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Abstract—The latest H.264/AVC video coding standard
achieves high compression rates in exchange for high compu-
tational complexity. Nowadays, however, many application sce-
narios require the encoder to meet some complexity constraints.

This paper proposes a novel complexity control method that
relies on a hypothesis testing that can handle time-variant content
and target complexities. Specifically, it is based on a binary
hypothesis testing that decides, on a macroblock basis, whether to
use a low- or a high-complexity coding model. Gaussian statistics
are assumed so that the probability density functions involved
in the hypothesis testing can be easily adapted. The decision
threshold is also adapted according to the deviation between the
actual and the target complexities.

The proposed method is implemented on the H.264/AVC
reference software JM10.2 and compared with a state-of-the-
art method. Our experimental results prove that the proposed
method achieves a better trade-off between complexity control
and coding efficiency. Furthermore, it leads to a lower deviation
from the target complexity.

Index Terms—Complexity control, H.264/AVC, hypothesis test-
ing, mode decision.

I. I NTRODUCTION

Nowadays, in a world of multimedia portable devices, signal
processing systems must be designed to run on a variety of
platforms, each one endowed with specific computational and
memory resources. Therefore, the conception of algorithms
capable of adapting their computational complexity (obviously
in exchange for performance, memory, delay, etc.) to those
supported by specific devices becomes an important challenge
that will be of interest in years to come.

Video coding is one of the numerous signal processing
systems that, in some scenarios, are required to be complexity-
adaptive. Although many research efforts have been devoted
to reduce the complexity of video compression algorithms
[1]–[13], only a few works have been devoted to actually
control the complexity[14]–[24]. In this paper, the problem of
complexity control is tackled in the framework of H.264/AVC,
the latest video coding standard of the Joint Video Team (JVT).

It is well- known that H.264/AVC achieves a significantly
higher coding efficiency than previous video coding standards,
such as MPEG-2/H.262, MPEG-4 part 2, and H.263. As a
result of this higher efficiency, H.264 is the most suitable cod-
ing standard for a wide range of applications demanding high
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quality and low bit rates. To achieve this coding efficiency,
H.264/AVC makes use of a variety of techniques, such as
quarter-pixel-accuracy motion estimation (ME), multiple refer-
ence frames, various block sizes, in-loop deblocking filter, 4×4
DCT transform, and context-based adaptive binary arithmetic
coding (CABAC). Given a macroblock (MB), the encoder has
to choose among a variety of potential coding options in an
optimum manner. For this purpose, H.264/AVC uses a rate-
distortion optimization method (RDO).

Complexity control algorithms aim to provide the best
possible rate-distortion (R-D) performance while satisfying
a specific complexity constraint. In other words, the goal is
no longer to just reduce the complexity of an H.264/AVC
implementation, but also to keep it around a certain target
complexity.

This work aims to design an algorithm capable of keeping
its complexity around a certain externally- provided target
value with minimum losses in terms of coding efficiency,
even when the target complexity is very low. The proposed
approach, which relies on tools that have proven to be effective
in complexity reduction, has been devised to satisfy the fol-
lowing specifications: low miss-adjustment error with respect
to the target complexity, capability to adapt to a time-variant
complexity target and to the video content, and capability to
operate on a large dynamic range of target complexities and
to work with any image resolution.

The rest of the paper is organized as follows. Section II
gives a brief review of the most relevant contributions to
the complexity control problem in H.264/AVC. Section III
explains in detail the proposed method. Section IV describes
the experiments conducted to prove the strengths of the
method, and shows and discusses the results. Finally, section
V summarizes our conclusions.

II. RELATED WORK

A. Background: RDO in H.264/AVC

Since most of the algorithms that deal with complexity
control in H.264/AVC work on the RDO process, which
involves the ME and the mode decision (MD) subsystems,
a brief summary of this process is in order to provide an
appropriate background.

As mentioned in the introduction, the H.264/AVC encoder
selects the best coding option for each MB by means of an
RDO process. This optimization process significantly con-
tributes to the coding efficiency, but at the expense of a notable
increment of the encoder complexity. The RDO process entails
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assessing every coding option for each MB to find the one that
minimizes a distortion measure subject to a rate restriction
[25]. This problem can be solved by using a Lagrangian
optimization, which turns the original constrained optimization
problem into an unconstrained one [26].

The typical H.264 encoder implementations sequentially
perform two RDO stages. First, the encoder carries out the
ME to find the best reference frame (Ref) and motion vector
(MV) for any possible block size. Second, the encoder chooses
the optimal mode (partition size). The H.264/AVC standard
allows for several MB (16×16, 16×8, 8×16, and 8×8 pixels)
and sub-MB (8×4, 4×8, and 4×4 pixels) partitions. Moreover,
two additional modes, the so-called Direct and SKIP, which
are a particular case of the 16×16 MB partition in B and
P slices, respectively, are also considered. This whole set is
composed of modes known as Inter modes.

The RDO-based ME is solved by means of a Lagrangian
optimization, which aims to minimize the following cost
function:

Jmotion = SAD(MV,Ref) + λmotionRmotion(MV,Ref),
(1)

where SAD denotes the sum of absolute differences between
original and predicted blocks (given MV and Ref) and is used
as a distortion measure,λmotion is a Lagrange multiplier, and
Rmotion is an approximation to the number of bits needed to
encode the motion information.

The MD problem, the solution of which allows the encoder
to choose the optimal mode, that is, the optimal partition size
k, is solved in the same manner. In this case, the cost function
to be minimized is as follows:

Jmode,k = SSD({MV }k , {Ref}k , k) +

λmodeR({MV }k , {Ref}k , k), (2)

where the distortion measure is now SSD, the sum of square
differences between the original and the reconstructed blocks;
λmode is again a Lagrange multiplier, andR is the number of
bits required to encode the headers, MVs, Ref indexes, and
residual transform coefficients.

Additionally, an alternative set of modes known as Intra
modes is available in the encoder. In this case, the prediction
is formed from already encoded pixels of the current slice. As
in the Inter case, there are also several block sizes to chose
from: 16×16, 8×8, and 4×4 pixels.

The RDO process is responsible for choosing the best
possible mode, in R-D terms, among all the Intra and Inter
modes.

B. Complexity Control in H.264/AVC

A huge research effort has been devoted to the complexity
reduction problem in H.264/AVC since its publication as a
standard in 2003. In particular, both the ME and MD processes
have received a lot of attention: [1]–[6] are contributions to
reduced-complexity ME and [7]–[13] to fast MD, just to name
a few examples. Nevertheless, the results of the complexity
reduction methods depend heavily on the video content, and
therefore these techniques are not capable of guaranteeing that
the complexity is kept around a given target.

Focusing now on the complexity control problem, the most
common approach involves adding a complexity term to the
cost functions that are minimized in the RDO process. In [14],
an estimation of the high frequency content of a block and a
target complexity are included in a novel cost function so that
the ME process relies on it to decide which partitions are
taken into account for each MB. In [15], modified versions
of both Jmotion and Jmode cost functions are proposed by
adding a complexity term that is based on the computation
time and the number of instructions required. Moreover, the
modes are rearranged according to a texture analysis, so
that, given an available complexity for an MB, the encoding
process picks modes according to the resulting arrangement,
and stops whenever the accumulated complexity exceeds the
target complexity; once a subset of modes has been selected
in this manner, the modified cost functions are used to decide
on the best representation for the MB. It is also worth men-
tioning that this method requires a costly off-line estimation
of the Lagrange multipliers involved in the cost functions. In
[16], an algorithm that relies on encoding-time statistics to
reach a given complexity target is proposed. In particular, the
algorithm estimates the encoding complexity from a buffer oc-
cupancy measurement and manages this complexity by means
of a Lagrangian rate-distortion-complexity cost. Additionally,
the encoder drops frames when the complexity target cannot
be met. In [17] a complexity scalable video encoder that is
capable of adaptingon-the-flyto the available computational
resources is presented. Specifically, this algorithm works at
both frame and MB levels. At the frame level, the algo-
rithm decides the maximum number of SAD calculations
according to the complexity budget. At the MB level, the
complexity budget is allocated among the MBs in proportion
to the distortion of the co-located MBs in previous frames. In
[18], an algorithm capable of finding an appropriate encoder
configuration is proposed. Given a working bit rate, it finds
optimal operating points taking into account distortion and
complexity. The authors propose two fast approaches that do
not require an exhaustive evaluation of encoder configurations.
An extension of this work is presented in [19] following
the same principles. In [20], an allocation of computational
resources based on a virtual buffer is proposed. Additionally, to
guarantee that the used resources do not exceed the estimated
ones, two complexity control schemes are defined, one on
the ME and the other on the MD. For the ME, a search
path and a termination point are defined according to R-D
considerations and the allocated complexity. For the MD, a
search order and a termination point are defined according to
the most frequent modes in neighboring MBs and the allocated
complexity. In [21], the MBs in a frame are encoded using
only Intra and SKIP modes. Then, the encoding of the MBs
producing the highest costs is further refined using additional
modes. The number of mode decisions is controlled by means
of a parameter that allows this method to be scaled for different
complexity targets.

In [22] the Bayesian decision theory is used for complexity
control. In particular, a threshold to comply with an average
target complexity level is determined using a probability model
where the corresponding cumulative density functions are
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estimated based on motion measurements and the quantization
parameter (QP) value. To this purpose, an off-line precom-
puted relationship among these parameters is required. This
method is limited to SKIP/non-SKIP decisions.

The works described so far were tested on QCIF and CIF
resolutions, since complexity control was considered attached
to low-power devices, which were not able to work with
higher resolutions. Nowadays, however, the fast growth in
computational power has made even hand-held devices capable
of working with higher resolutions. The works by Queiroz
et al. ( [23], [24]) tackle the complexity problem for higher
resolutions. In [23] complexity is controlled by allowing only
for a subset of modes in the MD process. Specifically, the
most likely modes are sorted, and only those that do not
exceed a pre-established complexity limit are evaluated. In
[24] the values of distortion, rate, and complexity achieved by
a set of specific encoder configurations are collected by means
of an off-line training process. These values are tabulated
and a desired level of complexity is reached by applying the
corresponding encoder configuration. The weakness of this
off-line training process is the difficulty of adapting the model
to time varying conditions in both complexity requirements
and video content.

The proposed algorithm, as a few of the previously men-
tioned ( [16], [17]), relies on a parameter estimation process
that is carried outon-the-fly, avoiding both the generaliza-
tion problems inherent to an off-line estimation and the
computational cost associated with the training process. In
this manner, the algorithm can easily adapt to changes in
both target complexity and video content. As a result, the
proposed method is simple and capable of efficiently operating
on different video contents and resolutions and on changing
complexity targets, exhibiting quite remarkable convergence
properties. Furthermore, these high levels of simplicity and
flexibility are achieved in exchange for acceptable losses in
coding efficiency.

The next section explains the proposed method in detail.

III. PROPOSED METHOD

A. Motivation and Overview

The proposed algorithm is based on the application of a
hypothesis testing whose decision threshold is automatically
set to reach the desired coding complexity level. This approach
has been adopted for two reasons: 1) it allows for defining
a cost policy adapted to the specific problem at hand, thus
providing a valuable degree of flexibility; and 2) as shown
in our previous work regarding the fast MD problem [27],
this approach has proved its ability to act effectively on the
complexity while maintaining a high coding efficiency level.

In particular, the proposed algorithm relies on a binary
hypothesis testing. For every MB, a decision between low- or
high-complexity coding is made. On the one hand, when low-
complexity is selected, the MB can be encoded as SKIP, Inter
16×16, or Intra 16×16. On the other, when high-complexity
is selected, the MB can be encoded as any of the available
Inter or Intra modes. The following argument supports the
definition of these two complexity levels. For the algorithm

Fig. 1. Flowchart of the proposed algorithm.

to meet tough complexity constraints, the amount of modes
in the low-complexity level must be kept as low as possible.
Therefore, it would have been desirable for this hypothesis
to involve only the SKIP mode, which does not require ME;
however, considering only the SKIP mode would have led
to significant losses in coding efficiency. Consequently, to
avoid these efficiency losses and still keep the complexity
at reasonable low levels, the Inter 16×16 mode had to be
included. Furthermore, the Intra 16×16 mode had to be
included as well to achieve a satisfactory performance in those
cases where the ME process does not work properly, i.e., when
the penalty in coding efficiency for not allowing Intra modes
is high.

Once all MBs in a frame are encoded, the complexity
control algorithm must check the achieved complexity and
compute the deviation from the target. Then, the complex-
ity control algorithm adjusts the decision threshold of the
hypothesis testing according to this deviation, so that this
new threshold is used for the next frame to be encoded. The
flowchart in Fig. 1 summarizes the whole process.

Mathematically, the formulation of the hypothesis testing
derives from the Bayesian decision theory. Given two possible
hypothesesH0 andH1, and two corresponding decisionsD0

andD1, the likelihood ratio test (LRT) is defined as follows:
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Pr(x|H1)

Pr(x|H0)
≷D1

D0

(C10 − C00)

(C01 − C11)

Pr(H0)

Pr(H1)
, (3)

where Cji are the costs of decidingj when the correct
hypothesis isi, Pr(x|Hi) are the likelihoods of obtaining the
observationx given the hypothesisHi andPr(Hi) are thea
priori probability of each hypothesis.

The following subsections explain in detail the main build-
ing blocks of the proposed method. Subsection III-B describes
the feature selection process, i.e., the selection of the featurex

to be used in the LRT expression (3). Subsection III-C presents
the specific LRT formulation used. Finally, subsection III-D
describes the algorithm that provides the proper threshold to
meet the target complexity.

B. Feature Selection

As previously mentioned, the LRT (3) is computed accord-
ing to an observationx. In particular, the hypothesis test is
built on the probability density functions (pdfs) of this obser-
vation conditioned to each considered hypothesis (Pr(x|Hi)),
with i = {0, 1}. Consequently, the selection of this input
feature x becomes crucial to the success of the proposed
method. For this reason, a comprehensive feature selection
process is conducted to choose the most appropriatex for
describing our decision domain, i.e., the observationx that
produces the most separable pdfsPr(x|H0) and Pr(x|H1).
As stated before, hypothesisH0 entails a low-complexity
encoding model (SKIP, Inter 16×16, or Intra 16×16), while
H1 entails a high-complexity encoding model (any available
mode).

Different features have been used in the literature to make
an early mode decision. TheJmode cost has been proved to
be one of the most informative features for this purpose [12]
(for a comprehensive statistical analysis of theseJmode costs,
the reader is referred to [28]). Now, we need to study ifJmode

costs are also suitable to the complexity control problem. In
particular, we seek the most appropriateJmode cost to make
an early detection of the MBs that should be encoded as
SKIP, Inter 16×16, or Intra 16×16, without causing significant
efficiency coding losses. For this purpose we compute the
probability of the costJk, the Jmode associated with thek
mode, when hypothesisHi, with i = {0, 1}, is true:

Pr(Jk|Hi). (4)

In our case, since the modes SKIP, Inter 16×16, and
Intra 16×16 are assessed for all the MBs and their corre-
sponding Jmode costs are available, we consider the next
set of possible costsJk as candidates for input featurex
to our hypothesis testing:JSKIP , JInter16×16, JIntra16×16,
and Jmin(SKIP,Inter16), wheremin(SKIP, Inter16) is the
minimum cost between the SKIP and the Inter 16×16 modes.

To select the most appropriate cost to be the input feature,
we rely on two different tests, the Bhattacharyya distance
and the mutual information (MI). The Bhattacharyya distance
measures the distance between two pdfs and, for the Gaussian
case, is defined as follows:

TABLE I
Dbhat AND MI COMPUTED FOR EACHJk CONSIDERED FOR“RUSH

HOUR” (HD) AT QP 24.

Jmin(SKIP,Inter16) JSKIP JInter16×16 JIntra16×16

Dbhat 0.44 0.04 0.03 0.01
MI 0.20 0.19 0.17 0.10

TABLE II
Dbhat AND MI COMPUTED FOR EACHJk CONSIDERED FOR“FOREMAN”

(CIF) AT QP 32.

Jmin(SKIP,Inter16) JSKIP JInter16×16 JIntra16×16

Dbhat 0.21 0.10 0.02 0.01
MI 0.14 0.11 0.11 0.09

Dbhat = 1
8 (µ2 − µ1)

T
[

σ2
1+σ2

2

2

]

−1

(µ2 − µ1) +

1
2 ln

σ2
1
+σ2

2
2

√

|σ2
1
σ2
2|

, (5)

whereµ1 andµ2 are the means andσ2
1 andσ2

2 are the variances
of the two involved pdfs. In our case, we have to compute
the distance betweenPr(Jk|H0) andPr(Jk|H1) for everyJk

considered and choose as optimal theJk that maximizes the
distance. In other words, the larger the difference between
the distributions, the betterJk is as an input feature for the
hypothesis testing.

Likewise, the MI is a statistical tool that measures the shared
information between two variablesz and y, quantifying how
much the knowledge of one of these variables reduces the
uncertainty about the other:

MI(z; y) = H(z) − H(z|y), (6)

where H(·) denotes entropy. In our casez denotes our
decision, i.e., if an MB is encoded at either low or high
complexity, andy denotes theJk cost. Therefore,H(z|Jk)
represents the entropy of the decision when theJk cost is
known, andMI(z;Jk) the mutual information between the
optimal decision and theJk cost. In this case, the higher
the MI, the lower the uncertainty about the decision, and the
betterJk is as an input feature for the hypothesis testing. In
our experiments, we used the estimator described in [29] to
compute the MI.

To select the most suitable feature, we relied on a set of 10
video sequences of different resolutions (4 CIF, 4 QCIF, and 2
HD), and we considered a variety of quality levels (QP = 24,
28, 32, 36, and 40). We computed both the Bhattacharyya
distance and the MI in all the cases. According to the
Bhattacharyya distance, the results achieved are remarkably
consistent and in favor ofmin(SKIP, Inter16). When the
MI is considered, the results are not so consistent, but again
min(SKIP, Inter16) turns out to be the most voted. Tables
I, II, and III illustrate these results for three selected examples:
“Rush Hour” (HD) at QP 24, “Foreman” (CIF) at QP 32, and
“Carphone” (QCIF) at QP 36.

As can be observed in Tables I, II and III, theJk cost
associated withmin(SKIP, Inter16) is the most suitable for
our design, since both the MI and the Bhattacharyya distance
are maximum. Therefore, this cost, hereafterJSKIP,16, will
be used as an input feature in our hypothesis testing.

Figure 2 depicts the resulting pdfs for the same examples.
The left part of the figure showsPr(JSKIP,16|H0), in blue,
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TABLE III
Dbhat AND MI COMPUTED FOR EACHJk CONSIDERED FOR

“CARPHONE” (QCIF) AT QP 36.

Jmin(SKIP,Inter16) JSKIP JInter16×16 JIntra16×16

Dbhat 0.49 0.09 0.02 0.002
MI 0.18 0.10 0.15 0.08

andPr(JSKIP,16|H1), in red, for the sequence “Rush Hour”
(HD) at QP 24; the central part shows the same pdfs for
“Foreman” (CIF) at QP 32; and the right part shows them
for “Carphone” (QCIF) at QP 36. As can be observed, the
separability of the distributions is enough to make reliable
decisions.

Furthermore, theJSKIP,16 cost is a content-dependent
feature. Consequently, the pdfs considered must be estimated
on-the-flyto properly follow the changing properties of these
distributions. This content-adaptive property is the main ad-
vantage of this proposal. On the other hand, the potential
disadvantage would be the computational cost associated with
the estimation of the pdfs. This issue is addressed by assuming
Gaussian distributions, so that only their means and standard
deviations have to be estimated. As shown in Fig. 2, the
Gaussianity assumption seems quite reasonable.

The next section explains in detail the hypothesis testing
approach.

C. A Content-Adaptive Hypothesis Testing

Once the hypothesesH0 and H1 are defined, the input
featurex = JSKIP,16 is selected, and the resulting conditional
pdfs Pr(JSKIP,16|H0) andPr(JSKIP,16|H1) are modeled as
Gaussian distributions, the LRT defined in (3) can be rewritten
accordingly:

exp(
−(JSKIP,16−µ̂1)

2

2σ̂2
1

)

exp(
−(JSKIP,16−µ̂0)2

2σ̂2
0

)

σ̂2
0

σ̂2
1

≷D1

D0

P̂ (H0)

P̂ (H1)

C10

C01
, (7)

where µ̂0 and µ̂1 are the estimated means of the class
conditional pdfs (Pr(JSKIP,16|H0) and Pr(JSKIP,16|H1)),
respectively;σ̂0 and σ̂1 are the estimated standard deviations
of the same distributions;̂P (H0) andP̂ (H1) are the estimated
a priori probabilities of the hypothesis; and the cost associated
with correct decisions (C00 andC11) are considered to be zero.
The parameters of the pdfs,µ̂0, µ̂1, σ̂0, andσ̂1, as well as the
a priori probabilitiesP̂ (H0) andP̂ (H1), are estimatedon-the-
fly as described later, so that the decision process is adapted
to the specific video content.

An exponentially averaged estimation, in which distant
samples are less significant than current samples, is used to
estimate the values of the means and standard deviations.
Specifically, the updating equations are the following:

µ̂i(n) = αµ̂i(n − 1) + (1 − α)JSKIP,16(n), i = {0, 1} (8)

σ̂2
i (n) = βσ̂2

i (n − 1) +

(1 − β)(JSKIP,16(n) − µ̂i(n))2, i = {0, 1}, (9)

where n denotes a index associated with the times that the
Hi hypothesis is selected;̂µi(n − 1) and σ̂2

i (n − 1) are the
estimated mean and variance, respectively, at the instant(n−
1); µ̂i(n) and σ̂2

i (n) are the estimated mean and variance,

respectively, at the instantn; JSKIP,16(n) is the cost for the
involved MB at the instantn; andα andβ are the parameters
defining the forgetting factors of the exponentially averaged
estimation process. Bothα and β are experimentally set to
0.95.

Following a similar procedure, thea priori probabilities
P̂ (H0) and P̂ (H1) are also estimatedon-the-fly. In this case,
the estimated maximum values are limited in order to avoid
winner-takes-all.

Finally, it is worth mentioning that the hypothesis test does
not begin its operation until a reasonable estimation of all of
these parameters is reached.

D. A Content-Adaptive Decision Threshold

The most usual expression for the hypothesis test is obtained
by taking logarithms in (7):

−
(JSKIP,16−µ̂1)

2

2σ̂2
1

+
(JSKIP,16−µ̂0)

2

2σ̂2
0

+ ln
σ̂2
0

σ̂2
1

≷D1

D0

ln( P̂ (H0)

P̂ (H1)
) + ln(C10

C01
). (10)

Furthermore, to simplify the notation in the previous equa-
tion, hereafter we will denote the left and right sides of this
equation as follows:

θ ≷D1

D0
η + ǫ, (11)

where the classical expression is slightly modified to dis-
tinguish two components in the right part of the inequality.
Specifically,η refers to the logarithm of thea priori probability
ratio, andǫ refers to the logarithm of the cost ratio.

To control the complexity, we propose to act onǫ (cost ratio)
in (11). By acting onǫ, we are varying the threshold according
to which the hypothesis testing decides whether an MB is
encoded using the low-complexity mode (only the SKIP, Inter
16×16, and Intra 16×16 modes are evaluated) or the high-
complexity mode (all the available modes are evaluated). The
larger theǫ, the higher the number of low-complexity encoded
MBs.

It should be noticed that by acting onǫ we are actually
modifying the relative importance ofC01 and C10. When
low complexity is required, the cost of deciding the high
complexity hypothesis when the other was the correct one is
large. In such a case,C10 takes a high value and, consequently,
ǫ also takes a high value. In contrast, when a high value
of complexity is acceptable, the complexity control algorithm
should focus on coding efficiency. In this case, deciding low
complexity when high complexity was the correct decision
becomes more relevant;C01 takes a high value, andǫ a low
value. In summary, high values ofC10 promote complexity
saving, while high values ofC01 benefit coding efficiency.

The goal of the complexity control is to act onǫ to achieve
a certain target complexityTC. This TC is expressed as a
percentage of the full complexity, i.e.,TC = 100 means that
the target complexity is that of the full mode evaluation, or
TC = 20 means that the target complexity is 20% of the full
mode evaluation. ThisTC value could be obtained according
to one or several parameters, as in the current battery level
in a mobile device, the buffer occupancy in rate-controlled
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Fig. 2. Examples ofPr(JSKIP,16|H0) andPr(JSKIP,16|H1). a) “Rush Hour” (HD) at QP 24; b) “Foreman” (CIF) at QP 32; and c) “Carphone” (QCIF)
at QP 36.

transmission application, or the available CPU resources in
non-dedicated multi-task systems.

The TC is converted into an equivalent parameter that is
directly managed by the proposed algorithm: the number of
MBs encoded in low complexity mode,MBlow. Actually, each
time the hypothesis testing decidesD0, a low complexity MB
is encoded. In this way, if theTC is low, MBlow should be
high and vice-versa.

Given a target complexityTC, MBlow is computed as
follows. Let us defineµhigh andµlow as the average time spent
for encoding an MB at high- or low-complexity, respectively.
These two parameters are computed by simply averaging
the real encoding time spent on each type of MB over
several MBs, and are initialized using the first high- and low-
complexity samples, respectively. Let us define now the target
time that should be spent per frame,TT , to meet theTC:

TT = timeper−frame−full ×
TC

100
, (12)

where timeper−frame−full denotes the time spent encoding
a whole frame at full complexity. We rewrite the previous
equation by expressing the time per frame as a function of the
number of MBs in a frame,MBper−frame:

TT = (µhigh × MBper−frame) ×
TC

100
. (13)

Likewise, the target timeTT can be expressed in terms of
the number of MBs encoded at high complexity,MBhigh, the
number of MBs encoded at low complexity,MBlow, and the
corresponding average coding times per MB,µhigh andµlow:

TT = (µhigh × MBhigh) + (µlow × MBlow) . (14)

When equations (13) and (14) are combined, the number
of MB encoded at low complexity can be easily found as a
function of theTC:

MBlow =
(µhigh × MBper−frame)

(

1 − TC
100

)

µhigh − µlow

. (15)

Once theTC is converted intoMBlow, we can tackle the
problem of selecting a specific value for the thresholdǫ so that
a givenMBlow is met. The relationship betweenǫ andMBlow

has been studied experimentally. Figure 3 illustrates the result
by means of two examples. One of the curves is derived from
“Paris” and the other from “Foreman”, both with CIF resolu-
tion, at QP=28. It can be observed thatǫ increases withMBlow

(the number of early stops) until saturation. The saturation of
the curve indicates thatMBlow = MBper−frame, i.e., all
the MBs (396 for the CIF sequences of our example) are
encoded at low complexity, reaching the lowest complexity
level achievable by the proposed method.

It is worth noting that the number of early stops obtained
for a given ǫ actually depends on the video content. For
example,ǫ = −2 producesMBlow = 182 for “Paris” and
MBlow = 63 for “Foreman”. Furthermore, the differences
between curves are more significant for low values ofǫ due
to the low slope of the curve. In general, the statistics in (10)
are time-variant; therefore, fixing a specific value ofǫ would
produce meaningful differences in the number of early stops
MBlow from frame to frame.

Because of these reasons,ǫ must be adjustedon-the-fly
to follow the time-variant statistics and achieve the target
MBlow. Specifically, we propose to updateǫ on a frame-by-
frame basis by means of a feedback algorithm, as shown in
the following equation:

ǫf = ǫf−1 + ν × ∆MBlow, (16)

whereǫf andǫf−1 are the thresholds applied to thef−th and
(f − 1) − th frames, respectively;∆MBlow is the difference
between theMBlow target for thef − th frame and the
actual MBlow obtained for the(f − 1) − th frame; andν
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Fig. 3. An illustration of the relationship between the numberof MBs encoded at low complexityMBlow and the thresholdǫ in two sequences.

is a parameter experimentally determined as a function of
∆MBlow and the frame size.

The ν value allows for choosing an application-specific
operating point that properly balances the adaptation speed
versus the amplitude of the oscillations around the target
complexity. If a high value ofν is used, the target time per
frame, TT , will be reached faster, but a larger oscillation
around thisTT will be observed, and vice-versa. Figure
4 illustrates this behavior for “Mobile” (QCIF) at QP 28.
The resulting time evolution ofMBlow (the number of MBs
encoded at low complexity) is shown for two values ofν. As
can be seen, forν = 0.005 (left part of the figure), some
frames are needed to reach the desired value ofMBlow, but
the oscillations around the desired value are moderated. In
contrast, forν = 0.1 (right part of the figure), the desired
value ofMBlow is reached much faster, but at the expense of
larger oscillations.

To properly manage this trade-off, the value ofν is varied
adaptively according to the magnitude of∆MBlow: the higher
the∆MBlow, the higher theν. In this manner, when encoding
time is far from TT , ǫ is adapted faster, and vice-versa.
Furthermore, differentν values are used for each spatial
resolution (QCIF, CIF, and HD), specifically:

QCIF: |∆MBlow| > 20 ⇒ ν = 0.05; |∆MBlow| < 5 ⇒
ν = 0; other case:ν = 0.05.

CIF: |∆MBlow| > 50 ⇒ ν = 0.025; |∆MBlow| < 5 ⇒
ν = 0; other case:ν = 0.01.

HD: |∆MBlow| > 80 ⇒ ν = 0.001; |∆MBlow| < 5 ⇒
ν = 0; other case:ν = 0.0005.

E. Summary of the Algorithm

Algorithm 1 summarizes the complete algorithm.

IV. EXPERIMENTAL RESULTS

A. Experimental Protocol

To assess the performance of the proposed method, it was
integrated into the H.264 reference software JM10.2 [30].
The main test conditions were selected according to the
recommendations of the JVT [31], namely: main profile,±32
pixel search range for QCIF and CIF and±64 pixels for HD,

Algorithm 1 Proposed coding process of the complexity
control algorithm.
Require: N : number of frames.
Require: M : number of MBs in a frame.

1: for ∀ni ∈ N do
2: CalculateMBlow based on the mean time measures and

the demanded encoding time (15).
3: Calculate the thresholdǫ based on the feedback algo-

rithm (16).
4: for ∀mi ∈ M do
5: Evaluate SKIP, Inter 16x16, and Intra 16x16 modes.
6: Calculate the input feature to the hypothesis testing

JSKIP,16.
7: Apply the hypothesis testing (11).
8: if θ < η + ǫ then
9: Decide the best mode between SKIP, Inter 16x16,

and Intra 16x16.
10: else
11: Calculate all remaining modes.
12: Decide the best mode.
13: end if
14: Updateµhigh andµlow, and statistics in (10).
15: end for
16: end for

TABLE IV
TEST CONDITIONS.

Coding options
Profile Main

RD Optimization Enabled
Use Hadamard Enabled
Symbol Mode CABAC

Search Range (CIF, QCIF) ±32
Search Range (HD) ±64

QP 24, 28, 32, 36, 40
Number of Reference Frames 5

Frames to be encoded 100
GOP pattern IPPP

5 reference frames, Hadamard transform, CABAC, and RDO.
The experiments were conducted using an IPPP GOP pattern,
five QP values (24, 28, 32, 36 and 40), and 100 frames per
sequence. Table IV summarizes these conditions.
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Fig. 4. Illustration of the role of theν parameter, which controls the balance between complexity adaptation velocity and oscillation amplitude. This results
have been obtained for “Mobile” (QCIF) at QP 28.

The experiments involved a large set of sequences of
different resolutions covering a wide variety of contents. These
sequences are listed in Tables V, VI, and VII for QCIF, CIF,
and HD resolutions, respectively.

To evaluate the capability of the algorithm to meet a certain
target complexityTC, a measurement of computational time
savingTS was calculated as follows:

TS =
Time(JM10.2) − Time(Proposed)

Time(JM10.2)
× 100. (17)

Thus, the higher the measured computational time saving,
the lower the reached complexity. In particular, the proposed
algorithm was assessed for seven different target complexities,
TC(%) = {80, 70, 60, 50, 40, 30, 20}, in our experiments.

Furthermore, to evaluate the coding efficiency losses in-
curred by the proposed method due to the complexity con-
trol, average bit rate differences (∆BR) with respect to the
reference software were computed, as described in [32].

B. Performance Assessment

Tables V, VI, and VII show the results for QCIF, CIF, and
HD resolutions, respectively. Specifically, for each of theTCs

considered, the mean values ofTS(%), and∆BR(%) across
the five considered QP values are given. Furthermore, the
last row of each table shows the average results for all the
sequences.

As can be observed, the achieved complexity was very close
to theTC. Therefore, the method is successful in fulfilling the
main goal of having a precise complexity control. Moreover,
the coding efficiency was maintained very close to that of the
reference implementation when medium or highTCs were
sought. Obviously, when lowTCs were demanded, these were
achieved in exchange for more significant losses in coding
efficiency.

It is worth mentioning that, exceptionally, bit rate reductions
were found. These unexpected results were achieved because
the encoder decisions are sub-optimum in the sense that they

are made assuming independence between MBs. Thus, in some
cases, a decision that is not locally- optimum (in the sense that
only explores a subset of modes) could produce better overall
performance.

To illustrate how the coding efficiency depends on theTC,
Figs. 5, 6, and 7 show the R-D performance forCoastguard
(QCIF), Tempete(CIF), andRush hour(HD) for every other
of the consideredTCs, respectively (not all of theTCs are
depicted to make the graph clearer). The left part of each
figure presents the complete R-D curves, while the right part
presents a zoom of a selected area. As can be observed, the
coding efficiency is very close to that of the reference software
for high and mediumTCs and degrades gracefully as theTC

decreases.

Although the results in terms of objective R-D measure-
ments are good, we also checked that the proposed method
does not have negative effects on the subjective quality. To
this end, we carefully watched some of the resulting encoded
sequences and concluded that there are not perceptual differ-
ences with respect to those generated by the reference encoder.
Moreover, we labeled the MBs according to the complexity
level assigned by the algorithm (low or high) to visually check
whether its decisions are as expected. Figure 8 shows an
illustrative example where the encoder must comply with a
tough complexity constraint (TC= 30). As can be observed,
only a few MBs are encoded with high complexity (light-
colored in the figure) and are those related to moving objects.

Moreover, the proposed algorithm was assessed in compar-
ison with the complexity control algorithm proposed in [23].
Table VIII shows the average results achieved by the com-
pared algorithms for several target complexities (TC(%) =
{80, 70, 60, 50, 40, 30, 20}). In particular, for each one of the
image resolutions considered (QCIF, CIF, and HD), an average
result was computed taking into account the five QP values and
all the test video sequences. As can be seen, for low com-
plexities (20, 30, and 40), the proposed algorithm generates
a complexity closer to the target. The same happens for high



9

TABLE V
PERFORMANCE EVALUATION OF THE PROPOSED ALGORITHM RELATIVE TOJM10.2FOR QCIF SEQUENCES. TS STANDS FOR TIME SAVING AND∆BR

STANDS FOR BIT RATE INCREMENT.

TC 20% 30% 40% 50% 60% 70% 80%
Sequence TS ∆BR TS ∆BR TS ∆BR TS ∆BR TS ∆BR TS ∆BR TS ∆BR

(%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)
Akiyo 76.1 5.1 68.2 1.0 57.7 0.4 48.4 0.3 39.5 0.2 30.2 0.0 22.0 0.0

Bridge close 75.3 3.3 65.5 2.0 55.8 1.0 46.4 0.5 37.9 0.3 28.9 0.3 20.1 0.2
Bridge far 72.0 1.1 64.6 0.8 54.8 0.5 44.1 0.3 37.7 0.2 28.8 0.1 21.1 0.1
Carphone 79.8 11.3 67.9 5.6 57.1 2.8 46.7 1.7 37.2 0.9 28.0 0.0 19.0 0.3

Claire 77.9 5.4 65.0 0.6 54.6 0.2 45.0 −0.2 36.4 −0.1 28.1 −0.1 20.6 −0.3
Coastguard 82.1 9.8 74.8 5.4 62.2 3.2 50.4 1.9 39.9 1.3 30.5 0.8 21.5 0.4
Container 76.0 6.9 66.7 2.7 55.4 1.2 44.4 0.3 35.2 0.1 26.3 0.2 18.2 0.1
Foreman 82.2 17.7 67.7 8.8 56.5 4.7 45.8 2.5 36.4 1.4 27.7 0.6 20.2 0.1
Grandma 77.6 5.7 69.8 1.7 58.4 0.8 48.3 0.5 36.7 0.3 27.6 0.2 18.4 −0.2

Hall 73.5 5.6 65.2 1.13 56.5 0.9 47.0 0.1 38.3 0.2 30.5 −0.1 22.4 0.1
Highway 75.8 12.0 64.3 4.6 53.1 2.5 42.6 1.3 33.5 1.1 26.4 1.0 19.2 0.9

Miss America 74.5 4.2 64.8 1.3 53.7 0.2 42.0 0.0 33.5 −0.1 25.6 −0.3 18.8 −0.4
Mobile 83.8 15.5 71.3 10.2 60.0 7.3 49.5 5.2 39.2 3.5 29.9 2.4 20.7 1.4
M&D 78.2 6.9 67.1 2.2 54.6 1.0 42.7 0.2 32.3 0.3 24.3 −0.2 16.7 0.0
News 76.5 8.3 67.1 2.8 55.8 0.9 45.9 0.3 37.2 0.3 29.1 0.2 20.8 0.3

Salesman 79.1 9.0 71.0 2.8 59.9 0.9 49.4 0.0 39.1 0.1 29.5 −0.1 20.1 0.0
Silent 77.5 8.6 68.4 2.8 58.8 1.4 49.4 1.0 40.0 0.7 31.9 0.5 23.5 0.0
Suzie 78.8 10.7 69.8 5.5 55.6 3.0 44.5 1.7 33.6 0.8 24.1 0.3 16.4 0.3

Average 77.6 8.2 67.7 3.5 56.7 1.8 46.3 1.0 36.9 0.6 28.2 0.3 20.0 0.2

TABLE VI
PERFORMANCE EVALUATION OF THE PROPOSED ALGORITHM RELATIVE TOJM10.2FOR CIF SEQUENCES. TS STANDS FOR TIME SAVING AND∆BR

STANDS FOR BIT RATE INCREMENT.

TC 20% 30% 40% 50% 60% 70% 80%
Sequence TS ∆BR TS ∆BR TS ∆BR TS ∆BR TS ∆BR TS ∆BR TS ∆BR

(%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)
Akiyo 76.8 3.5 66.6 0.7 55.6 0.0 46.0 0.0 37.8 0.0 30.5 0.0 22.2 0.0
Bus 82.1 17.9 70.5 8.0 60.3 4.4 51.0 2.9 42.6 2.5 34.0 2.4 24.5 1.4

Coastguard 83.5 6.2 74.2 3.9 62.2 2.6 50.3 2.0 40.8 1.4 32.6 1.1 22.4 0.5
Container 79.0 5.2 70.1 1.9 59.4 0.5 48.7 0.3 38.8 0.2 30.0 0.0 21.8 −0.1
Football 80.5 21.7 67.6 13.7 53.8 6.7 42.8 2.9 32.7 1.1 24.2 0.7 16.2 0.3
Foreman 80.5 15.2 68.7 5.5 57.9 3.2 47.9 1.7 41.5 2.1 35.1 2.3 23.8 0.8
Garden 82.7 16.8 71.0 11.6 54.7 5.9 42.4 3.6 28.7 2.0 17.6 0.8 9.7 0.3
Highway 75.4 8.5 65.1 3.7 51.5 1.4 42.1 0.6 35.7 0.8 31.2 1.3 20.4 0.3
Mobile 81.0 16.9 67.4 10.6 54.2 6.9 42.6 4.5 32.8 2.9 23.9 1.9 14.3 0.7
M&D 78.9 3.8 66.8 0.9 54.5 0.3 42.6 0.2 33.0 −0.2 24.8 −0.2 17.6 −0.1
News 76.8 6.7 66.6 2.5 56.3 1.0 46.4 0.4 39.1 0.3 32.6 0.3 22.0 0.1
Paris 79.6 14.8 64.8 4.6 54.5 2.0 45.6 0.8 38.5 1.1 31.4 1.1 22.6 0.3
Silent 79.5 6.5 70.0 2.0 60.4 1.3 51.5 0.8 43.1 0.8 35.0 0.7 24.5 0.3
Stefan 76.2 13.9 67.2 10.0 54.8 6.5 40.6 3.1 32.0 1.6 24.5 0.9 16.5 0.6

Tempete 83.3 11.1 69.1 7.0 57.0 4.9 45.9 3.2 37.2 2.2 32.3 1.8 21.3 1.0
Waterfall 82.1 8.0 72.9 3.5 62.0 1.8 52.1 1.4 43.9 0.9 36.3 0.6 25.5 0.5

Average 79.9 11.0 68.7 5.6 56.8 3.1 46.2 1.8 37.4 1.2 29.8 1.0 20.3 0.4

TABLE VII
PERFORMANCE EVALUATION OF THE PROPOSED ALGORITHM RELATIVE TOJM10.2FOR HD SEQUENCES. TS STANDS FOR TIME SAVING AND∆BR

STANDS FOR BIT RATE INCREMENT.

TC 20% 30% 40% 50% 60% 70% 80%
Sequence TS ∆BR TS ∆BR TS ∆BR TS ∆BR TS ∆BR TS ∆BR TS ∆BR

(%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)
Blue Sky 63.8 2.2 62.9 1.9 55.7 1.4 46.2 0.8 36.7 0.5 28.3 0.4 19.7 0.3

Pedestrian 75.7 5.4 63.8 2.4 52.6 1.1 43.0 0.7 34.6 0.4 26.9 0.3 19.6 0.2
Riverbed 82.0 12.4 72.6 10.0 61.0 7.2 50.3 5.1 40.6 3.6 31.5 2.5 23.2 1.7

Rush Hour 77.7 5.4 66.7 2.6 55.7 1.3 46.2 0.7 37.9 0.4 30.0 0.2 22.4 0.2
Station2 78.4 2.6 71.6 0.9 61.4 0.3 51.6 0.2 42.3 0.1 33.0 0.0 23.4 0.2

Sunflower 76.2 1.8 67.5 1.3 58.2 0.9 49.7 0.5 41.6 0.5 33.4 0.2 25.0 0.2
Tractor 80.6 9.1 70.0 3.8 59.9 1.9 49.9 1.3 40.8 0.8 32.9 0.6 24.3 0.5

Average 76.4 5.6 67.9 3.3 57.8 2.0 48.1 1.3 39.2 0.9 30.9 0.6 22.5 0.5

complexities (70 and80), where the algorithm in [23] gener-
ates lower complexities than those actually demanded (because
it works by selecting a subset of modes and, sometimes, this
procedure does not allow for finer complexity control), usually
in exchange for a higher increment of bit rate. Furthermore, in
general, the proposed algorithm produces significantly lower
bit rate increments for the sameTC.

To gain an insight into the differences between the perfor-
mance of the compared algorithms, some graphical examples
are shown for several representative sequences. In particular,
we show the bit rate increments of the compared algorithms
with respect to the reference software as a function of the
computationalTS. Obviously, for higherTSs, the losses in
coding efficiency and, consequently, the bit rate increments are
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Fig. 5. R-D performance for a representative subset of the target complexities considered.Coastguardat QCIF resolution.
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(a) R-D performance.

600 650 700 750 800 850 900 950

32.5

33

33.5

34

34.5

P
S

N
R

 (
dB

)

BitRate (Kb/seg)

JM10.2
TC=30
TC=50
TC=70

(b) Zoom of the Figure on the left.

Fig. 6. R-D performance for a representative subset of the target complexities considered.Tempeteat CIF resolution.

more relevant. Figure 9 shows these results for two QCIF se-
quences,CoastguardandMother & Daughter; Fig. 10 shows
the results for two CIF sequences,ForemanandWaterfall; and
Fig. 11 shows the results for two HD sequences,Pedestrian
and Rush Hour. As can be observed, the proposed algorithm
clearly outperformed that proposed in [23], especially for high
computationalTSs, where the bit rate increment generated by
the proposed algorithm was significantly lower.

To provide an additional reference, we also compared the
proposed algorithm with a fixed mode reduction, i.e., a method
that simply explores a predetermined subset of modes. Specif-
ically, we tested three different subsets of Inter modes (Intra
modes are always available), namely:

• SKIP and Inter 16×16;
• SKIP, Inter 16×16, Inter 16×8, and Inter 8×16; and
• SKIP, Inter 16×16, Inter 16×8, Inter 8×16, and Inter

8×8.
The results achieved by this method have been added to Figs.
9, 10, and 11. In particular, each subset of modes generates a
(Bit rate increment, T ime saving) point in these figures
(these points have been linked by straight lines to improve
visualization). As can be observed, the proposed method
achieved better performance for QCIF and CIF resolutions,

especially for high time savings. On the other hand, for HD
resolution, the results were slightly better for the fixed mode
reduction method. This last result was expected, since the
impact on the R-D performance of the small modes (8×4,
4×8, and 4×4) is not significant for HD, and the proposed
method explores all of them for high-complexity MBs. Finally,
although this fixed mode reduction is provided as an alternative
benchmark, it should be noticed that, actually, it is not a
complexity control algorithm (a fixed subset of modes are
explored in all the MBs and, therefore, the encoder is not
capable of adapting to any target complexity).

C. Performance Assessment: Baseline Profile

In contrast to other approaches that act on the encoder con-
figuration (number of references, search range, ...) to adapt to
different complexity levels ( [18], [24]), the proposed method
aims to control the complexity by dynamically selecting one
of two possible subsets of modes at the MB level. The goal
of this subsection is to prove that the suggested algorithm
can successfully work with different encoder configurations
and profiles (which should be selecteda priori according
to the application demands). In particular, we show that it
works properly in a configuration very different from that of
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Fig. 7. R-D performance for a representative subset of the target complexities considered.Rush Hourat HD resolution.

Fig. 8. Illustration of the decisions made by the proposed algorithm. For a tough target complexity, Paris (CIF) withTC = 30, we have highlighted those
MBs encoded with high complexity. As expected, in general, these MBs belong to moving objects.

the previous experiment. Instead of using the main profile, 5
references,±32 pixel search range, and CABAC, we tested our
algorithm on a much simpler configuration, more suitable to fit
low-capacity devices: baseline profile, 1 reference frame,±16
pixel search range, and CAVLC. Table IX shows the complete
experimental setup.

For this new configuration, we conducted the same kind of
experiments as for the first one.TS and∆BR were computed
with respect to the reference software for the same sets of
sequences in QCIF, CIF, and HD resolutions. Table X shows
the average results considering all the sequences and QP
values. The results obtained for the main profile, denoted as
“Main”, are also included in the table for reference, together
with the new results, denoted as “Baseline”.

As can be observed, the algorithm performance is also
good for this “Baseline” configuration. It is worth noticing,

TABLE IX
BASELINE TEST CONDITIONS.

Coding options
Profile Baseline

RD Optimization Enabled
Use Hadamard Enabled
Symbol Mode CAVLC

Search Range (CIF, QCIF) ±16
Search Range (HD) ±32

QP 24, 28, 32, 36, 40
Number of Reference Frames 1

Frames to be encoded 100
GOP pattern IPPP

in particular, how the bit rate increments are lower than those
of the “Main” configuration when high complexity reductions
are considered.

Furthermore, since the proposed method worked success-
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TABLE VIII
PERFORMANCE EVALUATION OF THE PROPOSED ALGORITHM IN COMPARISON WITH[23]. AVERAGE RESULTS. TS STANDS FOR TIME SAVING AND∆BR

STANDS FOR BIT RATE INCREMENT.

TC 20% 30% 40% 50% 60% 70% 80%
Sequence TS ∆BR TS ∆BR TS ∆BR TS ∆BR TS ∆BR TS ∆BR TS ∆BR

(%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)
Proposed QCIF 77.6 8.2 67.7 3.5 56.7 1.8 46.3 1.0 36.9 0.6 28.2 0.3 20.0 0.2

[23] QCIF 70.1 7.6 61.5 5.2 52.7 3.6 45.7 2.4 39.8 2.0 35.9 1.4 32.0 1.1

Proposed CIF 79.9 11.0 68.7 5.6 56.8 3.1 46.2 1.8 37.4 1.2 29.8 1.0 20.3 0.4
[23] CIF 69.9 10.4 60.6 6.8 52.6 4.6 46.1 3.2 39.8 2.4 33.5 1.6 27.4 1.1

Proposed HD 76.4 5.6 67.9 3.3 57.8 2.0 48.1 1.3 39.2 0.9 30.9 0.6 22.5 0.5
[23] HD 70.2 7.0 62.8 4.2 54.7 2.2 47.6 1.0 41.4 0.5 39.2 0.4 38.4 0.4
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Fig. 9. Performance evaluation of the proposed method in comparison to that in [23] and to that of a fixed mode reduction for two representative QCIF
sequences. The graphs show bit rate increment as a function of the computational time saving.

20 30 40 50 60 70 80
0

2

4

6

8

10

12

14

16

18

20

Time saving (%)

B
it 

ra
te

 in
cr

em
en

t (
%

)

 

[23]
Proposed algorithm
Fixed mode reduction

(a) Foreman (CIF).
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(b) Waterfall (CIF).

Fig. 10. Performance evaluation of the proposed method in comparison to that in [23] and to that of a fixed mode reduction for two representative CIF
sequences. The graphs show bit rate increment as a function of the computational time saving.

fully on two quite different configurations, it is also conceiv-
able that it could work in combination with methods that act
on the encoder configuration, such as [18], [24].

D. Illustrations of the algorithm convergence properties

Since the capability to adapt to a time-variant complexity
target and to the video content is one of the main goals of the
proposed algorithm, some illustrations regarding the algorithm
convergence properties are in order.

First, we provide two graphical examples of the capability

of the algorithm to converge to a certainTC. Specifically,
Fig. 12 illustrates, forCarphone(QCIF) at QP = 28, how
the number of low-complexity MBs evolves with time (frame
number) for two differentTCs: 20 (Fig. 12a) and50 (Fig.
12b). As can be observed, when theTC was set to low value,
20 on Fig. 12a, the actual number of early stops (MBlow)
reached a value very close to the desired one in just a few
frames. Furthermore, the variance with respect to the desired
value was low. When theTC was set to a higher value,50
in Fig. 12b, the convergence time was again very small, but
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(a) Pedestrian (HD).
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(b) Rush Hour (HD).

Fig. 11. Performance evaluation of the proposed method in comparison to that in [23] and to that of a fixed mode reduction for two representative HD
sequences. The graphs show bit rate increment as a function of the computational time saving.

TABLE X
PERFORMANCE EVALUATION OF THE PROPOSED ALGORITHM FOR THE“B ASELINE” ENCODER CONFIGURATION. THE CORRESPONDING RESULTS FOR

THE “M AIN ” CONFIGURATION ARE ALSO GIVEN FOR REFERENCE. TS STANDS FOR TIME SAVING AND∆BR STANDS FOR BIT RATE INCREMENT.

TC 20% 30% 40% 50% 60% 70% 80%
Sequence TS ∆BR TS ∆BR TS ∆BR TS ∆BR TS ∆BR TS ∆BR TS ∆BR

(%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)
Main QCIF 77.6 8.2 67.7 3.5 56.7 1.8 46.3 1.0 36.9 0.6 28.2 0.3 20.0 0.2

Baseline QCIF 73.9 4.7 64.8 2.2 54.0 1.2 45.8 0.7 38.0 0.4 30.6 0.3 23.5 0.1

Main CIF 79.9 11.0 68.7 5.6 56.8 3.1 46.2 1.8 37.4 1.2 29.8 1.0 20.3 0.4
Baseline CIF 75.5 7.6 65.0 4.0 55.7 2.3 47.4 1.6 40.2 1.5 32.7 1.0 24.7 0.5

Main HD 76.4 5.6 67.9 3.3 57.8 2.0 48.1 1.3 39.2 0.9 30.9 0.6 22.5 0.5
Baseline HD 73.4 6.0 63.9 3.6 54.8 2.4 44.3 1.5 36.6 1.1 29.3 0.8 21.8 0.5

in this case the variance around the desired value ofMBlow

was higher. A very similar behavior was observed for almost
all the sequences.

Second, Fig. 13 shows two illustrative examples of a time-
variantTC for Paris (CIF) at QP=28. On the left part of the
figure we illustrate the behavior of the proposed algorithm
when theTC changed from50 to 20 at frame 50. On the
right part of the figure, two changes happened:TC went from
20 to 50 at frame 25 and to30 at frame 50. As shown, the
proposed algorithm was able to reach the desired complexity
quickly even when fast changes inTC happened.

Finally, to provide a more solid proof of the convergence
properties of the algorithm than the previous illustrative ex-
amples, we computed average results for several sequences
covering all the image resolutions considered. Specifically,
Table XI shows, for some listed sequences and three different
target complexities (TC(%) = {20, 50, 80}), the actual value
of MBlow and the desired value ofMBlow averaged over all
the encoded frames. It is worth noticing that these measure-
ments are totally independent of the implementation. These
results allow us to conclude that, on average, the proposed
algorithm is able to reachTC with a remarkable precision.

V. CONCLUSIONS

In this paper we have proposed a novel algorithm to control
the complexity of an H.264/AVC encoder. The proposed
method relies on the application of a hypothesis testing to

meet a target complexity with minimum losses in coding
efficiency. Assuming Gaussian distributions, the hypothesis
testing paradigm allows us to formulate the problem in a
simple form that depends on some statistics that can be
estimatedon-the-fly. As a result, the proposed algorithm is
capable of adapting to the content and to time-variant target
complexities and is able to operate on a large range of
target complexities. Furthermore, the proposed algorithm is
computationally simple.

To assess its performance, the proposed algorithm was im-
plemented on the reference software JM10.2. The experimental
evaluation was carried out on a large set of sequences of
several spatial resolutions, a comprehensive set of potential
target complexities, and two different profiles and coding
configurations. The results obtained allow us to conclude
that the proposed algorithm can reach any target complex-
ity with remarkable precision, adapt to time-variant target
complexities, and work properly with any spatial resolution,
having insignificant bit rate increments for high and medium
complexities and acceptable bit rate increments for very low
complexities. When compared with the complexity control
method in [23], the proposed method was able to reach
complexities closer to the target and to provide a better
trade-off between complexity reduction and coding efficiency,
especially for low and medium target complexities.

An interesting future research line would focus on de-
veloping the ideas of the proposed algorithm for the future
high efficiency video coding (HEVC) standard [33], which is
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(a) Time evolution ofMBlow for TC = 20.
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(b) Time evolution ofMBlow for TC = 50.

Fig. 12. Illustrative example of the algorithm convergence properties forCarphone(QCIF) at QP 28.
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(a) Time evolution ofMBlow for a time-variantTC, which changes
from 50 to 20 at frame 50.
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(b) Time evolution ofMBlow for a time-variantTC, which changes
from 20 to 50 at frame 25 and to30 at frame 50.

Fig. 13. Illustrative example of the algorithm convergence for a time-variantTC, for Paris (CIF) at QP 28.

TABLE XI
ASSESSMENT OF THE CONVERGENCE PROPERTIES OF THE PROPOSED ALGORITHM.

TC = 20 TC = 50 TC = 80
Sequence Desired MBlow Actual MBlow Desired MBlow Actual MBlow Desired MBlow Actual MBlow

Carphone QP 28 (QCIF) 97 96 66 66 34 34
Container QP 32 (QCIF) 99 98 68 69 34 35

M&D QP 36 (QCIF) 99 94 66 64 32 36
Akiyo QP 28 (CIF) 396 387 271 271 139 139
Mobile QP 36 (CIF) 392 388 261 260 132 131
Silent QP 40 (CIF) 396 394 281 282 141 141

Pedestrian QP 28 (HD) 3528 3453 2368 2377 1189 1191

expected to be submitted in January 2013 for final standard-
ization approval. This work would require a solid knowledge
of the mode decision process in HEVC and the corresponding
adaptation of the proposed method to the new coding tools.

REFERENCES

[1] H.-Y. Tourapis and A. Tourapis, “Fast motion estimation within the
H.264 codec,” inMultimedia and Expo, 2003. ICME ’03. Proceedings.
2003 International Conference on, vol. 3, Jul. 2003, pp. III – 517–20
vol.3.

[2] C. Zhu, X. Lin, and L.-P. Chau, “Hexagon-based search pattern for fast
block motion estimation,”Circuits and Systems for Video Technology,
IEEE Transactions on, vol. 12, no. 5, pp. 349 –355, May. 2002.

[3] J. Zhang, Y. He, S. Yang, and Y. Zhong, “Performance and complexity
joint optimization for H.264 video coding,” inCircuits and Systems,
2003. ISCAS ’03. Proceedings of the 2003 International Symposium on,
vol. 2, May. 2003, pp. II–888 – II–891 vol.2.

[4] W. I. Choi, B. Jeon, and J. Jeong, “Fast motion estimation with modified
diamond search for variable motion block sizes,” inImage Processing,
2003. ICIP 2003. Proceedings. 2003 International Conference on, vol. 2,
Sept. 2003, pp. II – 371–4 vol.3.

[5] G.-L. Li, M.-J. Chen, H.-J. Li, and C.-T. Hsu, “Efficient search and mode
prediction algorithms for motion estimation in H.264/AVC,” inCircuits
and Systems, 2005. ISCAS 2005. IEEE International Symposium on,
May. 2005, pp. 5481 – 5484 Vol. 6.

[6] I. Gonzalez-Diaz and F. Diaz-de Maria, “Adaptive multipattern fast
block-matching algorithm based on motion classification techniques,”



15

Circuits and Systems for Video Technology, IEEE Transactions on,
vol. 18, no. 10, pp. 1369 –1382, Oct. 2008.

[7] C. Grecos and M. Yang, “Fast mode prediction for the baseline and
main profiles in the H.264 video coding standard,”Multimedia, IEEE
Transactions on, vol. 8, no. 6, pp. 1125 –1134, Dec. 2006.

[8] J. You, W. Kim, and J. Jeong, “16x16 macroblock partition size
prediction for H.264 P slices,”Consumer Electronics, IEEE Transactions
on, vol. 52, no. 4, pp. 1377 –1383, Nov. 2006.

[9] T.-Y. Kuo and C.-H. Chan, “Fast variable block size motion estimation
for H.264 using likelihood and correlation of motion field,”Circuits and
Systems for Video Technology, IEEE Transactions on, vol. 16, no. 10,
pp. 1185 –1195, Oct. 2006.

[10] A. Saha, K. Mallic, J. Mukherjee, and S. Sural, “SKIP prediction for
fast rate distortion optimization in H.264,”Consumer Electronics, IEEE
Transactions on, vol. 53, no. 3, pp. 1153 –1160, Aug. 2007.

[11] C. Zhou, Y. Tan, J. Tian, and Y. Lu, “3σ-rule-based early termination
algorithm for mode decision in H.264,”Electronics Letters, vol. 45,
no. 19, pp. 974 –975, Sept. 2009.

[12] E. Martinez-Enriquez, A. Jimenez-Moreno, M. Angel-Pellon, and
F. Diaz-de Maria, “A two-level classification-based approach to inter
mode decision in H.264/AVC,”Circuits and Systems for Video Tech-
nology, IEEE Transactions on, vol. 21, no. 11, pp. 1719 –1732, Nov.
2011.

[13] E. Martinez-Enriquez, M. de Frutos-Lopez, J. Pujol-Alcolado, and
F. Diaz-de Maria, “A fast motion-cost based algorithm for h.264/avc inter
mode decision,”Image Processing, 2007. ICIP 2007. IEEE International
Conference on, vol. 5, pp. V –325–V –328, 16 2007-Oct. 19 2007.

[14] H. Ates and Y. Altunbasak, “Rate-distortion and complexity optimized
motion estimation for H.264 video coding,”Circuits and Systems for
Video Technology, IEEE Transactions on, vol. 18, no. 2, pp. 159 –171,
Feb. 2008.

[15] X. Gao, K. M. Lam, L. Zhuo, and L. Shen, “Complexity scalable
control for H.264 motion estimation and mode decision under energy
constraints,”Signal Processing, vol. 90, no. 8, pp. 2468 – 2479, 2010.

[16] C. Kannangara, I. Richardson, and A. Miller, “Computational com-
plexity management of a real-time H.264/AVC encoder,”Circuits and
Systems for Video Technology, IEEE Transactions on, vol. 18, no. 9, pp.
1191 –1200, Sept. 2008.

[17] E. Huijbers, T. Ozcelebi, and R. Bril, “Complexity scalable motion
estimation control for H.264/AVC,” inConsumer Electronics (ICCE),
2011 IEEE International Conference on, Jan. 2011, pp. 49 –50.

[18] R. Vanam, E. Riskin, S. Hemami, and R. Ladner, “Distortion-complexity
optimization of the H.264/MPEG-4 AVC encoder using the gbfos
algorithm,” in Data Compression Conference, 2007. DCC ’07, Mar.
2007, pp. 303–312.

[19] R. Vanam, E. Riskin, and R. Ladner, “H.264/MPEG-4 AVC encoder
parameter selection algorithms for complexity distortion tradeoff,” in
Data Compression Conference, 2009. DCC ’09., Mar. 2009, pp. 372
–381.

[20] L. Su, Y. Lu, F. Wu, S. Li, and W. Gao, “Complexity-constrained
H.264 video encoding,”Circuits and Systems for Video Technology,
IEEE Transactions on, vol. 19, no. 4, pp. 477 –490, Apr. 2009.

[21] Y. H. Tan, W. S. Lee, J. Y. Tham, S. Rahardja, and K. M. Lye,
“Complexity scalable H.264/AVC encoding,”Circuits and Systems for
Video Technology, IEEE Transactions on, vol. 20, no. 9, pp. 1271 –1275,
Sept. 2010.

[22] C. Kannangara, I. Richardson, M. Bystrom, and Y. Zhao, “Complexity
control of H.264/AVC based on mode-conditional cost probability
distributions,” Multimedia, IEEE Transactions on, vol. 11, no. 3, pp.
433 –442, Apr. 2009.

[23] T. da Fonseca and R. de Queiroz, “Complexity-constrained H.264 hd
video coding through mode ranking,” inPicture Coding Symposium,
2009. PCS 2009, May. 2009, pp. 1 –4.

[24] T. A. da Fonseca and R. L. de Queiroz, “Complexity-constrained rate-
distortion optimization for h.264/avc video coding,” inCircuits and
Systems (ISCAS), 2011 IEEE International Symposium on, May. 2011,
pp. 2909 –2912.

[25] A. Ortega and K. Ramchandran, “Rate-distortion methods for image and
video compression,”Signal Processing Magazine, IEEE, vol. 15, no. 6,
pp. 23 –50, Nov. 1998.

[26] Y. Shoham and A. Gersho, “Efficient bit allocation for an arbitrary set of
quantizers [speech coding],”Acoustics, Speech and Signal Processing,
IEEE Transactions on, vol. 36, no. 9, pp. 1445 –1453, Sept. 1988.

[27] E. Martinez-Enriquez, A. Jimenez-Moreno, and F. Diaz-de Maria, “A
novel fast inter mode decision in H.264/AVC based on a regionalized
hypothesis testing,” inPicture Coding Symposium, 2009. PCS 2009,
May. 2009, pp. 217–220.

[28] ——, “An adaptive algorithm for fast inter mode decision in the
H.264/AVC video coding standard,”Consumer Electronics, IEEE Trans-
actions on, vol. 56, no. 2, pp. 826 –834, May. 2010.
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Eduardo Mart ı́nez-Enŕıquez (SM’07) received the
Telecommunications Engineering degree from Uni-
versidad Polit́ecnica de Madrid, Madrid, Spain, in
2006. He is currently working toward the Ph.D.
degree at the Universidad Carlos III de Madrid,
Madrid, Spain. His research interests include lifting
transforms on graphs, wavelet-based video coding
and video coding optimization. He received the Best
Paper Award of ICIP in 2011 for his paper on video
coding based on lifting transform on graphs, co-
authored with Fernando Dı́az-de-Maŕıa and Antonio
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