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Rate-Distortion and Complexity Optimized Motion
Estimation for H.264 Video Coding
Hasan F. Ates,Member, IEEE, and Yucel Altunbasak,Senior Member, IEEE

Abstract—H.264 video coding standard supports several inter-
prediction coding modes that use macroblock partitions with
variable block sizes. Rate-distortion optimal selection of both
the motion vectors and the coding mode of each macroblock
is essential for an H.264 encoder to achieve superior coding
efficiency. Unfortunately, searching for optimal motion vectors
of each possible subblock incurs a heavy computational cost.
In this paper, in order to reduce the computational burden of
integer-pel motion estimation without sacrificing from the coding
performance, we propose a rate-distortion and complexity joint
optimization framework. Within this framework, we develop
a simple method that determines for each macroblock which
partitions are likely to be optimal. Motion vector search iscarried
out for only the selected partitions, thus reducing the complexity
of the motion estimation step. The mode selection criteria is based
on a measure of spatio-temporal activity within the macroblock.
The procedure minimizes the coding loss at a given level of
computational complexity either for the full video sequence or
for each single frame. For the latter case, the algorithm provides
a tight upper bound on the worst case complexity/execution time
of the motion estimation module. Simulation results show that
the algorithm speeds up integer-pel motion estimation by a factor
of up to 40 with less than 0.2 dB loss in coding efficiency.

Index Terms—video coding, H.264, motion estimation, com-
plexity, rate-distortion, optimization.

I. INTRODUCTION

It has been shown that H.264 video coding standard achieves
considerably higher coding efficiency over such previous stan-
dards as H.263 and MPEG-4 Visual [1]. One of the novelties
contributing to H.264’s superior performance is a rich set of
coding modes to choose from for each macroblock (MB) [2].
These modes allow the encoder to try different MB partitions,
multiple reference frames and inter/intra prediction methods in
order to find a rate-distortion (R-D) optimal coding strategy.
Unfortunately, evaluating the coding performance of all these
modes incurs a substantial increase in the computational
complexity of the encoder.

Motion estimation (ME) and mode decision (MD) are
the most computationally demanding modules of an H.264
encoder. When a MB is partitioned into several smaller
subblocks, rate-distortion optimal mode decision requires es-
timating the optimal motion vectors (MVs) of each such
subblock. Hence, each separate MB partition brings additional
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complexity to the ME module. The H.264 coding standard
[3] allows MBs (16×16 pixel) to be divided into two16×8
or two 8×16 or four 8×8 subblocks. Each8×8 block can
be further partitioned into8×4, 4×8 and 4×4 subblocks.
Therefore, in H.264, a naive full-search method (FSM) will
require significantly higher number of computations than the
single block type case.

In recent years, there have been many attempts at developing
fast ME algorithms for the H.264 encoder. Some of these work
adapt the ideas previously developed for other standards and
for a single block size (i.e.16×16) to the multiple block sizes
of H.264 [4], [5], [6], [7]. Early termination techniques have
also been investigated to speed up the ME process for each
partition [8], [9], [10]. Different search patterns, such as multi-
directional search pattern (MDRPS) [11], adaptive hexagon-
based search (AHBS) [5], modified diamond search pattern
(DSP) [6], have been designed to increase the ME accuracy.
In most cases, ME algorithms designed for H.264 tend to
focus on each block size separately, and perform fast ME for
each partition [4], [5], [12], [13]. For instance, EPZS [4] uses
special search patterns around block specific MV predictions
for estimating the optimal MVs of each MB partition. This
approach could provide satisfactory speed-up factors in each
partition. However, since separate MV searches are employed
for different block sizes, the overall computational cost could
still be significant.

Since the encoder eventually needs the optimal MVs of only
one partition, i.e. the optimal partition, having to searchfor the
MVs of other partitions seems like a waste of encoder time.
However, it is difficult to determine which partition(s) is(are)
likely to be optimal without performing ME first. There exist
many methods that try to eliminate certain modes before or
during the ME phase [14], [15], [16], [17], [18], [19], [20].
The eliminated modes are excluded from the ME and/or MD
steps. The mode selection is based on various measures, such
as the MB variance [21], absolute frame difference [22], a
measure of local motion content and MV statistics [23], [24],
[25], edge information [14], partially completed ME results
[26], [27], [28], [29], and so forth. In these methods, MBs are
basically classified as high or low-detailed, and low-detailed
MBs are assumed to have no gain from the use of small-sized
partitions. Despite some success, these ideas do not provide
a justification of whether the choices made during the mode
selection process are meaningful both from a R-D efficiency
and also a computational complexity point of view. In other
words, it is generally not clear how different parameters of
these algorithms affect both the coding performance and the
execution time of the encoder.

For real-time video coding applications, it is important tobe
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able to control the complexity of the encoder without affecting
the R-D performance too much. For instance, in case the
ME step is taking too much time, the encoder should have
a robust mechanism to speed up ME without a significant
degradation in the video quality. Such a mechanism requires
a thorough understanding of how different parameters of the
ME module affect the R-D performance and the total execution
time. In [30], the authors introduce an operational method for
optimizing ME with respect to the trade-off between R-D and
complexity. However, the method is not very flexible, because,
to adjust ME complexity, the encoder has to choose from a
limited number of best average settings.

In this paper, we extend our work in [31] and develop a
theoretical framework for joint optimization of R-D perfor-
mance and ME complexity. This framework is used to derive
an optimal method to speed up the ME module with minimum
loss in coding efficiency. The method decides for each MB
which partitions are likely to be optimal and performs integer-
pel MV search for only the selected block sizes. The mode
decisions are based on a spatio-temporal gradient measure that
gives the amount of spatial and motion activity within the
MB. In simple terms, smaller partitions are preferred for MBs
with significant spatial and temporal information, and larger
partitions are preferred for smoother MBs with little motion.
When selecting partitions to search during ME, the algorithm
aims to minimize the overall R-D cost of mode estimation
error for the video sequence. Therefore, a partition is skipped
only if the reduction in computations justifies the possible
reduction in coding efficiency.

Compared to existing mode selection methods in literature,
we propose a novel way to estimate and evaluate the coding
cost of ME speed-up. Except for [30], [27], none of the
existing work mentioned above analyze the R-D cost of
changing the heuristic parameter settings of the algorithms.
Since the value of each parameter is determined through
various simulations in many video sequences, all these tests
would probably have to be repeated for finding the “right” set
of parameters at a different level of complexity. In this paper,
we address this problem and develop a general framework
in which R-D costs could be minimized at any level of ME
complexity.

Consequently, our R-D and complexity joint optimization
framework provides the encoder with a flexible way to adjust
the ME complexity while achieving a desired level of video
quality. In case a time budget is set for the ME step in a
single frame, the mode selection criteria is easily adapted
such that ME execution finishes within the maximum allowed
time budget. Most of the fast ME algorithms described above
ignore the worst-case complexity of the ME module and
try to minimize average complexity. However, to guarantee
uninterrupted real-time operation, the encoder hardware should
be designed to code frames at a specified rate even when
each frame consumes the maximum amount of time during the
ME process. In other words, worst-case complexity is a more
critical design parameter for smooth real-time encoding than
the average complexity. In this paper, we present an effective
method to limit the worst-case ME execution time with as
little loss of coding efficiency as possible.

The main contribution of our work is this “complexity adap-
tation feature” of the proposed algorithm. The method targets
optimal control of frame-level ME complexity by adapting
the parameters of the mode decision process appropriately.
The joint optimization framework guarantees a robust and
controlled adaptation procedure without having to worry about
sudden and significant losses in R-D efficiency. As to our
knowledge, existing methods in literature are not suitable
for such complexity control, for a couple of reasons. One
reason is because these algorithms do not provide a robust
mechanism to change the parameter settings “on the fly”
and any misguided attempt to do so may cause significant
coding losses. More crucially, in most methods, such as [17],
[18], [19], [20], [25], [28], the mode decisions are based
on some information about the MBs that is not available
a priori, such as the coding modes of neighboring MBs or
partial ME results. This makes it hard, if not impossible, to
predict and control the overall frame-level ME complexity.We
overcome these two issues by adjusting our parameters within
an optimized framework, and by using a simple and effective
gradient measure that can be computed prior to coding a frame.
In the simulations section, we compare our algorithm to a
simpler heuristic approach to emphasize the importance of our
optimized decision framework.

Section II describes the joint optimization framework. In
Section III, we derive the optimal mode selection criteria and
explain the details of the algorithm. Section IV mentions some
practical issues and the estimation procedure for the algorithm
parameters. Section V describes the extension of the method
for adaptive control of the frame-level complexity/execution
time of the ME module. In Section VI, we present the
simulation results, analyze and discuss the optimality of the
approach, and compare the performance of the algorithm with
UMHexagonS [12] and FSM. The results show that there is
negligible loss in video quality, despite a major reductionin
complexity. We conclude the paper in Section VII.

II. RATE-DISTORTION AND COMPLEXITY JOINT
OPTIMIZATION

Motion estimation (ME) constitutes a significant portion of
total complexity in H.264 encoding. Despite the existence of
several fast ME algorithms in literature, having to find the
optimal motion vectors (MVs) for all possible MB partitions
places a strict restriction on how much the ME complexity
can be reduced. In this paper, we propose to estimate which
partitions/modes are most likely to be optimal before perform-
ing any ME, and reduce the number of different partitions that
have to be searched for optimal MVs.

Figure 1 provides a high-level summary of our approach.
The control module collects some data, D, from the current
frame, and uses this data to control the complexity of the ME
module. Based on D and the desired level of ME complexity,
the control module forms the optimized decision function,
Q(D), and passes this information to the ME module. ME
module processes each MB based onQ; that is,Q tells the ME
module which partitions to search for each MB. The control
module optimizes its decisions based on probabilistic models



3

ME MD

Complexity

D
Q(D)

Control

Fig. 1: Algorithm block diagram.

of computational complexity and R-D costs of sub-optimal
mode decisions. In the following paragraphs, we define D,Q,
and these probabilistic models.

The data D is essential for accurate estimation of the optimal
modes. As for D, we propose to use the magnitude of the
spatio-temporal gradient of each MB as defined below:

D = 2DT + 0.5Dx + 0.5Dy, (1)

where

DT =

16,16
∑

x=1,y=1

|c(x, y) − r(x, y)|, (2)

Dx =

15,16
∑

x=1,y=1

|c(x, y) − c(x + 1, y)|, (3)

Dy =

16,15
∑

x=1,y=1

|c(x, y) − c(x, y + 1)|. (4)

Here c and r are current and previous reference frames,
respectively. In the formula, the temporal gradient, DT , is
given a bigger weight than the spatial components, because
simulations show that DT is more informative when deciding
which modes could be optimal. For8×8 and smaller partitions,
we also compute the spatio-temporal gradients of the8×8
subblocks, say Dk, 1 ≤ k ≤ 4. We claim that the spatio-
temporal gradient, D, provides a reliable measure of the high-
frequency details and varying motions in a block. In other
words, MBs with a high value of D are more likely to contain
multiple objects with different motions, hence could benefit
from the use of smaller block sizes. This gradient measure
is chosen for its simplicity and effectiveness, although the
following framework could just as well be applied to other
criteria for selecting the MB coding mode.

Having computed D and Dk ’s for each MB, we would like
to skip integer-pel ME for partitions with low likelihood of
being optimal and reduce the overall execution time of the
ME module in the H.264 encoder. For reducing computational
complexity with as little loss of coding efficiency as possible,
we propose an efficiency - complexity (E-C) optimization
method. The method decides, for each MB, which partitions
are worth the amount of computations required to perform
integer-pel ME. An optimal decision is made by minimizing
the following average Lagrangian cost:

JMB = EMB + λECMB , (5)

where EMB and CMB are measures for expected loss of
coding efficiency and average amount of ME computations
for a MB, respectively;λE is an appropriate Lagrangian

multiplier. In this paper, we will look at two separate but
related problems:

• Unconstrained Optimization: Minimize JMB for a
given and fixedλE . This problem tries to figure out the
optimal trade-off between rate-distortion performance and
complexity for a given video sequence.

• Constrained Optimization: Minimize JMB subject to
the constraint

∑N
i=1 Ci ≤ CB, whereN is the number

of MBs in a frame. In this problem, we use a complexity
budget, CB, to place a worst-case limit on the total ME
complexity of each frame.λE is chosen adaptively for
each frame in order to satisfy this constraint.

EMB and CMB are composed of separate performance
terms for each possible coding mode. Imagine that seven
different partitions are represented by the modes,m1 = 16×16,
m1

2 = 16× 8, m2
2 = 8× 16, m3 = 8× 8, m1

4 = 8× 4,
m2

4 = 4× 8, m5 = 4× 4. For modesm1
2 = 16× 8 and

m2
2 = 8×16, the gradient D does not help us discriminate

which of the two modes is more likely; in other words, given
D, the probability of the two modes being optimal is almost
equal. That is why we consider the two modes together as one,
i.e. m2 = (m1

2 or m2
2). Likewise, m4 = (m1

4 or m2
4). Note

that, the directional components of the gradient, Dx and Dy,
could have been considered separately to differentiate these
modes. However, it turns out that this would increase the
complexity of the approach and provide only a marginal gain
in coding efficiency.

As for the smaller sized partitions, i.e.j = 3, 4, 5, each8×8
subblock can have a different optimal partition. However, the
overall partition of the MB has to be of size8×8 and below. To
represent this, we define an extra symbolm0 which indicates
that each8×8 subblock ismj for somej ≥ 3:

m̂ = m0 ⇒ m̂k = mjk
, ∃jk ≥ 3, 1 ≤ k ≤ 4, (6)

wherem̂ represents the optimal coding mode of the MB, and
m̂k represent the optimal coding mode of the8×8 subblock
k, 1 ≤ k ≤ 4 .

We use the the gradients D and Dk ’s to evaluate each mode
mj and decide whether to perform integer-pel ME or skip this
step. We define appropriate decision sets for each block size;
integer-pel ME is performed only if the gradient is within this
set. These sets are as follows:

Qj = {D : T−
j ≤ D ≤ T +

j }, j = 1, 2. (7)

Qk
j = {Dk : T−

j ≤ Dk ≤ T +
j }, j = 3, 4, 5. (8)

Hence, if D 6∈ Qj, then partitionmj is not included in integer-
pel ME. If a block size is skipped, median MV prediction of
H.264, MVmed, is assigned as the optimal MV for subblocks
of that size and sub-pel ME and mode decision are performed
as before. In general words, these sets define for each partition
a connected interval of gradient values in which the partition
has a high likelihood of being optimal.

For 8×8 and smaller partitions, the decision to perform ME
will depend on the gradient of the corresponding8×8 subblock.
This is meaningful since, within a MB, some subblocks could
be detailed and some could be smooth or could belong to a
static background. As a result, different partitions couldbe
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more likely to be optimal for different subblocks. However,
with the same reasoning, sometimes the MB might not require
small partitioning even though one of its 8x8 subblocks could
be high-detailed. For instance, if three of the subblocks belong
to the static background and if the fourth subblock belongs to
a slow-moving object,m1 or m2 could just as well be optimal.
In such cases, we should be able to skip ME for all8×8 and
smaller partitions. For that purpose, we define an extra set:

Q0 = {D : T−
0 ≤ D ≤ T +

0 }. (9)

This set will be used first to decide for the whole MB whether
it is worth performing ME for any8×8 partitioning at all (i.e.
mode m0). If the answer is yes, each8× 8 subblock will
be separately handled to decide which of the three modes,
j = 3, 4, 5, to look at.

Having defined the decision sets, we would like to compute
the expected R-D loss and ME complexity based on this
formulation. For the average computational cost, we define the
expected complexity of each partition as follows. Forj = 1, 2:

E [Cj ] =

T+

j
∫

T−

j

cj(D)p(D)dD, (10)

whereE [·] is the expectation operator,p(D) is the probability
density function (pdf) of the MB gradient D, andcj(D) is the
integer-pel ME complexity of modemj as a function of D.
For j = 3, 4, 5, a partition is searched if both D∈ Q0 and
Dk ∈ Qk

j . Therefore,

E [Cj ] =

T+

0
∫

T−

0

T+

j
∫

T−

j

cj(D
k)p(Dk, D)dDkdD, (11)

wherep(Dk, D) is the joint pdf of D and subblock gradient
Dk. Without loss of generality, we can assume that all8×8
subblocks have the same pdf and same cost function (i.e.
p(Dk, D) and cj(D

k) are the same for all k,1 ≤ k ≤ 4).
Therefore, the integral will be equal for all subblocks. To
simplify notation, we takecj(D

k) as 4 times the cost of a
single subblock. As a result, for a given MB, the overall
average ME complexity becomes:

CMB =

5
∑

j=1

E [Cj ]. (12)

As for the loss of coding efficiency, we evaluate the cost of
mode estimation error for each mode. A mode incurs a R-D
penalty only if it is excluded from ME and it turns out to be
the optimal mode. That is, forj = 0, 1, 2,

E [Ej ] =

T−

j
∫

0

dj(D)p(D, mj)dD +

∞
∫

T+

j

dj(D)p(D, mj)dD

=

∫

D 6∈Qj

dj(D)p(D, mj)dD, (13)

where p(D, m̂) is the joint pdf of MB gradient D and the
optimal modem̂ (i.e. m̂ = mj means optimal mode ismj),
and dj(D) is the R-D cost of mis-estimation for each mode
as a function of D. Forj = 3, 4, 5, we define:

E [Ej ] =

T+

0
∫

T−

0

∫

D 6∈Qj

dj(D
k)p(Dk, D, mj)dDkdD, (14)

For modem0, we have separated the two sources of R-D loss:
coding loss when none of the smaller partitions are includedin
the MV search,E [E0]; and coding loss when D∈ Q0 but ME
is skipped for the optimal partition of some8×8 subblocks,
E [Ej ], j = 3, 4, 5.

Assuming same pdfs and same cost functions again for all
subblocks, we takedj(D

k), j = 3, 4, 5, as 4 times the R-D cost
of mis-estimation in each subblock. As a result, the expected
loss of R-D efficiency is given by:

EMB =

5
∑

j=0

E [Ej ]. (15)

Hence the overall expression becomes:

JMB =
5

∑

j=0

E [Ej ] + λE

5
∑

j=1

E [Cj ]. (16)

In this formulation, the expected complexity and the ex-
pected R-D cost of a MB/subblock is calculated independent
of the (spatial and temporal) neighboring MBs/subblocks and
their optimal coding modes. It is possible to extend this
formulation and include both the neighboring MB/subblock
information and the gradient as multiple measures that will
be jointly used to better estimate the optimal mode of a
MB/subblock. This requires a higher order modeling of the
pdfs defined above (e.g. as a Markov process), and it is outside
the scope of this paper. In Section VI, we discuss the effects
of these and other simplifications on the performance of the
algorithm.

III. OPTIMAL THRESHOLD SELECTION

Given the pdfs defined above, and the performance functions
dj , cj , we would like to find the optimal values of the
thresholdsT±

j that are used to define the decision sets. So,
we take the partial derivatives ofJMB with respect to (w.r.t.)
each threshold and set to zero.

First, we take the derivative ofE [Cj ] w.r.t T±
j , for j = 1, 2:

∂E [Cj ]

∂T±
j

= ±cj(T
±
j )p(T±

j ), (17)

Likewise, for j = 0, 1, 2, the derivative ofE [Ej ] w.r.t. T±
j is

equal to:
∂E [Ej ]

∂T±
j

= ∓dj(T
±
j )p(T±

j , mj), (18)
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For j = 3, 4, 5, the formulation is similar, except for the
dependency onQ0:

∂E [Cj ]

∂T±
j

= ±cj(T
±
j )

T+

0
∫

T−

0

p(T±
j , D)dD

= ±cj(T
±
j )p(T±

j |D ∈ Q0)P (D ∈ Q0), (19)

and likewise,

∂E [Ej ]

∂T±
j

= ∓dj(T
±
j )p(T±

j , mj |D ∈ Q0)P (D ∈ Q0), (20)

where p(Dk|D ∈ Q0) and p(Dk, m̂k|D ∈ Q0) are the
conditional pdf of subblock gradient Dk and the conditional
joint pdf of Dk and optimal subpartition modêmk, given that
D ∈ Q0, respectively.

Finally, we also need the partial derivatives ofE [Cj ] and
E [Ej ] w.r.t T±

0 , for j = 3, 4, 5. Taking the partial derivatives
of equations (11) and (14) w.r.t.T±

0 , we arrive at,

∂E [Cj ]

∂T±
0

= ±c̄j(T
±
0 )P (Dk ∈ Qk

j , T±
0 ), (21)

∂E [Ej ]

∂T±
0

= ±d̄j(T
±
0 )P (Dk 6∈ Qk

j , T±
0 , mj) (22)

where,P (Dk ∈ Qk
j , T±

0 ) is the probability that Dk ∈ Qk
j and

D = T±
0 , and, forj = 3, 4, 5,

c̄j(T
±
0 ) =

T+

j
∫

T−

j

cj(D
k)

p(Dk, T±
0 )

P (Dk ∈ Qk
j , T±

0 )
dDk, (23)

= E [cj(D
k) | Dk ∈ Qk

j , T±
0 ] (24)

and similarly,

d̄j(T
±
0 ) = E [dj(D

k) | Dk 6∈ Qk
j , T±

0 , mj] (25)

Now, we use these results to derive the optimality conditions
for the thresholds,T±

j . For j = 1, 2, setting the derivative of
the Lagrangian cost to zero, we get:

∂JMB

∂T±
j

= ∓dj(T
±
j )p(T±

j , mj)±λEcj(T
±
j )p(T±

j ) = 0, (26)

Therefore,

p(T±
j , mj)

p(T±
j )

= P (mj |T
±
j ) = λE

cj(T
±
j )

dj(T
±
j )

, (27)

where P (mj |T
±
j ) is the conditional probability of optimal

mode beingmj given that D = T±
j . The solutions of this

equation give the extremum points ofJMB .
For the optimal thresholdsT±∗

j to minimizeJMB , we also
need to check the second order derivative and see that:

∂2JMB

∂T±
j

2

∣

∣

∣

∣

∣

T±

j
=T±∗

j

> 0. (28)

Assuming ∂(cj/dj)

∂T±

j

≈ 0 (see Section IV), we can show that

this is true as long as:

∂P (mj |T
−
j )

∂T−
j

∣

∣

∣

∣

∣

T−

j
=T−∗

j

> 0, (29)

∂P (mj |T
+
j )

∂T +
j

∣

∣

∣

∣

∣

T+

j
=T+∗

j

< 0. (30)

From Figures 3 and 4, we realize that these two conditions
are satisfied.

Likewise, the optimal solutions forj = 3, 4, 5, satisfy:

P (mj |T
±
j , D ∈ Q0) = λE

cj(T
±
j )

dj(T
±
j )

, (31)

For T±
0 , we derive∂JMB

∂T±

0

and set it equal to zero:

0 = ∓d0(T
±
0 )p(T±

0 , m0) ±

5
∑

j=3

d̄j(T
±
0 )P (Dk 6∈ Qk

j , T±
0 , mj)

±λE

5
∑

j=3

c̄j(T
±
0 )P (Dk ∈ Qk

j , T±
0 ). (32)

Notice that,m̂k = mj , j ≥ 3 ⇒ m̂ = m0. Therefore, we can
write,

p(Dk, T±
0 ) = p(Dk|T±

0 )p(T±
0 ), (33)

p(Dk, T±
0 , mj) = p(Dk, mj|T

±
0 , m0)p(T±

0 , m0) (34)

Here,mj represents that̂mk = mj, and likewisem0 means
m̂ = m0. Consequently, Eqn. (32) becomes,

P (m0|T
±
0 ) = λE

c̄0

d̄0
, (35)

where

c̄0 =

5
∑

j=3

c̄j(T
±
0 )P (Dk ∈ Qk

j |T
±
0 ) (36)

d̄0 = d0(T
±
0 ) −

5
∑

j=3

d̄j(T
±
0 )P (Dk 6∈ Qk

j , mj |T
±
0 , m0). (37)

Here c̄0 and d̄0 can be interpreted as the average complexity
and average cost of estimation error for modem0, respec-
tively. d̄0 represents the difference in coding loss between not
searching any of the smaller partitions vs. making individual
decisions for each8 × 8 subblock. If we hadn’t used the
gradient measures of8 × 8 subblocks; that is, if we had
searched for all small partitions whenever D∈ Q0, then
simply c̄0 =

∑5
j=3 c̄j(T

±
0 ) and d̄0 = d0(T

±
0 ).

IV. PARAMETER ESTIMATION

Solutions of the equations (27), (31), (35) yield the optimal
thresholds that define the decision sets and minimize the
Lagrangian costJMB . In order to solve these equations, we
need to know, for each partition, the complexitiescj, the R-
D costsdj , and the conditional distributionsP (mj |T

±
j ), for

j = 0, 1, 2, and P (mj |T
±
j , D ∈ Q0), for j = 3, 4, 5. In the

above formulation, these parameters are defined as functions
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Fig. 2:λEc2, d2 andλEc2/d2 as a function of D, forcarphone
(QP = 24).

of the MB/subblock gradients D and Dk. More generally,cj ,
dj and the conditional probabilities can change according to
the video content, the compression level and the quantization
parameterQP . Therefore, accurate modeling of the algorithm
parameters require extensive simulations on a training setof
video sequences coded at various compression levels.

Note that, our early mode selection strategy could be used
together with almost any fast ME algorithm in the literature
(except for those algorithms in which there is a strong de-
pendence between the MV searches of different partitions).In
this paper, we have chosen to incorporate our method into
the fast ME algorithm provided in JM reference software,
called UMHexagonS [12]. That is why UMHexagonS is also
used during the training phase when determining the necessary
parameters. We discuss below the implications of using this
algorithm on the modeling of the parameters.

During training, video sequences are coded using constant
QP . This is required, because especiallydj ’s and the con-
ditional distributions heavily depend on the value ofQP .
However, once the optimal thresholds are determined for each
QP , the algorithm could be used in a coding scenario with
rate control, i.e. changingQP .

Simulations show thatcj anddj strongly depend on the MB
content (e.g. level of motion and high-frequency details).The
simple spatio-temporal gradient D is meant to represent this
content information. However, the relationship between a MB
and its actualcj, dj values is actually much more complicated
than what the gradient D can single-handedly capture. In the
following, we briefly mention these complications, and then
provide our own reasoning and solution to these problems:

• Most fast ME algorithms, including UMHexagonS, em-
ploy early termination techniques and MB adaptive deci-
sions that make the ME execution time heavily dependent
on the MB content. While the actual ME time can change
drastically between MBs of similar gradient, we observe
that, on average, the computational cost increases with
increasing D (see Figure 2).

• A similar argument applies to R-D costsdj , although the
actual relationship between the R-D costs and the MB

TABLE I: Complexity Parameters for Different Sequences
c1 c2 c3 c4 c5

carphone QP =24 1.0 1.7 1.2 3.7 1.5
QP =32 1.0 1.7 1.2 4.1 1.5

foreman QP =24 1.0 1.7 1.2 4.0 1.5
QP =32 1.0 1.8 1.4 4.5 1.5

mobile QP =24 1.0 1.8 1.3 4.0 1.3
QP =32 1.0 1.9 1.4 4.2 1.3

tennis QP =24 1.0 1.8 1.2 3.7 1.3
QP =32 1.0 1.8 1.4 4.3 1.4

stefan QP =24 1.0 1.8 1.2 3.6 1.3
QP =32 1.0 1.8 1.3 3.9 1.3

content is even more complicated. In simple terms, as
the MB gets more detailed, its coding cost increases, and
so does the cost of mis-estimating its coding mode, that
is dj (see Figure 2).

• The R-D loss of skipping ME of a given partition cannot
be evaluated independent of the other partitions. For
instance, the average R-D cost of skipping bothm1 and
m2 is larger than the sum of average costs of skipping
only m1 and onlym2. This is expected, since, whenm1

is skipped,m2 is usually the next best choice and vice
versa. This observation has to be taken into account while
computing the parametersdj .

• The suboptimal decisions (i.e. suboptimal MVs and sub-
optimal mode decision) made for a MB affect the R-
D performance while coding future MBs. This is also
expected, since MVs of a given MB is used to pre-
dict the MVs of the next MB, causing propagation of
the suboptimality. This dependency impedes an exact
calculation of the R-D cost of any mode estimation
error. However, on the average, we expect the R-D costs
of these secondary effects to cancel out, justifying the
assumption of independent MBs.

Despite these issues, the behaviors of averagecj and av-
eragedj are well defined as functions of D. In other words,
even though there exist many MB-dependent and algorithmic
factors that affect the actualcj and dj , the expected values
of these parameters depend mainly on the gradient D. Figure
2 shows averageλEc2, for a suitableλE , and averaged2 vs.
D, for the MBs of carphone sequence. We observe similar
behavior for other partitionsmj and for other tested video
sequences.

Figure 2 also showsλEc2/d2 (magnified byK = 200
for better visualization). We see that this ratio is almost
constant for all D (except for very small D in which case
d2 is relatively small). This behavior is also common to all
partitions and tested sequences. Simulations also indicate that
the relative ME complexities for different partitions, i.e. cj/ci,
stay almost the same for all D. Table I listscj for different
tested sequences, relative to the value ofc1.

Based on these two observations, we propose to take the
ratios cj/dj, cj/ci, anddj/di to be constant, independent of
D or Dk. The parameterscj and dj need only to be defined
relative to one another, irrespective of the actual values.

Note that, the specific shape of these plots is a function
of the fast ME algorithm being used, i.e. UMHexagonS.
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For other ME algorithms, these plots could be somewhat
different. In general, assuming constantcj/dj and cj/ci is
a crude approximation. In the simulations section, we show
that these approximations do not compromise the optimality
of the approach in terms of the actual coding results.

By averaging the actual execution times for different MB
gradients and through different test sequences, we arrive at
the following set of relative ME complexities:c1 = 1, c2 =
1.8, c3 = 1.3, c4 = 4.1, c5 = 1.4.

When computing the relative values ofdj , we consider
the fact that, in all cases, the optimal thresholds satisfy the
following inequalities:

T−
1 ≤ T−

2 ≤ T−
0 ≤ T +

1 , T−
0 ≤ T +

2 . (38)

Hence, whenever D< T−
1 , ME should be skipped for all

partitions of the MB. This decision has typically a high
marginal cost, i.e.d1 is relatively large. On the other hand,
if D > T +

1 , m1 is skipped butm2 and some of the smaller
partitions are typically active. Therefore, the marginal cost of
skipping ME form1 is much lower this time. If we represent

these two different costs byd−1 and d+
1 , thend−1 � d+

1 . For
other partitionsmj , the R-D costsdj also change based on
which modes are active. But these variations are comparably
smaller or do not affect the optimal thresholds, and hence there
is no need to differentiate betweend−j andd+

j .
For the subpartitions, the thresholds exhibit a similar pat-

tern:

T−
3 ≤ T−

4 ≤ T−
5 . (39)

Hence, whenever Dk ≥ T−
5 , m3 and m4 (and possiblym1,

m2) are already active, implying a smalld5 on the average.
This leads toT−

5 = ∞ and m5 is skipped in all MBs.
Nonetheless, simulations show that skippingm5 could be
costly for some video frames (e.g. for very detailed MBs
that contain objects experiencing different motions), especially
whenQP is low. Therefore, we setd5 to a suitable level that
will allow MV search form5 whenever necessary.

By carefully considering these interactions between differ-
ent partitions and evaluating the R-D costs for the trainingset
of video sequences, we have determined the following set of
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TABLE II: Optimal thresholds for differentQP andλE

λE T−

0
T−

1
T+

1
T−

2
T−

4
T−

5

QP =24 0.02 2230 0 ∞ 725 610 1245
0.04 2980 80 ∞ 1180 1195 2090
0.06 3200 245 9120 1630 2725 4260
0.08 3040 350 3090 2260 ∞ ∞

QP =32 0.02 5110 65 ∞ 1620 1680 3000
0.04 6590 260 20310 2580 2670 ∞

0.06 6285 440 11190 3615 ∞ ∞

0.08 7330 610 7435 5895 ∞ ∞

relativedj parameters to yield the best efficiency-complexity
trade-off: d0 = 1.0, d−1 = 1.0, d+

1 = 0.25, d2 = 0.5, d3 =
1.0, d4 = 1.0, d5 = 1.0.

As for the computation of conditional probability distribu-
tions, we observe that the probabilities change with overall
video content, and even with the content of each frame. Similar
to cj anddj , the probability of a mode being optimal depends
not only on the MB gradient but also on other factors, such as
the local motion content. As mentioned before, this requires
the use of a higher order statistical model, which is not
considered in this paper. Instead, we limit our analysis to video
sequences that yield similar distributions, i.e. sequences with
moderate-to-high motion content and spatial details. Hence,
we determine a fixed set ofa priori distributions and use it
in all of the tested sequences. In the simulations section, we
discuss the impact of this simplification on the performance
of the algorithm.

As mentioned before, the quantization parameterQP sig-
nificantly affects the conditional probabilities of different
partitions. With higherQP , fewer MBs prefer8 × 8 and
smaller partitions, and the probability of these modes being
optimal decreases at all MB gradients (see Figure 3 and Figure
4). Therefore, the training sequences are coded using fixed
values ofQP , and the resulting optimal statistics are used to
derive separate conditional distributions for corresponding QP
values.

Figure 3 and Figure 4 show the derived distributions for
QP=32 andQP=24. In these figures, rational functions (hav-
ing second order numerators and denominators) are fitted
through the empirical histograms. The fit is rather accurate
most of the time, and it simplifies the computation of the
optimal thresholds.

The optimal thresholds are computed through equations
(27), (31), (35) for different rate-distortion and complexity
trade-offs (i.e. for different values of the Lagrangian parameter
λE). Note that, the equations (31) and (35) depend on bothT±

0

andT±
j , for j=3,4,5. Therefore we start with initial estimates

of c̄0 and d̄0, iteratively update the valuesT±
0 and T±

j , and
converge to the optimal solutions after a couple of iterations.

Figure 3 and 4 illustrate the thresholds satisfying the opti-
mality equations. For instance, whenQP=32, withλE = 0.05
cj , dj as defined above, the optimal thresholds are computed
as: T−

0 = 6915, T−
1 = 350, T +

1 = 14430, T−
2 = 3070,

T +
2 = 41850, T−

4 = 2000 (The other thresholds are either 0
or ∞). Note thatT−

3 = 0, T +
3 = ∞; that is, we always search

8×8 partition as long as D∈ Q0. Also,T−
5 = T +

5 = ∞ implies
that integer-pel ME is not performed for4×4 partition.

For all QP and λE values, we always setT +
0 = T +

3 =
T +

4 = T +
5 = ∞. This does not have any significant effect on

the performance, since there are only few MBs with very high
gradients. A sample set of thresholds are tabulated in TableII
for differentQP andλE .

V. FRAME- AND MB-L EVEL THRESHOLDADAPTATION

As explained in the previous section, whenλE andQP are
fixed, the same set of global thresholds are used throughout
the video sequence that is being coded. Provided that all the
assumptions of the model are satisfied, this leads to an R-
D and complexity optimal performance. On the other hand,
different frames of a video sequence might have significantly
different content, and this approach might lead to significant
variations in total execution time among frames.

Large variations in the execution time impede an effi-
cient real-time hardware implementation of the algorithm.For
smooth and real-time encoding, the encoder needs to code
frames at a rate that is equal to the frame display rate.
In the worst case scenario when each frame consumes the
maximum amount of time during ME process, the encoder
still has to guarantee real-time operation. Therefore, if two
ME algorithms that have similar average execution time and
similar data flow and memory requirements are compared,
the one with less variations in the execution time will have
a more efficient hardware implementation. Consequently, it
is important to achieve almost constant total execution time
among all frames of a sequence so as to simplify the hardware
design of the encoder and to guarantee smooth real-time
operation.

In this section, we use the constrained optimization scenario
to adapt the Lagrangian parameterλE and the corresponding
thresholds so that a given complexity budget is satisfied for
the whole frame, i.e.

∑N
i=1 Ci ≤ CB.

Note that, the ME complexity ofith MB is equal toCi,
where

Ci = I1c1 + I2c2 +
5

∑

j=3

4
∑

k=1

Ik
j ck

j , (40)

whereck
j = cj/4, and

Ij =

{

1, if D ∈ Qj

0, else
(41)

Ik
j =

{

1, if D ∈ Q0 & Dk ∈ Qk
j

0, else
(42)

Assume that, for a givenQP , we define a set of Lagrangian
parameters,S = {λ

(l)
E }1≤l≤L (λ(l)

E < λ
(l+1)
E ), and the

corresponding optimal thresholds{T±(l)
j }1≤l≤L. Then, before

starting to code a frame, we compute the gradients of all
MBs and find λ

(l)
E ∈ S that satisfies the time budget, i.e.

CB(l) ≤ CB, whereCB(l) =
∑N

i=1 C
(l)
i :

• Find λ
(l)
E ∈ S such thatλ(l)

E ≈ λ
pr
E , which is the

Lagrangian parameter of the previous frame.
• If CB(l) < CB, thenδl = 1,

– Incrementl by 1 as long asCB(l) < CB.
• Else if CB(l) > CB, thenδl = −1
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– Decrementl by 1 as long asCB(l) > CB.

• Set

λE = αλ
(l)
E + (1 − α)λ

(l+δl)
E , (43)

T±
j = αT

±(l)
j + (1 − α)T

±(l+δl)
j , (44)

where

α =
CB(l+δl) − CB

CB(l+δl) − CB(l)
. (45)

In this formulation, the frame-level ME complexity is
measured in terms of the relative values ofcj . However, we
know from the previous section thatcj ’s are actually functions
of D. Figure 2 shows howcj increases with increasing D,
and converges to an approximate worst-case limit for high
values of D. Therefore, for the full frame, ME execution time
increases with increasing DF , the average frame gradient, as
well.

Figure 5 plots the relationship betweenTME, average ME
execution time, andlog(DF ), for the frames ofcarphone se-
quence. As seen from this figure, up to a good approximation,
the execution time increases linearly withlog(DF ). In view
of this observation, we modelcj ’s as a function of average
frame gradient, as follows. For1 ≤ j ≤ 5:

cj(DF ) = β(DF )cj , β(DF ) = 1 + a(log(DF ) − b). (46)

Here, the slopea can be seen as a modeling parameter that
depends on the ME algorithm being used. For UMHexagonS,
we seta = 0.5 andb = 8.5.

Now, we update the complexity budget for each frame to
account for this model. We once again assume constant relative
cj , but compute the average frame gradient DF and set the
complexity budget such that

N
∑

i=1

Ci ≤
CB

β(DF )
(47)

is satisfied. Hence, depending on the average frame gradient,
the budget is adapted so that overall execution time stays
almost the same.

In addition to this frame-level update of the thresholds,
we also perform MB-level adaptation to further decrease the
fluctuations in the total ME execution time among frames. For
that purpose, we compare the actual ME execution times of
the MBs,Xi, 1 ≤ i ≤ N , with the actual time budgetTB. In
order not to cause any extra computational burden, we apply
a simple strategy:

• For MB n = 10k, k ∈ Z, compare the actual ME time so
far with the expected time:

– If
∑n

i=1 Xi > n
N TB+ε, then chooseλu

E = λav
E +δλ;

– Else if
∑n

i=1 Xi < n
N TB − ε, then chooseλu

E =
λav

E − δλ;
– Elseλu

E = λav
E ;

• Find λE ∈ S such thatλE ≈ λu
E .

• Setλav
E = (nλav

E + 10λE)/(n + 10).

In this procedure, once in every 10 MBs,λE is chosen from
the setS as slightly higher or lower than the averageλav

E for
the frame, depending on whether the actual ME execution time
is higher or lower than the expected time so far, respectively.

Note that, most video frames contain both smooth static
regions (e.g. background) and detailed moving regions (e.g.
boundary of a moving object), which causes significant fluctu-
ations of execution time even within a single frame. Updating
λE for every such fluctuation will have an adverse effect on the
coding results. Therefore, by performing the update procedure
once in every 10 MBs, and choosing the parametersδ and
ε conservatively, we avoidλE to change drastically from its
average value.

In a coding scenario where encoded frames are first stored
in a large buffer before transmission, the time budget couldbe
set at the GOP (group of pictures) level, i.e. the total ME time
of frames in the GOP should be less than this limit. In that
case, the budget of each frame would be adjusted according to
the remaining encoding time for the given GOP. That means,
for framei, 1 ≤ i ≤ M :

TBi =
TBGOP−

∑i−1
j=1 T j

ME
M − i + 1

, (48)

whereT j

ME is the ME execution time of framej, andM is
the number of frames in the GOP. Since the time lost in one
frame could be made up in the other frames of the GOP, these
budgets are not necessarily strict. Hence, MB-level threshold
updates would be less frequently needed. Having a looser time
limit for each frame should improve the coding performance
of the algorithm.

VI. SIMULATIONS

A. Testing Conditions

The simulations are performed for video sequencescar-
phone (QCIF), foreman (CIF), mobile (CIF), tennis (SIF),
stefan (SIF) at 30 fps, (search range[−16, 16]). All frames
except the first one are coded as P-frames. Two reference
frames are allowed. The CAVLC entropy coder is used. For
coding with constantQP , the quantization parameters are
QP = 24, 28, 32, 36. The optimal thresholds are determined,
at all QP values, for the setS = {λE : λE = 0.005k, 1 ≤
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TABLE III: Performance comparison with FSM
carphone δPSNR (dB) δbitrate(%) Speed-up

Comp-Opt(1) -0.18 +3.47 33.7
Comp-Opt(2) -0.14 +2.68 26.9
Comp-Opt(3) -0.17 +3.18 26.5
UMHexagonS -0.07 +1.39 9.4

foreman δPSNR (dB) δbitrate(%) Speed-up

Comp-Opt(1) -0.14 +3.44 35.3
Comp-Opt(2) -0.13 +3.06 32.3
Comp-Opt(3) -0.13 +3.16 28.3
UMHexagonS -0.05 +1.31 9.4

mobile δPSNR (dB) δbitrate(%) Speed-up

Comp-Opt(1) -0.06 +1.17 25.2
Comp-Opt(2) -0.07 +1.46 29.6
Comp-Opt(3) -0.09 +1.77 33.2
UMHexagonS -0.01 +0.21 9.6

tennis δPSNR (dB) δbitrate(%) Speed-up

Comp-Opt(1) -0.10 +2.60 36.5
Comp-Opt(2) -0.12 +3.12 37.4
Comp-Opt(3) -0.14 +3.68 38.8
UMHexagonS -0.03 +0.84 12.0

stefan δPSNR (dB) δbitrate(%) Speed-up

Comp-Opt(1) -0.17 +2.98 25.4
Comp-Opt(2) -0.19 +3.21 24.7
Comp-Opt(3) -0.23 +3.92 25.3
UMHexagonS -0.07 +1.26 9.9

TABLE IV: Comparison with FSM (Rate Control enabled)
carphone δPSNR (dB) Speed-up

Comp-Opt(1) -0.16 33.4
UMHexagonS -0.07 9.2

foreman δPSNR (dB) Speed-up

Comp-Opt(1) -0.14 33.6
UMHexagonS -0.05 9.1

mobile δPSNR (dB) Speed-up

Comp-Opt(1) -0.06 25.9
UMHexagonS -0.02 9.4

tennis δPSNR (dB) Speed-up

Comp-Opt(1) -0.10 34.5
UMHexagonS -0.04 11.6

stefan δPSNR (dB) Speed-up

Comp-Opt(1) -0.17 23.8
UMHexagonS -0.06 9.8

k ≤ 30}. The algorithm is incorporated into JM software
version 8.2 [32], and used together with UMHexagonS. For
rate control, JM’s own algorithm is used.

Three versions of the algorithm Complexity-Optimization
(abbr. Comp-Opt) are tested during simulations:

• Comp-Opt v.1: unconstrained case, with fixedλE for the
full sequence. The value ofλE is adjusted for eachQP ,
such that total ME execution time stays almost the same.

• Comp-Opt v.2: constrained optimization, with fixed com-
plexity budgetCB = 3N ; β(DF ) = 1 for all frames.

• Comp-Opt v.3: constrained optimization, withCB =
3N ; β(DF ) is computed from equation (46). MB-level
update is also used, withTB ≈ 133Nµsec.

B. Comparison with UMHexagonS

The results in Table III and IV compare the performance of
our approach with UMHexagonS in terms of speed-up factor

20 40 60 80 100 120 140
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0.2

0.4

0.6

0.8

1

Frame No

% CB
 Ex. Time (% Max.)

Fig. 6: Clock cycles and execution time per frame using
Compt-Opt v.2 (foreman QP=32).

(i.e. the ratio between ME execution times), average PSNR
loss in dB (at equal bitrates) and percentage change in bitrate
(at equal PSNR) with respect to FSM as given in [32]. Average
PSNR loss and bitrate change are computed from the R-D
curves as described in [33].

We see from Table III that Comp-Opt yields a speed-
up factor of 25-40 with less than 0.2 dB PSNR loss at
equal bitrates (except forstefanusing version 3). The speed-
up factor over UmHexagonS is between 2.5-3.5. Note that,
UmHexagonS does not provide a high speed-up factor over
FSM, but the results in terms of PSNR and bitrate are almost
as good as FSM. Therefore, our algorithm also gives very good
PSNR and bitrate results, but achieves only moderate speed-
up. If Comp-Opt is used together with faster ME algorithms,
the speed up will be much higher but the PSNR and bitrate
will get worse.

Table IV shows the simulation results for Comp-Opt v.1
when rate control is enabled. Each MB uses the thresholds
optimized for its ownQP value. The results are very similar
to the case with constantQP . Hence, the optimality of the
algorithm does not suffer due to changingQP .

Figure 6 shows the percentage of complexity budget CB
spent and the normalized ME execution time (w.r.t. the max-
imum execution time) for frames offoreman, coded with
QP = 24 using Compt-Opt v.2. We see that even though CB
is almost perfectly met at each frame, the execution times still
show variations among frames. This is expected, since relative
complexity parameterscj do not reflect the actual execution
time of video frames with different average gradients.

Compt-Opt v.3 reduces the time variations by adjusting the
budget according the frame content and by updatingλE based
on the actual ME time. Figure 7 shows the ME execution
time for the frames ofcarphone, coded with QP = 24,
both for UMHexagonS and for Compt-Opt v.3. In order to
better visualize the variations, the mean time is subtracted
from both plots. Compt-Opt v.3 reduces the standard deviation
of the execution time by a factor of about 12.5. For version
1 and version 2, the reduction factor is merely 1.3 and 5.2,
respectively.
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The reduction of time variations in Compt-Opt v.3 comes
with some degradation in the R-D and complexity perfor-
mance. That is, even though the results for Compt-Opt v.1 and
Compt-Opt v.2 are very similar, Compt-Opt v.3 yields worse
PSNR at equal complexity or lower speed-up factor at equal
PSNR loss. This is natural, since for detailed frames with high
ME time, λE has to be set at a high level, causing significant
R-D losses. Also, the simple but suboptimal MB-level adap-
tation strategy is not good for the coding performance. As
discussed before, if the time budget is set at the GOP level
instead of frame-level, then the coding performance of Compt-
Opt v.3 should be better.

Since ME complexity is adapted at the MB-level in Compt-
Opt v.3, some MBs might have been coded at a very low
level of ME complexity (i.e. highλE). This could potentially
lead to significant variations in coding quality of individual
MBs. Hence, we look at how much R-D costs change w.r.t.
UMHexagons throughout the MBs of tested sequences. Let
us define, for each MB,Eo and ∆E as the R-D cost of
UMHexagonS and the R-D cost difference between Comp-Opt
v.3 and UMHexagonS, respectively. For MBs with sufficiently
large R-D costs, say when the cost is larger than the mean of
Eo, we calculate the number of MBs for which∆E > 0.5Eo.
This number gives an indication about the percentage of MBs
that experience a relatively large coding quality degradation.
It turns out that this value is less than 1% of total number of
MBs for QP = 36 and goes as low as 0.1% whenQP = 24.

When we compare the worst-case ME execution time in-
stead of the average time, Compt-Opt v.3 gives a speed-up fac-
tor of 32.1 over FSM, as opposed to 26.5 given in Table III for
carphone. Table V indicates similar speed-up improvements
for other test sequences as well. Since worst-case complexity
is a more important design parameter than average complexity,
we believe that the performance of Compt-Opt v.3 is actually
very promising.

C. Discussions about the optimal performance

Throughout the derivation of Comp-Opt algorithm, we have
proposed several simplifications to the optimal solution and

TABLE V: Speed-up factors for Compt-Opt v.3
Speed-up worst-time average-time

carphone 32.1 26.5
foreman 36.4 28.3
mobile 35.1 33.2
tennis 72.3 38.8
stefan 30.2 25.3

TABLE VI: Performance comparison with heuristic approach
carphone δPSNR (dB) δbitrate(%) Speed-up

Comp-Opt(2) -0.24 +4.71 49.2
Heuristic -0.42 +8.13 50.4

foreman δPSNR (dB) δbitrate(%) Speed-up

Comp-Opt(2) -0.25 +5.92 52.9
Heuristic -0.42 +9.62 53.8

mobile δPSNR (dB) δbitrate(%) Speed-up

Comp-Opt(2) -0.11 +2.23 49.8
Heuristic -0.20 +4.05 50.3

tennis δPSNR (dB) δbitrate(%) Speed-up

Comp-Opt(2) -0.19 +4.70 64.4
Heuristic -0.45 +10.82 65.8

stefan δPSNR (dB) δbitrate(%) Speed-up

Comp-Opt(2) -0.30 +5.07 35.9
Heuristic -0.40 +6.76 37.2

justified these choices by related observations on the tested
sequences. The use of constant average values forcj and
dj , and fixed probabilities for all video sequences are crucial
approximations and have to be validated with further tests.
For that purpose, we implement an “oracle” algorithm that
uses the exact ME times and the best estimate of R-D costs
(as a function of D) to choose, for each MB, the optimal set
of partitions that minimizes the Lagrangian cost. This oracle
yields PSNR values that are at most 0.03 dB better than Comp-
Opt v.1, at equal bitrate and speed-up factors. Therefore, the
use of average parameter settings leads to a minor deviation
from the optimal performance.

The proposed optimization framework is important for ro-
bust and efficient adaptation of the thresholds to satisfy any
level of ME complexity. For a fixed level of complexity, the
thresholds of the decision sets might be selected by trial and
error, without resorting to the complicated procedure presented
in this paper. However, our optimized framework becomes
crucial when the ME complexity is to be adaptively controlled.
To illustrate this, we implement a simple threshold update
strategy as follows:

• As long as
∑N

i=1 Ci > CB, update the thresholds:

T±
j = T±

j (1 ∓ α). (49)

The algorithm starts with an initial set of thresholds that yield
higher total complexity than the budget, and iteratively updates
these values until the budget is satisfied. Table VI comparesthe
performance of this heuristic algorithm with that of Comp-Opt
v.2. In this table, for almost equal speed-up factors, Comp-Opt
v.2 is 0.10-0.25 dB better. As the speed-up ratio increases,so
does the PSNR difference between these two approaches. It
turns out that the performance of this approach is very much
dependent on the initial thresholds, and could actually lead
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to very poor results if these initial values are not selected
appropriately.

Our use of a robust complexity adaptation strategy is a
major improvement when compared to other mode decision
methods in the literature. As discussed in the introduction,
some of these methods use sophisticated MB-adaptive mea-
sures to decide which modes to search for. However, since
they are MB-adaptive and cannot be computed before the
coding begins, these measures are not suitable for frame-level
control of the overall ME complexity. In that respect, spatio-
temporal gradient is both suitable and very effective. We still
continue to search for better measures and look into higher
order prediction models as well.

VII. CONCLUSION AND FUTURE WORK

In this paper, we develop a general framework for joint
optimization of R-D efficiency and computational complexity
in H.264 encoder. This framework is applied successfully to
integer-pel ME module, and moderate speed-up with little loss
of coding efficiency is observed.

The optimization framework defined in this paper is equally
applicable to various other parts of the encoding process, such
as full ME (integer and sub-pel), or ME and MD together. In
the latter case, if a mode is skipped, it is excluded from R-D
cost calculations and optimal mode decisions as well.

The optimization framework allows the encoder to adjust
its complexity “on the fly” to satisfy stringent timing re-
quirements. This feature of our algorithm establishes a new
direction in the encoder optimization research, which should
be further explored. Therefore, we continue to seek more
sophisticated models that are capable of improving the mode
estimation accuracy and hence the overall coding efficiency.
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