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Nederlandse samenvatting
–Summary in Dutch–

Met een geleidelijke toename van het gebruik van multimediatoepassingen en -
diensten speelt digitale video een onmisbare rol in de samenleving. Gezien de
huidige ontwikkeling op het gebied van elektronica, wordt video-inhoud eenvou-
dig gegenereerd. Daarnaast maakt de hoge snelheid van breedbandverbindingen
het mogelijk om enorme hoeveelheden video te verzenden. Dit heeft video popu-
lairder gemaakt dan ooit tevoren.

Aangezien digitale video nu eenvoudig en op grote schaal toegankelijk is ge-
worden, is de inhoud van websites ook aangepast. Daarnaast heeft de toegenomen
verspreiding van video ook geleid tot de creatie van volledig nieuwe business-
modellen en nieuwe manieren voor het delen van content. Bovendien heeft de
opkomst van internettelevisie bijgedragen tot de wijdverspreide populariteit van
video. In dit opzicht is het dringend nodig om de kwaliteit van de geleverde video
en de gebruikerservaring te verbeteren.

Het proces van het opslaan en delen van video content is mogelijk gemaakt
met behulp van geavanceerde compressietechnieken. Conceptueel gezien elimine-
ren deze technieken de redundante informatie binnen een video met het doel om
de video voor te stellen met een efficiënte representatie die merkbaar minder data
vereist vergeleken met het oorspronkelijke formaat. Er is veel moeite gedaan om
compressie-efficiënte te verbeteren, wat heeft geleid tot de introductie van interna-
tionale videocompressiestandaarden: H.262/MPEG-2, H.263, MPEG-4 visual en
H.264/MPEG-4 AVC (H.264/AVC). Deze videocompressiestandaarden zijn voor-
namelijk ontwikkeld door de ISO/IEC MPEG, de ITU-T VCEG of de samenwer-
king tussen deze twee groepen. Recent heeft de joint collaborative team on video
coding (JCT-VC) een nieuwe compressiestandaard gefinaliseerd: high efficiency
video coding (HEVC) die in staat is om high-definition video te comprimeren met
een bitsnelheid van 40% tot 50% vergeleken met H.264/AVC voor een equivalente
perceptuele kwaliteit. Met deze superieure coderingsprestaties wordt verwacht dat
HEVC H.264/AVC de volgende jaren zal vervangen voor de meeste opkomende
toepassingen. Daarom is de recent gefinaliseerde HEVC-standaard gekozen in dit
proefschrift.

In echte toepassingen wordt video content doorgaans geleverd over een hete-
rogeen multimedialandschap dat gekenmerkt wordt door een grote verscheiden-
heid aan netwerk- en eindgebruikersbeperkingen. Het is belangrijk om rekening
te houden met deze beperkingen om een efficiënte distributie te verkrijgen. In dit
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opzicht zijn dus efficiënte videoadaptatietechnieken nodig. Aan de ene kant kan vi-
deo gestreamd worden over een gemengd netwerk dat gekarakteriseerd wordt door
verschillende bandbreedtecapaciteiten. In veel gevallen is de bandbreedte onvol-
doende om de videostroom aan zijn originele kwaliteit over te zetten. Daarom is
een adaptatieproces nodig dat de bitsnelheid van de video aanpast aan de band-
breedtebeperking. Anderzijds heeft de dramatische explosie binnen de consumen-
tenelektronicamarkt geleid tot een grote verscheidenheid van multimediatoestel-
len. In zulke scenarios wordt een enkele video vaak afgespeeld op meerdere toe-
stellen die gekenmerkt worden door een grote variatie van beperkingen van midde-
len zoals schermresolutie, processorsnelheid en geheugen. Uiteraard kan een en-
kel videobestand niet voldoen aan de beperkingen van elk apparaat, dus moet een
adaptatie zoals bijvoorbeeld de verlaging van de bitsnelheid of de spatiale resolutie
uitgevoerd worden tijdens videotransmissie naar de toestellen van eindgebruikers.

Drie gebruikelijke technieken voor videoadaptatie zijn ontwikkeld tijdens de
laatste decennia: simulcast, schaalbare videocodering en transcoderen. Simulcast
gebruikt verschillende kwaliteitsversies van dezelfde videostromen voor adaptatie.
De andere technieken converteren daarentegen een voorgecodeerde video naar een
nieuwe videostroom die voldoet aan de beperkingen van het netwerk en/of het
toestel.

Conceptueel betekent dit alles dat een eenvoudige simulcast verschillende ge-
codeerde versies van een video genereert, waarbij elk van deze versies gericht
is op een bepaald netwerk of eindgebruikerstoestel. Een passende videostroom
wordt geselecteerd en doorgestuurd naar de gebruiker. Deze aanpak heeft een
lage latency. Deze techniek resulteert echter in een enorme rekenkundige enco-
deercomplexiteit en een aanzienlijke toename van de bandbreedte-overhead in het
backbone netwerk.

Schaalbare codering genereert een meerlaagse representatie van de video tij-
dens het coderen. In deze gelaagde stromen vertegenwoordigt de onderste laag
(basislaag) de laagste kwaliteit. De extra lagen (verbeteringslagen) bestaan dan uit
verbeteringen van de kwaliteit (kwaliteitsschaalbaarheid), spatiale resolutie (spa-
tiale schaalbaarheid) of beeldsnelheid (temporele schaalbaarheid). Er zijn veel in-
spanningen gedaan om de prestaties van schaalbare coderingen te verbeteren, wat
geresulteerd heeft in schaalbare profielen van videocompressiestandaarden zoals
MPEG-2, MPEG-4 visual en HEVC. Echter, de schaalbare uitbreidingen van die
standaarden worden zelden in de praktijk gebruikt. In plaats daarvan wordt voor
de meeste applicaties single-layer codering gebruikt.

Vanwege het gebrek aan schaalbare stromen is de ontwikkeling van alterna-
tieve videoadaptatietechnieken noodzakelijk. Transcodering is ingevoerd als een
flexibele en efficiënte manier van adaptatie. Daarom maakt het werk in dit proef-
schrift gebruik van transcoderen voor het adapteren van single-layer videostromen.
Een transcoder past eigenschappen van de video efficiënte aan, zoals bijvoorbeeld
de quantisatieparameter die de kwaliteit en bitsnelheid van een video bepaalt, en
de spatiale resolutie. Dit resulteert in een stroom met een lagere bitsnelheid die
voldoet aan de beperkingen van het netwerk en de eindgebruiker.

Videoadaptatie door transcodering kan bereikt worden door ofwel een open-lus
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ofwel een gesloten-lus pixeldomeinconversie via een cascade. Een open-lus trans-
coder implementeert de adaptatie in het gecomprimeerd domein zonder de video
te hercoderen. Dit mechanisme maakt de transcoder rekenkundig efficiënte. Deze
architectuur is echter wel gevoelig voor foutpropagatie, wat resulteert in signifi-
cante dalingen van de codeerprestaties. Een gesloten-lus encoder in het pixeldo-
mein door middel van een cascade daarentegen kan de foutpropagatie reduceren
via het decoderen en hercoderen van de videobitstroom om de gewenste bitsnel-
heid te verkrijgen. Het belangrijkste probleem van een gesloten-lus transcoder
is de enorme rekenkundige complexiteit geassocieerd met de hercodeerstap. Het
is belangrijk om hierbij op te merken dat de transcodeeroperatie meerdere malen
wordt uitgevoerd on-the-fly, wat leidt tot een groot energieverbruik in het netwerk.
Deze belangrijke kwestie wordt in dit proefschrift aangepakt door efficiënte oplos-
singen voor het reduceren van de rekenkundige complexiteit van de gesloten-lus
transcodeeraanpak te onderzoeken en voor te stellen.

Van de nieuw-ontwikkelde videocompressiestandaard HEVC wordt verwacht
dat deze met betrekking tot zijn hoge compressie-efficiëntie in de komende jaren
de de facto standaard zal worden in het domein van videocodering. Derhalve is
onderzoek over adaptatie van deze standaard nodig. In dit kader concentreren de
inspanningen in Hoofdstuk 2 en Hoofdstuk 3 van dit proefschrift zich op het opti-
maliseren van het transcoderen van de bitsnelheid van HEVC-stromen. Onderzoek
over spatiaal transcoderen van HEVC-stromen wordt vervolgens gepresenteerd in
Hoofdstuk 4.

Een kort overzicht van de HEVC-standaard wordt geleverd in Hoofdstuk 1. In
HEVC is een grote blokgrootte, samen met een complex mechanisme voor blok-
partitionering (quad-tree partitionering), ingevoerd voor het verbeteren van de co-
deerprestaties van hoge-resolutie videos. Deze verbetering gaat gepaard met een
significante stijging van codeercomplexiteit, wat resulteert in een hoge rekenkun-
dige complexiteit van een transcoder. Om dit effect tegen te gaan stelt Hoofdstuk
2 verschillende technieken voor om het blokpartitioneringsproces in het encoder-
gedeelte van de gesloten-lus bitsnelheidtranscoder te optimaliseren. Deze voor-
gestelde technieken maken intelligent gebruik van de codeerinformatie van de in-
voervideo om het blokpartitioneringsproces vroegtijdig te beindigen en het aantal
coderingsmoduskandidaten te reduceren. Deze voorgestelde aanpakken bestaan
uit een methode die gebaseerd is op machinaal leren, en een nieuwe procedure
voor evaluatie van partities.

De techniek gebaseerd op machinaal leren voorspelt het gedrag voor het split-
sen van een blok in de gebruikelijke evaluatieprocedure in HEVC. Volgens de ge-
bruikelijke procedure worden eerst de grote blokken (ouders) gevalueerd voordat
de kleine blokken (kinderen) aan de beurt komen. Met ondersteuning door machi-
naal leren wordt deze partitionering vereenvoudigd tot een vroegtijdige beindiging
van het splitsen. Verder is de methode gebaseerd op machinaal leren ook in staat
om een complexiteitsschaalbare transrating te voorzien voor praktische gebrui-
kersscenario’s.

Het belangrijkste nadeel van de techniek gebaseerd op machinaal leren is de
nood aan training en voorspelling tijdens het transcoderen. Bovendien evalueren
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de huidige implementaties van HEVC blokken van grote blokgroottes naar klei-
nere. Hierdoor kan het splitsgedrag van kleine blokken niet worden benut voor het
voorspellen van splitsingen in grotere blokken. Daarom wordt in Hoofdstuk 2 een
nieuwe procedure voor het evalueren van partities voorgesteld voor het encodeer-
gedeelte van de gesloten-lus bitsnelheidtranscoder. Vertrekkend van de blokstruc-
tuur in de invoervideostroom evalueert de nieuwe aanpak eerst de kleine blokken.
Vervolgens wordt de evaluatie voorwaardelijk uitgevoerd op de ouderblokken op
basis van het splitsgedrag van de kleine blokken. Simulaties tonen aan dat de
voorgestelde technieken superieure transcoderingsprestaties voorzien in vergelij-
king met de bestaande aanpakken. Bovendien kunnen de voorgestelde methoden
een waaier aan afwegingen maken tussen transratingcomplexiteit en codeerpres-
taties. Gebruikmakend van de voorgestelde technieken wordt de transcodeercom-
plexiteit gereduceerd met 82%, terwijl voor de snelste aanpak de overhead van de
bitsnelheid onder de 3% blijven.

In Hoofdstuk 2 wordt het partitioneringsproces van gesloten-lus transrating
adaptief beindigd en wordt het aantal coderingsmoduskandidaten beperkt. Echter,
het bewegingsschattingsproces dat verantwoordelijk is voor het merendeel van
de rekenkundige complexiteit van het evalueren van de coderingsmodus van een
blok is nog niet geoptimaliseerd. In de encoder wordt bewegingsschatting uit-
gevoerd om de beste overeenkomst te vinden van een blok in referentiebeelden.
Deze zoekactie is beperkt tot een vast venster. Een groot zoekvenster resulteert in
het evalueren van onnodige bewegingsvectoren, wat leidt tot een hoge rekenkun-
dige overhead voor het evalueren van de coderingsmodus van een blok. Hoofd-
stuk 3 reduceert de complexiteit van het bewegingsschattingsproces door gebruik
te maken van de correlatie tussen de bewegingsinformatie van het uitvoerblok en
het overeenkomstige blok in de invoervideo. Een adaptieve zoekvenster geba-
seerd op beslissingstheorie en snelle zoekalgoritmen wordt grondig besproken in
dit hoofdstuk. Een evaluatie van de prestaties van de voorgestelde methode voor
bewegingsestimatie toont dat de complexiteit van de geoptimaliseerde transcoder
in Hoofdstuk 2 verder kan worden verlaagd met gemiddeld 16% en tot 20% voor
dezelfde rate-distortion prestaties. Dit leidt tot een aanzienlijke vermindering van
de totale transcodeercomplexiteit van gemiddeld 84% tot 87%.

Spatiaal transcoderen wordt vaak gebruikt wanneer de bitsnelheidsverlaging
meer dan 50% is of wanneer er behoefte is aan adaptatie van de resolutie. Hoofd-
stuk 4 behandelt de problemen die voorkomen bij spatiaal transcoderen van HEVC.
In de praktijk is de verhouding van spatiale verkleining arbitrair wanneer een spa-
tiale transcoder gebruikt wordt. Een arbitraire verkleiningsfactor kan resulteren
in een verschillende uitlijning tussen het verkleinde blok en de overeenkomende
blokken in de originele video. Bovendien is er een significant verschil in de trans-
formerende structuur tussen HEVC en de bestaande standaarden. Deze twee zaken
maken het efficiënt om bestaande verkleiningstechnieken rechtstreeks toe te pas-
sen op een HEVC-videostroom met een arbitraire factor. Om deze problemen aan
te pakken wordt een nieuwe aanpak die gebruikmaakt van machinaal leren bespro-
ken in Hoofdstuk 4.

In Hoofdstuk 4 wordt de correlatie tussen de coderingsinformatie van de invoer-
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en uitvoervoervideo op effectieve wijze gebruikt voor het reduceren van de reken-
kundige complexiteit van de transcoder. Dit hoofdstuk onderzoekt hoe modellen
gebaseerd op machinaal leren gegenereerd worden om het splitsgedrag van blok-
ken in de uitvoervideo van een gesloten-lus spatiale HEVC-transcoder te voorspel-
len. Met zo een aanpak van machinaal leren moeten de voorspellingsprestaties zo
hoog mogelijk zijn terwijl de complexiteit van training en predictie beperkt moeten
zijn. Twee technieken worden voorgesteld om zulke hoge voorspellingsprestaties
te bereiken. Ten eerste zijn er verschillende algoritmen van machinaal leren geva-
lueerd om te bepalen welke in de beste prestaties resulteert. Onder de gevalueerde
algoritmen vertoont het random forest algoritme de beste voorspellingsprestaties.
Ten tweede worden de parameters van het machinaal leren algoritme adaptief ge-
optimaliseerd door gebruik te maken van een content-adaptief selectiecriterium.
De trainingstijd en de overfitting van het machinaal leren algoritme zijn beperkt
door adaptieve feature-dimension-reduction technieken. Deze optimalisaties zijn
duidelijke evoluties van de voorgestelde technieken ten opzichte van de bestaande
transcodeeralgoritmen gebaseerd op machinaal leren, waar er geen rekening ge-
houden werd met de problemen van machinaal leren. Zoals vermeld in de ex-
perimentele resultaten in Hoofdstuk 4, toont de voorgestelde techniek superieure
prestaties in vergelijking met de huidige state-of-the-art methoden. Zo kan de
voorgestelde aanpak bijvoorbeeld 65% van de transcodeercomplexiteit reduceren
terwijl de state-of-the-art slechts een vermindering van 50% bereikt met dezelfde
rate-distortion prestaties. Bovendien zorgen de voorgestelde technieken voor een
complexiteitsschaalbare transcodering die de rekenkundige complexiteit vermin-
dert met 72% terwijl de verliezen van bitsnelheid beperkt blijven tot 5%.

Samenvattend pakt het werk dat beschreven wordt in dit proefschrift, het be-
langrijkste probleem van videoadaptatie aan: de hoge rekenkundige complexiteit.
Verschillende technieken zijn hiervoor voorgesteld die de transcodeercomplexiteit
van een HEVC-stroom kunnen reduceren. Dit leidt tot een vermindering van het
energieverbruik van transcodering in het netwerk. In het algemeen voorspelt de
voorgestelde methode de codeerinformatie in het encodergedeelte van de transco-
der. Resultaten van simulaties tonen dat het werk op effectieve wijze de trans-
codeercomplexiteit van een HEVC-stroom reduceert. Hoewel het voorgestelde
werk gevalueerd is in de context van het transcoderen van een reeds gecodeerde
HEVC-stroom, gelooft de auteur dat het werk ook toepasbaar is op bredere ap-
plicaties in andere contexten, zoals het optimaliseren van een schaalbare HEVC-
encoder, heterogene transcoders van voorgaande standaarden naar HEVC, multi-
bitsnelheidcodering, of de HEVC-encoder.





English summary

With a steady increase in the use of multimedia-related applications and services,
digital video plays an indispensable role in society. Given the current development
in the field of electronics, video content is easily generated. Additionally, the high
speed of the broadband connection allows transmitting a huge amount of video.
This has made video more popular than ever before.

Since digital video has now become easily accessible and widely available, the
content of websites has changed accordingly. In addition, the increased spread of
video has led to the creation of completely new business models and new ways
of sharing content. Furthermore, the emergence of internet television has helped
video content gain its widespread popularity. In this regard, improving the quality
of delivered videos and the user experience is a crucial need.

The process of storing and sharing video content has been made feasible by
means of advanced compression technologies. Conceptually, these techniques
eliminate the redundant information existing within a video to present the video in
an efficient representation which requires notably less data than the original for-
mat. A great deal of effort has been put into improving compression efficiency,
leading to the introduction of international video coding standards: H.262/MPEG-
2, H.263, MPEG-4 visual, and H.264/MPEG-4 AVC (H.264/AVC). These video
coding specifications have primarily been developed by the ISO/IEC MPEG, ITU-
T VCEG group, or the collaboration between these two groups. Recently, the joint
collaborative team on video coding (JCT-VC) has finalized a new coding standard:
high efficiency video coding (HEVC) - which is capable of compressing high def-
inition video with a bit rate reduction of 40% to 50% compared to H.264/AVC for
an equivalent perceptual quality. With this superior coding performance, HEVC
is expected to be widely used in most emerging applications in the next couple of
years. Therefore, the latest video coding standard HEVC has been chosen in this
dissertation.

In real applications, video content is typically delivered in a heterogeneous
multimedia landscape featured by a great diversity of network/end-user constraints.
It is important to take into account these constraints to obtain an efficient distri-
bution. To this extent, efficient video adaptation techniques are required. On the
one hand, video content might be streamed over a miscellaneous network that is
characterized by different bandwidth capacities. In many cases, the bandwidth is
insufficient to transfer the video stream at its original quality. Therefore, an adap-
tation process is needed to match the video bit rate to the bandwidth limitation.
On the other hand, the dramatic explosion within the consumer electronic market
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has resulted in a great diversity of multimedia devices. As such, a single video
is often played by multiple devices characterized by a huge variation of resource
constraints including resolution of display screen, CPU speed, and memory. Ob-
viously, a single video file would not optimally satisfy every device constraint;
thus, an adaptation, e.g., a reduction of the bit rate or spatial resolution, should be
performed during a video transmission to end user’s devices.

Three usual video adaptation techniques have been developed during the last
decades, i.e., simulcast, scalable video coding, and transcoding. The simulcast
solution uses multiple different quality video streams for adaptation. In contrasts,
the other techniques convert a pre-encoded video into a new video stream that
satisfies the network or/and device constraints.

Conceptually, the simple simulcast approach generates different encoded ver-
sions of a video, each of which is able to satisfy a certain condition of the network
or user’s devices. A proper video stream is selected to transmit to the user. The
simulcast approach is low-latency. However, this technique leads to a huge compu-
tational complexity of encoding and to a notable increase in bandwidth overhead
in the backbone network.

Scalable coding generates a multi-layer representation of the video during en-
coding. In these layered streams, the lower layer (base layer) represents the lowest
quality. Meanwhile, additional layers (enhancement layers) consist of refinements
of the quality (quality scalability), the spatial resolution (spatial scalability), or
possibly frame rate (temporal scalability). Many efforts have been put into im-
proving the performance of scalable coding, resulting in the scalable profiles of
many video coding standards such as MPEG-2, MPEG-4 visual, and HEVC. How-
ever, the scalable extensions of those standards have rarely been used in practice.
In contrast, the single-layer coding is deployed in most applications.

Due to the lack of scalable streams, developing alternative video adaptation
techniques is necessary. Transcoding has been introduced as a flexible and effi-
cient adaptation solution. Therefore, the work in this dissertation makes use of
transcoding for adapting single-layer video streams. The adaptation ability of a
transcoder is made by modifying a property of the video, e.g., quantization param-
eter that decides the quality and bit rate level of a video, frame rate, and spatial
resolution in an efficient manner. This results in a lower bit rate stream that satis-
fies the network and user-device constraints.

Video adaptation using transcoding can be achieved by either an open-loop or
a closed-loop cascaded pixel domain conversion. An open-loop transcoder im-
plements the adaptation in the compressed domain without re-encoding the video.
This mechanism makes the transcoder computationally effective. However, this
architecture is subject to error propagation, resulting in significant losses in the
coding performance. In contrast, a closed-loop cascaded pixel domain transcoder
can reduce the error propagation via decoding and re-encoding the video bitstream
to obtain the desired bit rate. The main issue of a closed-loop transcoder is the
huge computational complexity associated with the encoder part. It is important to
note that the transcoding operation is performed multiple times on-the-fly, leading
to huge energy consumption in the network. In order to address this critical issue,
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the work in this dissertation investigates and proposes efficient solutions to reduce
the computational complexity of the closed-loop transcoding approach.

The newly developed video coding standard HEVC is expected to be the de
facto benchmark in the domain of video coding in the next couple of years with re-
spect to its high compression efficiency. Consequently, investigation on adaptation
for this standard is needed. To that extent, the effort in Chapter 2 and Chapter 3 of
this dissertation optimizes the bit rate transcoding of HEVC streams. Research on
spatial transcoding of HEVC streams is presented in Chapter 4.

A brief overview of the HEVC standard is provided in Chapter 1. In HEVC,
a large block size, together with a complex block partitioning mechanism (i.e.,
quad-tree partitioning), has been adopted to improve coding performance of high-
resolution videos. This improvement came along with a significant increase in
encoder complexity, resulting in a high computational complexity of a transcoder.
To deal with this, Chapter 2 proposes several techniques to optimize the block par-
titioning process in the encoder part of the closed-loop HEVC bit rate transcoder.
These proposed techniques intelligently make use of the coding information of the
input video to early terminate the block partitioning process and reduce the num-
ber of coding mode candidates. These proposed approaches consist of a machine-
learning-based method and a novel partition-evaluation flow.

The machine-learning-based approach predicts the splitting behavior of a block
in the use of the conventional evaluation flow that has been adopted in HEVC.
In this flow, the evaluation is applied to large blocks (parents) first before being
applied to small blocks (children). With the support of machine learning, the par-
titioning is simplified with an early termination of splitting. Also, the machine-
learning-based method is capable of providing a complexity-scalable transrating
scheme for practical use cases.

The main downside of the machine-learning-based technique is the need of
training and prediction during transcoding. Moreover, the current implementations
of HEVC evaluate blocks from larger sizes to smaller ones. As such, the splitting
behaviour of small blocks cannot be exploited for predicting splits of larger blocks.
Therefore, a novel partition-evaluation flow is proposed for the encoder part of the
closed-loop bit rate transcoder in Chapter 2. Starting from the block structure in
the input video stream, the novel approach evaluates small blocks first. Then, the
evaluation is conditionally carried out on the parent blocks given the splitting be-
havior of the small blocks. Simulations show that the proposed techniques clearly
provide a superior transcoding performance compared to the state-of-the-art ap-
proaches. Additionally, the proposed methods can achieve a range of trade-offs
between the transrating complexity and coding performance. From the proposed
schemes, the transcoding complexity is reduced by 82% with the fastest approach
while bit rate overheads remain below 3%.

In Chapter 2, the partitioning process of closed-loop transrating is adaptively
terminated together with a reduced number of coding mode candidates. However,
the motion estimation process - which is responsible for the majority of the com-
putational complexity of evaluating the coding mode of a block, has not yet been
optimized. In the encoder, motion estimation is performed to find the best match
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of a block in reference frames. The search is limited to a fixed window. A large
search window results in evaluating unnecessary motion vectors, which leads to a
high complexity overhead for evaluating the coding mode of a block. Chapter 3
reduces the complexity of the motion estimation process by exploiting the correla-
tion between the motion information of the output block and the co-located blocks
in the input video. An adaptive search window based on decision theory and fast
search algorithms are discussed in-depth in this chapter. A performance evaluation
of the proposed motion estimation scheme shows that the complexity of the opti-
mized transcoder in Chapter 2 can be further reduced by 16% on average and up
to 20% for the same rate-distortion performance. This leads to a notable reduction
of total transcoder complexity of 84% on average and up to 87%.

Spatial transcoding is often used when the bit rate reduction is higher than 50%
or when there is a need for resolution adaptation. Chapter 4 deals with problems
raised in spatial transcoding of HEVC. In practice, the spatial reduction ratio is
arbitrary when a spatial transcoder is used. An arbitrary downsizing factor may
result in a misalignment between the downsized block and its collocated blocks in
the original video. Moreover, there is a significant difference in the transforming
structure between HEVC and the existing standards. These two issues have made
the straightforward existing downsizing techniques inefficient to be applied for
downsizing an HEVC video stream by an arbitrary factor. In order to address these
issues, a novel approach that makes use of machine learning will be discussed in
Chapter 4.

In Chapter 4, the correlation between the coding information of the input and
output video is effectively utilized for reducing the computational complexity of
the transcoder. This chapter examines how machine-learning models are gener-
ated to predict the splitting behaviour of blocks in the output video of a closed-
loop spatial HEVC transcoder. In such a machine-learning-based approach, the
prediction performance should be as high as possible whereas training and pre-
diction complexity should be limited, and two techniques have been proposed in
order to achieve a high prediction performance. First, different machine learning
algorithms have been evaluated to figure out which one provides the best perfor-
mance. Among the evaluated algorithms, the random forest algorithm shows the
highest prediction performance. Second, the parameters of machine learning algo-
rithms are adaptively optimized using a content-adaptive selection criterion. The
training time and over-fitting of the machine learning algorithms have been lim-
ited by adaptive feature-dimension-reduction techniques. These optimizations are
clearly the advances of the proposed techniques compared to the existing machine-
learning-based transcoding algorithms where the issues of machine learning have
not been taken into account. As reported in the experimental results in Chap-
ter 4, the proposed technique demonstrates superior performance compared to the
state-of-the-art methods, e.g., the proposed approach is able to reduce 65% of the
transcoding complexity while the state-of-the-art can achieve a 50% reduction with
the same rate-distortion performance. Moreover, the proposed techniques provide
a complexity-scalable transcoding scheme, which can reduce the computational
complexity by 72% while maintaining bit rate losses below 5%.
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In conclusion, the work described in this dissertation tackled the main prob-
lem of video adaptation, i.e., its high computational complexity. Several tech-
niques have been proposed that are able to reduce the transcoding complexity of
an HEVC stream. This leads to a reduction of energy consumption of transcoding
in the network. Generally, the proposed method predicts the coding information
in the encoder part of the transcoder. Simulation results show that the work ef-
fectively reduces the transcoding complexity of an HEVC stream. Although the
proposed work has been evaluated in the context of transcoding a pre-encoded
HEVC stream, it is the author’s belief that it has broader applications in different
contexts such as in optimizing the scalable high efficiency video encoder, hetero-
geneous transcoders from former standards to HEVC, multi-bit rate coding, or the
HEVC encoder.





1
Introduction

1.1 Context

The last decades have witnessed an explosive growth in the use of digital video in a
wide range of applications: from multimedia messaging, video telephony and con-
ferencing over mobile TV or streaming video over the Internet to digital television
broadcasting. This increase is reflected in an impressive number of 1.1 zettabytes
video streamed over IP in 2014 that accounts for a large portion of 64 percent of
the global IP traffic [1]. Forecasts indicate that IP video traffic will occupy 80
percent of all consumers’ Internet traffic in 2019. Three important aspects are con-
sidered in order to obtain an efficient mechanism for video delivery: first, the bit
rate of the video with its significant impact on network data traffic; second, the vi-
sual quality of the video that affects user experience; and finally, the complexity of
video processing that results in the network latency as well as the energy required
for network operations.

Among the three aforesaid aspects, video bit rate can be efficiently optimized
by compression techniques, purposely to present the video in a form that requires
as less data as possible, while it can be reconstructed with a high visual quality.
This efficient presentation of video is obtained by eliminating spatial and temporal
redundancies in uncompressed videos. A lot of effort has been put into improving
the compression ratio, leading to different video coding standards during the last
two decades. These coding standards are primarily developed by the ITU Telecom-
munication standardization sector video coding experts group (ITU-T VCEG) and
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the ISO’s moving picture experts group (MPEG).
During the transmission of video streams to users, it is important to take into

account the network and device constraints. Video content is typically delivered in
a heterogeneous multimedia environment. In such a ubiquitous landscape, a single
video may not satisfy the network and device constraints. On the one hand, net-
works often bear fluctuating bandwidth that usually brings about temporary capac-
ity problems. Having a video bit rate higher than the network bandwidth results in
visual artifacts as a consequence of packet losses. On the other hand, at the users’
side, playback devices are featured by a great diversity of characteristics includ-
ing display resolution, processing power, battery lifetime, network connectivity,
etc. Streaming a high-resolution video to low resolution screens or low processing
power devices is not efficient, since these devices are not capable of displaying
entire pixels of such a high-resolution video. Moreover, the high-resolution video
requires high energy and buffer storage to decode and display the video.

These aforementioned constraints lead to the need for video adaptation tech-
niques and optimized video distribution approaches. These approaches include
simulcast, scalable encoding and transcoding - three video adaptation approaches
which have been introduced since a long time.

The remainder of this chapter is organized as follows. Video coding standards
are briefly introduced in Section 1.2. In this section, the latest high efficiency video
coding standard is elaborated on. The introduction is necessary to understand the
core standard which is used throughout the story of this thesis. Thereafter, an
introduction to the video adaptation approaches is presented in Section 1.3. Then,
the outline of the thesis that describes the author research on the optimization of
video transcoding for HEVC video streams is given in Section 1.4. Finally, the
publications of the author’s research achievement are listed in Section 1.5.

1.2 High Efficiency Video Coding

In the very early moment of digital video era, ITU-T introduced the first interna-
tional video coding standard H.120 that has then been developed to form H.261,
H.262, and H.263 [2]. In 1993, MPEG introduced MPEG-1 that demonstrated
a superior quality to H.261 when operated at higher bit rates. Afterwards, the
Joint Video Team of the ISO/IEC MPEG and ITU-T VCEG groups standardized
MPEG- 2/H.262 [3] in 1994. Based on this successful collaboration, these teams
have then jointly developed a new coding standard fully completed in 2003 as
MPEGH.264/AVC [4]. Currently, H.264/AVC is being adopted in a wide range
of applications such as digital television, video telephony and video conferencing
over mobile TV, video streaming over wireless and internet, video storage.

Nowadays, high definition (HD) video and beyond HD (e.g., 4k×2k, 8k×4k

resolution) formats are being more widely used than ever before. In addition, the
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stereo or multi-view presentation of such high-resolution video is popular. More-
over, the use of these video is conspicuously increased in a great diversity of ser-
vices including multimedia messaging, video telephone, and video conferencing
over TV, wireless, and video surveillance, etc. The growing popularity of high-
resolution video and the rising diversity of video services have led to a strong
demand for coding efficiency superior to H.264/AVC performance. To satisfy this
crucial need, the emergent high efficiency video coding standard (HEVC) has been
designed by the Joint Collaborative Team on Video Coding (JCT-VC) [5]. By
deploying many advanced coding tools, HEVC demonstrates a significantly im-
proved compression performance as compared to H.264/AVCin the range of 40%
to 50% bit rate reduction at the same reproduction quality.

The following sections demonstrate key features of the HEVC specification.
First, the coding design including high-level syntax and block partitioning of an
HEVC stream is described in Section 1.2.1. Thereafter, the coding tools yielding
most of the compression gains for HEVC are presented in 1.2.2.

1.2.1 HEVC coding design

1.2.1.1 High level syntax

The high-level syntax architecture of HEVC is designed such that the flexibil-
ity is improved as much as possible for operation over a variety of applications
and network environments. The shape of the high-level syntax architecture of
H.264/MPEG-4 AVC has generally been retained to HEVC, in which advanced
coding tools have been added or replaced to achieve higher compression efficiency.

An HEVC bitstream is made up of a sequence of so-called network abstraction
layer (NAL) units. These units are classified into two types including video coding
layer (VCL) and non-VCL NAL units.

Non-VCL NAL units contain parameter sets specifying high-level information
of the entire coded video sequence or a subset of pictures. By modifying and ex-
tending Sequence Parameter Set (SPS) and Picture Parameter Set (SPS) in NAL
units of H.264/AVC, an additional set called Video Parameter Set (VPS) has been
included to non-NAL units of HEVC. VPS contains information regarding the
overall video stream including the number of layers, the dependencies between
layers, and their associated profile and level. This design of VPS enables the com-
patible extensibility of the standard of which multiple scalable layers and multiple
views are supported. The information in SPS specifies characteristics of a sin-
gle sequence containing multiple pictures, which consists of the width, the height,
cropping parameters, bit depth, and so on.

VCL NAL units represent coded pictures. A picture may be partitioned into
one or more slices. Doing so, the encoder and decoder can be accelerated with
parallel processing devices since the cross prediction among slices is not enabled.
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1.2.1.2 Block partitioning

A. Coding unit partitioning
HEVC provides a novel partitioning mechanism which divides a picture into

small blocks. In its first division, each picture is split into a sequence of same-
size square coding tree units (CTUs), each of which consists of a luma coding
tree block (CTB), the corresponding chroma CTBs and syntax elements. While
H.264/AVC fixes the size of marcroblocks by 16×16 samples for all configura-
tions, larger sizes of luma CTB (i.e., powers of two) are enabled in HEVC. It
should be noted that larger CTU size brings better compression and higher en-
coding complexity. Having been indicated as a good rate-distortion-complexity
trade-off point, a 64×64 size is used default for every configuration.

In the second step of the division, each CTU serves as a root of a block parti-
tioning quad-tree structure where the CTU can be further divided along the coding
tree structure into coding units (CUs), each of which has an associated partition-
ing into prediction units (PUs) and a tree of transform units (TUs). A CU can
be encoded by either skip, inter, or intra prediction modes. To obtain the most
efficient mode for a CU, all PU partitions and all Residual Quad-Tree (RQT) con-
figurations are evaluated during the rate distortion optimization (RDO) process.
This RD-evaluation decides an optimal mode by minimizing the RD-cost function
(J) given by J = D + λR, where D is the distortion of the reconstructed CU,
λ the Lagrangian multiplier and R the rate required to signal the prediction and
the residual information of the CU. Since any combination of quad-tree splitting
is allowed, in worse case the encoder should perform the RD-cost optimization
process for 83522 ((24 + 1)4 + 1) CUs to find the optimal structure of a CTU.
Figure 1.1 illustrates an example of splitting a CTU into sub CUs.

HEVC encoder processes CTUs in a slice using raster scan order. Figure 1.2
represents the division of a frame into CUs. As soon as the optimal structure of a
CTU is derived, the coding information (e.g., split flag, coding mode, PU mode,
TU structure, residual information, and so on) of this CTU and that of every CU
within this CTU is signalled to the decoder in Z-scan order (Figure 1.1).

B. Prediction unit partitioning
A CU can be further divided into prediction units, each of which is made up

of a luma prediction block (PB) and their corresponding chroma PBs. Variable
PU sizes are enabled from 64×64 down to 4×4 samples. However, the size of PU
must not exceed the size of its root CU. Every intra predicted CU is associated with
one PU of the same size except for the smallest CU that is allowed in the bitstream.
The smallest CUs can be split into 4 same-sized squared PUs. An inter-coded CU
can remain as one block, or be divided into two or four sub PUs. Let 2N×2N

be the size of a CU, then possible PUs of inter coded CUs can be categorized into
two groups including symmetric partitions (i.e., 2N×2N , N×2N , 2N×N , and
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Figure 1.1: Example for the partitioning of a 64×64 coding tree unit (CTU).
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Figure 1.2: Example of splitting a picture into coding units.
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Figure 1.3: Typical HEVC encoder (with decoder components shaded in light gray) [5].

N×N ) and asymmetric partitions (nL×2N , nR×2N , 2N×nU , and 2N×nD) as
illustrated in Figure 1.2. TheN×N partition is applied for splitting of the smallest
CUs that are allowed in the bitstream.

The optimal coding mode of a CU and its partitioning in PU as well as TU
levels are derived by performing encoding loop (Figure 1.3) which optimizes the
rate-distortion cost (J). The prediction mode of a CU is signalled to indicate
whether it is an intra or an inter block.

C. Transform unit partitioning
As the last step of partitioning, a CU can be split into transform units (TUs)
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which associates with a luma transform block (TB) and their corresponding chroma
CBs, and syntax. The splitting is performed recursively on a quadtree approach as
depicted in Figure 1.1 where the corresponding CU serves as the root. The size of
a TU can vary from 4×4 up to 32×32 samples.

Within a TU, residual information is derived by subtracting the predicted sam-
ples and the samples in the original image. The residual information is then trans-
formed (T) and quantized (Q) as depicted in Figure 1.3. The transformation pro-
cedure is carried out by either an integer derivation from the discrete cosine trans-
form (DCT) or the discrete sine transform (DST). While H.264/AVC fixes the size
of transform matrix by 4×4, larger sizes of transformation matrix corresponding
to the size of TU are considered in HEVC.

After quantizing, the quantized coefficients together with all other signalled
parameters from the CU, PU, and TU levels are entropy encoded with the use of a
context-based adaptive binary arithmetic (CABAC) engine [6]. It should be noted
that when the CU is signalled as skip, no residual information is encoded.

1.2.1.3 Random Access

The introduction of random access concept allows users to start a video at a spe-
cific point or to switch between different channels in broadcasting or streaming
applications. H.264/AVC offers the random access capability by inserting instan-
taneous decoding refresh (IDR) pictures in interval into the video stream. The
decoder is reset to the original configuration of an IDR picture before decoding
this picture. This mechanism enables the decoder to start at any IDR point. Un-
fortunately, the pictures reconstructed prior to the IDR point cannot be used as
temporal references for the pictures following the IDR position in decoding order.
As a result, the coding performance with the use of IDR is significantly lowered.

To solve the aforementioned downside of using IDR scheme while retaining
the random access functionality, HEVC introduces clean random access (CRA)
pictures. A CRA picture allows the decoder to reset after all preceding pictures
in display order have been decoded. Consequently, pictures following the CRA
picture in decoding order but preceding it in display order can use pictures decoded
before the CRA picture as reference.

1.2.2 HEVC coding tools

The typical diagram of an HEVC encoder is depicted in 1.3. The encoder performs
coding tools, which are supported in HEVC in order to find optimal coding strate-
gies for a coding unit. Basically, HEVC is a hybrid coding algorithm that involves
several coding tools including inter, intra predictions to respectively exploit tem-
poral, and spatial statistical dependences, and transform coding of the prediction
residual information to further exploit spatial statistical dependency. These coding
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tools have been implemented in prior block-based coding standards; however, in
the new HEVC coding standards, each is notably improved to contribute to the
great compression efficiency of HEVC.

1.2.2.1 Slices and tiles

A picture is divided into one or more slices. A slice consists of a sequence of CTUs
processed in the order of a raster scan. Slices are independently encoded. This
means the cross prediction (e.g., spatial signal prediction or prediction of motion
vectors) between slices are not allowed. This facilitates decoding multiple slices
at the same time. Hence, playback devices, which support parallel processing, can
accelerate the reconstruction process.

In terms of possible prediction modes that allow encoding CUs within a slice,
there are three types of slices:

1. I slice: All CUs of the slice are coded using only intra prediction.

2. P slice: A CU in this slice is encoded using either intra prediction or inter
prediction with at most one motion-compensated prediction signal per PU.
Only reference pictures in list 0 are used for P slices.

3. B slice: All prediction modes that are available in P slice can be used in B
slice. The difference between B and P slices is that inter predicted blocks
in B slice can use at most two motion compensated prediction signals. Both
reference picture list 0 and list 1 are available for B slices.

While slices have already been introduced in H.264/AVC, HEVC defines a
new concept of division of a picture known as tiles. Each tile is an independently
decodable rectangular region of the picture. The design of tiles is mainly to enable
the use of parallel processing architectures for decoding and encoding. Alternative
to slices, a single tile may consist of multiple slices.

1.2.2.2 Intra prediction

The purpose of intra prediction is to exploit the spatial correlation among pixels
within a frame. Conceptually, the predicted samples of a PU are extrapolating
samples in spatially neighboring reconstructed blocks using one of supported pre-
diction modes. The residual information is derived by subtracting the predicted
block from original samples in the picture. Subsequently, the residual block get
transformed, quantized, and entropy encoded. The selected intra prediction mode
is also encoded and signalled to decoder together with encoded residual informa-
tion.
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This may be helpful e.g. to prevent error propagation from previously corrupted
pictures in lossy environments.1

6.1 Prediction Mode and Prediction Block

In the case of CUs in intra mode, the meaning and representation of prediction units
are different from the inter mode. While for inter CUs, the parameters for a prediction
unit are represented in a dedicated syntax structure, such a structure does not exist
for intra CUs and the intra prediction parameters are coded on the CU level.

1 It should be noted that constrained intra prediction may induce strongly visible isolated artifacts in
otherwise inter predicted regions and therefore may have impact on the overall coding performance.
Constrained intra prediction may further complicate encoder implementations as the decision on
intra or inter prediction for a CU strongly affects the availability of the intra prediction reference
for subsequent neighboring CUs and CTUs which may already have been pre-processed for fast
mode decision.

laura.smekens@ugent.be

Figure 1.4: Angular intra prediction modes (2 - 32), non-angular modes (planar 0, DC 1).

H.264/AVC supports nine intra prediction modes, while HEVC improves the
efficiency of intra coding by extending the number of supported modes to 35. Sup-
ported intra prediction modes are categorized into angular and non-angular groups
as depicted in Figure 1.4. The optimal prediction mode, which is used to encode
a PU, is selected from a set of available modes by a rate-distortion optimization
process of encoding loop as illustrated in Figure 1.3.

The angular intra prediction modes are numbered from 2 to 34. When using an
angular intra mode, each PU is predicted directionally from spatially neighboring
reconstructed samples known as reference samples. The reference samples of a
sample in the predicted block are indicated by projecting the location of the sample
to the reference sample array following the angle of the selected prediction mode.
Then, the predicted sample value is derived by performing bilinear interpolation
at 1/32 sample accuracy using two closest reference samples in the direction of
prediction.

While angular prediction modes target regions with direction edges, DC mode
and planar mode are designed for smooth image areas. In the DC mode, all samples
in the predicted block share the average value of reference samples. On the other
hand, the predicted samples in planar mode are the average values of two linear
prediction using four corner reference samples.

In order to improve the prediction accuracy of intra prediction, the reference
samples might be filtered by a three-tap [1 2 1]/4 smoothing filter. The filtering
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process is performed adaptively, according to the amount of discontinuity, the di-
rection of prediction mode, and the block size. In addition to smoothing reference
samples, predicted samples of using certain three modes (i.e., DC, exactly verti-
cal mode 10, and exactly horizontal mode 26) are filtered to remove discontinuity
along block boundaries.

The use of a large number of intra prediction modes results in a notable in-
crease of overhead for signalling the index of selected mode to the decoder. To
reduce the signalling overhead, the mode is encoded before being sent to the de-
coder. The detail of intra mode coding is presented in [7].

1.2.2.3 Inter prediction

Inter prediction serves as a key tool in hybrid block-based coding. This tool is to
eliminate the temporal redundancy between successive pictures in time domain,
resulting in a significant reduction of bit rate of video stream.

In HEVC, inter prediction operates on the prediction unit (PU) level, of which
eight types of PU partitioning are available. The inter prediction process searches
for the best match block of a PU in previously reconstructed pictures (known as
reference pictures) by performing a so-called motion estimation procedure. The
best match is defined as the block with the least mathematical distortion compared
to the input block. The displacement of the current PU relative to its best match
is named motion vector (MV) that is represented by two motion components (i.e.,
horizontal and vertical directions). The residual information, which is obtained by
subtracting the best matched block from the original block, together with motion
vectors are encoded and sent to the decoder.

HEVC supports two types of inter prediction including uni-prediction and bi-
prediction as depicted in Figure 1.5. While uni-prediction can use only one previ-
ously reconstructed picture as a reference frame, bi-prediction can use two refer-
ence frames. Uni-prediction is applied for PUs in P slices, where only one refer-
ence list is available. In contrast, the latter type of prediction is applied for PUs in
B slices with two reference lists. The concept of this weighted prediction, which
assigns a weight factor to each reference picture, is also integrated in HEVC.

In order to improve the performance of inter coding, HEVC supports sub-
sample interpolation in two levels, i.e., half and quarter pel samples.

Based on the residual information in PU and the way that motion vectors are
encoded, coding mode of an inter PU can be classified into three types including
merge mode, skip mode, and predictive motion vector coding (PMVC) mode. The
motion estimation process performs minimization of the rate-distortion cost to de-
cide the optimal coding mode of a PU as depicted in Figure 1.3. More insights into
the motion estimation is presented in Section 1.2.2.4.



INTRODUCTION 11

4/15 

ELIS – Multimedia Lab 

Fast Transrating for High Efficiency Video Coding Based on Machine Learning 
Luong Pham Van, et. al. 

ICIP 2013, September 16, 2013 

POC 

POC + 1 

POC - 1 

POC - 2 

Figure 1.5: Uni- and bi-prediction for the current picture using adjacent reference pictures.

1.2.2.4 Motion estimation

The motion estimation process evaluates the RD costs of three coding modes to
select the optimal one for a PU.

Merge mode: For merge mode, the motion vector of the CU is derived from a
candidate set. The candidate motion vectors are selected from the motion vectors
of spatially neighboring encoded PUs (e.g., top, left, top-let, top-right, and left-
bottom PU) and the motion vector of the collocated location in a reference picture.
All of candidates are evaluated. The motion vector having the minimum RD cost
is selected to encode the current PU. For the merge mode, the index of the selected
motion vector and residual information is signalled to the decoder.

Skip mode: If the CU is signalled as skip mode, it has only one PU with the size
of the CU. The optimal motion vector of the CU is derived using the same criterion
of merge mode. However, there is no residual information being coded. Therefore,
the encoder only signals the index for the merge candidate to the decoder if the
number of merge candidates is larger than one. At the decoder, a skip CU is
reconstructed by copying the block in the reference frame presented by the motion
vector which derived by the described merge operation.

PMVC mode: Similar to the merge mode, a predictor motion vector is selected
among multiple predictor candidates that are obtained by a so-called advance mo-
tion vector prediction (AMVP). The difference between the actual motion vector
and the predictor together with the index of the predictor in the candidate list are
encoded and transmitted to the decoder.

In the reference software HM [8], the actual integer motion vector of a PU is
searched in a window centered by the predictor in reference frames. The TZSearch
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algorithm is applied to reduce the complexity of the motion estimation process.
The integer motion vector is then refined at half- and quarter-pel sample levels.

1.2.2.5 In-Loop filters

HEVC performs two filter steps, namely a deblocking filter (DBF) followed by a
sample adaptive offset (SAO) filter, to improve quality of the reconstructed images.
While the deblocking filter of HEVC is similar to that of H.264/AVC, SAO is
newly proposed in HEVC.

The purpose of deblocking filter is to reduce the blocking artifacts along block
boundaries including both PU and TU boundaries. Strength of the filter is assigned
to a block boundary based on the coding information of the two blocks that share
this boundary. If the strength is decided to be 0, the filter is not performed. Oth-
erwise, a low-pass filter is adaptively applied. Since both the encoder and decoder
carry out the same filter procedure, there is no information of filter, which needs
to be signalled.

SAO conditionally adds an offset to each sample of a CTU after deblocking
filtering. The offset values are defined in look-up tables, which are transmitted by
the encoder. In use of SAO, an SAO type and offset are decided and signalled to
the decoder. By performing a fixed interpolation filters on the full-sample values,
the sample values for sub-sample locations are obtained based on the current sub-
sample location. Compared to H.264/AVC, the interpolation is more complex with
the use of more taps filter.

1.3 Video adaptation techniques

An example of streaming video to a heterogeneous multimedia environment using
various adaptation techniques is illustrated in Figure 1.6, and is explained one by
one in the next sections.

Simulcast This approach includes separate encoding processes of video at dif-
ferent bit rates and possibly at different resolutions, or frame rates. These encoders
generate different versions of the same video source [9]. The version which satis-
fies the constraints of the network or device constraints is transmitted to the user.
This technique offers a very low adaptation complexity, since only a simple selec-
tion of existing videos is performed. However, this suffers from high complexity
because of encoding multiple videos, high storage requirements, and high band-
width usage in the backbone network for transmitting multiple videos.

Scalable video coding In order to reduce the overhead of simulcast due to inde-
pendent encoding and transmission of different versions of a video, scalable video
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(c) Transcoding approach: A single-layer video is generated.

Figure 1.6: Example of delivering video content to various user devices featured by dif-
ferent characteristics. The top laptop constitutes of a high power resolution and a high
bandwidth network connection. The other laptop uses wifi connection with lower band-
width. The PDA has a very low screen resolution and processing power. The mobile phone
is integrated with a higher resolution and processing power. The video is transmitted to a
multi-control unit through core network. At the multipoint control unit (MCU), the video is
adaptively delivered to clients over the access network.
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coding has been developed. This effort results in extensions of various video cod-
ing standards [10, 11]. A scalable stream is generated to be constituted of various
quality video layers that differently chartered in quality, resolutions, or frame rate.
Within a scalable stream, the base layer presents the lowest quality level while one
or more enhancement layers provide improved qualities. To reduce the overhead
of such a scalable video, redundant information between layers is being exploited.

The adaptation of a scalable stream to the capabilities of the receiving device
or the network conditions is made by simply discarding certain layers. The re-
sulting bitstream retains conforming to the used video coding standard. Since this
adaptation mechanism is deployed without the need of recoding, this is considered
as a low complexity technique.

Although a scalable video is capable of providing scalability through a simple
operation, such a multi-layer presentation comes along with various drawbacks in
some applications. Firstly, the coding efficiency of scalable coding is typically
lower than the one of single-layer coding. Secondly, this technique leads to a large
increase in encoding and decoding complexity compared to single-layer encod-
ing. Thirdly, the scalability is restricted due to the limited number of layers, and
finally, a change at endpoint devices is needed to decode such a multilayer video
presentation. So far, these fundamental disadvantages have made scalable coding,
particularly the scalable extension of H.264/AVC, less attractive to be adopted in
emerging applications; despite many efforts have been made on the development
of the scalable extension for video coding standards.

Transcoding Alternatively to simulcast and scalable coding, transcoding gener-
ates a single-layer video encoded at a high quality. When adaptation is needed,
transcoding will be used to change the characteristics, e.g., resolution, frame rate,
or quantization parameter, of the video to satisfy the limitations of transmission
networks or display devices [12]. Transcoding overcomes the network overhead
and the huge amount of computations required for encoding and decoding of the
aforementioned adaptation techniques. Moreover, the output video of transcoding
is able to exactly match any constraints. In addition to adaptation ability, efficient
transcoding may benefit other post-processing applications such as information in-
sertion, watermarking, and interactive video. Due to these advantages, transcoding
has been widely used during the last decades. Video research community has put
a lot of effort into improving transcoding to reduce the computational complexity
while retaining coding efficiency as high as possible [13–21].

Transcoding can be classified into three groups, i.e., bit rate transcoding, tem-
poral transcoding, and spatial transcoding, each of which is applied for a certain
reduction of bit rate. Transcoding by modifying the quantization parameter, which
is also referred to as bit rate transcoding or transrating, is often used when the re-
quired bit rate reduction is less than 50%. When transrating is adopted for a higher



INTRODUCTION 15

Source 

bitstream

Target 

bitstream

VLD Q1
-1 Q2 VLC

Decoder Re-encoder 
Reconstructed 

video 

Source 

bitstream

Target 

bitstream

(a) Open-loop approach.

Source 

bitstream

Target 

bitstream

VLD Q1
-1 Q2 VLC

Decoder Re-encoder 
Reconstructed 

video 

Source 

bitstream

Target 

bitstream

(b) Closed-loop approach.

Figure 1.7: High level architecture of a transcoder.

bit rate reduction, the subjective quality of video is significantly decreased with
blurred frames. This decline is due to dropping out the residual information since
high quantization parameters are applied. To avoid the blurred content, adjusting
frame rate (temporal transcoding) or spatial resolution (spatial transcoding) has
been recommended for higher bit rate reductions. However, these two techniques
result in loss of information since some frames or pixels are discarded. Therefore,
they are not suited for small bit rate reductions where transrating provides good
performance without any loss of information.

Transcoding can be performed by using either an open-loop or a closed-loop
transcoder (Figure 1.7). In an open-loop transcoder (e.g., [14, 20]), the source
bitstream is directly translated to the target bitstream by applying variable length
decoding, de-quantizing to obtain the DCT coefficients, re-quantizing these coef-
ficients to meet the desired bit rate, remapping the motion vectors, and applying
variable length encoding. This approach is a computationally efficient adaptation
since it operates directly on the DCT coefficients without the need of fully de-
coding and re-encoding the entire bitstream. However, such a simple adaptation
operation suffers from a significant quality loss due to error propagation caused
by mismatch between encoder and decoder reference frames. This quality loss,
fortunately, can be reduced by using a cascaded decoder-encoder loop transcod-
ing [13, 15, 18].

In a closed-loop transcoder, the video is decoded. The reconstructed video
is subsequently encoded to generate a network/device-friendly stream. The main
drawback of a closed-loop transcoder is the huge computational complexity asso-
ciated with the encoder part, which increases energy consumption of the interme-
diate network devices. This high complexity needs to be taken into account when
developing closed-loop transcoding algorithms.

With the finalization of the high efficiency video coding standard in 2013, it is
expected that HEVC will be used in a large scale of emerging applications in the
next couple of years. Extensions of this standards, i.e., scalable coding, screen-



16 INTRODUCTION

content coding, and 3D video coding have been introduced, with scalable coding
being capable of providing adaptation property [22]. However, due to the fact that
the scalable extension of the former standard H.264/AVC has rarely been used,
it is unclear whether the scalable coding will dominate the single-layer coding
when HEVC appears in the market. Therefore, examining how video transcoding
drawbacks can be overcome is still an attractive research topic for the latest video
coding standard.

The remainder of this work will only cover the transcoding process of single-
layer video for adaptation of HEVC. Since temporal transcoding can be easily
achieved by controlling the prediction architecture between frames in the video,
this approach has not been examined in this dissertation. In this work, the author
optimizes bit rate transcoding and spatial transcoding of HEVC video, in which
transcoding computational complexity is reduced. Motivated by the fact that block
partitioning and motion estimation account for a large amount of computational
complexity of the HEVC encoder, the author believes these processes can be opti-
mized. The methodology of this work is to utilize the correlation between coding
information of the transcoder input and output stream to predict the coding infor-
mation of the output video. This prediction will allow unnecessary evaluation in
the encoder to be discarded, resulting in complexity reduction.

1.4 Outline
The optimization of bit rate and spatial transcoding of HEVC video is covered by
the three main chapters in this dissertation. As Chapter 2 describes the optimiza-
tion of a bit rate transcoder in block partitioning level, Chapter 3 describes the
optimization in the motion estimation levels. Afterwards, Chapter 4 focuses on
improving the performance of spatial transcoding. An overview of each chapter is
given as follows:

Chapter 2: In this chapter, the complexity of a bit rate transcoder is reduced.
The correlation between the blocking partitioning behaviour of the input and out-
put video of a transcoder is analysed. This correlation is then utilized in optimizing
the encoding process of the output video via different approaches. A complexity-
scalable transcoding is also proposed in this chapter.

Chapter 3: The computational complexity of a bit rate transcoder has been opti-
mized at the block partitioning level in Chapter 2. However, motion estimation has
not been optimized, even though it accounts for a large portion in evaluating cod-
ing mode of a block. Thus, this chapter focuses on reducing the complexity of the
motion estimation process. An evaluation on the motion vectors of the input video
is conducted first. Then, the motion estimation is optimized by two approaches:
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selecting an adaptive initial motion vector by using decision theory, and proposing
several fast motion search patterns.

Chapter 4: While transrating is often used for a low bit rate reduction of a video
stream, spatial transcoding is usually applied for a high-required bit rate reduc-
tion or a resolution adaptation. Chapter 4 focuses on reducing the complexity of a
spatial transcoding. First, problems on using the state-of-the-art spatial transcod-
ing for an arbitrary resolution reduction of HEVC video are described. Then, a
machine-learning-based approach is proposed to address these problems.

Finally, Chapter 5 presents the conclusions of this dissertation.

1.5 Publications
The research activity of the author has generated 3 SCI-indexed journals, in all
of which the author stands the lead author (in IEEE Transactions on Multimedia,
IEEE Transactions on Consumer Electronics, and IEICE Transactions on Funda-
mentals of Electronics, Communications and Computer Sciences). Additionally,
the author’s work has been presented in 7 international conferences listed in the
ISI Proceedings database (all of which the author stands lead). In order to make a
concrete story, not all of these publications are adopted in this dissertation.

Publications in international journals

1. Luong Pham Van, Johan De Praeter, Glenn Van Wallendael, Jan De Cock,
and Rik Van de Walle. Performance analysis of machine learning for arbi-
trary downsizing of pre-encoded HEVC video. IEEE Transactions on Con-
sumer Electronics. 2015. November 2015.

2. Luong Pham Van, Johan De Praeter, Glenn Van Wallendael, Sebastiaan Van
Leuven, Jan De Cock, and Rik Van de Walle. Efficient bit rate transcoding
for high efficiency video coding. IEEE Transactions on Multimedia. 2016.
March 2016.

3. Luong Pham Van, Hoyoung Lee, Jaehwan Kim, and Byeungwoo Jeon. A
low complexity H.264/AVC deblocking filter with simplified filtering bound-
ary strength decision. IEICE Transactions on Fundamentals of Electronics,
Communications and Computer Sciences. 2013. February 2013.

Publications in international conferences

1. Luong Pham Van, Jan De Cock, Glenn Van Wallendael, Sebastiaan Van
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Rik Van de Walle. Fast transrating for high efficiency video coding based
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2
Fast block partitioning for bit rate

transcoding of HEVC video

2.1 Rationale and related work

When video content is delivered to users, the network and device constraints lead
to the need for an adaptation. In many scenarios, this adaptation can be performed
by reducing the bit rate of video streams. A bit rate reduction would be made
by changing a property of the video (spatial, temporal resolution, or quantization
parameter). Spatial and temporal resolution are often used for a high bit rate reduc-
tion (i.e., higher than 50%) while modifying the quantization parameter (bit rate
transcoding) is carried out for a smaller bit rate reduction. This chapter focuses on
optimizing a bit rate transcoder (or transrating). Spatial transcoder is investigated
in Chapter 4. Since a temporal resolution modification can be made by designing
the temporal referencing architecture when the video is encoded, this solution has
not been investigated in the scope of this research.

Transrating allows a video bitstream to (i) adjust to network bandwidth con-
straints, and/or (ii) meet constraints of the receiver terminal. In the former case,
when video is transmitted over networks with fluctuating bandwidth, temporary
capacity problems can occur. Having a video bit rate higher than the network band-
width results in visual artifacts due to packet loss. To reduce such visual distor-
tions, the video stream has to be scaled to a lower rate in a controlled manner at the
intermediate devices such as gateways, multipoint control units, or servers. In the
use of transrating, bit rate adaptations can follow the constraints of the network in
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an optimal way. In the latter case, a video stream might be stored and/or streamed
to various devices with different playback capabilities. With such a diversity of
devices, it is impossible for a single copy of encoded video to completely match
the requirements of all devices. A possible solution is to store several copies of the
video on the server and to send the bitstream that best satisfies the requirements
of the user. However, this entails storage cost of the server while the pre-encoded
video stream may, in one way or another, still mismatch the user requirements. To
tackle this problem, the video may be encoded at a high bit rate followed by an
online transrating step to meet the requirements of the end-user devices.

Transrating operations can be categorized into either open-loop transcoding
or closed-loop cascaded pixel domain transcoding. In the open-loop transcoder,
typically only transformed coefficients in the frequency domain are requantized
or directly discarded, while the motion parameters as well as other coding infor-
mation are not re-evaluated. Therefore, a mismatch between encoder and decoder
reference frames occurs, which leads to error propagation - known as drift er-
ror. Several solutions for bit rate reduction using open-loop transcoding have been
investigated for MPEG-1/2 and H.264/AVC bitstreams [1–6]. In one of the earli-
est works on transrating [2], the variable-length code words corresponding to the
quantized DCT coefficients are extracted from the video bitstream. These quan-
tized coefficients are inversely quantized and subsequently requantized to satisfy
the new output bit rate. An alternative to requantization, which is called DCT coef-
ficient dropping or dynamic rate shaping, directly cuts high-frequency coefficients
from each macroblock [3]. More recently, various bit rate adaptation methods have
been proposed for H.264/AVC bitstreams [4–7]. An efficient mixed transrating ar-
chitecture containing a low complexity scheme combined with a drift cancelling
closed-loop scheme was proposed in [5]. A model-based transrating scheme using
requantization of the transform coefficients, which is integrated in a rate control
mechanism, has been examined in [6]. Despite being a computationally efficient
adaptation approach, an open-loop transcoder is subject to drift error resulting in
significant losses of visual quality. This drift can be reduced in a closed-loop
cascaded pixel domain transcoder where the video bitstream is decoded and re-
encoded to match the target bit rate.

Although a closed-loop transcoder for bit rate adaptation can achieve a high
rate-distortion performance relative to an open-loop transcoder, the use of this ap-
proach is limited for real-time applications due to the high complexity of exten-
sive re-encoding computations. It is important to note that many advanced coding
tools (e.g., large coding block sizes with quad-tree coding unit, advanced motion
vector prediction) have been integrated into the HEVC standard [8]. This signif-
icantly increase the computation complexity of an HEVC transcoder. Therefore,
this chapter explores the reduction of computational complexity of a closed-loop
bit rate transcoder for HEVC videos.
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Related work
The complexity of a closed-loop transcoder is essentially caused by huge com-

putations in the encoder part. In order to reduce computational complexity of the
transcoder, many approaches have been proposed to optimize the encoding pro-
cess. Most of these techniques focus on predicting the coding modes in the output
video to early terminate encoding. Optimizing the encoder can be by either 1)
fast encoding without considering the coding information of the input video, or 2)
utilizing the coding information in the input video to accelerate the encoding.

In the first approach, various techniques have been proposed to accelerate the
HEVC encoder. These techniques use the texture characteristics of video and/or
utilize the temporal/spatial correlation in the video to predict coding information
of a CU. In [9], the splitting of a CU in intra-coded frames is decided on the texture
homogeneity of the video in the pixel domain and the splitting of its neighboring
CUs. A method based on k nearest neighbors has been proposed to determine the
CU splitting [10]. In [11], the depth range of a CU is determined to achieve early
termination of CU evaluations. On the other hand, early skip mode and merge
mode detection methods have been proposed in [12]. Currently, some researchers
have started using machine learning to accelerate the HEVC encoder. Support vec-
tor machines have been used in [13]. More recently, a decision tree based method
has been proposed to reduce the complexity of the HEVC encoder [14]. Although
it is reported that the complexity of the HEVC encoder is reduced by the afore-
mentioned techniques, the reduction remains limited. Most of these techniques
achieves an encoding time reduction less than 50%. For instances, the method in
[9] reduces the encoding time by 47% while the algorithms in [10] and [11] are
able to lower the encoding time by 42%.

An alternative approach which can provide a higher complexity reduction for
transcoding is to utilize the correlation between coding information of the input
and output video. In [15], the statistical properties of the mode distribution are uti-
lized for fast mode refinement of intra prediction. Similarly, in [16] the statistical
properties of the mode distribution and motion vector refinement were exploited
to reduce the complexity of inter prediction. Given the differences between HEVC
and previous video coding standards in their block structure, motion estimation and
residual information coding, traditional transrating techniques cannot be directly
applied to HEVC. Therefore, new transcoding strategies should be investigated for
transcoding of HEVC video streams. Several techniques using machine learning
for fast transcoding from MPEG-2 or H.264/AVC to HEVC have been proposed
in [17, 18]. Notice that the machine learning based techniques in [17, 18] are
used in heterogeneous video transcoding, in which the input and output video are
encoded under different standards. More recently, a fast machine learning based
transcoding technique has been proposed for transcoding in HEVC [19]. This
transcoding technique is used for video composition of multiple HEVC bitstreams.
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In [20], an alternative to fast transcoding for HEVC has been proposed by
means of a control stream. In other words, the sender encodes a video at different
qualities. The high quality encoded version is sent to the user. In case of an adap-
tation process is required, one of the other streams without residual information
will be sent to the encoder to guide the transcoding process. The major downside
of this technique is its limited flexibility since the number of encoded versions is
fixed. Moreover, this technique results in network overhead for transmitting the
extra stream.

In order to upgrade the performance of a closed-loop bit rate transcoding for
HEVC video streams, the work presented in this chapter has made the following
contributions:

• Firstly, in order to figure out an efficient method for transrating, we propose
several techniques which exploit the coding information correlation to speed
up transrating. The correlation can be utilized by using machine learning or
non-machine learning approaches to predict the CU structure of the output
video. Besides that, the spatial and temporal correlation is also used to sup-
port this prediction. The complexity of the transcoder can be reduced at the
CU and/or PU evaluation level.

• Secondly, we propose a complexity-scalable transrating scheme for partic-
ular practical use cases. Different proposed algorithms provide different
complexity reductions and bit rate losses. Moreover, the machine learning
based algorithm efficiently controls the complexity of the transcoder with
two thresholds. The performance of these proposed techniques is evaluated
and compared to the state-of-the-art fast HEVC transcoding approaches in
terms of complexity reduction and bit rate penalty. Based on this analysis,
our proposed methods outperform these algorithms.

• Finally, we propose a novel approach for CU evaluation. This approach re-
cursively merges CUs from smaller CUs to larger CUs. In the traditional
evaluation flow, the CUs are evaluated from lower depths to higher depths.
In contrast, our proposed method evaluates CU in a reverse way. By us-
ing this approach, the optimal splitting behavior of CUs at higher depth is
known before evaluating the RD cost at the current depth. This prior-known
information may be used for an early termination of CU evaluation. Hence,
the complexity of the transcoder is reduced.

The remainder of this chapter is organized as follows: The proposed transrat-
ing architecture and methodology are described in Section 2.2. This section pro-
vides insights into the correlation between input and output video is elaborated.
In Section 2.3, we propose different transcoding techniques which are capable
of reducing the transcoding complexity in the CU partitioning level. At the CU



FAST BLOCK PARTITIONING FOR BIT RATE TRANSCODING OF HEVC VIDEO 25

level, CUs can be evaluated in top-to-bottom or bottom-to-top flows, in which the
coding information of the input video stream is utilized to reduce the number of
evaluations or to early terminate certain evaluations. Furthermore, an adaptive
PU selection technique is presented in this section. Evaluations on performance
of the proposed techniques are given in Section 2.3.6. Conclusions and original
contribution complete this chapter with Section 2.4.

2.2 Transrating architecture and methodology

2.2.1 Transrating architecture

The typical architecture of a closed-loop bit rate transcoder (also known as a cas-
caded pixel-domain transcoder (CPDT) is illustrated in Figure 2.1. This architec-
ture consists of two coding loops (i.e., a decoding loop followed by an encoding
loop). In the decoding part, the incoming video stream at high quality is fully de-
coded by performing entropy decoding, inverse quantization (Q-1

1 ), inverse trans-
form (T-1), intra prediction (Im) and motion compensation (Mc). The decoding pro-
cess results in the reconstructed video in pixel domain. This reconstructed video
is subsequently re-encoded at the target bit rate. In the encoding loop, motion esti-
mation ((Me)), motion compensation and intra prediction are carried out to find the
optimal coding mode, which results in the prediction residual between the original
decoded frames and the predicted frames. This residual is subsequently encoded
by performing transform (T), quantization (Q2) and entropy coding to obtain an
output video stream with a desirable bit rate. The re-estimation of the residual sig-
nificantly eliminates drift error. However, this process puts the transcoder under
a huge computational complexity. In order to reduce such high complexity of the
closed-loop bit rate transcoder, we herein proposed an optimized architecture.

The general concept of the proposed cascaded pixel-domain bit rate transcoder
is shown in Figure 2.2. The re-encoding process is optimized by exploiting coding
information from the input bit stream. During the decoding part, coding infor-
mation of the input stream is extracted. This information is utilized by several
proposed techniques to limit the number of CUs and PUs, along with motion vec-
tors that are evaluated by the encoder. Note that the complexity of inter prediction
is much higher than intra prediction, the focus of the proposed techniques is to
optimize inter coding whereas intra prediction stays intact.

2.2.2 Methodology

The proposed transrating system focuses on reducing the bit rate of the input video.
The relative bit rate reduction is limited to 50%. As recommended in [21], further
reductions in bit rate should be achieved by other transcoding methods (e.g., tem-
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Figure 2.2: Proposed pixel domain transcoder.

poral transcoding and/or spatial transcoding). The proposed transrating architec-
ture supports both variable bit rate (VBR) and constant bit rate (CBR) schemes.

In the VBR scenario, input video is encoded under a constant quantization
parameter (QP1). The video is re-encoded using the new quantization parame-
ter (QP2) that is higher than the original (QP1). Therefore, a difference ∆QP is
introduced as in Equation 2.1.

∆QP = QP2 − QP1 (2.1)

With the use of the CBR configuration, the input video is originally encoded
at a constant bit rate of Ri(kbps). Afterwards, the video is reconstructed and
transcoded to a lower bit rate Ro(kbps) given by Equation 2.2. In this equation, the
rate reduction factor α is limited in the range from 0 to 0.5.

Ro = (1− α) ∗Ri (2.2)

In order to analyze the correlation of bit rate, CU structure, PU partition size,
and motion information between the input and output video streams, conditions
for evaluation are specified as follows. The HEVC test model (HM) 7 reference
software [22] is used for encoding and decoding. Default common test conditions
as defined in [23] are used with the low delay P main configuration (LP) and the
VBR scheme. Both input and output video streams are encoded under a coding
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Table 2.1: Bit rate reduction by changing QP

Sequence
[kbps]
(QP1)

Bit rate reduction[%]

∆QP=2 ∆QP=4 ∆QP=6

ParkScene
1080p

8365 (22) -35.16 -54.92 -68.24
3264 (27) -32.96 -52.37 -65.65
1380 (32) -33.90 -51.63 -64.84

604 (37) -34.50 -52.30 -64.62

BasketballPass
WQVGA (240p)

1788 (22) -27.11 -44.55 -57.63
899 (27) -27.93 -44.90 -57.19
453 (32) -27.29 -42.30 -54.14
243 (37) -25.81 -40.20 -50.28

BlowingBubbles
WQVGA (240p)

2149 (22) -30.92 -51.25 -65.25
880 (27) -28.71 -48.87 -63.04
386 (32) -29.44 -47.91 -61.04
179 (37) -28.68 -45.84 -56.59

FourPeople
720p

2465 (22) -38.46 -56.51 -67.87
935 (27) -27.75 -44.34 -56.54
469 (32) -25.15 -39.80 -51.60
260 (37) -23.93 -37.93 -48.84

Average -29.86 -47.23 -59.59

structure of IPPP... with 4 reference frames. The quantization parameter is chosen
such that QP1 ∈ {22, 27, 32, 37} while ∆QP∈ {2, 4, 6}.

The correlation of CU structure, PU partition size and motion vectors is stat-
ically obtained by comparing these information of an output block and that of its
collocated blocks in the input video. The collocated blocks of an output block
refers to the blocks that cover the area in the input video with the same size and
index of the output block.

2.2.3 The impact of ∆QP on the bit rate reduction

The impact of different values of ∆QP on the bit rate of video stream is obtained
in order to determine the possible ∆QP for a transrater. The results shown in
Table 2.1 have showcased the following conclusion.

Firstly, the relative bit rate reduction increases when ∆QP values get high. On
average, these reductions are about 30%, 47%, and 60% for ∆QP of 2, 4, and 6
respectively. In the proposed transrating scheme, we limit the ∆QP to 6, resulting
in a bit rate reduction by a factor of 2 to 3.
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Table 2.2: Probability of CU depth in the output video stream given the CU depth
of the input video stream (P{do|di}[%]). Dark color denotes high probability

di
∆QP = 2 ∆QP = 6

do=0 do=1 do=2 do=3 do=0 do=1 do=2 do=3

0 97 3 0 0 98 2 0 0
1 20 76 4 0 43 53 3 0
2 4 20 71 5 16 35 45 4
3 1 7 26 65 6 21 36 36

2.3 Fast block partitioning decision

Computational complexity of the HEVC encoder is mainly induced by recursively
splitting a coding tree unit (CTU) into coding units (CUs). This splitting process
is performed for CUs from depth 0 (64×64 pixel CU) to depth 3 (8×8 pixel CU).
Each CU is the root for further evaluation of the prediction unit (PU), and trans-
form units. Depending on the mode, for each 2Nx2N block, eight PU sizes can
be chosen (four symmetric partitions: 2N×2N , N×2N , 2N×N , and N×N ) and
four asymmetric partitions: nL×2N , nR×2N , 2N×nU , and 2N×nD). To ob-
tain the most efficient mode for a CU at depth d, all PU partitions and all Residual
Quad-Tree (RQT) configurations are evaluated during the rate-distortion optimiza-
tion (RDO) process.

Given the high computational complexity of the splitting process, in this chap-
ter, we propose several techniques to reduce the number of candidates being eval-
uated and to early terminate the splitting process. In the following subsection, the
correlation between the coding block sizes (represented by the CU depth) of the
input and output video stream in a cascaded decoder-encoder is evaluated. Sec-
tion 2.3.2 that follows exploits this analysis as a starting point for the proposed
fast CU splitting techniques. The correlation between input and output PU sizes is
then analyzed in Section 2.3.3; whilst Section 2.3.4 proposes further accelerations
upon adaptive PU evaluation using this PU correlation. Finally, the prediction
performance of the proposed methods is estimated in Section 2.3.5.

2.3.1 Correlation between coding block depths

The correlation between the coding block sizes is derived by observing the tran-
srating process of five video sequences (i.e., ParkScene, BasketballDrill, BQMall,
BQSquare, and FourPeople). The information of the coding depth of CUs in the
output stream and collocated CUs in the input stream is extracted. The conditional
probability (P{do|di}) that a CU is re-encoded using depth do, while originally
encoded at depth di, is then derived.
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In order to obtain the conditional probability, a frame is divided into 8x8
(smallest CU size) blocks. The depth of such an 8×8 block is defined as that
of the CU covering this block. P{do|di} is the probability of the output depth
of an 8×8 block given the input depth of this 8×8 block. The result is shown in
Table 2.2.

Experimental result shows that when the ∆QP increases for a given di, the CU
is typically re-encoded at this depth or lower, corresponding to a larger partition.
For instance, when a CU in the input bit stream is encoded using depth 1, there is
a 76% probability that the CU is re-encoded using the same depth and there is a
20% probability that the CU is merged to depth 0, in case where ∆QP = 2. This
observation will be exploited in the rest of this paper to reduce the complexity of
transrating. A high value of ∆QP denotes a significant probability where input
CUs are merged into CUs at lower depths. On the other hand, a large difference
in QP represents a low correlation between coding information of the input and
output stream.

2.3.2 Fast CU splitting decision

In this section, four fast transrating techniques are proposed to reduce the com-
plexity of the CU (RDO) evaluation. These methods are categorized into top to
bottom (T2B) and bottom to top (B2T). The CU evaluation of the T2B approach is
performed by a recursive splitting process, where CUs are split from lower depths
to higher depths. The trivial T2B applies the CU structure from the input video
stream to the output video. An improved T2B approach is a machine learning
based method (T2BML) that exploits the correlation of coding information from
the collocated CUs to build split-flag decision tree models. In the B2T category,
CUs are merged from smaller sizes to bigger sizes. A first bottom-to-top method is
B2T in which the CU structure from the input video serves as the initial structure
of the CU in the output video. B2T then merges smaller CUs into a larger CU. To
further reduce the complexity of the B2T method, B2TTLP is proposed. B2TTLP

considers the splitting behavior of the top and the left CUs of the current frame, as
well as of the collocated CU in the previously encoded frame.

2.3.2.1 Top to bottom (T2B) CU decision

Motivated by the observation in Table 2.2 in which the CUs in the output video
typically have an equal or lower depth compared to the collocated CUs in the
input video, top to bottom (T2B) method uses CTU structure of the input stream
to determine the maximum depth it should evaluate for each CU in the output
stream.

The RD cost of a CU is obtained by 2.3 where D, λ, and R respectively in-
dicate the distortion, Lagrange constant, and the number of bit to signal coding
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information to the decoder [24].

RD = D + λ.R (2.3)

T2B technique evaluates the RD cost for CUs from depth 0 to the maximum
depth of the initial CTU (iCTU), which is the structure of the collocated CTU in
the input video stream. At each depth of iCTU, the RD cost for every CU of iCTU
is examined. After obtaining the RD cost RDnotsplit of a CU at a depth d, the
decision to check higher depths is based on the input split flag.

• If input CU is split, the split of the output CU is also performed for further
evaluation. This evaluation results in theRDsplit which is the summation of
the RD costs of 4 children CUs at depth d+ 1. If RDnotsplit is smaller than
RDsplit, the CU remains at size 2N×2N . Otherwise, it is split into smaller
CUs.

• When the split-flag of the input CU is 0, further splitting of this CU stopped
and the output CU is decided not to be split.

It should be noted that the evaluation of RD cost of a CU in iCTU is always
active even when the input collocated CU is split. This RD cost evaluation is per-
formed since there is a notable probability of an input CU being re-encoded using
a lower depth in the output stream. Due to this extra evaluation, the complexity
reduction of this approach is limited compared to other proposed approaches. The
RDO process of T2B is described in Algorithm 1.

2.3.2.2 Machine learning based T2B (T2BML) CU decision

Obviously, T2B method only exploits the splitting behaviour of CUs in the in-
put stream to control the RD evaluation process of CUs in the output stream. In
other words, other coding information of the input stream was not utilized. T2BML

is proposed to improve the T2B technique. With the use of the machine learn-
ing approach, T2BML deploys more coding information of the incoming stream to
accelerate the transcoder. First, the list of selected features and the data set for
training are presented. After that, the training process is elaborated on. Then,
the CU splitting process based on the decision of machine learning is described.
Finally, the RD cost evaluation is given.

A. Training data set and features
In the proposed techniques, an off-line training mechanism has been used. Specif-

ically, decision trees are established on a data set of training sequences. These trees
consequently are used for classification when transrating any other sequences. The
selection of training sequence should make the decision trees general enough and
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Table 2.3: Decoded information as input to decision trees.

Parameters Domain Meaning

split flag 0, 1 Split-flag of CU in QP1

delta depth 0-3
Difference between the current
depth and the max depth of CUs

sum depth Number Sum of depths of CUs
num pu Number Number of PUs

cbf 0, 1
0: If none of the CUs (luminance
component) are encoded
1: Otherwise

free from overtraining. Herein, four sequences with an activity ranging from low to
high have been selected. These can be categorized into: low motion and low com-
plexity (FourPeople), medium activity (ParkScene, and BQSquare) and high mo-
tion (BasketballDrill). To ensure unbiased conclusions, these training sequences
are not going to be used for evaluating the performance of the proposed methods.

Features are defined upon the coding information of the input video. Five
features as listed in Table 2.3 have been used. Given the high correlation between
coding depths of the input and output streams, the coding depth information of
the input video including split flag, delta depth and sum depth have been taken
into account. Furthermore, the splitting of a CU in the PU level has been used.
Finally, coded block flag - which represents the texture information of the video,
has also been engaged. Originally, the motion vector and residual information in
the input video (the variance of the input motion vectors, the means and variances
of the residual) have been taken into consideration during the construction of these
decision trees. As appearing in end-nodes of these trees, these features are of
minor importance. That aside, these features complicate the trees; thus, they were
not included in the final design to simplify these trees.

B. Training mechanism
Online training is considered as a content-adaptive approach. In the online train-

ing mechanism, several first frames of the video are transcoded without the use of
the non-optimized encoder. The coding information of these frames is used to
form the training set. At the end of the training phase, the coding information
is gathered to build the decision trees. The transcoding process of the remaining
frames is accelerated with the use of these decision trees.

Online training may provide a higher classification performance compared to
offline training. However, there exists a need of a fully decoding and encoding
loop without optimization of the encoding for a certain number of frames to gen-
erate training data, requiring another re-training process. Therefore, this approach
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Figure 2.3: Splitting of a CTU using decision trees (pSF = Predicted Split Flag).

introduces a high computational complexity that challenges the integration into
real-time applications.

Unlike the previously mentioned approach, off-line training helps avoid the re-
training process. The decision trees are only generated once in use of the training
data set. These decision tree models are used when transcoding other video se-
quences. Thanks to the low complexity, the off-line training mechanism is used in
the proposed transrating technique.

For each ∆QP three decision trees indicated as T0, T1, and T2 were con-
structed. These decision trees predict whether splitting the CUs is needed at depth
0, depth 1, and depth 2, respectively. An example of using these decision trees in
splitting of a CTU is illustrated in Figure 2.3.

The decision trees have been made with machine learning using decoded infor-
mation (listed in Table 2.3) from four training sequences. This information is used
as the input of the WEKA data-mining tool [25]. The tool used for generating de-
cision trees is J48, an implementation of the C4.5 [26] algorithm in WEKA. This
C4.5 algorithm is a well-known algorithm in the literature for building decision
trees and has widely been used in classification applications. The input of WEKA
algorithms are datasets representing flat files, known as ARFF (Attribute-Relation
File Format) files [25]. These files consist of columns representing features and
rows samples. An ARFF file has two differentiated sections: the header section
and the raw data section. The header section embodies the attribute declaration,
i.e., the name and possible values to each feature. Figure 2.4 shows the declaration
and a part of the data section in an ARFF file used in our transrater. It should be
noted that output split flag in Figure 2.4 is the split flags of the output CUs which
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@relation Split_flag_Model-dQP6-T1 
----------------------------------------------- 
@attribute    split_flag_qp1    {0, 1} 
@attribute    sum_depth    numeric 
@attribute    delta_depth    {0, 1, 2, 3} 
@attribute    cbf    {0, 1} 

@attribute    num_pu    numeric 
----------------------------------------------- 
@attribute    output_split_flag {0, 1} 
----------------------------------------------- 
1, 48, 2, 1, 20, 1 
1, 28, 2, 1, 13, 1 
1, 18, 2, 1, 9, 1 
1, 8, 1, 1, 6, 1 
0, 1, 0, 0, 1, 0 

 . 
 . 
 . 

Figure 2.4: ARFF file format example.

is obtained by a full decoding/full encoding loop.
An example of decision tree, which is used to predict the split-flag of output

CUs at depth 1 with a QP difference of 6, is shown in Figure 2.5. As can be
seen from this figure, the split-flag of input CUs appears at the top of the tree.
This implies that the partitioning of the input and output CUs are most correlative
among the selected coding features.

C. CU splitting process using the machine learning based classification
Coding information of collocated CUs from the input bit stream, as listed in

Table 2.3, is extracted during transrating. This information is used as the input
for machine learning models (decision trees). Out of the decision tree, a split-flag
and the corresponding confidence ratio P are given. P is defined by Equation 2.4,
wherein Ns and Nf are the numbers of successfully predicted samples and mis-
classification, respectively.

P (%) =
Ns

Ns +Nf
(2.4)

The RDO process for the CU can be controlled upon these results. An example
of splitting a CU from depth 0 to depth 3 based on decision trees is shown in
Figure 2.3. The split-flag of the CU at depth 0 (CU0) is predicted by T0. The input
for this tree is the decoded information from the CUs within a collocated area of
64x64 pixels of this CU0. The output of this tree is a predicted split-flag (0 or
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Figure 2.5: A part of the decision tree for CUs at depth 1 with a ∆QP of 6.

1), and the probability of the prediction. In this example, a decision that CU0 is
split into four CUs has been made. The splitting of the sub-CUs is determined by
tree T1 using the coded information from CUs at the collocated 32×32 pixels. At
depth 1, only CU1 1 is to split further while the others are not. The prediction of
the split-flags of the four sub-CUs at depth 2 arising from CU1 1 is performed by
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Table 2.4: RD evaluation for a CU at depth d (Yes (Y) / No (N))

Predicted
split-flag P

Check at
depth d

Check at
depth d+ 1

End
recursion

0
High Y N Y

Medium Y Y Y
Low Y - N

1
High N - N

Medium Y - N
Low Y Y Y

T2. This tree predicts a split-flag of 1 for CU2 2 and 0 for the other CUs.

D. RDO evaluation for the transrating process
Based on the decoded syntax information, the decision tree is obtained by offline

training results in a predicted split-flag. Probability P of the prediction is used
herein to steer the RDO process. The probability is classified as high, medium,
or low by comparing it with two proposed thresholds Thr1 and Thr2, in which
Thr2 > Thr1. A summary of classification is given in Equation 2.5.

P is


High If P >= Thr2

Low If P < Thr1

Medium Otherwise
(2.5)

The RDO evaluation to further refine the predicted split-flag is as follows: A
high value of P implies high confidence in the prediction. Therefore, the predicted
split-flag is directly used as the optimal splitting behavior for the CU. A low P de-
notes low level of accuracy of the prediction, leading to the re-evaluating of the
predicted split-flag. By adjusting Thr1 and Thr2, the transcoding complexity can
be controlled, thus a trade-off between complexity and coding performance can be
achieved. The details of the proposed RDO process are depicted in Table 2.4 and
the overall algorithm is summarized in Figure 2.6. In this table, ’end recursion’
indicates whether the recursive splitting process is terminated after the RD evalua-
tion at depth d and/or d+1. When ’end recursion’ is ’N’, the split flag is predicted
again and the RD evaluation process is recursively implemented at depth d + 1.
Otherwise, the RD evaluation process is terminated.

For instance, if the predicted split-flag is 0 and P is high, the CU should not
be split and the RD cost evaluation is only performed at the current depth d. When
P is medium, the RD cost is evaluated at both depth d and depth d+ 1. However,
the CU at depth d + 1 should not be split, and the recursion is terminated. When
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eRecur = {0, 0, 0, 0},

d = 0

eRecur[d]

== 1

Evaluate CU with 

2Nx2N,2NxN, 

Nx2N

End recursive

Get the predicted split flag pSF and 

P, tmpSF = 0, eRecur[d+1] = 1,

Get split flag of the input CU iSF

pSF == 0

iSF ==0

Evaluate CU with 

2Nx2N and the 

PU of input CU

Evaluate the CU 

with all possible 

PU sizes

P<Thr2

tmpSF = 1

P<Thr1

eRecur[d+1]= 0

P>=Thr2

iSF ==0

Evaluate CU with 

2Nx2N and the PU 

of the input CU

Evaluate the CU 

with all possible 

PU sizes

tmpSF = 1

P>=Thr1

tmpSF == 1

&& d<3

d = d + 1 and 

go to 4 sub 

CUs at d+1

Begin

process CTU

YN

N

N N

N

Y

Y

N

YY

Y

Y

N

N

Y

Y

N

Figure 2.6: The flowchart of T2BML PU algorithm. The ’end Recursion’ (eRecur) is sig-
nalled from depth d to depth d+ 1. The recursive process is terminated until depth d = 3 or
eRecur = 1.
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P is low, the RD cost calculation is performed at depth d and depth d+ 1 without
splitting further.

For a predicted split-flag of 1, if P is high, the CU is immediately split to depth
d+1. Else, RD cost is evaluated at depth dwhen P is either medium or low. When
P is low, the CU is evaluated at depth d + 1 and the split recursion is terminated;
When P is medium, at depth d + 1, the split-flag prediction is performed and the
RD evaluation process is controlled on the new predicted split-flag.

2.3.2.3 Bottom-to-top (B2T) CU decision

In the top-to-bottom (T2B) approach, the evaluation is performed for CUs from
lower depths to higher depths. The RD cost of the CU is normally obtained at
lower depths first before a derivational RD cost of CUs at higher depths. The
splitting of a CU at a lower depth is only decided when its RD cost and those of
all CUs at higher depths are obtained. As a result, the RD costs at lower depths
are always calculated even if the optimal mode of the CU is split. B2T method is
proposed to address this problem as it evaluates CUs from higher depths to lower
ones. The optimal splitting behavior of CUs at higher depths is utilized to decide
whether the RD cost of CUs at lower depth is obtained or whether the evaluation
is terminated.

An example of splitting a CTU under B2T is given in Figure 2.7. At depth
3, RD costs for only 8 CUs are obtained, whereas an unmodified encoder might
evaluate the costs of 64 CUs. At depth 2, B2T evaluates RD costs for 8 CUs. After
these RD costs are calculated, RD costs of CU2 1 and CU2 7 are compared to the
sum of the RD costs of their previously evaluated sub-CUs at depth 3. Assuming
that the child nodes of CU2 1 are merged while the best decision for CU2 7 is to
split. Then, at depth 1, the RD cost of CU1 4 is not evaluated since the decision has
already been made to split CU2 7. Only the RD cost of CU1 1 is evaluated since
all of 4 corresponding sub-CUs are not split. The two shaded CUs at this depth
are also evaluated. Finally, the RD calculation for the root CU at depth 0 is also
skipped since not all sub-CUs can be merged.

The summary of the proposed B2T method for transcoding are described as
follow. The collocated CU structure in the input video (iCTU) serves as a starting
point for the CU structure in the output video. After all, as seen in Section 2.3.1,
the depth of CUs after transrating is usually lower or equal to the depth of the
preceding CUs. Apart from the CU evaluation flow of HEVC, the RDO process
of B2T is recursively performed by merging sub-CUs from the initial depth dmax
of iCTU to depth 0. The CUs at the maximum depth (dmax) are always evaluated,
with the merging process performed under particular conditions.

• If all 4 sub-CUs at depth d+ 1 are not split, it might be more optimal to use
a larger CU size. Therefore, the RD cost for this CU at depth d is obtained.
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iSF = 0, oSF = 0; iSF = 1, oSF = 1; iSF = 1, oSF = 0; 

Figure 2.7: An example of splitting a CTU based on B2T. iSF and oSF are the split flags
of the input and output CUs, respectively.

• Otherwise, the CU is not re-evaluated and considered as split.

Algorithm 2 describes the B2T approach. In this algorithm, nd (next depth)
represents the depth of the four child CUs of a CU at depth d. SFnd i and RDnd i

are respectively the optimal split flag and RD cost of the ith CU of the four child
CUs at depth nd.

2.3.2.4 B2T CU decision based on top, left CUs, and collocated CU in previ-
ous frame

This method (B2TTLP) works on a similar basis as to B2T. However, it considers
not only the CU structure from the incoming bit stream but also the splitting be-
havior of neighboring CUs (namely top and left CUs) and the collocated CU in the
previously encoded frame. The RD cost of a CU at a lower depth is obtained if all
CUs at higher depths can be merged and the top, left, and collocated CU are not
split. Otherwise, the RD cost for this CU is not evaluated.

2.3.3 Correlation between prediction unit sizes in input and
output streams

The complexity of selecting the optimal CU size is reduced by the fast CU splitting
techniques proposed in the preceding sections, which exploit tanahe correlation
between CU structures of collocated CUs. However, the correlation between PU
sizes in the input and output video bit stream has not been employed. This section
will analyze the correlation before proposing an adaptive PU selection method that
utilizes the PU sizes correlation to reduce the complexity of the optimal PU parti-
tion selection (which is a sub-process of CU selection). The number of evaluated



40 CHAPTER 2

Algorithm 1 Pseudo-code for T2B CU evaluation algorithm

1: Input: initial CTU iCTU = the CTU structure in the input video stream, dmax
= maximum depth of iCTU

2: for d = 0 to dmax do
3: for all CUd ∈ CUs at depth d of iCTU do
4: RDnotsplit =∞, RDd =∞, SFd = 0
5: RDnotsplit ← GetRD(CUd), RDsplit =∞
6: if CUd is split in iCTU then
7: Go to 4 CUs at depth d+ 1
8: RDsplit ←

∑i=3
i=0RD(d+1)i

9: end if
10: SFd ← (RDnotsplit < RDsplit)?0 : 1
11: RDd ← (SFd = 0)?RDnotsplit : RDsplit

12: end for
13: end for
14: Process the next CTU

Algorithm 2 Pseudo-code for B2T CU evaluation algorithm

1: Input: initial CTU iCTU = the CTU structure in the input video stream, dmax
= maximum depth of iCTU

2: for d = dmax to 0 do
3: for all CUd ∈ CUs at depth d of iCTU do
4: RDnotsplit =∞, RDd =∞, SFd = 0
5: RDsplit =∞
6: if CUd is not split in iCTU then
7: RDnotsplit ← GetRD(CUd)
8: else
9: nd← d+ 1

10: Ckd ← (SFnd 0||SFnd 1||SFnd 2||SFnd 3)
11: if Ckd = 0 then
12: RDnotsplit ← GetRD(CUd)

13: RDsplit ←
∑i=3
i=0RDnd i

14: end if
15: end if
16: SFd ← (RDnotsplit < RDsplit)?0 : 1
17: RDd ← (SFd = 0)?RDnotsplit : RDsplit

18: end for
19: end for
20: Process the next CTU
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PU partitions will diminish by referring to the PU partition in the input bit stream.
Table 2.5 shows the correlation between the PU size of collocated CUs in the input
and output bit stream. PUo and PUi indicate the PU size of an output CU and that
of the collocated CU in the input video, respectively. Five sequences indicated
in Section 2.3.1 are analyzed. P{PUo|PUi} is the conditional probability that a
CU is encoded using PUo given PUi when both CUs in the input and output bit
streams have the same depth. In analysing Table 2.5, for any given PUi, there
is a significant probability that PUo has either the same partitioning or a 2Nx2N
partitioning.

2.3.4 Predictive PU Selection

The proposed adaptive PU selection only evaluates PU partitions with a high prob-
ability given the input prediction unit (PUi) size. For three methods (T2B, B2T,
and B2TTLP), if the evaluated CU size is equal to the input CU size, only PU sizes
2Nx2N and PUi are evaluated. Consequently, the number of PU candidates re-
duces from 8 down to 2. Otherwise, if the input CU is split, all possible PU sizes
are evaluated for the output CU. The selection algorithm for these three approaches
is summarized in Algorithm 3.

The T2BML method makes use of the predicted split-flag and the split-flag of
the CU in the input to derive PU size candidates. These candidates of CUs at depth
d and sub-CUs at depth d + 1 are jointly controlled by following the RDO model
proposed in Table 2.4. At depth d, if the predicted split flag (pSF ) is 0 or pSF =
1 with a low or medium accuracy, the PU selection is controlled by the splitting
of the input CU. If the input CU is not split, the output CU is evaluated using
the input PU (iPU ) and 2N×2N . Else, the CU is evaluated with all possible PU
sizes. At depth d + 1, if the recursion is decided as to stop, only the three largest
PU sizes including 2N×2N, 2N×N , and N×2N are evaluated. Else, the split
flag is newly predicted and the PU selection process is recursively performed for
depths d+ 1 and d+ 2. The overall flow chart of T2BML PU is given in Figure 2.6.

Algorithm 3 Pseudo-code for predictive PU evaluation of a CU algorithm using
T2B, B2T, and B2TTLP

1: Input: Split flag iSF of the collocated CU in the input video
2: if iSF = 0 then
3: Get PU iPU of the collocated CU in the input video
4: Evaluate the output CU with iPU and 2Nx2N
5: else
6: Evaluate the output CU with all possible PU sizes
7: end if
8: Process the next CU
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2.3.5 Prediction accuracy of the proposed techniques

The prediction performance evaluation of the proposed methods has been made
for the use of VBR as indicated in Section 2.2 with a ∆QP at 6. The prediction
accuracy is measured at three CU depth levels. At each CU depth, the accuracy
of prediction is given by the probability where the split-flags predicted by the pro-
posed methods and an anchor transcoder are equivalent. In the anchor transcoder,
the CU size is decided by the regular HM reference software. At the PU level,
the PU size matching rate is the probability where the PU sizes of the proposed
methods and the anchor transcoder are the same, given that the CU sizes of the
proposed and anchor method are the same.

The results are shown in Table 2.6 where the trivial method copies the input
coding structure to the output video stream. As can be seen in Table 2.6, the pro-
posed methods obtain high prediction accuracy. There is a remarkable improve-
ment in accuracy of about 20% of our proposed methods compared to the trivial
transcoder. Among the proposed methods, T2B provides best prediction perfor-
mance with 83.60% and 88.66% for LP and RA configurations, respectively. The
prediction accuracy of T2B is high since the CU is always evaluated whether the
input CU is split or not. At the PU evaluation level, the proposed adaptive PU size
selection achieves a matching rate of 90% - an approximation of 7% higher than
the trivial method.

Table 2.6 demonstrates that the off-line trained model used in T2BML is ade-
quately generalized. Training sequences and test sequences share similar predic-
tion accuracies. The advantage of using the off-line training model is that there is
no need of a re-training phase during transcoding. Therefore, the off-line training
approach is used in T2BML.
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2.3.6 Experimental results of the proposed block partitioning
techniques

The proposed methods are evaluated by comparing the performance of several
transcoders. These include an unmodified decoder-encoder cascade transrater, triv-
ial methods and various fast encoding and transcoding algorithms. These trivial
methods copy the CU size and/or PU size from the input bit stream to the output
bit stream. First, the evaluation conditions are described. Thereafter, the exper-
imental results of Trivial, T2BML, and B2TTLP at both the CU and PU levels are
analyzed in terms of bit rate increasing and transcoding time. These methods are
evaluated in both variable bit rate (VBR) and constant bit rate (CBR). Finally, cod-
ing performance of our proposed methods is compared with state-of-the-art fast
HEVC encoding and transcoding algorithms.

2.3.6.1 Evaluating conditions

In the experiments, all sequences of classes B, C, D, and E listed in [23] excluding
the training sequences have been tested. The experiments are tested on a platform
using 64-bit Scientific Linux 6 operating system running on a PC with an inte-
grated Intel dual-socket quad-core 2.27 GHz and 12 GB RAM. The proposed al-
gorithms are implemented in the HEVC test model (HM) 7 reference software [22]
under the test conditions defined in [23]. Search mode ’TZSearch’ and ’FEN’ (fast
encoder decision) are enabled. In other words, the proposed algorithms are com-
pared with best speed performance of HM. CU structure is set at a maximum
size of 64×64 pixels and a maximum depth of 4 (8×8 pixels CU). The perfor-
mance of the proposed scheme is evaluated in terms of Bjøntegaard Delta Bit rate
(BDBR) [27] for both low delay P main (LP) and random access (RA) configura-
tions. For LP, only the first frame is intra-coded while the intra period is set to 32
for RA. In the BDBR measurement, peak signal to noise ratio (PSNR [28]) calcu-
lations between the re-encoded and the original sequence are used. Additionally,
complexity reduction, which is measured by the time saving (TS), is given by:

TS(%) =
TOriginal (ms)− TProposed (ms)

TOriginal (ms)
(2.6)

Herein, TProposed represents the total transrating time using the proposed method
while TOriginal constitutes the total transrating time using an unmodified cascaded
decoder-encoder setup. Since the same code base is used for the original encoder,
the trivial methods, and all proposed techniques, the difference in time saving per-
centage gives an indication of the complexity reductions.



46 CHAPTER 2

2.3.6.2 Coding performance under the VBR scenario

In the VBR scheme, the input video stream is encoded using a constant QP1 ∈
{22, 27, 32, 37}. This video is reconstructed and coded at a lower bit rate using a
higher constant QP2. The difference of the input and output quantization parameter
∆QP is set as {2, 4, 6}. Firstly, we present the performance of the B2T approach
in terms of different quality matrix. Then, an analysis on the flexible transcoding
complexity of T2BML using thresholds is provided, followed by an elaboration of
the experimental results of all described algorithms.

The visual subjective quality performance of the B2T approach
There are two popular metrics which evaluate the similarity of two pictures.

They include the structural similarity (SSIM [29]) index and the peak signal-to-
noise ratio (PSNR [28]). In these terms, SSIM also predicts how users perceive
video distortions. The experimental results of the B2T approach with the use of
SSIM and PSNR is presented in Table 2.7, Table 2.8, and Table 2.9. In this ex-
periments, SSIM and PSNR are obtained by comparing the original video and the
reconstructed version of the transcoded video. The degradations of these terms
(∆SSIM and ∆PSNR) of a method indicate the differences of these terms and that
obtained by an unmodified cascade transcoding loop.

It is observed from Table 2.8 that when the input QP increases, PSNR and
SSIM are both degraded. This is due to the fact that more quantization error are
added. When the input QP increases, the encoded video is more smooth. The
distortion is easily detected in such a smooth video by human eyes. Therefore,
∆SSIM increases.

Table Average, we can see the degradation of PSNR is notably larger than that
of SSIM. Therefore, PSNR will be used to evaluated the performance loss of the
proposed techniques. Doing so, the performance loss might be more clear.
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Table 2.10: Coding performance of T2BML with different thresholds

CFG Thr1[%] Thr2[%] BDBR[%] TS[%]

LP

85 90 0.77 53.00
75 90 1.14 54.50
75 85 1.49 64.14
50 75 2.78 67.36

RA

85 90 0.40 57.20
75 90 0.65 59.40
75 85 0.88 63.99
50 75 1.69 69.00

Complexity-scalable transcoder using the machine learning based method
A trade-off between transcoding complexity and bit rate loss can be achieved

by the T2BML method in use of two thresholds. It is clear that when the pro-
posed thresholds increase, the number of RD evaluations increases accordingly.
Consequently, the rate-distortion complexity trade-off of the transrating architec-
ture varies among these thresholds. Different pairs of (Thr1, Thr2) have been
evaluated to reach a usable trade-off. Experimental results using different relevant
values are presented in Table 2.10. When both of these thresholds are high (0.85,
0.90), the bit rate penalty is very small (0.77%). However, transrating complex-
ity reduction is then small (53%) as well. In contrast, when these two thresholds
are small (0.50, 0.75), the bit rate penalty is high with an 2.78% increase and the
complexity reduction is also high (67.36%). When Thr1 is 0.75 and Thr2 is 0.85,
this method achieves 64% complexity reduction with a slight increase of BDBR
(1.49%). In the following evaluation, these thresholds (0.75, 0.85) are used as a
default for T2BML.

Coding performance analysis
The experiment under the LP configuration is analyzed first. Then, the perfor-

mance with the use of the RA configuration is explored. Results are visually sum-
marized in Figure 2.11. As can be seen in Figure 2.11, a trade-off between coding
performance and transrating complexity can be achieved by the proposed methods.
Depending on the required complexity reduction, one of the above techniques can
be used to guarantee the highest RD.

For LP configuration, detailed experimental results for each class of the Triv-
ial, T2BML and B2TTLP architectures that optimize the evaluation at both CU and
PU level are presented in Table 2.11 and Table 2.12. Comparison of the average
performance of these methods is presented in Table 2.13 and visualized in Fig-
ure 2.10.
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As can be seen in Table 2.11 and Table 2.12, the trivial methods can achieve a
low complexity for both CU (Trivial) and PU (TrivialPU) evaluations. On average,
Trivial and TrivialPU can reduce transrating complexity by 75.65% and 91.12%,
respectively. The low complexity of these methods is achieved by directly copy-
ing the CU and PU structures from the input bit stream to the output bit stream.
However, the simple re-use of the input CU and PU structures results in BDBR
losses, which strongly increase when raising ∆QP values. This could be expected
from the probabilities in Table 2.2 and Table 2.5, which indicate that the CU and
PU sizes in the output streams typically become larger to increase ∆QP values.
The trivial methods, however, only evaluate the CUs at the depths of the input
CUs and skip the evaluation at lower depths. As a result, the trivial method in-
creases bit rate on average by 7.49% while an increase by 15.23% is measured in
the TrivialPU approach.

The complexity reductions of T2BML and B2TTLP are smaller than those of the
trivial methods. However, these proposed methods significantly outperform the
trivial approaches in terms of coding performance. The proposed method T2BML

reduces the complexity of transrating by 64.14% with a 1.49% penalty in bit rate.
When PU evaluation is optimized, the complexity reduction increases to 76.22%
with a negligible bit rate increase by about 2.23%. The complexity reduction of
B2TTLP is higher than T2BML (66.18% and 79.65% for CU and PU evaluations).
B2TTLP has a loss of coding performance of 1.93% for CU and 2.65% bit rate
increase for PU evaluations.

Figure 2.8 shows examples of the CU size results obtained by applying our
proposed algorithms and the trivial method. We defined the difference between
coding depths (dCU) of a frame obtained by a method and this frame was obtained
by HEVCAnchor transrating as the average of absolute depth differences among
pixels. As can be observed from Figure 2.8, the CU structures of B2TTLP and
T2BML are very similar to the CU structure obtained by HEVCAnchor transrating.
The TrivialPU method encodes CUs using higher depths compared to HEVCAnchor

transrating.

When the ∆QP increases, we see different effects on the complexity reduction
and coding performance of the T2BML and B2T methods. The correlation between
coding information of CUs in the input and output bit stream gets weaker when
∆QP increases. Consequently, the probability of correct predictions in T2BML

is reduced. Therefore, the number of CU re-evaluations increases, resulting in a
higher transrating complexity (and a reduction of the bit rate penalty). However,
the initial CU structure for evaluating a CU in B2T is unchanged when QP in-
creases. As a result, the transrating complexity reduction of B2T is only slightly
reduced (and remains around 63%).

Since the difference between the initial CU structure and the optimized CU
structure is larger when ∆QP increases, the bit rate penalty of B2T increases with
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∆QP. The coding performance comparison of these two methods when ∆QP
increases is depicted in Figure 2.9.

The rate-distortion plots for the methods optimizing the PU evaluation are de-
picted in Figure 2.10. As can be seen, RD performance of the proposed methods
is similar to an unmodified HEVC cascaded decoder-encoder (HEVCAnchor) and
clearly better than the TrivialPU method.

Table 2.13 shows the coding performance of all proposed methods and the
trivial methods. Notice that the difference in performance for each class is not
remarkable as demonstrated in Table 2.11; therefore, the average performance of
all classes is given in the remainder analysis.

Results of the experiment under RA configuration presented in Table 2.15 have
demonstrated that the proposed algorithm can significantly reduce the transcoding
complexity with a negligible bit rate penalty. With a 51.67% complexity reduc-
tion, the T2B method results in a very poor bit rate increase by 0.29%. For a
higher complexity reduction of about 64%, B2T and T2BML show the same cod-
ing performance with a bit rate increase by 0.9%. At the PU level, T2B can reduce
66% complexity with a bit rate error of only 0.59%, which is smaller than the error
of B2T and T2BML in the CU evaluation level. Therefore, with the complexity re-
duction target of 66% (2/3 reduction), B2TPU is the most advisable solution. How-
ever, when the transcoding complexity needs to be reduced further, B2TTLP PU and
T2BML PU are more reliable. These methods are able to reduce a notable reduction
of 80% to 82.4% transcoding complexity with about a 2% bit rate loss compared
to the non-optimized transcoder. Between these two algorithms, B2TTLP PU is pre-
ferred over T2BML PU regarding the implementation performance since a model
and a complex prediction need to be integrated in the T2BML PU approach.

It should be noticed that the proposed algorithms are only applied for inter
frames. In doing so, the coding performance loss is recovered at intra frames.
As a result, the performance of using RA is better than using LP. For instance,
B2TTLP PU under RA leads to a higher complexity reduction (82.4%) compared to
using LP. However, the bit rate penalty under RA is lower (1.95% compared to
2.65%).
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(a) Anchor cascaded decoder-encoder transcoder

(b) TrivialPU dCU = 0.52

(c) T2BML PU dCU = 0.33

(d) B2TTLP PU dCU = 0.27

Figure 2.8: CU structures generated by the different algorithms for the 200th frame in the
PartyScene sequence, QP1 = 32, ∆QP = 6. The VBR and LP configuration are used in this
experiment. The CU structures obtained by our proposed methods are similar to the ones
obtained by the HEVCAnchor transcoder.
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and the LP configuration. The RD performances of our proposed methods match to the
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the TrivialPU transcoder.
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Table 2.14: Input bit rate setup for CBR

Class Resolution
Bit rate of the input video Ri[kbps]

Ri0 Ri1 Ri2 Ri3

B 1920x1080 12000 5000 2500 1500
C 832x480 2300 1000 500 300
D 416x240 600 250 100 75
E 1280x720 5000 2000 1000 600

Coding performance at different input quantization parameters
Because the proposed approaches mostly use the CTU structure in the input

video to evaluate the CTU structures in the output video, the performance of pro-
posed method depends on the behaviour of the input CTU structures, which de-
pends on the quantization parameter of the input video or the bit rate of the input
video.

As can be seen from Figure 2.12, when the input quantization parameter in-
creases, the performance of the proposed approaches grows up accordingly.

When the input quantization is low, the CTU structures of the input video are
complex with many small CUs at depth 3. Therefore, the re-encoder may have
to evaluate a high amount of CUs in a large range of the depth (from 3 to 0).
Consequently, the complexity reduction is low.

On the other hand, when input QP increase, the complexity of the input CTU
structures is reduced with many CUs at low depths. Therefore, the re-encoder, in
many cases, does not need to go to higher depths. In this case, the number of RD
evaluation is reduced, thus the complexity reduction is increased.

2.3.6.3 Coding performance under the CBR scenario

In practical scenarios, when streamed over the internet, the video may be switched
between networks with different bandwidth limitations. In such scenarios, the
video is transcoded in use of a constant bit rate encoder. In this section, the pro-
posed algorithms are evaluated in the following scheme. The input video is en-
coded at a constant bit rate of Ri(kbps). Afterwards, the video is reconstructed
and transcoded to a lower bit rate Ro(kbps) given by Equation 2.2. Three bit rate
reduction factors (α) of 0.15, 0.30 and 0.45 have been examined. For higher bit
rate reductions, other transcoding approaches (spatial or temporal transcoding) are
suggested. Both LP and RA configurations are tested. For BDBR evaluation, the
experiment is carried out for four input bit rate values (Ri0, Ri1, Ri2, Ri3) as de-
fined in Table 2.14.

Table 2.15 presents the performance of the proposed algorithms under CBR
test condition. In addition, these results are visualized in Figure 2.13.
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(b) Average performance of different ∆QP values.

Figure 2.12: Visualization of the performance results of the proposed techniques with dif-
ferent input QPs - the LD and VBR configuration. The proposed solutions demonstrate high
performance at high quantization parameters of the input video.
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Figure 2.13: Visualization of the performance results of the proposed techniques with the
use of the constant bit rate profile.
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In comparison with the use of VBR, the proposed algorithms yield the same
complexity reduction. In contrast, the performance is slightly worse in terms of
bit rate loss. This loss is generated due to a large range of QP differences between
the input and output video. This large QP difference may appear since QPs of the
input and output video are independently derived to achieve the input and output
rates. Note that the difference in bit rate loss between CBR and VBR is below 1%.
For instance, a ∆QP of 2 in the VBR configuration results in a bit rate reduction
of 30%. The performance of B2TPU is a time saving of 77% with a bit rate penalty
of 1.42%. With a similar bit rate reduction of 30% in VBR setting, this approach
is able to achieve a similar time saving of 77%. However, this results in a higher
bit rate penalty of 2.68%.
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Again, the proposed methods demonstrate a superior performance over trivial
approaches. Among these proposed algorithms, the B2TTLP PU shows the best
performance with a remarkable complexity reduction of about 80% with bit rate
losses of 2.54% and 2.76% for LP and RA, respectively.

2.3.6.4 Performance comparison with the state-of-the-art

Since transrating for HEVC is a novel topic, to evaluate the performance of the
proposed methods, these methods are compared with various fast encoding algo-
rithms [10, 11, 13, 14, 30–32], and an HEVC composition transcoder [19] in terms
of transrating complexity and bit rate increases. The bit rates are set using a VBR
scheme.

These fast encoding algorithms are used to encode the reconstructed video
of the input stream. It should be noted that the input coding information is not
utilized in these fast encoding references for HEVC except by De Praeter [19].
Therefore, the comparison is not entirely fair. However, the significant perfor-
mance improvement of our proposed methods implies that the proposed methods
are notably efficient in reducing the complexity of an HEVC transcoder. Since
each reference work yields different values of BDBR and time saving, we obtain
the ratio between BDBR and time saving (B/T) [14]. This parameter shows the
amount of BDBR loss per time saving. Lower B/T infers better performance. The
coding performance comparison is shown in Table 2.16.

In general, our proposed methods are notably more time-saving than other
methods at both CU and PU optimization levels. In terms of B/T evaluation, bit
rate loss of our proposed methods is usually lower than or equal to other methods
for the same complexity reduction. There are a few exceptions such as joint CU
and PU optimization under the LP configuration where Liquan [32] yields a lowest
B/T. However, this method achieves a complexity reduction of 52% which is much
less than the complexity of T2BML and B2T (76%).

2.4 Conclusions

In this chapter, we proposed several optimized transrating techniques for HEVC.
The correlation of coding information of collocated CUs in the input and output
video streams was exploited to reduce the complexity of CU and PU evaluations.
At the CU level, two options for recursing through the split tree are considered,
namely top (lower depths) to bottom (higher depths) or bottom to top. The top to
bottom approach (T2B) accelerates the RD cost calculation of a CU by immediate
splitting to smaller sizes or by early termination of the recursion, depending on the
input CU structure. A more advanced method (T2BML) predicts the partition of a
CU by using decision trees generated with machine learning techniques.
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Table 2.16: Performance comparison with related works under VBR in terms of time
saving (TS) and BDBR/TS (B/T)

CFG Optimization Method BDBR[%] TS[%] B/T

LP

CU

Shen [13] 1.66 42 3.95
Xiong [10] 1.90 42 4.52
Lee [30] 1.22 61 2.00
Ahn [31] 1.00 43 2.33
De Praeter [19] 2.01 65 3.09
T2B 0.57 50 1.14
T2BML 1.49 64 2.33
B2T 1.38 62 2.23

CU + PU

Liquan [11] 1.15 41 2.80
Liquan [32] 0.88 52 1.69
T2B 1.32 64 2.06
T2BML 2.23 76 2.93
B2T 2.14 76 2.82

RA

CU

Correa [14] 0.28 37 0.77
Shen [13] 1.40 45 3.11
Xiong [10] 2.21 40 5.53
Lee [30] 1.43 62 2.31
Ahn [31] 1.40 49 2.86
T2B 0.29 52 0.59
T2BML 0.88 64 1.38
B2T 0.91 64 1.42

CU + PU

Correa [14] 1.33 63 2.11
Liquan [11] 1.50 42 3.57
Liquan [32] 0.68 49 1.39
T2B 0.59 66 0.89
T2BML 2.07 80 2.59
B2T 1.26 78 1.62

On the other hand, in the bottom to top approach (B2T), the CU structure of
input CUs is re-used and recursively evaluated by merging sub-CUs into larger
CUs. Additionally, the splitting behavior of neighboring CUs is also considered to
reduce the number of RD evaluations in the B2TTLP method.

Furthermore, during the PU evaluation process, the number of PU candidates is
reduced by exploiting information from the input video stream. Experimental re-
sults show that the proposed transrating methods maintain coding efficiency of an
unmodified cascaded decoder-encoder, while significantly reducing the transcoder
complexity. On the PU evaluation level, B2TTLP can reduce the complexity of
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transrating by 82% with a bit rate increase by 1.95%. In addition, by considering
all the proposed techniques, trade-offs between transrating complexity and coding
performance can be made.

The work described in this chapter led to the following publications:

• Luong Pham Van, Johan De Praeter, Glenn Van Wallendael, Sebastiaan
Van Leuven, Jan De Cock, Rik Van de Walle. Efficient bit rate transcoding
for high efficiency video coding. IEEE Transactions on Multimedia. 2016.
March 2016.

• Luong Pham Van, Jan De Cock, Glenn Van Wallendael, Sebastiaan Van
Leuven, Rafael Rodriguez-Sanchez, Jose L. Martinez, Peter Lambert, Rik
Van de Walle. Fast transrating for high efficiency video coding based on
machine learning. In Proceeding of the IEEE International Conference on
Image Processing (ICIP). September 2013.
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3
Efficient motion estimation for HEVC

transrating

3.1 Rationale and related work

In the previous chapter, the complexity of an HEVC bit rate transcoder is reduced
by optimizing the block partitioning process of the encoder. Various techniques
have been proposed to utilize the correlation between the coding information of
the input and output video; thus, the number of evaluated coding units and pre-
diction units is reduced. However, the motion estimation (ME) process has not
been optimized during the coding mode evaluation. It has been well-known that
motion estimation is the most time-consumed part of an encoder. According to
our extensive observation in Section 3.2, this process accounts for a large portion
of 62 percent of the HEVC encoding time. Logically, motion estimation is highly
considered when optimizing an encoder. This chapter further upgrades the bit rate
transcoding process by improving the motion estimation process in the encoding
part.

Many research activities have been focusing on optimizing the motion estima-
tion process of a transcoder. Most of these efforts derive a base motion vector for
the output block from the motion vectors of collocated blocks in the input video.
Then, a refinement is applied to the base motion vector to enhance it’s quality.
In [1], a search window of [±3,±3] pixels was used to refine the base motion vec-
tor; and in most cases, a smaller search window of [±1,±1] pixels was mentioned
to generate satisfying results. An adaptive motion refinement scheme was pro-
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posed for frame-rate conversions in [2]. Firstly, a base motion vector was obtained
by using a so-called forward dominant vector selection method. Then, the motion
vector might be refined with a delta motion vector in use of the sum of absolute
differences (SAD) of pixels in the reconstructed block and the current block. This
refinement uses a search window of [±2,±2] pixels.

More recently, Peixoto et al. suggested a reusing motion vector technique
for a transcoder from H.264/AVC to HEVC [3]. First, the integer motion vector
of prediction units (PUs) in the HEVC stream is derived by either evaluating the
collocated H.264/AVC motion vector that covers the largest area within the CU or
evaluating all collocated H.264/AVC motion vectors. The output motion vector is
not refined further at the integer pixel level. Finally, the default HEVC sub-pixel
search is performed.

These aforesaid motion refinement approaches owe its drawback to the fact
that the base motion vector was refined at the integer pixel level with the use of a
small fixed-size window. Using this small window may ignore the optimal motion
vector, especially when the video features a high motion activity, or upon signif-
icantly different characteristics (bit rate and/or resolution) between the input and
output videos.

The HEVC reference software (HM) [4] adopts Test Zone Search (TZSearch)
as the default fast integer ME algorithm. TZSearch applies either a diamond-
shaped pattern or a square-shaped pattern to search for the optimal integer motion
vector. This search process launches at the initial search point. Then a raster
search might also be carried out. At the end of TZSearch, the motion vector is
conditionally improved by a simple raster or star refinement. Our extensive ob-
servation shows that TZSearch accounts for about 22% of the total encoding time.
Although the complexity of TZSearch is significantly lower compared to a full
search that evaluates any motion vector within a pre-defined window, this can be
further optimized by adapting the search area and the search pattern.

In this chapter, we further improve our transrating scheme presented previously
by employing the correlation of the input and output motion vectors. This ensures
a reduction of the complexity for TZSearch in the HEVC encoder. In general, the
initial search point is adaptively selected first. Then, based on the rate-distortion
(RD) cost yielded by encoding the corresponding PU using this starting point,
the search area is decided using an online-trained Bayes decision rule. Finally, the
integer motion vector is searched on either of two fast search schemes for each type
of search area. It is believed that the proposed technique can solve the mentioned
problems of existing motion vector refinement approaches for a cascaded pixel
domain transcoder.

The remainder of this chapter is organized as follows: The time consumption
of motion estimation in the HEVC encoder is analysed in Section 3.2. An overview
of TZSearch is given in Section 3.3; the correlation of input and output motion vec-
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Figure 3.1: Time consumption distribution of the motion estimation in the HEVC encoder.

tors is analyzed in Section 3.4; thereafter, the proposed TZSearch improvement is
presented in Section 3.5; experimental results of the proposed technique on motion
estimation are shown in Section 3.6.

3.2 Motion estimation complexity analysis

In this experiment, the low-delay configuration is used. The prediction structure is
set IPPP with the number of reference frames of 4. The quantization parameter is
set {22, 27, 32, 37}. Four sequences with different motion activities ranging from
low to high (FourPeople, ParkScene, BQMall, and BasketballDrill) are encoded
using the reference software HM 7 [5]. The experiment indicates that motion
estimation is the most complex part of the encoder with a consumption of 62%
encoding time.

The motion estimation process in HEVC includes four steps. The first step
is advanced motion vector prediction (AVMP). The output of the AVMP process
is the predictor motion vector of a PU. Then, the optimal integer motion vector
is obtained. Currently, TZSearch is used in the reference software for the integer
motion estimation. Finally, the optimal integer motion vector is then refined at the
half-pixel accuracy followed by a refinement at quater-pixel accuracy. The com-
plexity of these four steps in terms of time consumption is depicted in Figure 3.1.

As we can see from Figure 3.1, the search for the predicted motion vector is
notably less time consuming than the other parts with about 4% total time en-
coding. The TZSearch and quarter-pixel refinement processes are the most time
consuming components that cost about 22% total encoding time. Since the number
of inpthe half-pixel motion estimation
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3.3 Test Zone Search algorithm
Test Zone Search (TZSearch) algorithm has been implemented in the HEVC ref-
erence software (HM) [4] as a fast tool to find the integer motion vector of a pre-
diction unit. Generally, this technique consists of three processes, including first
search, raster search, and refinement.

3.3.1 First search

The goal of this step is to estimate the global minimum point. This makes use
of either a diamond search or square search with different stride lengths from 1
through the search window size in multiples of 2. Currently, the diamond search
(Figure 3.2) is adopted as default in the reference software. A diamond search for a
search window size of 64 results in 6 grids with 8 inspection points and 1 grid with
4 inspection points. In total, the RD cost of 52 (6x8+4) search points are obtained
using Equation 3.1. The motion vector of the minimal RD cost point is selected.
The distance between (best distance) this motion vector and the predictor is used
to decide whether this motion vector is further refined. If this distance is zero, the
predictor motion vector is assumed to be the global optimum. Therefore, a further
refinement is unnecessary and the search is stopped. Otherwise, this output is then
refined further in the next steps.

RD(MV ) = SAD(O,P ) + λ.R(MV − pMV )

SAD(O,P ) =
X∑
x=1

Y∑
y=1
|O(x, y)− P (x, y)| (3.1)

where, SAD is the sum of absolute difference between the original PU (O), and
its predicted PU (P ), at the position located by the motion vector in the reference
frame; λ indicates the Lagrange multiplier; pMV is the prediction motion vector
that is obtained by the advanced motion vector prediction (AMVP) process; R(.)
represents the number of bits for encoding the motion vector difference; X and Y
are the width and height of the PU, respectively.

3.3.2 Raster search

The raster search is only carried out if the best distance obtained from the first
search step is larger than a predefined value. This predefined raster value can be
customized in order to provide a trade-off between the complexity of TZSeach and
coding performance. Currently, this value is set 5 in the default configuration file.

The raster seach scans thorough whole search window by a stride of the prede-
fined raster value. Figure 3.3 illustrates the raster search with a stride of 5.

It is important to note that TZSearch is conditionally performed. Choosing
the initial search point being near the global optimum results in a reduction the
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best distance. Therefore, improving the performance of selecting the initial search
point would avoid the raster search, thus a reduction of TZSearch complexity is
made. This is a motivation of re-defining the initial search point.

3.3.3 Raster/star refinements

The refinement is performed when the distance between the predictor and the out-
put of first search (or of raster search, if raster search is invoked) is non zero.
Either a square search or diamond search is carried out. In the default configura-
tion, diamond search is enabled. The number of evaluated points in the refinement
is limited to 8.

3.4 Analysis of input motion information

Due to the fact that the motion vector of a block in the output video and those of
the collocated blocks in the input video reflect the motion of the same object, they
are highly correlated. This section evaluates this correlation to figure out which
representation of input motion vectors mostly correlates with the motion vector of
an output block. To do this, the RD costs of points in a [5, 5] window around an in-
put motion vector are measured. Then, the probability that the motion vector with
minimal RD cost (the global optimization point) located in the observed window
is calculated.

In the experiment, four sequences with an activity ranging from low to high
have been selected. These can be categorized into low motion and low complexity
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Figure 3.3: Raster search pattern with a stride of 5.

Output PU Input co-located PUs 

Figure 3.4: An output PU associates with multiple input PUs.

(FourPeople), medium activity (ParkScene, and BQSquare) and high motion (Bas-
ketballDrill). These sequences have been encoded using a quantization parameter
(QP) of 32. Then, the bitstreams were decoded and re-encoded using a higher QP
of 36.

Since an output prediction unit (PU) may overlap several input PUs as illus-
trated in Figure 3.4, the motion of this output PU may correspond to multiple
input motion vectors. Therefore, we present these multiple input motion vectors in
a single representation. This presentation can be either the weighted mean motion
vector (wmMV) or the median motion vector (meMV) of the input motion vectors.
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The wmMV and meMV vectors are defined by Equation 3.2 and Equation 3.3.

wmMV =

N∑
i=1

wiMVi

N∑
i=1

wi

(3.2)

meMV = Median{MV1, ...,MVN} (3.3)

where N is the number of the input collocated PUs. wi and MVi represent the
number of pixels and the motion vector of ith PU in the input collocated PU set.

In addition, this single motion vector can be the input motion vector with min-
imum RD cost (the best input motion vector - biMV) defined by Equation 3.4 (S is
the set of input motion vectors).

biMV = arg min
x∈S

RD(x) (3.4)

Observing the probability distributions shows that biMV demonstrates a better
coding performance than other instances of the input motion vectors. In terms
of RD cost per pixel, the mean of RD(biMV) is smaller than that of RD(wmMV)
and RD(meMV). For instance, the mean of RD(biMV) cost is 13.89 while these of
wmMV and meMV are 17.73 and 17.46, respectively. There is a higher probability
where the global optimization point is located in the [5, 5] window that centered
on biMV compared to windows centered on wmMV or meMV (Figure 3.5). In
particular, there is a 29% probability that the output motion vector equals biMV.
High probability of biMV being the output motion vector demonstrates that biMV
makes the best initial motion vector for motion estimation in transrating.

The inferior performance of using wmMV or meMV became clear when the
output PU corresponds with a lot of smaller PUs in the collocated input area. Cer-
tainly when this number of input motion vectors got high and divergent, wmMV
and meMV were no longer accurate in describing the motion of output PUs.

3.5 Proposed fast TZSearch algorithm

The flow chart of the proposed integer motion estimation algorithm is illustrated
in Figure 3.6. The proposed algorithm includes four steps.

Base motion vector selection: The base motion vector (bMV) selection is
performed to improve the quality of the initial point. Base on the characteristics
of the base motion vector, a search pattern is selected for the first search step. The
selection is described as follow.

Search pattern selection: Three search patterns include an evaluation of 4
points around (bMV), fast three-step search, and triangle search are proposed.
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Figure 3.5: Distribution of output motion vector in 5x5 windows centered around biMV ,
wmMV , and meMV . The output motion vector is mostly located around biMV .

When the best input motion vector and the predictor are identical, only four point
around the predictor are evaluated. Otherwise, the search range is classified into a
small area ([5, 5] window) or a larger window. The classification is a Baye’s deci-
sion rule which is obtained by an online training process. For the small window,
F3SS is deployed while triangle search is used for a large window search.

First search: The first search estimates the global optimum using of three
proposed search patterns. After the search pattern is decided, the first search is
performed. The output of the first search is considered for the raster search and
refinement.

Raster search: When the 4-point search pattern or F3SS is used in the first
search, the raster search is skipped. Otherwise, the distance between the output
and the predictor is checked to decide whether the raster search is performed. If
this distance is larger than the predefined raster value, raster search is invoked.

Refinement: The refinement step is left unchanged compared to TZSearch.
These five steps are discussed in more details in the following sections. In

the flowchart (Figure 3.6), an online training is performed during encoding the
first N frames of each sequence to obtain the threshold which is used to select
search pattern. It should be noted that during the training phase, the un-optimized
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Figure 3.6: Flowchart of the proposed fast TZSearch algorithm for transrating. The raster
search is conditionally invoked when the between the output of first search and bMV is
larger than the predefined raster value. The refinement is performed when this distance is
non zero.

TZSearch algorithm is performed.

3.5.1 Base motion vector selection

Selection of the base motion vector
In this step, the bMV motion vector is derived. The best motion vector (biMV)

of collocated input motion vector is obtained using the criteria defined by Equa-
tion 3.4. From the candidate set of pMV and biMV, the base motion vector bMV is
selected as in Equation 3.5. The unselected motion vector is stored as a reference
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Figure 3.7: RD costs of the base motion vector (0, 0) and motion vectors that differ from
this vector by various offsets.

motion vector (rMV) to support the triangle search in the first search step.

bMV = arg min
x∈{biMV,pMV }

RD(x) (3.5)

Evaluation of the base motion vector
In order to evaluate the quality of the base motion vector, the RD cost and the

probability that this motion vector is the optimal integer motion vector of an output
block have been measured. These values are compared to that of other motion vec-
tors which differ from the base motion vector by various offsets. Four sequences
with the transrating scheme presented in Section 3.4 have been evaluated. Experi-
mental results are shown in Figure 3.10 and Figure 3.8.

The RD cost surface in Figure 3.10 demonstrates that the base motion vector
provides the best rate-distortion performance relative to other points. This means
that the base motion vector has a high correlation with the global optimization
point. Moreover, the RD cost of the base motion vector of the case biMV and
pMV are identical is smaller than that when biMV and pMV are different. On
the other hand, the base motion vector and the global optimization point have a
higher correlation in case biMV and pMV share the same value. This correlation
is depicted by the distribution surface in Figure 3.8.

As can be seen from Figure 3.8, there is a notable probability that the base
motion vector is the output integer motion vector. When biMV matches pMV, this
probability is measured at a value of 65% on average. In addition, there is an 85%
probability that the best integer motion vector is the base motion vector or 4 points
around the base motion vector towards the horizontal or vertical directions. On the
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Figure 3.8: Probability that a motion vector is the output integer motion vector of a block.
(0, 0) is the base motion vector.
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other hand, when biMV and pMV are different, these probabilities become lower
with 30% and 50%, respectively.

This analysis implies that when biMV and pMV are the same, only a slight re-
finement for the base motion vector is required for a satisfying performance. Oth-
erwise, a larger search area should be used to refine the base motion vector. This
conclusion is exploited in the search pattern selection of the proposed approach.

3.5.2 Search pattern selection

Search area selection has been motivated by the fact that when the RD cost of
encoding the prediction unit using bMV (R(bMV)) is small enough, it may be con-
sidered as the global optimization point. Therefore, the refinement window can be
small. On the other hand, a high RD cost indicates this point is a local optimum.
Consequently, the global optimum should be re-evaluated in a larger window. The
appropriate window size is selected by evaluating two criteria as visualized in the
’search pattern selection’ part of Figure 3.6.

• When biMV and pMV share a value, both the input video stream and the
spatial information concur on the best MV. As measured in Section 3.5.1, in
this case, there is a significant probability of 85% that the base motion vector
or 4 points around this motion vector are the optimal integer motion vector.
Therefore, only four points around this initial motion vector are evaluated.

• When biMV and pMV do not concur, further search in a larger window is
performed. However, the size of the window should be adaptively deter-
mined such that the complexity of searching is lowered while retaining cod-
ing performance. The window size is derived upon a threshold (Th) of RD
cost of bMV. The threshold is derived under a Bayes decision rule relying
on the RD cost of bMV during an online training phase after which the
search window of a bMV is decided upon this threshold. If the RD of bMV
is smaller than Th, the search area is limited to a [5, 5] window; otherwise,
a larger window is used. In the following section, the derivation of Th is
interpreted.

In order to early determine the search area for a given bMV, a two-class clas-
sification problem is defined with a [5, 5] window and a larger window, C1 and
C2. In other words, C1 and C2 are the events that output whether a motion vector
is inside the [5, 5] window or outside this window, respectively. The RD(bMV) is
obtained to determine which of the two classes should be assigned to the bMV.
Using Bayes’ theorem, the posterior probabilities of classification are given as

p(Ck|R) =
p(R|Ck)p(Ck)

p(R)
. (3.6)
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Table 3.1: Probabilities for determining Th

Name Meaning
p(Ck) Probability of event Ck
p(R) Probability of quantized RD(bMV )

p(R|Ck) Probability of quantized RD(bMV )given Ck

Herein p(R|Ck), p(R), and p(Ck) are defined in Table 3.1 andR =RD(bMV ).
To minimize misclassification rate, each value of RD(bMV) is assigned to the

class for which the posterior probability p(Ck|R) is largest [6]. As shown in Fig-
ure 3.9(b), Th is the point for which p(C1|R) = p(C2|R). Since RD(bMV ) is real
and positive, it is quantized by a step of 1. Therefore, the condition p(C1|R) =
p(C2|R) may no longer be valid. To solve this problem, the final formula for Th is
expressed as

Th = arg min
r

|P (C1|R = r)− P (C2|R = r)| (3.7)

The distribution of RD(bMV ) significantly depends on the quantization pa-
rameter, the CU size and video content. To ensure their successful adaptation to
different block sizes, a threshold is calculated for every CU size independently,
i.e., four thresholds in total. The probabilities to determining the thresholds are
obtained through an online training phase. The training phase happens during the
encoding of the first N frames of video sequence. During the training phase, a
diamond search is applied as in TZSearch. At the end of the training phase, the
necessary probabilities for calculating Th are generated. Th is then calculated us-
ing Equation 3.7. From then on, the search range of PUs in the remaining frames
is decided using this Th.

3.5.3 Proposed fast search patterns

Two search patterns are proposed for each type of search area class. For the win-
dow of [5, 5], a fast three steps search (F3SS) with early termination of refinement
is applied. A larger window encounters the adoption of a triangle search derived
from the diamond pattern.

Fast three steps search
The proposed F3SS works on the assumption that the motion estimation match-

ing error decreases monotonically as the search moves towards the position of the
global minimum error [7]. F3SS carries out three search iterations starting from
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CHAPTER 3 85

bMV (see for example Figure 3.11). The root of the current iteration is the best
point of the previous iteration. During an iteration, the pending evaluated neigh-
boring points (top, left, bottom, right) are considered. Additionally, the third itera-
tion will experience the evaluation of the corner of the [5, 5] window if applicable.
An iteration is terminated if the best RD cost of this iteration is lower than the RD
cost of its root.

Triangle search
Our analysis has shown that the distribution of the output motion vector is di-

rected towards the rMV (which was obtained during base motion vector selection).
More specifically, the output motion vector is mostly located between bMV and
rMV. Therefore, the diamond search is adapted to a search range (SRT ) limited
to the triangle as illustrated in Figure 3.12. However, when rMV lies on a line of
the diamond pattern, only this line is evaluated. The search range is limited as in
Equation 3.8 where the constant of 3 ensures that the search size is larger than 2.

SRT = max{3, |bMVx − rMVx|, |bMVy − rMVy|} (3.8)

3.6 Experimental results

The proposed fast motion estimation (PFME) has been built on the top of the pre-
viously presented B2TTLP PU work [8] which started from HEVC reference soft-
ware v7.0 [4]. B2TTLP PU reduces the computational complexity of CU and PU
partitioning while the motion estimation is optimized by the proposed TZSearch
algorithm. In order to evaluate the performance of PFME, a performance compar-
ison between the proposed technique and four other motion estimation strategies
have been made: RWM, RMD, WMRefine, and MDRefine. The trivial RWM and
RMD methods directly use the weighted mean motion vector (wmMV) and the
median motion vector (meMV) of the input motion vectors as the optimal inte-
ger motion vector without a refinement in the integer level. On the other hand,
WMRefine and MDRefine respectively refine wmMV and meMV vectors by using
the proposed adaptive search method to obtain the optimal integer motion vector.
PFME, WMRefine, and MDRefine differ for their base motion vector: PFME uses the
best input motion vector (biMV) as the base motion vector while the other methods
use wmMV and meMV.

Performance results are based on the low-delay coding conditions as defined
in [5]. Input QP1 was chosen from {22, 27, 32, 37}. Output QP2 is higher than
QP1 by a ∆QP with ∆QP = 2, 4, 6. All sequences of class B, C, D, and E
(16 sequences in total) have been tested. The performance of the aforementioned
algorithms is evaluated by comparing with B2TTLP PU and an unmodified cascaded
decoder encoder (Ref ) in terms of transrating time saving and Bjøntegaard Delta
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Bit rate (BDBR) [9]. The time saving term is defined as in Equation 3.9. In the
BDBR measurement, Peak Signal to Noise Ratio (PSNR) calculations between the
re-encoded and the original sequence are used. Furthermore, the first 10 frames
are used for the Bayesian training phase of the proposed PFME strategy. Detailed
results of the RWM and PFME are shown in Table 3.2, while the comparison
results are presented in Table 3.3.

TS(%) =
TOriginal (ms)− TProposed (ms)

TOriginal (ms)
(3.9)
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Table 3.3: Average performance results of different motion estimation strategies

Method
Compare with Anchor Compare with B2TTLP PU

BDBR TS BDBR TS
RWM 3.23 84.30 0.58 22.00
RMD 3.13 84.08 0.48 21.42
WMRefine 2.78 83.11 0.13 16.71
MDRefine 2.73 82.91 0.08 15.76
PFME 2.54 83.06 -0.11 16.45
B2TTLP PU 2.65 79.74 0.00 0.00

As can be seen from Table 3.2, compared to the state-of-the-art B2TTLP PU

technique, the proposed method outperforms in terms of both coding performance
and computational complexity reduction. In terms of bit rate, a 0.11% reduction
was reported. This advance results from the adaptive selection of the starting point
in TZSearch. In terms of transrating complexity, the proposed method achieves
a 16.40% reduction by early determining the search area combined with two pro-
posed fast search strategies for each search area. Overall, the proposed transrating
scheme significantly reduces the complexity by 83.06% with a slight increase of
bit rate (2.54%) compared to the unmodified cascade of decoder and encoder.

Experimental results in Table 3.3 show that RWM and RMD achieve simi-
lar performances at about 22% complexity along with bit rate increases by about
0.58% and 0.48% compared to the B2TTLP PU technique. In use of the proposed
refinement, these bit rate penalties are reduced to 0.13% and 0.08% for WMRefine
and MDRefine, respectively. Among these fast motion estimation strategies, the
proposed PFME technique demonstrates best coding performance. PFME is able
to achieve a similar complexity reduction of WMRefine and MDRefine (about
16%). In terms of bit rate, PFME can reduce the bit rate of the output video by
0.11% compared to the B2TTLP PU approach.

The proposed motion estimation approach outperforms two fast motion esti-
mation algorithms presented in [10, 11]. The Pan’s algorithm is able to reduce the
complexity of the encoder by 15% with a bit rate penalty of 0.55%. On the other
hand, the Yang approach achieves a complexity reduction of 11% with a negligible
bit rate reduction of 0.01%. Obviously, the proposed technique is superior in terms
of both the complexity reduction (16%) and the bit rate performance (-0.11%).

3.7 Conclusions and future works

In this chapter, the transrating scheme of HEVC video has been further improved
by optimizing the motion estimation step. A fast TZSearch algorithm is proposed
by utilizing the correlation between the motion information of the input and output
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video stream. The initial point for the proposed search algorithm is adaptively se-
lected from the input motion vectors and the median predictor while the search area
is determined using self-learning Bayes decision rules. Two fast search schemes
are proposed for each search area. Experimental results show that the proposed
algorithm can achieve a good coding performance in terms of RD performance
and complexity reduction for transrating. Together with the proposed fast cod-
ing block partitioning techniques, the proposed fast motion estimation scheme can
reduce the computational complexity of the HEVC transrater by 83% with only
2.54% bit rate penalty.

The proposed fast TZSearch has been applied in the transcoding context. How-
ever, it can be deployed for optimizing the motion estimation process of the HEVC
encoder. For instance, based on the rate-distortion cost, the search window can be
adaptively selected by using the proposed search pattern selection. Furthermore,
two fast search patterns would be used to derive the integer motion vector in a
small window. In a large window, a diamond search would be applied.

The work described in this chapter led to the following publication:

• Luong Pham Van, Jan De Cock, Antonio Jesus Diaz-Honrubia, Glenn Van
Wallendael, Sebastiaan Van Leuven, Rik Van de Walle. Fast motion estima-
tion for closed-loop HEVC transrating. In Proceeding of the IEEE Interna-
tional Conference on Image Processing (ICIP). October 2014.
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4
Spatial transcoding using machine

learning

4.1 Rationale and related work

Ultra-high definition displays have become commonplace in the current consumer
electronics market, leading to an increasing demand for ultra-high definition con-
tent. In heterogeneous multimedia environments, adapting the resolution of such
a high definition video to the display capabilities of multimedia terminals is espe-
cially necessary. This is due to the fact that while a video is a single presentation
with high resolution, it is often displayed on a large number of devices that are
differently characterized for their display resolution, processing capacity, battery
life, etc. Hence, downsizing the spatial resolution of the video stream to the screen
size of the end-user device would imply the device limitations. Firstly, since only
lowered resolution video is decoded, less at-device computation is required; thus,
the battery life is improved. Secondly, a reduction of spatial resolution leads to
a bit rate reduction of the video stream, which can save network bandwidth and
storage cost.

In the previous chapters, video adaptation with a small bit rate reduction(less
than 50%) has been investigated with the use of transrating. For a larger bit rate
reduction, spatial resolution down-scaling is highly recommended. Therefore, in
this chapter, we optimize the adaptation process where a high bit rate reduction or
resolution adaptation is needed by changing the spatial resolution of video.

Reducing the spatial resolution of video streams, which is also referred to
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as spatial transcoding, can be performed in the compressed domain or pixel do-
main. The resolution conversion in the compressed domain provides a very low
complexity solution with limited memory size requirements. On the other hand,
pixel-based resolution reduction is a high complexity approach, in which decoding,
pixel domain downscaling, and subsequently re-encoding are implemented. Given
the high importance of reducing the resolution of video streams, many spatial
transcoding techniques have been proposed for previous video coding standards
such as MPEG-1, MPEG-2, H.264/AVC (e.g., [1–4]). In this chapter, we focus on
efficient spatial resolution transcoding for the newly finalized HEVC standard.

Most of the spatial resolution transcoding techniques for the former coding
standards (e.g., MPEG-1, MPEG-2) performed the reduction in the compressed
domain, typically the frequency domain. In these techniques, reduced-resolution
blocks are constructed from the frequency components of the original DCT blocks
of the input video. Several arbitrary downsizing approaches in the transform do-
main have been described in [5, 6]. Although these techniques provided very low
complexity solutions, the low-resolution frames suffered from drift errors (as dis-
cussed in the open-loop transcoder in Section 2.1) due to which the quality of the
output video is gradually degraded.

Yin et al. proposed a so-called Partial Encode architecture to minimize the
drift error [7]. In this architecture, the error of residual signal due to mismatched
referencing is estimated. Then, a compensation process is performed to compen-
sate this error. Finally, the compensated residual is transformed and entropy en-
coded. Together with the insertion of intra-refresh frames, the proposed architec-
ture in [7] was able to eliminate the drift errors with a trade-off between quality
and transcoding complexity.

It is important to note that the aforementioned spatial transcoding techniques
would not work well for HEVC video streams since there is a significant difference
in the transforming structure between HEVC and the formers. MPEG-1, MPEG-
2 and H.264/AVC use the same transform block size for every macroblock (e.g.,
4×4 or 8×8), except the high profile of H.264/AVC in which the 4×4 and 8×8

transform block sizes are mixed in a frame. In contrast, HEVC applies a quad-tree
transform structure, in which a coding unit can be encoded by different trans-
form units of different sizes (ranging from 4×4 to 32×32). An arbitrary scaling
factor would result in a misalignment between the downsized block and its col-
located blocks in the original video as depicted in Figure 4.1. This misalignment
raises a huge challenge to derive the optimal transform unit structure of an out-
put block from the input blocks. Moreover, other mode mapping issues can arise
when performing the resolution downsizing process in the transform domain for a
pre-encoded HEVC stream. These issues include sub-block partitioning, multiple
reference pictures, and variable prediction direction in B pictures [3].

A closed-loop transcoder, which performs conversion in the pixel domain, pro-
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Output block in the 

low-resolution frame 

Co-located block in the 

full-resolution frame 

Figure 4.1: Misalignment in the transform domain between a block in the downscaled
frame and it’s collocated blocks in the original frame.

vides high coding performance to reduce the spatial resolution of a video stream.
This straightforward transcoding architecture, however, requires a huge amount of
computation associated with the re-encoder part. In order to reduce the computa-
tional complexity of a pixel-based resolution reduction approach, many techniques
have been proposed. These techniques can be grouped into two groups: motion
mapping and fast mode decision.

A motion mapping approach has been proposed for downsizing an H.264/AVC
video [8]. The motion of the output video is derived from the input motion vec-
tors using a weighted median filter. The obtained motion vector may be further
improved by using a quarter pixel refinement. By predicting the motion vectors,
motion estimation can be accelerated, which results in a reduced transcoding com-
plexity. This method can achieve a notable complexity reduction because search-
ing integer motion vectors in H.264/AVC has a high portion of the encoding com-
plexity. When this motion mapping approach is apply to a transcoder of HEVC
streams without an optimization of block partitioning, the complexity reduction
would be limited. The extensive observation in Chapter 3, the integer motion es-
timation takes a portion of 21% encoding time. Therefore, the motion mapping
approach is recommended after the deployment of a block partitioning optimiza-
tion.

Several fast mode decision techniques have been proposed to reduce the com-
plexity of a closed-loop transcoder [9–11]. These methods obtain the partitioning
mode of an output macroblock by down-scaling the partition of the input collo-
cated marcroblocks. Motion estimation is then performed with the derived parti-
tion. These methods, however, can work with a simple scaling factor of 2 while in
real applications; the scaling factor might be arbitrary.

Alternative techniques predict the encoding information by using machine learn-
ing to exploit the correlation between the coding information of the input and out-
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put video [12–18]. Different machine learning algorithms have been used in these
transcoding techniques. In [12] and [13], support vector machines (SVM [19])
are applied for transcoding H.264/AVC video. Decision trees (DT [20]) are also
widely used for transcoding [14–17]. More recently, the linear discriminant func-
tion algorithm has been used for transcoding a video from H.264/AVC to HEVC [18].

In the existing literature, most machine learning techniques for transcoding are
based on offline-training [12–17]. This means that the prediction model is trained
on a set of videos (the training set) and evaluated on a separate test set. In this
case, the prediction model only has to be trained once. However, such a model is
not content-adaptive. In [18], this problem is solved by using an online-training
approach. The prediction model is made content-adaptive by training on the first
L frames of the sequence to predict the decisions for the following frames. A
disadvantage of this approach is that retraining might be necessary after changes
in the content of the video.

The existing transcoding techniques demonstrate that the re-encoding com-
plexity can be significantly reduced by using machine learning. However, the fol-
lowing problems should be considered to achieve the best performance of transcod-
ing. Firstly, only a single machine learning algorithm is applied in existing tech-
niques. However, the effects of using different algorithms are unpredictable. Sec-
ondly, although attempts have been spent on using online training, an adaptive
feature selection mechanism has not been taken into account. Finally, the opti-
mization of machine learning parameters has not received much attention.

This chapter discuses several techniques to address these issues by applying
machine learning to fast downsizing of videos pre-encoded with high efficiency
video coding. As the main contribution to the state-of-the-art, the performance
of different machine learning strategies is investigated. To determine the opti-
mal strategy, optimized and unoptimized versions of different algorithms are com-
pared. Additionally, the potential benefits of content-adaptive feature selection are
examined and both online and offline training strategies are tested.

The rest of this chapter is organized as follows. First, the proposed arbitrary
downsizing architecture is described in Section 4.2. Then, the machine learning
model for predicting coding unit splits is proposed in Section 4.3. In this section,
the optimization of machine learning is elaborated on. Thereafter, a transcoding
complexity control mechanism, which can be used with some machine learning al-
gorithms, is presented in Section 4.4. The performance of the proposed techniques
is evaluated in Section 4.5. Finally, Section 4.6 conveys the conclusions drawn.

4.2 Arbitrary downsizing architecture

The proposed transcoding system is depicted in Figure 4.2. First, the input high
resolution HEVC video is decoded followed by the extraction of the coding infor-
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Figure 4.2: Proposed arbitrary downsizing architecture for HEVC video. Splitting of output
CUs is predicted by using coding information of the input video and features extracted from
the reconstructed video.

mation and raw video features of the reconstructed video. Based on the network
bandwidth constraints and/or the screen resolution of playback devices, the down-
sizing factor can be chosen. Using a non-normative downsampling filter [20], the
decoded video is then resized by dividing its width and height by this scaling fac-
tor. Meanwhile, the splitting behaviour of the CUs in the output video stream is
predicted using machine learning models. Finally, the resized video is re-encoded
using this predicted information. Details of building and optimizing the prediction
model are elaborated on in Section 4.3.

It should be noted that the arbitrary scaling factor may lead to misalignment
between the collocated area of the output CU and the collocated input CUs. In this
case, the existing mode mapping algorithms [3, 21] cannot be used. However, this
problem can be solved by the proposed machine learning method. The correlation
between the block size of the output CU and the coding information of partly
collocated and fully collocated CUs is exploited by machine learning.

4.3 CU splitting prediction models

The CU splitting prediction models are constructed using machine learning algo-
rithms to predict the CU structure of the output video. There are several chal-
lenges to be considered when building the prediction models in order to improve
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the transcoding performance. First, the accuracy of the prediction should be im-
proved as much as possible; if the prediction is more accurate, the quality loss will
be smaller. Furthermore, the prediction step needs to be computationally effec-
tive. Secondly, the model should be adaptive, such that it is possible to construct
a model and optimize it regardless of transcoding parameters such as the scaling
factor of the video resolution.

This chapter proposes several strategies to handle the above challenges to
downsize the spatial resolution of an HEVC stream based on machine learning.
Since either an online or an offline training mechanism can be applied, these mech-
anisms are described in the following subsection. To achieve optimal prediction
accuracy, several machine learning algorithms are then investigated. For these ma-
chine learning algorithms, the optimal parameters are adaptively chosen depending
on the training data as described thereafter. The end of the sections presents the
justifications on how best features are selected during training by using an adaptive
feature selection mechanism. This mechanism aims to lower overall complexity
of the machine learning system.

4.3.1 Training mechanism

Three prediction models, which respectively predict the splitting behavior of CUs
at depth 0, 1, and 2, are constructed with machine learning algorithms. The pur-
pose of the training process is to build these prediction models based on a data set.
The data set includes multiple samples. Each sample represents values of features
(the coding information of the input CUs) and the split flag of the corresponding
CU in the output video. Figure 4.3 visualizes a data set while Figure 4.4 shows an
example of a sample.

The performance of several machine learning algorithms has been evaluated
in the proposed transcoding architecture. For these algorithms, either an online or
offline training strategy can be applied.

3 

Prediction models are trained using Random Forests 

x11 x12 … x1M

x21 . x1M

… . … 

xN1 … … xNM

M features 

N samples 

y0

y1

… 

yN

yi = split_flag 

Co-located 

xi yi = 1

Figure 4.3: A data set with N samples. Each sample has M features and the output.
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3 

Prediction models are trained using Random Forests 

Collocated 

yi = 1 
xi 

Figure 4.4: A sample of data set. The coding information of the collocated blocks (e.g., the
splitting behavior at the CU, PU, TU levels, coding mode, and motion vectors) is utilized to
predict the split flag an output CU.

Online training
For online training, a set of N frames is first transcoded without acceleration.

Then, the coding information from the input bit stream, the features of the decoded
video and the split-flags of the CUs in the resized sequence are extracted from these
L frames. Based on this training data, the machine learning parameters and the
important features are selected. The three prediction models are then built using
these optimal settings. Using these models, the CU structure of the following
frames can be predicted to reduce the complexity of the re-encoding step.

The advantage of this online training mechanism is that the parameters of the
machine learning models adapt to the content of the video. Additionally, this
method does not depend on the coding configuration, e.g., it is independent of
the scaling factor used during transcoding. However, if the properties of the video
content greatly change (e. g., a scene change or zooming), the prediction accuracy
of the model might be reduced and retraining might be necessary.

Offline training
Alternatively offline training can be used, where the first E frames of selected

sequences are used as a training set to build the three prediction models. The other
sequences are then encoded using these models. One of the challenges of offline
training is that it needs a set of training sequences that sufficiently represents the
complete test set. To achieve this, the training sequences are selected by using
a cross-validation technique. The prediction models are first constructed using
only a single training sequence with input resolutions varying from 832x480 up to
1920×1080 pixels as listed in [22]. The number of training frames is based on the
resolution of the sequence. The 1920×1080, 1280×720, and 832×480 sequences
respectively use 50, 75, 100 frames for training. After a prediction model is built
using a single sequence, all other sequences are transcoded using this model. The
three sequences that result in the highest compression efficiency for the test set are
then combined as the final training set on which final offline prediction models are
then trained.

The advantage of offline training is that the model only needs to be trained
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once for a single scaling factor. However, this also means that for each possible
scaling factor, a different model is needed. This might make offline training less
fitting for arbitrary downscaling than for, e.g., dyadic downscaling or transcoding
between different video standards. Moreover, the performance of the models might
be negatively affected if video sequences in the test set differ greatly from the
training set.

4.3.2 Evaluated machine learning algorithms

Several supervised machine learning algorithms, which label training data and pre-
dict the correct label for an input sample, can be used for classifying a set of input
data [19, 23–28]. One of the goals of this chapter is to investigate if there is a
significant difference between machine learning techniques. Therefore, this chap-
ter elaborates on the performance of four commonly used algorithms: decision
trees (DT) [24], RandomForest (RF) [23], adaptive boosting (AdaBoost) [25], and
support vector machines (SVM) [19]. The implementation of these algorithms is
based on the Python programming language and can be found in [29]. An overview
of these algorithms will be provided next.

4.3.2.1 Decision tree classification

The DT algorithm is a technique for classification based on simple decision rules.
The model consists of a root, internal nodes, leaf nodes, and branches. At the root
and each internal node, the input sample is evaluated using the decision rule of that
node. Depending on the outcome of that rule, the input sample follows one of the
branches originating from the node. When the input sample reaches a leaf node,
the DT model returns the prediction given by that leaf node. Implementation-wise,
a tree consists of many if-else statements, which results in a low complexity for
generating predictions. Decision trees are also often used since the model can be
easily visualized. However, this algorithm bears a disadvantage in its possibility
of an overcomplicated tree resulting in overfitting, which negatively influences the
performance of the DT model on test sets. A decision tree is also highly sensitive
to small variations in the data set, denoting its potential generation of different
results when some samples are removed or added. The splitting rule at each node
of the decision tree is derived as following.

These are several algorithms that can be used to obtain the splitting rule of a
node. Notable ones include ID3 (Iterative Dichotomiser 3 [30], C4.5 [31], CART
(Classification and Regression Tree [32]), and CHAID (CHi-squared Automatic
Interaction Detector [33]). In this research, the decision tree has been built in use
of CART.
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Pl Prxj ≤ xj
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Figure 4.5: Splitting rule of CART.

Building decision tree using CART algorithm based on Gini splitting rule [34]
Let tp be a parent node whose two child nodes, i.e., tr (right node) and tl (left

node). Consider the training sample with variable matrix X with M number of
variables xj and N the number of training samples. Let class vector Y consist of
N samples with total amount of K classes. In the proposed transcoder, K is 2 and
Y represents the split flag value of the output CUs.

The splitting rule performs the splitting of learning sample into smaller parts.
At each node, data have to be divided into two parts with maximum homogeneity
as shown in Figure 4.5 where xj is the jth variable and xRj is the best splitting
value of variable xj .

The maximum homogeneity requirement of child nodes is characterized by the
so-called impurity function i(t). It should be noted that the impurity of parent node
tp is constant for any of the possible splits xj ≤ xRj , j = 1, ...,M . Hence, the
maximum homogeneity i(tc) of child nodes will be equivalent to the maximization
of change of impurity function δi(t):

δi(t) = i(tp)− E[i(tc)]. (4.1)

Let Pl, Pr be probabilities of right and left nodes, respectively. The change of
impurity can be rewritten as:

δi(t) = i(tp)− Pli(tl)− Pri(tr). (4.2)

Consequently, in order to obtain the maximum homogeneity of child nodes,
the CART algorithm will solve the following maximization problem:

arg max
xj≤xR

j ,j=1,...,M

[i(tp)− Pli(tl)− Pri(tr)]. (4.3)

By solving Equation 4.3, CART will search through all possible values of all
variables in matrix X for the best classification question xj ≤ xRj which maxi-
mizes the change of impurity function i(t).

The remaining question is how the impurity function i(t) can be defined. In
theory, there are several definitions of the impurity function, e.g., Gini splitting
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rule, Twoing splitting rule. Among these rules, Gini splitting rule is the most
widely used in practice. This rule defines the impurity function as:

i(t) =
∑
k 6=l

p(k|t)p(l|t). (4.4)

where k, l is the class index; p(k|t) represents the conditional probability of
class k provided we are in node t.

Applying the impurity function ( 4.4) to ( 4.2), we have:

δi(t) = −
K∑
k=1

p2(k|tp) + Pl

K∑
k=1

p2(k|tl) + Pr

K∑
k=1

p2(k|tr) (4.5)

Hence, the Gini splitting algorithm solves the following maximization problem:

arg max
xj≤xR

j ,j=1,...,M

[−
K∑
k=1

p2(k|tp) + Pl

K∑
k=1

p2(k|tl) + Pr

K∑
k=1

p2(k|tr)]. (4.6)

The Gini splitting algorithm will search in training set for the largest class and
isolate it from the rest of the data.

Expending of a node will be stopped when a certain condition is matched. For
instances, splitting of a node is terminated when the depth of this node reaches the
allowed maximum depth, or this node contains less than minimum samples split
samples.

4.3.2.2 Adaptive boosting

The advantage of decision classification is that decision trees are not stable. A
small change in the data can make a large difference, which results in a perfor-
mance degradation of the classification.

AdaBoost improves the performance of a weak classifier such as a decision
tree by using an iterative approach. The main purpose of adaptive boosting is
to construct a classification rule C(x) with the lowest misclassification error rate
(MER) for a give learning data set. With the assumption that the training data are
independently and identically distributed samples from an unknown probability
distribution Prob(X,C), then MER for C(x) is defined in [35] as:

EX,CIC(X)6=C = EXProb(C(X) 6= C|X)

= 1− EXProb(C(X) = C|X)

= 1−
K∑
k=1

EX [IC(X)=kProb(C = k|X)].

(4.7)
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Algorithm 4 AdaBoost algorithm [25]

1: Initialize the weights for learning samples wh = 1/n, h = 1, 2, ..., N .
2: for i = 1 to I do

Fit a classifier T (i)(x) to the training data using wh.
Compute

err(i) =
N∑
h=1

whI
(
ch 6= T (i)(xh)

)
/
N∑
h=1

wh.

Compute

α(i) = log 1−err(i)
err(i)

.

Update new weights for learning samples

wh ← wh.exp
(
α(i).I

(
ch 6= T (i)(xh)

))
, h = 1, 2, ..., N .

Re-normalize wh

3: end for
4: Output

C(x) = arg maxk
I∑

i=1

α(i).I
(
T (i)(x) = k

)
.

It is clear that, solving the maximization problem 4.8 will minimize the misclassi-
fication error quantity.

C∗(x) = arg max
k∈K

Prob(C = k|X = x). (4.8)

The Adaboost algorithm performs an iterative procedure that combines many
weak classifiers to construct the classifier C∗(x). The procedure is initiated by
building a classifier (e.g., decision tree) with the use of an unweighted training
sample. At each iteration, training samples are assigned a weight, and a new clas-
sifier is built using the new weight. At the end of an iteration, the classifier is
assigned a score. The final classifier is defined as the linear combination of the
classifiers from each iteration. Let T (x) represent a classifier that maps a class la-
bel to x, then the Adaboost algorithm handles I iterations as in Algorithm 4, where
I is the number of boosting iterations.
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4.3.2.3 Random forest

Random forest (RF) classifier is also an improvement of decision tree. The de-
cision of the random forest classifier is based on the vote from multiple decision
trees. To construct a tree in the RF, a subset of features is randomly selected from
all available features. The decision tree is then built with these features based on
a sub set of learning samples. The final decision of RF is derived by taking the
majority vote of these decision trees as follows:

C∗(x) = arg max
k∈K

t∑
i=1

fi(x, k). (4.9)

where fi(x, k) is the vote of tree ith. If tree ith assigns x a label k, fi(x, k) is
1. Otherwise, this constitutes 0.

By randomly building these trees and combining these decisions of multiple
trees to make the final decision, the random forest algorithm can address the dis-
advantage of the decision tree algorithm that is highly sensitive to learning data.
However, this algorithm is more computationally complex since multiple trees
need to be constructed.

4.3.2.4 Supported vector machine learning

While the previous three algorithms use rule-based decision tree classification,
supported vector machine (SVM) is memory-based. In SVM, the dataset is mapped
to a high-dimensional space with the goal of constructing a hyper-plane that max-
imizes the distance between samples belonging to different classes. As a result,
SVM has higher storage and computing requirements than DT-based algorithms.
Moreover, the complexity of the algorithm greatly increases with the number of
features and samples.

To construct a classification based on SVM, we consider a binary classification
problem of which a sample is assigned a label of either 0 or 1. The main idea of
SVM is to obtain a unique separating hyperplane that maximizes margin between
two classes. Given N training data samples:

{xi, yi}Ni=1, xi ∈ RM , yi ∈ {0, 1}. (4.10)

where {xi, yi} is the ith training sample, xi is the input feature vector and yi
is the class label which is the output label of xi.

The decision rule of the SVM algorithm is based on a discriminant function
associated with the hyperplane. The function is defined in Equation 4.11, where
the kernel function φ(.) is a nonlinear function that maps the input xi into a high-
erdimensional space.

f(x) = wTφ(x) + b (4.11)
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Mathematically, the hyperplane is derived by minimizing the cost function de-
fined by Equation 4.12 with the constraints in Equation 4.13.

J(w) =
1

2
wTx =

1

2
w2 =

N∑
i=1

w2
i . (4.12)

yi
(
wTφ(xi)

)
≥ 1. (4.13)

To make the classification problem more general, slack variable ξ and user-
defined regularization C are introduced. Hence, the classification problem is de-
rived by minimizing the following quantity:

J(w) =
1

2
wTx+ C

N∑
i=1

ξi (4.14)

subject to

yi
(
wTφ(xi) + b

)
≥ 1− ξi
ξi ≥ 0.

(4.15)

With the introduction of ξ and C, the optimization in Equation 4.14 becomes
a trade-off between the empirical risk (i.e., the training errors represented by the
second term) and model complexity (the first term) [36]. It has been proven that,
the optimization of this cost function can be solved by the saddle point of Lagrange
function:

Γ(w, b, α, ξ, β) =
1

2
w2 + C

N∑
i=1

ξi

−
N∑
i=1

αi

(
yi
(
wTφ(xi) + b

)
− 1 + ξi

)

−
N∑
i=1

βiξi.

(4.16)

where αi and βi are Lagrange multipliers associated with the constraints in
Equation 4.15. The Lagrange multipliers are derived by solving the following
maximization problem:

α∗ = arg max
α

N∑
i=1

αi −
1

2

N∑
i=1

N∑
j=1

αiαjyiyjK(xixj). (4.17)
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Figure 4.6: Examples of Classification using SVM.

subject to
N∑
i=1

αiyi = 0, C ≥ αi ≥ 0, i = 1, 2, ..., N (4.18)

Herein, K(xixj) = φT (xi)φ(xj)) is the kernel operator. The point xi with a
strength of αi is called support vector.

The problem in Equation 4.17 can be solved by using the Karush-Kuhn-Tucker
theorem [37]. In the scope of this research, the Gaussian Radial Basis Function
(RBF) is investigated as the kernel function since it handles both the non-linear
and linear case, and has fewer numerical difficulties. An example of SVM classi-
fication using a non-linear RBF kernel is visualized in Figure 4.6.

4.3.3 Content-adaptive parameter selection

The classification performance depends not only on the learning algorithm, but
also on the parameters of this algorithm. For a given algorithm, the classification
accuracy varies widely when the parameter settings change. Therefore, a parame-
ter selection method has to be deployed to select proper parameters for a given data
set. The meaning of these parameters is summarized in Table 4.1. In the tree-based
algorithms, max depth and min samples leaf of a tree are the most important
parameters. In SVM, two parameters of the kernel, C and γ significantly affect
the prediction performance. Additionally, the number of trees (ntree) in a random
forest affects not only the coding performance but also the prediction time. A high
ntree increases the accuracy of the prediction. However, it leads to a higher pre-
diction complexity since the number of trees that need to be evaluated increases
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Table 4.1: The non-optimized machine learning parameters.

Algorithm Parameters Meaning Default

SVM C Parameter C of the error term 1
γ Kernel coefficient for the kernel 0

Adaboost, max depth The maximum depth of the tree None

DT, RF
min sam-
ples leaf

The minimum number of samples
required to be at a leaf node 1

RF ntree Number of trees in the forest 10

linearly with ntree [29]. The parameter selection for tree-based algorithms and
SVM is presented first. Then, the proposed method for ntree selection is given.

4.3.3.1 Optimization of general parameters

General parameters of machine learning algorithms can be derived by using a grid-
search with cross-validation [36, 37]. This approach tests all possible combina-
tions for a set of parameters. The combination with the best cross-validation ac-
curacy is chosen. In this chapter, max depth is selected from {3, 6, 9, 12} while
min samples leaf is {1%, 2%, 3%, 4%, 5%, 6%} of the total number of sam-
ples in training data. C lies in the range of {1, 10, 50, 100, 500, 1000} while is
{10−1, 10−2, 10−3, 10−4, 10−5}.

4.3.3.2 Proposed ntree selection mechanism

Selecting ntree in RF should achieve a trade-off between prediction accuracy and
prediction time. If a grid-search is applied, a high ntree is often selected from the
given set, resulting in a high prediction complexity. Hence, this approach is not
ultimately optimal for selecting ntree.

We propose an efficient mechanism for ntree selection based on the Out-of-
Bag error (oobE) - a parameter to estimate the prediction error of a random forest
model [29]. First, the estimation of this oob error is presented, and the proposed
ntree for the random forest algorithm is given thereafter.

Out-of-Bag (oob) error calculation:
We consider building a random forest model with t trees (classifiers) based on

training set X containing N samples (xi, yi).
In order to construct t trees of the model, X is randomly re-sampled to create

t bootstrap datasets (S = {S1, S2, ..., St}). Each classifier Ci is constructed by
learning on a bootstrap Si. When all classifiers are generated, oobE is derived as
follow.
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The prediction error for every sample (xi, yi) in the original training set X is
evaluated. For each (xi, yi), a set of classifiers C is selected from t trees such that
all selected classifiers eject (xi, yi). Let K be the number of selected ones. The
misclassification rate mi of (xi, yi) is given as:

mi =
1

K

K∑
k=1

f
(
Ck(xi)|yi

)
(4.19)

Herein, f(.) is 1 if the classifier Ck returns yi for the input xi. Otherwise, this
quantity is 0.

The oobE quantity of the model is the mean of misclassification rates of all
samples in the training sets:

oobE =
1

N

N∑
i=1

mi (4.20)

Selecting ntree based on oob estimation:
The prediction performance based on oobE of a classification model is defined

as follow:
oobP = 1− oobE (4.21)

When ntree increases, the oobP score increases accordingly. However, after a
certain number of trees, the prediction performance stabilizes around a threshold
Thr. This stabilization implies that with a certain number of trees, overfitting is
mostly eliminated in building the classification model based on the given training
set. The threshold Thr is derived by fitting a curve using a classification and re-
gression trees (CART) [32] model as follows. First, oobP quantities are obtained
for values of ntree from 5 to 50. A CART model is then generated to fit the oobP
scores (Figure 4.7). Thr is set as the maximum oobP of the CART model, since
this is the value to which oobP converges. Then, the optimal ntree is selected as:

ntree = arg min
n∈(5:50)

{oobPn ≥ Thr} (4.22)

where oobPn is the oobP with n trees. Since this ntree is the minimal value for
which the oobP score is equal to or greater than the chosen threshold, this number
of trees is assumed to be the optimal trade-off between prediction accuracy and the
complexity of the model.

4.3.4 Content-adaptive feature selection

The splitting behavior of a CU in the output video is highly dependent on not
only the features of the decoded video, but also on the coding information of the
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Figure 4.7: ntree selection for RandomForest, with block size = 32. The input bit stream
was encoded using QP = 32 and is downsized by a factor of 2. If grid-search is used, ntree
is chosen as 49. However, the proposed method selects a smaller ntree of 14.

colocated CUs in the input video. Hence, a number of metrics describing the rele-
vant characteristics of the content of the decoded video and the coding information
of the input video have been acquired to get an accurate prediction model of the
splitting behavior. However, using all of the features might not be optimal since
irrelevant features may introduce noise. On the other hand, using only a small set
of features brings about a larger generalization error. Therefore, it is necessary to
select the most important features [38]. First, an overview of the features is given.
Then, a feature elimination mechanism is provided.

4.3.4.1 Overview of all features

A total of 52 features were extracted from the decoded video and the input bit
stream. These features were used as the initial feature set for training.

Features from the decoded video: A set of 36 features from the decoded video
were considered upon various studies [39, 40]. They are based on Sobel filtering
on frame pixel values, consecutive frame comparison, pixel value variations, and
various combinations and variations of the aforementioned. The calculations were
performed on the luminance component of the region of picture that is collocated
with the block for which the splitting behavior needs to be determined. These
features mostly describe spatial and temporal activity in the picture. Examples
include temporal and spatial indexes.

Features from the input bit stream: 16 features are based on coding informa-
tion of the collocated input blocks. These features are the following.
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• At the CU level, the mean, variance, maximum, and minimum of the input
CU depths are included.

• At the TU level, the mean, variance, maximum, and minimum of input TU
depths are also used.

• At the PU level, the depth of a PU is defined as the CU depth if the PU is
not split. Otherwise; the PU depth equals the CU depth plus 1. The mean,
variance, maximum, and minimum of the input PU depths are included.

• Additionally, the variance of the input motion vectors is taken into account.

• The last two features are the variance and the mean of the transform coeffi-
cient variance.

4.3.4.2 Feature elimination using RandomForest

Selection of effective and relevant features is crucial for classification. A good
feature selector results in reducing training time, prediction time, as well as reduce
memory requirements. In addition, this eliminates irrelevant or noisy features -
which can result in an increase of the prediction accuracy. The classical feature
selection approaches can be classified into three categories including filter, em-
bedded, and wrapper [41]:

• The filter approach consists of a pre-processing procedure prior to the learn-
ing step. It uses a specialized feature selection algorithm to remove features
from the data set. Based on the statistical model, the importance of every
feature is derived. The features are sorted by importance. Only features
of greater importance than a threshold are retained. This approach is robust
against overfitting since the selection is independent of the machine learning
algorithm. This may, however, fail to select the most ”useful” features.

The filter approach is much less time consuming compared to other ap-
proaches. Thanks to the computational efficiency, filter method is usually
chosen upon a great number of features. However, the filter method requires
a threshold to decide what features should be eliminated. A fixed threshold
may lead to removing important features or keeping noisy ones.

• The embedded approach performs feature selection automatically as part
of the machine learning algorithm. During the learning process, the im-
portances of feature subsets are evaluated by a cross-validation mechanism.
The most useful subset is searched on their importance.

• The wrapper approach performs a pre-processing step like the filter ap-
proach. However, it uses a machine learning algorithm as a part of the fea-
ture selection process. For example, a random forest algorithm inherently
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allows the calculation of feature importance. Evaluations of the importance
of feature subsets are through a cross-validation. The feature set with the
highest importance can then be retained. The difference between the wrap-
per and embedded approaches is that the wrapper approach evaluates feature
subsets by using a pre-processing procedure with a different machine learn-
ing algorithm while embedded approach carries out the evaluation during
learning process.

Compared to the filter approach, the embedded and wrapper techniques intro-
duce a higher performance since they always keep important features. In contrast,
filter approach is more robust against overfitting. In addition, the complexity of the
embedded and wrapper techniques is much higher than the filter method because
they perform a search for the best feature subset.

Recently, an enhanced strategy of the filter and wrapper methods have been
proposed in [42] which can help the model to keep the useful features and to avoid
overfitting. This chapter proposes a content-adaptive feature selection algorithm
based on the method proposed in [42]. The selection is conducted before the learn-
ing process. The training set for feature selection is obtained from the information
of L first frames of the video sequence. The machine learning algorithm used in the
selection process is RandomForest, which provides high prediction performance
and low training complexity. The selection process is as follows:

1. Feature ranking: The importance of each feature is determined for 50 runs
of RandomForest training (Figure 4.8). This importance is calculated during
each run as the expected fraction of samples that the feature will contribute
to. The features are then sorted in descending order upon the average value
over the 50 runs (Figure 4.9).

2. Determining the threshold: The standard deviation (STD) of the feature im-
portance of each feature is calculated. These results are plotted by the same
order as in the feature ranking step. A CART model is then fitted to this
data (Figure 4.10). The threshold for feature selection is set as the minimum
prediction of the CART model. This threshold is a measure for the minimal
noise of the feature importance. If a feature has an importance below this
threshold, the importance can therefore be considered as 0.

3. Feature elimination: Only features with an average feature score greater
than the threshold are retained.

Since in each tree of RandomForest, features and samples are randomly se-
lected, and 50 RamdomForest models are built, features are fairly evaluated. By
doing so, the selected features help avoid overfitting. Additionally, the threshold is
dynamically derived; hence, the important features are retained while less impor-
tant ones are removed for every model.
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Figure 4.8: Feature importance for 50 runs. The variance of the feature importance be-
comes smaller as the average importance reaches zero.

Figure 4.9: The average importance of the top 40 most important features. The other
features have an importance very close to zero.

4.4 Transcoding complexity control

Reducing the transcoding complexity usually results in a decrease in coding per-
formance. However, in some cases, a high coding performance might be necessary.
Therefore, an optimal trade-off should be made between transcoding complexity
and coding performance.

In order to achieve a trade-off between complexity and coding performance,
some machine learning algorithms such as decision trees and random forests can
be modified to output probabilistic values for each prediction. This means that the
splitting behavior of a CU is predicted with a confidence c. To achieve higher cod-
ing performance, only decisions with a higher c should be allowed. To control this
trade-off between coding performance and transcoding complexity, a threshold Tc
is defined. When c is larger than Tc, the predicted split-flag directly controls the
splitting behavior of CUs; otherwise, the CU is fully evaluated for both split and
not split. With a high Tc, the number of full evaluations increases, resulting in
a higher transcoding complexity, while improving coding performance. Conse-
quently, the transcoding complexity can be controlled by adjusting Tc to achieve



SPATIAL TRANSCODING USING MACHINE LEARNING 111

Figure 4.10: Selecting the threshold for feature elimination using CART. The standard
deviation of important features is larger than for the noisy features, which have a standard
deviation close to zero. The threshold, which is the minimum of the CART model, results
in selecting the 29 most important features.

a trade-off between complexity and coding performance. The idea of controlling
the transcoding complexity using the the probabilistic values for each prediction
has been proposed in [43, 44].

4.5 Experimental results

The proposed downsizing transcoder was tested with various machine learning
algorithms. First, the methodology of experiments is presented. Then, the ma-
chine learning algorithms are compared to each other and to a trivial method. The
performances of online and offline training strategies are compared as well. The
effects of optimizations are also considered. Thereafter, the influence of the com-
plexity control mechanism is shown. Finally, the proposed method is compared to
state-of-the art HEVC fast encoding algorithms.

4.5.1 Methodology of the experiments

In the following experiments, the original video is encoded using an HEVC en-
coder following a low delay prediction structure. This structure is character-
ized by an IPPP prediction order using four reference frames. The QP is set as
{22, 27, 32, 37}. Version 12 of the HEVC reference software [45] is used. Fast
motion estimation and fast mode decision are enabled. All sequences (16 in total)
bear input resolutions varying from 832x480 up to 1920x1080 pixels except two
sequences Traffic (3840×2048) and PeopleOnStreet (3840×2160) [22] which are
bigger.

After the initial encoding step, the HEVC bit stream is decoded and down-
sized by a scaling factor of σ ∈ {1.33, 2.00, 4.00, 1.50}. Although the algorithm
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can handle any possible scaling factor, these factors have been selected as a rep-
resentative set. They respectively reduce the dimensions of the picture to 3/4, 2/4,
1/4,and 2/3 of the original dimensions. A maximum reduction of 1/4 is used since
this decreases the total resolution to 1/16. Additionally, the value of 2/3 was tested
since this occurs in a scenario when 1080p video is downsized to 720p.

Following the downsizing step, the resulting video is re-encoded using the
proposed machine learning prediction models with the number of training frames
L at 10. Since only the impact of σ on the transcoding performance is evaluated,
the other coding conditions of the output video (profile, QP) are the same as in the
input video.

The performance of the proposed transcoding technique is evaluated by com-
paring it to a non-optimized cascaded decoder-encoder in terms of Bjøntegaard
Delta Bit Rate (BDBR) [46] and time saving (TS). BDBR is a measure for the
relative bit rate increase to achieve the same quality (expressed in peak signal-to-
noise ratio, PSNR) as the cascaded decoder-encoder. The original video is used as
a reference for calculating PSNR. Time saving is given by 4.23) where TProposed
is the total encoding time using the proposed method and TOriginal is the total en-
coding time using an unmodified cascaded decoder-encoder setup. Since training
time for machine learning depends on the implementation efficiency of the algo-
rithm, these time measurements are considered out of scope and therefore, are not
taken into account.

TS(%) =
TOriginal(ms) − TProposed(ms)

TOriginal(ms)
∗ 100 (4.23)

Since using machine learning algorithms results in additional training and pre-
diction phases, simple transcoding (trivial) techniques should also be evaluated.
Therefore, this chapter proposes a trivial method to compare with the machine
learning based transcoding techniques. This trivial method predicts the splitting
behavior of an output CU using the mean depth of the collocated input CUs. In
case where the mean depth is higher than the current depth of the output CU, an
immediate split occurs in the output CU. Else, the output CU abstains from further
splitting and is encoded upon the current depth. The motivation of using the mean
depth of the input collocated CUs is that there is a high correlation between this
feature and the splitting behavior of output CUs, as the importance of this feature
has been observed to consistently rank high compared to other features.

4.5.2 Evaluation of the performance of machine learning algo-
rithms for downsizing

The performance of different machine learning algorithms without optimizing the
parameters is presented first. In these tests, the online training mechanism was
used. Then, the results with the parameter optimization are discussed. The offline
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training mechanism, which has been often used in related work, is also evaluated.
Finally, the results of feature selection are presented.

In a first experiment, non-optimized parameters are used. The chosen values
for the parameters with a high impact on the prediction accuracy are given in Ta-
ble 4.1 [29]. Note that setting max depth and min samples leaf to 1 means
that the complete tree will be generated, i.e., the model will likely be overfitted to
the training data.

Table 4.2 shows the experimental results in using non-optimized parameters
for the machine learning algorithm. It is seen that all machine learning methods
achieve the same complexity reduction as the trivial method (about 71% on aver-
age). These results are similar since the CU structure is always predictable, which
means that the encoder can skip the complete CU partitioning process. Any slight
difference in complexity reduction owes to the fact that less blocks need to be
evaluated if the predicted structure contains more large blocks. These can also be
justifiable for the complexity reduction in other tables (Table 4.3, Table 4.4, and
Table 4.5).

The experimental results of the nom-optimized model and the proposed op-
timized model are visualized in Figure 4.11. As is also seen from this figure,
contrary to the TS, the performance of the methods differs in terms of BDBR. Us-
ing AdaBoost and DT leads to high bit rate increases (around 11.7% on average
for each) without the optimization of the machine learning parameters. These two
methods perform worse than the trivial method, with a BDBR increase of 8.44%.
The performance of RF and SVM is better with an increase by 7.42% and 8.84%,
respectively. When the parameters are optimized by using the proposed approach,
the performance of the proposed is notably enhanced and better than the trivial
method. As a conclusion, unoptimized machine learning models may produce a
bad fit for the given data set. Therefore, an optimization of these parameters should
be performed if machine learning is used for transcoding.
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(a) Non-optimized models.
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(b) Optimized models with the proposed online-optimization strategy.

Figure 4.11: The performance of non-optimized model and the proposed online-
optimization strategy.
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The transcoding performance with optimized machine learning algorithms as
described in Section 4.3 is presented in Table 4.3, where RF200 is the result of the
RF algorithm with a fixed ntree of 200. These experiments use the complete set
of 52 features. As can be seen from these results, the coding performance sig-
nificantly improves compared to using non-optimized parameters. With a slightly
different complexity reduction, the bit rate penalty of using optimized parame-
ters is clearly reduced. The SVM, AdaBoost, and DT algorithms demonstrate a
similar performance with bit rate increases by 7.16%, 7.15%, and 7.38%, respec-
tively. The RF algorithm is better than the others with a 5.41% bit rate penalty.
By using the proposed ntree selection, the number of trees varies from 10 to 30.
Although the number of trees is notably lower than 200, the performance of RF
remains the same while the prediction time is significantly reduced, indicating that
the proposed ntree selection indeed selects an optimal number of trees.

The results of the offline training strategy are shown in Table 4.4. Online
training performs better than offline training even when cross-validation is used to
select the training sequences for offline training. For example, the online model
has an average BDBR of 5.41% for RF, whereas the offline model has a BDBR
of 7.07%. The offline model for SVM has a higher BDBR than the trivial model
since optimal machine learning parameters of an offline model may not be optimal
for every sequence. Moreover, to apply the offline strategy to other downsizing
scaling factors, the model would have to be retrained. Consequently, to achieve
the best performance, online training should be used whenever possible.

Finally, the performance of the feature elimination algorithm has also been an-
alyzed. The result of transcoding with optimized parameters and feature selection
is shown in Table 4.5. In general, the feature elimination algorithm succeeds in
reducing noisy features while retaining a similar coding performance. A compar-
ison of the results in Table 4.5 and Table 4.3, where the complete feature set was
used, shows that the BDBR remains similar after feature selection. The influence
of the feature selection is higher with a BDBR increase of 5.50%, 7.33%, and
7.59% for RF, SVM, and DT, respectively. On the other hand, the feature selection
mechanism decreases the BDBR of the AdaBoost algorithm to 7.10%.

4.5.3 Transcoding complexity control scheme

The transcoding complexity can be controlled by adjusting the threshold of the
confidence of prediction Tc. To investigate the effect of the threshold on the
transcoding complexity, this threshold is varied from 0.5 to 0.9 with a step of
0.1. The machine learning algorithm RF offers the best transcoding performance
among the investigated algorithms. The experimental results with different thresh-
olds are depicted in Figure 4.12. When the threshold increases, bit rate penalty
and complexity reduction increase accordingly.
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In particularly, when Tc is set to 0.5, the complexity reduction is around 70%
with a bit rate increase of around 6% when σ = 4.00 and 5% for the other cases.
In contrast, when Tc is 0.9, the complexity reduction drops to about 33% with a
negligible bit rate penalty.

4.5.4 Comparison of the proposed methods with the state-of-
the-art fast HEVC encoder algorithms

In order to compare the performance of the proposed method with several state-
of-the-art fast encoding algorithms for HEVC, the fast CU decision algorithms
including Shen’s algorithm [47], Xiong’s algorithm [48], and Lee’s algorithm [49]
have been evaluated. The goal of these methods is to predict the depth of a given
CU and allow early termination of the evaluation of this CU. While Shen’s and
Lee’s algorithms utilize observations and statistical experiments, Xiong’s algo-
rithm is designed based on the pyramid motion divergence feature which is de-
rived through a theoretical analysis. The coding information from the input video
stream is not considered in these methods, since they are not specifically aimed
at a transcoding scenario. The average performance of these methods is shown in
Figure 4.12.

The proposed method outperforms the state-of-the-art fast encoding algorithms
when changing the threshold Tc of the prediction confidence as can be seen in Fig-
ure 4.12. When Tc is 0.9, the proposed method results in the same bit rate increase
(0.15%). However, the proposed method achieves 35% time saving as much as
that of Lees algorithm at 19%. When Tc drops to 0.7, the proposed method and
Shen’s algorithm have a similar bit rate increase. However, the proposed method
outperforms Shen’s algorithm in terms of transcoding complexity reduction. The
proposed method can achieve 55% complexity reduction while Shen’s algorithm
achieves 35%. With a slightly lower Tc, the proposed method demonstrates a better
performance compared to Xiong’s algorithm as well.

4.6 Conclusion

Different machine learning strategies for downsizing HEVC video are investigated
in this chapter. The pre-encoded HEVC video stream is decoded. The recon-
structed video is subsequently downsized using an arbitrary factor, which allows
adapting the video to the network and/or device constraints. Afterwards, the re-
sized video is re-encoded. The machine learning models utilize the correlation
between coding information of the input and output coding units to accelerate the
re-encoding process. Different optimized and unoptimized machine learning algo-
rithms have been tested in both online and offline training strategies. Alongside,
the effects of an adaptive feature selection algorithm have been investigated.
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Figure 4.12: The transcoding complexity using RF can be controlled by adjusting the
threshold of the prediction confidence. Moreover, with a proper Tc, the proposed method
outperforms the state-of-the-art fast encoding algorithms.

Experimental results have shown that machine learning algorithms should only
be used when optimized, since otherwise a trivial method might perform better. If
optimizing the machine learning algorithm is seemingly infeasible for the desired
application, a trivial method should therefore be recommended instead.

If machine learning methods are used with the proposed optimizations, an on-
line training strategy is preferred over an offline training strategy. This makes
the models more adaptive to the content and results in a higher coding efficiency.
Additionally, for some algorithms, the transcoding complexity can be controlled
to achieve a trade-off between transcoding complexity and coding performance.
Among the investigated machine learning algorithms, Random Forest resulted in
the best transcoding performance and supports complexity control. This method
can reduce the complexity by 71% on average with a bit rate increase by 5.4%.
With a negligible bit rate increase (0.1%), this method can reduce the transcoding
complexity by 35%.

Based on the proposed work in this chapter, there can be two implications for
further improvements of transcoding performance. Firstly, when the content of
the video changes (e.g., after a scene change or when the camera pans or zooms),
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the online trained models might need to be retrained; thus, retraining strategies for
adapting the model to both gradual and sudden changes can be examined. Sec-
ondly, the machine learning approaches in this chapter can also be applied to im-
prove other types of transcoding such as transrating, temporal transcoding, and
transcoding from other video coding standards to HEVC.

The work described in this chapter led to the following publications:

• Luong Pham Van, Johan De Praeter, Glenn Van Wallendael, Jan De Cock,
Rik Van de Walle. Performance analysis of machine learning for arbitrary
downsizing of pre-encoded HEVC video. IEEE Transactions on Consumer
Electronics. 2015. November 2015.

• Luong Pham Van, Johan De Praeter, Glenn Van Wallendael, Jan De Cock,
Rik Van de Walle. Machine learning for arbitrary downsizing of pre-encoded
video in HEVC. In IEEE International Conference on Consumer Electronics
(ICCE). January 2015.
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5
Overall Conclusion

Video is typically distributed in a ubiquitous landscape that is featured by a huge
diversity of constraints including limited bandwidth on the network or in resources
of end-user devices. To deal with these constraints, there is a need for adaptation
of video streams. Video adaptation can be achieved by video transcoding tech-
niques that are able to reduce the bit rate or resolution of the video to satisfy these
constraints. Bit rate transcoding (transrating) is often adopted in network band-
width adaptation while resolution downscaling (spatial transcoding) is used to deal
with the limitations of both the network and end-user devices. Thanks to its high
flexibility, transcoding has been deployed in many applications. Consequently,
research on transcoding is an active topic.

The main downside of a transcoder is its high computational complexity in
video conversion, which leads to an increase in the energy cost within the net-
work. Although an open-loop transcoder is considered as a computationally effec-
tive solution, it may significantly degrade the visual quality of video. In contrast, a
closed-loop transcoder can achieve a better rate-distortion performance. This ad-
vantage benefits from re-evaluating the coding information during the re-encoding
process. The main downside of a closed loop transcoder is a huge computational
complexity associated with the re-encoding part. This work has focused on im-
proving the performance of a closed-loop transcoder. Particularly, the efforts in
this dissertation aimed at answering the following two questions:

• How to effectively deploy the correlation between coding information of
the input and output video to reduce the computational complexity of an



128 CONCLUSION

HEVC video transcoder. The deployment is able to reduce the transcoding
complexity while maintaining coding performance of the video in terms of
rate-distortion; and

• How to achieve a scalable-complexity scheme. With the use of this scheme,
transcoding complexity can be adjusted to get a trade-off between the com-
plexity and the coding performance.

Recently, the new high efficiency video coding standard (HEVC) has been
introduced with a superior compression performance related to H.264/AVC. This
advantage has made a belief that HEVC would be widely used in the next couple
of years. Therefore, this standard has been selected in evaluating the performance
of the proposed transcoding techniques.

In Chapter 1, an overview of the HEVC specification has been given. Com-
pared to H.264/AVC, a larger block size is used in HEVC. This large block size,
together with a complex qua-tree block partitioning mechanism, has made the en-
coder very computationally complex. These features result in a huge computa-
tional complexity when transcoding a video stream that is originally encoded using
this standard.

In Chapter 2, we focused on reducing the computational complexity of an
HEVC bit rate transcoder. To reduce complexity, first, an analysis of the block
partitioning correlation of the input and output video was carried out. Then, this
analysis has been utilized by four proposed techniques to simplify the transcoder.

The first approach in Chapter 2 re-uses the coding structure of the input video
to evaluate the coding units in the output video. The complexity reduction of this
approach is not very high since the coding unit at higher depth is always evaluated.
Experimental results have shown that this approach can achieve a 45% - 50% com-
plexity reduction. A more intelligent approach has made use of machine-learning
techniques to early terminate the block partitioning process. In the machine-
learning-based approach, the prediction quality is evaluated. Based on the output
of prediction and the prediction quality, a decision on splitting of a block is given.
By proposing thresholds for the prediction quality, the computational complexity
of the transcoder has been controlled, thus resulting in a scalable transcoding-
complexity scheme. A good trade-off between the transcoding complexity and
coding performance has been found with a 64% complexity reduction at a 1.4%
bit rate penalty. It is important to note that these approaches use the traditional
evaluation flow of HEVC, in which a coding unit is evaluated from lower depths
to higher depths. As a drawback, the splitting behaviour of the higher depth blocks
cannot be utilized to terminate the evaluation of lower depth blocks. To address
this issue, a novel approach bottom-to-top (B2T) has been proposed. This ap-
proach evaluates the coding unit from higher depth first. Then, the coding units at
higher depth are conditionally tested given the splitting behavior of CUs at lower
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depth. Compared to the machine-learning-based method, this approach achieves
the same performance. However, as is simpler for deployment, this approach has
been further improved by exploiting the spatial and temporal correlation of split-
ting behaviour in the output video.

Also in Chapter 2, following the optimization of block partitioning at the
coding unit level, an adaptive prediction unit selection has been proposed. This
technique is capable of reducing the number prediction candidates for a coding
unit from 8 to 1 or 2. Together with four proposed coding unit partition mecha-
nisms, the proposed prediction unit selection has achieved a significant reduction
of transcoding complexity. Among these solutions, the novel B2T approaches
achieved the best performance with an 80% complexity reduction with a bit rate
penalty of 2.5% on average. Additionally, it has been shown that the proposed ap-
proaches clearly outperform the state-of-the-art fast transcoding and fast encoding
algorithms.

In the evaluation of coding mode for a coding unit, motion estimation accounts
for a large portion of complexity. Chapter 3 optimized the motion estimation pro-
cess of a HEVC bit rate transcoder. Since the motion vectors of a block in the
output video and its co-located blocks in the input video reflect the motion of the
same object, they are closely related. This correlation has been utilized to sim-
plify the motion estimation process of the transcoder. One challenge is that an
output block may associate with multiple input motion vectors. Analysis in Chap-
ter 3 has shown that the input motion vector, that provides the best rate-distortion
performance for evaluating the output block, is most correlative with the motion
vector of the output block. An adaptive window search using this motion vector
has been proposed. Moreover, unnecessary evaluated motion vectors have been
discarded by proposed search patterns. Experimental results have shown that the
proposed can reduce the transcoding complexity by 16%. When this approach is
integrated with the proposed method in Chapter 2, the computational complexity
can be reduced by 83.06% on average with a bit rate penalty of 2.4%.

HEVC targets on compressing very high-resolution videos such as full HD, 4k
or even 8k. Delivering such high-resolution videos to the mobile network is not
efficient since mobile devices are incompetent to display full frame of these videos.
Therefore, spatial transcoding is needed and this technique has been considered in
Chapter 4. The biggest challenge of a spatial transcoder comes from an arbitrary
resolution-scaling factor, which results in a miss-alignment between the output
block and the co-located blocks in the input video. Moreover, multiple reference
directions, the availability of intra-coded blocks in inter frames also forms other
challenges. These issues make the use of existing spatial transcoding solutions
such as mode mapping or open-loop transcoding impossible. To alleviate these
problems, Chapter 4 has made use of machine learning techniques to optimize the
spatial transcoder for HEVC stream.



130 CONCLUSION

Various machine learning algorithms may provide different transcoding per-
formances. To select the best algorithm, four widely used machine learning ones
have been evaluated in predicting the splitting behaviour of the output blocks. Sev-
eral issues have been raised when using the machine learning algorithms. First,
this mission is to select the best algorithm that has the highest prediction per-
formance. Second, parameters of machine learning and the features (variables)
should be optimized to avoid over-fitting and over-training as well as to reduce
the training and prediction time. It should be noted that these challenges have not
been solved in the most machine-learning-based transcoding techniques. As an
important contribution, Chapter 4 proposes several solutions to deal with these is-
sues. Content-adaptive parameter estimation with the use of grid-search has been
proposed. Additionally, a content-adaptive feature selection with the use of the
random forest algorithm has been implemented to remove noise features. Further-
more, the number of tree in the random forest approach is also adaptively selected.
Finally, a complexity-scalable scheme has been proposed by re-estimating the pre-
diction that has low quality. Experimental results have shown that the random for-
est algorithm has demonstrated the best prediction performance. The optimization
of parameters and features has provided a significant improvement in the transcod-
ing performance. A comparison to the state-of-the-art fast encoding algorithms has
shown that the proposed approaches are clearly superior.

In summary, the proposed approaches have answered the two research ques-
tions. The computational complexity of HEVC video transcoding is significantly
reduced with a scalable scheme. Moreover, these proposed approaches have clearly
shown superior performance relative to the state-of-the-art transcoding algorithms.

Applications of the proposed techniques to non-transcoding user cases:
The main purpose of transcoding is to satisfy the network and device con-

straints when transmitting a video. However, an efficiency transcoding technique
would possibly result in benefits for post-processing applications, e.g., watermark-
ing, and data insertion. In a watermarking or data hiding application, the security
information may be hidden into a video in pixel domain. In such a scenario, a pre-
encoded video need to be decoded and the information is subsequently inserted
into the reconstructed video. Thereafter, the video is re-encoded. The re-encoding
operation can be accelerated by using the proposed transcoding techniques.

When the bandwidth of the backbone network is rich, simulcast streaming may
be selected. In this scenario, the proposed techniques can be utilized to speed up
encoding of multiple versions of the same video.

Currently, efforts are ongoing to improve the extensions of the HEVC standard
including multi-view coding and scalable coding. In multi-view coding, different
views of a same scene are encoded. Therefore, there would be a high correla-
tion between coding information among these views. Hence, encoding of various
views could be optimized by using the proposed techniques that have been used to
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accelerate bit rate transcoding of HEVC video.
It can be implied that scalable video coding is the middle solution between

simulcast and transcoding for video adaptation. It contains the fundamental disad-
vantages of higher bandwidth and decoding complexities for end users and higher
encoding complexities compared to single layer coding. It is unclear whether the
scalable extension will dominate single-layer coding in applications that requires
video adaptation. In any way, transcoding will not lose its place in such adaptation
applications. Even in the case where scalable video coding would be preferred; this
technique would get benefits from the proposed techniques to optimize encoding
of different layers.





A
Evaluation conditions

A.1 Encoder configurations

The performance of HEVC is often evaluated in use of various configurations that
target different applications [1]. The main difference among these configurations
is the prediction structure. The prediction structure and the values of other cod-
ing parameters (e.g., quantization parameters, syntax declaration of CU and TU,
rate control, and motion estimation strategy) are defined in a configuration file that
is read by the encoder of reference software, e.g., HM test model version 12 [2].
In this work, Random-Access (RA) and Low-Delay P (LDP) configurations have
been tested. Section A.1.1 and Section A.1.2 listed the setting of these configu-
rations. It should be noted that, in the default setting, the quantization parameter
of intra-coded pictures is set 32. However, in the experiments of this work, it has
been varied from 22 to 37 by a step of 5.

RA configuration makes use of a hierarchical B structure, in which a picture
can use both past pictures and future pictures as reference frames. Therefore, the
coding efficiency achieved by RA is higher than the other configurations. As a
main drawback, this configuration suffers from a larger delay due to the reordering
of the pictures. To allow random accessing and to control error propagation, intra
pictures are added periodically.

In LDP configuration, only the first picture of a sequence is intra-coded while
the rest are P pictures. The coding delay, in this configuration, may be made small
since the reordering of pictures is not allowed and only past pictures are used for
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prediction.

A.1.1 Random-Access configuration:

#======== Profile ================
Profile : main

#======== Unit definition ================ MaxCUWidth : 64 # Maxi-
mum coding unit width in pixel.
MaxCUHeight : 64 # Maximum coding unit height in pixel.
MaxPartitionDepth : 4 # Maximum coding unit depth.
QuadtreeTULog2MaxSize : 5 # Log2 of maximum transform size for quadtree-
based TU coding (2...6).
QuadtreeTULog2MinSize : 2 # Log2 of minimum transform size for quadtree-
based TU coding (2...6).
QuadtreeTUMaxDepthInter : 3
QuadtreeTUMaxDepthIntra : 3

#======== Coding Structure =============
IntraPeriod : 32 # Period of I-Frame ( -1 = only first).
DecodingRefreshType : 1 # Random Accesss 0:none, 1:CRA, 2:IDR, 3:Recovery
Point SEI.
GOPSize : 8 # GOP Size (number of B slice = GOPSize-1).
#Type POC QPoffset QPfactor tcOffsetDiv2 betaOffsetDiv2 temporal id #ref pics active
#ref pics reference pictures predict deltaRPS #ref idcs reference idcs
Frame1: B 8 1 0.442 0 0 0 2 3 -8 -12 -16 0
Frame2: B 4 2 0.3536 0 0 1 2 3 -4 -8 4 1 4 4 1 1 0 1
Frame3: B 2 3 0.3536 0 0 2 2 4 -2 -6 2 6 1 2 4 1 1 1 1
Frame4: B 1 4 0.68 0 0 3 2 4 -1 1 3 7 1 1 5 1 0 1 1 1
Frame5: B 3 4 0.68 0 0 3 2 4 -1 -3 1 5 1 -2 5 1 1 1 1 0
Frame6: B 6 3 0.3536 0 0 2 2 3 -2 -6 2 1 -3 5 0 1 1 1 0
Frame7: B 5 4 0.68 0 0 3 2 4 -1 -5 1 3 1 1 4 1 1 1 1
Frame8: B 7 4 0.68 0 0 3 2 4 -1 -3 -7 1 1 -2 5 1 1 1 1 0

#=========== Motion Search =============
FastSearch : 1 # 0:Full search . 1:TZ search.
SearchRange : 64 # (0: Search range is a Full frame).
BipredSearchRange : 4 # Search range for bi-prediction refinement.
HadamardME : 1 # Use of hadamard measure for fractional ME.
FEN : 1 # Fast encoder decision.
FDM : 1 # Fast Decision for Merge RD cost.
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#======== Quantization =============
QP : 32 # Quantization parameter(0-51).
MaxDeltaQP : 0 # CU-based multi-QP optimization.
MaxCuDQPDepth : 0 # Max depth of a minimum CuDQP for sub-LCU-level delta
QP.
DeltaQpRD : 0 # Slice-based multi-QP optimization.
RDOQ : 1 # RDOQ
RDOQTS : 1 # RDOQ for transform skip.

#=========== Deblock Filter ============
LoopFilterOffsetInPPS : 1 # Dbl params: 0=varying params in SliceHeader, param
= base param + GOP offset param; 1 (default) =constant params in PPS, param =
base param)
LoopFilterDisable : 0 # Disable deblocking filter (0=Filter, 1=No Filter).
LoopFilterBetaOffset div2 : 0 # base param: -6 to 6.
LoopFilterTcOffset div2 : 0 # base param: -6 to 6.
DeblockingFilterMetric : 0 # blockiness metric (automatically configures deblock-
ing parameters in bitstream). Applies slice-level loop filter offsets (LoopFilterOff-
setInPPS and LoopFilterDisable must be 0).

#=========== Misc. ============
InternalBitDepth : 8 # codec operating bit-depth.

#=========== Coding Tools =================
SAO : 1 # Sample adaptive offset (0: OFF, 1: ON).
AMP : 1 # Asymmetric motion partitions (0: OFF, 1: ON).
TransformSkip : 1 # Transform skipping (0: OFF, 1: ON).
TransformSkipFast : 1 # Fast Transform skipping (0: OFF, 1: ON).
SAOLcuBoundary : 0 # SAOLcuBoundary using non-deblocked pixels (0: OFF,
1: ON).

#============ Slices ================
SliceMode : 0 # 0: Disable all slice options.
# 1: Enforce maximum number of LCU in an slice,
# 2: Enforce maximum number of bytes in an ’slice’
# 3: Enforce maximum number of tiles in a slice.
SliceArgument : 1500 # Argument for ’SliceMode’.
# If SliceMode==1 it represents max. SliceGranularity-sized blocks per slice.
# If SliceMode==2 it represents max. bytes per slice.
# If SliceMode==3 it represents max. tiles per slice.
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LFCrossSliceBoundaryFlag : 1 # In-loop filtering, including ALF and DB, is
across or not across slice boundary.
# 0:not across, 1: across.

#============ PCM ================
PCMEnabledFlag : 0 # 0: No PCM mode.
PCMLog2MaxSize : 5 # Log2 of maximum PCM block size.
PCMLog2MinSize : 3 # Log2 of minimum PCM block size.
PCMInputBitDepthFlag : 1 # 0: PCM bit-depth is internal bit-depth. 1: PCM bit-
depth is input bit-depth.
PCMFilterDisableFlag : 0 # 0: Enable loop filtering on I PCM samples. 1: Dis-
able loop filtering on I PCM samples.

#============ Tiles ================
TileUniformSpacing : 0 # 0: the column boundaries are indicated by TileColumn-
Width array, the row boundaries are indicated by TileRowHeight array.
# 1: the column and row boundaries are distributed uniformly.
NumTileColumnsMinus1 : 0 # Number of tile columns in a picture minus 1
TileColumnWidthArray : 2 3 # Array containing tile column width values in units
of CTU (from left to right in picture).
NumTileRowsMinus1 : 0 # Number of tile rows in a picture minus 1.
TileRowHeightArray : 2 # Array containing tile row height values in units of CTU
(from top to bottom in picture).
LFCrossTileBoundaryFlag : 1 # In-loop filtering is across or not across tile bound-
ary.
# 0:not across, 1: across.

#============ WaveFront ================
WaveFrontSynchro : 0 # 0: No WaveFront synchronisation (WaveFrontSubstreams
must be 1 in this case).

#=========== Quantization Matrix =================
ScalingList : 0 # ScalingList 0 : off, 1 : default, 2 : file read
ScalingListFile : scaling list.txt # Scaling List file name. If file is not exist, use
Default Matrix.

#============ Lossless ================
TransquantBypassEnableFlag : 0 # Value of PPS flag.
CUTransquantBypassFlagForce: 0 # Force transquant bypass mode, when tran-
squant bypass enable flag is enabled.
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#============ Rate Control ======================
RateControl : 0 # Rate control: enable rate control.
TargetBitrate : 1000000 # Rate control: target bitrate, in bps.
KeepHierarchicalBit : 2 # Rate control: 0: equal bit allocation; 1: fixed ratio bit
allocation; 2: adaptive ratio bit allocation.
LCULevelRateControl : 1 # Rate control: 1: LCU level RC; 0: picture level RC.
RCLCUSeparateModel : 1 # Rate control: use LCU level separate R-lambda
model.
InitialQP : 0 # Rate control: initial QP.
RCForceIntraQP : 0 # Rate control: force intra QP to be equal to initial QP.
#============ End of configuration ======================

A.1.2 Low-Delay P configuration:

#======== Profile ================
Profile : main

#======== Unit definition ================
MaxCUWidth : 64 # Maximum coding unit width in pixel
MaxCUHeight : 64 # Maximum coding unit height in pixel
MaxPartitionDepth : 4 # Maximum coding unit depth
QuadtreeTULog2MaxSize : 5 # Log2 of maximum transform size for quadtree-
based TU coding (2...6)
QuadtreeTULog2MinSize : 2 # Log2 of minimum transform size for quadtree-
based TU coding (2...6)
QuadtreeTUMaxDepthInter : 3
QuadtreeTUMaxDepthIntra : 3

#======== Coding Structure =============
IntraPeriod : -1 # Period of I-Frame ( -1 = only first)
DecodingRefreshType : 0 # Random Accesss 0:none, 1:CRA, 2:IDR, 3:Recovery
Point SEI
GOPSize : 4 # GOP Size (number of B slice = GOPSize-1)
#Type POC QPoffset QPfactor tcOffsetDiv2 betaOffsetDiv2 temporal id #ref pics active
#ref pics reference pictures predict deltaRPS #ref idcs reference idcs
Frame1: P 1 3 0.4624 0 0 0 4 4 -1 -5 -9 -13 0
Frame2: P 2 2 0.4624 0 0 0 4 4 -1 -2 -6 -10 1 -1 5 1 1 1 0 1
Frame3: P 3 3 0.4624 0 0 0 4 4 -1 -3 -7 -11 1 -1 5 0 1 1 1 1
Frame4: P 4 1 0.578 0 0 0 4 4 -1 -4 -8 -12 1 -1 5 0 1 1 1 1

#=========== Motion Search =============
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FastSearch : 1 # 0:Full search 1:TZ search
SearchRange : 64 # (0: Search range is a Full frame)
BipredSearchRange : 4 # Search range for bi-prediction refinement
HadamardME : 1 # Use of hadamard measure for fractional ME
FEN : 1 # Fast encoder decision
FDM : 1 # Fast Decision for Merge RD cost

#======== Quantization =============
QP : 32 # Quantization parameter (0-51)
MaxDeltaQP : 0 # CU-based multi-QP optimization
MaxCuDQPDepth : 0 # Max depth of a minimum Cu DQP for sub-LCU-level
delta QP
DeltaQpRD : 0 # Slice-based multi-QP optimization
RDOQ : 1 # RDOQ
RDOQTS : 1 # RDOQ for transform skip
TransformSkip : 1 # Transform skipping (0: OFF, 1: ON)
TransformSkipFast : 1 # Fast Transform skipping (0: OFF, 1: ON)

#=========== Deblock Filter ============
LoopFilterOffsetInPPS : 1 # Dbl params: 0=varying params in SliceHeader, param
= base param + GOP offset param; 1 (default) =constant params in PPS, param =
base param)
LoopFilterDisable : 0 # Disable deblocking filter (0=Filter, 1=No Filter)
LoopFilterBetaOffset div2: 0 # base param: -6 to 6
LoopFilterTcOffset div2 : 0 # base param: -6 to 6
DeblockingFilterMetric : 0 # blockiness metric (automatically configures deblock-
ing parameters in bitstream). Applies slice-level loop filter offsets (LoopFilterOff-
setInPPS and LoopFilterDisable must be 0)

#=========== Misc. ============
InternalBitDepth: 8 # codec operating bit-depth

#=========== Coding Tools =================
SAO : 1 # Sample adaptive offset (0: OFF, 1: ON)
AMP : 1 # Asymmetric motion partitions (0: OFF, 1: ON)
SAOLcuBoundary : 0 # SAOLcuBoundary using non-deblocked pixels (0: OFF,
1: ON)

#============ Slices ================
SliceMode : 0 # 0: Disable all slice options.
# 1: Enforce maximum number of LCU in an slice,
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# 2: Enforce maximum number of bytes in an ’slice’
# 3: Enforce maximum number of tiles in a slice
SliceArgument : 1500 # Argument for ’SliceMode’. # If SliceMode==1 it repre-
sents max. SliceGranularity-sized blocks per slice. # If SliceMode==2 it repre-
sents max. bytes per slice.
# If SliceMode==3 it represents max. tiles per slice.
LFCrossSliceBoundaryFlag : 1 # In-loop filtering, including ALF and DB, is
across or not across slice boundary.
# 0: not across, 1: across

#============ PCM ================
PCMEnabledFlag: 0 # 0: No PCM mode.
PCMLog2MaxSize: 5 # Log2 of maximum PCM block size.
PCMLog2MinSize: 3 # Log2 of minimum PCM block size.
PCMInputBitDepthFlag: 1 # 0: PCM bit-depth is internal bit-depth. 1: PCM bit-
depth is input bit-depth.
PCMFilterDisableFlag: 0 # 0: Enable loop filtering on I PCM samples. 1: Disable
loop filtering on I PCM samples.

#============ Tiles ================
TileUniformSpacing: 0 # 0: the column boundaries are indicated by TileColumn-
Width array, the row boundaries are indicated by TileRowHeight array
# 1: the column and row boundaries are distributed uniformly.
NumTileColumnsMinus1: 0 # Number of tile columns in a picture minus 1.
TileColumnWidthArray : 2 3 # Array containing tile column width values in units
of CTU (from left to right in picture).
NumTileRowsMinus1: 0 # Number of tile rows in a picture minus 1.
TileRowHeightArray : 2 # Array containing tile row height values in units of CTU
(from top to bottom in picture).
LFCrossTileBoundaryFlag: 1 # In-loop filtering is across or not across tile bound-
ary.
# 0:not across, 1: across.

#============ WaveFront ================
WaveFrontSynchro : 0 # 0: No WaveFront synchronisation

#=========== Quantization Matrix =================
ScalingList: 0 # ScalingList 0 : off, 1 : default, 2 : file read.
ScalingListFile : scaling list.txt # Scaling List file name. If file is not exist, use
Default Matrix.
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#============ Lossless ================
TransquantBypassEnableFlag : 0 # Value of PPS flag.
CUTransquantBypassFlagForce: 0 # Force transquant bypass mode, when tran-
squant bypass enable flag is enabled

#============ Rate Control ======================
RateControl : 0 # Rate control: enable rate control
TargetBitrate : 1000000 # Rate control: target bitrate, in bps
KeepHierarchicalBit : 2 # Rate control: 0: equal bit allocation; 1: fixed ratio bit
allocation; 2: adaptive ratio bit allocation
LCULevelRateControl: 1 # Rate control: 1: LCU level RC; 0: picture level RC
RCLCUSeparateModel : 1 # Rate control: use LCU level separate R-lambda
model
InitialQP : 0 # Rate control: initial QP
RCForceIntraQP : 0 # Rate control: force intra QP to be equal to initial QP.
#============ End of configuration ======================

A.2 Test sequences

In order to evaluate the performance of HEVC during its standardization, various
uncompressed test sequences have been used as listed in Table A.1. These se-
quences are differently characterized by picture size and possible application and.
These test sequences are categorized into six labels from A to F. Class A consists of
sequences that were originally captured at a higher resolution than 1080p HDTV.
This high resolution class is used to evaluate the coding performance of 4K or
8K video. However, these original picture sizes have been cropped to 2560x1600
pixels to reduce encoding time. Class B, which contains HDTV sequences at the
picture size of 1920x1080 pixels, is for coding performance evaluation of 1080p
HDTV. The sequence in classes C and D is smaller with picture sizes of 832x480
pixels and 416x240 pixels, respectively. The goal of defining these classes is to
evaluate coding performance for mobile applications. Class E constitutes test se-
quences with a picture resolution of 1280x720 pixels. This class is used to evaluate
coding performance in use of low-latency applications such as visual communica-
tions. While the sequences of the aforementioned classes are natural sequences
(camera captured content), class F sequences are non-camera captured content.
They are used for coding performance evaluation of video screen content, e.g.,
text and computer graphic.
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Table A.1: Test sequences

Class Sequence name Frame count Frame rate (fps) Resolution

A

Traffic 150 30

2560x1600PeopleOnStreet 150 30
Nebuta 300 60
SteamLocomotive 300 60

B

Kimono 240 24

1920x1080
ParkScene 240 24
Cactus 500 50
BQTerrace 600 60
BasketballDrive 500 50

C

RaceHorses 300 30

832x480BQMall 600 60
PartyScene 500 50
BasketballDrill 500 50

D

RaceHorses 300 30

416x240BQSquare 600 60
BlowingBubbles 500 50
BasketballPass 500 50

E
FourPeople 600 60

1280x720Johnny 600 60
KristenAndSara 600 60

F

BaskeballDrillText 500 50 832x480

ChinaSpeed 500 30
1024x768SlideEditing 300 30

SlideShow 500 20
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Figure A.1: An example of RD curves.

A.3 Rate distortion curves and Bjøntegaard delta cal-
culation

Rate distortion (RD) curve is often used to visualize the coding performance of
a video codec. Such a RD curve represents the encoded results including bit rate
(dented by the horizontal axis) and the resulting quality (denoted by the vertical
axis). Comparison of the coding performance of various codecs can be obviously
seen by plotting their RD cures on the same paragraph. The codec of the upper-
left RD curve demonstrates a higher coding efficiency since it can achieve higher
quality at lower bit rates as illustrated in Figure A.1.

Peak signal to noise ratio (PSNR) is widely used to objectively evaluate pic-
ture quality. PSNR can be calculated for each color component of pictures, i.e.,
luminance (Y) and chrominance components. Due to the fact that human visual
system is more sensitive to luminance than to chrominance, PSNR of luminance
(PSNR Y) is a more important calculation. Therefore, PSNR Y has been used for
objective quality measurements in this dissertation. PSNR can be derived by the
following equation.

PSNR = 10log10
(2bitdepth − 1)2 ∗W ∗H∑

i

(Oi −Di)2
. (A.1)

Herein, bitdepth represents bit depth of each pixel. W and H indicate width and
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height of picture, respectively, Oi and Di as pixel values of the reference picture
and the decoded picture. i is the pixel index.

In order to make an effective comparison between coding performance of two
codec (e.g., test and reference), a so-called Bjntegaard delta (BD) metric [3] has
been proposed to measure the average difference of the two RD curves. This met-
ric basically consists of two variations, i.e., BD-rate and BD-PSNR. On one hand,
BD-rate indicates the average bit rate difference (difference in horizontal direc-
tion). A negative value of BD-rate implies that the test codec is better than the
reference codec since it can achieve the same quality level at lower bit rates. On
the other hand, BD-PSNR measures the average PSNR difference (difference in
vertical direction).

In order to calculate the BD metric, the RD curves have to be obtained. It is dif-
ficult to get all the values of these curves; therefore, for each curve, four data points
(PSNR and bit rate points) are obtained. Then, the curves are approximated by a
third order polynomial interpolation using these corresponding four data points.
Finally, BD-rate and BD-PSNR are derived by integrating the difference of two
curves. The integration is implemented in horizontal direction for BD-rate and in
vertical direction for BD-PSNR.
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