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Mode Decision-based Algorithm for Complexity
Control in H.264/AVC

Amaya Jinénez-Morend, Eduardo Maiihez-Entquez,Student Member, IEEE,
and Fernando @z-de-Mara, Member, |IEEE

Abstract—The latest H.264/AVC video coding standard quality and low bit rates. To achieve this coding efficiency,
achieves high compression rates in exchange for high compu-H.264/AVC makes use of a variety of techniques, such as
tational complexity. Nowadays, however, many application sce- 4 arter-pixel-accuracy motion estimation (ME), multiple refer-
narios require the encoder to meet some compIeX|ty constraints. . . . . .

This paper proposes a novel complexity control method that €NC€ frames, various block sizes, in-loop d_ebIO(_:klng f|It_er, 4><4
relies on a hypothesis testing that can handle time-variant content DCT transform, and context-based adaptive binary arithmetic
and target complexities. Specifically, it is based on a binary coding (CABAC). Given a macroblock (MB), the encoder has
hypothesis testing that decides, on a macroblock basis, whether toto choose among a variety of potential coding options in an

use a low- or a high-complexity coding model. Gaussian statistics optimum manner. For this purpose, H.264/AVC uses a rate-

are assumed so that the probability density functions involved distorti timizati thod RD(,)

in the hypothesis testing can be easily adapted. The decision Istortion OP imization me 9 ( _)' .

threshold is also adapted according to the deviation between the ~ Complexity control algorithms aim to provide the best

actual and the target complexities. possible rate-distortion (R-D) performance while satisfying
The proposed method is implemented on the H.264/AVC g specific complexity constraint. In other words, the goal is

reference software JM10.2 and compared with a state-of-the- no longer to just reduce the complexity of an H.264/AVC

art method. Our experimental results prove that the proposed . | tati but also to k it d tain t t
method achieves a better trade-off between complexity control Implementation, but also 1o keep It around a certain targe

and coding efficiency. Furthermore, it leads to a lower deviation COmplexity.

from the target complexity. This work aims to design an algorithm capable of keeping
Index Terms—Complexity control, H.264/AVC, hypothesis test- itS complexity around a certain externally- provided target
ing, mode decision. value with minimum losses in terms of coding efficiency,
even when the target complexity is very low. The proposed

|. INTRODUCTION approach, which relies on tools that have proven to be effective

Nowadays, in a world of multimedia portable devices, sign%\?) complexity reduction, has been devised to satisfy the fol-

processing systems must be designed to run on a varietyt wing specifications: low miss-adjustment error with respect

platforms, each one endowed with specific computational ar%)dthe ta_rget complexity, capak_nhty to adapt to a t|me-v_a_r|ant
complexity target and to the video content, and capability to

memory resources. Therefore, the conception of algorithms . o
: ) ) : . erate on a large dynamic range of target complexities and
capable of adapting their computational complexity (obvious . . .
. work with any image resolution.
in exchange for performance, memory, delay, etc.) to thos i . .
supported by specific devices becomes an important challen ehe rest of the paper is organized as follows. Section Il
PP y SP P g%/es a brief review of the most relevant contributions to

tha\‘;g\gg bcigifnmt?;eg;én c))/fe ?t:z tﬁucgt:r?).us sianal orocessi rt]he complexity control problem in H.264/AVC. Section Il
g 9 P %plains in detail the proposed method. Section IV describes

systems that, in some scenarios, are required to be complex .
: experiments conducted to prove the strengths of the
adaptive. Although many research efforts have been devote ; : .
method, and shows and discusses the results. Finally, section

to reduce the complexity of video compression algorithnv summarizes our conclusions
[1]-[13], only a few works have been devoted to actually '
control the complexityl4]-[24]. In this paper, the problem of
complexity control is tackled in the framework of H.264/AVC, Il. RELATED WORK
the latest video coding standard of the Joint Video Team (JVTA, Background: RDO in H.264/AVC
It is well- known that H.264/AVC achieves a significantly Since most of the algorithms that deal with complexity
higher coding efficiency than previous video coding Standardc%ntrol in H.264/AVC work on the RDO process, which
such as MPEG-2/H.262, MPEG-4 part 2, and H.263. As; olves the ME and the mode decision (MD) subsystems,

result of this higher efficiency, H.264 is the most suitable cog- brief summary of this process is in order to provide an
ing standard for a wide range of applications demanding hi% propriate background
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Amaya Jinénez-Moreno, Eduardo Mamez-Enfquez and Fernandoilz- RDO process. This optimization process significantly con-
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emenriquez@tsc.uc3m.es, fdiaz@tsc.uc3m.es). increment of the encoder complexity. The RDO process entails



assessing every coding option for each MB to find the one thatFocusing now on the complexity control problem, the most
minimizes a distortion measure subject to a rate restrictiaommon approach involves adding a complexity term to the
[25]. This problem can be solved by using a Lagrangiagost functions that are minimized in the RDO process. In [14],
optimization, which turns the original constrained optimizatioan estimation of the high frequency content of a block and a
problem into an unconstrained one [26]. target complexity are included in a novel cost function so that
The typical H.264 encoder implementations sequentialtile ME process relies on it to decide which partitions are
perform two RDO stages. First, the encoder carries out tteken into account for each MB. In [15], modified versions
ME to find the best reference frame (Ref) and motion vectof both J,,, .0, and J,,.q4c COst functions are proposed by
(MV) for any possible block size. Second, the encoder choossdding a complexity term that is based on the computation
the optimal mode (partition size). The H.264/AVC standarime and the number of instructions required. Moreover, the
allows for several MB (16x16, 16x8, 8x16, and 8x8 pixelsinodes are rearranged according to a texture analysis, so
and sub-MB (8x4, 4x8, and 4 x4 pixels) partitions. Moreovethat, given an available complexity for an MB, the encoding
two additional modes, the so-called Direct and SKIP, whighrocess picks modes according to the resulting arrangement,
are a particular case of the 16x16 MB partition in B andnd stops whenever the accumulated complexity exceeds the
P slices, respectively, are also considered. This whole setidsget complexity; once a subset of modes has been selected
composed of modes known as Inter modes. in this manner, the modified cost functions are used to decide
The RDO-based ME is solved by means of a Lagrangiam the best representation for the MB. It is also worth men-
optimization, which aims to minimize the following costtioning that this method requires a costly off-line estimation
function: of the Lagrange multipliers involved in the cost functions. In
Tomotion = SAD(MV, Ref) + Amotion Bmotion(MV, Ref), [16], an a_llgorithm that_ relies on encoding-time stgtistics to
1) reach a given complexity targgt is propost_ad. In particular, the
where SAD denotes the sum of absolute differences bet\Neaelﬁorlthm estimates the encoding complgxny from a butfer oc-
original and predicted blocks (given MV and Ref) and is uset palrjcy megsuremer:jt_ and 'managesl th_|s compIeAxc;té{ by n:leans
as a distorion measurey, s @ Lagrange multpler, and B SOCT8 T o i o
Rinotion 1S @n approximation to the number of bits needed tg CIn 17 P lexit labl 'dp Y dg that |
encode the motion information. e met. In [17] a complexity scalable video encoder that is

The MD problem, the solution of which allows the encode(?aIOabIe of adaptingn-the-flyto the available computational

to choose the optimal mode, that is, the optimal partition si gSOUIces 1S presented. Specifically, this algorithm works at

k, is solved in the same manner. In this case, the cost functi ﬂ:h f;am% an(t:ih MB Ieyels. Al thi fran;eS!Ael\SeI, tlhel i!go-
to be minimized is as follows: rithm decides the maximum number o calculations

according to the complexity budget. At the MB level, the
Jmodey = SSD({MV}, {Ref}, k) + complexity budget is allocated among the MBs in proportion
Amode RUMVY,  {Ref},. k), (2) to the distortion of the co-located MBs in previous frames. In

) ] ] [18], an algorithm capable of finding an appropriate encoder
where the distortion measure is now SSD, the sum of sQuafiguration is proposed. Given a working bit rate, it finds

differences between the original and the reconstructed blockgiimal operating points taking into account distortion and
Amode 1S @gaiN & Lagrange multiplier, anfd is the number of o mpjexity. The authors propose two fast approaches that do
bits required to encode the headers, MVs, Ref indexes, a4 require an exhaustive evaluation of encoder configurations.
readua! transform coefﬁcu?nts. An extension of this work is presented in [19] following
Additionally, an alternative set of modes known as Intigye same principles. In [20], an allocation of computational
modes is available in the encoder. In this case, the predictiiyoyrces based on a virtual buffer is proposed. Additionally, to
is formed from already encoded pixels of the current slice. A3,arantee that the used resources do not exceed the estimated
in the Inter case, there are also several block sizes to ch@ggs two complexity control schemes are defined, one on
from: 16x16, 8x8, and 4x4 pixels. _ the ME and the other on the MD. For the ME, a search
The RDO process is responsible for choosing the besti, ang a termination point are defined according to R-D

possible mode, in R-D terms, among all the Intra and Intgpnsiderations and the allocated complexity. For the MD, a

modes. search order and a termination point are defined according to
. ] the most frequent modes in neighboring MBs and the allocated
B. Complexity Control in H.264/AVC complexity. In [21], the MBs in a frame are encoded using
A huge research effort has been devoted to the complexdyly Intra and SKIP modes. Then, the encoding of the MBs
reduction problem in H.264/AVC since its publication as aroducing the highest costs is further refined using additional
standard in 2003. In particular, both the ME and MD processemdes. The number of mode decisions is controlled by means
have received a lot of attention: [1]-[6] are contributions tof a parameter that allows this method to be scaled for different
reduced-complexity ME and [7]—-[13] to fast MD, just to nameomplexity targets.
a few examples. Nevertheless, the results of the complexityln [22] the Bayesian decision theory is used for complexity
reduction methods depend heavily on the video content, acwhtrol. In particular, a threshold to comply with an average
therefore these techniques are not capable of guaranteeing th@fet complexity level is determined using a probability model
the complexity is kept around a given target. where the corresponding cumulative density functions are



estimated based on motion measurements and the quantization ( New frame )
parameter (QP) value. To this purpose, an off-line precom-
puted relationship among these parameters is required. This
method is limited to SKIP/non-SKIP decisions.

The works described so far were tested on QCIF and CIF

For each MB
resolutions, since complexity control was considered attached
to low-power devices, which were not able to work with
higher resolutions. Nowadays, however, the fast growth in
computational power has made even hand-held devices capable Low complexity Hypothesis
of working with higher resolutions. The works by Queiroz testing

et al. ( [23], [24]) tackle the complexity problem for higher
resolutions. In [23] complexity is controlled by allowing only

for a subset of modes in the MD process. Specifically, the High complexity

most likely modes are sorted, and only those that do not [Lvaluate SKIP,
A N 7 nter 16x16, and Evaluate all
exceed a pre-established complexity limit are evaluated. In Intra 16x16 modes | | _ —o= Lot es

[24] the values of distortion, rate, and complexity achieved by
a set of specific encoder configurations are collected by means
of an off-line training process. These values are tabulated
and a desired level of complexity is reached by applying the
corresponding encoder configuration. The weakness of this Decide the
off-line training process is the difficulty of adapting the model best mode
to time varying conditions in both complexity requirements
and video content.

The proposed algorithm, as a few of the previously men-
tioned ( [16], [17]), relies on a parameter estimation process
that is carried outon-the-fly, avoiding both the generaliza-
tion problems inherent to an off-line estimation and the
computational cost associated with the training process. In
this manner, the algorithm can easily adapt to changes in L“;j:gz;’
both target complexity and video content. As a result, the
proposed method is simple and capable of efficiently operating _
on different video contents and resolutions and on changihg: 1+ Fowehart of the proposed aigorithm.
complexity targets, exhibiting quite remarkable convergence
properties. Furthermore, these high levels of simplicity and ) )
flexibility are achieved in exchange for acceptable losses { meet tough complexity constraints, the amount of modes
coding efficiency. in the Iow—cpmplexny level must be.kept as Iow_ as possmlg.

The next section explains the proposed method in detail.| Nerefore, it would have been desirable for this hypothesis
to involve only the SKIP mode, which does not require ME;
however, considering only the SKIP mode would have led
to significant losses in coding efficiency. Consequently, to
A. Motivation and Overview avoid these efficiency losses and still keep the complexity

The proposed algorithm is based on the application of& reasonable low levels, the Inter 16x16 mode had to be
hypothesis testing whose decision threshold is automaticdfigluded. Furthermore, the Intra 16x16 mode had to be
set to reach the desired coding complexity level. This approaiae,luded as well to achieve a satisfactory performance in those
has been adopted for two reasons: 1) it allows for definifgses where the ME process does not work properly, i.e., when
a cost policy adapted to the specific problem at hand, thif¢ penalty in coding efficiency for not allowing Intra modes
providing a valuable degree of flexibility; and 2) as showi$ high.
in our previous work regarding the fast MD problem [27], Once all MBs in a frame are encoded, the complexity
this approach has proved its ability to act effectively on theontrol algorithm must check the achieved complexity and
complexity while maintaining a high coding efficiency level.compute the deviation from the target. Then, the complex-

In particular, the proposed algorithm relies on a binafy control algorithm adjusts the decision threshold of the
hypothesis testing. For every MB, a decision between low- Bypothesis testing according to this deviation, so that this
high-complexity coding is made. On the one hand, when lowew threshold is used for the next frame to be encoded. The
complexity is selected, the MB can be encoded as SKIP, Infigwchart in Fig. 1 summarizes the whole process.
16x16, or Intra 16x16. On the other, when high-complexity Mathematically, the formulation of the hypothesis testing
is selected, the MB can be encoded as any of the availadkrives from the Bayesian decision theory. Given two possible
Inter or Intra modes. The following argument supports theypothesedd, and H;, and two corresponding decisioii
definition of these two complexity levels. For the algorithnand D, the likelihood ratio test (LRT) is defined as follows:

Last MB
in frame

IIl. PROPOSED METHOD



TABLE |
Dphat AND M I COMPUTED FOR EACHJ), CONSIDERED FOR‘RUSH

Pr(xz|H;) <D (C10 — Coo) Pr(Hop) ©) HoOuR” (HD) AT QP 24.
<
PI‘(JI|H0) Do (COI - Cll) Pr(Hl) ’ [ [Tmin(SK1P Inter16)[JSK1P[Interiox16[Intraiox 6]
. 2| 0.44 [004] 003 [ 001 |
where C; are the costs of deciding when the correct [T ] 0.20 [019] 017 [ 010 |
hypothesis isi, Pr(z|H;) are the likelihoods of obtaining the TABLE Il , ,
. . . Dphat AND M T COMPUTED FOR EACHJ,, CONSIDERED FOR‘FOREMAN
opsgrvatlom: given the hypothes@{i andPr(H;) are thea (CIF) AT QP 32.
priori probab_lllty of each hypothes_ls._ _ _ _ [ VemskipimenolIskipiners s Jinraiocad
The following subsections explain in detail the main build- [Drat] 0.21 [010 ] 002 | 00l |

[MT | 0.14 [01T | 011 | 009 |

ing blocks of the proposed method. Subsection IlI-B describes
the feature selection process, i.e., the selection of the feature

to be used in the LRT expression (3). Subsection IlI-C presents .

e . . . 2 2
the specific LRT formulation used. Finally, subsection lI-D  p, . — I {algag} (o — 1) +
describes the algorithm that provides the proper threshold to .,
meet the target complexity. 1, 3%
Lin—2—, (5)
VlIeted]
B. Feature Selection wherey; andy; are the means andf ando3 are the variances

As previously mentioned, the LRT (3) is computed accor f the two involved pdfs. In our case, we have to compute
ing to an observatior. In particular, the hypothesis test is he distance betweeir(Ji|Ho) andPr(Jy| Hy) for every Jy

built on the probability density functions (pdfs) of this obser(—:cmS'der(Ed and choose as optimal thethat maximizes the

. o . . distance. In other words, the larger the difference between
vation conditioned to each considered hypothesis«Bi{)), he distributions, the better; is as an input feature for the
with ¢ = {0,1}. Consequently, the selection of this inpu '

feature x becomes crucial to the success of the pro oseéépotheSiS testing.
v . ) prop - Likewise, the Ml is a statistical tool that measures the shared
method. For this reason, a comprehensive feature selecti

rocess is conducted to choose the most approviater Rfdrmation between two variables and y, quantifying how
P o - T pprop. much the knowledge of one of these variables reduces the
describing our decision domain, i.e., the observatiothat

produces the most separable pdfs(z|H,) and Pr(x|H;). uncertainty about the other:

As stated before, hypothesiH, entails a low-complexity MI(z;y) = H(z) — H(z|y), (6)
encoding model (SKIP, Inter 16x16, or Intra 16x16), while
H, entails a high-complexity encoding model (any availabl ecision, i.e., if an MB is encoded at either low or high

mode). ;
Different features have been used in the literature to ma&gmplexny, andy denotes the/, cost. Therefore H (z|Jy)

an early mode decision. Thé, .. cost has been proved torepresents the entropy of the decision when fhecost is

be one of the most informative features for this purpose [1220\’\'”’ andMI(z; Ji) the mutual information between the

. L . timal decision and the/, cost. In this case, the higher
(for a comprehensive statistical analysis of thdsgq. costs, the MI, the lower the uncertainty about the decision, and the
the reader is referred to [28]). Now, we need to study,if,q. ’ y '

costs are also suitable to the complexity control problem. Pnetteer Is as an input feature for the hypothesis testing. In

articular, we seek the most appropriste, . cost to make our experiments, we used the estimator described in [29] to
P : ppropriai&ode compute the MI.

an early detection of the MBs that should be encoded aSTo select the most suitable feature, we relied on a set of 10
SKIP, Inter 16 x16, or Intra 16 x 16, without causing significant. '

efficiency coding losses. For this purpose we compute t ideo sequences of different resolutions (4 CIF, 4 QCIF, and 2

g ) . ), and we considered a variety of quality levels (QP = 24,
E:(c))g:bc\ll%/egfht:/];oﬁloesstijgk; tvr:/ﬁhjzliie{; sls}oﬁ?fl?eywth the 28, 32, 36, and 40). We computed both the Bhattacharyya

distance and the MI in all the cases. According to the
Pr(Ji|H;). (4) Bhattacharyya distance, the results achieved are remarkably
consistent and in favor ofnin(SKIP, Interl6). When the
In our case, since the modes SKIP, Inter 16x16, amdl is considered, the results are not so consistent, but again
Intra 16x16 are assessed for all the MBs and their correrin(SKIP, Interl6) turns out to be the most voted. Tables
sponding J,,,.qe COSts are available, we consider the nexf ll, and Ill illustrate these results for three selected examples:
set of possible costgy, as candidates for input feature “Rush Hour” (HD) at QP 24, “Foreman” (CIF) at QP 32, and
to our hypothesis testingiskrp, Jrnteriox16, Jintratoxic, “Carphone” (QCIF) at QP 36.
and Jyin(SK 1P, Inter16), Wheremin(SKIP, Inter16) is the As can be observed in Tables I, Il and lll, thg cost
minimum cost between the SKIP and the Inter 1616 modesssociated withnin(SKIP, Inter16) is the most suitable for
To select the most appropriate cost to be the input featuceyr design, since both the MI and the Bhattacharyya distance
we rely on two different tests, the Bhattacharyya distane@e maximum. Therefore, this cost, hereaffglkrp 16, Will
and the mutual information (MI). The Bhattacharyya distandee used as an input feature in our hypothesis testing.
measures the distance between two pdfs and, for the Gaussidfigure 2 depicts the resulting pdfs for the same examples.
case, is defined as follows: The left part of the figure showBr(Jsxkrp16/Ho), in blue,

here H(-) denotes entropy. In our case denotes our



TABLE Il

Dphat AND MI COMPUTED FOR EACHJ);, CONSIDERED FOR respectively, at the instant;, Jskp16(n) is the cost for the
“CARPHONE’ (QCIF) AT QP 36. involved MB at the instant; and« and g are the parameters
[ PminssipinenolJskiel interis ol Jintraioxis) defining the forgetting factors of the exponentially averaged
B e e estimation process. Both and  are experimentally set to
0.95.

and Pr(Jsp16/Hy ), in red, for the sequence “Rush Hour” . Following a similar procedL_Jre, tha priori proba_bilities

(HD) at QP 24; the central part shows the same pdfs tby(Ho) and P(H;) are also estimatedn-the-fly. In this case,

“Foreman” (CIF) at QP 32; and the right part shows thefine estimated maximum values are limited in order to avoid

for “Carphone” (QCIF) at QP 36. As can be observed, tHéinner-takes-all. . ,

separability of the distributions is enough to make reliable Finally, itis worth mentioning that the hypothesis test does

decisions. not begin its operation until a reasonable estimation of all of
Furthermore, theJsxrp1s COst is a content-dependent€Se parameters is reached.

feature. Consequently, the pdfs considered must be estimated

on-the-flyto properly follow the changing properties of thes®. A Content-Adaptive Decision Threshold

distributions. This content-adaptive property is the main ad- g st ysual expression for the hypothesis test is obtained

vantage of this proposal. On the other hand, the potent taking logarithms in (7):

disadvantage would be the computational cost associated with

the estimation of the pdfs. This issue is addressed by assuming — ("SKIFQ’;S*W2 + ("S“g;g*ﬂof + m%ﬁ =D
Gaussian distributions, so that only their means and standard ! B(Hy) ’ o !

. . . . . 0 1
deviations have to be estimated. As shown in Fig. 2, the (B a,y) + (&) (10)

Gaussianity assumption seems quite reasonable.
The next section explains in detail the hypothesis testirgi%
approach.

Furthermore, to simplify the notation in the previous equa-
n, hereafter we will denote the left and right sides of this
equation as follows:

C. A Content-Adaptive Hypothesis Testing 0 20 n+e, (11)

Once the hypothese&, and H; are defined, the input where the classical expression is slightly modified to dis-
featurez = Jsk1p16 is selected, and the resulting conditionafinguish two components in the right part of the inequality.
pdfs Pr(Jsk1p16/Ho) andPr(Jskip16/H1) are modeled as specifically,; refers to the logarithm of the priori probability
Gaussian distributions, the LRT defined in (3) can be rewrittqeatio, ande refers to the logarithm of the cost ratio.
accordingly: To control the complexity, we propose to actoftost ratio)
in (11). By acting ore, we are varying the threshold according

—(Jsk1p,i6—i1)?

exp 261 ] 2) & 231 IT(HO) 010’ @) to which the hypothesis testing decides whether an MB is
exp(—UISKLPLs o)y o1 =70 P(H,) Cou encoded using the low-complexity mode (only the SKIP, Inter
0

) ) i 16x16, and Intra 16x16 modes are evaluated) or the high-
where i, and /i, are the estimated means of the clasg)mpexity mode (all the available modes are evaluated). The

conditional pdfs (Prfsp.16/Ho) and Pr(Jskipi61111)),  |arger thee, the higher the number of low-complexity encoded
respectively;o, and 4, are the estimated standard deviation

of the same distributions?(Ho) and P(H) are the estimated | should be noticed that by acting anwe are actually

a priori probabilities of the hypothesis; and the cost aSSOCiatﬁ%difying the relative importance off; and Cio. When
with correct decisions (g andC;) are considered to be Zero. o complexity is required, the cost of deciding the high

The parameters of the pdigy, /i1, 50, anda,, as well as the 5 5exity hypothesis when the other was the correct one is
a priori probabilitiesP’(Ho) and P(H, ), are estimatedn-the- |00 1 such a casél, takes a high value and, consequently,
fly as descr_it.Jed_Iater, so that the decision process is adapetegSO takes a high value. In contrast, when a high value
to the specific \{ldeo content. L ) ) .. of complexity is acceptable, the complexity control algorithm
An exponentially averaged estimation, in which distand,, 4 focus on coding efficiency. In this case, deciding low
samples are less significant than current samples, is use%&?ﬂplexity when high complexity was the correct decision

estimate the values of the means and standard dewaﬂo&?‘comes more relevant, takes a high value, anda low
Specifically, the updating equations are the following: value. In summary, high values @f,, promote complexity

f1i(n) = afiy(n — 1) + (1 — @) Jsxrpis(n),i = {0,1} (8) saving, while high values of%, benefit coding efficiency.
The goal of the complexity control is to act erto achieve
62(n) = B62(n — 1) + a certain targfethcofm”plexitgl“lc. _Thi_s Tg is expressed a;]s a
. 9 . percentage of the full complexity, i.€[,C = 100 means that
(L= B)(Jsrpre(n) = fu(n)%, i = {0,1}, ©) ihe target complexity is that of the full mode evaluation, or
wheren denotes a index associated with the times that tH&” = 20 means that the target complexity is 20% of the full
H; hypothesis is selecteql;(n — 1) and 6%(n — 1) are the mode evaluation. Thi§'C' value could be obtained according
estimated mean and variance, respectively, at the inStant to one or several parameters, as in the current battery level
1); fui(n) and 62(n) are the estimated mean and variancéy) a mobile device, the buffer occupancy in rate-controlled
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Fig. 2. Examples oPr(Jsx1p,16/Ho) andPr(Jskrp,16|H1). @) “Rush Hour” (HD) at QP 24; b) “Foreman” (CIF) at QP 32; and c) “Carphone” (QCIF)
at QP 36.

transmission application, or the available CPU resources in
non-dedicated multi-task systems. (Hhigh X MBoer— frame) (1 _ %)
The T'C is converted into an equivalent parameter that is M Biow = : . (15)
directly managed by the proposed algorithm: the number of High = Hiow
MBs encoded in low complexity mod&/ B;,.,. Actually, each Once theT'C is converted intoM B,,.,, we can tackle the
time the hypothesis testing decidBs, a low complexity MB problem of selecting a specific value for the threshodd that
is encoded. In this way, if th&C' is low, M By,,, should be & givenM By,,, is met. The relationship betweend M Bio.,
high and vice-versa. has been studied experimentally. Figure 3 illustrates the result
Given a target complexityl'C, M B, is computed as by means of two examples. One of the curves is derived from
follows. Let us definguy,;,, andu,., as the average time spent“_Par'S" and the other from “Foreman_”, both Wlth_CIF resolu-
for encoding an MB at high- or low-complexity, respectivelytion, at QP=28. It can be observed taatcreases with/ Bjo.,
These two parameters are computed by simply averagitige number of early stops) until saturation. The saturation of
the real encoding time spent on each type of MB ovdpe curve indicates thablBio, = M Bper—frame. i-€., all
several MBs, and are initialized using the first high- and lovihe MBs (396 for the CIF sequences of our example) are
complexity samples, respectively. Let us define now the targ¥tcoded at low complexity, reaching the lowest complexity

time that should be spent per frani€7’, to meet ther’c: ~level achievable by the proposed method. _
It is worth noting that the number of early stops obtained
. TC for a given ¢ actually depends on the video content. For
T =t er—frame—full X 775 12 :
VMCper—f Pl 700 (12) example,e = —2 producesM By,,, = 182 for “Paris” and
where timepe, frame— juu denotes the time spent encoding Biow = 63 for “Foreman”. Furthermore, the differences

a whole frame at full complexity. We rewrite the previou®etween curves are more significant for low values: afue
equation by expressing the time per frame as a function of tiethe low slope of the curve. In general, the statistics in (10)

number of MBs in a frameM By, frame: are time-variant; therefore, fixing a specific valuecofvould
produce meaningful differences in the number of early stops
TC M By, from frame to frame.
TT = (up;i MByer— fram —. 3 low .
(nign per— frame) X 100 (13) Because of these reasons,must be adjustean-the-fly

Likewise, the target im@'T can be expressed in terms of© follow the time-variant statistics and achieve the target
the number of MBs encoded at high complexity,By,;,, the M Biow- Specifically, we propose to updateon a frame-by-

corresponding average coding times per Mi;,;, and,,,: the following equation:

6f:6f,1+VXAMBlow, (16)

T'T = (ptnigh X M Bhign) + (fow X M Biow) - 14 .
(knign pigh) + o tow) (14) whereey ande;_; are the thresholds applied to tlie-th and

When equations (13) and (14) are combined, the numkgi— 1) — th frames, respectivelyAM B,,,, is the difference
of MB encoded at low complexity can be easily found as lzetween theM B,,,, target for thef — th frame and the
function of theT'C: actual M By,,, obtained for the(f — 1) — th frame; andv



10

—+— Foreman
Paris

i i i i
0 50 100 150 200

i i i i
250 300 350 400

Mean number of low complexity MBs (MBIOW)

Fig. 3. An illustration of the relationship between the numbeMBs encoded at low complexity/ B;,,, and the threshold in two sequences.

is a parameter experimentally determined as a function &fgorithm 1 Proposed coding process of the complexity

AM B,,,, and the frame size.

control algorithm.

The v value allows for choosing an application-specifiRequire: N: number of frames.
operating point that properly balances the adaptation spdeequire: M: number of MBs in a frame.

versus the amplitude of the oscillations around the target:
complexity. If a high value of/ is used, the target time per 2:
frame, T'T', will be reached faster, but a larger oscillation
around thisTT will be observed, and vice-versa. Figure 3:
4 illustrates this behavior for “Mobile” (QCIF) at QP 28.
The resulting time evolution oM B,,,, (the number of MBs  4:
encoded at low complexity) is shown for two valuesi.ofAs
can be seen, for = 0.005 (left part of the figure), some
frames are needed to reach the desired valug/déf;,,,, but
the oscillations around the desired value are moderated. h
contrast, forv = 0.1 (right part of the figure), the desired 8:
value of M By,,, is reached much faster, but at the expense of:
larger oscillations.

To properly manage this trade-off, the valuerofs varied 10:
adaptively according to the magnitudedf\/ By,,,: the higher 11
the AM By,., the higher the . In this manner, when encoding 12:
time is far from T'T, ¢ is adapted faster, and vice-versals3:
Furthermore, differenty values are used for each spatiafl4:
resolution (QCIF, CIF, and HD), specifically: 15:

QCIF: JAM Bjow| > 20 = v = 0.05; [AMBy,p| <5 = 16

@ a

for Vn; € N do
CalculateM B,,,, based on the mean time measures and
the demanded encoding time (15).
Calculate the threshold based on the feedback algo-
rithm (16).
for Vm; € M do
Evaluate SKIP, Inter 16x16, and Intra 16x16 modes.
Calculate the input feature to the hypothesis testing
JsKr1p,16-
Apply the hypothesis testing (11).
if & <n+ ethen
Decide the best mode between SKIP, Inter 16x16,
and Intra 16x16.
else
Calculate all remaining modes.
Decide the best mode.
end if
Updateginign and 0., and statistics in (10).
end for
end for

v = 0; other casev = 0.05.

CIF: [AMBjoy| > 50 = v = 0.025; |AMBjyy| < 5 =
v = 0; other caser = 0.01.

HD: |AM Bjoyw| > 80 = v = 0.001; |AM Bjow| < 5 =
v = 0; other caser = 0.0005.

E. Summary of the Algorithm
Algorithm 1 summarizes the complete algorithm.

V. EXPERIMENTAL RESULTS
A. Experimental Protocol

TABLE IV
TEST CONDITIONS

Coding options

Profile Main

RD Optimization Enabled

Use Hadamard Enabled

Symbol Mode CABAC
Search Range (CIF, QCIF) +32
Search Range (HD) +64

QP 24,28, 32, 36, 40
Number of Reference Frames 5

Frames to be encoded 100
GOP pattern IPPP

To assess the performance of the proposed method, it was
integrated into the H.264 reference software JM10.2 [3(®.reference frames, Hadamard transform, CABAC, and RDO.
The main test conditions were selected according to thi@e experiments were conducted using an IPPP GOP pattern,
recommendations of the JVT [31], namely: main profie2 five QP values (24, 28, 32, 36 and 40), and 100 frames per
pixel search range for QCIF and CIF aa4 pixels for HD, sequence. Table IV summarizes these conditions.
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Fig. 4. lllustration of the role of the parameter, which controls the balance between complexity adaptation velocity and oscillation amplitude. This results
have been obtained for “Mobile” (QCIF) at QP 28.

The experiments involved a large set of sequences are made assuming independence between MBs. Thus, in some
different resolutions covering a wide variety of contents. Thesases, a decision that is not locally- optimum (in the sense that
sequences are listed in Tables V, VI, and VIl for QCIF, CInly explores a subset of modes) could produce better overall
and HD resolutions, respectively. performance.

To evaluate the capability of the algorithm to meet a certain Tq jjjustrate how the coding efficiency depends on THg,
target complexityl'C’, a measurement of computational timg-igs. 5 6, and 7 show the R-D performance @vastguard

savingT'S was calculated as follows: (QCIF), TempetgCIF), andRush hour(HD) for every other
Time(JM10.2) — Time(Proposed) of the considered’C's, respectively (not all of th€'C's are
TS = x100.  (17)  depicted to make the graph clearer). The left part of each

Time(JM10.2) . - .
) ) . _figure presents the complete R-D curves, while the right part

Thus, the higher the measured computational time savifgesents a zoom of a selected area. As can be observed, the
the lower the reached complexity. In particular, the proposg@qing efficiency is very close to that of the reference software
algorithm was assessed for seven different target complexitigs, high and mediun?’C's and degrades gracefully as tie”
TC(%) = {80,70, 60, 50,40, 30,20}, in our experiments. decreases.

Furthermore, to evaluate the coding efficiency Io;ses In_Although the results in terms of objective R-D measure-
curred by the proposed method due to the complexity con-

trol, average bit rate differences (A B Avith respect to the ments are good, we -also checked that the_ prqposed f“ethOd
: : does not have negative effects on the subjective quality. To
reference software were computed, as described in [32].

this end, we carefully watched some of the resulting encoded
sequences and concluded that there are not perceptual differ-
B. Performance Assessment ences with respect to those generated by the reference encoder.

Tables V, VI, and VII show the results for QCIF, CIF, andvioreover, we labeled the MBs according to the complexity
HD resolutions, respectively. Specifically, for each of ih@s level assigned by the algorithm (low or high) to visually check
considered, the mean values®8(%), and ABR(%) across Whether its decisions are as expected. Figure 8 shows an
the five considered QP values are given. Furthermore, tigstrative example where the encoder must comply with a
last row of each table shows the average results for all tHa/gh complexity constraint (7'G= 30). As can be observed,
sequences. only a few MBs are encoded with high complexity (light-

As can be observed, the achieved complexity was very clgadored in the figure) and are those related to moving objects.
to theT'C. Therefore, the method is successful in fulfilling the Moreover, the proposed algorithm was assessed in compar-
main goal of having a precise complexity control. Moreoveison with the complexity control algorithm proposed in [23].
the coding efficiency was maintained very close to that of thi@ble VIII shows the average results achieved by the com-
reference implementation when medium or higl's were pared algorithms for several target complexities (7' =
sought. Obviously, when loW'C's were demanded, these werg[80, 70, 60, 50, 40, 30, 20}). In particular, for each one of the
achieved in exchange for more significant losses in codiimgage resolutions considered (QCIF, CIF, and HD), an average
efficiency. result was computed taking into account the five QP values and

It is worth mentioning that, exceptionally, bit rate reductionall the test video sequences. As can be seen, for low com-
were found. These unexpected results were achieved becalsgities (20, 30, and 40), the proposed algorithm generates
the encoder decisions are sub-optimum in the sense that thegomplexity closer to the target. The same happens for high



PERFORMANCE EVALUATION OF THE PROPOSED ALGORITHM RELATIVE TAIM10.2FOR QCIF SEQUENCEST'S STANDS FOR TIME SAVING ANDABR

TABLE V

STANDS FOR BIT RATE INCREMENT

TC 20% 30% 40% 50% 60% 70% 80%
Sequence TS ABR TS ABR TS ABR TS ABR TS ABR TS ABR TS ABR
(%) (%) (%) | (%) (%) | (%) (%) | (%) (%) | (%) (%) (%) %) | (%)
Akiyo 76.1 5.1 68.2 1.0 57.7 0.4 48.4 0.3 39.5 0.2 30.2 0.0 22.0 0.0
Bridge close 75.3 3.3 65.5 2.0 55.8 1.0 46.4 0.5 37.9 0.3 28.9 0.3 20.1 0.2
Bridge far 72.0 1.1 64.6 0.8 54.8 0.5 44.1 0.3 37.7 0.2 28.8 0.1 21.1 0.1
Carphone 79.8 11.3 67.9 5.6 57.1 2.8 46.7 1.7 37.2 0.9 28.0 0.0 19.0 0.3
Claire 77.9 5.4 65.0 0.6 54.6 0.2 45.0 —0.2 36.4 —0.1 28.1 —0.1 20.6 —0.3
Coastguard 82.1 9.8 74.8 5.4 62.2 3.2 50.4 1.9 39.9 1.3 30.5 0.8 21.5 0.4
Container 76.0 6.9 66.7 2.7 55.4 1.2 44.4 0.3 35.2 0.1 26.3 0.2 18.2 0.1
Foreman 82.2 17.7 67.7 8.8 56.5 4.7 45.8 2.5 36.4 1.4 27.7 0.6 20.2 0.1
Grandma 77.6 5.7 69.8 1.7 58.4 0.8 48.3 0.5 36.7 0.3 27.6 0.2 18.4 —0.2
Hall 73.5 5.6 65.2 1.13 56.5 0.9 47.0 0.1 38.3 0.2 30.5 —0.1 22.4 0.1
Highway 75.8 12.0 64.3 4.6 53.1 2.5 42.6 1.3 33.5 1.1 26.4 1.0 19.2 0.9
Miss America 74.5 4.2 64.8 1.3 53.7 0.2 42.0 0.0 33.5 —0.1 25.6 —0.3 18.8 —0.4
Mobile 83.8 15.5 71.3 10.2 60.0 7.3 49.5 5.2 39.2 3.5 29.9 2.4 20.7 1.4
M&D 78.2 6.9 67.1 2.2 54.6 1.0 42.7 0.2 32.3 0.3 24.3 —0.2 16.7 0.0
News 76.5 8.3 67.1 2.8 55.8 0.9 45.9 0.3 37.2 0.3 29.1 0.2 20.8 0.3
Salesman 79.1 9.0 71.0 2.8 59.9 0.9 49.4 0.0 39.1 0.1 29.5 —0.1 20.1 0.0
Silent 77.5 8.6 68.4 2.8 58.8 1.4 49.4 1.0 40.0 0.7 31.9 0.5 23.5 0.0
Suzie 78.8 10.7 69.8 5.5 55.6 3.0 44.5 1.7 33.6 0.8 24.1 0.3 16.4 0.3

[ Average | 776 ] 82 || 67.7] 35 | 567 ] 1.8 [ 463 ] 10 [ 369 06 | 282 03 [ 200 ] 0.2 |
TABLE VI

PERFORMANCE EVALUATION OF THE PROPOSED ALGORITHM RELATIVE TQJM10.2FOR CIF SEQUENCEST'S STANDS FOR TIME SAVING ANDABR
STANDS FOR BIT RATE INCREMENT

TC 20% 30% 40% 50% 60% 70% 80%
Sequence TS ABR TS ABR TS ABR TS ABR TS ABR TS ABR TS ABR
) | (%) () | (%) 0 | (%) () | (%) () | (%) %) | (%) (%) | (%)
Akiyo 76.8 3.5 66.6 0.7 55.6 0.0 46.0 0.0 37.8 0.0 30.5 0.0 22.2 0.0
Bus 82.1 17.9 70.5 8.0 60.3 4.4 51.0 2.9 42.6 2.5 34.0 2.4 24.5 1.4
Coastguard 83.5 6.2 74.2 3.9 62.2 2.6 50.3 2.0 40.8 1.4 32.6 1.1 22.4 0.5
Container 79.0 5.2 70.1 1.9 59.4 0.5 48.7 0.3 38.8 0.2 30.0 0.0 21.8 —0.1
Football 80.5 21.7 67.6 13.7 53.8 6.7 42.8 2.9 32.7 1.1 24.2 0.7 16.2 0.3
Foreman 80.5 15.2 68.7 5.5 57.9 3.2 47.9 1.7 41.5 2.1 35.1 2.3 23.8 0.8
Garden 82.7 16.8 71.0 11.6 54.7 5.9 42.4 3.6 28.7 2.0 17.6 0.8 9.7 0.3
Highway 75.4 8.5 65.1 3.7 51.5 1.4 42.1 0.6 35.7 0.8 31.2 1.3 20.4 0.3
Mobile 81.0 16.9 67.4 10.6 54.2 6.9 42.6 4.5 32.8 2.9 23.9 1.9 14.3 0.7
M&D 78.9 3.8 66.8 0.9 54.5 0.3 42.6 0.2 33.0 —0.2 24.8 —0.2 17.6 —0.1
News 76.8 6.7 66.6 2.5 56.3 1.0 46.4 0.4 39.1 0.3 32.6 0.3 22.0 0.1
Paris 79.6 14.8 64.8 4.6 54.5 2.0 45.6 0.8 38.5 1.1 31.4 1.1 22.6 0.3
Silent 79.5 6.5 70.0 2.0 60.4 1.3 51.5 0.8 43.1 0.8 35.0 0.7 24.5 0.3
Stefan 76.2 13.9 67.2 10.0 54.8 6.5 40.6 3.1 32.0 1.6 24.5 0.9 16.5 0.6
Tempete 83.3 11.1 69.1 7.0 57.0 4.9 45.9 3.2 37.2 2.2 32.3 1.8 21.3 1.0
Waterfall 82.1 8.0 72.9 3.5 62.0 1.8 52.1 1.4 43.9 0.9 36.3 0.6 25.5 0.5

[ Average || 79.9 | 11.0 | 68.7 | 56 || 568 | 3.1 || 462 | 1.8 [ 374 ] 12 [ 298 1.0 || 203 | 04 |

TABLE VI
PERFORMANCE EVALUATION OF THE PROPOSED ALGORITHM RELATIVE TAIM10.2FORHD SEQUENCEST'S STANDS FOR TIME SAVING ANDABR
STANDS FOR BIT RATE INCREMENT

TC 20% 30% 40% 50% 60% 70% 80%

Sequence || TS | ABR || TS | ABR | 1S | ABR || TS | ABR || TS | ABR || TS | ABR || TS | ABR
%) | (%) %) | (%) %) | (%) %) | (%) %) | (%) (%) | (%) %) | (%)

Blue Sky || 63.8 | 2.2 [ 629 | 1.9 [ 557 | 1.4 [ 462 | 08 [ 367 | 05 | 283 | 04 [ 19.7 | 03
Pedestrian || 75.7 | 54 | 638 | 24 || 52.6 | 11 || 430 | 07 || 346 | 04 | 269 | 0.3 | 196 | 0.2
Riverbed || 82.0 | 124 || 72.6 | 100 || 61.0 | 7.2 || 50.3 | 5.1 | 406 | 3.6 || 315 | 25 | 232 | 17
Rush Hour || 77.7 | 54 || 66.7 | 2.6 | 55.7 | 1.3 | 46.2 | 07 | 379 | 04 | 300 | 0.2 | 224 | 02
Station2 784 | 2.6 || 716 | 09 | 614 | 03 | 51.6 | 02 || 423 | 0.1 || 33.0 | 0.0 | 234 | 0.2
Sunflower || 762 | 1.8 | 675 | 1.3 || 582 | 0.9 | 497 | 05 || 416 | 05 | 334 | 02 | 250 | 02
Tractor 80.6 | 9.1 70.0 | 38 |[ 599 | 1.9 | 499 | 1.3 |[ 408 | 0.8 | 329 | 0.6 | 243 | 05

[ Average || 764 ] 56 [[ 679 ] 33 [[ 578 20 [ 481 13 [ 392] 09 [ 309] 06 [ 225 ] 05 |

complexities (D and80), where the algorithm in [23] gener- To gain an insight into the differences between the perfor-

ates lower complexities than those actually demanded (becamsnce of the compared algorithms, some graphical examples
it works by selecting a subset of modes and, sometimes, thi® shown for several representative sequences. In particular,
procedure does not allow for finer complexity control), usuallwe show the bit rate increments of the compared algorithms

in exchange for a higher increment of bit rate. Furthermore, with respect to the reference software as a function of the

general, the proposed algorithm produces significantly loweomputational?’S. Obviously, for higherT'Ss, the losses in

bit rate increments for the sanfé&C. coding efficiency and, consequently, the bit rate increments are
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Fig. 5. R-D performance for a representative subset of the target complexities consi@easthuardat QCIF resolution.
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Fig. 6. R-D performance for a representative subset of the target complexities consiiergrtteat CIF resolution.

more relevant. Figure 9 shows these results for two QCIF sespecially for high time savings. On the other hand, for HD
guencesCoastguardand Mother & Daughter Fig. 10 shows resolution, the results were slightly better for the fixed mode
the results for two CIF sequencé®remanandWaterfalt and reduction method. This last result was expected, since the
Fig. 11 shows the results for two HD sequendesdestrian impact on the R-D performance of the small modes (8x4,
and Rush Hour. As can be observed, the proposed algoritihx 8, and 4x4) is not significant for HD, and the proposed
clearly outperformed that proposed in [23], especially for higmethod explores all of them for high-complexity MBs. Finally,
computationall’S's, where the bit rate increment generated bglthough this fixed mode reduction is provided as an alternative
the proposed algorithm was significantly lower. benchmark, it should be noticed that, actually, it is not a
To provide an additional reference, we also compared themplexity control algorithm (a fixed subset of modes are
proposed algorithm with a fixed mode reduction, i.e., a methesplored in all the MBs and, therefore, the encoder is not
that simply explores a predetermined subset of modes. Spec#pable of adapting to any target complexity).
ically, we tested three different subsets of Inter modes (Intra
modes are always available), namely: C. Performance Assessment: Baseline Profile

« SKIP and Inter 16x16; In contrast to other approaches that act on the encoder con-

« SKIP, Inter 16x16, Inter 16x8, and Inter 8x16; and  figuration (number of references, search range, ...) to adapt to

« SKIP, Inter 16x16, Inter 16x8, Inter 8x16, and Integifferent complexity levels ( [18], [24]), the proposed method

8x8. aims to control the complexity by dynamically selecting one

The results achieved by this method have been added to Figfstwo possible subsets of modes at the MB level. The goal
9, 10, and 11. In particular, each subset of modes generatexf dahis subsection is to prove that the suggested algorithm
(Bit rate increment, Time saving) point in these figures can successfully work with different encoder configurations
(these points have been linked by straight lines to improamd profiles (which should be selected priori according
visualization). As can be observed, the proposed methtudthe application demands). In particular, we show that it
achieved better performance for QCIF and CIF resolutionsprks properly in a configuration very different from that of
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Fig. 7. R-D performance for a representative subset of the target complexities consRlesedHourat HD resolution.

Fig. 8. lllustration of the decisions made by the proposedrélyn. For a tough target complexity, Paris (CIF) wiftC' = 30, we have highlighted those
MBs encoded with high complexity. As expected, in general, these MBs belong to moving objects.

TABLE IX

the previous experiment. Instead of using the main profile, 5 BASELINE TEST CONDITIONS
references+32 pixel search range, and CABAC, we tested our Coding options
algorithm on a much simpler configuration, more suitable to fit Profile Baseline
low-capacity devices: baseline profile, 1 reference fraii RD Optimization Enabled
ixel search ran nd CAVLC. Table IX shows the compl Use Hadamard Enabled
pixel search range, a d CAVLC. Table IX shows the complete Symbol Mode CAVLC
eXpe”m_ental setup.. _ ) Search Range (CIF, QCIF) +16
For this new configuration, we conducted the same kind of Search Range (HD) +32
experiments as for the first onES and A BR were computed QP 24,28, 32,36,40
. Number of Reference Frames 1
with respect to the reference software for the same sets of Frames to be encoded 100
sequences in QCIF, CIF, and HD resolutions. Table X shows GOP pattern IPPP

the average results considering all the sequences and QP

values. The results obtained for the main profile, denoted as

“Main”, are also included in the table for reference, togethdd particular, how the bit rate increments are lower thanéhos

with the new results, denoted as “Baseline”. of the “Main” configuration when high complexity reductions
As can be observed, the algorithm performance is algée considered.

good for this “Baseline” configuration. It is worth noticing, Furthermore, since the proposed method worked success-
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TABLE VIII
PERFORMANCE EVALUATION OF THE PROPOSED ALGORITHM IN COMPARISON WITH23]. AVERAGE RESULTS T'S STANDS FOR TIME SAVING ANDABR
STANDS FOR BIT RATE INCREMENT

Bit rate increment (%)

Performance evaluation of the proposed method in comparison to that in [23] and to that of a fixed mode reduction for two representative QC
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sequences. The graphs show bit rate increment as a function of the computational time saving.
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Fig. 10. Performance evaluation of the proposed method in comparison to that in [23] and to that of a fixed mode reduction for two representative C
sequences. The graphs show bit rate increment as a function of the computational time saving.

fully on two quite different configurations, it is also conceivof the algorithm to converge to a certainC. Specifically,

able that it could work in combination with methods that adtig. 12 illustrates, forCarphone(QCIF) at QP = 28, how

on the encoder configuration, such as [18], [24]. the number of low-complexity MBs evolves with time (frame

number) for two differentl’C's: 20 (Fig. 12a) and50 (Fig.

12b). As can be observed, when thé' was set to low value,

20 on Fig. 12a, the actual number of early stops (M.}
Since the capability to adapt to a time-variant complexityeached a value very close to the desired one in just a few

target and to the video content is one of the main goals of themes. Furthermore, the variance with respect to the desired

proposed algorithm, some illustrations regarding the algorithalue was low. When th@C' was set to a higher valuép

convergence properties are in order. in Fig. 12b, the convergence time was again very small, but
First, we provide two graphical examples of the capability

D. lllustrations of the algorithm convergence properties
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Fig. 11. Performance evaluation of the proposed method in comparison to that in [23] and to that of a fixed mode reduction for two representative +
sequences. The graphs show bit rate increment as a function of the computational time saving.

TABLE X
PERFORMANCE EVALUATION OF THE PROPOSED ALGORITHM FOR THEBASELINE” ENCODER CONFIGURATION THE CORRESPONDING RESULTS FOR
THE “M AIN” CONFIGURATION ARE ALSO GIVEN FOR REFERENCET'S STANDS FOR TIME SAVING ANDA BR STANDS FOR BIT RATE INCREMENT

TC 20% 30% 20% 50% 60% 70% 80%
Sequence TS [ABR || TS [ ABR | 1S | ABR || TS | ABR | TS | ABR || TS | ABR || TS | ABR
0 | B || (%) | (B) || (0) | (B) || (&) | (B) || (%) | (%) || (%) | (%) || (%) | (%)
[ Main QCIF__ || 77.6 | 82 | 67.7 | 3.5 |[ 567 | 1.8 [ 463 | 1.0 |[[ 369 | 0.6 | 282 | 0.3 | 200 | 0.2 |
[ Baseline QCIF || 73.0 | 4.7 || 64.8 | 2.2 || 540 | 1.2 || 458 | 0.7 | 38.0 | 0.4 || 30.6 | 0.3 | 235 | 0.1 |
[ MainCIF__ || 79.9 | 11.0 || 68.7 | 5.6 |[ 568 | 3.1 [ 462 | 1.8 | 374 | 12 | 208 | 1.0 | 203 | 04 |
| Baseline CIF_|| 755 | 7.6 || 65.0 | 4.0 || 557 | 2.3 || 474 | 1.6 || 402 | 1.5 || 327 | 1.0 | 247 | 05 |
[ ManHD | 764 | 56 | 670 | 3.3 [ 578 ] 20 [ 481 | 1.3 [[ 392 ] 09 | 300 06 | 225 ] 05 |
| Baseline HD || 73.4 | 6.0 || 639 | 3.6 || 548 | 24 | 443 | 1.5 || 366 | 1.1 || 203 | 08 | 218 | 05 |

in this case the variance around the desired valug/@$,,, meet a target complexity with minimum losses in coding
was higher. A very similar behavior was observed for almosfficiency. Assuming Gaussian distributions, the hypothesis
all the sequences. testing paradigm allows us to formulate the problem in a

Second, Fig. 13 shows two illustrative examples of a timsimple form that depends on some statistics that can be
variant T'C for Paris (CIF) at QP=28. On the left part of theestimatedon-the-fly. As a result, the proposed algorithm is
figure we illustrate the behavior of the proposed algorithwepable of adapting to the content and to time-variant target
when theT'C' changed from50 to 20 at frame 50. On the complexities and is able to operate on a large range of
right part of the figure, two changes happen&d: went from target complexities. Furthermore, the proposed algorithm is
20 to 50 at frame 25 and t&0 at frame 50. As shown, the computationally simple.
proposed algorithm was able to reach the desired complexityTo assess its performance, the proposed algorithm was im-
quickly even when fast changes TiC' happened. plemented on the reference software JM10.2. The experimental

Finally, to provide a more solid proof of the convergencevaluation was carried out on a large set of sequences of
properties of the algorithm than the previous illustrative exseveral spatial resolutions, a comprehensive set of potential
amples, we computed average results for several sequeriegget complexities, and two different profiles and coding
covering all the image resolutions considered. Specificalgonfigurations. The results obtained allow us to conclude
Table XI shows, for some listed sequences and three differénat the proposed algorithm can reach any target complex-
target complexities (T'(%) = {20, 50,80}), the actual value ity with remarkable precision, adapt to time-variant target
of M By,., and the desired value dff B,,,, averaged over all complexities, and work properly with any spatial resolution,
the encoded frames. It is worth noticing that these measub@ving insignificant bit rate increments for high and medium
ments are totally independent of the implementation. Thesemplexities and acceptable bit rate increments for very low
results allow us to conclude that, on average, the proposemplexities. When compared with the complexity control
algorithm is able to reaci’C' with a remarkable precision. method in [23], the proposed method was able to reach
complexities closer to the target and to provide a better
trade-off between complexity reduction and coding efficiency,
especially for low and medium target complexities.

In this paper we have proposed a novel algorithm to control An interesting future research line would focus on de-
the complexity of an H.264/AVC encoder. The proposeeeloping the ideas of the proposed algorithm for the future
method relies on the application of a hypothesis testing high efficiency video coding (HEVC) standard [33], which is

V. CONCLUSIONS



5

TTSITICTToTee]

H L

14

Frame number

Frame number

7 :4 Bz:i**" ¥ T ¥
T ™ Il MM Al A ﬂﬁ
60 ¥ AN Y
3 3
1] o
= :
0 s 50
< =%
2 2
1 n
> 2 40
g 5
o ]
S i)
@ 5 30
2 o
5 £
3 =3
z Z 20
—+— Actual MBIOW 10 —_— Actu.al MBIOW
Desired mMB Desired MB
i i i i 0 i i i i
20 40 60 80 100 40 60 80 100

(a) Time evolution ofM By, for TC = 20. (b) Time evolution ofM B,,,, for TC = 50.
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Fig. 13. lllustrative example of the algorithm convergence for a time-vafiarif for Paris (CIF) at QP 28.
TABLE XI
ASSESSMENT OF THE CONVERGENCE PROPERTIES OF THE PROPOSED ALGORITHM
[ TC = 20 i TC =50 I TC = 80 I
\ Sequence || Desired MBio., | Actual MBi,,, || Desired M By, | Actual M B, || Desired MBj,., | Actual MBiow ||
Carphone QP 28 (QCIF) 97 96 66 66 34 34
Container QP 32 (QCIF) 99 98 68 69 34 35
M&D QP 36 (QCIF) 99 94 66 64 32 36
Akiyo QP 28 (CIF) 396 387 271 271 139 139
Mobile QP 36 (CIF) 392 388 261 260 132 131
Silent QP 40 (CIF) 396 394 281 282 141 141
Pedestrian QP 28 (HD) 3528 3453 2368 2377 1189 1191
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