280 research outputs found

    Free adaptive tessellation strategy of bézier surfaces

    Get PDF
    [Abstract] Rendering of BĂ©zier surfaces is currently performed by tessellating the model on the GPU and rendering the highly detailed triangle mesh. Whereas non-adaptive strategies apply the same tessellation pattern to the whole surface resulting in a uniform tessellation of the patch, adaptive approaches make it possible to reduce the number of triangles generated without a loss of quality. However, the most usual approaches to adaptive tessellation have little flexibility and do redundant computations and memory accesses, as each sample is independently evaluated in the Domain Shader of the DirectX11 pipeline. In this paper an adaptive tessellation technique based on the exploitation of the spatial coherence data within each surface is presented. The GPU implementation of this technique is simple and efficient and, as consequence, the tessellation of complex models can be performed in real-time. The analysis of the GPU performance and limitations for different adaptive degree of the tessellation performed suggest innovations in future graphics card generations for supporting a larger degree of adaptivity without a penalty

    PARALLEL √3-SUBDIVISION with ANIMATION in CONSIDERATION of GEOMETRIC COMPLEXITY

    Get PDF
    We look at the broader field of geometric subdivision and the emerging field of parallel computing for the purpose of creating higher visual fidelity at an efficient pace. Primarily, we present a parallel algorithm for √3-Subdivision. When considering animation, we find that it is possible to do subdivision by providing only one variable input, with the rest being considered static. This reduces the amount of data transfer required to continually update a subdividing mesh. We can support recursive subdivision by applying the technique in passes. As a basis for analysis, we look at performance in an OpenCL implementation that utilizes a local graphics processing unit (GPU) and a parallel CPU. By overcoming current hardware limitations, we present an environment where general GPU computation of √3-Subdivision can be practical

    CENTRAL PROCESSING UNIT-GRAPHICS PROCESSING UNIT COMPUTING SCHEME FOR MULTI-OBJECT TRACKING IN SURVEILLANCE

    Get PDF
    This research work presents a novel central processing unit-graphics processing unit (CPU-GPU) computing scheme for multiple object trackingduring a surveillance operation. This facilitates nonlinear computational jobs to avail completion of computation in minimal processing time for tracking function. The work is divided into two essential objectives. First is to dynamically divide the processing operations into parallel units, and second is to reduce the communication between CPU-GPU processing units

    The design and verification of Mumax3

    Get PDF
    We report on the design, verification and performance of mumax3, an open-source GPU-accelerated micromagnetic simulation program. This software solves the time- and space dependent magnetization evolution in nano- to micro scale magnets using a finite-difference discretization. Its high performance and low memory requirements allow for large-scale simulations to be performed in limited time and on inexpensive hardware. We verified each part of the software by comparing results to analytical values where available and to micromagnetic standard problems. mumax3 also offers specific extensions like MFM image generation, moving simulation window, edge charge removal and material grains

    Efficient and High-Quality Rendering of Higher-Order Geometric Data Representations

    Get PDF
    Computer-Aided Design (CAD) bezeichnet den Entwurf industrieller Produkte mit Hilfe von virtuellen 3D Modellen. Ein CAD-Modell besteht aus parametrischen Kurven und FlĂ€chen, in den meisten FĂ€llen non-uniform rational B-Splines (NURBS). Diese mathematische Beschreibung wird ebenfalls zur Analyse, Optimierung und PrĂ€sentation des Modells verwendet. In jeder dieser Entwicklungsphasen wird eine unterschiedliche visuelle Darstellung benötigt, um den entsprechenden Nutzern ein geeignetes Feedback zu geben. Designer bevorzugen beispielsweise illustrative oder realistische Darstellungen, Ingenieure benötigen eine verstĂ€ndliche Visualisierung der Simulationsergebnisse, wĂ€hrend eine immersive 3D Darstellung bei einer Benutzbarkeitsanalyse oder der Designauswahl hilfreich sein kann. Die interaktive Darstellung von NURBS-Modellen und -Simulationsdaten ist jedoch aufgrund des hohen Rechenaufwandes und der eingeschrĂ€nkten HardwareunterstĂŒtzung eine große Herausforderung. Diese Arbeit stellt vier neuartige Verfahren vor, welche sich mit der interaktiven Darstellung von NURBS-Modellen und Simulationensdaten befassen. Die vorgestellten Algorithmen nutzen neue FĂ€higkeiten aktueller Grafikkarten aus, um den Stand der Technik bezĂŒglich QualitĂ€t, Effizienz und Darstellungsgeschwindigkeit zu verbessern. Zwei dieser Verfahren befassen sich mit der direkten Darstellung der parametrischen Beschreibung ohne Approximationen oder zeitaufwĂ€ndige Vorberechnungen. Die dabei vorgestellten Datenstrukturen und Algorithmen ermöglichen die effiziente Unterteilung, Klassifizierung, Tessellierung und Darstellung getrimmter NURBS-FlĂ€chen und einen interaktiven Ray-Casting-Algorithmus fĂŒr die IsoflĂ€chenvisualisierung von NURBSbasierten isogeometrischen Analysen. Die weiteren zwei Verfahren beschreiben zum einen das vielseitige Konzept der programmierbaren Transparenz fĂŒr illustrative und verstĂ€ndliche Visualisierungen tiefenkomplexer CAD-Modelle und zum anderen eine neue hybride Methode zur Reprojektion halbtransparenter und undurchsichtiger Bildinformation fĂŒr die Beschleunigung der Erzeugung von stereoskopischen Bildpaaren. Die beiden letztgenannten AnsĂ€tze basieren auf rasterisierter Geometrie und sind somit ebenfalls fĂŒr normale Dreiecksmodelle anwendbar, wodurch die Arbeiten auch einen wichtigen Beitrag in den Bereichen der Computergrafik und der virtuellen RealitĂ€t darstellen. Die Auswertung der Arbeit wurde mit großen, realen NURBS-DatensĂ€tzen durchgefĂŒhrt. Die Resultate zeigen, dass die direkte Darstellung auf Grundlage der parametrischen Beschreibung mit interaktiven Bildwiederholraten und in subpixelgenauer QualitĂ€t möglich ist. Die EinfĂŒhrung programmierbarer Transparenz ermöglicht zudem die Umsetzung kollaborativer 3D Interaktionstechniken fĂŒr die Exploration der Modelle in virtuellenUmgebungen sowie illustrative und verstĂ€ndliche Visualisierungen tiefenkomplexer CAD-Modelle. Die Erzeugung stereoskopischer Bildpaare fĂŒr die interaktive Visualisierung auf 3D Displays konnte beschleunigt werden. Diese messbare Verbesserung wurde zudem im Rahmen einer Nutzerstudie als wahrnehmbar und vorteilhaft befunden.In computer-aided design (CAD), industrial products are designed using a virtual 3D model. A CAD model typically consists of curves and surfaces in a parametric representation, in most cases, non-uniform rational B-splines (NURBS). The same representation is also used for the analysis, optimization and presentation of the model. In each phase of this process, different visualizations are required to provide an appropriate user feedback. Designers work with illustrative and realistic renderings, engineers need a comprehensible visualization of the simulation results, and usability studies or product presentations benefit from using a 3D display. However, the interactive visualization of NURBS models and corresponding physical simulations is a challenging task because of the computational complexity and the limited graphics hardware support. This thesis proposes four novel rendering approaches that improve the interactive visualization of CAD models and their analysis. The presented algorithms exploit latest graphics hardware capabilities to advance the state-of-the-art in terms of quality, efficiency and performance. In particular, two approaches describe the direct rendering of the parametric representation without precomputed approximations and timeconsuming pre-processing steps. New data structures and algorithms are presented for the efficient partition, classification, tessellation, and rendering of trimmed NURBS surfaces as well as the first direct isosurface ray-casting approach for NURBS-based isogeometric analysis. The other two approaches introduce the versatile concept of programmable order-independent semi-transparency for the illustrative and comprehensible visualization of depth-complex CAD models, and a novel method for the hybrid reprojection of opaque and semi-transparent image information to accelerate stereoscopic rendering. Both approaches are also applicable to standard polygonal geometry which contributes to the computer graphics and virtual reality research communities. The evaluation is based on real-world NURBS-based models and simulation data. The results show that rendering can be performed directly on the underlying parametric representation with interactive frame rates and subpixel-precise image results. The computational costs of additional visualization effects, such as semi-transparency and stereoscopic rendering, are reduced to maintain interactive frame rates. The benefit of this performance gain was confirmed by quantitative measurements and a pilot user study

    High-quality tree structures modelling using local convolution surface approximation

    Get PDF
    In this paper, we propose a local convolution surface approximation approach for quickly modelling tree structures with pleasing visual effect. Using our proposed local convolution surface approximation, we present a tree modelling scheme to create the structure of a tree with a single high-quality quad-only mesh. Through combining the strengths of the convolution surfaces, subdivision surfaces and GPU, our tree modelling approach achieves high efficiency and good mesh quality. With our method, we first extract the line skeletons of given tree models by contracting the meshes with the Laplace operator. Then we approximate the original tree mesh with a convolution surface based on the extracted skeletons. Next, we tessellate the tree trunks represented by convolution surfaces into quad-only subdivision surfaces with good edge flow along the skeletal directions. We implement the most time-consuming subdivision and convolution approximation on the GPU with CUDA, and demonstrate applications of our proposed approach in branch editing and tree composition

    Homotopy Based Reconstruction from Acoustic Images

    Get PDF

    Balancing Fidelity and Performance in Iridal Light Transport Simulations Aimed at Interactive Applications

    Get PDF
    Specific light transport models based on first-principles approaches have been proposed for complex organic materials such as human skin and blood. The driving force behind these efforts has been the high-fidelity reproduction of material appearance attributes without one having to rely on the manipulation of ad hoc parameters. These models, however, are usually considered excessively time consuming for rendering applications requiring interactive rates. In this thesis, we address this open problem with respect to one of the most challenging of these organic materials, namely the human iris. More specifically, we present a framework that consists in the careful configuration of algorithms employed by a biophysically-based iridal light transport model on the CUDA (Compute Unified Device Architecture) parallel computing platform. We then investigate the sensitivity of iridal appearance attributes to key model running parameters, namely spectral resolution and number of sample rays, in order to obtain a practical balance between appearance fidelity and performance on this platform. The results of our investigation indicate that predictive light transport simulations can be effectively employed in the generation of iridal images that are not only believable, but also controlled by biophysically meaningful parameters. Although our investigation is centered at the human iris, we believe that it can be viewed as a proof of concept, and the proposed configuration strategies and parameter space explorations can be employed to obtain similar results for other organic materials
    • 

    corecore