB n = 10k, k € Z, compare the actual ME time so
far with the expected time:
— I 320 | X; > 2T B+e, then choosel, = A&+,
- Else if 27" | X; < #TB — ¢, then choose\}, =
AV S
— Else)y =\,
o Find Ag € S such that\g =~ \%.
Fig. 5: Average ME Time vs Average Frame Gradient, for o SetA2V = (nA&Y + 10Ag)/(n + 10).

log(D )

carphone. In this procedure, once in every 10 MBS is chosen from
the setS as slightly higher or lower than the averag%v for
the frame, depending on whether the actual ME execution time

— Decrement by 1 as long as"B") > CB. is higher or lower than the expected time so far, respegtivel
o Set Note that, most video frames contain both smooth static
Ap = a/\%) . a)/\%ﬂn)’ (43) Legmgs (e.gf]. backgrourg:_j) and r(?letﬁuled moving .fr_eg|onf\|°. (e.g

N 20 (D oundary of a moving o ject), which causes significant fhictu

;7 = oI} 4+ (1 - )T ; (44) ations of execution time even within a single frame. Updgtin
Ag for every such fluctuation will have an adverse effect on the

where . :
CcBU+) _ o coding results. Therefore, by performing the update proeed

o (45) once in every 10 MBs, and choosing the parameteend
e conservatively, we avoid g to change drastically from its

average value.

~ OB+ _ B

In this formulation, the frame-level ME complexity is ! ) )
measured in terms of the relative valuescof However, we In a coding scenario where encoded frames are first stored

know from the previous section that's are actually functions in a large buffer before transmission, the time budget coeld
of D. Figure 2 shows how; increases with increasing D,S€t at the GOP (group of pictures) level, i.e. the total MEetim

and converges to an approximate worst-case limit for hiéﬁ frames in the GOP should be less than_this limit. In Fhat
values of D. Therefore, for the full frame, ME execution tim&2Se: the budget of each frame would be adjusted according to

increases with increasing &) the average frame gradient, ad"€ remaining encoding time for the given GOP. That means,
well. for framei, 1 <i < M:

Figure 5 plots the relationship betwe&jyg, average ME TBgop— Zi:ll TI{/IE

execution time, andog(Dr), for the frames ofcarphone se- TB; = —I= ; (48)
. T M-i+1
guence. As seen from this figure, up to a good approximation, ‘
the execution time increases linearly wibg(Dr). In view whereTy,c is the ME execution time of framg, and M is
of this observation, we model;’s as a function of averagethe number of frames in the GOP. Since the time lost in one
frame gradient, as follows. Far< j < 5: frame could be made up in the other frames of the GOP, these
budgets are not necessarily strict. Hence, MB-level ttolesh

¢j(Dr) = B(Dr)ej,  B(Dr) =1+ a(log(Dr) —b). (46) updates would be less frequently needed. Having a looser tim
Here, the slope: can be seen as a modeling parameter thipit for each frame should improve the coding performance
depends on the ME algorithm being used. For UMHexagond, the algorithm.
we seta = 0.5 andb = 8.5.

Now, we update the complexity budget for each frame to VI. SIMULATIONS
account for this model. We once again assume constanteelaih  Tegi ng Conditions
¢;, but compute the average frame gradient Bnd set the
complexity budget such that

The simulations are performed for video sequencas
phone (QCIF), foreman (CIF), mobile (CIF), tennis (SIF),
N CB stefan (SIF) at 30 fps, (search rande 16, 16]). All frames
ZC& S (47) except the first one are coded as P-frames. Two reference
- B(Dr) . !
=1 frames are allowed. The CAVLC entropy coder is used. For
is satisfied. Hence, depending on the average frame gradieoding with constant) P, the quantization parameters are
the budget is adapted so that overall execution time sta@s® = 24,28, 32,36. The optimal thresholds are determined,
almost the same. at all QP values, for the se§ = {\g : Ag = 0.005k,1 <
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TABLE IlI: Performance comparison with FSM

[ carphone | éPSNR (dB) [ dbitrate(%) [ Speed-up|
Comp-Opt(1) -0.18 +3.47 33.7
Comp-Opt(2) -0.14 +2.68 26.9
Comp-Opt(3) -0.17 +3.18 26.5
UMHexagonS -0.07 +1.39 9.4

[ foreman | éPSNR (dB) [ Sbitrate(%) [ Speed-up|
Comp-Opt(1) -0.14 +3.44 35.3
Comp-Opt(2) -0.13 +3.06 32.3
Comp-Opt(3) -0.13 +3.16 28.3 o4r )
UMHexagonS -0.05 +1.31 9.4

| mobile | OPSNR (dB) | dbitrate(%) | Speed-up] oal |
Comp-Opt(1) -0.06 +1.17 25.2 vich
Comp-Opt(2 -0.07 +1.46 29.6 0 CB
cOmE-oEés% 20.09 177 332 . ‘ ‘ ‘ ‘ — Ex. Time (% Max.)
UMHexagonS -0.01 +0.21 9.6 2 a0 O me o 100 120 140

| tennis | OPSNR (dB) | dbitrate(%) | Speed-up] . . . .
Comp-Opt(D) 510 60 65 Fig. 6: Clock cycles and execution time per frame using
Comp-Opt(2) 012 ¥3.12 37.4 Compt-Opt v.2 foreman Q P=32).
Comp-Opt(3) -0.14 +3.68 38.8

UMHexagonS -0.03 +0.84 12.0

| stefan | OPSNR (dB) | dbitrate(%) | Speed-up]| ) ) . .
Comp-OpiD) N =08 =2 (i.e. _the ratio between ME execution times), average PSNR
Comp-Opt(2) 0.19 1301 4.7 loss in dB (at equal bitrates) and percentage change intéitra
Comp-Opt(3) -0.23 +3.92 25.3 (at equal PSNR) with respect to FSM as given in [32]. Average
UMHexagonS -0.07 +1.26 9.9 PSNR loss and bitrate change are computed from the R-D

curves as described in [33].
TABLE IV: Comparison with FSM (Rate Control enabled) We see from Table Ill that Comp-Opt yields a speed-

[ carphone | 6PSNR (dB) [ Speed-up] up factor of 25-40 with less than 0.2 dB PSNR loss at
Comp-Opt(1) -0.16 334 equal bitrates (except fastefanusing version 3). The speed-
UMHexagonS| _ -0.07 9.2 up factor over UmHexagon$S is between 2.5-3.5. Note that,

[_foreman | GPSNR (dB) | Speed-up] UmHexagonS does not provide a high speed-up factor over
S&ﬂg;ggé(r% :8:3‘51 %eff FSM, but the results in terms of PSNR and bitrate are almost

[ moble [ 5PSNR (dB) ] Speed-up] as good as FSM. Therefore, our algorlthm also gives very good
Comp-Opt(1) 006 559 PSNR and bitrate results, but achieves only moderate speed-
UMHexagonS -0.02 9.4 up. If Comp-Opt is used together with faster ME algorithms,

| tennis | 6PSNR (dB) [ Speed-up] the speed up will be much higher but the PSNR and bitrate
Comp-Opt(1) -0.10 345 will get worse.

UMHexagons 0.04 116 Table IV shows the simulation results for Comp-Opt v.1

| Coriig';t(l) | 5PS_’;?7(dB)| sze:(;'“m when rate control is enabled. Each MB uses the thresholds

UMHexagons .06 ) optimized for its ownQ P value. The results are very similar

to the case with constarP. Hence, the optimality of the
algorithm does not suffer due to changi@g.

k < 30}. The algorithm is incorporated into JM software Figure 6 shows the percentage of complexity budget CB
version 8.2 [32], and used together with UMHexagonS. Fépent and the normalized ME execution time (w.r.t. the max-

rate control, JM’s own algorithm is used. imum execution time) for frames oforeman, coded with
Three versions of the algorithm Complexity-Optimizatio?” = 24 using Compt-Opt v.2. We see that even though CB
(abbr. Comp-Opt) are tested during simulations: is almost perfectly met at each frame, the execution timbs st

« Comp-Opt v.1: unconstrained case, with fixed; for the show variations among frames. This is expected, sincevelat
full sequence. The value ofy is adj’usted for eac) P complexity parameters; do not reflect the actual execution
such that total ME execution time stays almost the sanfén€ of video frames with different average gradients.

« Comp-Opt v.2: constrained optimization, with fixed com- C€ompt-Opt v.3 reduces the time variations by adjusting the
plexity budgetCB = 3N; 3(Dr) = 1 for all frames. budget according the frame content and by updaiindased

« Comp-Opt Vv.3: constrained optimization, witlCB = ©n the actual ME time. Figure 7 shows the ME execution
3N; B(Dr) is computed from equation (46). MB-leveltime for the frames ofcarphone, coded with@QP = 24,
update is also used, with B ~ 133N usec. both for UMHexagonS and for Compt-Opt v.3. In order to

better visualize the variations, the mean time is subtdacte
_ _ from both plots. Compt-Opt v.3 reduces the standard deviati
B. Comparison with UMHexagonS of the execution time by a factor of about 12.5. For version
The results in Table Il and IV compare the performance df and version 2, the reduction factor is merely 1.3 and 5.2,
our approach with UMHexagonS in terms of speed-up factogspectively.
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ol ‘ ‘ ‘ ‘ ‘ TABLE V: Speed-up factors for Compt-Opt v.3

| Speed-up| worst-time [ average-time|

ar carphone 32.1 26.5
foreman 36.4 28.3

mobile 35.1 33.2

2r tennis 72.3 38.8
stefan 30.2 25.3

P Puta N L »
[N 1 v (AN »"" --,“"_"_\\ \

TABLE VI: Performance comparison with heuristic approach
[ carphone | 5PSNR (dB) [ dbitrate(%) | Speed-up]

-2 4

Comp-Opt(2) -0.24 +4.71 49.2
- UmHexagons ] Heuristic -0.42 +8.13 50.4
- == = Comp-Opt v.3 [ foreman | SPSNR (dB) [ sbitrate(%) | Speed-up]
) 50 100 150 200 250 300 350 Comp-_Opt(Z) -0.25 +5.92 52.9
Frame No Heuristic -0.42 +9.62 53.8
. . . bil 5PSNR (dB) | obitrate(%) | Speed-
Fig. 7: Execution time per frame for UMHexagonS and [_mobie | (dB) | obitrate(%) | Speed-up]
c t-Opt 3(:ar hone QP_32) Comp-Opt(2) -0.11 +2.23 49.8
ompt-Opt v. p - : Heuristic -0.20 +4.05 50.3
| tennis | SPSNR (dB) [ ébitrate(%) [ Speed-up|
Comp-Opt(2) -0.19 +4.70 64.4
The reduction of time variations in Compt-Opt v.3 comes Heuristic -0.45 +10.82 65.8
with some degradation in the R-D and complexity perfor- [ stefan [ PSNR (dB) | obitrate(%) [ Speed-up]
mance. That is, even though the results for Compt-Opt v.1 and Comp-Opt(2) -0.30 +5.07 35.9
Compt-Opt v.2 are very similar, Compt-Opt v.3 yields worse Heuristic -0.40 +6.76 37.2

PSNR at equal complexity or lower speed-up factor at equal

PSNR loss. This is natural, since for detailed frames wighhi ) .
ME time, Az has to be set at a high level, causing signiﬁcamstlfled these choices by related observations on thedeste

R-D losses. Also, the simple but suboptimal MB-level adageduences. The use of constant average values;fand
tation strategy is not good for the coding performance. A&, and fixed probabilities for all video sequences are crucial
discussed before, if the time budget is set at the GOP |le@Proximations and have to be validated with further tests.
instead of frame-level, then the coding performance of Qemp©F that purpose, we implement an “oracle” algorithm that
Opt v.3 should be better. uses the exact ME times and the best estimate of R-D costs

Since ME complexity is adapted at the MB-level in Compt(as a function of D) to choose, for each MB, the optimal set
Opt v.3, some MBs might have been coded at a very |09 partitions that minimizes the Lagrangian cost. This tac
level of ME complexity (i.e. high\). This could potentially yields PSNR values_ that are at most 0.03 dB better than Comp-
lead to significant variations in coding quality of indivilu OPt V-1, at equal bitrate and speed-up factors. Therefbee, t
MBs. Hence, we look at how much R-D costs change w.r4S€ of average parameter settings leads to a minor deviation
UMHexagons throughout the MBs of tested sequences. LM the optimal performance. o
us define, for each MBE, and AE as the R-D cost of The proposed optimization framework is important for ro-
UMHexagonS and the R-D cost difference between Comp—diHSt and efficient adaptation of the thresholds to satisfy an
v.3 and UMHexagonS, respectively. For MBs with sufficientijevel of ME complexity. For a fixed level of complexity, the
large R-D costs, say when the cost is larger than the meantfjfesholds of the decision sets might be selected by tridl an
E,, we calculate the number of MBs for whickE > 0.5F,. €ITor, without resorting to the complicated procedure @nésd
This number gives an indication about the percentage of M this paper. However, our optimized framework becomes
It turns out that this value is less than 1% of total number P illustrate this, we implement a simple threshold update
MBs for QP = 36 and goes as low as 0.1% wheyP = 24. Strategy as follows:

When we compare the worst-case ME execution time in-« As long as} " , C; > C'B, update the thresholds:
stead of the average time, Compt-Opt v.3 gives a speed-tp fac N N
tor of 32.1 over FSM, as opposed to 26.5 given in Table IlI for 7 =T; (1 F o). (49)
carphone. Table V indicates similar speed-up improvemen
for other test sequences as well. Since worst-case corple

is a more important design parameter than average Comple)giq[lghertotal complexity than the budget, and iterativelgates

we believe that the performance of Compt-Opt v.3 is actuaﬁpbese values until the budget is satisfied. Table VI comphees
very promising erformance of this heuristic algorithm with that of ComptO

v.2. In this table, for almost equal speed-up factors, C@pp-

_ _ ) v.2 is 0.10-0.25 dB better. As the speed-up ratio increases,

C. Discussions about the optimal performance does the PSNR difference between these two approaches. It
Throughout the derivation of Comp-Opt algorithm, we havieirns out that the performance of this approach is very much

proposed several simplifications to the optimal solutiod ardependent on the initial thresholds, and could actuallyl lea

Ehe algorithm starts with an initial set of thresholds thisid/



to very poor results if these initial values are not selectgth]
appropriately.
Our use of a robust complexity adaptation strategy is g;
major improvement when compared to other mode decision
methods in the literature. As discussed in the introductio

some of these methods use sophisticated MB-adaptive m

13
=

sures to decide which modes to search for. However, since
they are MB-adaptive and cannot be computed before

coding begins, these measures are not suitable for fraveé-|
control of the overall ME complexity. In that respect, spati

I

temporal gradient is both suitable and very effective. Vilé st(1°]
continue to search for better measures and look into higher
order prediction models as well.

VII. CONCLUSION AND FUTURE WORK

[16]

[17]

In this paper, we develop a general framework for joint

optimization of R-D efficiency and computational complgxit [18

in H.264 encoder. This framework is applied successfully to
integer-pel ME module, and moderate speed-up with littss [o[19]
of coding efficiency is observed.
The optimization framework defined in this paper is equally
applicable to various other parts of the encoding process) s [20]
as full ME (integer and sub-pel), or ME and MD together. In
the latter case, if a mode is skipped, it is excluded from R-[21]
cost calculations and optimal mode decisions as well.
The optimization framework allows the encoder to adjugz]
its complexity “on the fly” to satisfy stringent timing re-
qguirements. This feature of our algorithm establishes a new
direction in the encoder optimization research, which hou>’!
be further explored. Therefore, we continue to seek more
sophisticated models that are capable of improving the modél
estimation accuracy and hence the overall coding efficiency

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]
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