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We report on the design, verification and performance of MM3, an open-source
GPU-accelerated micromagnetic simulation program. This software solves the time-
and space dependent magnetization evolution in nano- to micro scale magnets using
a finite-difference discretization. Its high performance and low memory requirements
allow for large-scale simulations to be performed in limited time and on inexpensive
hardware. We verified each part of the software by comparing results to analytical
values where available and to micromagnetic standard problems. MM3 also
offers specific extensions like MFM image generation, moving simulation window,
edge charge removal and material grains. C 2014 Author(s). All article content,
except where otherwise noted, is licensed under a Creative Commons Attribution
3.0 Unported License. [http://dx.doi.org/10.1063/1.4899186]

I. INTRODUCTION

MM3 is a GPU-accelerated micromagnetic simulation program. It calculates the space- and
time-dependent magnetization dynamics in nano- to micro-sized ferromagnets using a finite-difference
discretization. A similar technique is used by the open-source programs OOMMF1 (CPU) and Micro-
Magnum2 (GPU), and the commercial GpMagnet3 (GPU). MM3 was re-designed independently
of its predecessors MuMax14 and MuMax2.5

MM3 is open-source software written in Go6 and CUDA7, and is freely available under the
GPLv3 license on http://mumax.github.io. In addition to the terms of the GPL, we kindly request that
any work using MM3 refers to the latter website and this paper. An nVIDIA GPU and a Linux,
Windows or Mac platform is required to run the software. Apart from nVIDIA’s GPU driver, no other
dependencies are required to run MM3.

Finite-element micromagnetic software exists as well like, e.g., NMag,8 TetraMag,9 MagPar10

and FastMag.11 They offer more geometrical flexibility than finite-difference methods, at the expense
of performance.

In this paper we first describe each of MM3’s components and asses their individual correct-
ness and accuracy. Then we address the micromagnetic standard problems,12 where all software
components have to work correctly together to solve real-world simulations. We typically compare
against OOMMF1 which has been widely used and extensively tested for over more than a decade.
Finally, we report on the performance in terms of speed and memory consumption.

The complete input files used to generate the graphs in this paper are available on http://mumax.
github.io/pub, allowing for each of the presented results to be reproduced independently. The scripts
were executed with MM version 3.6.

aElectronic address: Arne.Vansteenkiste@UGent.be
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FIG. 1. Each simulation cell is attributed a region index representing the cell’s material type. Material parameters like the
saturation magnetization Msat, anisotropy constants, etc are stored in 1D look-up tables indexed by the region index. Coupling
parameters like the exchange strength are stored in a 2D lower triangular matrix indexed by a face’s two neighbor region
indices.

II. DESIGN

A. Material Regions

MM3 employs a finite difference (FD) discretization of space using a 2D or 3D grid of ortho-
rhombic cells. Volumetric quantities, like the magnetization and effective field, are treated at the center
of each cell. On the other hand, coupling quantities like the exchange strength, are considered on the
faces between the cells (Fig. 1).

In order to conserve memory, space-dependent material parameters are not explicitly stored
per-cell. Instead, each cell is attributed a region index between 0 and 256. Different region indices
represent different materials. The actual material parameters are stored in 256-element look-up
tables, indexed by the cell’s region index.

Coupling parameters like the exchange strength are stored in a triangular matrix, indexed by
the region numbers of the two interacting cells. This allows arbitrary exchange coupling between all
pairs of materials (Section III C).
Time-dependent parameters In addition to region-wise space-dependence, material parameters in
each region can be time-dependent, given by one arbitrary function of time per region.

Excitations like the externally applied field or electrical current density can be set region-
and time-wise in the same way as material parameters. Additionally they can have an arbitrary
number of extra terms of the form f (t) × g(x, y, z), where f (t) is any function of time multiplied
by a continuously varying spatial profile g(x, y, z). This allows to model smooth time- and space
dependent excitations like, e.g., an antenna’s RF field or an AC electrical current.

B. Geometry

MM3 uses Constructive Solid Geometry to define the shape of the magnet and the material
regions inside it. Any shape is represented by a function f (x, y, z) that returns true when (x, y, z)
lies inside the shape or false otherwise. For example, a sphere is represented by the function
x2 + y2 + z2 ≤ r2. Shapes can be rotated, translated, scaled and combined together with boolean
operations like AND, OR, XOR. This allows for complex, parametrized geometries to be defined
programmatically. The example in Fig. 2 shows the magnetization in the logical OR of an ellipsoid
and cuboid.

FIG. 2. Geometry obtained by logically combining an ellipsoid and rotated cuboid. The arrows depict the magnetization
direction in this complex shape.
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C. Interface

Input scripts MM3 provides a dedicated scripting language that resembles a subset of the
Go programming language. The script provides a simple means to define fairly complex simulations.
This is illustrated by the code snippet below where we excite a Permalloy ellipse with a 1 GHz RF
field:

setgridsize(128, 32, 1)
setcellsize(5e-9, 5e-9, 8e-9)
setGeom(ellipse(500e-9, 160e-9))

Msat = 860e3
Aex = 13e-12
alpha= 0.05

m=uniform(1, 0, 0)
relax()

f := 1e9 // 1GHz
A := 0.01 // 10mT
B_ext = vector(0.1, A*sin(2*pi*f*t), 0)
run(10e-9)

Programming The MM3 libraries can also be called from native Go. In this way, the full Go
language and libraries can be leveraged for more powerful input generation and output processing
than the built-in scripting.

Web interface MM3 provides web-based HTML 5 user interface. It allows to inspect and control
simulations from within a web browser, whether they are running locally or remotely. Simulations
may also be entirely constructed and run from within the web GUI. In any case an input file
corresponding to the user’s clicks is generated, which may later be used to repeat the simulation in
an automated fashion.

Data format MM3 uses OOMMF’s “OVF” data format for input and output of all space-dependent
quantities. This allows to leverage existing tools. Additionally a tool is provided to convert the output
to several other data formats like paraview’s VTK,13 gnuplot,14 comma-separated values (CSV),
Python-compatible JSON, . . . , and to image formats like PNG, JPG and GIF. Finally, the output is
compatible with the 3D rendering software MV, contributed by Graham Rowlands.15

III. DYNAMICAL TERMS

MM3 calculates the evolution of the reduced magnetization m⃗
�
r⃗, t

�
, which has unit length.

In what follows the dependence on time and space will not be explicitly written down. We refer to
the time derivative of m⃗ as the torque τ⃗ (units 1/s):

∂m⃗
∂t
= τ⃗ (1)

τ⃗ has three contributions:

• Landau-Lifshitz torque τ⃗LL (Section III A)
• Zhang-Li spin-transfer torque τ⃗ZL (Section III G)
• Slonczewski spin-transfer torque τ⃗SL (Section III H).
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A. Landau-Lifshitz torque

MM3 uses the following explicit form for the Landau-Lifshitz torque:16,17

τ⃗LL = γLL
1

1 + α2


m⃗ × B⃗eff + α


m⃗ ×


m⃗ × B⃗eff


(2)

with γLL the gyromagnetic ratio (rad/Ts), α the dimensionless damping parameter and B⃗eff the
effective field (T). The default value for γLL can be overridden by the user. B⃗eff has the following
contributions:

• externally applied field B⃗ext

• magnetostatic field B⃗demag (III B)
• Heisenberg exchange field B⃗exch (III C)
• Dzyaloshinskii-Moriya exchange field B⃗dm (III D)
• magneto-crystalline anisotropy field B⃗anis (III E)
• thermal field B⃗therm (III F).

Fig. 3 shows a validation of the Landau-Lifshitz torque for a single spin precessing without
damping in a constant external field.

B. Magnetostatic field

Magnetostatic convolution A finite difference discretization allows the magnetostatic field to be
evaluated as a (discrete) convolution of the magnetization with a demagnetizing kernel K̂:

B⃗demag i = K̂i j ∗ M⃗ j (3)

where M⃗ = Msatm⃗ is the unnormalized magnetization, with Msat the saturation magnetization (A/m).
This calculation is FFT-accelerated based on the well-known convolution theorem. The correspond-
ing energy density is provided as:

Edemag = −
1
2

M⃗ · B⃗demag (4)

Magnetostatic kernel We construct the demagnetizing kernel K̂ assuming constant magnetization18

in each finite difference cell and we average the resulting B⃗demag over the cell volumes. The inte-
gration is done numerically with the number of integration points automatically chosen based on
the distance between source and destination cells and their aspect ratios. The kernel is initialized on
CPU in double precision, and only truncated to single before transferring to GPU.

FIG. 3. Validation of Eq. (2) for a single spin precessing without damping in a 0.1 T field along z, perpendicular to m⃗.
Analytical solution: mx = cos(0.1TγLLt).
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TABLE I. Demagnetizing factors (Ni j = Hi/M j) calculated for a cube discretized in the smallest possible number of tetra-
gonal cells with given aspect ratio sizez/sizex (=sizez/sizey). The results lie close to the analytical value of 1/3, even for
very elongated (aspect>1) or flat (aspect<1) cells. The off-diagonal elements (not shown) are consistent with zero within the
single-precision limit.

aspect N xx N y y N zz

8/1 -0.333207 -0.333207 -0.333176
4/1 -0.333149 -0.333149 -0.333144
2/1 -0.333118 -0.333118 -0.333118

1/1 -0.333372 -0.333372 -0.333372

1/4 -0.333146 -0.333146 -0.333145
1/16 -0.333176 -0.333176 -0.333280
1/64 -0.333052 -0.333052 -0.333639

The kernel’s mirror symmetries and zero elements are exploited to reduce storage and initial-
ization time. This results in a 9× or 12× decrease in kernel memory usage for 2D and 3D simu-
lations respectively, and is part of the reason for MM3’s relatively low memory requirements
(Section VII).

Accuracy The short-range accuracy of K̂ is tested by calculating the demagnetizing factors of a
uniformly magnetized cube, analytically known to be -1/3 in each direction. The cube was dis-
cretized in cells with varying aspect ratios to stress the numerical integration scheme. The smallest
possible number of cells was used to ensure that the short-range part of the field has an important
contribution. The results presented in Table I are accurate to 3 or 4 digits. Standard Problem #2 (V
B) is another test sensitive to the short-range kernel accuracy.19

The long-range accuracy of the magnetostatic convolution is assessed by comparing kernel and
the field of a single magnetized cell to the corresponding point dipole. The fields presented in Fig. 4,
show perfect long-range accuracy for the kernel, indicating accurate numerical integration in that
range. The resulting field, obtained by convolution of a single magnetized cell (Bsat=1 T) with the
kernel, is accurate down to about 0.01 µT—the single-precision noise floor introduced by the FFT’s.

Periodic boundary conditions MM3 provides optional periodic boundary conditions (PBCs) in
each direction. PBCs imply magnetization wrap-around in the periodic directions, felt by stencil

FIG. 4. Kernel element K̂ xx (top) and B⃗x, the field of a single magnetized cell (1 nm3, Bsat = 1 T) (bottom) along the x

axis (1 nm cells), compared to the field of a corresponding dipole. The long-range field remains accurate down to the
single-precision numerical limit (∼ 10−7 T).
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TABLE II. Out-of-plane demagnetizing factors for a thin film with grid size 2 × 2× 1 and 2D PBC’s with Px(=Py) copies
in the x and y direction (column 1) or without PBC’s but with a correspondingly enlarged grid size extended ×2Px(=2Py)
in both x and y directions (column 2). Both give comparable results for sufficiently large Px, Py, verifying the PBC
implementation.

Px (=Py) Nzz grid Nzz

× 1 -0.71257 ×2 -0.76368
× 4 -0.93879 ×8 -0.94224
× 16 -0.98438 ×32 -0.98460
× 64 -0.99514 ×128 -0.99515
× 256 -0.99713 ×512 -0.99779

∞ -1 ×∞ -1

TABLE III. Transverse demagnetizing factors for a long rod with grid size 2 × 2× 1 and 1D PBC’s with Pz copies along z

(column 1) or without PBC’s but with a correspondingly enlarged grid size ×2Pz (column 2). Both give comparable results
for sufficiently large Pz, verifying the PBC implementation.

Pz Nxx grid Nxx

× 1 -0.251960 ×2 -0.3331182
× 4 -0.476766 ×8 -0.4809398
× 16 -0.498280 ×32 -0.4983577
× 64 -0.499517 ×128 -0.4995183
× 256 -0.499590 ×512 -0.4995911

∞ -0.5 ×∞ -0.5

operations like the exchange interaction. A less trivial consequence is that the magnetostatic field of
repeated magnetization images (copies) has to be added to B⃗demag.

In contrast to OOMMF’s PBC implementation,20 MM3 employs a so-called macro geom-
etry approach8,21 where a finite (though usually large) number of periodic images (copies) is taken
into account, and that number can be freely chosen in each direction. MM3’s setPBC(Px, Py,
Pz) command enables Px,Py,Pz additional copies on each side of the simulation box, given that Pi

is sufficiently large.
To test the magnetostatic field with PBC’s, we calculate the demagnetizing tensors of a wide

film and long rod in two different ways: either with a large grid without PBC’s, or with a small grid
but with PBC’s equivalent to the larger grid. In our implementation, a gridsize (Nx,Ny,Nz) with
PBC’s (Px,Py,Pz) should approximately correspond to a gridsize (2PxNx,2PyNy,2PzNz) without
PBC’s. This is verified in tables II and III where we extend in plane for the film and along z for the
rod. Additionally, for very large sizes both results converge to the well-known analytical values for
infinite geometries.

C. Heisenberg exchange interaction
The effective field due to the Heisenberg exchange interaction:22

B⃗exch = 2
Aex

Msat
∆m⃗ (5)

is evaluated using a 6-neighbor small-angle approximation:23,24

B⃗exch = 2
Aex

Msat


i

(m⃗i − m⃗)
∆2
i

(6)
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FIG. 5. Numerical (Eq. (6), (8)) and analytical (Eq. (7)) exchange energy density (in units Km = 1/2µ0M
2
sat) for spiral mag-

netizations as a function of the angle between neighboring spins (independent of material parameters). To ensure an accurate
energy, spin-spin angles should be kept below ∼20–30◦ by choosing a sufficiently small cell size.

where i ranges over the six nearest neighbors of the central cell with magnetization m⃗. ∆i is the cell
size in the direction of neighbor i.

At the boundary of the magnet some neighboring magnetizations m⃗i are missing. In that case
we use the cell’s own value m⃗ instead of m⃗i, which is equivalent to employing Neumann boundary
conditions.23,24

The corresponding energy density is provided as:

Eexch = Aex(∇m⃗)2 (7)

= −
1
2

M⃗ · B⃗exch (8)

MM3 calculates the energy from the effective field using Eqns. (6), (8). The implementation
is verified by calculating the exchange energy of a 1D magnetization spiral, for which the exact
form (Eq. (7)) is easily evaluated. Fig. 5 shows that the linearized approximation is suited as long as
the angle between neighboring magnetizations is not too large. This can be achieved by choosing a
sufficiently small cell size compared to the exchange length.
Inter-region exchange The exchange interaction between different materials deserves special atten-
tion. Aex and Msat are defined in the cell volumes, while Eq. (6) requires a value of Aex/Msat properly
averaged out between the neighboring cells. For neighboring cells with different material parame-
ters Aex1, Aex2 and Msat1, Msat2 MM3 uses a harmonic mean:

B⃗exch = 2S
2 Aex1
Msat1

Aex2
Msat2

Aex1
Msat1
+

Aex2
Msat2


i

(m⃗i − m⃗)
∆2
i

(9)

which can easily be derived, and where we set S = 1 by default. S is an arbitrary scaling factor
which may be used to alter the exchange coupling between regions, e.g., to lower the coupling
between grains or antiferromagnetically couple two layers.

D. Dzyaloshinskii-Moriya interaction
MM3 provides induced Dzyaloshinskii-Moriya interaction for thin films with out-of-plane

symmetry breaking according to Ref. 25, yielding an effective field term:

B⃗DM =
2D
Msat


∂mz

∂x
,
∂mz

∂ y
, −

∂mx

∂x
−
∂my

∂ y


(10)
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where we apply boundary conditions:26

∂mz

∂x
����∂V
=

D
2A

mx (11)

∂mz

∂ y

����∂V
=

D
2A

my (12)

∂mx

∂x
����∂V
=

∂my

∂ y

����∂V
= −

D
2A

mz (13)

∂mx

∂ y

����∂V
=

∂my

∂x
����∂V
= 0 (14)

∂mx

∂z
����∂V
=

∂my

∂z
����∂V
=

∂mz

∂z
����∂V
= 0 (15)

Numerically, all derivatives are implemented as central derivatives, i.e., the difference between
neighboring magnetizations over their distance in that direction: ∂m⃗/∂i = (m⃗i+1 − m⃗i−1)/(2∆i).
When a neighbor is missing at the boundary (∂V ), its magnetization is replaced by m⃗ + ∂m

∂i
|∂V∆in⃗

where m⃗ refers to the central cell, n⃗ to the surface normal and the relevant partial derivative is
selected from Eq. (11)–(15).

In case of nonzero D, these boundary conditions are simultaneously applied to the Heisenberg
exchange field.

The effective field in Eq. (10) gives rises to an energy density:

Eexch(DM) = mz(∇ · m⃗) − (m⃗ · ∇)mz (16)

= −
1
2

M⃗ · B⃗exch(DM) (17)

Similar to the anisotropic exchange case, MM3 calculates the energy density from Eqns.
(17), (10). Eq. (16) is the exact form, well approximated for sufficiently small cell sizes.

In Fig. 6, the DMI implementation is compared to the work of Thiaville et al.,27 where the
transformation of a Bloch wall into a Néel wall by varying Dex is studied.

E. Magneto-crystalline anisotropy

Uniaxial MM3 provides uniaxial magneto-crystalline anisotropy in the form of an effective field
term:

B⃗anis =
2Ku1

Bsat
(u⃗ · m⃗)u⃗

+
4Ku2

Bsat
(u⃗ · m⃗)3u⃗ (18)

FIG. 6. Simulated domain wall magnetization in a 250 nm wide, 0.6 nm thick Co/Pt film (Msat=1100×103 A/m,
Aex=16×10−12 J/m, Ku1=1.27×106 J/m3) as a function of the Dzyaloshinskii-Moriya strength Dex. The left-hand and
right-hand sides correspond to a Bloch and Néel wall, respectively. Results correspond well to Ref. 27.
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where Ku1 and Ku2 are the first and second order uniaxial anisotropy constants and u⃗ a unit vector
indicating the anisotropy direction. This corresponds to an energy density:

Eanis = −Ku1(u⃗ · m⃗)2 − Ku2(u⃗ · m⃗)4 (19)

= −
1
2

B⃗anis(Ku1) · M⃗ − 1
4

B⃗anis(Ku2) · M⃗ (20)

MM3 calculates the energy density from the effective field using Eq. (20), where B⃗anis(Kui)
denotes the effective field term where only Kui is taken into account. The resulting energy is verified
in Fig. 7. Since the energy is derived directly from the effective field, this serves as a test for the field
as well.

Cubic MM3 provides cubic magneto-crystalline anisotropy in the form of an effective field term:

B⃗anis =

−2Kc1/Msat( ((⃗c2 · m⃗)2 + (⃗c3 · m⃗)2)((⃗c1 · m⃗)⃗c1) +

((⃗c1 · m⃗)2 + (⃗c3 · m⃗)2)((⃗c2 · m⃗)⃗c2) +

((⃗c1 · m⃗)2 + (⃗c2 · m⃗)2)((⃗c3 · m⃗)⃗c3) )
−2Kc2/Msat( ((⃗c2 · m⃗)2(⃗c3 · m⃗)2)((⃗c1 · m⃗)⃗c1) +

((⃗c1 · m⃗)2(⃗c3 · m⃗)2)((⃗c2 · m⃗)⃗c2) +

((⃗c1 · m⃗)2(⃗c2 · m⃗)2)((⃗c3 · m⃗)⃗c3) )
−4Kc3/Msat( ((⃗c2 · m⃗)4 + (⃗c3 · m⃗)4)((⃗c1 · m⃗)3⃗c1) +

((⃗c1 · m⃗)4 + (⃗c3 · m⃗)4)((⃗c2 · m⃗)3⃗c2) +
((⃗c1 · m⃗)4 + (⃗c2 · m⃗)4)((⃗c3 · m⃗)3⃗c3) )

(21)

FIG. 7. Uniaxial (top) and cubic (bottom) anisotropy energy density of a single spin as a function of its orientation in the
xy-plane. The uniaxial axis is along x, the cubic axes along x, y and z. The dots are computed with MM3 (Eqs. (20)
and (23)), lines are analytical expressions (Eq. (19), (22)). Positive and negative K values denote hard and easy anisotropy,
respectively. In this case the 2nd order cubic energies are zero and not shown, but have been verified separately for angles out
of the xy-plane.

 All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported license. See:

http://creativecommons.org/licenses/by/3.0/ Downloaded to IP:  81.82.184.132 On: Thu, 20 Nov 2014 10:45:41



107133-10 Vansteenkiste et al. AIP Advances 4, 107133 (2014)

where Kcn is the nth-order cubic anisotropy constant and c⃗1, c⃗2, c⃗3 a set of mutually perpendicular
unit vectors indicating the anisotropy directions. (The user only specifies c⃗1 and c⃗2. We compute c⃗3

automatically as c⃗1 × c⃗2.) This corresponds to an energy density:

Eanis =

Kc1 ((⃗c1 · m⃗)2(⃗c2 · m⃗)2 +

(⃗c1 · m⃗)2(⃗c3 · m⃗)2 +

(⃗c2 · m⃗)2(⃗c3 · m⃗)2) +

Kc2 (⃗c1 · m⃗)2(⃗c2 · m⃗)2(⃗c3 · m⃗)2 +
Kc3 ((⃗c1 · m⃗)4(⃗c2 · m⃗)4 +

(⃗c1 · m⃗)4(⃗c3 · m⃗)4 +

(⃗c2 · m⃗)4(⃗c3 · m⃗)4 )
(22)

which, just like in the uniaxial case, MM3 computes using the effective field:

Eanis=−
1
4

B⃗anis(Kc1) · M⃗ − 1
6

B⃗anis(Kc2) · M⃗

−
1
8

B⃗anis(Kc3) · M⃗ (23)

which is verified in Fig. 7.

F. Thermal fluctuations

MM3 provides finite temperature by means of a fluctuating thermal field B⃗therm according to
Brown:28

B⃗therm = η⃗(step)


2µ0αkBT
BsatγLL∆V∆t

(24)

where α is the damping parameter, kB the Boltzmann constant, T the temperature, Bsat the saturation
magnetization expressed in Tesla, γLL the gyromagnetic ratio (1/Ts), ∆V the cell volume, ∆t the
time step and η⃗(step) a random vector from a standard normal distribution whose value is changed
after every time step.

Solver constraints B⃗therm randomly changes between time steps. Therefore, only MM3’s Euler
and Heun solvers (IV) can be used as they do not require torque continuity between steps. Addition-
ally, with thermal fluctuations enabled we enforce a fixed time step ∆t. This avoids feedback issues
with adaptive time step algorithms.

Verification We test our implementation by calculating the thermal switching rate of a single
(macro-)spin particle with easy uniaxial anisotropy. In the limit of a high barrier compared to the
thermal energy, the switching rate f is know analytically to be:29

f = γLL
α

1 + α2


8K3

u1V

2πM2
satkT

e−KV /kT (25)

Fig. 8 shows Arrhenius plots for the temperature-dependent switching rate of a particle with
volume V=(10 nm)3 and Ku1=1×104 or 2×104 J/m3. The MM3 simulations correspond well to
Eq. (25).
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FIG. 8. Arrhenius plot of the thermal switching rate of a 10 nm large cubic particle (macrospin), with Msat=1MA/m, α=0.1,
∆t=×10-12s, Ku1=1×104 or 2×104 J/m3. Simulations were performed on an ensemble of 5122 uncoupled particles for 0.1 µs
(high temperatures) or 1 µs (low temperatures). Solid lines are the analytically expected switching rates (Eq. (25)).

G. Zhang-Li Spin-transfer torque

MM3 includes a spin-transfer torque term according to Zhang and Li,30 applicable when
electrical current flows through more than one layer of cells:

τ⃗ZL=
1

1 + α2 ((1 + ξα) m⃗ ×
�
m⃗ × (u⃗ · ∇)m⃗�

+

(ξ − α) m⃗ × (u⃗ · ∇)m⃗) (26)

u⃗ =
µBµ0

2eγ0Bsat(1 + ξ2) j⃗ (27)

where j⃗ is the current density, ξ is the degree of non-adiabaticity, µB the Bohr magneton and Bsat the
saturation magnetization expressed in Tesla.

The validity of our implementation is tested by Standard Problem #5 (Section V E).

H. Slonczewski Spin-transfer torque

MM3 provides a spin momentum torque term according to Slonczewski,31,32 transformed to
the Landau-Lifshitz formalism:

τ⃗SL= β
ϵ − αϵ ′

1 + α2 (m⃗ × (m⃗P × m⃗))

−β
ϵ ′ − αϵ

1 + α2 m⃗ × m⃗P (28)

β =
jz~

Msated
(29)

ϵ =
P
�
r⃗, t

�
Λ2

(Λ2 + 1) + (Λ2 − 1)(m⃗ · m⃗P) (30)

where jz is the current density along the z axis, d is the free layer thickness, m⃗P the fixed-layer
magnetization, P the spin polarization, the Slonczewski Λ parameter characterizes the spacer layer,
and ϵ ′ is the secondary spin-torque parameter.

MM3 only explicitly models the free layer magnetization. The fixed layer is handled in the
same way as material parameters and is always considered to be on top of the free layer. The fixed
layer’s stray field is not automatically taken into account, but can be pre-computed by the user and
added as a space-dependent external field term.

As a verification we consider switching an MRAM bit in 160 nm× 80 nm× 5 nm Permalloy
(Msat=800×103 A/m, Aex=13×10−12 J/m2, α=0.01, P = 0.5669) by a total current of -6 mA along the
z axis using Λ=2, ϵ ′=1. These parameters were chosen so that none of the terms in Eq. (28) are
zero. The fixed layer is polarized at 20◦ from the x axis to avoid symmetry problems and the initial
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FIG. 9. Verification of the Slonczewski torque: average magnetization in a 160 nm× 80 nm× 5 nm rectangle with
Msat=800×103 A/m, Aex=13×10−12 J/m2, α=0.01, P = 0.5669, jz=4.6875×1011A, Λ=2, ϵ′=1, m⃗p=(cos(20◦), sin(20◦), 0),
initial m=(1,0,0). Solid line calculated with OOMMF, points by MM3 .

FIG. 10. Absolute error on a single spin after precessing without damping for one period in a 0.1 T field, as a function of
different solver’s time steps. The errors follow 1st, 2nd, 3rd or 5th order convergence (solid lines) for the respective solvers
down to a limit set by the single precision arithmetic.

magnetization was chosen uniform along x. The MM3 and OOMMF results shown in Fig. 9
correspond well.

IV. TIME INTEGRATION

A. Dynamics

MM3 provides a number of explicit Runge-Kutta methods for advancing the Landau-
Lifshitz equation (Eq. (2)):

• RK45, the Dormand-Prince method, offers 5-th order convergence and a 4-th order error
estimate used for adaptive time step control. This is the default for dynamical simulations.

• RK32, the Bogacki-Shampine method, offers 3-th order convergence and a 2nd order error
estimate used for adaptive time step control. This method is used when relaxing the magneti-
zation to its ground state in which case it performs better than RK45.

• RK12, Heun’s method, offers 2nd order convergence and a 1st order error estimate. This
method is used for finite temperature simulations as it does not require torque continuity
between time steps.

• RK1, Euler’s method is provided for academic purposes.

These solvers’ convergence rates are verified in Fig. 10, which serves as a test for their imple-
mentation and performance.

Adaptive time step RK45, RK23 and RK12 provide adaptive time step control, i.e., automatically
choosing the time step to keep the error per step ϵ close to a preset value ϵ0. As the error per step we
use ϵ = max

�
τhigh − τlow

�
∆t, with τhigh and τlow high-order and low-order torque estimates provided
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FIG. 11. Absolute error on a single spin after precessing without damping for one period in a 0.1 T field, as a function of
different solver’s MaxErr settings. Solid lines represent 1st order fits. The same lower bound as in Fig. 10 is visible.

by the particular Runge-Kutta method, and ∆t the time step. The time step is adjusted using a
default headroom of 0.8.

In MM3, ϵ0 is accessible as the variable MaxErr. Its default value of 10−5 was adequate
for the presented standard problems. The relation between ϵ0 and the overall error at the end of the
simulation is in general hard to determine. Nevertheless, we illustrate this in Fig. 11 for a single
period of spin precession under the same conditions as Fig. 10. It can be seen that the absolute error
per precession scales linearly with ϵ0, although the absolute value of the error depends on the solver
type and exact simulation conditions.

B. Energy minimization

MM3 provides a relax() function that attempts to find the systems’ energy minimum.
This function disables the precession term Eq. (2), so that the effective field points towards decreas-
ing energy. Relax first advances in time until the total energy cuts into the numerical noise floor. At
that point the state will be close to equilibrium already. We then begin monitoring the magnitude of
the torque instead of the energy, since close to equilibrium the torque will decrease monotonically
and is less noisy than the energy. So we advance further until the torque cuts into the noise floor as
well. Each time that happens, we decrease MaxErr and continue further until MaxErr=10−9. At this
point it does not make sense to increase the accuracy anymore (see Fig. 11) and we stop advancing.

This Relax procedure was used in the presented standard problems, where it proved adequate.
Typical residual torques after Relax are of the order of 10−4–10−7 γLL T, indicating that the system
is indeed very close to equilibrium. Nevertheless, as with any energy minimization technique, there
is always a possibility that the system ends up in a saddle point or very flat part of the energy
landscape.
Relax internally uses the RK23 solver, which we noticed performs better then RK45 in most

relaxation scenarios. Near equilibrium, both solvers tend to take similarly large time steps, but
RK23 needs only half as many torque evaluations per step as RK45.

V. STANDARD PROBLEMS

In this section we provide solutions to micromagnetic standard problems #1–4 provided by the
µMag modeling group12 and standard problem #5 proposed by Najafi et al.33 Reference solutions
were taken from Ref. 12 as noted, or otherwise calculated with OOMMF 1.2 alpha 5 bis.1

A. Standard Problem #1

The first µMag standard problem involves the hysteresis loops of a 1 µm × 2 µm × 20 nm
Permalloy rectangle (Aex = 1.3×10−11 J/m, Msat = 8×105 A/m, Ku1 = 5×102 J/m3 uniaxial, with
easy axis nominally parallel to the long edges of the rectangle) for the field approximately parallel
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FIG. 12. MM3 solution for standard problem #1, using a 2D grid of 3.90625 nm wide cells. Open symbols represent the
virgin curve starting from a vortex state. After each field step we applied thermal fluctuations with α = 0.05, T = 300K for
500ps to allow the magnetization to jump over small energy barriers. There are no consistent standard solutions to compare
with.

to the long and short axis, respectively. Our solution is presented in Fig. 12. Unfortunately the
submitted solutions12 do not agree with each other, making it impossible to assess the correctness in
a quantitative way.

B. Standard Problem #2

The second µMag standard problem considers a thin film of width d, length 5d and thick-

ness 0.1d, all expressed in terms of the exchange length lex =


2Aex/µ0M2

sat. The remanence and
coercitive field, expressed in units Msat, are to be calculated as a function of d/lex.

The remanence is compared to OOMMF in Fig. 13. The coercivity, shown in Fig. 14, be-
haves interestingly in the small-particle limit where an analytical solution exists.19 In that case the
magnetization is uniform and the magnetostatic field dominates the behaviour. Of the solutions
submitted to the µMag group,19,34–36 the Streibl,34 Donahue19 (OOMMF 1.1) and MM3 results
best approach the small-particle limit. It was shown by Donahue et al.19 that proper averaging of
the magnetostatic field over each cell volume is needed to accurately reproduce the analytical limit.
Hence this standard problem serves as a test for the numerical integration of our demagnetizing
kernel.

FIG. 13. Remanence for standard problem #2 as a function of the magnet size d expressed in exchange lengths lex. The
MM3 calculations (points) use automatically chosen cell sizes between 0.25 and 0.5 lex. OOMMF results (line) were
taken from Ref. 12.
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FIG. 14. Coercivity for standard problem #2 as a function of the magnet size d expressed in exchange lengths lex.
MM3 calculations (points) use automatically chosen cell sizes between 0.25 and 0.5lex. OOMMF results (line) taken
from Ref. 12. The slight discrepancy at high d is attributed to OOMMF’s solution using larger cells there. The analytical
limit for very small size is by Donahue et al.19

C. Standard Problem #3

Standard problem #3 considers a cube with edge length L expressed in exchange lengths

lex =


2Aex/µ0M2

sat. The magnet has uniaxial anisotropy with Ku1 = 0.1Km, with Km = 1/2µ0M2
sat,

easy axis parallel to the z-axis. The critical edge size L where the ground state transitions between a
quasi-uniform and vortex-like state needs to be found, it is expected around L=8.

This problem was solved using a 16× 16× 16 grid. The cube was initialized with ∼3,000
different random initial magnetization states for random edge lengths L between 7.5 and 9, and
relaxed to equilibrium. Four stable states were found, shown in Fig. 15: a quasi-uniform flower
state (a), twisted flower state (b), vortex state (c) and a canted vortex (d). Then cubes of different
sizes were initialized to these states and relaxed to equilibrium. The resulting energy for each
state, shown in Fig. 15, reveals the absolute ground states in the considered range: flower state for
L < 8.16, twisted flower for 8.16 < L < 8.47 and vortex for L > 8.47.

The transition at L=8.47 is in quantitative agreement with the solutions posted to µMag by
Rave et al. 37 and by Martins et al. 12 The existence of the twisted flower state was already noted by
Hertel et al.,12 although without determining the flower to twisted flower transition point.

FIG. 15. Standard problem #3: energy densities of the flower (a), twisted flower (b), vortex (c) and canted vortex (d) states as
a function of the cube edge length L. Transitions of the ground state are marked with vertical lines at L = 8.16 and L = 8.47.
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FIG. 16. MM3 (dots) and OOMMF (lines) solution to standard problem #4a (top graph) and #4b (bottom graph), as well
as space-dependent magnetization snapshots when <mx> crosses zero, for fields (a) and (b). All use a 200× 50× 1 grid.

D. Standard Problem #4

Standard problem #4 considers dynamic magnetization reversal in a 500 nm× 125 nm× 3 nm
Permalloy magnet (Aex=1.3×10−11 J/m, Msat=8×105 A/m). The initial state is an S-state obtained
after saturating along the (1,1,1) direction. Then the magnet is reversed by either field (a): (-24.6,
4.3, 0) mT or field (b): (-35.5, -6.3, 0) mT. Time-dependent average magnetizations should be given,
as well as the space-dependent magnetization when <mx> first crosses zero.

Our solution, shown in Fig. 16, agrees with OOMMF.

E. Standard Problem #5

Standard problem #5 proposed by Najafi et al.33 considers a 100 nm× 100 nm× 10 nm Permal-
loy square (A = 13 × 10−12 J/m, Msat = 8 × 105 A/m, α=0.1, ξ=0.05) with an initial vortex magne-
tization. A homogeneous current j = 1012 Am−2 along x, applied at t = 0 drives the vortex towards
a new equilibrium state. The obtained time-dependent average magnetization, shown in Fig. 17,
agrees well the OOMMF solution.

FIG. 17. MM3 (dots) and OOMMF (lines) solution to standard problem #5, both using a 50× 50× 5 grid.
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FIG. 18. Top frame: magnetization in a 1 µm wide, 20 nm thick Permalloy wire of finite length. The remaining frames apply
edge charge removal to simulate an infinitely long wire. The domain wall is driven by a 3×1012 A/m2 current while being
followed by the simulation window. So that it appears steady although moving at high speed (visible by the wall breakdown).
While moving, new notches enter the simulation from the right.

VI. EXTENSIONS

MM3 is designed to be modular and extensible. Some of our extensions, described below,
have been merged into the mainline code because they may be of general interest. Nevertheless,
extensions are considered specific to certain needs and are less generally usable than the aforemen-
tioned main features. For instance, MFM images and Voronoi tessellation are only implemented in
2D and only qualitatively tested.

A. Moving frame

MM3 provides an extension to translate the magnetization with respect to the finite differ-
ence grid (along the x-axis), inserting new values from the side. This allows the simulation window
to seemingly “follow” a region of interest like domain wall moving in a long nanowire, without hav-
ing to simulate the entire wire. MM3 can automatically translate the magnetization to keep an
average magnetization component of choice as close to zero as possible, or the user may arbitrarily
translate m⃗ from the input script.

When following a domain wall in a long transverse magnetized wire, we also provide the
possibility to remove the magnetic charges on the ends of the wire. This simulates an effectively
infinitely long wire without closure domains, as illustrated in Fig. 18.

Finally, when shifting the magnetization there is an option to also shift the material regions and
geometry along. The geometry and material parameters for the “new”cells that enter the simulation
from the side are automatically re-calculated so that new grains and geometrical features may seam-
lessly enter the simulation. This can be useful for, e.g., simulating a long racetrack with notches like
illustrated in Fig. 18, or a moving domain wall in a grainy material as published in Ref. 38.

B. Voronoi Tessellation

MM3 provides 2D Voronoi tessellation as a way to simulate grains in thin films, similar
to OOMMF.39 It is possible to have MM3 set-up the regions map with grain-shaped islands,
randomly colored with up to 256 region numbers (Fig. 19(a)). The material parameters in each of
those regions can then be varied to simulate, e.g., grains with randomly distributed anisotropy axes
or even change the exchange coupling between them (Fig. 19(b)).

Our implementation is compatible with the possibility to move the simulation window. E.g.,
when the simulation window is following a moving domain wall, new grains will automatically
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FIG. 19. Example of a Voronoi tessellation with average 100 nm grains in a 2048 µm wide disk. Left: cells colored by their
region index (0–256). Right: boundaries between the grains visualized by reducing the exchange coupling between them
(Eq. (9)), and outputting MM3 ’s ExchCoupling quantity, the average Msat/Aex around each cell.

enter the simulation from the sides. The new grains are generated using hashes of the cell coordi-
nates so that there is no need to store a (potentially very large) map of all the grains beyond the
current simulation grid. More details can be found in Ref. 38.

C. Magnetic force microscopy

MM3 has a built-in capability to generate magnetic force microscopy (MFM) images in
Dynamic (AC) mode from a 2D magnetization. We calculate the derivative of the force between tip
and sample from the convolution:

∂Fz

∂z
=


i=x, y,z

Mi(x, y) ∗ ∂
2Btip, i(x, y)

∂z2 (31)

where B⃗tip is the tip’s stray field evaluated in the sample plane. MM3 provides the field of an
idealized dipole or monopole tip with arbitrary elevation. No attempt is made to reproduce tip fields
in absolute terms as our only goal is to produce output proportional to the actual MFM contrast, like
shown in Fig. 20.

Eq. (31) is implemented using FFT-acceleration similar to the magnetostatic field, and is eval-
uated on the GPU. Hence MFM image generation is very fast and generally takes only a few
milliseconds. This makes it possible to watch “real-time” MFM images in the web interface while
the magnetization is evolving in time.

VII. PERFORMANCE

A. Simulation size

Nowadays, GPU’s offer massive computational performance of several TFlop/s per device.
However, that compute power is only fully utilized in case of sufficient parallelization, i.e., for

FIG. 20. (a) vortex magnetization in a 750 nm × 750 nm× 10 nm Permalloy square. (b), (c) are MM3-generated MFM
images at 50 nm and 100 nm lift height respectively, both using AC mode and a monopole tip model.
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FIG. 21. MM3 throughput on GTX TITAN GPU, for all N ×N grid sizes up to 1024× 1024. Numbers with only factors
2,3,5,7 are marked with an open box, pure powers of two (corresponding to Fig. 22) with a full box. Proper grid sizes should
be chosen to ensure optimal performance.

sufficiently large simulations. This is clearly illustrated by considering how many cells can be pro-
cessed per second, i.e., Ncells/tupdate with tupdate the time needed to calculate the torque for Ncells cells.
We refer to this quantity as the throughput. Given the overall complexity of O(N log(N)) one would
expect a nearly constant throughput that slowly degrades at high N . For all presented throughputs,
magnetostatic and exchange interactions were enabled and no output was saved.

The throughput presented in Fig. 21 for a square 2D simulation on a GTX TITAN GPU only
exhibits the theoretical, nearly constant, behaviour starting from about 256 000 cells. Below, the
GPU is not fully utilized and performance drops. Fortunately, large simulations are exactly where
GPU speed-up is needed most and where performance is optimal.

MM3’s performance is dominated by FFT calculations using the cuFFT library, which per-
forms best for power-of-two sizes and acceptably for 7-smooth numbers (having only factors 2,3,5
and 7). Other numbers, especially primes should be avoided. This is clearly illustrated in Fig. 21
where other than the recommended sizes show a performance penalty of up to about an order of
magnitude. So somewhat oversizing the grid up to a nice smooth number may be beneficial to the
performance.

Note that the data in Fig. 22 is for a 2D simulation. Typically a 3D simulation with the same to-
tal number of cells costs an additional factor ∼ 1.5× in compute time and memory due to additional
FFTs along the z-axis.

On the other hand, simulations with periodic boundary conditions will run considerably faster
than their non-periodic counterparts. This is due to the absence of zero-padding which reduces FFT
sizes by 2 in each periodic direction. Memory consumption will be considerably lower as well. Only
the one-time kernel initialization will take longer in this case, as a number of repeated images need
to taken into account here.

FIG. 22. MM3 throughput, measured in how many cells can have their torque evaluated per second (higher is better),
for a 4×106 cell simulation (indicative for all sufficiently large simulations). For comparision, OOMMF performance on a
quad-core 2.1 GHz CPU lies around 4 M cells/s.
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FIG. 23. Indication of the number of cells that can be addressed with 2 GB of GPU memory for simulations in 2D, 3D and
thin 3D (here 3 layers) and using different solvers. RK45 is MM3’s default solver for dynamics, RK23 for relaxation.
Only magnetostatic, exchange and Zeeman terms were enabled.

B. Hardware

Apart form the simulation size, MM3’s performance is strongly affected by the particular
GPU hardware. We highlight the differences between several GPU models by comparing their
throughput in Fig. 22. This was done for a 4 M cells simulation where all tested GPUs were fully
utilized. So the numbers are indicative for all sufficiently large simulation sizes.

We also included OOMMF’s throughput on a quad-core 2.1 GHz core i7 CPU to give a
rough impression of the GPU speed-up. The measured OOMMF performance (not clearly distin-
guishable in Fig. 22) was around 4×106 cells/s. So with a proper GPU and sufficiently large
grid sizes, a speed-up of 20–45×with respect to a quad-core can be reached or, equivalently, a
80–180× speed-up compared to a single-core CPU. This is in line with earlier MM1 and Mi-
croMagnum benchmarks.2,4 It must be noted however that OOMMF operates in double-precision in
contrast to MM3’s single-precision arithmetic, and also does not suffer reduced throughput for
small simulations.

Finally, MicroMagnum’s throughput (not presented) was found to be nearly indistinguishable
from MM3. This is unsurprising since both MM3’s and MicroMagnum’s performance are
dominated by CUDA’s FFT routines. In our benchmarks on a GTX650M, differences between both
packages were comparable to the noise on the timings.

C. Memory use

In contrast to their massive computational power, GPUs are typically limited to rather small
amounts of memory (currently 1—6 GB). Therefore, MM3 was heavily optimized to use as
little memory as possible. We exploited, for example, the magnetostatic kernel symmetries and zero
elements and make heavy use of memory pooling and recycling.

Also, MM3 employs minimal zero-padding in the common situation of 3D simulations with
only a small number of layers. For up to 10 layers there is no need to use a power of two, and
memory usage will be somewhat reduced as well.

In this way, MM3 on a GPU with only 2 GB of memory is able to simulate about 9 million
cells in 2D and 6 million in 3D, or about 2 ×more than MicroMagnum v0.22 (see Fig. 23). When
using a lower-order solver this number can be further increased to 12×106 cells with RK23 (2D)
or 16×106 cells with RK12(2D), all in 2 GB. Cards like the GTX TITAN and K20XM, with 6 GB
RAM can store proportionally more, e.g., 31 M cells for 2D with the RK45 solver.

VIII. CONCLUSION

We have presented in detail the micromagnetic model employed by MM3, as well as a
verification for each of its components. GPU acceleration provides a speed-up of 1–2 orders of
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magnitude compared to CPU-based micromagnetic simulations. In addition, MM3’s low mem-
ory requirements open up the possibility of very large-scale micromagnetic simulations, a regime
where the GPU’s potential is fully utilized and where the speed-up is also needed most. Depending
on the solver type MM3 can fit 10–16 million cells in 2 GB GPU RAM—about 2×more than
MuMax2 or MicroMagnum.

MM3 is open-source and designed to be easily extensible, so anybody can in principle add
functionality. Some extensions like a moving simulation window, edge charge removal, Voronoi
tessellation and MFM images have been permanently merged into MM3 and more extensions
are expected in the future.
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